Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Loop dynamics and the evolution of enzyme activity

A Publisher Correction to this article was published on 20 June 2023

This article has been updated

Abstract

In the early 2000s, Tawfik presented his ‘New View’ on enzyme evolution, highlighting the role of conformational plasticity in expanding the functional diversity of limited repertoires of sequences. This view is gaining increasing traction with increasing evidence of the importance of conformational dynamics in both natural and laboratory evolution of enzymes. The past years have seen several elegant examples of harnessing conformational (particularly loop) dynamics to successfully manipulate protein function. This Review revisits flexible loops as critical participants in regulating enzyme activity. We showcase several systems of particular interest: triosephosphate isomerase barrel proteins, protein tyrosine phosphatases and β-lactamases, while briefly discussing other systems in which loop dynamics are important for selectivity and turnover. We then discuss the implications for engineering, presenting examples of successful loop manipulation in either improving catalytic efficiency, or changing selectivity completely. Overall, it is becoming clearer that mimicking nature by manipulating the conformational dynamics of key protein loops is a powerful method of tailoring enzyme activity, without needing to target active-site residues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Exploiting protein loop dynamics in protein evolution and engineering.
Fig. 2: Overview of the key enzymes regulating tryptophan biosynthesis158, and the complex loop dynamics involved in the process.
Fig. 3: Loop dynamics and enzyme catalysis in protein tyrosine phosphatases.
Fig. 4: Enhancing the luminescence of enzymes from haloalkane dehalogenase and luciferase families with engineered loop dynamics53,161,162.

Similar content being viewed by others

Change history

References

  1. James, L. C. & Tawfik, D. S. Conformational diversity and protein evolution — a 60-year-old hypothesis revisited. Trends Biochem. Sci. 28, P361–P368 (2003).

    Article  Google Scholar 

  2. Tokuriki, N. & Tawfik, D. S. Protein dynamism and evolvability. Science 324, 203–207 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Damry, A. M. & Jackson, C. J. The evolution and engineering of enzyme activity through tuning conformational landscapes. Prot. Eng. Des. Sel. 34, gzab009 (2021).

    Article  Google Scholar 

  4. Campbell, E. C. et al. Laboratory evolution of protein conformational dynamics. Curr. Opin. Struct. Biol. 50, 49–57 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Maria-Solano, M. A., Serrano-Hervás, E., Romero-Rivera, A., Iglesias-Fernández, J. & Osuna, S. Role of conformational dynamics in the evolution of novel enzyme function. Chem. Commun. 54, 6622–6634 (2018).

    Article  CAS  Google Scholar 

  6. Crean, R. M., Gardner, J. M. & Kamerlin, S. C. L. Harnessing conformational plasticity to generate designer enzymes. J. Am. Chem. Soc. 142, 11324–11342 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pinto, G. P., Corbella, M., Demkiv, A. O. & Kamerlin, S. C. L. Exploiting enzyme evolution for computational protein design. Trends Biochem. Sci. 47, 375–389 (2021).

    Article  PubMed  Google Scholar 

  8. Brown, F. K. & Kollman, P. A. Molecular dynamics simulations of “loop closing” in the enzyme triose phosphate isomerase. J. Mol. Biol. 198, 533–546 (1987).

    Article  CAS  PubMed  Google Scholar 

  9. Joseph, D., Petsko, G. & Karplus, M. Anatomy of a conformational change: hinged “lid” motion of the triosephosphate isomerase loop. Science 249, 1425–1428 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Williams, J. C. & McDermott, A. E. Dynamics of the flexible loop of triose-phosphate isomerase: the loop motion is not ligand gated. Biochemistry 34, 8309–8319 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Rozovsky, S., Jogl, G., Tong, L. & McDermott, A. E. Solution-state NMR investigations of triosephosphate isomerase active site loop motion: ligand release in relation to active site loop dynamics. J. Mol. Biol. 310, 271–280 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Wierenga, R. K., Kapetaniou, E. G. & Venkatesan, R. Triosephosphate isomerase: a highly evolved biocatalyst. Cell. Mol. Life Sci. 67, 3961–3982 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Papaleo, E. et al. The role of protein loops and linkers in conformational dynamics and allostery. Chem. Rev. 116, 6391–6423 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Näsvall, J., Sun, L., Roth, J. R. & Andersson, D. I. Real-time evolution of new genes by innovation, amplification and divergence. Science 338, 384–387 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Newton, W. S. et al. Structural and functional innovations in the real-time evolution of new (βα)8 barrel enzymes. Proc. Natl Acad. Sci. USA 114, 4727–4732 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Romero-Rivera, A., Corbella, M., Parracino, A., Patrick, W. M. & Kamerlin, S. C. L. Complex loop dynamics underpin activity, specificity and evolvability in the (βα)8 barrel enzymes of histidine and tryptophan biosynthesis. JACS Au 4, 943–960 (2022).

    Article  Google Scholar 

  17. Crean, R. M., Biler, M., van der Kamp, M. W., Hengge, A. C. & Kamerlin, S. C. L. Loop dynamics and enzyme catalysis in protein tyrosine phosphatases. J. Am. Chem. Soc. 143, 3830–3845 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moise, G. et al. A YopH PTP1B chimera shows the importance of the WPD-loop sequence to the activity, structure and dynamics of protein tyrosine phosphatases. Biochemistry 57, 5315–5326 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Whittier, S. K., Hengge, A. C. & Loria, J. P. Conformational motions regulate phosphoryl transfer in related protein tyrosine phosphatases. Science 341, 899–903 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shen, R., Crean, R. M., Johnson, S. J., Kamerlin, S. C. L. & Hengge, A. C. Single residue on the WPD-loop affects the pH dependency of catalysis in protein tyrosine phosphatases. JACS Au 5, 646–659 (2021).

    Article  Google Scholar 

  21. Liu, J., Tan, H. & Rost, B. Loopy proteins appear conserved in evolution. J. Mol. Biol. 322, 53–64 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Gunasekaran, K., Ma, B. & Nussinov, R. Triggering loops and enzyme function: identification of loops that trigger and modulate movements. J. Mol. Biol. 332, 143–159 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Richard, J. P., Zhai, X. & Malabanan, M. M. Reflections on the catalytic power of a TIM-barrel. Bioorg. Chem. 57, 206–212 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Richard, J. P. A paradigm for enzyme-catalyzed proton transfer at carbon: triosephosphate isomerase. Biochemistry 51, 2652–2661 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Richard, J. P. Protein flexibility and stiffness enable efficient enzymatic catalysis. J. Am. Chem. Soc. 141, 3320–3331 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Richard, J. P., Amyes, T. L. & Reyes, A. C. Orotidine 5′-monophosphate decarboxylase: probing the limits of the possible for enzyme catalysis. Acc. Chem. Res. 51, 960–969 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. He, R., Reyes, A. C., Amyes, T. L. & Richard, J. P. Enzyme architecture: the role of a flexible loop in activation of glycerol-3-phosphate dehydrogenase for catalysis of hydride transfer. Biochemistry 57, 3227–3236 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Mhashal, A. R. et al. Modeling the role of a flexible loop and active site side chains in hydride transfer catalyzed by glycerol-3-phosphate dehydrogenase. ACS Catal. 19, 11253–11267 (2020).

    Article  Google Scholar 

  29. Ray, W. J., Long, J. W. & Owens, J. D. An analysis of the substrate-induced rate effect in the phosphoglutomuase system. Biochemistry 15, 4006–4017 (1976).

    Article  CAS  PubMed  Google Scholar 

  30. Seelig, B. & Szostak, J. W. Selection and evolution of enzymes from a partially randomized non-catalytic scaffold. Nature 448, 828–831 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kaur, G. & Subramanian, S. Repurposing TRASH: emergence of the enzyme organomercurial lyase from a non-catalytic zinc finger scaffold. J. Struct. Biol. 188, 16–21 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Ortmayer, M. et al. An oxidative N-demethylase reveals PAS transition from ubiquitous sensor to enzyme. Nature 539, 593–597 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Clifton, B. E. et al. Evolution of cyclohexadienyl dehydratase from an ancestral solute-binding protein. Nat. Chem. Biol. 14, 542–547 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Risso, V. A. et al. De novo active sites for resurrected Precambrian enzymes. Nat. Commun. 8, 16113 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kaltenbach, M. et al. Evolution of chalcone isomerase from a noncatalytic ancestor. Nat. Chem. Biol. 14, 548–555 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Hedstrom, L., Szilagyi, L. & Rutter, W. J. Converting trypsin to chymotrypsin: the role of surface loops. Science 255, 1249–1253 (1992).

    Article  CAS  PubMed  Google Scholar 

  37. Park, H.-S. et al. Design and evolution of new catalytic activity with an existing protein scaffold. Science 311, 535–538 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Tawfik, D. S. Loop grafting and the origins of enzyme species. Science 311, 475–576 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Doucet, N., Watt, E. D. & Loria, J. P. The flexibility of a distant loop modulates active-site motion and product release in ribonuclease A. Biochemistry 48, 7160–7168 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Clouthier, C. M. et al. Chimeric β-lactamases: global conservation of parental function and fast time-scale dynamics with increased slow motions. PLoS ONE 7, e55283 (2012).

    Article  Google Scholar 

  41. Narayanan, C. et al. Conservation of dynamics associated with biological function in an enzyme superfamily. Structure 26, 426–436 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dulcey, C. E., López de los Santos, Y., Létourneau, M., Déziel, E. & Doucet, N. Semi-rational evolution of the 3-(3-hydroxyalkanoyloxy)alkanoate (HAA) synthase RhlA to improve rhamnolipid production in Pseudomonas aeruginosa and Burkholderia glumae. FEBS J. 286, 4036–4059 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nestl, B. M. & Hauer, B. Engineering of flexible loops in enzymes. ACS Catal. 4, 3201–3211 (2014).

    Article  CAS  Google Scholar 

  44. Shen, R. et al. Insights into the importance of WPD-loop sequence in protein tyrosine phosphatases. Chem. Sci. 13, 13524–13540 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hammes-Schiffer, S. & Benkovic, S. J. Relating protein motion to catalysis. Annu. Rev. Biochem. 75, 519–541 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Tzeng, S.-R. & Kalodimos, C. G. Protein dynamics and allostery: an NMR view. Curr. Opin. Struct. Biol. 21, 62–67 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Bar-Even, A. et al. The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50, 4402–4410 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Guo, J. & Zhou, H.-X. Protein allostery and conformational dynamics. Chem. Rev. 116, 6503–6515 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Johansson, K. E. & Lindorff-Larsen, K. Structural heterogeneity and dynamics in protein evolution and design. Curr. Opin. Struct. Biol. 48, 157–163 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Kreß, N., Halder, J. M., Rapp, L. R. & Hauer, B. Unlocked potential of dynamic elements in protein structures: channels and loops. Curr. Opin. Chem. Biol. 47, 109–116 (2018).

    Article  PubMed  Google Scholar 

  51. Campitelli, P., Modi, T., Kumar, S. & Banu, O. S. The role of conformational dynamics and allostery in modulating protein evolution. Annu. Rev. Biophys. 49, 267–288 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Maria-Solano, M. A., Iglesias-Fernández, J. & Osuna, S. Deciphering the allosterically driven conformational ensemble in tryptophan synthase evolution. J. Am. Chem. Soc. 141, 13049–13056 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Schenkmayerova, A. et al. Engineering the protein dynamics of an ancestral luciferase. Nat. Commun. 12, 3616 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Qu, G. et al. Unlocking the stereoselectivity and substrate acceptance of enzymes: proline-induced loop engineering test. Angew. Chem. Int. Ed. 61, e202110793 (2021).

    Google Scholar 

  55. Klinman, J. P. & Kohen, A. Evolutionary aspects of enzyme dynamics. J. Biol. Chem. 289, 30205–30212 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bhabha, G., Biel, J. T. & Fraser, J. S. Keep on moving: discovering and perturbing the conformational dynamics of enzymes. Acc. Chem. Res. 48, 423–430 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Pabis, A., Risso, V. A., Sanchez-Ruiz, J. M. & Kamerlin, S. C. L. Cooperativity and flexibility in enzyme evolution. Curr. Opin. Struct. Biol. 48, 83–92 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Espadaler, J., Querol, E., Aviles, F. X. & Oliva, B. Identification of function-associated loop motifs and appliation to protein function prediction. Bioinformatics 22, 2237–2243 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Regad, L., Martin, J., Nuel, G. & Camproux, A.-C. Minig protein loops using a structural alphabet and statistical exceptionality. BMC Bioinformat. 11, 75 (2010).

    Article  Google Scholar 

  60. Choi, Y., Agarwal, S. & Deane, C. M. How long is a piece of loop? PeerJ 1, e1 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Dhar, J. & Chakrabarti, P. Defining the loop structures in proteins based on composite β-turn mimics. Prot. Eng. Des. Sel. 28, 153–161 (2015).

    Article  CAS  Google Scholar 

  62. Wierenga, R. K. The TIM-barrel fold: a versatile framework for efficient enzymes. FEBS Lett. 492, 193–198 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Gerlt, J. A. New wine from old barrels. Nat. Struct. Biol. 7, 171–173 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Sterner, R. & Höcker, B. Catalytic versatility, stability, and evolution of the (βα)8-barrel enzyme fold. Chem. Rev. 105, 4038–4055 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Heine, A., Luz, J. G., Wong, C.-H. & Wilson, I. A. Analysis of the class I aldolase binding site architecture based on the crystal structure of 2-deoxyribose-5-phosphate aldolase at 0.99 Å resolution. J. Mol. Biol. 343, 1019–1034 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Dowling, D. P., Croft, A. K. & Drennan, C. L. Radical use of Rossman and TIM barrel architectures for controling coenzyme B12 chemistry. Annu. Rev. Biophys. 41, 403–427 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Röthlisberger, D. et al. Kemp elimination catalysts by computational enzyme design. Nature 453, 190–195 (2008).

    Article  PubMed  Google Scholar 

  68. Jiang, L. et al. De novo computational design of retro-aldol enzymes. Science 319, 1387–1391 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Claren, J., Malisi, C., Höcker, B. & Sterner, R. Establishing wild-type levels of catalytic activity on natural and artificial (βα)8-barrel protein scaffolds. Proc. Natl Acad. Sci. USA 106, 3704–3709 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Huang, P.-S. et al. De novo design of a four-fold symmetric TIM-barrel protein with atomic-level accuracy. Nat. Chem. Biol. 12, 29–34 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Lapidoth, G. et al. Highly active enzymes by automated combinatorial backbone assembly and sequence design. Nat. Commun. 9, 2780 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Romero-Romero, S., Kordes, S., Michel, F. & Höcker, B. Evolution, folding and design of TIM barrels and related proteins. Curr. Opin. Struct. Biol. 68, 94–104 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kadumuri, R. V. & Vadrevu, R. Diversity in αβ and βα loop connections in TIM barrel proteins: implications for stability and design of the fold. Interdiscip. Sci. 10, 805–812 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Knowles, J. R. Enzyme catalysis: not different, just better. Nature 350, 121–124 (1991).

    Article  CAS  PubMed  Google Scholar 

  75. Knowles, J. R. & Albery, W. J. Perfection in enzyme catalysis: the energetics of triosephosphate isomerase. Acc. Chem. Res. 10, 105–111 (1977).

    Article  CAS  Google Scholar 

  76. Albery, W. J. & Knowles, J. R. Evolution of enzyme function and the development of catalytic efficiency. Biochemistry 15, 5631–5640 (1976).

    Article  CAS  PubMed  Google Scholar 

  77. Banner, D. et al. Structure of chicken muscle triose phosphate isomerase determined crystallographically at 2.5 Å resolution: using amino acid sequence data. Nature 255, 609–614 (1975).

    Article  CAS  PubMed  Google Scholar 

  78. Jogl, G., Rozovsky, S., McDermott, A. E. & Tong, L. Optimal alignment for enzymatic proton transfer: structure of the Michaelis complex of triosephosphate isomerase at 1.2-Å resolution. Proc. Natl Acad. Sci. USA 100, 50–55 (2003).

    Article  PubMed  Google Scholar 

  79. Amyes, T. L. & Richard, J. P. Enzymatic catalysis of proton transfer at carbon: activation of triosephosphate isomerase by phosphite dianion. Biochemistry 46, 5841–5854 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Go, M. K., Amyes, T. L. & Richard, J. P. Hydron transfer catalyzed by triosephosphate isomerase. Products of the direct and phosphite-activated isomerization of [1-13C]-glycoaldehyde in D2O. Biochemistry 48, 5769–5778 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Kulkarni, Y. S. et al. The role of ligand-driven conformational changes in enzyme catalysis: modeling the catalytic cage of triosephosphate isomerase. J. Am. Chem. Soc. 140, 3854–3857 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Malabanan, M. M., Nitsch-Velasquez, L., Amyes, T. L. & Richard, J. P. Magnitude and origin of the enhanced basicity of the catalytic glutamate of triosephosphate isomerase. J. Am. Chem. Soc. 135, 5978–5981 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Katebi, A. R. & Jernigan, R. L. The critical role of the loops of triosephosphate isomerase for its oligomerization, dynamics and functionality. Prot. Sci. 23, 213–228 (2014).

    Article  CAS  Google Scholar 

  84. Liao, Q. et al. Loop motion in triosephosphate isomerase is not a simple open and shut case. J. Am. Chem. Soc. 140, 15889–15903 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Richard, J. P., Amyes, T. L., Goryanova, B. & Zhai, X. Enzyme architecture: on the importance of being in a protein cage. Curr. Opin. Struct. Biol. 21, 1–10 (2014).

    Article  CAS  Google Scholar 

  86. Plach, M. G., Reisinger, B., Sterner, R. & Merkl, R. Long-term persistence of bi-functionality contributes to the robustness of microbial life through exaptation. PLoS Genet. 12, e1005836 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Due, A. V., Kuper, J., Geerlof, A., von Kries, J. P. & Wilmanns, M. Bisubstrate specificity in histidine/tryptophan biosynthesis isomerase from Mycobacterium tuberculosis by active site metamorphosis. Proc. Natl Acad. Sci. USA 108, 3554–3559 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Henn-Sax, M. et al. Two (βα)8-barrel enzymes of histidine and tryptophan biosynthesis have similar reaction mechanisms and common strategies for protecting their labile substrates. Biochemistry 41, 12032–12042 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Söderholm, A. et al. Two-step ligand binding in a (βα)8 barrel enzyme: substrate-bound structures shed new light on the catalytic cycle of HisA. J. Biol. Chem. 290, 24657–24668 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Hodge, J. E. & Rist, C. E. The Amadori rearrangement under new conditions and its significance for non-enzymatic browning reactions. J. Am. Chem. Soc. 75, 316–322 (1952).

    Article  Google Scholar 

  91. Lundin, E., Näsvall, J. & Andersson, D. I. Mutational pathways and trade-offs between HisA and TrpF functions: implications for evolution via gene duplication and divergence. Front. Microbiol. 11, 588235 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Lee, C. E., Goodfellow, C., Javid-Majd, F., Baker, E. N. & Lott, J. S. The crystal structure of TrpD, a metabolic enzyme essential for lung colonization by Mycobacterium tuberculosis, in complex with its substrate phosphoribosylpyrophosphate. J. Mol. Biol. 355, 784–797 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Schlee, S. et al. Kinetic mechanism of indole-3-glycerol phosphate synthase. Biochemistry 52, 132–142 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Delmer, D. P. & Mills, S. E. Tryptophan synthase from Nicotiana tabacum. Biochim. Biophys. Acta 167, 431–443 (1968).

    Article  CAS  PubMed  Google Scholar 

  95. Miles, E. W., Bauerle, R. & Ahmed, S. A. Tryptophan synthase from Escherichia coli and Salmonella typhimurium. Methods Enzymol. 142, 398–414 (1987).

    Article  CAS  PubMed  Google Scholar 

  96. Dunn, M. F. Allosteric regulation of substrate channeling and catalysis in the tryptophan synthase bienzyme complex. Arch. Biochem. Biophys. 519, 154–166 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Buller, A. R., van Roye, P., Murciano-Calles, J. & Arnold, F. H. Tryptophan synthase uses an atypical mechanism to achieve substrate specificity. Biochemistry 55, 7043–7046 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. Hyde, C. C., Ahmed, S. A., Padlan, E. A., Miles, E. W. & Davies, D. R. Three-dimensional structure of the tryptophan synthase alpha 2 beta 2 multienzyme complex from Salmonella typhimurium. J. Biol. Chem. 263, 17857–17871 (1998).

    Article  Google Scholar 

  99. Schlee, S. et al. Relationship of catalysis and active site loop dynamics in the (βα)8-barrel enzyme indole-3-glycerol phosphate synthase. Biochemistry 57, 3265–3277 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Hennig, M., Darimont, B. D., Jansonius, J. N. & Kirchner, K. The catalytic mechanism of indole-3-glycerol phosphate synthase: crystal structures of complexes of the enzyme from Sulfolobus solfataricus with substrate analogue, substrate and product. J. Mol. Biol. 319, 757–766 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Zaccardi, M. J., Mannweiler, O. & Boehr, D. D. Differences in the catalytic mechanisms of mesophilic and thermophilic indole-3-glycerol phosphate synthase enzymes at their adaptive temperatures. Biochem. Biophys. Res. Commun. 418, 324–329 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Zaccardi, M. J. et al. Loop–loop interactions govern multiple steps in indole-3-glycerol phosphate synthase catalysis. Prot. Sci. 23, 302–311 (2014).

    Article  CAS  Google Scholar 

  103. O’Rourke, K. F., Jelowicki, A. M. & Boehr, D. D. Controlling active site loop dynamics in the (β/α)8 barrel enzyme indole-3-glycerol phosphate synthase. Catalysts 6, 129 (2016).

    Article  Google Scholar 

  104. Schneider, T. R. et al. Loop closure and intersubunit communication in tryptophan synthase. Biochemistry 37, 5394–5406 (1998).

    Article  CAS  PubMed  Google Scholar 

  105. Buller, A. W. et al. Directed evolution of the tryptophan synthase β-subunit for stand-alone function recapitulates allosteric activation. Proc. Natl Acad. Sci. USA 112, 14599–14604 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Maria-Solano, M. A., Kinateder, T., Iglesias-Fernández, J., Sterner, R. & Osuna, S. In silico identification and experimental validation of distal activity-enhancing mutations in tryptophan synthase. ACS Catal. 11, 13733–13743 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Romero-Rivera, A., Garcia-Borras, M. & Osuna, S. Role of conformational dynamics in the evolution of retro-aldolase activity. ACS Catal. 7, 8524–8532 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gurzov, E. N., Stanley, W. J., Brodnicki, T. C. & Thomas, H. E. Protein tyrosine phosphatases: molecular switches in metabolism and diabetes. Trends Endrocrinol. Metab. 26, 30–39 (2015).

    Article  CAS  Google Scholar 

  109. Östman, A., Hellberg, C. & Böhmer, F. D. Protein–tyrosine phosphatases and cancer. Nat. Rev. Cancer 6, 307–320 (2006).

    Article  PubMed  Google Scholar 

  110. Zhang, Z. Y. Protein–tyrosine phosphatases: biological function, structural characteristics, and mechanism of catalysis. Crit. Rev. Biochem. Mol. Biol. 33, 1–52 (1998).

    Article  PubMed  Google Scholar 

  111. Brandão, T. A. S., Hengge, A. C. & Johnson, S. J. Insights into the reaction of protein–tyrosine phosphatase 1B. J. Biol. Chem. 285, 15874–15883 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Wiesmann, C. et al. Allosteric inhibition of protein tyrosine phosphatase 1B. Nat. Struct. Mol. BIol. 11, 730–737 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Wang, H. et al. A structural exposé of noncanonical molecular reactivity within the protein tyrosine phosphatase WPD-loop. Nat. Commun. 13, 2231 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Saraste, M., Sibbald, P. R. & Wittinghofer, A. The P-loop — a common motif in ATP- and GTP-binding proteins. Trends Biochem. Sci. 15, 430–434 (1990).

    Article  PubMed  Google Scholar 

  115. Smith, C. A. & Rayment, I. Active site comparisons highlight structural similarities between myosin and other P-loop proteins. Biophys. J. 70, 1590–1602 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tabernero, L., Aricescu, A. R., Jones, E. Y. & Szdlacsek, S. E. Protein tyrosine phosphatases: structure–function relationships. FEBS J. 275, 867–882 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Pálfy, G., Menyhárd, D. K. & Perczel, A. Dynamically encoded reactivity of Ras enzymes: opening new frontiers for drug discovery. Cancer Metastasis Rev. 39, 1075–1089 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Pinkston, J. et al. Significant loop motions in the SsoPTP protein tyrosine phosphatase allow for dual general acid functionality. Biochemistry 60, 2888–2901 (2021).

    Article  CAS  PubMed  Google Scholar 

  119. Yun, H.-Y. et al. Structural study reveals the temperature dependent conformational flexibility of Tk-PTP, a protein tyrosine phosphatase from Thermococcus kodakaraensis KOD1. PLoS ONE 13, e0197635 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Torgeson, K. R. et al. Conserved conformational dynamics determine enzyme activity. Sci. Adv. 8, eabo5546 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bush, K. & Jacoby, G. A. Updated functional classification of β-lactamases. Antimicrob. Agents Chemother. 54, 969–976 (2010).

    Article  CAS  PubMed  Google Scholar 

  122. Zou, T., Risso, V. A., Gavira, J. A., Sanchez-Ruiz, J. M. & Ozkan, S. B. Evolution of conformational dynamics determines the conversion of a promiscuous generalist into a specialist enzyme. Mol. Biol. Evol. 32, 132–143 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Modi, T. et al. Hinge-shift mechanism as a protein design principle for the evolution of β-lactamases from substrate promiscuity to specificity. Nat. Commun. 12, 1852 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Risso, V. A. et al. Enhancing a de novo enzyme activity by computationally-focused ultra-low-throughput screening. Chem. Sci. 11, 6134–6148 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Cortina, G. A. & Kasson, P. M. Excess positional mutual information predicts both local and allosteric mutations affecting beta lactamase drug resistance. Bioinformatics 32, 3420–3427 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hart, K. M., Ho, C. M. W., Dutta, S., Gross, M. L. & Bowman, G. R. Modeling proteins’ hidden conformations to predict antibiotic resistance. Nat. Commun. 7, 12965 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Cortina, G. A., Hays, J. M. & Kasson, P. M. Conformational intermediate that controls KPC-2 catalysis and beta-lactam drug resistance. ACS Catal. 8, 2741–2747 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Knoverek, C. R. et al. Opening of a cryptic pocket in β-lactamase increases penicillinase activity. Proc. Natl Acad. Sci. USA 118, e2106473118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Alejaldre, L. et al. Known evolutionary paths are accessible to engineered ß-lactamases having altered protein motions at the timescale of catalytic turnover. Front. Mol. Biosci. 7, 599298 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wang, X., Minasov, G. & Shoichet, B. K. Evolution of an antibiotic resistance enzyme constrained by stability and activity trade-offs. J. Mol. Biol. 320, 85–95 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. Salverda, M. L. M., de Visser, J. A. G. M. & Barlow, M. Natural evolution of TEM-1 β-lactamase: experimental reconstruction and clinical relevance. FEMS Microbiol. Rev. 34, 1015–1036 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. Salverda, M. L. M. et al. Initial mutations direct alternative pathways of protein evolution. PLoS Genet. 7, e1001321 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Fröhlich, C. et al. Cryptic β-lactamase evolution is driven by low β-lactam concentrations. mSphere 6, e00108 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Galdadas, I. et al. Allosteric communication in class A β-lactamases occurs via cooperative coupling of loop dynamics. eLife 10, e66567 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Baier, F. & Tokuriki, N. Connectivity between catalytic landscapes of the metallo-β-lactamase superfamily. J. Mol. Biol. 426, 2442–2456 (2014).

    Article  CAS  PubMed  Google Scholar 

  136. Baier, F. et al. Cryptic genetic variation shapes the adaptive evolutionary potential of enzymes. eLife 8, e40789 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Socha, R. D., Chen, J. & Tokuriki, N. The molecular mechanisms underlying hidden phenotypic variation among metallo-β-lactamases. J. Mol. Biol. 431, 1172–1185 (2019).

    Article  CAS  PubMed  Google Scholar 

  138. Chen, J. Z., Fowler, D. M. & Tokuriki, N. Comprehensive exploration of the translocation, stabiliy and substrate recognition requirements in VIM-2 lactamase. eLife 9, e56707 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. López, C., Delmonti, J., Bonomo, R. A. & Vila, A. J. Deciphering the evolution of metallo-β-lactamases: a journey from the test tube to the bacterial periplasm. J. Biol. Chem. 298, 101665 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Ortlund, E. A., Birdgham, J. T., Redinbo, M. W. & Thornton, J. W. Crystal structure of an ancient protein: evolution by conformational epistasis. Science 143, 1544–1548 (2007).

    Article  Google Scholar 

  141. Du, J., Say, R. F., Lü, W., Fuchs, G. & Einsle, O. Active-site remodelling in the bifunctional fructose-1,6-bisphosphate aldolase/phosphatase. Nature 478, 534–537 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Fushinobu, S., Nishimasu, H., Hattori, D., Song, H.-J. & Wakagi, T. Structural basis for the bifunctionality of fructose-1-6,bisphosphate aldolase/phosphatase. Nature 478, 538–541 (2011).

    Article  CAS  PubMed  Google Scholar 

  143. Chesters, C., Wilding, M., Goodall, M. & Micklefield, J. Thermal bifunctionality of bacterial phenylalanine aminomutase and ammonia lyase enzymes. Angew. Chem. Int. Ed. 51, 4344–4348 (2012).

    Article  CAS  Google Scholar 

  144. Heinemann, P. M., Armbruster, D. & Hauer, D. Active-site loop variations adjust activity and selectvitiy of the cumene dioxygenase. Nat. Commun. 12, 1095 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Calvó-Tusell, C., Maria-Solano, M. A., Osuna, S. & Feixas, F. Time evolution of the millisecond allosteric activation of imidazole glycerol phosphate synthase. J. Am. Chem. Soc. 144, 7146–7159 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Cole, R. & Loria, J. P. Evidence for flexibility in the function of ribonuclease A. Biochemistry 41, 6072–6081 (2002).

    Article  CAS  PubMed  Google Scholar 

  147. Beach, H., Cole, R., Gill, M. & Loria, J. P. Conservation of the mus-ms enzyme motions in the apo- and substrate-mimicked state. J. Am. Chem. Soc. 127, 9167–9176 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. Reich, S., Nestl, B. M. & Hauer, B. Loop-grafted old yellow enzymes in the bienzymatic cascade reduction of allylic alcohols. ChemBioChem 17, 561–565 (2016).

    Article  CAS  PubMed  Google Scholar 

  149. Ripka, J. F., Perez-Riba, A., Chaturbedy, P. K. & Itzhaki, L. S. Testing the length limit of loop grafting in a helical repeat protein. Curr. Res. Struct. Biol. 3, 30–40 (2021).

    Article  CAS  PubMed  Google Scholar 

  150. Planas-Iglesias, J. et al. LoopGrafter: a web tool for transplanting dynamical loops for protein engineering. Nucleic Acids Res. 50, gkac249 (2022).

    Article  Google Scholar 

  151. Afriat-Jurnou, L., Jackson, C. J. & Tawfik, D. S. Reconstructing a missing link in the evolution of a recently diverged phosphotriesterase by active-site loop remodeling. Biochemistry 51, 6047–6055 (2012).

    Article  CAS  PubMed  Google Scholar 

  152. Campbell, E. et al. The role of protein dynamics in the evolution of new enzyme function. Nat. Chem. Biol. 12, 944–950 (2016).

    Article  CAS  PubMed  Google Scholar 

  153. Dodani, S. C. et al. Discovery of a regioselectivity switch in nitrating P450s guided by molecular dynamics simulations and Markov models. Nat. Chem. 8, 419–425 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Bunzel, H. A. et al. Emergence of a negative activation heat capacity during evolution of a designed enzyme. J. Am. Chem. Soc. 141, 11745–11748 (2019).

    Article  CAS  PubMed  Google Scholar 

  155. Bunzel, H. A. et al. Evolution of dynamical networks enhances catalysis in a designer enzyme. Nat. Chem. 13, 1017–1022 (2021).

    Article  CAS  PubMed  Google Scholar 

  156. Osuna, S. The challenge of predicting distal active site mutations in computational enzyme design. WIREs Comp. Mol. Sci. 11, e1502 (2020).

    Google Scholar 

  157. Boehr, D. D., D’Amico, R. N. & O’Rourke, K. F. Engineered control of enzyme structural dynamics and function. Protein Sci. 27, 825–838 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Crawford, I. P. Evolution of a biosynthetic pathway: the tryptophan paradigm. Annu. Rev. Microbiol. 43, 567–600 (1989).

    Article  CAS  PubMed  Google Scholar 

  159. Cui, D. S., Lipchock, J. M., Brookner, D. & Loria, J. P. Uncovering the molecular interactions in the catalytic loop that modulate the conformational dynamics in protein tyrosine phosphatase 1B. J. Am. Chem. Soc. 141, 12634–12647 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Keng, Y. F., Wu, L. & Zhang, Z. Y. Probing the function of the conserved tryptophan in the flexible loop of the Yersinia protein–tyrosine phosphatase. Eur. J. Biochem. 259, 809–814 (1999).

    Article  CAS  PubMed  Google Scholar 

  161. Chaloupkova, R. et al. Light-emitting dehalogenases: reconstruction of multifunctional biocatalysts. ACS Catal. 9, 4810–4823 (2019).

    Article  CAS  Google Scholar 

  162. Schenkmayerova, A. et al. Catalytic mechanism for Renilla-type bioluminescence. Nat. Catal. 6, 23–38 (2023).

    Article  CAS  Google Scholar 

  163. Loening, A. M., Fenn, T. D. & Gambhir, S. S. Crystal structures of the luciferase and green fluorescent protein from Renilla reniformis. J. Mol. Biol. 374, 1017–1028 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Oakley, A. J. et al. Crystal structure of haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26 at 0.95 Å resolution: dynamics of catalytic residues. Biochemistry 43, 870–878 (2004).

    Article  CAS  PubMed  Google Scholar 

  165. Hu, X., Wang, H., Ke, H. & Kuhlman, B. High-resolution design of a protein loop. Proc. Natl Acad. Sci. USA 104, 17668–17673 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Luscombe, N. M., Austin, S. E., Berman, H. M. & Thornton, J. M. An overview of the structures of protein–DNA complexes. Genome Biol. 1, reviews001 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Khajehpour, M. et al. Loop dynamics and ligand binding kinetics in the reaction catalyzed by the Yersinia protein tyrosine phosphatase. Biochemistry 46, 4370–4378 (2007).

    Article  CAS  PubMed  Google Scholar 

  168. Peeters, M. C., van Westen, G. J. P., Li, Q. & Ijzerman, A. P. Importance of the extracellular loops in G protein-coupled receptors for ligand recognition and receptor activation. Trends Pharmacol. Sci. 32, 35–42 (2011).

    Article  CAS  PubMed  Google Scholar 

  169. Linse, S., Thulin, E., Nilsson, H. & Stigler, J. Benefits and constraints of covalence: the role of loop length in protein stability and ligand binding. Sci. Rep. 10, 20108 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Feller, S. M. & Lewitzky, M. What’s in a loop? Cell Commun. Signal. 10, 31 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Gavenonis, J., Sheneman, B. A., Siegert, T. R., Eshelman, M. R. & Kritzer, J. A. Comprehensive analysis of loops at protein–protein interfaces for macrocycle design. Nat. Chem. Biol. 10, 716–722 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Siegert, T. R., Bird, M. J., Makwana, K. M. & Kritzer, J. A. Analysis of loops that mediate protein–protein interactions and translation into submicromolar inhibitors. J. Am. Chem. Soc. 138, 12876–12884 (2016).

    Article  CAS  PubMed  Google Scholar 

  173. van Wart, A. T., Durrant, J., Votapka, L. & Amaro, R. E. Weighted implementation of suboptimal paths (WISP): an optimized algorithm and tool for dynamical network analysis. J. Chem. Theory Comput. 10, 511–517 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Wang, J. et al. Mapping allosteric communications within individual proteins. Nat. Commun. 11, 3862 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Gerek, Z. N., Kumar, S. & Banu Ozkan, S. Structural dynamics flexibility informs function and evolution at a proteome scale. Evol. Appl. 6, 423–433 (2013).

    Article  CAS  Google Scholar 

  176. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V. & Parisi, D. Defining and identifying communities in networks. Proc. Natl Acad. Sci. USA 101, 2658–2663 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. McCammon, J. A. Protein dynamics. Rep. Prog. Phys. 47, 1 (1984).

    Article  Google Scholar 

  178. Bonet, J., Segura, J., Planas-Iglesias, J., Oliva, B. & Fernandez-Fuentes, N. Frag’r’Us: knowledge-based sampling of protein backbone conformations for de novo structure-based protein design. Bioinformatics 30, 1935–1936 (2014).

    Article  CAS  PubMed  Google Scholar 

  179. Nguyen, S. P., Li, Z., Xu, D. & Shang, Y. New deep learning methods for protein loop modeling. IEEE/ACM Trans. Comput. Biol. Bioinformat. 16, 596–606 (2019).

    Article  CAS  Google Scholar 

  180. Barozet, A., Molloy, K., Vaisset, M., Siméon, T. & Cortés, J. A reinforcement-learning based approach to enhance exhaustive protein loop sampling. Bioinformatics 36, 1099–1106 (2020).

    Article  CAS  PubMed  Google Scholar 

  181. Pan, F. et al. Protein loop modeling and refinement using deep learning models. Preprint at bioRxiv https://doi.org/10.1101/2021.11.03.467148 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Moffat, L, Greener, J. G. & Jones, D. T. Using AlphaFold for rapid and accurate fixed backbone protein design. Preprint at bioRxiv https://doi.org/10.1101/2021.08.24.457549 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Knut and Alice Wallenberg Foundation (grant numbers 2018.0140 and 2019.0431). We thank R. Sterner and S. Osuna for providing high-resolution artwork components for Fig. 2.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. All authors contributed to discussion of the content. All authors wrote, reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Shina C. L. Kamerlin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Reinhard Sterner, Bernhard Hauer and Sandra Schlee for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corbella, M., Pinto, G.P. & Kamerlin, S.C.L. Loop dynamics and the evolution of enzyme activity. Nat Rev Chem 7, 536–547 (2023). https://doi.org/10.1038/s41570-023-00495-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-023-00495-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing