23.12.2012 Views

Ecologia mediterranea 1999-25(2)

Ecologia mediterranea 1999-25(2)

Ecologia mediterranea 1999-25(2)

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ecologia<br />

<strong>mediterranea</strong><br />

Revue Internationale d'Ecologie Méditerranéenne<br />

International Journal ofMediterranean Ecology<br />

TOME <strong>25</strong> - fascicule 2 - <strong>1999</strong><br />

188N : 0153-8756


REDACTEURSIEDITORS<br />

Laurence AFFRE<br />

Frédéric MEDAIL<br />

Philip ROCHE<br />

Thierry TATONI<br />

Eric VIDAL<br />

ARONSON 1., CEFE CNRS, Montpellier<br />

BARBERO M., IMEP, Univ. Aix-Marseille III<br />

FONDATEUR 1FOUNDER<br />

Prof. Pierre QUEZEL<br />

COORDINATRICE 1COORDINATOR<br />

COMITE DE LECTURE 1ADVISORY BOARD<br />

BROCK M., Univ. of New England, Armidale, Australie<br />

CHEYLAN M., EPHE, Montpellier<br />

DEBUSSCHE M., CEFE CNRS, Montpellier<br />

FADY B., INRA, Avignon<br />

GOODFRIEND G. A., Carnegie Inst. Washington, USA<br />

GRILLAS P., Station Biologique Tour du Valat, Arles<br />

GUIOT J., IMEP, CNRS, Marseille<br />

HOBBS R. J., CSIRO, Midland, Australie<br />

KREITER S., ENSA-M INRA, Montpellier<br />

Sophie GACHET-BOUDEMAGHE<br />

TRESORIER 1TREASURER<br />

Jacques-Louis de BEAULIEU<br />

LE FLOC'H E., CEFE CNRS, Montpellier<br />

MARGARIS N. S., Univ. of the Aegan, Mytilène, Grèce<br />

OVALLE c., CSI Quilamapu, INIA, Chili<br />

PEDROTTI F., Univ. degli Studi, Camerino, Italie<br />

PLEGUEZUELOS J. M., Univ. de Grenade, Espagne<br />

PONEL P., IMEP, CNRS, Marseille<br />

PRODON R., Labo. Arago, Univ. P. M. Curie, Paris VI<br />

RICHARDSON D. M., Univ.Cape Town, Afrique du Sud<br />

SANS F. X., Univ. de Barcelone, Espagne<br />

SHMIDA A., Hebrew Univ. of Jerusalem, Israël<br />

URBINATI c., Agripolis, Legnaro, Italie<br />

ecologia <strong>mediterranea</strong><br />

Faculté des Sciences et Techniques de Saint JérÔme<br />

Institut Méditerranéen d'Ecologie et de Paléoécologie, case 461<br />

13397 MARSEILLE Cedex 20 FRANCE<br />

Tél. : + 33 4 91 28 89 76 - Fax: + 33 4 91 28 8051<br />

E-mail: ecologia.<strong>mediterranea</strong>@botmed.u-3mrs.fr<br />

URL: http://www.ecologia.fst.u-3mrs.fr<br />

Abonnements / Subscription<br />

Un an =deux numéros / one year = Iwo issues:<br />

France: 400 F + 60 F de frais de port<br />

Europe: 400 F + 80 F de frais de port<br />

Amérique, Afrique, Asie: 400 F + 120 F de frais de port<br />

Tous les fascicules de la revue sont disponibles. Pour les commander et pour tout renseignement, nous contacter à<br />

l'adresse ci-dessus. Ali issues are avai/ab/e. To order or 10 obtain intiJrmation, p/ease contact the address above.


ecologia <strong>mediterranea</strong> <strong>25</strong> (2),135-146 (<strong>1999</strong>)<br />

Caracterizacion de los pinares de Pinus ha/epensis Mill. en el sur<br />

de la Peninsula Iberica<br />

Caracterisation des pinedes de Pinus halepensis Mill. du sud de la Peninsule Iberique<br />

Characterisation of Pinus halepensis Mill. pine forests in southern Iberian Peninsula<br />

Juan Antonio TORRES*, Antonio GARCIA-FUENTES*, Carlos SALAZAR*, Eusebio CANO*<br />

& Francisco VALLE**<br />

* Dpto, BioI. Animal, Vegetal y <strong>Ecologia</strong>, Fac. C. Experimentales. Universidad de Jaen. E-2307l Jaen-Espafia. Fax: + (34) (953)<br />

212141; jatorres@ujaen.es<br />

** Dpto Biologia Vegetal (Botanica). Fac. de Ciencias. Universidad de Granada, E-1800l Granada, Espafia<br />

RESUMEN<br />

Estudiamos las comunidades naturales de Pinus halepensis en el sur de Espafia (Andalucia). Se recopila toda la informaci6n<br />

bibliografica disponible que aporta datos de interes sobre su espontaneidad en toda la cuenca <strong>mediterranea</strong>, con especial<br />

referencia a la Peninsula Iberica. Ponemos de manifiesto el caracter edafoxer6filo de este tipo de formaciones en el area de<br />

estudio con la descripci6n de una nueva asociaci6n y una comunidad vegetal : Junipero phoeniceae-Pinetum halepensis y<br />

comunidad de Ephedrafragilis y Pinus halepensis.<br />

Palabras c1ave : Pinus halepensis, pinares aut6ctonos, caracter edafoxer6filo, sur de Espafia<br />

RESUME<br />

Cette etude porte sur les communautes naturelles de Pinus halepensis du sud de l'Espagne (Andalusia). Toute I'information<br />

bibliographique concernant la spontaneite dans le bassin Mediterraneen, particulierement celle de la Peninsule Iberique, est<br />

compilee. Le caractere edapho-xerophile de ce type de formations dans I'aire d'etude est mis en evidence, et une nouvelle<br />

association est decrite : Junipero phoeniceaePinetum halepensis, ainsi qu'une communaute 11 Ephedra fragilis et Pinus<br />

halepensis.<br />

Mots-c1es : Pinus halepensis, pinMes autochtones, caractere edapho-xerophile, sud de l'Espagne<br />

ABSTRACT<br />

A study on the natural communities of Pinus halepensis in southern Spain (Andalusia) is carried out. A compilation of the<br />

bibliographic information that contributes interesting data on their spontaneity in the Mediterranean basin is previously made,<br />

pointing out those references where the Iberian Peninsula is treated.<br />

We emphasize the edaphoxerophilous character of this vegetation type in the study area, and we provide the description of a new<br />

phytosociological association (Junipero phoeniceae-Pinetum halepensis) and a new plant community (community of Ephedra<br />

fragilis and Pinus halepensis)<br />

Key-words: Pinus halepensis, native pine forests, edaphoxerophilous character, southern Spain<br />

135


Tones et a!.<br />

ABRIDGED ENGLISH VERSION<br />

A study on the natural communities of Pinus halepensis<br />

in the south of Spain (Andalusia) has been carried out. The<br />

bibliographic information with data of interest about its<br />

spontaneity in the whole Mediterranean basin (specially in<br />

the Iberian peninsula) has been compiled. The edaphoxerophilous<br />

character of this pine-woods in the study area has<br />

been pointed out, having described a new phytosociological<br />

association and a plant community: Junipero phaenieeae­<br />

Pinetum halepensis and community of Ephedra jragilis and<br />

Pinus halepensis.<br />

The spontaneous formations of Pinus halepensis in the<br />

Iberian peninsula develop on basic substrata, specially in the<br />

<strong>mediterranea</strong>n coastal provinces (Catalufia, Comunidad Valenciana,<br />

Murcia and Baleares), reaching interior zones of<br />

the Baetic ranges, Iberian System, Ebro valley and eastern<br />

Pirenees. They mainly appear under Mediterraneanpluviestational-oceanic,<br />

Mediterranean-xeric-oceanic and<br />

Mediterranean-pluviestational-continental bioclimates,<br />

ranging between thermo<strong>mediterranea</strong>n and meso<strong>mediterranea</strong>n<br />

thennotypes and from semi-arid to sub-humid ombrotypes,<br />

sharing the areas occupied by shrub communities of<br />

holly-oaks (Quereus caceirera L.), lentiscs (Pistaeia lentiscus<br />

L.) or savines (Juniperus phoenicea L.) depending on<br />

the substrata nature.<br />

The iberian pine-woods of P. halepensis, take the case<br />

of the iberic southeastern have been scarcely studied, though<br />

they are one of the most characteristic elements in the plant<br />

landscape. In spite of the physiognomic importance and their<br />

widespread area, a large number of authors question the climacic<br />

role of these woods in the Mediterranean region, even<br />

stating that P. halepensis does not grow spontaneously in the<br />

Western Mediterranean. Though there are several bibliographic<br />

references in which a secondary and anthropic character<br />

is assigned to this pine in woods and scrubs, it has<br />

never been regarded as the main species in such communities.<br />

INTRODUCCION<br />

Pinus halepensis Mill. es un arbol generalmente<br />

retorcido, de unos 12-14 m de altura media,<br />

normalmente aparasolado, aunque puede llegar hasta<br />

los 22-24 m en las mejores situaciones ecol6gicas.<br />

Presenta una distribuci6n basicameitte circun­<br />

mediteminea, formando bandas cercanas a la costa<br />

donde no suele superar los 700-800 m de altitud, a<br />

excepci6n de ciertas zonas de Africa del Norte donde<br />

puede llegar hasta los 2000 m (Quezel, 1977, 1980).<br />

Desde el punto de vista taxon6mico se trata de una<br />

especie ecol6gica y geneticamente muy pr6xima a<br />

Pinus brutia Ten. (Biger & Liphschitz, 1991) con el<br />

que forma un grupo bien definido (grupo Halepenses).<br />

Ampliamente extendido por todo el Mediterraneo<br />

occidental, es sustituido hacia el oeste por su<br />

vicariante Pinus brutia (Figura I). Aunque raramente<br />

suelen coexistir ambas especies (Akman et aI, 1978),<br />

en el caso de hacerlo, como ocurre en algunos distritos<br />

136<br />

Caracterizach5n de las pinares en el sur de la peninsula iberica<br />

There are only a few botanists that have pointed out the<br />

natural and authoctonous character of P. Iwlepensis in some<br />

territories, either co-dominating with trees and shrubs or<br />

dominating the community by itself.<br />

In our study, bearing in mind the results of fossil and<br />

subfossil registers of the last 15.000 years and the analysis<br />

and taxonomic identification of charcoals. we show interesting<br />

data about the spontaneous character of P. halepensis<br />

in the Baetic area (southern peninsula) where it takes part of<br />

edaphoxerophilous communities confined to the most thermic<br />

and dry zones (sunny exposures) due to the lithological,<br />

geomorphological and climatological territorial factors. The<br />

widespread calcareous-dolomitic emergences allow the existence<br />

of a sheer landscape with big rocky blocks where the<br />

permeability of the substrata reduces the effects of the real<br />

precipitations in the territory. Furthermore, the karstification<br />

processes, break and crush the rocks causing hiperxeric environments<br />

very suitable for the establishing of P. halepensis<br />

pine-woods.<br />

These pine-woods can also take place on marls (even<br />

with a high content of gypsum) in extremely degradated<br />

soils that accentuate the ombroclimatic xericity.This fact is<br />

quite common in places with rains shades where the precipitations<br />

coming from the Atlantic ocean are very reduced<br />

because of the existence of high mountain boundaries.<br />

Thus, P. halepensis (as other conifers) constitutes natural<br />

formations in southern Iberian peninsula, specially in the<br />

thermo<strong>mediterranea</strong>n and meso<strong>mediterranea</strong>n belts, and at a<br />

lesser extent in the inferior supra<strong>mediterranea</strong>n. In some<br />

cases, a semi-arid territory rich in Neogenous-Quaternarian<br />

deposits (marls, calcareous marls and conglomerates) with a<br />

scarce water retention is optimum for the development of P.<br />

halepensis. In the other hand, a rough geomorphology of<br />

calcareous-dolomitic ranges may be the determining factor<br />

for the establishing of these pine-woods, in this case under a<br />

wider range of ombrotypes (semi-arid, dry and sub-humid).<br />

de Grecia, en el sureste de Anatolia y en el Lfbano,<br />

suelen formar hfbridos naturales (Panetsos, 1975). Las<br />

poblaciones apartadas de Pinus halepensis en Asia<br />

Menor y Cercano Oriente, al limite este de la Cuenca<br />

Mediterranea, plantea curiosas cuestiones a cerca del<br />

modelo de distribuci6n en el pasado y las rutas<br />

migratorias (Barbero et ai, 1998).<br />

En la Peninsula Iberica, las formaciones<br />

espontaneas de Pinus halepensis aparecen sobre<br />

sustratos basicos, principalmente en las provincias del<br />

litoral mediterraneo (Cataluna, Comunidad<br />

Valenciana, Murcia y Baleares), penetrando hacia el<br />

interior en las sierras Beticas, Sistema Iberico, Valle<br />

del Ebro y Pirineos orientales. Se distribuye<br />

mayoritariamente en los bioclimas Mediterraneo<br />

pluviestacional-oceanico, Mediterraneo xerico­<br />

oceanico y Mediterraneo pluviestacional-continental<br />

con ciertas penetraciones en el Templado oceanico­<br />

submediterraneo (Rivas-Martinez, I 996a, 1996b).<br />

Puesto que el factor determinante para su distribuci6n<br />

ecologia <strong>mediterranea</strong> <strong>25</strong> (2) - /999


Torres et al.<br />

parece ser la temperatura, especialmente las minimas<br />

invernales (Falusi et al., 1984), ocupan tan solo los<br />

termotipos termomeditemineo y mesomeditemineo<br />

con ombrotipos que oscilan entre el semiarido y el<br />

subhumedo, donde convive sobre todo con coscojares<br />

(Quercus coccifera L.), lentiscares (Pistacia lentiscus<br />

L.) y sabinares de sabina mora (luniperus phoenicea<br />

L.), dependiendo de la naturaleza del sustrato.<br />

Consideraciones sobre el canicter climacico de<br />

Pinus halepensis<br />

Los pinares ibericos de pino carrasco, y<br />

concretamente los del sudeste iberico, han sido objeto<br />

de escasos estudios botanicos a pesar de tratarse de<br />

uno de los elementos mas caracteristicos del paisaje<br />

vegetal de esta parte de la Peninsula Iberica.<br />

En este sentido cabe mencionar las referencias que<br />

algunos botanicos clasicos hacen de dichos pinares;<br />

asi, Huguet del Villar (1916, 19<strong>25</strong>) pone de manifiesto<br />

el caracter natural y aut6ctono de Pinus halepensis en<br />

algunos territorios en los que aparece, donde formaria<br />

conclimax con la encina (Quercus ilex). Cuatrecasas<br />

(1929) en su trabajo sobre Sierra Magina hace<br />

referencia al caracter climacico de estos pinares en las<br />

vertientes inferiores mas calidas y secas de todo el<br />

Macizo. Font Quer (1933) en sus observaciones<br />

botanicas sobre la vegetaci6n de Los Monegros<br />

constata el papel subalterno de Quercus coccifera en<br />

Caracterizacion de los pinares en el sur de la peninsula iberica<br />

su Pinetum halepensis. Laza Palacios (1946) en sus<br />

estudios sobre la flora y vegetaci6n de las Sierras<br />

Tejeda y Almijara describe un Pinetum halepensis para<br />

los pisos semiarido y templado de la clasificaci6n<br />

fitogeografica de Emberger donde, sin entrar a valorar<br />

la potencialidad climacica del pino de Alepo, considera<br />

de gran vitalidad el estado actual del pino carrasco.<br />

Rivas Goday (1951) al abordar el estudio de la<br />

vegetaci6n y flora de la provincia de Granada pone de<br />

manifiesto la espontaneidad de Pinus halepensis sobre<br />

dolomias. Braun-Blanquet et Bolos (1958) en sus<br />

estudios del Valle del Ebro al describir la asociaci6n<br />

Rhamno-Quercetum cocciferae esgrimen dentro de la<br />

faciaci6n tipica una variante con Pinus halepensis, en<br />

ombroclima semiarido, que catalogan como una<br />

comunidad particular donde Quercus coccifera subsiste<br />

bajo la copa de pinares de Pinus halepensis. Fernandez<br />

Casas (1972) en su estudio fitografico sobre la Cuenca<br />

del Guadiana Menor vuelve a resaltar su naturalidad<br />

sobre sustratos margosos y ombrotipo semiarido. Por<br />

ultimo, Costa (1987) al describir la vegetaci6n del Pais<br />

Valenciano insiste en considerar las formaciones de P.<br />

halepensis como naturales, aunque con un caracter<br />

secundario (nunca ocupan una posici6n climacica) y<br />

procedentes de la degradaci6n de carrascales.<br />

Mas recientemente, Arrojo (1994) pone de<br />

manifiesto el caracter natural de estos pinares en la<br />

Sierra de Castril (Granada).<br />

Figura I. Distribuci6n de Pinus halepensis en la Cuenca Mediteminea (modificado de Barbero et al., 1998)<br />

Figure 1. Pinus ha1epensis distribution in the Mediterranean basin (modified from Barbero et aI., 1998)<br />

ecologia <strong>mediterranea</strong> <strong>25</strong> (2) - <strong>1999</strong> 137


Torres et al.<br />

4< ... .._<br />

Caracterizaci6n de los pinares en el sur de la peninsula iberica<br />

Figura 2. Area de estudio. Localizaci6n biogeogriifica; Provincia Betica, I : Sector Subbetico, la distrito Subbetico-Maginense, lb<br />

distrito Cazorlense, lc distrito Alcaracense, Id distrito Subbetico-Murciano; 2: Sector Guadiciano-Bacense, 2a distrito Guadiciano-Bastetano,<br />

2b distrito Serrano-Bacense, 2c distrito Serrano-Mariense, 2d distrito Serrano-Estaciense.<br />

Figure 2. Study area. Biogeographical location: Baetic province, I. Sub-Baetic sector: Ia Sub-Baetic-Maginense district. I b Cazorlellse<br />

district. le Alcaracense district, Id Sub-Baetic-Murciano district. 2. Guadiciano-Bacense sector: 2a Guadiciano­<br />

Bastetallo district, 2b Serrano-Bacense district, 2c Serrano-Mariense district, 2d Serrano-Estaciense district.<br />

De igual forma, Torres et al. (1994) en sus<br />

estudios sobre los pinares de Pinus halepensis en el<br />

sector Subbetico consideran el canicter autoctono de<br />

estas formaciones, criterio igualmente compartido por<br />

Navarro Reyes (1995, 1997) en las sierras de Baza y<br />

Las Estancias (Granada).<br />

De igual forma, diversos autores en otros paises<br />

del cntorno meditemineo destacan el caracter<br />

espontaneo de esta especie y su papel en el dinamismo<br />

de la vegetacion (Emberger, 1939 ; Tregubov, 1963 ;<br />

LoiseL 1971; Ozenda, 1975; Tomaselli, 1977;<br />

AchhaL 1986; Quezel , 1986; Quezel et al., 1987;<br />

Qubel et al., 1988; Fennane, 1988; Quezel &<br />

Barbero, 1992; Quezel et al., 1992; Barbero et al.,<br />

1998).<br />

Pese a su importancia fisionomica y a su amplia<br />

distribucion, muchos autores discuten el papel<br />

climacico de estos bosques en la region Mediterranea,<br />

llegando incluso a afirmar que no crece<br />

espontaneamente en el Mediterraneo occidental.<br />

Existen muchas referencias concretas de esta especie<br />

138<br />

que le asignan siempre un papel secundario y antropico<br />

en diversas comunidades climacicas boscosas, 0 incluso<br />

de matorrales, pero en ningun caso se reconoce el papel<br />

prioritario que pueda tomar el pino carrasco en las<br />

mismas. Asf, Bolos (1962) considera la presencia de<br />

Pinus halepensis como un accidente en las<br />

comunidades vegetales en que aparece. Folch (1981)<br />

destaca el caracter secundario y antropico del pino<br />

carrasco y al igual que el anterior autor alude a la falta<br />

de especies vegetales caracterfsticas. Bolos (1987) en<br />

sus estudios sobre la vegetacion de Catalufia y la<br />

Depresion del Ebro plantea el problema de la<br />

participacion de Pinus halepensis en la estructura y<br />

dinamismo de la vegetacion propia del dominio del<br />

Rhamno-Quercetum cocciferae Braun-Blanquet &<br />

Bolos 1954, donde 10 considera frecuente en la<br />

maquia climacica, aunque normalmente con una baja<br />

densidad. Ferreras et a!' (1987) reinciden en su<br />

caracter secundario debido a la accion del hombre y<br />

los consideran como etapa serial de otras formaciones<br />

mas densas y sombrfas. Nuet et a!' (1991) vuelven a<br />

ecologia <strong>mediterranea</strong> <strong>25</strong> (2) - <strong>1999</strong>


Torres et al.<br />

referir la falta de un cortejo floristico propio y por<br />

tanto no llegan a considerlos coma una comunidad<br />

vegetal. Sanchez-Gomez et Alcaraz (1993) consideran<br />

al pino carrasco coma especie integrante de la<br />

vegetacion permanente de roquedos calizos y que<br />

puede actuar coma primocolonizador de suelos<br />

degradados.<br />

Par otro lado las investigaciones paleobotanicas<br />

tambien contribuyen, a traves de los registros fosiles 0<br />

subfosiles, sobre todo los de los ultimos 15.000 afios,<br />

a evidenciar el caracter natural y autoctono de Pinus<br />

halepensis. En este sentido, los espectros polfnicos<br />

(Parra, 1983; Stika, 1988; Yll, 1988; Rivera &<br />

Obon, 1991; Lopez, 1991, 1992) Y sobre todo los<br />

analisis de maderas carbonizadas con sus precisiones<br />

taxonomicas e identificacion al nivel especffico<br />

(Vernet et al., 1983, 1987; Ros, 1988, 1992;<br />

Bernabeu & Badal, 1990, 1992; Rodriguez Ariza et<br />

al., 1991 ; Rodriguez Ariza, 1992 ; Rodriguez Ariza &<br />

Vernet, 1992; Grau, 1993; Dupre, 1988; Hopf,<br />

1991 ; Badal, 1991, 1995 ; Badal et al, 1994) apartan<br />

datos interesantes sobre la presencia ancestral de pino<br />

carrasco en la Peninsula Iberica. Las zonas de Levante<br />

son las que presentan mayor numero de datos,<br />

observandose la continuidad de pinG carrasco desde el<br />

Peniglaciar (Gil Sanchez et aI., 1996).<br />

Parece, pues, justificado considerar a Pinus<br />

halepensis, al igual que otras especies de coniferas,<br />

coma una especie autoctona ampliamente distribuida<br />

por el mediterraneo Occidental, y con caracter<br />

permanente 0 edafoxerofilo en aquellos espacios<br />

ecologicos donde determinados factores limitantes<br />

(edaficos, litologicos, geomarfologicos y climaticos)<br />

impiden su colonizacion par la vegetacion esclerofila<br />

potencial. En nuestra 0pllllOn muchas de las<br />

afirmaciones que discuten el caracter espontaneo de<br />

estos pinares se deben a la gran adaptabilidad<br />

ecologica de esta especie para difundirse a expensas<br />

de los bosques esclerofilos.<br />

Los pinares de Pinus halepensis en el sur de la<br />

Peninsula Iberica : area de estudio<br />

En el presente trabajo, se estudian las formaciones<br />

de Pinus halepensis en las zonas Beticas del sur<br />

peninsular. BiogeogrMicamente, la zona de estudio se<br />

extiende par los sectores Subbetico y Guadiciano­<br />

Bacense de la provincia carologica Betica, localizados<br />

ecologia <strong>mediterranea</strong> <strong>25</strong> (2) - <strong>1999</strong><br />

Caracterizacion de los pinares en el sur de la peninsula ibhica<br />

en la zona centro-nororiental de Andalucia (Espafia)<br />

(Figura 2).<br />

Desde el punto de vista geologico es posible<br />

diferenciar dos grandes unidades tectonicas muy<br />

relacionadas con las tipologias de pinares que<br />

presentamos en este trabajo: par un lado, las Zonas<br />

Externas de las Cordilleras Beticas (Prebetico y<br />

Subbetico), de gran extension en el territorio y<br />

eminente caracter montafioso, con alturas en algunos<br />

casos superiores a los 2000 m, donde la litologfa<br />

responde basicamente a farmaciones calizo<br />

dolomfticas, en muchos casos incluso kakiritizadas,<br />

que proporcionan un relieve muy particular de aspecto<br />

ruiniforme, donde la potencia caliza-dolomia es muy<br />

variable, llegando incluso en algunos zonas a<br />

desaparecer completamente las caliza en favor de las<br />

dolomia, coma es el caso de la Sierras de Castril<br />

(Granada) y Cazorla-Segura y Las Villas (Jaen).<br />

Aunque los afloramientos rocosos ocupan una gran<br />

extension, los suelos que aparecen son de tipo litosol,<br />

ya que se trata de zonas con fuertes pendientes que<br />

han sufrido intensos procesos de erosion.<br />

Por otro lado, la unidad Neogeno-Cuaternaria esta<br />

representada por la Depresion del Guadiana Menor en<br />

la que abundan materiales sedimentarios; aparecen<br />

margas, margo-calizas y margas yesfferas, con<br />

afloramiento en las cotas mas altas de los materiales<br />

mas deleznables que permiten una rapida<br />

evapotranspiracion del agua y por tanto una alta<br />

xericidad edafica. Los suelos que se desarrollan son de<br />

tipo cambisoles calcicos y regosoles calcareos, con<br />

pendientes que oscilan entre el 10 Y el 20% con una<br />

topografia generalmente colinada.<br />

MATERIAL Y METODOS<br />

Los datos geologicos los hemos obtenido a partir<br />

de la cartograffa del Instituto Geologico y Minero de<br />

Espafia, hojas de Villacarrillo (Virgili & Fonbote,<br />

1987), Jaen (Garcfa Duefias & Fonbote, 1986), Baza<br />

(Vera & Fonbote, 1982) y Granada-Malaga (Aldaya et<br />

aI., 1980). Para el estudio de suelos hemos seguido a<br />

Aguilar et al. (1987) y Perez Pujalte & Prieto<br />

Fernandez (1980). La identificacion de bioclimas y<br />

pisos bioclimaticos se basan en Rivas-Martinez<br />

(I996a, 1996b). Para la distribucion biogeogrMica<br />

seguimos a Rivas-Martfnez et al. (1997). Las series de<br />

vegetacion han sido determinadas basandonos en la<br />

obra de Rivas-Martfnez (1987) y para el muestreo de<br />

139


Torres et al.<br />

las comunidades, hemos utilizado el metodo<br />

fitosociol6gico de la Escuela de Zurich-Montpellier<br />

(Braun-Blanquet, 1979). En la nomenclatura de los<br />

sintaxones se contemplan las normas del C6digo de<br />

Nomenclatura Fitosociol6gica (Barkman et aI., 1986),<br />

mientras que para la denominaci6n y autoria de los<br />

taxones utilizamos las siguientes obras: Flora Iberica<br />

(Castroviejo et al., 1986-1998) y Flora Europea (Tutin<br />

et al., 1964-1980), a excepci6n de Genista cinerea<br />

subsp. speciosa Rivas Goday et T. Losa ex Rivas­<br />

Martinez, T.E. Diaz, F. Prieto, Loidi et Penas in Los<br />

Picos de Europa: 268. 1984; Leucanthemopsis<br />

spathulifolia (Gay) Rivas-Martinez, Asensi, Molero<br />

Mesa et Valle in Rivasgodaya 6: 42. 1991.<br />

RESULTADOS<br />

Las comunidades espontaneas de Pinus halepensis<br />

en la zona de estudio constituyen formaciones<br />

edafoxer6filas, limitadas por la litologia,<br />

geomorfologia y climatologia del territorio alas<br />

vertientes mas termicas y xer6filas del territorio,<br />

normalmente coincidentes con las exposiciones mas<br />

soleadas. Los abundantes afloramientos calizo­<br />

dolomiticos definen un paisaje de escarpes, dolinas,<br />

lapiaces y grandes bloques rocosos, donde la gran<br />

permeabilidad de este tipo de sustratos, amortigua las<br />

precipitaciones reales del territorio. Si a su vez<br />

sumamos los procesos de karstificaci6n que<br />

fragmentan y trituran la roca madre, se generan<br />

medios hiperxericos optimos para el asentamiento de<br />

pinares de Pinus halepensis. De igual manera, los<br />

sustratos margosos, a veces con alto contenido en<br />

yesos y suelos extremadamente degradados, suelen<br />

acentuar la xericidad ombroclimatica y soportan<br />

masas de Pinus halepensis, normalmente en zonas de<br />

sombra de lluvias, donde las precipitaciones<br />

procedentes del Atlantico se yen muy mermadas por<br />

los macizos montafiosos del territorio.<br />

En estos territorios hemos reconocido dos<br />

formaciones vegetales de gran importancia ecologica<br />

que describimos como nuevas para la ciencia, donde el<br />

pino de halepo 0 carrasco (Pinus halepensis) adquiere un<br />

caracter relevante en la comunidad.<br />

Junipero phoeniceae-Pinetum halepensis ass. nova<br />

(Holotypus inv 13, Tabla 1)<br />

Constituyen pinares abiertos de Pinus halepensis,<br />

de baja cobertura, normalmente aparasolados, donde<br />

140<br />

Caracterizaci6n de los pinares en el sur de la peninsula iberica<br />

son frecuentes otras gimnospermas como Juniperus<br />

oxycedrus L. y Juniperus phoenicea L. Destaca la<br />

presencia de Rhamnus myrtifolius Willk. y Rhamnus<br />

lycioides L., ambos taxones bien adaptados a los<br />

suelos esqueleticos carbonatados y que soportan una<br />

gran desecacion del suelo.<br />

La composici6n floristica del matorral<br />

acompafiante, poco diversificada, es rica en<br />

endemismos beticos que dan matiz corologico a esta<br />

asociacion; entre ellos destacan Echinospartum<br />

boissieri (Spach) Rothm., Thymus orospedanus<br />

Huguet del Villar, Genista cinerea subsp. speciosa y<br />

Ptilostemon hispanicus (Lam.) Greuter, junto a una<br />

cohorte de elementos propios de dolomias como son<br />

Centaurea granatensis Boiss., Convolvulus boissieri<br />

Steudel, Centaurea boissieri DC. subsp. willkommii<br />

(Schultz Bip. ex Willk.) Dostal, PterocephaIus<br />

spathulatus (Lag.) Coulter, Fumana paradoxa<br />

(Heywood) J. Giiemes, Scorzonera albicans Cosson y<br />

Leucanthemopsis spathulifolia (Tabla 1).<br />

La comunidad se extiende por el termotipo<br />

mesomediterraneo del sector Subbetico, con<br />

irradiaciones en el sector Guadiciano-Bacense,<br />

alcanzando los 1400 m de altitud en algunas laderas<br />

soleadas del Macizo de Magina y Sierra de Castril. Su<br />

6ptimo aparece bajo ombroclima seco-subhumedo e<br />

inviernos templados.<br />

Se desarrolla en crestones y laderas abruptas sobre<br />

sustratos calcareos, calizas y calizo-dolomias, con<br />

suelos poco evolucionados de tipo litosol, donde<br />

adquiere caracter de comunidad permanente. La alta<br />

xericidad del sustrato y las elevadas temperaturas del<br />

periodo estival no permiten la entrada de la serie<br />

potencial de todo el territorio, correspondiente a los<br />

encinares del Paeonio coriaceae-Querceto<br />

rotundifoliae sigmetum, con la que contacta<br />

catenalmente hacia los suelos mas desarrollados.<br />

Desde el punto de vista sintaxon6mico guarda<br />

relacion con diversas comunidades paraclimacicas<br />

donde la sabina mora (Juniperus phoenicea), especie<br />

extremadamente austera y de marcado caracter<br />

rupfcola, esta representada de forma constante (Tabla<br />

3). La ausencia de Pinus halepensis en los sabinares<br />

del Rhamno lycioidis-Juniperetum phoeniceae Rivas­<br />

Martinez et G. L6pez in G. L6pez 1976, pone de<br />

manifiesto el claro caracter continental de esta<br />

asociacion, cuyo optimo se alcanza en los termotipos<br />

meso- y supramediterraneo de la provincia Castellano-<br />

ecologia <strong>mediterranea</strong> <strong>25</strong> (2) - <strong>1999</strong>


Torres et al.<br />

Orientaei6n<br />

Pendiente (%)<br />

Altitud ( 1= 10m)<br />

Area (I = 10m")<br />

Cobertura (%)<br />

Altura media (m)<br />

N° de orden<br />

NE<br />

5<br />

90<br />

40<br />

40<br />

4<br />

I<br />

Caracterfsticas de asociacion y unidades superiores<br />

Juniperus phoenicea I I 3 I<br />

Pinus halepensis 2 2 3 3<br />

Juniperus oxycedrus I + 2<br />

Rhamnus myrtifolius + + +<br />

Rhamnus lycioides + + +<br />

Pistacia terebinthus + +<br />

Phillyrea angustif()lia +<br />

Daphne gnidium<br />

Teuaium fruticans + +<br />

Buxus sempervirens<br />

Compafieras<br />

Rosmarinus ofjicinalis + + +<br />

Echinospartum boissieri I I<br />

Bupleurumfruticosum +<br />

Thymus zygis subsp. gracilis + + +<br />

Thymus orospedanus<br />

Teuaium capitatum +<br />

Phlomis purpurea + +<br />

Phagnalon saxatile + +<br />

Cistus albidus + + +<br />

Brachypodium retusum + + 1<br />

Vrginea maritima + +<br />

Genista cinerea subsp. speciosa + +<br />

Sedum sediforme + +<br />

Stipa tenacissima +<br />

Lavandula latifolia<br />

Ptilostemon hispanicum +<br />

Thymus mastichina<br />

Helianthemum crocewn +<br />

Bupleurum spinosum<br />

Festuca scariosa<br />

Helianthemum cinereum subsp. ruhellum<br />

Vlex parvijlorus<br />

Centaurea granatensis<br />

Convolvulus hoissieri<br />

Centaurea boissieri subsp. willkommii<br />

Pterocephalus spathulatus<br />

Fumana paradoxa<br />

Scorzonera alhicans<br />

Leucanthemopsis spathulifolia<br />

Helianthemum frigidulum<br />

Caracteriwcion de los pinares en el sur de la peninsula ibhica<br />

E E E E E SE S S SE SE SW S SE E<br />

90 35 <strong>25</strong> 10 <strong>25</strong> 15 70 40 30 30 30 <strong>25</strong> 40 30<br />

110 115 115 120 100 110 135 1<strong>25</strong> 11570 110 127 1<strong>25</strong> 130<br />

30 40 40 40 40 40 10 10 30 10 10 10 40 40<br />

40 70 60 60 40 60 40 40 60 65 65 60 40 50<br />

3 3 5 345 3 464 5 5 4 5<br />

2 3 4 5 6 7 8 9 10 1I 12 13 14 15<br />

I<br />

3<br />

3<br />

+<br />

+<br />

+<br />

+<br />

+<br />

2<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

132 I 2<br />

3 2 123<br />

I + +<br />

I +<br />

+ +<br />

+<br />

+<br />

+<br />

+<br />

2<br />

+ + + +<br />

I + 2<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+ +<br />

+ +<br />

+ + +<br />

+<br />

+<br />

+ I<br />

1<br />

2<br />

1<br />

+<br />

+<br />

2 2 I<br />

333<br />

I 1 +<br />

I<br />

I +<br />

I<br />

+<br />

2 2 2<br />

I<br />

+<br />

+<br />

+ +<br />

+<br />

2 2<br />

2 3<br />

+<br />

+<br />

+<br />

+<br />

+<br />

2<br />

+<br />

+ +<br />

+ +<br />

+ +<br />

+ +<br />

I<br />

+<br />

+.<br />

+<br />

+<br />

+ +<br />

+<br />

+<br />

Ademas : Santo!ina canescens + en 3 ; Asphodelus alhus +, Arbutus unedo + en 4; Phlomis lychnitis + en 5; Prunus .lpinoS{l + en<br />

6 ; Aphyllantes monspeliensis + en 8' Cistus elusii I, Helianthemum cinereum + en 9; Sedum dasyphyllum I y Lactuca<br />

tenerrima + en 10; Polygala rupestris +, Asperula hirsuta + y Glohularia spinosa + en I1 ; Genista scorpius 2, Paronychia<br />

suffruticosa + en 12 ; Silene legionensis + en 13; Fumana ericoides + en 14 ; Teucrium pseudochamaepitys + en 15.<br />

Loealidades: 1,2,3,4 y 5 Cerea Castillo Otinar (Jaen); 6 Barraneo El Lobo (Sierra de Jaen, Jaen); 7 Barraneo Los Cortijuelos<br />

(Jaen); 8 Barraneo La Canada (Carehelejo, Jaen); 9 Cabra de Sto. Cristo (Jaen); 10 Cerro Cuello de Ventarique (Carehelejo,<br />

Jaen); II Arroyo Los Miradores (Los Villares, Jaen); 12 Castril-Pozo Alc6n (Granada); 13 Sierra de Castril (Granada); 14 y 15<br />

Sierra de la Cruz (Sierra de Magina, Jaen).<br />

Tabla I. Junipero phoenieeae-Pinetum halepensis ass. nova<br />

Tahle 1. Junipero phoeniceae-Pinetwn halepensis ass. nova<br />

ecologia <strong>mediterranea</strong> <strong>25</strong> (2) - <strong>1999</strong> 141<br />

+


Torres et al. Caracterizaci6n de los pinares en el sur de la peninsula iberica<br />

Orientaei6n N W E N N N NE SE SWNW<br />

Pendiente (%) 15 10 20 10 40 10 10 30 35 35<br />

Altitud (l = IOm) 60 70 60 40 48 50 52 67 70 85<br />

Area (1= 10m 2 ) 40 40 40 40 40 40 40 10 10 10<br />

Cobertura (%) 40 35 40 60 40 50 50 60 65 65<br />

Altura media (m) 5 6 4 6 5 5 5 5 5 6<br />

N° de Orden I 2 3 4 5 6 7 8 9 10<br />

Caracteristicas de comunidad y unidades superiores<br />

Pinus halepensis 2 2 2 3 2 2 2 3 3 3<br />

Ephedrafragilis I 2 2 I 2 I 1<br />

Juniperus oxvcedrus 2 + 3 1 1 1 2 1<br />

Rhamnus lycioides + 2 I I 1 I 1<br />

Olea sylvestris + + + + I<br />

Juniperus plwenicea 1<br />

Rhamnus alatemus +<br />

Phillyrea angustifolia +<br />

Asparagus acutifolius + + +<br />

Compafieras<br />

Rosmarinus officinalis + + 2<br />

Phlomis purpurea<br />

Chronanthus biflorus + + 1<br />

Vlex parvijZorus + 1 + + + + 1<br />

Cistus albidus 1 I + + 1 1<br />

Thymus gracilis + + + 2<br />

Brachypodiulll retusum + + + 1 I<br />

Stipa tenacissima + 2 + + + 2 +<br />

Cistus clusii + 1<br />

Dactylis hispanica +<br />

Ademas: Echinospartum boissieri y Unum suffruticosum + en 1 ; Daphne gnidium +, Phagnalon saxatile +, Sthaehelina dubia +<br />

en 2; Phillvrea latifolia, Lonicera hispanica + en 3 ; Bupleurumfruticescens + en 10.<br />

Loealidades : I Cortijo de Herrera (Pegalajar, Jaen) ; 2 Cerea Castillo de Otifiar (Jaen) ;3 Finea de Otifiar (Jaen) ; 4 Puente Nuevo<br />

(Pegalajar, Jaen) ; 5,6 y 7 Cerro del Prior (Pegalajar, Jaen) ; 8 Cerea de Guadahortuna (Granada) ; 9 Cabra de Sto. Cristo (Jaen) ;<br />

10 Pefi6n de Alhamedilla (Granada).<br />

Maestrazgo-Manchega (sectores Manchego y<br />

Maestracense), aunque en algunos enclaves<br />

supramediternineos de este ultimo sector y del sector<br />

Celtiberico-Alcarrefio llega a enriquecerse en especies<br />

montanas como Juniperus communis L.<br />

hemisphaerica (K. Presl) Nyman y Pinus nigra<br />

Arnold subsp. saizmannii (Dunal) Franco. En las<br />

sierras Beticas sus relaciones se establecen tanto con<br />

el Rhamno myrtifoiii-Juniperetum phoeniceae Molera<br />

Mesa et Perez Raya 1987 de distribuci6n Malacitano­<br />

Almijarense y Rondense occidental (Perez Raya et aI.,<br />

1990), como con el Junipero phoeniceae-Pinetum<br />

saizmannii Valle, Mota et G6mez-Mercado 1988 de<br />

areal Subbetico, Guadiciano-Bacense y Malacitano­<br />

Almijarense (Valle et ai, 1989). En ambos casos las<br />

diferencias florfsticas de nuestra comunidad con ellas<br />

son muy significativas a nivel de las comunidades<br />

seriales y en el estrato arb6reo las diferentes especies<br />

142<br />

Tabla 2. Comunidad de Ephedrafragilis y Pinus halepensis<br />

Table 2. Ephedra fragilis-Pinus halepensis community<br />

del genera Pinus matizan los distintos sintaxones<br />

(Tabla 3). En la tabla 1, presentamos distintos<br />

inventarios de esta comunidad, donde recogemos una<br />

variante mas humeda por la presencia de Buxus<br />

sempervirens L., localizado en topograffas menos<br />

accidentadas, y mayor humedad ambiental.<br />

Recientemente, Perez Latorre et a!. (1998)<br />

describen la asociaci6n Pino haiepensis-Juniperetum<br />

phoeniceae Perez Latorre et Cabezudo 1998 para<br />

caracterizar los pinares-sabinares edafoxer6filos<br />

dolomfticos termomediterraneos que sustituirfan al<br />

Chamaeropo-Juniperetum phoeniceae Rivas-Martinez<br />

in Alcaraz, T.E. Dfaz, Rivas-Martfnez & Sanchez­<br />

G6mez 1989 en el sector Rondefio, aunque sin aportar<br />

diferencias eco16gicas y florfsticas con respecto a este<br />

ultimo. Por nuestra parte consideramos que deben de<br />

sinonimizarse prevaleciendo la asociaci6n de mayor<br />

antigiledad, en este caso Chamaeropo-Juniperetum<br />

ecologia <strong>mediterranea</strong> <strong>25</strong> (2) - <strong>1999</strong>


Torres et al.<br />

phoeniceae (art. <strong>25</strong>, C.P.N.), donde ya en su tipo<br />

nomenclatural (Rivas-Martinez ex Alcaraz in Cant6,<br />

Laorga & Belmonte, inv. 3, tabla 34, Opusc. Bot.<br />

Pharm. Complutensis, 3: 65, 1986) Pinus halepensis<br />

participa en la comunidad.<br />

En todo caso presenta marcadas diferencias con<br />

nuestra comunidad, sobre todo por la ausencia de<br />

especies de clam caracter term6filo y de 6ptimo<br />

termomediterraneo como Ceratonia siliqua L.,<br />

Rhamnus lycioides L. subsp. velutinus (Boiss.)<br />

Nyman, Chamaerops humilis L., Aristolochia baetica<br />

L.<br />

Comunidad de Ephedra fragilis y Pinus halepensis<br />

(Tabla 2)<br />

Constituyen tambien formaciones abiertas de<br />

Pinus halepensis de porte mas moderado que en el<br />

caso anterior que ocupan sustratos blandos,<br />

principalmente margas, margas yesiferas y<br />

conglomerados con escasa capacidad de retenci6n de<br />

agua. En su composici6n floristica es frecuente la<br />

presencia de Ephedra fragilis Desf., Juniperus<br />

oxycedrus y Rhamnus lycioides, a veces acompafiados<br />

de Olea europaea L. var. sylvestris Brot. y en<br />

ocasiones Juniperus phoenicea.<br />

Aparece en el piso bioclimatico mesomediterraneo<br />

inferior semiarido del sector Guadiciano-Bacense<br />

(distrito Guadiciano-Bastetano), donde ocupa aquellos<br />

relieves y posiciones mas complejas, como carcavas,<br />

taludes de cierta pendiente y ramblas sometidos a<br />

elevada xericidad, con claro caracter topografico.<br />

Hacia las zonas mas favorables, con mayor<br />

compensaci6n hidrica y edafica es reemplazado por<br />

las comunidades climacicas del territorio, coscojares y<br />

lentiscares del Rhamno lycioidis-Quercion cocciferae<br />

Rivas Goday ex Rivas-Martinez 1975. Suele irradiar<br />

hacia las zonas basales de ombrotipo seco del sector<br />

Subbetico donde la continuidad de estos sustratos<br />

margosos, sumado al efecto de sombras de lluvias que<br />

producen la accidentada orografia de toda la unidad<br />

biogeografica permiten la presencia local del<br />

ombroclima semiarido.<br />

La alteraci6n que presenta el territorio por el uso<br />

del hombre a 10 largo de la historia aconseja, por<br />

ahora, su tratamiento como comunidad a la espera de<br />

estudios posteriores mas exhaustivos.<br />

ecologia <strong>mediterranea</strong> <strong>25</strong> (2) - <strong>1999</strong><br />

Caracterizacion de los pinares en el sur de la peninsula iberica<br />

CONCLUSIONES<br />

Pinus halepensis, al igual que otras coniferas,<br />

constituye formaciones naturales en todo el sur de la<br />

Peninsula Iberica, ampliamente distribuidas por los<br />

termotipos termo- y mesomediterraneo, y en menor<br />

medida en el supramediterraneo inferior.<br />

En unos casos, la presencia de ambientes<br />

semiaridos ricos en materiales de dep6sitos ne6geno­<br />

cuaternarios (margas, margocalizas y conglomerados)<br />

con escasa capacidad de retenci6n de agua,<br />

constituyen medios 6ptimos para el desarrollo de<br />

Pinus halepensis. En otros, la abrupta geomorfologia<br />

del territorio, rica en sustratos calizo-domiticos de<br />

dificil edafizaci6n, actua como factor determinante en<br />

la instalaci6n de comunidades permanentes de Pinus<br />

halepensis, en este caso, con una gran amplitud<br />

ombroclimatica (semiarido-seco-subhtimedo).<br />

REFERENCIAS<br />

Achhal, A., 1986. Etude phytosociologique et<br />

dendrometrique des ecosystemes forestiers du bassin<br />

versant du N'fis (Haut Atlas central). These Doct. es.<br />

Sci. Marseille, 204 p. + Annexes.<br />

Aguilar, J. et aI., 1987. Memoria del mapa de suelos de la<br />

provincia de Jaen. Escala 1: 200.000. Departamento de<br />

Edafologia y Quimica Agrfcola. Universidad de<br />

Granada, 552 pp.<br />

Akman, Y., Barbero, M. & Quezel, P., 1978. Contribution a<br />

l'etude de la vegetation forestiere d'Anatolie<br />

mediterraneenne. Phytocoenologia 5: 1-79.<br />

Aldaya, F., Vera, J. A. & Fontbote, J. M., 1980. Mapa y<br />

Memoria explicativa de la hoja 83 (Granada-Malaga) del<br />

Mapa Geol6gico Nacional E. 1:200.000. I.G.M.E. Serv.<br />

Public. Min. 1. y Energia. Madrid.<br />

Arrojo, E., 1994. Cartograffa de la vegetaci6n presente en la<br />

Sierra de Castrfl: bases para la conservaci6n de las<br />

comunidades vegeta!es. Tesis Doctoral. Ined.<br />

Universidad de Granada, 552 pp.<br />

Badal, E., 1991. La vegetaci6n durante el paleolftico<br />

superior en el Pais Valenciano y Andalucfa. Resultados<br />

antracol6gicos. In: Arqueologia medioambiental a traves<br />

de los macrorestos vegetales. Asociaci6n cultural viva<br />

(C.S.I.e.). Aula de <strong>Ecologia</strong> del Ayuntamiento de<br />

Madrid. Madrid.<br />

Badal, E., 1995. La vegetaci6n carbonizada. Resultados<br />

antracol6gicos del Pais Valenciano. In: El Cuaternario<br />

del Pais Valenciano. Asociaci6n espanola para el<br />

estudio del Cuatemario. Departamento de Geograffa de<br />

la Universitat de Valencia. Valencia: 217-226.<br />

Badal, E., Bernabeu, J. & Vernet, J. L., 1994. Vegetation<br />

changes and human action from the Neolithic to the<br />

Bronze Age (7000-4000 BP) in Alicante, Spain, based<br />

on charcoal analysis. Veget. Hist. Archaebot. 3: 155-166.<br />

143


Torres et al.<br />

groupements preforestiers et des matorrals rifains.<br />

<strong>Ecologia</strong> Mediterranea 14 (1/2): 77-122.<br />

Quezel, P. & Barbero, M., 1992. Le pin d'Alep et les<br />

especes voisines : repartition et caracteres ecologiques<br />

generaux, sa dynamique recente en France mediterraneenne.<br />

Forer mediterraneenne 13(3): 158-170.<br />

Quezel, P.; Barbero, M., Benabid, A. & Rivas-Martfnez, S.,<br />

1992. Contribution a I' etude des groupements forestiers<br />

et preforestiers du Maroc oriental. Studia Botanica 10:<br />

57-90. Salamanca.<br />

Rivas Goday, S., 1951. Contribucion al estudio de la<br />

Vegetacion y Flora de la provincia de Granada.<br />

Excursion botanica a la Sierra de Baza y Ziijar. Anal. Re.<br />

Acad. Farmacia 7: 58-133.<br />

Rivas-Martfnez, S., 1987. Mapa de Series de Vegetacian de<br />

Espana escala 1:400.000 y Memoria. I.C.O.N.A.<br />

Madrid.<br />

Rivas-Martfnez, S., I996a. Clasificacion bioc1imatica de la<br />

Tierra. Folia Botdnica Matritensis 16 (33 pags.). Dpto.<br />

Biologfa Vegetal (Botanica). Universidad de Leon.<br />

Rivas-Martfnez, S., 1996b. Bioc1imatic map of Europa.<br />

Cartographic Service, University ofLean. Leon.<br />

Rivas-Martfnez, S., Dfaz, T.E., F. Prieto, J.A., Loidi, J. &<br />

Penas, A., 1984. Los Picos de Europa, Ediciones<br />

Leonesas, Leon. 295 pp.<br />

Rivas-Martfnez, S., Asensi, A., Molero, J. & Valle, F., 1991.<br />

Endemismos vasculares de Andalucfa. Rivasgodaya 6:<br />

5-76.<br />

Rivas-Martfnez, S., Asensi, A., Valle, F., Molero, J. & Dfez,<br />

B., 1997. Biogeographical synthesis of Andalusia<br />

(southern Spain). J. Biogeogr. 24: 915-928.<br />

Rivera, D. & Obon, e., 1991. Macrorrestos vegetales de los<br />

yacimientos de la comarca noroeste en los inicios de la<br />

Edad de los Metales. In: P. Lopez (ed.), El cambio<br />

cultural del IV al II milenios a. C en la comarea<br />

noroeste de Murcia. Vol I. e.S.I.C. Madrid: 239-246.<br />

Rodrfguez Ariza, M.O., 1992. Human-plant relationships<br />

during the Copper and Bronze Ages in the Baza and<br />

Guadix basins (Granada, Spain). Bull. Soc. bot. Fr. 139,<br />

Actual. bot. (2/3/4): 451-464.<br />

Rodrfguez Ariza, M.O & Vernet, J.L., 1991. Premiers<br />

resultats paleoecologiques de I' etablissement<br />

chalcolthique de Los Millares (Santa Fe de Mondujar,<br />

Almerfa, Espagne) d'apres l'analyse anthracologique.<br />

In: Waldren, W.H.; J.A. Ensenyal & R.e. Kennard (ed.),<br />

Iind Deya Conference of Prehistory 1-13, BAR<br />

International Series, Vol. I.<br />

Rodrfguez Ariza, M.O, Aguayo, P. & Moreno, E, 1992. The<br />

environment in the Ronda Basin (Malaga, Spain) during<br />

recent prehistory based on an anthracological study of<br />

Old Ronda. Bull. Soc. bot. Fr. 139, Actual. bot. (2/34):<br />

715-7<strong>25</strong>.<br />

Ros, M.T., 1988. L'aplicacio de I'analisi antracologica a<br />

I'arqueologia catalana. Cota Zero 4: 51-60.<br />

146<br />

Caracterizacian de los pinares en el sur de la peninsula iberica<br />

Ros, M.T., 1992. Les apports de I' anthracologie a I' etude du<br />

paleoenvironnement vegetal en Catalogne (Espagne).<br />

Bull. Soc. bot. Fr. 139, Actual. bot. (2/3/4): 483-493.<br />

Sanchez-Gomez, P. & Alcaraz, E, 1993. Flora, vegetacian y<br />

paisaje vegetal de las Sierras de Segura Orientales.<br />

Instituto de Estudios Albacetenses. Excma. Diputacion<br />

de Albacete. Albacete, 459 pp.<br />

Stika, H.P., 1988. Botanische untersuchungen in der<br />

Bronzezeitlichen Hohensiedlung Fuente Alamo.<br />

Madrider Mitteilungen, 29:21-76.<br />

Tomaselli, R., 1977. Degradacion de la maquia<br />

<strong>mediterranea</strong>. In: Quezel, P., Tomaselli, R. &<br />

Morandini, R. (eds), Bosques y maquia mediterrdneos<br />

(edicion en castellano de 1982), Ediciones del Serbal,<br />

Barcelona: 59-134.<br />

Torres, J. A., Arrojo, E., Cano, E. & Valle, E, 1994.<br />

Formaciones de Pinus halepensis en el Sector Subbetico.<br />

In : Universitat de les Illes Balears (ed.), Libro de<br />

resumenes XV Jornadas de Fitosociologfa, Palma de<br />

Mallorca: 85.<br />

Treggubov, V., 1963. Etude des groupement vegetaux du<br />

Maroc oriental mediterraneen. Bull. Mus. Hist. Nat.<br />

Marseille, 23: 121-196.<br />

Tutin, T.G. & aI., 1964-1980. Flora Europaea. Vols. 1-5.<br />

Cambridge Univ. Press.<br />

Valle, E, Gomez Mercado, E, Mota, J. & Dfaz De la<br />

Guardia, e., 1989. Parque Natural de Cazorla, Segura y<br />

las Villas. Gufa botdnico-ecolagica. Edit. Rueda,<br />

Madrid, 354 pp.<br />

Vera, J.A. & Fontbote, J. M., 1982. Mapa y Memoria<br />

explicativa de la hoja 78 (Baza) del Mapa Geologico<br />

Nacional E 1:200.000. I.G.M.E. Serv. Public. Min. I. y<br />

Energfa. Madrid.<br />

Vernet, J. L.; Badal, E. & Grau, E., 1983. La vegetation<br />

neolithique du sud-est de I'Espagne (Valencia, Alicante)<br />

d'apres I'analyse antracologique. CR. Acad. Se. Paris,<br />

296, Serie 111-48: 669-672.<br />

Vernet, J. L.; Badal, E. & Grau, E., 1987. L'environnement<br />

vegetal de l'homme au Neolithique dans le sud-est de<br />

I'Espagne (Valencia, Alicante): Premiere synthese<br />

d'apres I' analyse anthracologique. Premieres<br />

Communautes Paysannes en Mediterranee occidentale,<br />

Colloque International du CNRS, Montpellier, 1983.<br />

Paris: 131-136.<br />

Virgili, e. & Fontbote, J. M., 1987. Mapa y Memoria<br />

explicativa de la hoja 71 (Villacarillo) del Mapa<br />

Geologico Nacional E. 1:200.000. I.G.M.E. Serv. Public.<br />

Min. I. y Energfa. Madrid.<br />

Yll, El., 1988. Analisis de polen y palinograma. In: Olaria<br />

(ed.). Cova fosca. Una sentamiento mesoneolftico de<br />

cazadores y pastores en la serranfa del alto maestrazgo.<br />

Monograffes de Prehistoria Arqueologfa<br />

Castellonenques. Diputacion de Castellon. Castellon de<br />

la Plana, 424 pp.<br />

ecologia <strong>mediterranea</strong> <strong>25</strong> (2) - <strong>1999</strong>


Linhart et al. Selective herbivory ofthyme chemotypes by a mollusk and a grasshopper<br />

INTRODUCTION<br />

Many Mediterranean ecosystems are characterised<br />

by a limited availability of nutrients and water. For<br />

plants, this means that costs of leaf construction are<br />

high, and leaves must be well protected against the<br />

herbivores that are found in these challenging habitats<br />

(Ross & Sombrero, 1991). This need for protection<br />

has led to the synthesis by many Mediterranean plants<br />

of a large diversity of secondary compounds, many of<br />

which are aromatic. These plant species have charac­<br />

teristic smells and tastes, which are often so specific<br />

that plants can be identified simply by these features,<br />

without recourse to other botanical characteristics<br />

such as floral features or leaf morphology. Rosemary<br />

(Rosmarinus), sage (Salvia), myrtle (Myrtus), bay<br />

(Laurus), junipers (Juniperus) and scores of other spe­<br />

cies evoke specific odours and tastes. Many plants<br />

also show a significant amount of genetically-based<br />

intra-specific variability (Gleizes, 1976; Langenheim,<br />

1994). Foremost among them are species of the genus<br />

Thymus (Labiatae) which often have a diversity of<br />

smells and tastes, associated with the presence of sev­<br />

eral monoterpenes (Adzet et al., 1977; Thompson, in<br />

press and refs. therein). Such intra-specific variability<br />

always elicits attention and questions about its origin<br />

and maintenance. This has been true for various Thy­<br />

mus species and especially for T. vulgaris, a common<br />

component of dry garrigue-like or matorral ecosys­<br />

tems of southern France and Spain. In T. vulgaris, in­<br />

dividual plants are characterised by the predominance<br />

of a specific monoterpene (chemotype) in the essential<br />

oil sequestered in the epidermal glands that cover its<br />

leaves and stems. As a result, a given plant will have a<br />

characteristic odour and flavour. The six monoterpe­<br />

nes present in southern France are geraniol (G), linalol<br />

(L), alpha terpineol (A), thuyanol (U), carvacrol (C)<br />

and thymol (T). Structurally, the first two are straight<br />

chains, the next two are cyclic and the last two are cy­<br />

clic and phenolic. The synthesis of all six is under the<br />

control of a series of independently assorting epistatic<br />

loci. The details of its biochemistry and genetics are<br />

described in many publications (e.g. Passet, 1971;<br />

Vernet et al., 1977; Thompson et al., 1998; Linhart &<br />

Thompson, <strong>1999</strong>). Many populations of thyme contain<br />

two or more chemotypes and the association between<br />

chemotypes and various botanical and geographic<br />

features is also well described, especially in southern<br />

148<br />

France (e.g. Gouyon et al., 1986b; Thompson, in<br />

press).<br />

The question we wish to address in this study has<br />

to do with the influences of this variability upon herbivory<br />

of T. vulgaris by two of its consumer species,<br />

the grasshopper Leptophyes punctitatissimum (Tetti­<br />

goniidae, Orthoptera) and the slug Deroceras reticu­<br />

latum (Limacidae, Mollusca).<br />

MATERIALS AND METHODS<br />

Framework<br />

The primary issues we addressed were i) whether<br />

the two herbivores exhibited repeatable patterns of<br />

selectivity among chemotypes by feeding on some<br />

chemotypes more than on others, and ii) whether the<br />

two species fed preferentially on the same chemo­<br />

types.<br />

Plant material<br />

Thyme plants offered to the herbivores were clonally<br />

produced from mother plants, with at least 10<br />

mother plants per chemotype (A, C, G, L, T, U).<br />

Artificial diets for slugs<br />

Gelatine cakes were produced following the meth­<br />

ods of Whelan (1982) and Linhart and Thompson<br />

(1995), and contained measured weights of chopped<br />

thyme leaves.<br />

Feeding trials<br />

Eight grasshoppers and nine slugs were used in in­<br />

dividual cages. Each animal was presented with two<br />

replicates of all six chemotypes simultaneously. This<br />

methodology, while less tidy than the often used binary<br />

choice trials involving only two items at a time,<br />

is more realistic, as it reflects more accurately the<br />

complexities of garrigue vegetation which can contain<br />

several thyme chemotypes in addition to other<br />

monoterpene-containing species such as Juniperus<br />

spp., Rosmarinus, and others. Individual plants were<br />

4-6 cm tall and had 6 leaves. Artificial diets for slugs<br />

consisted in food disks measuring 8 mm in diameter,<br />

and weighing 0.2 g. Each disk contained the leaf<br />

equivalent to about eight fresh leaves. For grasshop-<br />

ecologia <strong>mediterranea</strong> <strong>25</strong> (2) - <strong>1999</strong>


Linhart et al. Selective herbivory ofthyme chemotypes by a mollusk and a grasshopper<br />

pers, no artificial diet was available, so that this type<br />

of experiment could not be carried out.<br />

Containers for individual animals consisted of:<br />

i) circular, soil-filled glass dishes 15 cm in diameter<br />

for the mollusks, covered with damp muslin, and<br />

ii) rectangular planting trays 20x30 cm in size covered<br />

with metal mesh cages about 5 cm in height for the<br />

grasshoppers.<br />

All experiments that followed the protocols described<br />

here were carried out once. In the case of<br />

slugs, different animals were used in the two experi­<br />

ments, to prevent the possibility that learning in the<br />

first trial with the living plants, might influence slug<br />

behaviour in the second experiment. Some further tri­<br />

als were run, usually with fewer animals, and lasting<br />

longer periods of time. Because of these differences,<br />

they were not directly comparable to the experiments<br />

reported here, and were not analysed statistically.<br />

However, all observations germane to the results re­<br />

ported here are also noted.<br />

RESULTS<br />

Deroceras<br />

The slugs ate primarily plants of the G and A che­<br />

motypes, and ate little of the U, C, and T chemotypes<br />

(Table I) of the nine individuals tested, five ate mostly<br />

G, three ate more A than G and one ate mostly A and<br />

L. In subsequent tests with fewer animals, G was also<br />

the chemotype most eaten.<br />

Tests with gel cakes showed that animals ate more<br />

of G than the other chemotypes with L also selected,<br />

and C the least eaten. Once again, there were differ­<br />

ences among individuals, with 4/10 individuals prefer­<br />

ring G, two a combination of G and L, one feeding<br />

mostly on L, one on U, and two showing no clear<br />

preference.<br />

Leptophyes<br />

The grasshoppers ate all chemotypes, but ate most<br />

of chemotype T (Table 1). There was marked hetero­<br />

geneity among individuals. In additional runs (data not<br />

shown) of 8 individuals exposed to 6 chemotypes,<br />

three showed a strong preference for T while the oth­<br />

ers were less selective in their feeding.<br />

DISCUSSION<br />

Both herbivores ate a diversity of thyme chemo­<br />

types but concentrated their feeding on some chemo­<br />

types and were deterred by others. There was a<br />

general consensus about the most and least eaten che­<br />

motypes for each species, although there was also<br />

some heterogeneity among individuals. This heteroge­<br />

neity reflects phenotypic variation among individuals,<br />

observed in most studies of this type, and underscores<br />

the need to carry out such tests with adequate numbers<br />

of animals. The two species differed dramatically in<br />

their preferences, with Leptophyes feeding more on<br />

thymol (T), while Deroceras fed very little on that<br />

chemotype, eating primarily plants of geraniol (G) and<br />

terpineol (A) chemotypes.<br />

Species Chemotype P (3)<br />

Plant material G L A U C T<br />

SLUG<br />

Plants (I) 4.1±0.6 2.7±0.5 3.9±0.6 1.0±0.2 0.9±0.2 1.0±0.3


Linhart et al. Selective herbivory ofthyme chemotypes by a mollusk and a grasshopper<br />

At first contact, the primary detectable differences<br />

among thyme plants are those associated with the<br />

monoterpene contents of their glands. But there are<br />

also other, more subtle differences among them: these<br />

include for example pubescence, leaf size, thickness,<br />

toughness and disposition, and all may affect the<br />

plants' palatability to various herbivores (Strong et aI.,<br />

1984). For this reason, an artificial diet which reduces<br />

these differences among food items is an important<br />

confirmation of the specific role of terpenes in herbi­<br />

vore choice. We were only able to use artificial diets<br />

using ground leaves for the slugs as no artificial diets<br />

were available for the grasshoppers.<br />

The slugs ate somewhat larger amounts of geraniol<br />

containing cakes, just as they ate more plants of the G<br />

chemotype than the others. This observation provides<br />

support for the role of the specific monoterpenes synthesised<br />

by the plants as determinants of level of her­<br />

bivory. This role was further supported in other<br />

experiments which involved the snail Helix aspersa<br />

(Linhart & Thompson, 1995) goats (Capra hircus) and<br />

sheep (Ovis aries) (Linhart & Thompson, <strong>1999</strong>). In all<br />

three cases, patterns of relative preference of live<br />

plants characterised by specific chemotypes were the<br />

same as choices made when feeding on synthetic diets<br />

supplemented with pure distilled monoterpenes (Lin­<br />

hart & Thompson 1995, <strong>1999</strong>).<br />

The difference in patterns of preference between<br />

slugs and grasshoppers is notable as it shows that the<br />

two animals react very differently to the smell and/or<br />

the taste of the two molecules. These interspecific dif­<br />

ferences are also interesting in combination with another<br />

comparison made between patterns of herbivory<br />

by the grasshopper Omocestus viridulus, and the<br />

mollusk Deroceras reticulatum feeding upon mixtures<br />

of the graminoid Dactylis glomerata and the legume<br />

Trifolium repens. The two animals behaved very dif­<br />

ferently, with the grasshopper feeding disproportion­<br />

ately on the common species, with a periodic<br />

preference for the grass, while the slug fed dispropor­<br />

tionately on the rarer species, with a consistent prefer­<br />

ence for the legume (Cottam, 1985). Such results<br />

further document the existence of important inter­<br />

specific differences in herbivore behaviour, and sug­<br />

gest that the presence of multiple species of herbivores<br />

can contribute to small-scale heterogeneity of botani­<br />

cal and biochemical composition within plant communities.<br />

150<br />

The patterns of herbivory shown by the slugs in<br />

our experiment differ markedly from those of Gouyon<br />

et al. (l986a) who found the animals in their experi­<br />

ments showed preference patterns of A=C>T>U. We<br />

presume the differences are associated with the fact<br />

that their slugs had no experience feeding on thyme,<br />

and also were not exposed to G or L. In any case, the<br />

differences illustrate how animal origin and experi­<br />

mental design can influence the outcome of a feeding<br />

trial.<br />

The inter-specific differences we saw are consis­<br />

tent with other patterns of herbivory of T. vulgaris.<br />

For example Helix aspersa and the Chrysomelid beetle<br />

Arima marginata preferred the L chemotype, while<br />

sheep (Ovis aries) preferred U, while goats although<br />

less specific in their choices, clearly preferred A, L or<br />

C to the other three chemotypes either in the form of<br />

whole plants or in synthetic diets (Linhart & Thomp­<br />

son, <strong>1999</strong>). Other plants that show genetically-based<br />

intra-species variability in chemical defenses have<br />

also been studied experimentally by exposing diverse<br />

chemical phenotypes to various herbivores and para­<br />

sites. In the great majority of cases, the herbivores<br />

show species-specific host selection; that is, there are<br />

consistent, inter-specific differences in the chemical<br />

phenotypes they select as food or host plants. This is<br />

not surprising, as one may well expect that these dif­<br />

ferences reflect the interspecific differences in physi­<br />

ology, metabolism and behaviour that are to be<br />

expected among organisms as different as molluscs,<br />

insects, fungi, birds, fish and mammals. These pat­<br />

terns have been observed repeatedly in many plant<br />

species as diverse as Labiatae, Leguminosae, Graminae,<br />

Fucoidae, Compositae, and various conifers<br />

(Simms, 1990; Linhart, 1991; Linhart & Thompson,<br />

<strong>1999</strong>; Iwao & Rausher, 1997; Van Der Meijden, 1996;<br />

Snyder & Linhart, 1998). The consistent nature of<br />

these observations implies that such species-specific<br />

herbivory and parasitism can contribute to the mainte­<br />

nance of genetic variability in host defenses via com­<br />

plex patterns of selection. The results also indicate<br />

that for a given plant species, no one molecule can be<br />

counted on as a dependable defense against diverse<br />

herbivores.<br />

Acknowledgements<br />

We thank the staff of the Centre d'Ecologie Fonc­<br />

tionnelle et Evolutive (CNRS) in Montpellier, France,<br />

ecologia <strong>mediterranea</strong> <strong>25</strong> (2) - <strong>1999</strong>


Linhart et al. Selective herbivary afthyme chematypes by a mallusk and a grasshopper<br />

and especially C. Collin, D. Couvet, M. Debussche,<br />

and B. Dommee. Very useful help and advice were<br />

also provided by J. Lamy and the Chambre d'Agri­<br />

culture de la Drome. Technical assistance was provided<br />

by L. Bowden, N.B. Linhart, and B. Stojanovic­<br />

Meunier. Financial aid was provided by the U.S. Na­<br />

tional Science Foundation, and the University of Colo­<br />

rado.<br />

REFERENCES<br />

Adzet T., Granger R., Passet 1. & San Martin R., 1977. Le<br />

polymorphisme chimique dans le genre Thymus: sa signification<br />

taxonomique. Biochem. Syst. Evol., 5: 269­<br />

272.<br />

Cottam O.A., 1985. Frequency-dependent grazing by slugs<br />

and grasshoppers. J. Ecol., 73: 9<strong>25</strong>-933.<br />

Gleizes M., 1976. Biologie des terpenes vegetaux: etude des<br />

composes monoterpeniques et sesquiterpeniques. Annee<br />

BioI., 15: 7-127.<br />

Gouyon P.H., Fort P. & Caraux G., 1986a. Selection of<br />

seedlings of Thymus vulgaris by grazing slugs. 1. Ecol.,<br />

71: 299-306.<br />

Gouyon P.H., Vernet P., Guillerm J.L. & Valdeyron G.,<br />

1986b. Polymorphisms and environment. The adaptive<br />

value of the oil polymorphisms in Thymus vulgaris. L.<br />

Heredity, 57: 59-66.<br />

Iwao K. & Rausher M., 1997. Evolution of plant resistance<br />

to multiple herbivores: quantifying diffuse coevolution.<br />

Am. Nat., 149: 316-335.<br />

Langenheim J.H., 1994. Higher plant terpenoids: a phytocentric<br />

view of their ecological roles. J. Chem. Ecol., 20:<br />

1223-1280.<br />

Letchamo W., Saez F. & Stahl-Biskup E., (in press). The<br />

genus Thymus.<br />

Linhart Y.B., 1991. Disease, parasitism and herbivory: multi<br />

dimensional challenger in plant evolution. Trends Ecol.<br />

Evol., 6: 392-396.<br />

Linhart Y.B. & Thompson J.O., 1995. Terpene based selective<br />

herbivory by Helix aspersa (Mollusca) on Thymus<br />

vulgaris (Labiatae). Oecologia, 102: 126-132.<br />

ecologia <strong>mediterranea</strong> <strong>25</strong> (2) - <strong>1999</strong><br />

Linhart Y.B. & Thompson J.O., <strong>1999</strong>. Thyme is of the essence:<br />

biochemical polymorphism and multi-species<br />

deterrence. Evol. Ecol. Research, 1: 151-171.<br />

Passet J., 1971. Thymus vulgaris L. : chemotaxonomie et<br />

biogenese monoterpenique. These Ooct. d'Etat. Universite<br />

de Montpellier, Montpellier.<br />

Ross J.O. & Sombrero c., 1991. Environmental control of<br />

essential oil production in Mediterranean plants. In: 1.B.<br />

Harborne & F.A. Tomas-Barberan (eds.). Ecological<br />

chemistry and biochemistry ofplant terpenoids. Clarendon,<br />

Oxford, U.K., 83-94.<br />

Simms E.L., 1990. Examining selection on the multi-variate<br />

phenotype: plant resistance to herbivores. Evolution, 44:<br />

1173-1188.<br />

Sokal R.R. & Rohlf F.J., 1981. Biometry. 2nd ed., Freeman,<br />

San Francisco, CA.<br />

Strong O.P., Lawton J.H. & Southwood T.R.E., 1984. Insects<br />

on Plants. Community Patterns and Mechanisms.<br />

Harvard Univ. Press Cambridge, MA.<br />

Thompson J.O., (in press). Population structure, and the<br />

spatial dynamics of genetic polymorphism in thyme. In:<br />

Letchamo, W, Saez, F. & Stahl-Biskup, E. (Eds.), in<br />

press: The genus Thymus.<br />

Thompson 1.0., Manicacci O. & Tarayre M., 1998. Thirty<br />

five years of thyme: a tale of two polymorphisms. Bioscience,<br />

48: 805-815.<br />

Snyder M.A. & Linhart Y.B., 1998. Subspecific selectivity<br />

by a mammalian herbivore: geographic differentiation of<br />

interactions between two taxa of Sciurus aberti and<br />

Pinus ponderosa. Evol. Ecol., 12: 755-765.<br />

Van Oer Meijden E., 1996. Plant defense, an evolutionary<br />

dilemma: contrasting effects of (specialist and generalist)<br />

herbivores and natural enemies. Ent. Exp. Appl., 80:<br />

307-310.<br />

Vernet P., Gouyon P.K. & Valdeyron G., 1977. Genetic<br />

control of the oil content in Thymus vulgaris L.: a case<br />

of polymorphism in a biosynthetic chain. Genetica, 69:<br />

227-231.<br />

Whelan R.J., 1982. An artificial medium for feeding choice<br />

experiments with slugs. J. Appl. Ecol., 19: 89-94.<br />

151


ecologia <strong>mediterranea</strong> <strong>25</strong> (2),153-161 (<strong>1999</strong>)<br />

Patterns and correlates of exotic and endemic plant taxa in the<br />

Balearic islands<br />

, 1 _<br />

Montserrat VILA & Irma MUNOZ<br />

Centre de Recerca Ecologica i Aplicacions Forestals, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain<br />

1<br />

Author for correspondence: Tel: 93-5811987, Fax: 93-5811312, e-mail: vila@cc.uab.es<br />

ABSTRACT<br />

We analysed the taxonomy and biogeography of endemic and exotic plants in the Balearic Islands (Spain), one of the "hot-spots"<br />

of the Mediterranean Basin. Richness, diversity and density (number of taxallog 1o area) of exotic taxa (species and subspecies) is<br />

higher than that of endemic taxa. Mallorca is the island with the highest number of endemic and exotic taxa. On average, exotic<br />

and endemic taxa are little abundant or rare and represent 8.4% and 6% of the total flora, respectively. The taxonomic distribution<br />

of both exotic and endemic species is not random: Solanaceae, Amaranthaceae, Iridaceae and Euphorbiaceae are overrepresented<br />

families within the exotic taxa. Plumbaginaceae, Labiatae and Rubiaceae are over-represented among endemics.<br />

While most exotic taxa are therophytes, chamaephytes are the dominant life-form among endemics. Exotics are mainly found in<br />

cultivated areas, in disturbed and ruderal communities, while most endemics are located in rocky habitats. Coastal communities<br />

display a great proportion of endemic taxa (35.94 %), and are little represented by exotic taxa (5.94 %). It is in this habitat where<br />

most effort should be addressed in order to preserve both endemic and non-endemic native vegetation.<br />

Key words: commonness, conservation of islands, endemism, Mallorca, Pithyusic Islands, rarity<br />

RESUME<br />

Nous avons analyse la taxonomie et la biogeographie des plantes endemiques et exotiques des lies Baleares (Espagne), l'un des<br />

"hot-spots" du bassin mediterraneen. La richesse, la diversite et la densite (nombre de taxallog lO zones) des taxa exotiques (especes<br />

et sous-especes) sont plus elevees que celles des taxa endemiques. Majorque est 1'lIe ayant le plus grand nombre de taxa endemiques<br />

et exotiques. En moyenne, les taxa exotiques et endemiques sont peu abondants ou rares, et representent<br />

respectivement 8,4% et 6% de la flore totale. La repartition taxonomique des especes exotiques et endemiques n'est pas aleatoire<br />

: les Solanaceae, Amaranthaceae, Iridaceae et Euphorbiaceae sont les families sur-representees parmi les exotiques. Les<br />

Plumbaginaceae, Labiatae et Rubiaceae sont sur-representees parmi les endemiques. Tandis que la plupart des taxa exotiques<br />

sont des therophytes, les chamaephytes constituent la forme de vie dominante parmi les endemiques. Les especes exotiques se<br />

rencontrent principalement dans les zones cultivees et les communautes perturbees et ruderales, alors que la plupart des endemiques<br />

s'observent dans les habitats rocheux. Les communautes c6tieres affichent une grande proportion de taxa endemiques<br />

(35,94 %), mais peu de taxa exotiques (5,94 %). Ce sont dans ces biotopes littoraux que la plupart des efforts devraient etre entrepris<br />

afin de preserver la vegetation indigene, endemique et non-endemique.<br />

Mots-ch\s : frequence, conservation des lies, endemisme, Majorque, lies Pithyuses, rarete<br />

153


Vilcl & Mulio::<br />

INTRODUCTION<br />

There is a great interest in understanding the proc­<br />

esses that shape the ecology of endemic and intro­<br />

duced species (e.g. Gaston, 1994; Drake et a!., 1989,<br />

respectively). This concern requests a strong previous<br />

knowledge of the diversity and abundance patterns of<br />

these taxa (McIntyre, 1992; Schwartz, 1993; Cowling<br />

& Samways, 1995). On the other hand, preservation<br />

of endemic species and control of introduced species<br />

are two main goals of conservation programmes<br />

world-wide that often are simultaneously carried out<br />

(Usher, 1986; Houston & Scheiner, 1995; Schieren­<br />

beck, 1995). Thus research on the distribution patterns<br />

of endemics and exotics at the regional level and<br />

taxonomic, biological and ecological affinities of both<br />

groups of taxa is imperative to highlight hypothesis to<br />

be experimentally tested, and also to advance on basic<br />

knowledge for conservation practices.<br />

Islands have high levels of plant endemism. The<br />

best examples are found in big isolated islands such as<br />

Madagascar with 12.000 species 80 % of wich are en­<br />

demic or New Zealand with 82 % endemic species.<br />

Endemics are also common in small islands: Canary<br />

Islands (612 endemics), Mauricio Island (280 endem­<br />

ics), Madeira Islands (129 endemics) (Lean & Hin­<br />

richsen, 1990). In the Mediterranean Basin, the<br />

Tyrrhenian Islands are one of the 10 "hot-spots" of<br />

species diversity and have almost 20 % of endemic<br />

plant taxa (Medail & Quezel, 1997).<br />

Endemic plant species are especially vulnerable in<br />

islands (Eliasson, 1995). For example, more than 90<br />

% of endemic plants in Sta. Elena, Ascension Island<br />

and Lord Howe island are endangered (Lean & Hin­<br />

richsen, 1990). Intrinsic causes of vulnerability are<br />

related to the characteristics of insular species such as<br />

biological simplicity and reduced dispersal (Carlquist,<br />

1965; Eliasson, 1995; Cody & McCoverton 1996;<br />

Schiffman 1997). However, the main causes of such<br />

vulnerability are overexploitation, deforestation,<br />

habitat destruction, alteration of regional hydrological<br />

cycles, water pollution and species introductions.<br />

Islands are very vulnerable to biological invasions<br />

(Loope & Mueller-Dombois, 1989; Atkinson & Cam­<br />

eron, 1993; McDonald & Cooper, 1995). The percent­<br />

age of exotic plant species is very high in islands, i.e.<br />

Hawaii (44 %), New Zealand (40 %), British Islands<br />

(43 %), Ascension Island (83 %) (Vitousek et a!.,<br />

1997). This high fraction of exotic species may be re-<br />

154<br />

Diversity ofexotic and endemic plants in the Balearic Islands<br />

lated to higher invasibility of islands due to higher<br />

number of releases and propagules per unit area, a<br />

lack of biotic mechanisms controlling invasion, the<br />

existence of unsaturated communities, high distur­<br />

bance regimes, higher susceptibility to the effects of<br />

invaders than similar mainland areas (D'Antonio &<br />

Dudley, 1995) and also to a large perimeter-area ratio<br />

than that for continents (Lonsdale, <strong>1999</strong>).<br />

The Balearic Islands have a high species diversity<br />

(Simon, 1994) and are rich in endemic taxa (G6mez­<br />

Campo et a!', 1984). Endemic plants have been stud­<br />

ied with regard to evolutionary origin based on cyto­<br />

taxonomy analysis (Cardona & Contandriopoulos,<br />

1979; Contandriopoulos & Cardona, 1984). However,<br />

the diversity and distribution of endemic taxa has not<br />

been quantified and compared to that of the exotic<br />

component. In this study we analyse several aspects of<br />

the diversity and distribution of both the endemic and<br />

the exotic component of the Balearic flora. The ques­<br />

tions are: I) Are endemic and exotic taxa similarly<br />

abundant? 2) Are there taxonomic and life-history<br />

similarities between endemic and exotic taxa? 3) In<br />

which communities are endemic and exotic taxa lo­<br />

cated? The biogeographic origin of exotics is also<br />

commented. We base our study on a bibliographic<br />

survey.<br />

METHODS<br />

Area of study<br />

The Balearic Islands are the most eastern islands<br />

of the Mediterranean Basin and belong together with<br />

Corsica, Sardenia and Sicily to the Tyrrhenian Islands.<br />

They originated after the geologic drift and posterior<br />

rotation of 30° of the Cyrno-Sardinian plate at the end<br />

of the Oligocene and early Miocene from the adjacent<br />

coast of Provence, Languedoc and NE Catalonia.<br />

Materials are calcareous from the Triassic to the terti­<br />

ary except in Menorca, where the geology is more<br />

heterogeneous and contains silicic esquists. The flora<br />

is typically Mediterranean dominated by evergreen<br />

sclerophyllous shrubs and forests. The Balearic Is­<br />

lands form two different groups in terms of their geol­<br />

ogy and endemism. The eastern Balearic Islands or<br />

Gymnesias Islands (Mallorca and Menorca) that have<br />

Tyrrhenian affinities, and the western Balearic Islands<br />

or Pithyusic Islands (Eivissa and Formentera) that<br />

have an Iberian and North African affinity.<br />

ecologia <strong>mediterranea</strong> <strong>25</strong> (2) - <strong>1999</strong>


VilCI & Munoz Diversity ofexotic and endemic plants in the Balearic Islands<br />

Region Area (km2) No. endemics (%) No. endemics/loglO area Family diversitya Abundance b<br />

Balearic Islands 5014 89 (6) 24 2.9 2.2<br />

Mallorca 3655.9 70 (5.8) 19.6 2.6 2.3<br />

Menorca 701.8 39 (4.4) 13.7 2.5 2.6<br />

Pithyusic Islands 623.3 26 (2.3) 9.3 2.9 2.4<br />

Pithyusic Islands = Eivissa and Formentera.<br />

aCalculated as the Shannon index = -EPix1nPi where Pi is the number of endemic taxa in family i divided by the total number of endemic taxa.<br />

b Median value of 1= RRR (very rare), 2 = RR (rare), 3 = R (not abundant), 4 = C (relatively common), 5 = CC (common) and 6 = CCC (very<br />

common) according to Bolos et al (1993) nomenclature.<br />

Table I. Numbers of endemic taxa of the Balearic Islands<br />

Family No. endemic taxa (%)1 No. native non-endemic taxa (%)1 X 2<br />

PI umbaginaceae 14 (15.7) 18(1.3) 627.7 *<br />

Fabaceae 12 (13.5) 132 (9.7) 1.5 ns<br />

Asteraceae 9 (10.1) 151(11.1) 0.0 ns<br />

Labiatae 7 (7.8) 46(3.4) 6.5 *<br />

Umbelliferae 6 (6.7) 52 (3.8) 2.5 ns<br />

Scrophulariaceae 4 (4.5) 46 (3.4) 0.3 ns<br />

Rubiaceae 4 (4.5) 24 (1.8) 4.2 *<br />

Caryophyllaceae 3 (3.4) 59 (4.3) 0.3 ns<br />

Euphorbiaceae 3 (3.4) 26 (1.9) 1.0 ns<br />

Ranunculaceae 3 (3.4) 29 (2.1) 0.65 ns<br />

I number oftaxa in the family/total number oftaxa ofthe respective group<br />

* p< 0.05, ns = not significant. X 2 compares the no. endemic taxa (%) with the no. native non-endemic taxa (%).<br />

If significant, the family is over-represented.<br />

Table 2. The ten largest families of endemic taxa in the Balearic Islands<br />

Lifeform<br />

Therophytes<br />

Hemicryptophytes<br />

Nanophanerophytes<br />

Macrophanerophytes<br />

Phanerophytes<br />

Chamaephytes<br />

Geophytes<br />

% endemics<br />

5.6<br />

27.0<br />

13.5<br />

1.1<br />

44.9<br />

7.9<br />

% exotics<br />

37.9<br />

17.7<br />

5.6<br />

11.3<br />

5.6<br />

12.1<br />

9.7<br />

Table 3. Percentage of lifeforms of endemic and exotic taxa in the Balearic Islands<br />

Distribution and abundance of the endemic taxa<br />

Of the 89 endemic taxa, 5 are also endemic in other<br />

north-eastern regions of Spain: Medicago arborea<br />

subsp. citrina (Papilionaceae) also endemic to Co­<br />

lumbretes islands (Valencia), Asplenium petrarchae<br />

subsp. majoricum (Polypodiaceae), Asperula cynan­<br />

chica subsp. paui (Rubiaceae) and Saxifraga corsica<br />

subsp. cossoniana (Saxifragaceae) are also present in<br />

Valencia and Limonium gobertii (Plumbaginaceae) is<br />

also endemic to Catalonia.<br />

Mallorca is the island with most endemic taxa, and<br />

with the highest density and family diversity of endemic<br />

taxa. Endemic taxa have low abundance (R) or<br />

are rare (RR) in all islands (Table I).<br />

156<br />

Most endemic plants occur on rocky habitats (64<br />

%) in the mountaintops mainly in non coastal sites<br />

(39.36 %). Coastal communities also display a great<br />

proportion of endemic plants (35.11 %). Only 7 taxa<br />

are located in ruderal communities. There are 10 en­<br />

demic taxa in shrublands and only two in forests (Ta­<br />

ble 4).<br />

Diversity and origin of the exotic taxa<br />

The Balearic Islands display 124 exotic taxa dis­<br />

tributed in 46 families that represent 8.4% of the total<br />

flora. Only one exotic species is a gymnosperm, 17<br />

are monocotyledons and 106 are dicotyledons. Den­<br />

sity and family diversity for exotics are 33.5 and 3.31<br />

respectively (Table 5).<br />

ecologia <strong>mediterranea</strong> <strong>25</strong> (2) - <strong>1999</strong>


Vi/a & Muiioz Diversity ofexotic and endemic plants in the Balearic Islands<br />

Family No. exotic taxa (%)1 No. native taxa (%)1<br />

Asteraceae 17 (13.7) 160 (10.8)<br />

Fabaceae 14 (11.3) 144 (9.9)<br />

Solanaceae 9 (7.2) 16 (Ll)<br />

Poaceae 7 (5.6) 160 (10.8)<br />

Amaranthaceae 6 (4.8) 9 (0.6)<br />

Brassicaceae 6 (4.8) 59 (4)<br />

Euphorbiaceae 6 (4.8) 29 (2.2)<br />

Iridaceae 6 (4.8) 11 (0.7)<br />

Labiatae 5 (4) 53 (3.4)<br />

Chenopodiaceae 4 (3.2) 30 (2.0)<br />

J number oftaxa in the family/total number oftaxa ofthe respective group<br />

*** p< 0.001, * p< 0.05, ns = not significant. X 2 compares the no. exotic taxa (%)<br />

with the no. native taxa (%). If significant, the family is over-represented.<br />

Table 6. The ten largest families of exotic taxa in the Balearic Islands<br />

Region<br />

Non tropical America<br />

Tropical America<br />

Mediterranean region<br />

Africa<br />

Asia<br />

Middle East<br />

Sub<strong>mediterranea</strong>n region<br />

Tropical<br />

Oceania<br />

Macaronesia<br />

Unknown<br />

In the Balearic Islands, the most represented exotics<br />

have an American origin like for other Mediterranean<br />

Basin regions (Di Castri, 1989; Groves & Di<br />

Castri, 1991), and the families with the largest number<br />

of exotic taxa belong also to the largest families<br />

world-wide i.e. Asteraceae, Fabaceae, Poaceae<br />

(Weber, 1997; Daehler, 1998; Pysek, 1998). However,<br />

some families were over-represented. This may partly<br />

be explained by deliberate and reiterated introductions<br />

of certain taxa and by specific features of these taxa,<br />

making them more invasive. It may also reflect the<br />

identity of naturalised plants, e.g. the Amaranthaceae<br />

contain many weeds in agroecosystems.<br />

There is not a strong overlap of habitats occupied<br />

by endemic and exotic taxa. While endemic taxa are<br />

located in more isolated pristine habitats, exotic taxa<br />

are located in most disturbed habitats, except for<br />

coastal communities where an important proportion of<br />

both taxa co-occur. These habitats, are the ones where<br />

endemics will be most threatened by invasion by exotics.<br />

For example, invasion of Carpobrotus edulis is<br />

very high in the Mallorcan coast and is threatening<br />

several endemic Limonium spp. (PANDION, 1997).<br />

Moreover, in coastal habitats the human influence is<br />

ecologia <strong>mediterranea</strong> <strong>25</strong> (2) - <strong>1999</strong><br />

No. taxa<br />

26<br />

18<br />

26<br />

13<br />

10<br />

10<br />

5<br />

4<br />

2<br />

1<br />

19<br />

% taxa<br />

19.4<br />

13.4<br />

19.4<br />

9.7<br />

7.5<br />

7.5<br />

3.7<br />

3.0<br />

1.5<br />

0.7<br />

14.2<br />

Table 7. Biogeographic origin of exotic taxa of the Balearic Islands<br />

1.2 ns<br />

0.3 ns<br />

99.0 ***<br />

2.8 ns<br />

78.6 ***<br />

0.3 ns<br />

5.0 *<br />

60.7 ***<br />

0.1 ns<br />

0.9 ns<br />

the strongest, and this increases the rate of species introduction<br />

and threat to endemics.<br />

Isolated edaphic systems appear to be major endemic<br />

centres (G6mez-Campo et aI., 1984). Besides<br />

crop fields, most exotic taxa were found in anthropogenic<br />

habitats (dumps, roadsides). Water courses are<br />

especially prone to invasion by exotic plants because<br />

they act as effective corridors providing a route for the<br />

dispersal of water-borne propagu1es (de Waal et aI.,<br />

1994). Very few exotics succeed in closed forest and<br />

shrublands. Low disturbance levels may prevent invasion<br />

of closed forest and shrub1ands (Hobbs & Huenneke,<br />

1992).<br />

Often the term rarity is confused with that of endangered<br />

taxa but they are not synonyms (Kruckeberg<br />

& Rabinowitz, 1985). It is important to notice that in<br />

average both endemic and exotic taxa are rare. However,<br />

putative mechanisms of rarefaction are different<br />

in both group of taxa and their fate may also discourse<br />

in opposite directions. At the human scale, we have<br />

witnessed changes from common to rare in native taxa<br />

and from rare to common in exotic taxa (Kruckeberg<br />

& Rabinowitz, 1985). The rarity status of exotic taxa<br />

does not prevent their invasion status either. Because<br />

159


Vila & MuilOZ<br />

rarity depends on geographical range, habitat speci­<br />

ficity and population size, one exotic taxa can be re­<br />

stricted to a small geographical area but be very<br />

abundant or vice-versa, have widespread small popu­<br />

lations. In both cases its presence may be considered<br />

invasive and may have an impact on the native biota<br />

and ecosystem functioning (Rabinowitz et al., 1986).<br />

Endemics and exotics are two faces of the same<br />

coin because management of both taxa have strong<br />

conservation implications. Five percent of the overall<br />

flora of the Balearic Islands is seriously endangered<br />

(Mus & Mayol, 1993). In addition, new introduced<br />

species are becoming naturalised (Fraga & Pallicer,<br />

1998). Because low-altitude areas are both fairly rich<br />

in threatened endemic taxa and exotic taxa there is a<br />

need to tackle conservation priorities in these habitats<br />

and to reduce main threats which are from more to<br />

less important: tourism, fire, overgrazing, urbanisation<br />

and cropping (Medail & Quezel, 1997).<br />

Conservation priorities should be strongly en­<br />

forced to those taxa that are evolutionary unique<br />

(Williams et al., 1994). In the Balearic Islands, relict<br />

taxa (paleoendemics) should be conserved because<br />

they are those that have gone through major distur­<br />

bances and environmental changes. Paleoendemics<br />

include species represented by monospecific genera<br />

(Naufraga balearica), morphologically isolated spe­<br />

cies (Pimpinella bicknellii, Daphne rodriguezii), and<br />

those without clear affinities (Helichrysum ambiguum,<br />

Hypericum balearicum, Paeonia cambessedesii) some<br />

of which are located in coastal habitats also invaded<br />

by exotic species.<br />

More studies like this one should be conducted at<br />

other regions in order to have a global assessment of<br />

the diversity and distribution of endemic and exotic<br />

taxa. Next research step should focus on the experi­<br />

mental study of the ecological mechanisms that con­<br />

trol the establishment of plants of conservation<br />

interest (Mack, 1996), such as the studies undertaken<br />

with Cyclamen balearicum (Affre et al., 1995) or the<br />

ones currently analysed by Traveset et al. (unp. data)<br />

on endemics, in order to have ecological bases for<br />

conservation efforts as for example the Ligusticum<br />

huteri Porta reintroduction program (Vicens, 1998).<br />

Acknowledgements<br />

We thank F. Lloret, A. Traveset, E. Weber, P. Py­<br />

sek and D. Jeanmonod for their valuable comments on<br />

160<br />

Diversity ofexotic and endemic plants in the Balearic Islands<br />

earlier drafts of the manuscript. Partial financial sup­<br />

port was provided by the Comissi6 Interdepartamental<br />

de Ciencia i Tecnologia (CIRIT) de la Generalitat de<br />

Catalunya.<br />

REFERENCES<br />

Affre L., Thompson J. D. & Debussche M. 1995. The reproductive<br />

biology of the Mediterranean endemic Cyclamen<br />

balearicum Willk. (Primulaceae). Bot. J. Linnean Soc..<br />

118: 309-330.<br />

Atkinson I. A. E. & Cameron E. W. 1993. Human influence<br />

on the terrestrial biota and biotic communities of New<br />

Zealand. Trends Ecol. Evol., 8: 447-451.<br />

Bolos 0., Vigo J., Masalles R.M. & Ninot J.M. 1993. Flora<br />

manual dels Pai"sos Catalans. Ed. Portic, Barcelona,<br />

1247 p.<br />

Bonafe F. 1980. Flora de Mallorca. 4 vol Ed. Moll, Palma.<br />

Cardona M. A. & Contandriopoulos J. 1979. Endemism and<br />

evolution in the islands of the western <strong>mediterranea</strong>n.<br />

In: Bramwell D. (ed.), Plants and Islands. Academic<br />

Press, London: 133-169.<br />

Carlquist S. 1965. Island Biology: a natural history of the<br />

islands ofthe world. Nat. Hist. Press, Garden City.<br />

Cody M. L. 1986. Diversity, rarity, and conservation in<br />

<strong>mediterranea</strong>n-climate regions. In: Soule M. E. (ed.),<br />

Conservation biology. The science ofscarcity and diversity.<br />

Sinauer Ass., Massachusetts: 122-152.<br />

Cody M. L. & McCoverton J. 1996. Short-term evolution of<br />

reduced dispersal in island plant populations. 1. Ecol.,<br />

84: 53-61.<br />

Contandriopoulos J. & Cardona M. A. 1984. Caractere<br />

original de la flore endemique des Baleares. Botanica<br />

Helvetica, 94: 101-131.<br />

Cowling RM., Rundel P.W., Lamont B.B., Arroyo M.K. &<br />

Arianoutsou M. 1996. Plant diversity in <strong>mediterranea</strong>nclimate<br />

regions. Trends Ecol. Evol., I I: 362-366.<br />

Cowling R. M. & Hilton-Taylor C. 1997. Phytogeography,<br />

flora and endemism. In: Cowling R. M., Richardson D.<br />

M. & Pierse S. M. (eds.). Vegetation ofSouthern Africa,<br />

Cambridge University Press, Cambridge: 43-61.<br />

Cowling R. M. & Samways M. J. 1995. Predicting global<br />

patterns of endemic plant species richness. Biodiv. Letters,<br />

2: 127-131.<br />

Daehler C. C. 1998. The taxonomic distribution of invasive<br />

angiosperm plants: ecological insights and comparison<br />

to agricultural weeds. Bioi. Conserv., 84: 167-180.<br />

D'Antonio C. M. & Dudley T. L. 1995. Biological invasions<br />

as agents of change on islands versus mainlands. In:<br />

Vitousek P. M., Loope L. L. & Adsersen H. (eds.). Islands:<br />

biological diversity and ecosystem jitllction.<br />

Springer-Verlag, Berlin: 103-121.<br />

De Waal L. c., Child L. E., Wade P. M., Brock J. H. 1994.<br />

Ecology and management of invasive riverside plants.<br />

John Wiley & Sons, Chichester.<br />

Di Castri, F. 1989. History of biological invasions with special<br />

emphasis on the Old World. In: Drake J., Mooney<br />

H.A., Di Castri F. et al. (eds.). Biological invasions: a<br />

global perspective. John Wiley & Sons, NewYork: 1-30.<br />

Drake J.A., Mooney RA., Di Castri F., Groves K.H., Kruger<br />

F. S., Rejmanek M. & Williamson M. 1989. Bio-<br />

ecologia <strong>mediterranea</strong> <strong>25</strong> (2) - <strong>1999</strong>


Vila & Mufioz<br />

logical invasions. a global perspective. Scope 37. John<br />

Wiley & Sons, New York.<br />

Eliasson, U. 1995. Patterns of diversity in island plants. In:<br />

Vitousek P. M., Loope L. L. & Adsersen H. (eds). Islands:<br />

biological diversity and ecosystem function<br />

Springer-Verlag, Berlin: 35-50.<br />

Fraga P. & Pallicer X. 1998. Notes florfstiques de Menorca.<br />

Butlletf de la Instituci6 Catalana d'Historia Natural, 66:<br />

35-40.<br />

Gaston K. J. 1994. Rarity. Chapman & Hall, London. 205p.<br />

G6mez-Campo L., Bermudez-De- Castro L., Casiga M. J.,<br />

Sanchez-Yelamo M. D. 1984. Endemism in the Iberian<br />

Peninsula and Balearic Islands. Webbia, 38: 709-714.<br />

Groves R. H. & Di Castri F. 1991. Biogeography of Mediterranean<br />

invasions. Cambridge University Press, Cambridge.<br />

485 p.<br />

Hobbs R. J. & Huenneke L. F. 1992. Disturbance, diversity<br />

and invasion: implicatiosn for conservation. Conserv.<br />

Bioi., 6: 324-337.<br />

Houston D. B. & Schreiner E. G. 1994. Alien species in National<br />

Parks: drawing lines in space and time. Conserv.<br />

Bioi., 9: 204-209<br />

Jeanmonod D. 1998. Les plantes introduites en Corse: impact,<br />

menaces et propositions de protection de la flore<br />

indigene. Biocosme Mesogeen, 15: 45-68.<br />

Kruckeberg A. R. & Rabinowitz D. 1985. Biological aspects<br />

of endemism in higher plants. Ann. Rev. Ecol. Syst., 16:<br />

447-479.<br />

Lean G. & Hinrichsen D. 1990. Atlas of the environment.<br />

Arrow Books, London. 192 p.<br />

Lonsdale W. M. <strong>1999</strong>. Global patterns of plant invasions<br />

and the concept of invasibility. Ecology, 80: 1522-1536.<br />

Loope L. L., Mueller-Dombois D. 1989. Characteristics of<br />

invaded islands, with special reference to Hawaii. In:<br />

Drake J. A., Mooney H. A., Di Castri F., Groves K. H.,<br />

Kruger F. S., Rejmanek M. & Williamson M. (eds.),<br />

Biological Invasions. A Global Perspective. Scope 37,<br />

John Wiley & Sons, New York: <strong>25</strong>7-281.<br />

Mack R. N. 1996. Predicting the identity and fate of plant<br />

invaders: emergent and emerging approaches. Bioi.<br />

Conserv.,78: 107-121.<br />

McDonald 1. A. W. & Cooper J. 1995. Insular lessons for<br />

global biodiversity conservation with particular reference<br />

to alien invasions. In: Vitousek P. M., Loope L. L.<br />

& Adsersen H. (eds.). Islands: biological diversity and<br />

ecosystem function. Springer-Verlag, Berlin: pp. 189­<br />

204.<br />

McIntyre S. 1992. Risks associated with the setting of conservation<br />

priorities from rare plant species lists. BioI.<br />

Conserv., 60: 31-37.<br />

Medail F. & Quezel P. 1997. Hot-spots analysis for conservation<br />

of plant biodiversity in the Mediterranean basin.<br />

Ann. Missouri Bot. Gard., 84: 112-127.<br />

Medail F. & Verlaque R. 1997. Ecological characteristics<br />

and rarity of endemic plants from Southeast France and<br />

Corsica: implications for biodiversity conservation. Bioi.<br />

Conserv., 80: 269-281.<br />

ecologia <strong>mediterranea</strong> <strong>25</strong> (2) - <strong>1999</strong><br />

Diversity ofexotic and endemic plants in the Balearic Islands<br />

Mus M. & Mayol J. 1993. Plans de Conservaci6 dels vegetals<br />

amenaf;ats ales Balears. Documents tecnics de<br />

Conservaci6. Govern Balear. Direcci6 General<br />

d'Estructures Agr. i Medi Natural. Palma de Mallorca.<br />

PANDION 1997. Memoria del projecte de protecci6 dels<br />

Limonium de Punta Carregadors i control de poblacions<br />

de Carpobrotus edulis. Govern Balear. Conselleria<br />

de Medi Ambient, Palma de Mallorca.<br />

Pia V., Sastre B. & Llorens Ll. 1992. Aproximaci6 al<br />

cataleg de laflora vascular de les Illes Balears. Universitat<br />

de les Illes Balears. Jardf Botanic de S6ller<br />

(MBCN), Palma de Mallorca.<br />

Prance G. T. & Elias T. S. 1977. Extinction isforever. New<br />

York Botanical Garden, New York.<br />

Pysek P. 1998. Is there a taxonomic pattern to plant invasions?<br />

Oikos, 82: 282-294.<br />

Rabinowitz D., Cairns S. & Dillon T. 1986. Seven forms of<br />

rarity and their frequency in the flora of the British isles.<br />

In: Soule M. E. Conservation biology. The science of<br />

scarcity and diversity. Sinauer Ass., Massachussets:<br />

182-205.<br />

Raunkiaer C. 1934. The life-forms of plants and statistical<br />

plant geography. Clarendon Press, Oxford.<br />

Rejmanek M. & Randall J. M. 1994. Invasive alien plants in<br />

California: 1993 summary and comparison with other<br />

areas in North America. Madrofio, 41: 161-177.<br />

Romo A. 1994. Flores si/vestres de las Baleares. Ed. Rueda,<br />

Madrid.<br />

Schierenbeck K. A. 1995. The threat to the California flora<br />

from invasive species; problems and possible solutions.<br />

Madrofio,42: 168-174.<br />

Schiffman P. M. 1997. Wing reduction in island Coreopsis<br />

gigantea achenes. Madrm!o, 44: 394-396.<br />

Schwartz M.W. 1993. The search for pattern among rare<br />

plants: are primitive species more likely to be rare? BioI.<br />

Conserv.,64: 121-127.<br />

Sim6n J. C. 1994. La flora vascular espafiola: diversidad y<br />

conservaci6n. Ecologfa (ICONA), 8: 203-2<strong>25</strong>.<br />

Solbrig O. T. 1994. The complex structure of the taxonomic<br />

system. In: Peng C. 1. & Chou C. H. (eds.). Biodiversity<br />

and Terrestrial Ecosystems. Institute of Botany, Academia<br />

Sinica Monograph Series, 14, Taipei: 7-14.<br />

Usher M. B. 1986. Invasibi1ity and wildlife conservation:<br />

invasive species on nature reserves. Phi/os. Trans. R.<br />

Soc. Lond., B 314: 695-710.<br />

Vicens M. 1998. PIa de recuperaci6 de Ligusticum huteri<br />

Porta. Govern Ba1ear. Conselleria de Medi Ambient,<br />

Ordenaci6 del Territori i Litoral, Palma de Mallorca.<br />

Vitousek P. M., D'Antonio C. M., Loope L. L., Rejmanek<br />

M. & Westbrooks R. 1997. Introduced species: a significant<br />

component of human-caused global change.<br />

New Zealand J. Ecol., 21: 1-16.<br />

Weber E. 1997. The alien flora of Europe: a taxonomic and<br />

biogeographic review. J. Veg. Sci., 8: 565-572.<br />

Williams P. H., Vane-Wright R. 1. & Humphries C. J. 1994.<br />

Measuring biodiversity for choosing conservation areas.<br />

In: Lasalle J. & Gau1d 1. D. (eds.). Hymenoptera and<br />

biodiversity. CAB Internat. Wallingford : 309-328.<br />

161


Aidoud et al. Changements edaphiques le long d'un gradient d'intensif1.5 de paturage dans une steppe d'Algerie<br />

ABRIDGED ENGLISH VERSION<br />

The aim of the present paper is to emphasise the effects<br />

of overgrazing on soil through a set of characters. The study<br />

was conducted in an arid steppe (mean annual rainfall: 260<br />

mm). The study area is located in the western part of the<br />

steppic high-plains of Algeria. This region has been subject<br />

to land degradation due to overgrazing which is one of the<br />

main causes of desertification in arid rangelands. During the<br />

two last decades, vegetation has been marked by important<br />

changes that have been pointed out through a long-term<br />

monitoring of phytomass, primary net productivity and specific<br />

composition.<br />

Steppic landscape is dominated by pediment surfaces<br />

gently sloped «2%) subject to erosion by wind. Soils are<br />

shallow over a limestone crust at 15 to 30 cm depth. The<br />

study was undertaken using a grazing gradient method. The<br />

chosen transect includes three levels of grazing intensity:<br />

(I) a non-grazed exclosure PO of the pristine system that had<br />

been, 20 years ago, a typical steppe with an alfa-grass pure<br />

stand under homogeneous environmental conditions; (2) a<br />

field PI of about 500 ha under controlled grazing with 0.<strong>25</strong><br />

unit/ha stocking rate; (3) the rest of the steppic open rangelands<br />

P3 in which the stocking rate has rapidly increased<br />

reaching 0.50-0.75 unit/ha in 1990. Perennial plant cover,<br />

sand cover, soil organic matter and texture are the main indicators<br />

used to assess soil degradation. The main results are<br />

the following:<br />

(I) at the transect scale:<br />

- soil features within the non-grazed exclosure (PO) remain<br />

similar to those of the pre-existing system. The dominant<br />

INTRODUCTION<br />

La desertification peut etre definie comme une de­<br />

gradation des terres sous climat aride (s.l.). Cette defi­<br />

nition simple, adoptee par la Conference des Nations<br />

Unies pour l'Environnement et le Developpement en<br />

1992, cache en fait une grande complexite qui se reflete<br />

a travers le debat actuel autour de ce concept<br />

(Hellden, 1988; Thomas & Middleton, 1993; Dodd,<br />

1994; Hutchinson, 1996; Thomas, 1997). Dans ce<br />

debat, le caractere reversible ou irreversible des chan­<br />

gements demeure une question centrale (Mainguet,<br />

1994, 1998). Un indicateur incontestable<br />

d'irreversibilite, considere comme ultime changement,<br />

est la degradation du sol (Friedel, 1992 ; Floret et al.,<br />

1992 ; Mainguet, 1994 ; Milton et al., 1994). Les sols<br />

sous climat aride sont pauvres en matiere organique<br />

(Evenari, 1985) ce qui confere au systeme une faible<br />

resilience vis-a-vis des changements naturels ou in­<br />

duits par l'homme (Albaladejo et al., 1998). Aussi, les<br />

dommages causes dans ces milieux sont-ils difficiles a<br />

reparer (Milton et aI., 1994).<br />

Sous climat aride, la desertification agit par stades<br />

successifs (Milton et al., 1994). L'un des premiers<br />

164<br />

perennial Stipa tenacissima covers 36 ± 5%, the sand layer<br />

is almost completely lacking, soil organic matter rate is 1.7 ±<br />

0.3% and clay and fine-silt rate is 29 ± 5%;<br />

- on heavily grazed area (P2), the difference with PO is<br />

highly significant (p


Aidoud et al. Changements edaphiques le long d'un gradient d'intensite de paturage dans une steppe d'Algerie<br />

homogene au depart, ont montre une dynamique di­<br />

rectionnelle regressive de la vegetation, dont la cause<br />

principale est le surpaturage par les ovins (Aidoud,<br />

1989, 1994). Des changements ont ete mis en evi­<br />

dence, le long d'un transect d'intensite de paturage,<br />

par la baisse de la biomasse de l'espece perenne dominante<br />

(Aidoud & Touffet, 1996) et par des change­<br />

ments de composition specifique de la vegetation ainsi<br />

que des caracteres de surface du sol (Aidoud, 1994;<br />

Slimani, 1998). Le transect utilise represente un gra­<br />

dient comportant trois etats de paturage : nul, contr61e<br />

et libre. II constitue une situation experimentale in<br />

natura permettant d'approcher des changements dans<br />

le temps par la transposition de variations analysees<br />

dans l'espace (Pickup, 1992).<br />

Le present travail, qui s'integre a cette approche, a<br />

pour objectif de verifier, le long de ce meme transect,<br />

en se basant sur les principaux caracteres du sol sous<br />

climat aride, l'hypothese d'un changement edaphique<br />

significatif.<br />

CADRE D'ETUDE ET METHODOLOGIE<br />

Le plateau de Rogassa, couvrant pres de 30 000 ha,<br />

est situe a une trentaine de km au nord de la ville d'EI<br />

Bayadh. Les principales caracteristiques ecologiques<br />

sont donnees dans le tableau I. Les donnees meteoro­<br />

iogiques placent le site dans l'etage mediterraneen<br />

aride moyen a hiver froid au sens d'Emberger. Jus­<br />

qu' au debut des annees 1980, le paysage vegetal etait<br />

une nappe alfatiere de plaine consideree parmi les plus<br />

denses et les plus homogenes d' AIgerie et ou Stipa<br />

tenacissima L. assurait pres de 95% du couvert vege­<br />

tal global. La vegetation du plateau de Rogassa a ete<br />

integree aux groupements d'alfa purs selon l'analyse<br />

realisee dans le bassin du Chott Chergui du Sud­<br />

Oranais (Aidoud-Lounis, 1989). Exploitee en paturage<br />

colIectif et libre, cette steppe supportait, dans son etat<br />

preexistant, une charge pastorale moyenne de 0,<strong>25</strong><br />

unite ovine par hectare. La charge a augmente tres ra­<br />

pidement atteignant 0,5 a 0,75 uo/ha en 1990 (Aidoud<br />

& Touffet, 1996).<br />

Le terme « plateau» est attribue au site etudie en<br />

raison de la topographie homogene qu'imprime le gla­<br />

cis d'erosion sub-horizontal ou legerement ondule<br />

(versant-glacis) du quaternaire ancien (Pouget, 1980).<br />

Situee a une profondeur de 20 a 30 cm, la croOte cal­<br />

caire zonaire, feuilIetee et tres dure en surface, est ca­<br />

racteristique de ce type de glacis (RueIlan, 1971). A la<br />

ecologia <strong>mediterranea</strong> <strong>25</strong> (2) - <strong>1999</strong><br />

surface du sol, dominent les elements grossiers (gra­<br />

viers) et la pellicule de gla


Aidoud et al. Changements edaphiques le long d'un gradient d'intensite de paturage dans une steppe d'Algerie<br />

et 4,22 pour I' axe 2), Cette ordination, conforme au<br />

gradient de paturage, souligne I'importance de ce fac­<br />

teur sur les caracteres traites.<br />

Le relcve situe a l'extremite negative de l'axe 2 se<br />

detache nettement du groupe P2. Les donnees de ce<br />

releve, non representatif car localise dans une depres­<br />

sion (daya), n'ont pas ete integrees aux analyses ci­<br />

apres.<br />

Les caracteres du couvert vegetal et du sol, le long<br />

du transect, sont resumes dans le tableau 2. Les ca­<br />

racteres de surface qui varient le plus significative­<br />

ment sont le couvert vegetal et le voile sableux. Le<br />

couvert dcs plantes perennes diminue de 36 a 16 %,<br />

soit plus de la moitie, entre la parcelle mise en defens<br />

(PO) et le terrain surpature (P2). La diminution du<br />

couvert vegetal global est de 40 % mais a cependant<br />

une valeur indicatrice moindre en raison de la plus<br />

grande fluctuation des especes annuelles. Dans<br />

l'espace intcrstitiel ou sol nu, le voile sableux, prati­<br />

quement absent dans PO, atteint, dans P2, un taux de<br />

couverture de pres de 50 % et une epaisseur de pres de<br />

8 cm en moyenne.<br />

Ces changements edaphiques le long du transect se<br />

traduisent, correlativement et tres nettement, par une<br />

baisse des argiles et Iimons fins et du taux de matiere<br />

organique. Les variations des caracteres edaphiques,<br />

mesurees sous la touffe et dans le sol interstitiel, sont<br />

significatives. La variation est cependant nettement<br />

plus importante en considerant la couche de surface.<br />

La baisse globale du taux d'argiles et limons fins<br />

est de 43 % entre PO et PI. Elle est de 87 % dans la<br />

couche superficielle du sol sous la touffe et de 84 %<br />

entre lcs touffes. La diminution, moindre dans la<br />

deuxieme couche (47 et 28 %), reste cependant signi­<br />

ficative, Exprimee selon les classes definies par Pou­<br />

get (1980), la texture passe de «grossiere» a « tres<br />

grossiere » sous la touffe et de « moyenne» a « tres<br />

grossiere » dans l'espace entre les touffes.<br />

Les valeurs obtenues dans P I (sous paturage<br />

controle) sont a la fois intermediaires et significative­<br />

ment differentes de celles correspondant a PO et P2.<br />

Elles demcurent cependant, comme illustre par la fi­<br />

gure I, plus proches de la situation de mise en defens.<br />

La baisse de matiere organique dans le sol est glo­<br />

balement dc 38%. Elle suit a peu pres la meme evolu­<br />

tion que celle des argiles et limons fins, mais dans des<br />

proportions legerement inferieures. Cette diminution<br />

est, respectivement pour le sol sous la touffe et le sol<br />

168<br />

interstitiel, de 63 et 59 % pour la couche superieure et<br />

de <strong>25</strong> et 35 % en profondeur.<br />

A l'echelle stationnelle, c'est dans la zone surpatu­<br />

ree que les differences sont hautement significatives<br />

(p


Aidoud et al. Changements edaphiques le long d'un gradient d'intensite de paturage dans une steppe d'Algerie<br />

(1982), l'isohumisme qui est souvent reconnu dans ce<br />

type de sol ne serait qu'apparent. En effet, la decom­<br />

position relativement active de la litiere dans cette<br />

steppe (Bessah, 1998), suggere un apport organique<br />

essentiellement lie aux parties aeriennes de l'alfa. La<br />

faible contribution a la biomasse tota1e des organes<br />

souterrains (Aidoud, 1989), en accord avec la synthese<br />

dressee par Barbour (1981) pour les zones arides en<br />

general, peut conforter cette hypothese. Ceci doit ce­<br />

pendant etre relativise, car les processus fonctionnels<br />

en cause doivent etre consideres plus en terme de turn­<br />

over de la matiere organique qu'en terme de biomasse.<br />

Les changements edaphiques observes le long du<br />

gradient peuvent s'expliquer par la reduction du cou­<br />

vert de l'alfa. La deterioration d'attributs vitaux eda­<br />

phiques (Aronson et al., 1995) du systeme, tels que la<br />

texture ou la matiere organique, a pu etre evaluee ainsi<br />

apres une periode relativement courte de moins de dix<br />

ans. Cette rapidite est confirmee en Espagne, par Al­<br />

baladejo et al. (1998) qui montrent qu'apres environ 5<br />

ans la reduction de la couverture vegetale peut se re­<br />

percuter significativement sur les caracteristiques du<br />

sol par la baisse de la matiere organique et la deterioration<br />

des proprietes physiques.<br />

AI'echelle stationnelle, la vegetation steppique est<br />

constituee de touffes separees par un espace interstitiel<br />

a couverture vegetale tres faible. Dans la parcelle<br />

protegee PO, les resultats montrent une difference si­<br />

gnificative entre touffe et espace interstitiel pour les<br />

caracteres edaphiques, en particulier ceux de la couche<br />

de surface. lis confirment ceux obtenus notamment<br />

par Puigdefabregas & Sanchez (1996), Cerda (1997)<br />

et Domingo et al. (1998), montrant le role que la<br />

touffe d'alfa joue, dans le systeme, par ses aptitudes a<br />

intercepter et a retenir l'eau et les sediments. La rela­<br />

tion entre la baisse de vigueur des touffes d'alfa et la<br />

sensibilite a l'erosion a ete montree par simulation<br />

(Sanchez & Puigdefabregas, 1994). Ajoutees ases ca­<br />

pacites adaptatives a l'aridite (Nedjraoui, 1990; Ai­<br />

doud, 1992 ; Pugnaire & Haase, 1996), ces proprietes<br />

font de l'alfa une « espece clef de voute » du systeme,<br />

au sens de Aronson et al. (1995). A l'oppose, dans la<br />

zone surpaturee P2, le deperissement des touffes en­<br />

trai'ne la destruction de leurs proprietes edaphiques et<br />

en particulier du role protecteur contre l'erosion. La<br />

difference plus faible entre la touffe et l'espace inters­<br />

titiel dans la zone P2 reflete la destruction de la structure<br />

du systeme, tendance qui semble se refleter a tra­<br />

vers la composition de la vegetation (Aidoud, 1994).<br />

ecologia <strong>mediterranea</strong> <strong>25</strong> (2) - <strong>1999</strong><br />

Dans le Sud-Oranais, cet etat correspond acelui de<br />

l'ensemble des anciennes steppes d'alfa de plaine. Le<br />

niveau de degradation atteint constitue un stade irre­<br />

versible qui peut indiquer d'un point de vue edaphi­<br />

que, un seuil fondamental entre paturage et surpatu­<br />

rage. Notons que 1'« irreversibilite » est employee ici<br />

dans la sens Oll la restauration s.s. (Aronson et al.,<br />

1995) du systeme preexistant est devenue tres peu<br />

probable, voire impossible. Dans la logique pastorale<br />

actuelle, la zone PI sous paturage controle, malgre les<br />

changements edaphiques observes, constitue le sys­<br />

teme de reference presentant les normes a atteindre<br />

par rehabilitation (Aronson et al., 1995).<br />

CONCLUSION<br />

Les changements edaphiques, analyses atravers le<br />

taux de matiere organique et la texture dans les steppes<br />

d' alfa de plaine, sont significatifs. lis montrent<br />

1'importance des phenomenes de desertification dans<br />

ce type de steppes qui semblent les plus affectees en<br />

Algerie. Les resultats obtenus soulignent tout l'interet<br />

de l'approche utilisant le gradient d'intensite de patu­<br />

rage, partant d'une situation de steppe soustraite au<br />

paturage durant une vingtaine d'annees, acelle Oll la<br />

steppe d'origine a pratiquement disparu par surpatu­<br />

rage. La disparition des principales fonctions edaphi­<br />

ques des touffes d'alfa suite a leur deperissement<br />

confirment les changements observes sur la biomasse<br />

(Aidoud & Touffet, 1996) ainsi que sur la diversite et<br />

la composition floristique (Aidoud, 1994; Slimani,<br />

1998). Les changements edaphiques restent cependant<br />

moins importants en profondeur qu'en surface, tradui­<br />

sant ainsi une certaine inertie du systeme. Malgre<br />

l'intensite de degradation, les attributs edaphiques,<br />

dans le pire des cas, n'ont pas atteint les niveaux ob­<br />

serves dans un desert et une rehabilitation demeure<br />

donc possible. Celle-ci reste cependant tributaire de<br />

l'efficacite et de la rapidite des mesures de gestion du­<br />

rable des paturages qui doivent etre prises adifferents<br />

niveaux de decision.<br />

Remerciements<br />

Nous remercions D-Y. Alexandre, I-B. Bouzille,<br />

B. Clement et F. Roze du Service d'Ecologie (Univ.<br />

Rennes 1) pour leurs corrections et conseils, ainsi que<br />

tous les collegues chercheurs et techniciens de 1'Unite<br />

de Recherche sur les Ressources Biologiques Terres-<br />

169


Aidoud et al. Changements edaphiques le long d'un gradient d'intensite de paturage dans une steppe d'Algerie<br />

Nedjraoui D., 1990. Adaptation de ['alfa aux conditions stationnelles:<br />

contribution a I 'etude du jCJ/lctionnement de<br />

l'ecosyste,ne steppique. These de Doctorat d'Etat. Universite<br />

des Sciences et de la Technologie Houari Boumediene,<br />

Alger. <strong>25</strong>6 p.<br />

Pickup G., 1992. Dynamics of rangeland ecosystems. In:<br />

Gaston A., Kernick M. & Le Houerou H.N. (eds.), Actes<br />

du 4eme Congres International des Terres de Parcours,<br />

Montpellier, 22-26 avril 1991 : 1066- 1069.<br />

Pouget M., 1980. Les relations sol-vegetation dans les steppes<br />

Sud-algeroises. Trav. Doc. ORSTOM. 116: 1-555.<br />

Pugnaire F.T. & Haase P., 1996. Comparative physiology<br />

and growth of two perenial tussock grass species in a<br />

semi-arid environment. An/l. Bot., 77 : 81-86.<br />

Puigdefabregas J. & Sanchez G., 1996. Geomorphological<br />

implications of vegetation patchiness on semi-aride slopes.<br />

In : Anderson M.G. & Books S.M. (eds.), Advances<br />

in Hillslope processes, 2 : 1028-1060.<br />

Rognon P., 1993. La desertification : un risque majeur ? Secheresse,4<br />

: 74-74.<br />

Ruellan A., 1971. Contribution a la connaissance des sols<br />

des regions mediterraneennes. Les sols a profil calcaire<br />

ecologia <strong>mediterranea</strong> <strong>25</strong> (2) - <strong>1999</strong><br />

differencie des plaines de la basse Moulouva (Maroc<br />

oriental). ORSTOM Editions, Paris. 302 p.<br />

Sanchez G. & Puigdefabregas J., 1994. Interactions of plant<br />

growth and sediment movement on slopes in a semi-arid<br />

environment. Geomorphology, 9 : 243-260.<br />

Slimani, H. 1998. La desertijication de la steppe d'alfa (Stipa<br />

tenacissima L.) des Hautes Plaines occidentales<br />

d'Algerie : ejfets du paturage sur la vegetation et le sol.<br />

These de Magister, Univ. Sci. Technol. Houari Boumediene,<br />

AIger. 123 p.<br />

Thomas D.F.G. & Middleton N.J., 1993. Desertilreation:<br />

exploding the myth. John Wiley & Sons, Chichester.<br />

194 p.<br />

Thomas D.S.G., 1997. Science and the desertification debate.<br />

J. Arid Environ., 37 : 599-608.<br />

UNEP, 1992. World Atlas ofdesertijrcation. UNEP, Nairobi<br />

& Edward Arnold, London.<br />

Verstraet M.M. & Schwartz S.A., 1991. Desertification and<br />

global change. In : Henderson-Sellers A. & Pitman AJ.<br />

(eds), Vegetation and climate interactions in semi-arid<br />

regions. Kluwer Academic Publishers, Belgium: 3-13.<br />

171


Abd El-Ghani Soil variables affecting the vegetation ofinland western desert ofEgypt<br />

INTRODUCTION<br />

Desert vegetation in Egypt is by far the most important<br />

and characteristic type of the natural plant life.<br />

It covers vast areas and is formed mainly of xero­<br />

phytic shrubs and subshrubs. Monod (1954) recog­<br />

nised two types of desert vegetation, namely<br />

contracted and diffuse. Both types refer to permanent<br />

vegetation which can be accompanied by ephemeral<br />

(or annual) plant growth depending on the amount of<br />

precipitation in a given year. Kassas (1966, 1971)<br />

added a third type "accidental vegetation" where pre­<br />

cipitation is so low and falls so irregularly that no<br />

permanent vegetation exists. It occurs mainly as con­<br />

tracted patches in runnels, shallow depressions, hol­<br />

lows, wadis and on old dunes with coarse sand.<br />

Accidental vegetation consists of species which are<br />

able to perform an annual life cycle: potential annuals<br />

(sensu Haines, 1951), or potential perennials (sensu<br />

Bornkamm, 1987), but can likewise continue growing<br />

as long as water persists in the soil. Thomas (1988)<br />

identified these plants as those with episodic growth<br />

strategies linked to immediate water availability. Re­<br />

cently, Springuel (1997) classified the accidental<br />

vegetation in south eastern Egypt into three groups:<br />

run-off dependent vegetation in the main wadi chan­<br />

nels, run-on dependent vegetation of playa formation,<br />

and rain dependent vegetation on levelled plains of<br />

sand sheets.<br />

In a survey of the vegetation units in the Western<br />

Desert of Egypt, outside the Oases, Bornkamm and<br />

Kehl (1990) distinguished five desert zones along a<br />

precipitation gradient. Besides the well known<br />

semidesert and full desert zones in the very north,<br />

three zones of extreme desert show a significant differentiation<br />

(Figure I). Both extreme desert zones III<br />

and IV support the growth of accidental vegetation,<br />

where the precipitation in the former amounts to 5-10<br />

(20) mm year I whereas in the latter is 1-5 mm year-I.<br />

On the other hand, extreme desert V in the very south<br />

is practically void of vegetation where precipitation is<br />

proposed to be less than 1 mm year-I. Typical acci­<br />

dental vegetation types in the Western Desert of Egypt<br />

are: Zygophyllum coccineum with Salsola imbricata<br />

subsp. imbricata, Stipagrostis acutiflora with Zilla<br />

spinosa as well as stands of Salsola imbricata subsp.<br />

imbricata with Fagonia arabica. However, ground­<br />

water-dependent vegetation in all the three extreme<br />

desert zones exists too: Zahran (1972) and Abd EI-<br />

174<br />

Ghani (1981, 1985) in large oases (Siwa, Bahariya and<br />

Farafra), and in small oases and depressions (Bir Saf­<br />

saf, Bir EI-Shab, Bir Tarfawi and Qara): EI-Hadidi<br />

(l980b), Bornkamm (1986), Abd EI-Ghani (1992).<br />

Although our knowledge of the growth of acci­<br />

dental vegetation in Egypt has considerably increased<br />

during the last two decades (Alaily et aI., 1987;<br />

Bornkamm, 1987; Springuel et aI., 1990), much less is<br />

known about this vegetation in quantitative terms. The<br />

present study aims at describing the floristic composi­<br />

tion of the accidental type of vegetation growing in<br />

parts of the Western Desert of Egypt and analysing the<br />

distribution of species in relation to certain environ­<br />

mental factors by applying the muItivariate analysis<br />

techniques.<br />

STUDY AREA<br />

The present study has been conducted in two con­<br />

secutive extreme desert zones (sensu Bornkamm &<br />

Kehl, 1990), where the accidental type of vegetation<br />

exists. Data is from two transects: the northern one<br />

extends for a distance of about 150 km; half-way<br />

along Siwa Oasis-Mersa Matruh road, and represents<br />

the extreme desert zone III (Figure 1). This transect is<br />

principally located in the inland part of the Middle<br />

Miocene plateau that rises to about 100 m above the<br />

depression floor (reaches 20 m below sea level). The<br />

southern transect extends for a distance of about 140<br />

km, along the Dakhla-Farafra road and represents the<br />

extreme desert zone IV. It is located in the middle<br />

limestone plateau (500 m above sea level). The north­<br />

ern transect lies in the Libyan Desert while the southern<br />

one in the Nubian Desert (EI-Hadidi, 1980a). In<br />

general, the landscape of the northern transect is a part<br />

of the Central Sahara, whereas the southern transect is<br />

a part of the Southern Sahara (Schiffers, 1971).<br />

According to WaIter and Breckle (1984) the study<br />

area lies in the zone of subtropical arid deserts. The<br />

temperature regime is characterised by mild winters<br />

and very hot summers. Whereas average January tem­<br />

perature remains rather constant between 12°C and<br />

14°C, the July mean rises to approximately 31°C. The<br />

absolute maxima of the southern region of the study<br />

area may reach 49°C. Precipitation is erratic, variable<br />

and unpredictable with frequent long dry periods. Zahran<br />

and Willis (1992) reported that the mean annual<br />

rainfall ranges from 9.6 mm year -1 in Siwa Oasis (the<br />

nearest station to the northern transect) to nearly I mm<br />

ecologia <strong>mediterranea</strong> <strong>25</strong> (2) - <strong>1999</strong>


Abd El-Ghani Soil variables affecting the vegetation ofinland western desert ofEgypt<br />

I<br />

5 EA<br />

Figure I. Map showing the five vegetation zones of the<br />

Western Desert of Egypt (after Bornkamm & Kehl, 1990),<br />

indicating the position of the two studied transects:<br />

T n = Northern transect, T s = Southern transect<br />

year-I in Dakhla Oasis (the nearest to the southern<br />

transect). The climatic gradient along the N-S direc­<br />

tion in the study area is obvious (Table 1). The Pluviothermic<br />

Quotient (Emberger, 1955) for Siwa Oasis is<br />

about 1.43, while that of Dakhla Oasis is nearly zero<br />

indicating extreme aridity.<br />

METHODS<br />

The phytosociological survey of the study area was<br />

carried out during several visits in 1986-88 and 1995­<br />

96. Stands were randomly chosen at locations where<br />

either dense vegetation or change in species composition<br />

was encountered. A total of 144 stands (each of a<br />

size of <strong>25</strong> x <strong>25</strong> m) were sampled: 83 in the northern<br />

transect and 61 in the southern one. In each stand,<br />

density (individuals/lOO m 2 ) and frequency (occur­<br />

rences/lOO quadrats) of the present species were esti­<br />

mated using fifty I x 2 m 2 randomly located quadrats.<br />

Plant cover (m/100 m) was determined by the line­<br />

intercept method (Canfield, 1941), using five parallel<br />

lines distributed randomly across the stand. Relative<br />

importance value (IV) for each species in each stand<br />

ecologia <strong>mediterranea</strong> <strong>25</strong> (2) - <strong>1999</strong><br />

was calculated by the sum of its relative density, fre­<br />

quency and cover (it has a maximum value out of<br />

300). Voucher specimens of each species were col­<br />

lected, identified and deposited in the Herbarium of<br />

Cairo University (CAI). Taxonomic nomenclature is<br />

according to Tackholm (1974), and updated following<br />

Boulos (1995, <strong>1999</strong>).<br />

For each sampled stand, four soil samples were<br />

collected from profiles of 0-50 cm and pooled together<br />

to form one composite sample. Soil texture was de­<br />

termined with the hydrometer method and CaC03 by<br />

Collin's calcimeter. Organic matter content and soil<br />

moisture were estimated by drying and then ignition at<br />

600°C for 3 hours. Soil-water extracts (1: 2.5) were<br />

prepared for the determination of electric conductivity<br />

and pH using conductivity-meter and pH-meter, re­<br />

spectively.<br />

Stand-species data matrix was classified using the<br />

importance values of perennial species by Two-way<br />

indicator species analysis (TWINSPAN; Hill, 1979)<br />

(Table 2). Due to the relative paucity of most stands<br />

(generally between 5 and 14 species), classification by<br />

TWINSPAN was stopped at the third level so that the<br />

size of stands would demonstrate ecological meaning<br />

though their floristic structure. All the default settings<br />

were used for TWINSPAN, except the pseudo-species<br />

cut levels were altered to 0, 2, 5, 10,20,40,50,60 and<br />

80, and the number of indicator species was four per<br />

class.<br />

Canonical correspondence analysis (CANOCO: ter<br />

Braak, 1988 & 1990) was used for the same set of<br />

data. Rare species were downweighted to reduce dis­<br />

tortion of the analysis. Detrended Correspondence<br />

Analysis (DCA: Hill & Gauch, 1980) was applied to<br />

check the magnitude of change in species composition<br />

along the first ordination axis (i.e. gradient length in<br />

standard deviation units). Direct gradient analysis,<br />

Canonical Correspondence Analysis (CCA) were used<br />

in order to examine the relationships between the floristic<br />

composition of the sampled stands and the esti­<br />

mated soil variables. An exploratory CCA was<br />

performed using all studied edaphic variables, fol­<br />

lowed by a CCA with forward selection. The CCA<br />

with forward selection was evaluated by examining<br />

the canonical coefficients (significance assessed by<br />

approximate t-tests) and the intraset correlations (ter<br />

Braak, 1986).<br />

175


Abd El-Ghani Soil variables affecting the vegetation ofinland western desert ofEgypt<br />

Station<br />

Mersa Matruh<br />

Siwa<br />

Dakhla<br />

Temperature (QC)<br />

Mean Min Mean Max<br />

12.4 24.7<br />

4.1 38.0<br />

5.8 39.3<br />

Relative Humidity (%)<br />

Mean Min Mean Max<br />

51 67<br />

42 61<br />

19 42<br />

Rainfall<br />

(mm annuar l )<br />

144.0<br />

9.6<br />

0.7<br />

Evaporation<br />

(mm daft)<br />

8.3<br />

11.5<br />

18.4<br />

Table I. Climatic characteristics (average 1931-1978) of three stations distributed in the study area (after Zahran, 1972; Zahran &<br />

Willis, 1992)<br />

TWINSPAN group I 11 III IV V VI VII VIII<br />

Group size 7 16 45 19 5 23 24 5<br />

Prosopis farcta (P fr) 121 2 1<br />

Phoenix dactylifera (P df) 15 9 5<br />

Calotropis procera (C pr) 1 12 1<br />

Tamarix nilotica (T ni) 30 109 19 4 23 6 1<br />

Stipagrostis plumosa (S pi) 2 6 3 6 I 9<br />

Pulicaria incisa (P cr) 1 1 I 12 4 8 5<br />

Heliotropium digynum (H dg) 5 I 7 3 2 4<br />

Alhagi graecorum (A gr) 77 22 2 3 2<br />

Citrullus colocynthis (C cl) 1 2 2 I<br />

Fagonia bruguieri (F br) 1 9 3<br />

Zygophyllum album (Z al) 12 4<br />

Traganum nudatum (T nd) 1 2<br />

/mperata cylindrica (I cy) 5 1<br />

Nitraria retusa (N rt) 11 1<br />

Launaea nudicaulis (L nu) 5 2<br />

Hyoscyamus muticus (H mu) 1 I<br />

Zygophyllum coccineum (Z co) 8 69 14 5 4 5<br />

Salsola imbricata subsp. imbricata (S im) 18 62 10<br />

Cornulaca monacantha (C mo) 1 15 142 5<br />

Fagonia arabica (F ar) 1 I 71 5 6 1<br />

Pulicaria crispa (P cr) 36 4 2 5<br />

Monsonia nivea (M nv) 2 1 3 2 I<br />

Fagonia indica (F in) 4<br />

Sarcocorniafruticosa (S fr) 1<br />

Calligonum polygonoides subsp. comosum (Ccm) 1 3 1<br />

Zilla spinosa subsp. spinosa (Z sp) 10 2 9 4 2<br />

Acacia tortilis subsp. raddiana (A rd) 1 19 6 2<br />

Astragalus trigonus (A tr) 3 2 3 2 2<br />

Anabasis articulata (A ar) 3 13 14 1 15<br />

Atriplex leucoclada (A lu) 109 4 2<br />

Herniaria hemistemon (H he) I<br />

Deverra tortuosa (D tr) 14 39 86<br />

Randonia africana (R af) 107 26 19<br />

Carduncellus mareoticus (C mr) 2 14<br />

Farsetia aegyptia (F ag) 3 1<br />

Capparis spinosa var. aegyptia (C sp) 12 96 75<br />

Zilla spinosa subsp. biparmata (Z bi) 3 7 33<br />

Helianthemum lippii (H 1p) 1 1 6<br />

Salsola villosa (S vr) 4 2<br />

Ephedra alata (E a1) 3<br />

Table 2. Species composition of the 144 stands in the two transects, arranged in order of occurrence in the eight TWINSPAN<br />

groups. Entries in bold are characteristic species in each group. Species abbreviations displayed in Figures 2, 3 and 5 are given<br />

between parentheses.<br />

176 ecologia <strong>mediterranea</strong> <strong>25</strong> (2) - /999


Abd El-Ghani Soil variables affecting the vegetation ofinland western desert ofEgypt<br />

Soil variable TWINSPAN groups F- ratio P<br />

I 11 III IV V VI VII VIII<br />

EC (mS cm-I) 0.5±0.3 2.8±0.7 0.8±0.9 0.9±0.7 2.2±0.2 0.7±0.7 0.5±0.3 1.1±0.9 19.0 0.0001<br />

pH 8.0±0.6 8.8±0.4 7.9±0.5 7.9±0.4 7.7±0.5 7.7±0.5 7.9±0.4 7.6±0.4 1.3 0.3<br />

CaC0 3 (%) 9.6±2.6 11.3±4.9 15.0±5.8 13.5±5.3 21.0±8.1 14.8±6.0 15.1±5.5 19.1±3.8 4.6 0.0001<br />

MC (%) 1.5±0.3 2.0±0.6 2.12±0.7 2.3±0.5 2.5±0.2 2.6±0.8 2.9±0.7 3.3±0.7 5.4 0.0001<br />

OM(%) 1.5±0.2 0.3±0.4 0.21±0.3 0.2±0.3 0.1±0.1 0.1±0.1 O.I±O.I 0.1±0.06 29.5 0.0001<br />

Sand (%) 93.5±1.0 93.3±1.8 94.5±4.1 92.4±2.0 91.2±0.9 91.5±1.0 88.4±16.9 90.4±0.9 12.5 0.0001<br />

Silt + clay (%) 6.5±1.4 6.7±1.8 5.5±2.1 7.6±2.0 8.8±0.9 8.4±1.0 11.6±1.1 9.6±1.0 8.6 0.0001<br />

Table 3. Mean values, standard deviation errors and ANOVA F values of the soil variables in the stands supporting the 8 vegetation<br />

groups obtained by TWINSPAN. EC =electric conductivity, CaC0 3 =calcium carbonate, MC =moisture content and<br />

OM = organic matter<br />

Eigenvalues<br />

DCA<br />

CCA<br />

Species-environment<br />

correlation coefficients<br />

DCA<br />

CCA<br />

1<br />

0.830<br />

0.474<br />

0.724<br />

0_781<br />

Axis<br />

2<br />

0.496<br />

0.376<br />

0.468<br />

0.871<br />

3<br />

0.377<br />

0.292<br />

0.409<br />

0.658<br />

Table 4. Comparison of the results of ordination by DCA and CCA: eigenvalues and species-environment correlation coefficients<br />

for the first three axes are demonstrated<br />

Canonical coefficient Intra-set correlations<br />

Soil variables Axis I Axis 2 Axis 3 Axis I Axis 2 Axis 3<br />

EC -0.48* 0.88* 0.01 -0.50 0.85 0.35<br />

pH -0.13 -0.16* -0.10 -0.22 0.07 0.06<br />

CaC03 -0.08 0.02 -0.21 0.06 -0.08 -0.37<br />

MC 0.28* 0.09 0.10 0.49 -0.10 0.24<br />

OM -0.33* -0.19* 0.88* -0.41 -0.28 0.85<br />

Sand 0.12 -0.06 0.01 -0.09 -0.07 0.005<br />

Silt + clay 0.53* 0.29* 0.<strong>25</strong> 0.67 0.53 0.27<br />

Table 5. Canonical coefficients and the intra-set correlations of soil variables with the first three axes of CCA<br />

* = t-values > 2.3 (only indicative of coefficient strength)<br />

EC =electric conductivity, CaC03 =calcium carbonate, MC =moisture content and OM =organic matter<br />

The exploratory CCA was evaluated using the intraset<br />

correlations, since the canonical coefficients<br />

were unstable due to inclusion of highly correlated<br />

variables.<br />

Eight soil variables were included: electric conductivity,<br />

pH, CaC03 , soil moisture, organic matter,<br />

sand, silt and clay. The significance of differences<br />

between the different vegetation groups, as to their<br />

edaphic variables, was tested by ANOVA. CCA axes<br />

were evaluated statistically by means of a Monte<br />

ecologia <strong>mediterranea</strong> <strong>25</strong> (2) - <strong>1999</strong><br />

Carlo permutation test (ter Braak, 1988). All the statistical<br />

techniques were according to student SYSTAT<br />

software (STUSTATW 5: Berk, 1994).<br />

RESULTS<br />

Sixty plant species related to 19 families of the angiosperms<br />

and one of the gymnosperms were recorded<br />

in this study. They constituted 40 perennial and 20 annual<br />

species: Cruciferae and Chenopodiaceae (13.3%<br />

177


Abd EI-Ghani Soil variables affecting the vegetation ofinland western desert ofEgvpt<br />

each), Zygophyllaceae (11.7%), Caryophyllaceae,<br />

Compositae and Leguminosae (10.0% each), while the<br />

other 14 families share 31.7%. Chamaephytes are the<br />

most abundant life form and constituted 40.0% of the<br />

total flora of the study area, followed by therophytes<br />

(33.3%), hemicryptophytes (15.0%) and phanero­<br />

phytes (11.7%). The most common perennials re­<br />

corded were: Prosopis farcta, Tamarix nilotica,<br />

Fagonia arabica, Zygophyllum coccineum, Salsola<br />

imbricata subsp. imbicata, Cornulaca monacantha,<br />

Alhagi graecorum, Atriplex leucoclada, Randonia af­<br />

ricana, Deverra tortuosa and Capparis spinosa var.<br />

aegyptia may be considered as leading dominants and<br />

characteristic species. Each of these species attains a<br />

maximum importance value (IV) of more than 140<br />

(out of 300 for all species in a stand), and a mean of<br />

more than 60. Common but less important perennials<br />

are Phoenix dactylifera, Pulicaria crispa, Anabasis<br />

articulata, Zilla spinosa subsp. spinosa, Stipagrostis<br />

plumosa and Pulicaria incisa. Common annuals in­<br />

clude: Trigonella stellata, Zygophyllum simplex, Co­<br />

tula cinerea, Eremobium aegyptiacum, Schouwia<br />

thebaica and Paronychia arabica subsp. arabica.<br />

The 144 stands were classified into eight vegeta­<br />

tion groups according to TWINSPAN technique (Fig­<br />

ure 2). The first level of the dendrogram separates all<br />

the stands into two main groups. The first group com­<br />

prises 57 stands found mainly in the northern transect,<br />

and the second comprises 87 stands sampled from<br />

both transects. Table 3 summarises the mean values<br />

and the standard deviations of the measured soil vari­<br />

ables in the eight groups derived from TWINSPAN.<br />

Generally, pH shows the least variation among<br />

groups. It can also be noted that whereas levels of<br />

lime and fine materials attain their highest values in<br />

the groups of the northern transect, the organic matter<br />

content reaches its highest levels in those of the south­<br />

ern transect.<br />

The identified vegetation groups are named after<br />

the characteristic species as follows: Prosopis farcta­<br />

Tamarix nilotica (lower part of the southern transect<br />

in the vicinity of the lowlands of Dakhla Oasis);<br />

Tamarix nilotica-Alhagi graecorum (southern tran­<br />

sect, high salinity levels favour the growth of some<br />

halophytic species, e.g. Nitraria retusa and Zygo­<br />

phyllum album); Zygophyllum coccineum-Salsola imbricata<br />

subsp. imbricata (in runnels and depressions<br />

of the southern transect); Cornulaca monacantha­<br />

Fagonia arabica (larger catchment areas of the north-<br />

178<br />

ern transect, some species of this group do not pene­<br />

trate into other groups of the southern transect);<br />

Atriplex leucoclada (lower part of the northern tran­<br />

sect); Randonia africana-Deverra tortuosa (the silty<br />

runnels, and occupying a distance of about 20 km of<br />

the middle part of the northern transect); Deverra<br />

tortuosa-Capparis spinosa var. aegyptia (occupying a<br />

distance of about 30 km in the upper stretches of the<br />

middle part of the northern transect); Capparis spi­<br />

nosa var. aegyptia-Zilla spinosa subsp. biparmata (in<br />

the low depressions between km 185 and km 198<br />

along the lower part of the northern transect).<br />

The four DCA axes explain 11.7%, 7.0%, 5.3%<br />

and 3.4% of the total variation in the species data, re­<br />

spectively. This low percentage of variance explained<br />

by the axes is attributed to the many zero values in the<br />

vegetation data set. Table 4 shows that the eigenvalue<br />

for the first DCA axis was high indicating that it cap­<br />

tured the greater proportion of the variation in species<br />

composition among stands, but the species­<br />

environment correlation coefficients were low for<br />

DCA axes.<br />

DCA ordination of the perennial species (Figure 3)<br />

shows that species with high positive scores on axis I<br />

are found mainly in stands of the southern transect,<br />

and ordinated close to the right end-point: Prosopis<br />

farcta, Phoenix dactylifera, Nitraria retusa, Sarcocor­<br />

nia fruticosa and Imperata cylindrica. The species po­<br />

sitioned on the other end of this axis include:<br />

Capparis spinosa var. aegyptia (negative end), De­<br />

verra tortuosa, Randonia africana, Ephedra alata and<br />

Helianthemum lippii. These and many other species<br />

are commonly found in the upper and middle parts of<br />

the northern transect. In the centre of axis I there are<br />

many species found throughout the investigated area<br />

with no preference to any geographical aspect (e.g.<br />

Zygophyllum coccineum, Tamarix nilotica, Alhagi<br />

graecorum, Fagonia arabica and Cornulaca monacantha).<br />

Along axis 2, species with high positive<br />

scores include: Atriplex leucoclada and Zilla spinosa<br />

subsp. biparmata. These species are recorded from the<br />

lower part of the northern transect, whereas species on<br />

the other end are of common occurrence in the middle<br />

and upper parts. To compare the classification and<br />

DCA ordination results, the recognised eight<br />

TWINSPAN groups are superimposed. Significance<br />

correlations of soil variables with the first four DCA<br />

axes (results not shown) revealed greater correlations<br />

along axis I than the higher order axes.<br />

ecalogia <strong>mediterranea</strong> <strong>25</strong> (2) - <strong>1999</strong>


Abd El-Ghani Soil variables affecting the vegetation ofinland western desert ofEgypt<br />

and salinity, while the second axis was defined by salinity<br />

and organic matter content. This fact is also evi­<br />

dent in the ordination diagrams (Figures 4 & 5).<br />

Contribution of salinity, fine sediments, organic mat­<br />

ter and moisture content, as indicated by the forward<br />

selection in the CCA program, to the variation in spe­<br />

cies data were 29.4%, 29.0%, 22.1 % and 11.3%, re­<br />

spectively.<br />

CCA ordination diagram for the species scores and<br />

canonical coefficients scores of the soil variables is<br />

presented in Figure 4. Three species grouping are evi­<br />

dent. The first was highly associated with organic<br />

matter and sand, and includes species such as Proso­<br />

pis farcta, Salsola imbricata subsp. imbricata, Fagonia<br />

bruguieri, Zygophyllum coccineum and Cornulaca<br />

monacantha. The corresponding TWINSPAN groups<br />

were I, III and IV (Figure 5). A second group associ­<br />

ated with salinity and pH and includes: Tamarix ni­<br />

lotica, Alhagi graecorum, Nitraria retusa, Atriplex<br />

leucoclada and Calotropis procera. Vegetation groups<br />

located here are II and V. The third group was closely<br />

associated with moisture content, fine materials and<br />

lime. The associated vegetation groups are VI, VII and<br />

VIII, and include: Deverra tortuosa, Randonia afri­<br />

cana, Zilla spinosa subsp. biparmata and Atriplex leu­<br />

coclada.<br />

DISCUSSION<br />

The vegetation groups which resulted from the ap­<br />

plication of TWINSPAN in the study area, may be<br />

related in its northern transect to the Salsolion tetrandrae<br />

of habitats with soils derived from chalks and<br />

marls and rich in gypsum and soluble salts and the<br />

Anabasion articulatae arenarium, Hammada­<br />

Anabasion articulatae (Zohary, 1973), and Thy­<br />

melaeion hirsutae (Tadros & Atta, 1958) of the pro­<br />

gressively less saline habitats. The associations<br />

belonging to these alliances and their characteristic<br />

species have repeatedly been recorded as abundant in<br />

ecological studies of specific habitats in the western<br />

Mediterranean coastal region of Egypt (Migahid et aI.,<br />

1971), and in the north-western Negev, Israel (Tielb6rger,<br />

1997). TWINSPAN groups of the southern<br />

transect can be inferred to the alliance Zygophyllion<br />

coccinei (El-Sharkawy et al., 1984) with their charac­<br />

teristic species are commonly recorded in the communities<br />

of the southern part of the Western Desert of<br />

Egypt (El-Hadidi, 1980b; Boulos, 1982). According to<br />

180<br />

the detailed phytosociological survey by Bornkamm<br />

and Kehl (1990), they suggested one new order: Pi­<br />

turanthetalia tortuosi to comprise all the plant com­<br />

munities of the Western Desert of Egypt. Within this<br />

order the northern communities can be attributed to<br />

the alliance Thymelaeion hirsutae (Eig, 1946) and the<br />

southern one to the alliance Zygophyllion coccinei.<br />

The results obtained in this study largely corroborate<br />

the latter suggestion. Whereas some species, e.g.,<br />

Atriplex leucoclada, Deverra tortuosa, Randonia afri­<br />

cana, Capparis spinosa var. aegyptia and Zilla spi­<br />

nosa subsp. biparmata are confined to the northern<br />

transect, and Prosopis farcta, Fagonia bruguieri, Tra­<br />

ganum nudatum and Salsola imbricata subsp. imbricata<br />

to the southern one, some other species exhibit<br />

wide ecological amplitude of tolerance through their<br />

distribution in both transects. Consequently, it can be<br />

suggested that the vegetation of the study area repre­<br />

sents a gradual transition from the southern Nubian<br />

communities (of the Nubian Desert sensu El-Hadidi,<br />

1980a) in the south-western part to those characteristic<br />

of the northern Mediterranean coast (Libyan Desert<br />

sensu El-Hadidi, 1980a). The transitional character is<br />

clearly indicated by the fact that a group of species<br />

reaches its southern limit, and another group reaches<br />

its northern limit of distribution.<br />

The habitat investigated in this study is a relatively<br />

simple one, in which the species have to withstand<br />

harsh environmental conditions. This is not only re­<br />

flected by the preponderance of annuals, but also by<br />

the presence of several highly-adapted, drought­<br />

resistant species (Abdel-Razik et aI., 1984). In this re­<br />

spect, the vegetation along the two studied transects is<br />

similar to that of gorges (karkurs) of Gebel Uweinat<br />

and some neighbouring areas of south-western Egypt<br />

(Boulos, 1982; Bornkamm, 1986). A major difference<br />

between the two corresponding habitat types is the<br />

high degree of scarceness of precipitation which may<br />

fall once every seven to ten years in Uweinat, and up<br />

to twenty years or more in Gilf Kebir and the neigh­<br />

bouring areas. The vegetation cover of the latter land­<br />

scape is less than 1% in the extreme desert (Stahr et<br />

aI., 1985). Thus, often just one species reaches domi­<br />

nance forming monotypic stands. However, mono­<br />

dominant stands in this study are not as common as<br />

those codominated by more than one species.<br />

Along gradients of decreasing precipitation, vegetation<br />

varies from grasslands to shrublands (Westoby,<br />

1980).<br />

ecologia <strong>mediterranea</strong> <strong>25</strong> (2) - <strong>1999</strong>


Abd El-Ghani Soil variables affecting the vegetation ofinland western desert ofEgypt<br />

The relative advantage of shrubs over grasses when<br />

water is limiting, as in the study area, can be explained<br />

by their extensive root systems which are capable to<br />

utilise water stored in different soil depths, whereas<br />

grasses utilise the transient water stored in the upper<br />

soil synchronic with precipitation pulses. The upper<br />

dry layer of the surface deposits acts as a protective<br />

layer, moisture is stored in subsurface layers, and the<br />

underlying sandstone provides added water storage<br />

capacity. The presence of a subsurface layer that is<br />

permanently wet is well-known phenomenon in the<br />

Egyptian Deserts (Kassas & Batanouny, 1984). As<br />

presented in the results, the dominance of shrubby<br />

plant species over the grasses is evident.<br />

Chamaephytes constitute 40% of the floristic compo­<br />

sition, followed by therophytes. The dominance of<br />

both chamaephytes and therophytes over other life<br />

forms seem to be a response to the hot dry climate and<br />

human and animal interferences. A comparison of the<br />

life-form spectrum of the same 5° of the northern<br />

latitude in the corresponding Eastern Desert of Egypt<br />

(<strong>25</strong>°N - 30 0<br />

N), Abd EI-Ghani (1998) showed more<br />

therophytes (38.3%) and hemicryptophytes (22.0%)<br />

and less chamaephytes (29.0%).<br />

The vegetation that characterise the study area can<br />

be divided, according to TWINSPAN technique, into<br />

eight vegetation groups: Prosopis farcta-Tamarix nilotica,<br />

Tamarix nilotica-Alhagi graecorum, Zygo­<br />

phyllum coccineum-Salsola imbricata subsp.<br />

imbricata, Cornulaca monacantha-Fagonia arabica,<br />

Atriplex leucoclada, Randonia africana-Deverra tor­<br />

tuosa, Deverra tortuosa-Capparis spinosa var. aegyp­<br />

tia and Capparis spinosa var. aegyptia-Zilla spinosa<br />

subsp. biparmata. Some species: Atriplex leucoclada,<br />

Anabasis articulata, Capparis spinosa var. aegyptia<br />

and Randonia africana common to the western Medi­<br />

terranean coastal belt (Ayyad & Ammar, 1974; Abdel­<br />

Razik et aI., 1984) are found in the less arid sites of<br />

the northern transect where the silty soil decreases<br />

water infiltration. A group of salt-tolerant plants in­<br />

cluding Nitraria retusa, Tamarix nilotica, Sarcocornia<br />

fruticosa and Alhagi graecorum are found in the dry<br />

saline sites of the southern transect, and form phyto­<br />

genic mounds of variable size. Alhagi graecorum is a<br />

widely distributed species that seems to grow in dif­<br />

ferent habitats (Kassas, 1952). It is also considered as<br />

a groundwater-indicating plant (Girgis, 1972). According<br />

to Kassas and Girgis (1965), the growth of the<br />

desert scrub Nitraria retusa represents the highest tol-<br />

182<br />

erance to soil salinity conditions, and a penultimate<br />

stage in the successional development. The plant<br />

reaches its northernmost limit of distribution around<br />

Qara Oasis on the south-western edge of Qattara Depression<br />

(Abd EI-Ghani, 1992) as well as in Bahariya<br />

Oasis (Abd EI-Ghani, 1981). Nitraria retusa, how­<br />

ever, has not been recorded beyond Latitude 28°N in<br />

Egypt (M. Kassas, pers. comm.). Further studies con­<br />

cerning the distribution of this plant in the country is<br />

recommended. Prosopis farcta, Imperata cylindrica<br />

and Salsola imbricata subsp. imbricata are commonly<br />

found in the dry sandy plains along the southern tran­<br />

sect. Restriction of Imperata to the high sandy plains<br />

is apparently due to the inability of this species to<br />

reach the capillary fringe of the groundwater which is<br />

fairly close to the surface (Rikli, 1943). The species is<br />

considered as facultative halophyte mainly occurring<br />

on sandy soil with slight salt content. Thus, this habi­<br />

tat may represent a transitional zone between the less<br />

arid and dry saline habitats. The xero-psammophytes<br />

Fagonia arabica, Cornulaca monacantha, Zilla spi­<br />

nosa subsp. spinosa, Calligonum polygonoides subsp.<br />

comosum, Pulicaria incisa, Citrullus colocynthis and<br />

Heliotropium digynum were found in dry non-saline<br />

sandy sites along both transects where infiltration is<br />

higher and water accumulated in deeper layers, and<br />

the soil is highly fertile. This group of species are<br />

more widely distributed in Egypt and neighbouring<br />

countries (Batanouny, 1979; Zahran & Willis, 1992;<br />

Frankenberg & Klaus, 1980; Wojterski, 1985).<br />

Ayyad (1976) pointed out that physiographic and<br />

edaphic factors have greatly affected the distribution<br />

of plant communities in the Western Desert of Egypt.<br />

DCA and CCA analyses of the vegetation and soil<br />

data in the present study indicated the relative posi­<br />

tions of species and sites along the most important<br />

ecological gradients. DCA axis 1 may represent a<br />

geographical trend in the floristic data set. The main<br />

reason for this may be a gradient in the local harsh<br />

climate within the study area. Both ordination tech­<br />

niques emphasised that salinity, fine sediments, or­<br />

ganic matter and moisture content are the significant<br />

factors controlling the distribution of the vegetation in<br />

this region. This has been reported in other studies<br />

such as those of EI-Ghareeb and Hassan (1989), El­<br />

Demerdash et al. (1995) and Shaltout et aI., (1997).<br />

The soil texture gradient in arid desert environments<br />

results in a corresponding gradient of available soil<br />

moisture. Therefore, moisture content is probably one<br />

ecologia <strong>mediterranea</strong> <strong>25</strong> (2) - <strong>1999</strong>


Abd El-Ghani Soil variables affecting the vegetation ofinland western desert ofEgypt<br />

of the most effective physical factors leading to vege­<br />

tation variations from north to the south of the study<br />

area. The organic matter content plays an important<br />

role as a key element in soil fertility. Sharaf El Din<br />

and Shaltout (1985), and Abd EI-Ghani (1998) indi­<br />

cated the role of soil organic matter in the Egyptian<br />

arid desert ecosystems.<br />

Acknowledgements<br />

This study would not have been possible without<br />

the support of the "Alexander von Humboldt-Stiftung,<br />

Germany" for which I am extremely grateful. The<br />

following people and institutions are acknowledged<br />

with appreciation for their contribution: R. Bornk­<br />

amm, F. Alaily, H. Kehl, F. Darius (all TU-Berlin) for<br />

their continuous support, fruitful discussions and<br />

valuable information on the soil structure; Institut flir<br />

Mathematik und Informatik (Freie Universitiit-Berlin)<br />

for statistics and many other facilities; S. EI-Banna<br />

(Department of Lands & Underground Water Re­<br />

sources, Cairo University) for confirming and com­<br />

menting on the soil analysis and S. T. Michael for his<br />

kind assistance in soil analysis. I thank two anony­<br />

mous referees for their keen revision and suggestions<br />

to improve an earlier version of this paper.<br />

REFERENCES<br />

Abd EI-Ghani M.M., 1981. Preliminary studies on the<br />

vegetation ofBahariya Oasis, Egypt. Unpublished M.Sc.<br />

Thesis, Cairo University. 309 p.<br />

Abd EI-Ghani M.M., 1985. Comparative study of the vegetation<br />

of Bahariya and Farafra Oases and the Faiyum<br />

region, Egypt. Unpublished Ph.D. Thesis, Cairo University.<br />

464 p.<br />

Abd EI-Ghani M.M., 1992. Flora and vegetation of Qara<br />

Oasis, Egypt. Phytocoenologia, 21: 1-14.<br />

Abd EI-Ghani M.M., 1998. Environmental correlates of species<br />

distribution in arid desert ecosystems of eastern<br />

Egypt. J. Arid. Environ., 38: 297-313.<br />

Abdel-Razik M., Abdel-Aziz M. & Ayyad M., 1984. Environmental<br />

gradients and species distribution in a transect<br />

at Omayed (Egypt). J. Arid. Environ., 7: 337-352.<br />

Alaily F., Bornkamm R., Blume H.-P., Kehl R. & Zielinski<br />

H., 1987. Ecological investigations in the Gilf Kebir<br />

(SW- Egypt). Phytocoenologia, 15: 1-20.<br />

Ayyad M., 1976. The vegetation and environment of the<br />

western Mediterranean coastal land of Egypt. IV. The<br />

habitat of non-saline depressions. J. Ecol., 64: 713-722.<br />

Ayyad M. & Ammar M.Y., 1974. Vegetation and environment<br />

of the western Mediterranean coastal land of<br />

Egypt. n. The habitat of inland ridges. J. Ecol., 62: 509­<br />

523.<br />

ecologia <strong>mediterranea</strong> <strong>25</strong> (2) - <strong>1999</strong><br />

Batanouny K.H., 1979. The desert vegetation in Egypt.<br />

Cairo Univ. Afr. Rev., Special Publ., I: 9-37.<br />

Berk K.N., 1994. Data analysis with Student SYSTAT Windows<br />

Edition. Course Technology, Inc.<br />

Bornkamm R, 1986. Flora and vegetation of some small<br />

oases in S-Egypt. Phytocoenologia, 14: 275-284.<br />

Bornkamm R., 1987. Growth of accidental vegetation on<br />

desert soils in SW Egypt. Catena, 14: 267-274.<br />

Bornkamm R. & Kehl H., 1990. The plant communities of<br />

the western desert of Egypt. Phytocoenologia, 19: 149­<br />

231.<br />

Boulos L., 1982. Flora of Gebel Uweinat and some neighbouring<br />

regions of south-western Egypt. Candollea, 37:<br />

<strong>25</strong>7-276.<br />

Boulos L., 1995. Flora ofEgypt. Check list. Al Hadara Publishing,<br />

Cairo. 283 p.<br />

Boulos L., <strong>1999</strong>. Flora of Egypt. vol.l. Al Hadara Publishing,<br />

Cairo. 417 p.<br />

Canfield R., 1941. Application of the line interception<br />

method in sampling range vegetation. 1. Forest., 39:<br />

288-294.<br />

Eig A., 1946. Synopsis of the phytosociological units of Palestine.<br />

J. Bot. Jerusalem Ser., 3 (I): 2<strong>25</strong>-312.<br />

EI-Demerdash M.A., Hegazy A.K. & Zailay A.M., 1995.<br />

Vegetation-soil relationships in Tihamah coastal plains<br />

of Jazan region, Saudi Arabia. J. Arid. Environ., 30:<br />

161-174.<br />

EI-Ghareeb R & Hassan LA., 1989. A phytosociological<br />

study on the inland desert plateau of the Western Desert<br />

of Egypt at EI-Hammam. J. Arid Environ., 17: 13-21.<br />

EI-Hadidi M.N., 1980a. An outline of the planned flora of<br />

Egypt. Taeckholmia. Add. Ser., I: 1-12.<br />

EI-Hadidi M.N., 1980b. Vegetation of the Nubian Desert.<br />

In: Wendorf F. & Schild R. (eds), Prehistory ofthe eastern<br />

Sahara. Academic Press, New York: 345-351.<br />

EI-Sharkawy H.M., Fayed A.A. & Salama F.M., 1984.<br />

Vegetation of inland desert wadis in Egypt. V. Wadi<br />

Qassab. Feddes Repert., 95: 561-570.<br />

Emberger L., 1955. Une classification biogeographique des<br />

climats. Recueil de Travaux des Laboratoires de Botanique,<br />

Geologie et Zoologie de la Faculte des Sciences<br />

de l'Universite de Montpellier, 7: 3-43.<br />

Frankenberg P. & Klaus D., 1980. Atlas der pflanzenwelt<br />

des Nordafricanischen Trockenraums. Arheit. Geogr.<br />

Inst. (Univ. Bonn), A133: 1-237.<br />

Girgis W.A., 1972. Plant indicators in the Egyptian deserts.<br />

Desert. Inst. Bu ll., A.R.E., 21: 511-5<strong>25</strong>.<br />

Haines RW., 1951. Potential annuals of the Egyptian Desert.<br />

Bull. Inst. Des. Egypte, 1(2): 103-118.<br />

Hill M.O.,1979. TWINSPAN - A FORTRAN program Fir<br />

arranging multivariate data in an ordered two-way table<br />

of classification of individuals and attributes. Ithaca.<br />

NY, Cornell University. 90 p.<br />

Hill M.O. & Gauch H.G., 1980. Detrended Correspondence<br />

Analysis: An improved ordination technique. Vegetatio,<br />

42: 47-58.<br />

Kassas M., 1952. On the distribution of Alhagi maurorum in<br />

Egypt. Proc. Egypt. Acad. Sci., 8: 140-151.<br />

Kassas, M., 1966. Plant life in deserts. In: Hills E.S. (ed.),<br />

Arid Lands. UNESCO, London, Mathuen/Paris. p. 145­<br />

180<br />

183


Abd EI-Glwni Soil variables affecting the vegetation ofinland western desert ofEgypt<br />

Kassas, M., 1971. Die Pflanzenwelt. 2.Teil, Pflanzenleben in<br />

der ostlichen Sahara. In: Schiffers H. (ed.), Die Sahara<br />

wzd ihre Randgebiete. I. Physiogeographie. Weltforum­<br />

Verlag, Munchen : 477-497.<br />

Kassas M. & Batanouny K.H., 1984. Plant Ecology. In:<br />

Cloudsley-Thompson J.L. (ed.), Sahara Desert. Pergamon<br />

Press, Oxford: 77-90.<br />

Kassas M. & Girgis W.A., 1965. Habitat and plant communities<br />

in the Egyptian desert. VI. The units of a desert<br />

ccosystem. J. Ecol., 53: 715-728.<br />

Migahid A.M., Batanouny KH. & Zaki M.A.F., 1971. Phytosociological<br />

and ecological study of a sector in the<br />

Mediterranean coastal region in Egypt. Vegetatio, 23:<br />

113-134.<br />

Monod Th., 1954. Mode contracte et diffus de la vegetation<br />

saharienne. In: Cloudsley-Thompson J.L., (ed.), Biology<br />

ofDesert. Institute of Biology, London: 35-44.<br />

Rikli M., 1943. Das Pjlanzenkleid der Mittelmeerliinder.<br />

Band I. Verlag-Huber, Berlin. 436 p.<br />

Schiffers H., 1971. Allgemines. In: Schiffers H., (ed.), Die<br />

Sahara wzd ihre Randgebiet. l. Phytogeographie. Weltforum-Verlag,<br />

Munchen: 19-36.<br />

Shaltout K.H., EI-Halawany E.F. & EI-Garawany M.M..<br />

1997. Coastal lowland vegetation of eastern Saudi Arabia.<br />

Biodiv. Conserv., 6: 1027-1040.<br />

Sharaf El Din A. & Shaltout KH., 1985. On the phytosociology<br />

of Wadi Araba in the Eastern Desert of Egypt.<br />

Proc. Eg.vpt Bot. Soc., 4: 1311-13<strong>25</strong>.<br />

Springuel I. 1997. Vegetation, land use and conservation in<br />

the south eastern Egypt. In: Barakat H.N. & Hegazy<br />

A.K. (eds). Reviews in Ecology: Desert Conservation<br />

and De\'elopment. Metropole, Cairo: 177-206.<br />

Springuel I., Sheded M. & Abed W., 1990. Plant growth in<br />

relation to a rain incident in Wadi Agag, south Egypt.<br />

Vegetatio, 90: 159-165.<br />

Stahr K., Bornkamm R., Gauer J. & Kehl H., 1985. Die<br />

Veranderung von Boden und Vegetation am Obergang<br />

von Halbwuste zur Vollwuste zwischen Mittelmeer und<br />

184<br />

Quattara-Depression in Agypten. Geookodynamik, 6:<br />

99-120.<br />

Tackholm V., 1974. Students' Flora of Eg:"pt (2 nd Edn.).<br />

Cairo University Press, Cairo. 888p.<br />

Tadros T.M. & Atta B.M., 1958. Further contribution to the<br />

sociology and ecology of halophilous communities of<br />

Mareotis (Egypt). Vegetatio, 8: 137-160.<br />

ter Braak C.J.F., 1986. Canonical correspondence analysis: a<br />

new eigenvector technique for multivariate direct gradient<br />

analysis. Ecology, 67: 1167-1179.<br />

ter Braak c.J.F., 1988. CANOCO - A FORTRAN program<br />

or canonical community ordination bv [partial] [detrended]<br />

[canonicall correspondence analysis, principal<br />

components analysis and redundancy anal.vsis, Version<br />

2.1., Agricultural Mathematics Group, Wageningen. 95<br />

p.<br />

ter Braak c.J.F., 1990. Update notes: CANOCO version 3.1.<br />

Agricultural Mathematics Group, Wageningen. 35 p.<br />

Thomas D.S.G., 1988. The biogeomorphology of arid and<br />

semi-arid environments. In: Viles H.A. (ed.), Biogeomorpholog}'.<br />

Basil B1ackwelL Oxford: 193-221<br />

Tielborger K, 1997. The vegetation of linear desert dunes in<br />

the north-western Negev, Israel. Flora, 192: 261-278.<br />

WaIter H. & Breckle S.-W., 1984. Okologie der Erde, Band<br />

2. Spezielle Okologie der Tropischen und Subtropischen<br />

Zonen. Gustav Fischer, Stuttgart. 461 p.<br />

Westoby M., 1980. Elements of a theory of vegetation dynamics<br />

in arid rangelands. Israel 1. Bot., 28: 169-194.<br />

Wojterski T.W., 1985. Guide de I'excursion internationale<br />

de phytosociologie Algirie du Nord. Goltze, Gottingen.<br />

274 p.<br />

Zahran M.A., 1972. On the ecology of Siwa Oasis, Egypt.<br />

Egypt. J. Bot., 15(2): 223-242.<br />

Zahran M.A. & Willis, A.J., 1992. The Vegetation ofEgypt.<br />

Chapman & Hall, London. 424 p.<br />

Zohary M., 1973. Geobotanical Foundations of the Middle<br />

East. 2 vols, Gustav Fischer-Verlag, Stuttgart. 739 p.<br />

ecologia <strong>mediterranea</strong> <strong>25</strong> (2) - <strong>1999</strong>


Besso!l et al.<br />

ABRIDGED ENGLISH VERSION<br />

Ccllulose represents a considerable part of the organic<br />

matter and StifJa tellocissimo content ranges from 42 to 50%.<br />

Thus, thc degradation of cellulose is a good indicator of the<br />

biological activity of an ecosystem.<br />

The aim of this study was to measure the microbial<br />

fauna activity and specially cellulolytic activity. in two alfa<br />

steppes corresponding to a gradient of aridity, and study the<br />

effects of the alfa rhizosphere and depth level on this activity.<br />

All cxpcriments were conducted ill vitro at different<br />

temperature and moisture levels.<br />

Thc study area is located in the western high plains of<br />

Algcria, where Stipa tenacissimo is a perennial tussock<br />

grass. The most productive rangelands of the region have<br />

been degraded by successive dry years and increasing grazing<br />

pressurc. Local climate is semi-arid at Rogassa station<br />

and arid at Mekalis. The mean annual rainfall in the region<br />

studied only reaches 200 - 300 mm with high variability.<br />

Other characteristics of this zone have been summarised in<br />

tables I and 2.<br />

Soil samples were collected in each station underneath<br />

and bctween several tufts of alfa, at different depths. To es-<br />

INTRODUCTION<br />

La degradation de la cellulose est reconnue comme<br />

un bon indicateur de l'activite biologique des sols<br />

(Dommergues & Mangenot, 1970; Berg & Roswall,<br />

1973; Labroue & Lascombes, 1975; Roze, 1986).<br />

Les steppes a alfa du Sud-Oranais (Algerie) sont en<br />

voie de degradation tres rapide. Entre 1978 et 1990, la<br />

phytomasse verte de I'alfa est passee de 1750 a 75 kg<br />

Ms / ha selon Aidoud et Touffet (1996). Ces auteurs<br />

attribuent cette degradation essentiellement au surpa­<br />

turage qui s'ajoute a plusieurs annees de secheresse<br />

successives (Djellouli, 1990). Dans ces milieux en<br />

voie de dcsertification, le taux de matiere organique<br />

dans le sol est considere comme I'un des attributs vi­<br />

taux essentiels (Aronson et al., 1995) et sa reduction,<br />

un indicateur pertinent de desertification. La minerali­<br />

sation de la matiere organique a ete prise comme in­<br />

dice de l'activite microbiologique des sols (Djellali,<br />

1981) ; cependant, I' activite cellulolytique n' a pas fait<br />

I'objet d'etude particuliere. Afin de mieux compren­<br />

dre le fonctionnement des sols de ce type de steppe, le<br />

present travail est une contribution al'evaluation de la<br />

cellulolyse dans les sols alfatiers. Notre objectif a ete<br />

de mettre au point un protocole selon la structure lo­<br />

cale de I' espece dominante et le degre d' aridite. Dans<br />

ce but, deux stations situees dans des conditions eco­<br />

logiques differentes ont ete choisies afin de mesurer<br />

186<br />

Activite ceLlulolytique in vitro de .1'01.1' de deux steppes cl alfcl d'Algerie<br />

timate the degradation rate of cellulose, a technique based<br />

on the in vitro degradation on filter papers was used. The<br />

disappearing of cellulose was determined by following the<br />

ponderal changes of the filter paper residues.<br />

The results (Figures 2 and 3) demonstrate that:<br />

- the intensity of degradation is higher in the semi-arid than<br />

in arid conditions. The higher contents in organic matter<br />

(plant biomass) and other nutrient as nitrogen, phosphorus<br />

and calcium (Table 2) in the semi-arid could explain this<br />

behaviour.<br />

- the cellulolytic activity decreases with depth, except under<br />

tufts of alfa which affect the distribution of micro-organisms<br />

along the profile.<br />

- the rate of cellulose degradation is more important under<br />

the tufts than between them in both studied sites. This is<br />

probably because most indicators of soil fertility (organic<br />

matter. total and available nitrogen. phosphorus and cations,<br />

number and activity of microbial and arthropod<br />

decomposers) are much higher in the soil under tufts than<br />

elsewhere, as previously shown by Noy-Meir (1985).<br />

les variations de I'activite cellulolytique et de verifier<br />

I'importance des effets des conditions ecologiques a<br />

differentes echelles spatiales.<br />

MATERIEL ET METHODES<br />

Stations<br />

L'etude a ete realisee sur les steppes d'alfa des<br />

hautes plaines du Sud-Oranais dans deux stations:<br />

la station de Rogassa se trouve a 1090 md'altitude<br />

au nord ouest d'EI Bayadh, sur un glacis de pente tres<br />

faible ; cette station se place dans I' etage bioclimati­<br />

que semi-aride inferieur a hiver froid (Nedjraoui,<br />

1990). Le sol, sur croute calcaire (a environ 30 cm de<br />

profondeur), est de type brun calcaire et de texture sa­<br />

blo-limoneuse. Il presente des elements grossiers et de<br />

nombreuses racines verticales et horizontales (Ned­<br />

jraoui, 1990). Le recouvrement global de la vegetation<br />

(steppe a alfa pur) est de 55%, sa richesse specifique<br />

est de 29 taxons (Bessah, 1998) ;<br />

la station de Mekalis se situe a 36 km au nord de<br />

Aln Sefra, a 1300 m d' altitude. Elle repose sur un gla­<br />

cis de pente tres faible, inferieure a2%. Elle est situee<br />

dans I' etage bioclimatique aride superieur, variante a<br />

hiver froid. Le sol a croute calcaire est assez profond<br />

(40 cm ou plus) et sa texture est essentiellement sa­<br />

bleuse.<br />

ecologio <strong>mediterranea</strong> <strong>25</strong> (2) - /999


Bessah et al. Activite cellulolytique in vitro de sols de deux steppes Cl alfa d'Algerie<br />

L'activite cellulolytique a ete suivie in vitro selon<br />

le protocole suivant : dans des boites de Petri steriles<br />

on introduit environ 100 g de terre, sans tamisage pre­<br />

alable. Le papier filtre servant de substrat cellulosique<br />

a ete humecte puis mis en sandwich entre deux cou­<br />

ches de terre. Les boites ont ete mises aincuber a dif­<br />

ferentes temperatures (5, 15 et 30° C) et humidites<br />

(5%, 15% et 30%). La perte d'eau appreciee par pesee<br />

a ete compensee periodiquement par l'apport d'eau<br />

distillee. Apres 90 jours d'incubation, les papiers fil­<br />

tres ont ete recueillis puis nettoyes selon la methode<br />

de Rashid et Schaefer (1984). Le poids de cellulose<br />

pur restant apres incubation a ete calcule comme la<br />

difference de deux pesees: une premiere realisee<br />

apres sechage a 105°C et une deuxieme apres incine­<br />

ration a500°C.<br />

RESULTATS<br />

Le papier filtre est passe par differentes etapes de<br />

degradation sous I'effet des micro-organismes cellu­<br />

lolytiques. Cette evolution s'est manifestee par<br />

I'apparition de taches jaunes, grises, brunes et meme<br />

rougeatres.<br />

Entre les touffes d'alfa<br />

L'activite cellulolytique mesuree in vitro de la mi­<br />

croflore est plus intense pour le sol de la station semi­<br />

aride que pour celui de la station aride et ceci, aussi<br />

bien pour les echantillons preleves en surface qu'en<br />

profondeur. En effet, le pourcentage de degradation<br />

varie de 20 a 85% pour la premiere station et de 11 a<br />

42% pour la seconde. Cette cellulolyse diminue avec<br />

la profondeur du sol dans les deux stations. Dans la<br />

station semi-aride, les taux de degradation enregistres<br />

(Figure 2) sont de 22 a85% en surface et de 20 a70%<br />

en profondeur. Dans la station aride, ces taux varient<br />

de 15 a42% dans I'horizon superficiel et de 11 a 38%<br />

en profondeur.<br />

Sous les touffes<br />

En surface, l'activite cellulolytique est plus mar­<br />

quee pour le sol de la station semi-aride que pour celui<br />

de la station aride, avec des taux de degradation va-<br />

188<br />

riant de 9 a 94% pour la premiere station et de 13 a<br />

63% pour la seconde.<br />

Pour la station semi-aride, cette cellulolyse dimi­<br />

nue avec la profondeur du sol. Le pourcentage de de­<br />

gradation passe de 9 a 94% dans l'horizon de surface<br />

et de 9 a47% en profondeur. Par contre pour la station<br />

aride l'activite cellulolytique ne diminue pas avec la<br />

profondeur du sol: elle a meme tendance aaugmenter<br />

puisque le taux de degradation est en moyenne de 13 a<br />

53% en surface et de 17 a63% en profondeur (Figure<br />

3).<br />

L'influence du taux d'humidite et de la tempera­<br />

ture sur I'activite cellulolytique en fonction des<br />

conditions d'incubation connait la meme evolution<br />

sous les touffes et entre les touffes: le maximum<br />

d'activite cellulolytique pour la station semi-aride est<br />

atteint a 30% d'humidite quelle que soit la temperature<br />

d'incubation. Pour la station aride, un maximum<br />

d'activite a ete observe a 15% d'humidite et pour des<br />

temperatures d'incubation de 15 et 30°C. A 5°C et 5%<br />

d'humidite, le papier filtre semble peu altere, si ce<br />

n'est dans sa coloration, les evolutions ponderales<br />

etant alors peu marquees.<br />

DISCUSSION<br />

L'activite cellulolytique des sols de steppes aalfa,<br />

mesuree in vitro, apparait relativement faible par rapport<br />

acelle des sols des regions temperes. Par exem­<br />

pie, des mesures realisees dans les memes conditions<br />

pour les sols de la foret d'Orsay (Rashid & Schaefer,<br />

1984) ont donne des taux de degradation de I' ordre de<br />

90% (mull) et de 58% (anmoor) au bout d'un mois<br />

d'incubation, alors que dans notre cas ces valeurs<br />

n'ont ete atteintes qu'au terme de trois mois<br />

d'incubation en conditions moyennes.<br />

L'intensite de l'activite cellulolytique de la micro­<br />

flore depend des conditions stationnelles, microstationnelles<br />

(sol sous la touffe et entre touffes ), de la<br />

profondeur du sol et des conditions d'incubation reali­<br />

sees au laboratoire. D'apres nos resultats, elle semble<br />

etre plus importante dans la station semi-aride que<br />

dans la station aride, ce qui peut etre lie aux caracte­<br />

ristiques climatiques et edaphiques des stations.<br />

L'aridite de la station de Mekalis serait non seulement<br />

climatique, mais egalement edaphique en raison de<br />

caracteres pedologiques (Pouget, 1980).<br />

ecologia <strong>mediterranea</strong> <strong>25</strong> (2) - <strong>1999</strong>


Bessah et al. Activite cellulolytique in vitro de sols de deux steppes a alfa d'AIgerie<br />

Les resultats expriment la capacite de reaction et<br />

de resistance des micro-organismes vis-a-vis de ces<br />

conditions ecologiques qui deviennent vraisembla­<br />

blement limitantes le long du gradient d'aridite crois­<br />

sant caracterisant les deux stations.<br />

La biomasse vegetale marque une baisse impor­<br />

tante entre les deux stations. La phytomasse aerienne a<br />

ete evaluee a 8040 kg Ms / ha dans la station semi­<br />

aride et a 35<strong>25</strong> kg Ms / ha dans la station aride (Ned­<br />

jraoui, 1990). Cette difference peut, outre les condi­<br />

tions ecologiques, etre attribuee en partie a l'intensite<br />

d'exploitation. La biomasse vegetale represente la<br />

source principale de matiere organique (Pouget, 1980 ;<br />

Kadi-Hanifi, 1998). La diminution de celle-ci entraine<br />

une baisse du taux de matiere organique dans le sol.<br />

Ce taux passe en moyenne de 1% dans la station semi­<br />

aride a 0,1 % dans la station aride. Or I'incorporation<br />

de la matiere organique dans le sol influe sur la stabi­<br />

lite structurale et donc sur I'aeration du sol et sa per­<br />

meabilite (Duchaufour, 1970; Duthil, 1973; Guckert<br />

et al., 1975 ; Kadi-Hanifi, 1990, 1998). Elle stimule<br />

egalement le developpement de la microflore (Dommergues<br />

& Mangenot, 1970; Le Houerou, 1995).<br />

L'effet favorable de la matiere organique sur les ger­<br />

mes cellulolytiques a ete mis en evidence dans des<br />

sols au Maroc par Bryssine (1967). A partir de ces<br />

travaux, nous pouvons supposer que la diminution de<br />

la matiere organique en fonction de I'aridite du climat<br />

(Pouget, 1980) est a I'origine de la faible activite de la<br />

microflore dans la station aride.<br />

La cellulolyse plus importante dans le cas de la<br />

station semi-aride peut etre influencee egalement par<br />

d'autres constituants chimiques du sol. En effet, Du­<br />

chaufour (1970), Roze (1986) et Widden et al., (1988)<br />

ont mis en relation la sensibilite de I'activite cellulo­<br />

Iytique et la richesse du sol en azote: la cellulolyse est<br />

plus rapide dans les milieux bien pourvus en cet ele­<br />

ment, elle est par contre lente dans les milieux pauvres<br />

en azote. De plus, Berg et Rosswall (1973) ont montre<br />

que le phosphore est I' element qui favorise le plus la<br />

cellulolyse, I' azote et le calcium venant ensuite. Nos<br />

resultats concordent avec ces donnees bibliographi­<br />

ques: la cellulolyse est plus active dans la station<br />

semi-aride dont les sols sont notablement mieux pour­<br />

vus en ces nutriments que ceux de la station aride (Tableau<br />

2).<br />

L'activite cellulolytique est plus marquee dans les<br />

echantillons de sol preleves sous les touffes (sol rhi­<br />

zospherique) que dans ceux preleves entre les touffes<br />

190<br />

d'alfa (sol nu). Cette plus forte activite doit etre liee a<br />

la quantite de matiere organique plus elevee sous la<br />

touffe et au microclimat ameliorant les conditions<br />

edaphiques creees par la touffe. En effet, la plupart<br />

des indicateurs de la fertilite du sol dans les zones ari­<br />

des (matiere organique, azote total, phosphore, nom­<br />

bre et activite des micro-organismes) sont plus<br />

importants sous les touffes qu'entre celles-ci (Garcia­<br />

Moya & McKell, 1970; Tiedmann & Klemmedson,<br />

1973 ; Charley & West, 1975; Barth & Klemmedson,<br />

1978 ; Doescher et al., 1984 ; Noy-Meir, 1985 ; Klo­<br />

patek, 1987; Bolton et al., 1990). Ainsi, les racines<br />

peuvent enrichir le sol en matiere organique et stimu­<br />

ler leur colonisation par les micro-organismes rhizos­<br />

pheriques (Warembourg, 1975 ; Hailer & Stolp, 1985 ;<br />

Gorissen, 1994). Les produits neoformes de la litiere<br />

racinaire, tres importante chez ]' alfa, et les produits<br />

simples issus de I'exsudation racinaire (polysacchari­<br />

des), favorisent la proliferation de bacteries et de<br />

champignons (Dommergues & Mangenot, 1970; Zeriahene,<br />

1987). De plus, Djellali (1981), Ali-Haimoud<br />

(1982) et Kihal (1986) ont demontre que la rhizos­<br />

phere de I'alfa presente une action positive sur la mi­<br />

croflore des sols de steppes.<br />

La profondeur du sol influe egalement sur<br />

I' activite cellulolytique. Entre les touffes, I'activite de<br />

la microflore diminue avec la profondeur dans la sta­<br />

tion aride comme dans la station semi-aride. Cette dif­<br />

ference d'activite entre surface et profondeur serait en<br />

relation avec la distribution verticale des micro­<br />

organismes. Ces derniers se trouvent en majorite dans<br />

la couche superficielle du sol, mieux aeree et plus ri­<br />

che en substances nutritives et leur nombre diminue<br />

progressivement avec la profondeur (Boullard & Mo­<br />

reau, 1962 ; Gaucher, 1968 ; Dommergues & Mange­<br />

not, 1970). Les memes resultats ont ete obtenus dans<br />

les landes bretonnes (Roze, 1986) oll l'activite cellu­<br />

lolytique mesuree in situ est de plus en plus reduite en<br />

fonction de la profondeur du sol. Les travaux de Djel­<br />

lali (1981) et Ali-Haimoud (1982) confirment ce fait<br />

pour des sols alfatiers d'AIgerie.<br />

Sous les touffes, I'activite cellulolytique augmente<br />

avec la profondeur du sol dans la station aride. Par<br />

contre, sous conditions semi-arides, cette activite cel­<br />

lulolytique diminue avec la profondeur du sol. Cette<br />

difference de fonctionnement de la microflore en<br />

fonction de la profondeur est probablement liee a la<br />

morphologie racinaire de I'alfa. En effet, les racines<br />

d'alfa presentent des modifications qui leur permettent<br />

ecologia <strong>mediterranea</strong> <strong>25</strong> (2) - <strong>1999</strong>


Bessah et al. Activite cellulolytique in vitro de sols de deux steppes Cl alfa d'Algerie<br />

de mieux s'adapter aux conditions hydriques et edaphiques<br />

de leur biotope (Zeriahene, 1987; Aidoud,<br />

1989; Nedjraoui, 1990). En fonction de l'aridite, les<br />

racines deviennent de plus en plus longues et epais­<br />

ses: 33,76 cm de longueur et 2,5 mm de diametre<br />

pour l'alfa des regions pre-sahariennes, 24,5 cm de<br />

longueur et I mm de diametre pour I'alfa provenant<br />

des regions semi-arides (Nedjraoui, 1990).<br />

Dans la station semi-aride, les sols sont peu pro­<br />

fonds et la croute calcaire est proche de la surface,<br />

constituant ainsi un obstacle au developpement des<br />

racines en profondeur. Celles-ci parviennent difficile­<br />

ment a franchir la croute calcaire et forment un reseau<br />

dense au niveau de I'horizon superficiel. Le develop­<br />

pement racinaire se fait donc lateralement. Dans la<br />

station aride, les sols a texture essentiellement sa­<br />

bleuse sont assez profonds. Les racines sont essen­<br />

tiellement pivotantes et penetrent profondement dans<br />

le sol a la recherche de zones plus humides. Ainsi la<br />

repartition des germes cellulolytiques suit celle des<br />

racines ; leur activite diminue avec la profondeur dans<br />

la station semi-aride et augmente avec celle-ci dans la<br />

station aride. Cette derniere observation rejoint celle<br />

de Labroue et Lascombes (1975) qui ont trouve dans<br />

les sols de I' etage alpin une activite cellulolytique in<br />

situ plus importante en profondeur qu'en surface. Se­<br />

Ion ces auteurs, cette intensite de l'activite cellulolyti­<br />

que serait liee a l'enracinement profond des graminees<br />

colonisant la station etudiee.<br />

L'intensite de l'activite cellulolytique varie egalement<br />

en fonction de l'humidite. En effet, les resultats<br />

obtenus apres incubation a differents taux d'humidite<br />

montrent que les micro-organismes caracteristiques de<br />

la station semi-aride, probablement adaptes a un taux<br />

d'humidite relativement important, reagissent mieux a<br />

30% d'humidite. Par contre, dans la station aride ou<br />

les micro-organismes sont probablement adaptes a une<br />

certaine secheresse du milieu, la reaction est maximale<br />

a 15% d'humidite.<br />

L'activite cellulolytique est maximale parfois a<br />

30° et parfois a 15°C dans les deux stations. Ces re­<br />

sultats seraient lies aux exigences de la microflore vis<br />

a vis de la temperature. Dommergues et Mangenot,<br />

(1970) signalent une activite des bacteries cellulolytiques<br />

a partir de 15-20°C avec des valeurs optimales de<br />

28-30°C. Le minimum d'activite cellulolytique est ob­<br />

serve a 5°C. Nous avons deja montre (Roze, 1986)<br />

que des temperatures trop basses induisent une faible<br />

activite cellulolytique.<br />

ecologia <strong>mediterranea</strong> <strong>25</strong> (2) - <strong>1999</strong><br />

CONCLUSION<br />

Cette etude a permis de quantifier l'activite ·cellulolytique<br />

dans les sols de steppes et de rechercher les<br />

principaux facteurs de sa variation. Elle aborde un<br />

volet particulier du fonctionnement qui vient s'ajouter<br />

aux travaux anterieurs realises dans les steppes a alfa<br />

par Aidoud (1989), Nedjraoui (1990) et Kadi-Hanifi<br />

(1998). Les resultats obtenus ont montre que l'activite<br />

cellulolytique diminue avec I'aridite et la profondeur<br />

du sol. La morphologie de la touffe d'alfa semble modifier<br />

la distribution verticale de la microflore cellu­<br />

lolytique. Le taux d'humidite constitue un facteur<br />

essentiel qui n'est pas independant de la structure de<br />

la touffe d'alfa.<br />

L'activite cellulolytique met en relief des differen­<br />

ces entre les stations qui avaient deja ete evoquees : il<br />

s'agit donc d'un bon indicateur de la degradation des<br />

sols. Cet indicateur devra etre confronte a d'autres,<br />

tels que la proteolyse et la mineralisation de I'azote,<br />

afin de determiner son niveau de pertinence.<br />

BIBLIOGRAPHIE<br />

Aidoud A., 1989. Contribution Cl l'etude des ecosystemes<br />

steppiques patures des hautes plaines algero-oranaises.<br />

These de Doctorat, Alger, 240 p.<br />

Aidoud A., & Touffet J., 1996. La regression de I'alfa (Stipa<br />

tenacissima L.), graminee perenne, un indicateur de desertification<br />

des steppes algeriennes. Secheresse, 7: 187­<br />

193.<br />

Ali-Haimoud A., 1982. Contribution al'etude des sols alfatiers.<br />

Fixation de I'azote asymbiotique. Effet du paillage<br />

sur cette activite. These, Magister, Alger, 112 p.<br />

Aronson J., Floret c., Le Floc'h E., Ovalle c., Pontanier R.,<br />

1995. Restauration et rehabilitation des ecosystemes degrades<br />

en zones arides et semi-arides. Le vocabulaire et<br />

les concepts. In: L'homme peut-il refaire ce qu'il a defait?<br />

John Libbey Eurotext, Paris, p. 11-29.<br />

Barth R.c., & Klemmedson J.O, 1978. Shrub induced spatial<br />

patterns of dry matter, nitrogen and organic carbon.<br />

Soil Sci. Soc. Am. J., 42: 804- 809.<br />

Berg B., & Roswall T., 1973. Decomposition ofcellulose in<br />

laboratory pot experiment. Swedish IBP tundra Biome<br />

Projet Tech Report, 14: 207- 212.<br />

Bessah R., 1998. De la decomposition des litieres ala mineralisation<br />

de l'azote dans les steppes a alfa du Sud oranais.<br />

Memoire de Magister, Alger, 120 p.<br />

Bolton H., JR., Smith J.L., & Wildungr E., 1990. Nitrogen<br />

mineralization potentials of shrub steppe soils with different<br />

disturbance histories. Soil Sci. Soc. Am. J. 54:<br />

887- 891.<br />

Boullard B., & Moreau R. , 1962. Sol, microflore et vegetation.<br />

Equilibre biochimique et concurrences biologiques.<br />

Masson, Paris, 168 p.<br />

191


Bessah et al. ActiviM cel/ulolytique in vitro de sols de deux steppes a alfa d'AIgerie<br />

Bryssine I., 1967. La richesse des sols marocains en germes<br />

cellulolytiques en fonction des conditions ecologiques.<br />

Ann. Inst. Pasteur, Paris, 115: 542-548.<br />

Charley J.L., West N.E., 1977. Micropatterns of nitrogen<br />

mineralization activity in soils of some shrub dominated<br />

semi-deserts ecosystems of Utah. Soil BioI. Bioch., 9:<br />

357- 365.<br />

Djellali N., 1981. Contribution a I'etude microbiologique<br />

des sols a alfa. Mineralisation de I'azote et du carbone<br />

dans le sol de l'alfa de Ain Oussera. Effet du pail/age<br />

sur cette activite. These, Magister, Alger, 105 p.<br />

Djellouli Y., 1990. Flare et climat en AIgerie septentrionale.<br />

Determinisme climatique des especes. These, Doctorat,<br />

Alger, 296 p.<br />

Doescher P.S., Miller R.F, & Winward A.H., 1984. Soil<br />

chemical patterns under eastern Oregon communities<br />

dominated by big bage brush. Soil, Sci. Soc. Am. 1., 48:<br />

659-663.<br />

Dommergues Y., & Mangenot E, 1970. Ecologie microbienne<br />

du sol. Masson, Paris, 783 p.<br />

Duchaufour P., 1970. Pedologie : constitutions et proprietes<br />

du sol. Masson, Paris, 459 p.<br />

Duthil J., 1973. Elements d'ecologie et d'agronomie, tome<br />

3, Bailliere, Paris, 651 p.<br />

Garcia-Moya E., & McKell C.M., 1970. Contribution of<br />

shrubs to the nitrogen economy of a desert wash plant<br />

community. Ecology, 51: 81-88.<br />

Gaucher G., 1968. Traite de pedologie agricole. Dunod, Paris,<br />

578 p.<br />

Gorissen T.. 1994. Microbial activity and soil carbon dynamics<br />

in a changing climate. Change, 21: 6-8.<br />

Guckert A., Chore T.H., & Jacquin E, 1975. Microflore et<br />

stabilite structurale des sols. Rev. Ecol. BioI. Sol, I: 211­<br />

223.<br />

Hailer T., & Stolp H., 1985. Quantitative estimation of root<br />

exsudation of maize plants. Plant and Soil, 86: 207-211.<br />

Kadi-Hanifi H., 1990. Etude phytoecologique des formations<br />

aalfa dans le sud oranais. Biocenose, 1-2: 37-67<br />

Kadi-Hanifl H., 1998 L'alfa en AIgerie : syntaxonomie, relations<br />

milieu-vegetation, dynamique et perspectives<br />

d'avenir. These, Doctorat, Alger, 267 p.<br />

192<br />

Kihal BM., 1986. Contribution cl l'etude de la lIlicroflore<br />

des sols a/fatiers au cours de l'annee et recherche des<br />

micro-organismes cel/ulo/ytiques. These, Magister,<br />

Oran, 105 p.<br />

Klopatek J.M., 1987. Nitrogen mineralization and nitrification<br />

in mineral soil of Pinyon-Juniper ecosystem. Soil<br />

Sci. Soc. Am. J., 52: 453-457.<br />

Labroue L., & Lascombes G., 1975. L'activite cellulolytique<br />

dans les sols de quelques stations de l'etage alpin du pic<br />

du Midi de Bigorre. Rev. Ecol. BioI. Sol, I: 181-192.<br />

Le Houerou RN., 1995. Degradation, regeneration et mise<br />

en valeur des terres seches d'Afrique. In : L 'holllme peW<br />

il re/aire ce qu'il a de/ait ? J. Libbey Eurotext, Paris:<br />

65-102.<br />

Nedjraoui D., 1990. Adaptation de l'a/jcl (Stipa tenacissima<br />

L.) aux conditions stationnel/es. Contribution a I'etude<br />

du fonctionnement de l'ecosysteme steppique. These,<br />

Doctorat, Alger, <strong>25</strong>6 p.<br />

Noy-Meir I., 1985. Desert ecosystem structure and function:<br />

In: M. Avenari, I. Noy-Meyer, & D.W. Goodhall (Ed.).<br />

Ecosystems of the world, vol 27: hot deserts and arid<br />

shrub lands. 93-103, Elsevier, Amsterdam.<br />

Pouget M., 1980. Les relations sol- vegetation dans les steppes<br />

sud algeroises. ORSTOM, Paris, 555 p.<br />

Rashid GH., & Shaefer R., 1984. Activite cellulolytique<br />

dans deux sols d'une catena de la fixet d'Orsay. Rev.<br />

Ecol. Bioi. Sol, 4: 431-438.<br />

Roze E, 1986. Le cycle de I'azote dans les landes bretonnes.<br />

These, Doctorat, Rennes, 292 p.<br />

Tiedman A.R., & Klemmedson J.Q., 1973. Effect of mesquite<br />

on physical and chemical properties of the soil. J.<br />

Range Manag., 26: 27- 29.<br />

Warembourg ER., 1975. Application des techniques radioisotopiques<br />

it l'etude de l'activite ecologique dans la rhizosphere<br />

des plantes. Rev. Ecol. BioI. Sol, I: 261- 272.<br />

Widden P., Cunningham 1., & Breil B., 1988. Decomposition<br />

of cotton by Trichoderma species. Influence of<br />

temperature, soil type and nitrogen levels. Can. J.<br />

Micro., 35: 469- 473.<br />

Zeriahene N., 1987. Etude du systeme racinaire de I'a/jcl<br />

(Stipa tenacissima L.) en relation avec I'adaptation au<br />

xerophytisme. These, Magister, Oran, 113 p.<br />

ecologia <strong>mediterranea</strong> <strong>25</strong> (2) - <strong>1999</strong>


Guiot et al.<br />

INTRODUCTION<br />

During the last decades, transfer functions have<br />

been used to reconstruct past environments from ter­<br />

restrial data (pollen, diatoms, tree-rings, insects, mol­<br />

luscs ... ) as well as from ocean data (foraminifera,<br />

diatoms, dinoflagelates ... ). The methods primarily<br />

used were based on modern distribution of one or sev­<br />

eral species in a climatic domain (lversen, 1944;<br />

Grichuk, 1984; Atkinson et al., 1987; Zagwijn, 1994;<br />

Fauquette et al., 1998) or on a statistical calibration of<br />

modern assemblages in terms of climatic variables,<br />

using (i) multivariate statistical analyses (lmbrie &<br />

Kipp, 1971; Gasse & Tekaya, 1983; Ko


Guiot et al.<br />

Pollen pft<br />

Boreal summergreen<br />

Boreal conifer<br />

Cool temperate conifer (including cte!)<br />

Temperate summergreen (including tsl)<br />

Temperate summergreen (warmer)<br />

Warm temperate evergreen (including wtel)<br />

Warm temperate evergreen (warmer)<br />

Alpine-arctic shrubs<br />

Cool grass/shrub<br />

Heath<br />

Warm grass/shrub<br />

Desert forbs<br />

Glacial maximum climate by inverse vegetation modelling<br />

Code R<br />

bs 0.85<br />

bec 0.84<br />

ctc 0.81<br />

ts 0.79<br />

ts2 0.55<br />

wte 0.85<br />

wte2 0.76<br />

aa 0.80<br />

cogs 0.79<br />

h 0.41<br />

wags 0.79<br />

df 0.55<br />

Table I. Results of the transfer translating NPP into pollen pft scores. We use 8 neurones in the intermediate layer and a logsigmoid<br />

at the intermediate as well as at the output layer. The 13 inputs are transformed each into 5 classes by "fuzzification" (see<br />

Guiot et al., 1996). R is the correlation between observations and predictions on the 1245 spectra used for calibration.<br />

Our final goal is to reconstruct these bioclimatic<br />

variables that constrain the vegetation by a kind of in­<br />

version of the model.<br />

The vegetation model<br />

BIOME3.5 is a process-based terrestrial biosphere<br />

model which includes a photosynthesis scheme that<br />

simulates acclimation of plants to changed atmos­<br />

pheric CO 2 by optimisation of nitrogen allocation to<br />

foliage and by accounting for the effects of CO 2 on net<br />

assimilation, stomatal conductance, leaf area index<br />

(LAI) and ecosystem water balance. It assumes that<br />

there is no nitrogen limitation.<br />

The inputs of the model are soil texture, CO 2 rate,<br />

absolute minimum temperature (Tmin), monthly mean<br />

temperature (T), monthly total precipitation (P) and<br />

monthly mean sunshine (S) i.e. the ratio between the<br />

actual number of hours with sunshine over the poten­<br />

tial number (with no clouds). From these input vari­<br />

ables, BIOME3.5 computes bioclimatic variables<br />

(growing degree-days, ratio of actual evapotranspira­<br />

tion to evapotranspiration at the equilibrium and pre­<br />

cipitation minus evapotranspiration) that represent<br />

energy and water constraints on the vegetation. Then,<br />

the model calculates the maximum sustainable leaf<br />

area index and the NPP (in kg m- 2 y(l) for the pfts<br />

able to live in such an input climate. Competition<br />

among pfts is simulated by using the optimal NPP of<br />

each pft as an index of competitiveness. We use the 10<br />

pfts present in our modern pollen dataset: temperate<br />

broad-leaved evergreen (tbe), temperate summergreen<br />

(ts), temperate evergreen conifer (tc), boreal evergreen<br />

(bec), boreal deciduous (bs), temperate grass (tg),<br />

woody desert plant type (wd), tundra shrub type (tus),<br />

196<br />

cold herbaceous type (clg), lichen/forb type (If). The<br />

pollen pfts are slightly different in such a way that<br />

some of these pfts are sometimes subdivided.<br />

We retain as predictors the NPP of these 10 pfts,<br />

the total annual net absorbed photosynthetically active<br />

radiation (APAR in MJ.m- 2 .yr- 1 ) and the LAI of the<br />

dominant pft (with a maximum NPP). For a better dis­<br />

crimination, we use also an additional predictor re­<br />

lated to the rank of the pft in the above list, so that<br />

forest pfts have a lower rank than the herbaceous pfts.<br />

Transfer function (TF) from BIOME3.5 to pollen<br />

BIOME3.5 is run, on the 1245 modern pollen<br />

samples, to estimate the 13 predictors described in<br />

section 2.1. Then we use a backpropagation neural<br />

network technique (as in section 1) to calculate a set<br />

of non-linear relationships between the 12 pollen­<br />

derived pft scores and the 13 predictors. The correla­<br />

tion coefficients are greater than 0.55 and often<br />

greater than 0.8 (see Table 1) except for the heaths<br />

(mainly Calluna) which is a really ubiquitous pft.<br />

The likelihood function (LH)<br />

The inverse modelling problem consists in finding<br />

the value of an input parameter vector for which the<br />

model output fits as much as possible a set of obser­<br />

vations (Mosegaard & Tarantola, 1995). Here, the pa­<br />

rameters of the model are a set of climatic variables<br />

which constrain properly the pollen pft scores.<br />

The crudest approach is the exhaustive sampling,<br />

where all the points in a dense grid, covering the<br />

model space, are visited. This method is not be rec­<br />

ommended if the number of parameters is high. An<br />

ecologia <strong>mediterranea</strong> <strong>25</strong> (2) - <strong>1999</strong>


Guiot et al.<br />

alternative approach is the Bayesian approach which<br />

describes the "0 priori information" we may have on<br />

the parameter vector by a probability density. Then it<br />

combines this information with the information pro­<br />

vided by the comparison of the information provided<br />

by the model to that provided by the observations in<br />

order to define a probability density representing the a<br />

posteriori information. The likelihood function, which<br />

roughly measures the fit between observed data and<br />

data predicted by the model, links the a posteriori<br />

probability to the a priori one.<br />

To give a maximum weight to cases where the cor­<br />

rect biome is predicted, we adopt a likelihood function<br />

LH which is proportional to the difference between<br />

predicted and observed pft and also to the difference<br />

between predicted and observed biomes. More details<br />

are given in Guiot et al. (in press).<br />

Definition of the parameter vector<br />

The parameters of interest in this study are tem­<br />

perature and precipitation. We add to the modern<br />

monthly temperatures a term L'l T; and we multiply<br />

the modern monthly precipitation by a given !1P<br />

J<br />

(all<br />

being either positive or negative). It is not necessary to<br />

sample independently the 12 monthly parameters be­<br />

cause they are linked by the seasonal cycle. Thus, we<br />

vary first the January and July climatic parameters;<br />

then, we deduce the value for the other months<br />

U=I, ...,l2) by linear interpolation (Guiot et aI., in<br />

press).<br />

The sunshine parameter cannot be processed inde­<br />

pendently from temperature and precipitation as it re­<br />

lates more or less strongly to the latter ones (see Table<br />

4 in Guiot et al., in press).<br />

Consequently, for each parameter vector (L'lTJan,<br />

L'lTJul. L'lPJan, L'lPJul ), we calculate 12 monthly temperature<br />

values (Tj+L'lT j , j=1,12), 12 monthly precipitation<br />

values (Pj*L'lPj, j=I,12) and 12 monthly sunshine val­<br />

ues which are then used as input into the vegetation<br />

model.<br />

Monte-Carlo sampling (Metropolis-Hastings algorithm)<br />

Let us consider a multi-dimensional mathematical<br />

domain where each dimension represents a parameter<br />

range. A vector of parameters is an element of the<br />

ecologia <strong>mediterranea</strong> <strong>25</strong> (2) - <strong>1999</strong><br />

Glacial maximum climate by inverse vegetation modelling<br />

multi-dimensional domain. The Metropolis-Hastings<br />

(MH) algorithm is an iterative method which browses<br />

the domain of the parameters according to an accep­<br />

tance-rejection rule (Metropolis et aI., 1953 ; Hast­<br />

ings, 1970). Strictly speaking, the MH algorithm is not<br />

an optimisation method of the posterior joint density<br />

function, but a method for browsing the prior defini­<br />

tion domain of the parameter vector in order to simu­<br />

late its posterior distribution. The histograms of the<br />

parameters are incremented according to the candidate<br />

or the actual value, according to the fact that it is ac­<br />

cepted or not. These histograms are estimates of the<br />

posterior probability distribution of the parameters.<br />

The MH algorithm was applied with the LH func­<br />

tion presented in section 2.3 and with a multivariate<br />

uniform distribution as a prior of the hyper-parameter.<br />

LH is not sensu stricto a likelihood function in the<br />

probability sense, but it has the form; numerous em­<br />

pirical tests have shown its suitability in our applica­<br />

tion.<br />

RESULTS<br />

Before applying the method to LGM pollen data, a<br />

test was performed on 591 pollen data selected among<br />

the 1245 spectra of the modern data set. These 591<br />

spectra are more or less equally distributed in Europe<br />

and Eurasia.<br />

Validation with modern data<br />

The CO 2 concentration was set to 340 ppmv. The<br />

input parameters were allowed to vary within the fol­<br />

lowing ranges:<br />

- L'lTJan : [-10, IO]OC in terms of deviations of the<br />

observed value<br />

- L'lTJul : [-10, IO]OC in terms of deviations of the<br />

observed value<br />

- L'lPJan : [-60, 60]% of the modern value<br />

- L'lPJul : [-60, 60] % of the modern value<br />

The number of iterations is set to 2400 for each<br />

sample. The value of LH converges most of the time<br />

towards -3. We select the 10% iterations giving the<br />

highest LH (note that LH is defined as negative).<br />

Among them we select the iterations which simulates<br />

the most frequent biome. Only these selected itera­<br />

tions (generally between 500 and 1000) are used for<br />

197


Guiot et al.<br />

building the a posteriori probability distribution. We<br />

calculate then the probability distribution of the four<br />

input parameters (L1TJan , L1TJu1 , L1PJan , L1P Jul ).<br />

For a given site, the results are summarised as<br />

follows: (I) we look for the mode of the distribution;<br />

(2) if it is positive we calculate the probability that it<br />

is significantly larger than 0 by summing the prob­<br />

abilities above 0 (if it is negative, we proceed in the<br />

same way with the probability to be negative); (3) if<br />

that probability is less than 75%, the reconstructed<br />

value is zero, otherwise it is equal to the mode. For the<br />

next step, we retain that reconstructed values which<br />

are distributed in function of the reconstructed biome.<br />

Figure 2 shows the box plots of the reconstructed<br />

anomalies of temperature and precipitations along a<br />

gradient from the coldest to the warmest biome (the<br />

three last biomes being the driest ones).<br />

Most of the medians are zero, which shows that<br />

the mean bias is null. There are a few exceptions:<br />

- L1TJu1 is underestimated for tundra and overestimated<br />

for warm steppes, which is maybe due to the<br />

fact that the modern dataset is dominated by samples<br />

taken in very cold tundra and very warm steppes;<br />

- L1TJan is generally overestimated for warm mixed<br />

forest maybe because, in our modern dataset, that bi­<br />

ome mainly occurs with mild winters;<br />

- L1PJu1 is overestimated for temperate deciduous<br />

forest, which is hard to interpret as that biome is not<br />

frequently reconstructed in our dataset (the corre­<br />

sponding pollen assemblages are often similar with<br />

those sampled in cool mixed forest);<br />

- L1PJan is reconstructed as zero everywhere be­<br />

cause it corresponds to probabilities less than 75%.<br />

We have also to consider the interquartile interval<br />

which is related to dispersion of the reconstructions<br />

around the median. A weak dispersion around a null<br />

median means that the parameter is extremely well<br />

reconstructed: it is the case for L1TJan in tundra, cool<br />

steppes and cool mixed forest, L1PJan everywhere, L1PJul<br />

in the driest biomes (warm mixed forest, xerophytic<br />

vegetation, steppes). The dispersion is generally weak,<br />

which encourages us to apply the method to the fossil<br />

data.<br />

The final objective of the method is to reconstruct<br />

the bioclimatic variables which drive the model. To<br />

have an idea of its precision, we use the root mean<br />

squared error (RMSE) statistic. It is calculated over all<br />

ecologia <strong>mediterranea</strong> <strong>25</strong> (2) - <strong>1999</strong><br />

Glacial maximum climate by inverse vegetation modelling<br />

the modern samples and over the two dominant biomes<br />

of the LGM (Table 2).<br />

The last glacial maximum<br />

After validation, the method can be applied to the<br />

71 fossil spectra of Europe and Eurasia. The first ex­<br />

periment is based on the LGM CO 2 concentration (200<br />

ppmv: Barnola et aI., 1987). Figure 3 shows the geo­<br />

graphical distribution of the three major bioclimatic<br />

variables. The western part of the continent seems to<br />

have been colder than the eastern part. The moisture<br />

variable (EIPE) does not seem to have been much<br />

lower than present except in some sites. These results<br />

must be compared with those obtained with the same<br />

data by Peyron et al. (1998) and Tarasov et al. (<strong>1999</strong>).<br />

For that, we divide the continent into four regions:<br />

Mediterranean (9 sites of Peyron), western Europe<br />

(the other 6 sites of Peyron), northern Eurasia (the<br />

sites of Tarasov at north of 53°N), Southern Eurasia<br />

(the sites of Tarasov at south of 53°N). We do not mix<br />

the reconstructions of the two papers because there is<br />

a difference in the number of variables reconstructed.<br />

We compare also these reconstructions to a second<br />

experiment based on 340 ppmv of CO2• The results<br />

are summarised as box plots in Figure 4.<br />

Figure 4 shows well the west-east gradient of<br />

MTCO and GDD5. It shows also the good agreement<br />

between the results of the pft method and those of the<br />

two experiments (200 and 340 ppmv). For E/PE, the<br />

agreement is also good except for western Europe,<br />

where the vegetation model is able to produce cool<br />

steppes with a small decrease of available water (and a<br />

large decrease of temperature), while, for the pft<br />

method, it is necessary to decrease EIPE to values less<br />

than 65%.<br />

The box plots of Figure 4 are not enough detailed<br />

to compare the results between 200 and 340 ppmv<br />

CO 2 • Indeed, it has been shown (Guiot et aI., in press)<br />

that the response of pollen pft to climatic change<br />

could appear as multimodal distribution. To analyse<br />

these responses in more detail, we have selected a few<br />

sites in each of the four zones and we have represented<br />

these distributions for the three bioclimatic pa­<br />

rameters (Figure 5).<br />

MTCO: there is no significant deviation between<br />

the two distributions except in Mediterranean region<br />

where anomalies of -<strong>25</strong>°C are more probable under<br />

low CO 2 than higher anomalies;<br />

199


Guiot et al. Glacial maximum climate by inverse vegetation modelling<br />

70 0<br />

70 0<br />

70 0<br />

MTCO : deviations from modern value (OC)<br />

•<br />

Pro.b=75% 10<br />

N<br />

GODS : deviations from modern value (OC*day)<br />

Prob=75% 2000<br />

•<br />

N<br />

N<br />

• Pro.b=75%<br />

Figure 3. Reconstruction of three bioclimatic parameters using inverse modelling of pollen spectra for the last glacial maximum<br />

ecologia <strong>mediterranea</strong> <strong>25</strong> (2) - <strong>1999</strong> 201<br />

10go Ii<br />

5<br />

o<br />

1000<br />

o


Madon ct a1. Influence ofstudy scale on the characterisation afp/ants community organisation<br />

INTRODUCTION<br />

Patterns of species distributions, at the community,<br />

the landscape, or the region level first focused mainly<br />

on the response of the species to an environmental<br />

gradient (see in particular Clements, 1916, 1936;<br />

Oleason, 1917, 1926; Whittaker, 1951, 1967; Curtis,<br />

1959, and see also the recent synthetical model of<br />

Collins et al., 1993). An environmental gradient, or<br />

complex gradient (Whittaker, 1967) is the factors as a<br />

whole -including biotic factors- changing in space and<br />

governing the species distribution.<br />

In later studies, the pattern analysis of species dis­<br />

tributions took factors other than environmental axes<br />

into account, what Whittaker (1975) called « noise»<br />

in quantitative analysis was carefully studied. In par­<br />

ticular, at the community level, patch dynamics (Levin<br />

& Paine, 1974; Whittaker & Levin, 1977; Connell,<br />

1978, 1979) has had a considerable impact on the un­<br />

derstanding of the community functioning. According<br />

to this concept, a plant community is a mosaic of<br />

patches of differing successional stages. The existence<br />

of these successional stages would be caused by dis­<br />

turbances. The hierarchical organisation of the com­<br />

munity, or of the region (Alien, 1987; Kolasa, 1989;<br />

Pickett et al., 1989) develops this concept by consid­<br />

ering (Kolasa's model) the habitat as hierarchically<br />

heterogeneous. For example, patches are made of<br />

smaller patches; the latter are made of even smaller<br />

patches. The species are distributed in these patches<br />

according to their specialisation level. The core­<br />

satellite hypothesis (Hanski, 1982 , 1991) distin­<br />

guishes core species - frequent and abundant - from<br />

satellite species - sparse and rare. A few abundant<br />

species are infrequent - urban species - and a few rare<br />

species are frequent - rural species.<br />

This body of theories (hierarchical organisation<br />

and core-satellite hypothesis) predicts that species<br />

which constitute the largest category would be the<br />

least frequent ones (to be found in less than 10 % of<br />

sites). Discrepancies appear for other maxima: Ko­<br />

lasa's model (1989) predicts other peaks of species<br />

number which are weaker and weaker towards the<br />

highest frequencies (Figure IA), while Hanski's<br />

model (1982) predicts only a second maximum, for<br />

the most frequent species (Figure ID). These latter<br />

models loosely relate to gradients. Hanski (1982)<br />

stresses that her theory is applicable when sites are in<br />

similar habitats, but Collins et al. (1993) introduce an<br />

206<br />

environmental gradient (Figure 2) in their hierarchical<br />

continuum concept, a synthesis between the individu­<br />

alistic hypothesis (Oleason, 1917, 1926), the hierar­<br />

chical structure ofcommunity (Kolasa, 1989), and the<br />

core-species hypothesis (Hanski, 1982, 1991).<br />

The purpose of this study is to appreciate the effect<br />

of sampling scale on predictive and explanating value<br />

of various models at the level of the community. The<br />

impact of scaling is examined through two different<br />

problems:<br />

- the detection of ecological gradients through the<br />

means of Correspondence Analysis (CA);<br />

- the validation of one of the two contradictory<br />

models: core-satellite hypothesis or Kolasa' s model.<br />

About the first point, the area-richness curves<br />

show the key-role of the area investigated for meas­<br />

uring richness (e.g. Arrhenius, 1921; Connor &<br />

McCoy, 1979; Williamson, 1988; Rey Benayas et al.,<br />

<strong>1999</strong>). Then one must consider how the census of new<br />

species influences the detection of ecological gradi­<br />

ents, as sample size increases. According to the hierarchical<br />

organisation theory, patches of various sizes<br />

could generate changing interpretation for gradients<br />

by changing scale. Several cases can occur: (i) the<br />

detected ecological gradients are the same at all the<br />

scales, in the same order of importance; (ii) they are<br />

the same but in different orders; (iii) they are not the<br />

same. The ordination of samples on axes must also be<br />

considered. It can vary as the size of the sample var­<br />

ies.<br />

The second point has been studied by varying the<br />

level of organisation. Hanski (1982, 1991) originally<br />

put forward the core-satellite hypothesis for regional<br />

distribution patterns, then Ootelli & Simberloff<br />

(1987), Collins & Olenn (1990) proved that commu­<br />

nity-level data and small-scale study data supported<br />

this model. But what about scaling at the same level<br />

(here the community)? Coliins & Olenn (1990) le­<br />

gitimately suspect a strong influence of scaling on fre­<br />

quency measures, but this must be tested.<br />

METHODS AND STUDY SITE<br />

Study site<br />

The study was carried out in a Mediterranean<br />

limestone grassland. This grassland lies on the western<br />

ridge of the Massif du Ventoux (Provence, France) at<br />

a height of 835 m.<br />

ec%gia <strong>mediterranea</strong> <strong>25</strong> (2) - <strong>1999</strong>


Madon et al. Influence ofstudy scale on the characterisation ofplants community organisation<br />

Axis I Axis 2 Axis 3 Species number<br />

Quadrats A 14,65 11,36 10,01 56<br />

Quadrats B 18,16 12,40 10,14 61<br />

Quadrats C 17,21 11,12 9,98 76<br />

Quadrats D 16,07 11,46 11,18 86<br />

Table I. Relative inertia partition on the three first axes of CA for the four sampling scales<br />

Positive contributions Negative contributions<br />

A B C D A B C D<br />

Petrorhagia prolifera 99 Argyrolobium zanonii 43<br />

Centaurea IJanicu/ata 58 Teucrium montanum 38 36 49<br />

Koeleria vallesiana 62 Fumana procumbens 50 38 29 37<br />

Crupina vulr;aris 38 52 40 Genista hispanica 51 42 74 81<br />

Trinia Rlauca 82 69 38 31 Leuzea conifera 33 28<br />

Cerastium arvense suffruticosum 100 74 53 46 Aster sedifolius 56 44<br />

Echium vu/gare 40 Ame/anchier ovalis 54 40<br />

Lactuca perennis 60 Quercus humilis 74<br />

Anthericum /i/iaRo 54 31 Dactvlis f!lomerata 28<br />

Bupleurum baldense 51 35 34 Potentilla hirta 62<br />

Sedum acre 57 32<br />

Helianthemum nUl7lmu/arium 41<br />

Asperula cynanchica 38<br />

Arl7leria arenaria 72 74<br />

Genista X martinii 39<br />

Table 2. Highest plant species contribution for axis I to the different scales<br />

Quadrats A B C D<br />

Axes 1 2 1 2 1 2 1 2<br />

A I 1.000<br />

2 0.033 1.000<br />

B 1 0.758 0.399 1.000<br />

2 -0.104 0.543 0.134 1.000<br />

C I 0.532 0.290 0.681 0.196 1.000<br />

2 0.176 0.080 0.110 -0.237 -0.123 1.000<br />

D I 0.348 0.080 0.406 0.055 0.638 -0.185 1.000<br />

2 -0.021 0.015 0.018 0.015 -0.042 -0.001 0.068 1.000<br />

Table 3. Correlations between axes 1 and 2 on the different scales (correlations for axes I in bold)<br />

The positive pole is characterised for each scale by<br />

species of xeric grasslands (Thero-Brachypodietalia),<br />

in particular with some annuals (Petrorhagia prolif­<br />

era, Crupina vulgaris, Bupleurum baldense). The<br />

negative pole is characterised for each scale by species<br />

which are less xerophytic and often belong to more<br />

mature communities.<br />

Axis I appears to represent a gradient linked to the<br />

water balance. The analysis of the plot-points (Figure<br />

I) indicates that their projection onto axis I of each<br />

CA is closely linked to their geographic arrangement<br />

along a north-south axis. The northern plots corre­<br />

spond to the xeric pole. This gradient can be explained<br />

by the topography, the northern plots being more ele-<br />

ecologia <strong>mediterranea</strong> <strong>25</strong> (2) - <strong>1999</strong><br />

vated than southern ones by about I meter. Alterna­<br />

tively the mass effect (Shmida & Ellner, 1984) from<br />

the ridge itself should not be dismissed. The xeric spe­<br />

cies on the ridge can scatter into the windward portion<br />

of the grassland, thus increasing the xericity gradient.<br />

Axis I leads to the same interpretations, irrespec­<br />

tive of the scale of data collections. This result is in<br />

keeping with the correlations between the axes I,<br />

which are relatively strong (Table 3). These correla­<br />

tions are discussed below.<br />

Axis 2 always presents a weak inertia (Table I), as<br />

regards the number of species. It has not been possible<br />

to interpret it at any scale. Additionally, axes 2 at the<br />

different scales show weak correlations between one<br />

209


Madon et al. Influence ofstudy scale on the characterisation ofplants community organisation<br />

another (Table 3), except between scales A and B.<br />

However, concerning CA of quadrats D, plots which<br />

are close in space are most of the time also close on<br />

factorial axis 2. Similarly, we were unable to interpret<br />

axis 3.<br />

These results indicate that only one physical gradi­<br />

ent can be identified at the different scales we examined.<br />

The organisation of the plot-points is slightly<br />

different on axis I according to the size of the<br />

quadrats (plot 9 in particular shows an important move<br />

along axis I).<br />

Interpretation of species contributions by their pat·<br />

terns of distribution<br />

If we examine the species with a strong contribu­<br />

tion for axis I (Table 2), we can make out 3 groups:<br />

Species characterising the poles (positive or nega­<br />

tive) only on a fine scale (Petrorhagia prolifera, Ar­<br />

gyrolobium zanonii... ). We hypothesise that these<br />

species are simply more scattered in one environment<br />

than another (at one geographic pole than another). In<br />

a limited sampling, th€y would tend to appear in one<br />

type of environment only, in such a way that they<br />

largely contribute to determine axis 1. On the con­<br />

trary, when sampling scale increases, they would also<br />

appear in the other environment and their contribution<br />

would decrease, i.e. they would take a lesser part in<br />

the discrimination between one environment and the<br />

other.<br />

Species characterising the poles at all the scales<br />

(Cerastium arvense subsp. suffruticosum, Genista his­<br />

panica... ). We suggest they are almost absent from<br />

quadrats of one geographic pole whatever the scale, at<br />

least at the selected scales.<br />

Species characterising the poles only on a large<br />

scale (Sedum acre, Amelanchier ovalis... ). These spe­<br />

cies are exclusively present in one environment but<br />

they are represented by individuals or groups of individuals<br />

quite sparse in this environment. Conse­<br />

quently, they tend to appear only in larger sample size<br />

only.<br />

The analysis of species presence-absence data<br />

among the plots at the different scales enabled us to<br />

clearly see the interpretation proposed for each point<br />

above. A few species have a high contribution only on<br />

middle scales (Echium vulgare, Asperula cynanchica...<br />

). That means that their distribution is linked to<br />

the gradient, but that the frequency gap from one pole<br />

210<br />

to the other is of relatively little importance. Let us<br />

stress the fact that axis 1 retains its meaning across<br />

scales. Table 3 shows, however, that the correlations<br />

of axes 1 between one another are better between two<br />

successive scales.<br />

Interpretation of plot-points distribution in factorial<br />

planes by species patterns<br />

The organisation of the plot-points in the factorial<br />

planes 1-2 is very characteristic (Figure 1): the active<br />

point of a group of 4 plots (the other 3 being non ac­<br />

tive) clearly shows a trend to be the furthest from the<br />

origin, whatever the CA. For an active point repre­<br />

senting a quadrat of a given size, we can underline:<br />

The smallest quadrats (non-active) tend to be<br />

placed closer to the origin for they contain less often<br />

the species with a strong contribution. Indeed, we<br />

verified above that some of these species don't occur<br />

in most of the small quadrats because they are too<br />

scattered.<br />

The largest quadrats (non-active) also tend to come<br />

closer to the origin for, on the contrary, they all tend<br />

to contain some species with a strong contribution.<br />

Indeed, some of the « discriminating» species at the<br />

concerned scale are no more «discriminating» at a<br />

larger scale (see above).<br />

Patterns of species frequency<br />

We have represented in histograms the distribution<br />

of the taxa among classes of frequency (presences in<br />

the plots) (Figure 4). It appears clearly that on the<br />

smallest scale (quadrats A), collections are dominated<br />

by scarce species (lowest frequency). Secondary<br />

maxima are visible, but their distribution depends on<br />

the classes of frequencies used. When the observation<br />

scale goes up, a second peak emerges in the class of<br />

most frequent species. Thus, in larger squares, there is<br />

a large proportion of species present in one quadrat<br />

only, and a large proportion of species present in all<br />

the quadrats.<br />

On all the scales, there is a very good positive cor­<br />

relation between abundance and frequency of species<br />

(Figure 5; quadrats A: r=0.81; quadrats B: r=0.79;<br />

quadrats C: r=0.81; quadrats D: r=0.82; for each test<br />

p


Madon et al. Influence ofstudy scale on the characterisation ofplants community organisation<br />

This property is consistent with expectations of<br />

Hanski's (1982) and Kolasa's (1989) models.<br />

DISCUSSION<br />

Detection of the gradients<br />

In our data, only one ecological factor was de­<br />

tected, and it always corresponds to axis 1 whatever<br />

the study scale. In these data set, a small grain is thus<br />

sufficient to detect the ecological gradient. At the ex­<br />

amined scales, the organisation of the vegetation in<br />

patches (Whittaker & Levin, 1977) does not influence<br />

strongly the detection of a gradient whatever the scale.<br />

Nevertheless, correlations between axes 1 are weaker<br />

and weaker as the difference of scale increases. This<br />

underlines the risks there are to introduce different<br />

size plotting in a multi-dimensional analysis.<br />

In our study, the organisation of the plot-points<br />

which is slightly different on axis 1 according to the<br />

size of the quadrats can be linked to the existence of<br />

patches. These moves correspond to a mosaic organi­<br />

sation of the vegetation. In any case, patches of vari­<br />

ous sizes are visible in the physiognomy of the<br />

community. For example, some Crassulaceae and an­<br />

nuals are confined in microhabitats of 1 to 3 dm 2 •<br />

These microhabitats cannot be detected with the grain<br />

of resolution we have used. They are linked to distur­<br />

bances and stress (Madon & Medail, 1997), and life in<br />

them is very difficult because of ranges of tempera­<br />

ture, drought and the possible accumulation of litter<br />

(Fowler, 1988; Bergelson, 1990; Ryser, 1993). They<br />

are more close at the north part of the grassland than<br />

at the south part.<br />

Models of distributions offrequency<br />

Figure 4 clearly shows that, on a small scale, the<br />

results are consistent with Kolasa's model (1989): one<br />

mode for infrequent species and other secondary<br />

modes weaker and weaker towards classes of strong<br />

frequency. On the contrary, towards the large scales,<br />

the results become consistent with Hanski's model<br />

(1982) for the communities: two important modes for<br />

the two extreme classes of frequency. This result<br />

shows that even at the same level of organisation<br />

212<br />

(within the community), simply by changing the study<br />

scale, data can support one or the other model.<br />

On a small scale (quadrats of 1 m 2 ), Collins &<br />

Glenn (1990) found a second maximum in the group<br />

of high frequency. But in this study, the quadrats were<br />

adjacent: numerous species have a strong probability<br />

to occur in most of the quadrats. Indeed, the higher<br />

similarity of geographically close plots has been ac­<br />

knowledged for a long time (Curtis, 1959; Whittaker,<br />

1972; Barbour et aI., 1980). Shmida & Ellner (1984)<br />

attribute this feature to mass effect, but recognise that<br />

the existence of cryptic gradient is not to be dismissed.<br />

Williams (1950) and Coilins and Glenn (1990)<br />

suggested the possibility of a « saturation» of large<br />

quadrats in a great number of species. Figure 5<br />

(quadrats D) clearly confirms this suggestion: the spe­<br />

cies plotted on a small scale tend to move towards the<br />

right on the large scale graph; therefore a certain<br />

number is present in all the quadrats (


Madon et al. Influence ofstudy scale on the characterisation ofplants community organisation<br />

frequency<br />

among<br />

quadrats .&<br />

100% :-,1"..- saturation<br />

"""" _<br />

quadrats A<br />

quadrats B<br />

quadrats C<br />

quadrats D<br />

gradient<br />

Figure 6. Influence of quadrat size on the character core or satellite of a species. The size of quadrats increases from A to D. At a<br />

small scale (quadrats A), the species can be unfrequent (satellite or urban) and at a larger scale (quadrats D), the species can saturate<br />

quadrats (it is core or rural).<br />

Acknowledgements<br />

We are grateful to M. Roux for his support during<br />

the study, P. Roche & T. Tatoni for their detailed re­<br />

view and two anonymous reviewers for their correc­<br />

tions.<br />

REFERENCES<br />

Alien T. F. H. 1987. Hierarchical complexity in ecology: a<br />

non-euclidean conception of the data space. Vegetatio,<br />

69: 17-26.<br />

Arrhenius O. 1921. Species and area. J. Ecol., 9 : 95-99.<br />

Barbour, M. H., Burk, 1. H. & Pitts, W. D. 1980. Terrestrial<br />

Plant Ecology. Benjamin Cummings, Men10w Park,<br />

California, U.S.A.<br />

Bergelson, 1. 1990. Life after death: site pre-emption by the<br />

remains of Poa annua. Ecology, 71: 2157-2165.<br />

Clements, F. E. 1916. Plant succession: an analysis of the<br />

development of vegetation. Carnegie Inst. Wash. Pub!.<br />

n° 242.<br />

Clements, F. E. 1936. Nature and structure of the climax. J.<br />

Ecol., 24: 552-584.<br />

Collins, S. L. & Glenn, S. M. 1990. A hierarchical analysis<br />

of species' abundance patterns in grassland vegetation.<br />

Am. Nat., 135: 633-648.<br />

Collins, S. L., Glenn, S. M. & Roberts, D. W. 1993. The hierarchical<br />

continuum concept. J. Veg. Sci., 4: 149-156.<br />

Connell, 1. H. 1978. Diversity in tropical rain forests and<br />

coral reefs. Science, 199: 1302-1310.<br />

Connell, 1. H. 1979. Tropical rain forests and coral reefs as<br />

open non-equilibrium systems. In: Anderson R. M.,<br />

Turner, B. D. & Taylor, L. R. (eds.) Populations Dynamics:<br />

20th Symposium ofthe British Ecological Society,<br />

B1ackwell, Oxford: 141-163.<br />

Connor E.F. & McCoy ED. 1979. The statistics and biology<br />

of the species-area relationship. Am. Nat., 113 : 791-833.<br />

Curtis, 1. T. 1959. The vegetation of Wisconsin. Univ. Wisconsin<br />

Press, Madison.<br />

Fowler, N. 1988. What is a safe site?: neighbor, litter, germination<br />

date and patch effects. Ecology, 69: 1731­<br />

1740.<br />

Frontier S. & Pichod-Viale D. 1991. Ecosystemes: structure,<br />

fonctionnement, evolution. Masson, Paris.<br />

Gleason, H. A. 1917. The structure and development of the<br />

plant association. Bull. Torrey Bot. Club, 44: 463-481.<br />

Gleason, H. A. 1926. The individualistic concept of the plant<br />

association. Bull. Torrey Bot. Club, 53: 7-26.<br />

Gotelli, N. 1. & Simberloff, F. D. 1987. The distribution and<br />

abundance of tallgrass prairie plants: a test of the coresatellite<br />

hypothesis. Am. Nat., 130: 18-35.<br />

Hanski, I. 1982. Dynamics of regional distribution: the core<br />

and satellite hypothesis. Oikos, 38: 210-221.<br />

Hanski, I. 1991. Single-species metapopulation dynamics:<br />

concepts, models and observations. Bioi. 1. Linn. Soc.,<br />

42: 17-38.<br />

Kerguelen, M. 1993. Index synonymique de la flore de<br />

France. Museum National d'Histoire Naturelle, Paris.<br />

Kolasa, 1. 1989. Ecological systems in hierarchical perspective:<br />

breaks in community structure and other consequences.<br />

Ecology, 70: 36-47.<br />

Levin, S.A. & Paine, R.T. 1974. Disturbance, patch formation<br />

and community structure. Proc. Nati. Acad. Sci.<br />

U.SA, 71: 2744-2747.<br />

Madon, O. & Medail, F. 1997. The ecological significance<br />

of annuals on a Mediterranean grassland (Mt Ventoux,<br />

France). Plant Ecol., 129: 189-199.<br />

Magurran, A. E. 1988. Ecological diversity and its measurement.<br />

Croom Helm, Princeton Univ. Press, Princeton.Pickett,<br />

S.T.A., Kolasa, 1., Armesto, 1.1. & Collins,<br />

S.L. 1989. The ecological concept of disturbance and its<br />

expression at various hierarchical levels. Oikos, 54: 129­<br />

139.<br />

Rey Benayas, 1.M., Colomer, M.G.S. & Levassor, C. <strong>1999</strong>.<br />

Effects of area, environmental status and environmental<br />

variation on species richness per unit area in Mediterranean<br />

wetlands. J. Veg. Sci., 10 : 275-280.<br />

Ryser, P. 1993. Influences of neighbouring plants on seedling<br />

establishment in limestone grassland. 1. Veg. Sci., 4:<br />

195-202.<br />

ecologia <strong>mediterranea</strong> <strong>25</strong> (2) - <strong>1999</strong> 213


Madon et al. Influence ofstudy scale on the characterisation ofplants community organisation<br />

Shmida, A. & Ellner, S. 1984. Coexistence of plant species<br />

with similar niches. Vegetatio, 58: 29-55.<br />

Ter Braak, C.l.F. 1987. Ordination. In: longman, R.H.G.,<br />

Ter Braak, C.l.F., & Van Tongeren, O.F.R. (eds.) Data<br />

analysis in community and landscape ecology. Pudoc,<br />

Wageningen: 91-173.<br />

Whittaker, R. H. 1951. A criticism of the plant association<br />

and climatic climax concepts. Northw. Sci., <strong>25</strong>: 17-31.<br />

Whittaker, R. H. 1967. Gradient analysis of vegetation. Bioi.<br />

Rev., 42: 207-264.<br />

Whittaker, R. H. 1972. Evolution and measurement of species<br />

diversity. Taxon, 21: 213-<strong>25</strong>1.<br />

214<br />

Whittaker, R. H & Levin, S. A. 1977. The role of mosaic<br />

phenomena in natural communities. Theor. Pop. Bioi.,<br />

12: 117-139.<br />

Williams, C. B. 1950. The application of the logarithmic<br />

series to the frequency of occurrence of plant species in<br />

quadrats.1. Ecol., 38: 107-138.<br />

Williamson M. 1988. Relationship of species number to<br />

area, distance and other variables. In : A. A. Myers &<br />

P.S. Giller (eds.). Analytical biogeography. Chapman &<br />

Hall, London: 91-115.<br />

ecologia <strong>mediterranea</strong> <strong>25</strong> (2) - /999


Plant systematics: a phylogenetic approach<br />

W.S. JUDD, C.S. CAMPBELL, E.A. KELLOGG & P.P. TEVEN<br />

Sinauer associates, Inc., 464 p. (<strong>1999</strong>)<br />

Ce livre est une synthese de<br />

tous les travaux recents en matiere<br />

de phylogenie ainsi que de leurs<br />

applications directes dans la systematique<br />

des plantes. Le resultat<br />

est vraiment exceptionnel, compte<br />

tenu de la multitude des travaux<br />

ponctuels actuellement publies,<br />

tant d'un point de vue moleculaire<br />

que morphologique (cette derniere<br />

approche retrouvant un certain essor<br />

du fait des limitations de la<br />

precedente). Ce Iivre se presente<br />

comme une sorte de precis de systematique<br />

moderne articule en<br />

deux parties. Le lecteur se familiarisera<br />

dans un premier temps avec<br />

les techniques generales de la<br />

phylogenie, avant de decouvrir les<br />

clades degages de ces approches.<br />

Nous commen


tyledones et des Laurales avec<br />

d'autres groupes longtemps consideres<br />

comme basaux au sein des<br />

Angiospermes. Citons egalement<br />

I'admission de la plupart des ex­<br />

Scrophulariaceae au sein des<br />

Plantaginaceae, ou des Anthirrinaceae,<br />

seIon les avis, ainsi que la<br />

fragmentation des Liliales - Liliaceae<br />

en un grand nombre de families<br />

et genres.<br />

Ces nombreux exemples eloignes<br />

des croyances classiques peuvent<br />

evidement donner naissance a<br />

certaines critiques plus ou moins<br />

legitimes. Quelle valeur peut-on<br />

vraiment accorder aux groupes<br />

Ghilem MANSION<br />

Institut de Botanique de Neuchatel (Suisse)<br />

consideres dans ce livre, dans la<br />

mesure ou n'ont ete envisagees que<br />

des approches partielles, avec des<br />

genes et des caracteres classiques<br />

variants selon les etudes?<br />

Nous pouvons conclure avec<br />

les propos des auteurs eux-meme,<br />

conscients des limites de cet ouvrage:<br />

"Les etudiants apprecieront<br />

{'abandon des rangs classiques...<br />

Avec ces bases, ils pourront avancer<br />

de maniere sure dans la comprehension<br />

de la diversite des<br />

plantes" ou encore "...dans ce livre,<br />

nous pensons que certains des<br />

groupes decrits seront peut-etre<br />

Biology and Wildlife of the Mediterranean Region<br />

J. BLONDEL & J. ARONSON<br />

Oxford Univ. Press, Oxford, 328 p. (<strong>1999</strong>)<br />

S'engager dans la redaction<br />

d'un ouvrage sur la biodiversite du<br />

monde mediterraneen, etait a la<br />

fois courageux et ambitieux; les<br />

auteurs le reconnaissent, comme<br />

ils indiquent en preface avoir volontairement<br />

axe leurs discussions<br />

et illustrations sur les questions et<br />

les groupes qui s'inscrivaient dans<br />

le domaine de leurs activites, tout<br />

en tentant de rester clair et d'eviter<br />

un jargon hermetique aux nonspecialistes.<br />

11 faut reconnaitre<br />

qu'ils y sont parvenus, et que cet<br />

ouvrage se lit facilement et avec<br />

interet. Je pense que le but souhaite<br />

par les auteurs est atteint, et<br />

qu'en quelques 300 pages, ils sont<br />

arrives a dresser un bilan clair et<br />

quasi-exhaustif des problemes relatifs<br />

a la biodiversite du monde<br />

mediterraneen.<br />

C'est volontairement que les<br />

auteurs restent sur des thematiques<br />

216<br />

souvent generales, et, ils le soulignent,<br />

au niveau de la semivulgarisation,<br />

car ils ne veulent<br />

nullement faire oeuvre de specialistes.<br />

Ceci assurera certainement<br />

une plus large diffusion a cet ouvrage,<br />

meme si le scientifique reste<br />

parfois sur sa faim.<br />

Les bilans et les exemples<br />

choisis illustrent clairement les caracteres<br />

majeurs du monde mediterraneen,<br />

depuis son individualisation<br />

climatique et biologique, en<br />

passant par sa mise en place actuelle<br />

et ses traits de vie, et en<br />

s'ouvrant sur les challenges que<br />

posent son avenir. Le role de l'action<br />

humaine est fort justement<br />

souligne, comme l'indique joliment<br />

le titre du chapitre 8 " Humans as<br />

sculptors of <strong>mediterranea</strong>n landscape".<br />

11 n'est question ici, ni de resumer<br />

un ouvrage extremement<br />

modifies, voire detruits, dans les<br />

annees avenir".<br />

Quoiqu'il en soit, malgre ces<br />

bemols, ce livre peut etre considere<br />

sans retenue comme une reference<br />

fondamentale pour le botaniste du<br />

prochain millenaire.<br />

Ajoutons une bibliographie<br />

pour le moins monumentale, a la<br />

fois tres recente et complete, qui<br />

justifie a elle seule I'achat de ce<br />

livre, deux appendices tres interessants<br />

et un CD Rom richement illustre<br />

et nous obtenons une bible<br />

dans le domaine, avec en prime un<br />

excellent rapport qualite/prix. A se<br />

procurer absolument !<br />

dense, ni de le critiquer, car je ne<br />

puis que souscrire, dans leurs<br />

grandes lignes, et souvent dans le<br />

detail, aux conclusions des auteurs<br />

qui, contrairement a un certain<br />

nombre de leurs predecesseurs,<br />

donnent une idee claire et juste des<br />

criteres fondamentaux du monde<br />

mediterraneen et de sa diversite.<br />

Cependant, je ne puis que regretter<br />

quelques oublis ou imprecisions.<br />

C'est ainsi, par exemple, que<br />

si definir les limites de la region<br />

mediterraneenne pose bien des<br />

problemes, mais reste necessaire,<br />

les auteurs ne contribuent guere a<br />

regler cette question. lis proposent<br />

dans les figures lA, 1.5 et 1.6, des<br />

solutions variables, excluant le S-E<br />

tunisien pour la premiere, et incluant<br />

toutes les bordures meridionales<br />

de la mer Noire qui en fait<br />

s'integrent dans la zone euxinienne<br />

(pontique) a Fagus orientalis et<br />

ecologia <strong>mediterranea</strong> <strong>25</strong> (2) - <strong>1999</strong>


Rhododendron ponticum dont le<br />

c1imat et la flore n'ont rien de mediterraneen.<br />

La carte de la figure<br />

1.6 dont je recuse toute paternite,<br />

comme cela est indique dans la legende,<br />

est la plus critiquable. Par<br />

exemple, la region saharo-arabe<br />

grignote une grande partie du<br />

Maghreb, dont les Atlas, alars que<br />

la province pontique cette fois englobe<br />

les Hauts Plateaux anatoliens<br />

et s'etend jusque sur les rivages de<br />

la Cilicie. De meme, I'idee des<br />

quatre quadrants (fig. lA) dans le<br />

monde mediterraneen est interessante,<br />

mais les limites proposees<br />

restent critiquables, surtout pour la<br />

peninsule italienne et ses lies annexes,<br />

ecartelees entre trois d'entre<br />

eux.<br />

Du point de vue historique,<br />

mon passe helas reduit et lointain<br />

de biospeleologue me fait toutefois<br />

regretter que cette facette n'ait pas<br />

ete analysee, pour rendre compte<br />

de certaines mises en place pre­<br />

Miocene, a partir de la repartition<br />

d'especes cavernicoles sur lesquelles<br />

existe une bonne documentation.<br />

Parmi les "habitats" caracteristiques<br />

du monde mediterraneen,<br />

un bon bilan a ete dresse, encore<br />

que la distinction entre foret<br />

sclerophylle et foret laurifoliee aurait<br />

gagne aetre etoftee et discutee<br />

en raison de leur signification<br />

ecologique fort differente. De<br />

meme, les mares tranSltOlres, un<br />

des joyaux du monde mediterraneen,<br />

selon le mot de Braun­<br />

Blanquet, avec les adaptations remarquables<br />

de leur faune et de leur<br />

flore, ne sont pas evoquees.<br />

Au niveau des traits de vie, les<br />

donnees relatives a I'origine de la<br />

sc1erophyllie et de son rOle dans le<br />

c1imat mediterraneen, de meme<br />

que le probleme du haut pourcentage<br />

de therophytes dans la flore,<br />

sont analysees, mais je demeure<br />

pour ma part sur mes incertitudes,<br />

quant aux explications et aux resultats<br />

exposes. Apropos du role<br />

et des modes de dissemination des<br />

especes et en particulier des diaspores,<br />

I'exemple des lies macaronesiennes<br />

(Canaries et Madere),<br />

aurait gagne aetre developpe.<br />

Les auteurs, a juste titre, ont<br />

mis I'accent sur les donnees historiques<br />

et le role de la region mediterraneenne<br />

en tant que capital<br />

biologique de base pour l'ec1osion<br />

des civilisations neolithiques. lis<br />

montrent une culture litteraire et<br />

histarique qui merite d'etre soulignee,<br />

et ont rendu en particulier a<br />

Theophraste, un juste hommage en<br />

tant qu' "inventeur" de la specificite<br />

du monde mediterraneen;<br />

Pierre QUEZEL<br />

Institut Mediterraneen d'Ecologie et de Paleoecologie, Marseille<br />

LOUIS-JEAN<br />

avenue d'Embrun, 05003 GAP cedex<br />

Tel. : 04 92 53 17 00<br />

Depot legal : 94 - Fevrier 2000<br />

Imprime en France<br />

mais pourquoi alars ne pas aVOlr<br />

au moins evoque son remarquable<br />

chapitre sur la biologie du figuier.<br />

..<br />

Meme si l'on pourrait citer encore<br />

quelques imprecisions ou<br />

quelques oublis, il n'en reste pas<br />

moins que le travail de BLONDEL<br />

& ARONSON, restera pour longtemps,<br />

une reference et une mine<br />

de renseignements, pour tous ceux<br />

qui aiment la region circummediterraneenne,<br />

et etudient sa<br />

faune et sa flore. Ce n'est pas I'un<br />

de leur moindre merite, que d'avoir<br />

su regrouper et integrer a la fois<br />

des groupes animaux et vegetaux,<br />

parfois fort differents quant aleurs<br />

significations histariques et a leurs<br />

reactions face aux contraintes<br />

ecologiques mediterraneennes. Les<br />

auteurs ont donc su dresser un bilan<br />

coherent, tout en soulignant la<br />

richesse biologique incomparable<br />

du monde mediterraneen, et le role<br />

qu'il a joue dans l'eclosion de nos<br />

civilisations. Ils terminent fort<br />

justement en soulignant les gravissimes<br />

menaces de tous ardres qui<br />

pesent sur lui et I'assaillent de<br />

toutes parts, et qui font certainement<br />

de cette region, a l'heure actuelle,<br />

une des plus menacees de la<br />

planete, "a microcosm of world<br />

problems".<br />

ec%gia <strong>mediterranea</strong> <strong>25</strong> (2) - /999 217


<strong>Ecologia</strong> Mediterranea publishes original research report and<br />

reviews in the fields of fundamental and applied ecology of<br />

Mediterranean areas. except descriptive articles or articles ahout<br />

systematics. The editors of <strong>Ecologia</strong> Mediterranea invite<br />

original contrihutions in the fields of: bioclimatology.<br />

biogeography, conservation biology. population hiology.<br />

genetic ecology. landscape ecology. mierohial ecology. vegetal<br />

and animal ecology, ecophysiology, palaeoecology,<br />

palaeoclimatology. but not marine ecology. Symposium<br />

proceedings, review articles, methodological notes. hook<br />

reviews and comments on recent papers in the journal are also<br />

puhlished. Manuscripts arc reviewed hy appropriate referces. or<br />

hy members of the Editorial Board, or by the Editors<br />

themselves. The final decision to accept or reject a manuscript<br />

is made by the Editors. Please send 3 copies of the manuscript<br />

to the editors. When an article is accepted, the authors should<br />

take the reviewers' comments into consideration. They must<br />

send back to the journal Editorial Office their corrected printed<br />

manuscript (onc copy) and include the corresponding floppy<br />

disk (as far as possible: 3.5" PC, Word 7 or .RTF) within 3<br />

months. The authors arc asked to check the conformity between<br />

printed and computerised versions. Enclose the original<br />

illustrations. Corrected proofs must he returned to the journal<br />

Editorial Office without delay. Books and monographs to he<br />

reviewed must be submitted to the Editors.<br />

Manuscript preparation<br />

Manuscripts (typewritten with double spacing and A4 paper<br />

size) should preferahly be written in French or English. but<br />

Spanish and Italian are accepted. If the language is not English.<br />

you should include an English short version and English titles<br />

for figures and tables.<br />

The manuscript must bc complete: French and English titles,<br />

author(s) and address(es). French and English abstracts (at<br />

least), an English short version (only if it is not the language<br />

used in the article), key-words. text. rcrerences.<br />

acknowledgements, figures and tahles. For research papers, the<br />

text should normally consist of 4 sections: introduction.<br />

methods, results and discussion.<br />

When typing the manuscript, please distinguish titles clearly<br />

from other paragraphs. Titles and subtitles should not he<br />

numbered. Avoid using letters to number subtitles. Use lowercase<br />

letters for names. Do not underline any words. In English.<br />

there is one space after punctuation. none before.<br />

Copy editing of manuscripts is performed by the journal.<br />

Each author's address should be specified. The first time. please<br />

state the complete address of the correspondent author to whom<br />

the proofs should be sent.<br />

Abstract, key-words, abridged version<br />

Ahstracts should be no longer than 300 words. The English<br />

abridged version should not exceed onc page (1000 words). Do<br />

not use more than six key-words (translated in the abstraet's<br />

language). Key-words should not be present in the title.<br />

Instructions to authors<br />

References<br />

All puhlications quoted in the text should be presented in a list<br />

of references following the text. The list of references should be<br />

arranged alphahetically hy author and chronologically per<br />

author. You should abbreviate the titles of periodicals in the list<br />

of references (except if you arc not sure of it). Make sure that all<br />

citations and references correspond. Use the following system<br />

for references:<br />

- journal article:<br />

Andow D.A.. Karieva P.. Levin S.A. & Okubo A.. 1990. Spread<br />

of invading organisms. .J. Ecol.. 4 : 177-188.<br />

- book:<br />

Harper J.L., 1977. Population hiology of' plants. Academic<br />

Press, London. 300 p.<br />

- book section:<br />

May R.M., 1989. Levels of organisation in ecology. In : Cherret<br />

J.M. (cd.). Ecological concepts. Blackwell Scientific Public..<br />

Oxford: 339-363.<br />

- conference proceedings:<br />

Grootaert P., 1984. Biodiversity in insects, speeiation and<br />

behaviour in Diptera. In: Hoffmann M. & Van del' Vekcn P.<br />

(eds.), Proceedings oj'the sVl11posiul11 on " Riodiversitv: studv,<br />

exploration, conservation ". Ghcnt, 18 November 1992: 121­<br />

141.<br />

Citations in-text<br />

The words « figures» and « tables» announced in-tcxt should<br />

he written in extenso and in lower-case letters. In the text. refer<br />

to thc author's name and year of publication (followed by pages<br />

only if it is a quotation). If a publication is written by more than<br />

two authors. the name of the first author should be used<br />

followed hy « et al. » (this indication, however, should never be<br />

used in the list of references: first author and co-authors should<br />

be mentioned). Examples: «Since Dupont (1962) has shown<br />

that. .. ». or « This is in agreement with previous results (Durand<br />

et Ill., 1990 ; Dupond & Dupont, 1(97) ... ».<br />

Abbreviation, Latin words<br />

Explanation of a technical abbreviation is required when first<br />

used. Intcrnational convention codes for nomenclature should<br />

be used. Latin words should he in italics (et al.. a priori, ete.).<br />

particularly for taxonomic classifications (the first time, please<br />

state the author's name: for example. Olea elfropllea Linnee).<br />

Figures and tables<br />

All illustrations should he submitted separately and they should<br />

be preceded by thc figure and table legends on a separate page.<br />

Figures and tables should he sent «rcady to be printed ».<br />

without need to be reduced (so their size should be 16 x 22 cm<br />

or 8 x 22 cm maximum). All the illustrations being in-text<br />

should he quoted, numbered in sequence and should have a<br />

legend. Computerised tables' columns should not be represented<br />

by signs ( : or I ).<br />

Reprints<br />

Twenty-five reprints will he supplied frce of charge. 8y request.<br />

additional reprints can be orclered with a charge.


ecologia <strong>mediterranea</strong><br />

SOMMAIRE<br />

Tome <strong>25</strong> fascicule 2,<strong>1999</strong><br />

J. A. TORRES, A. GARCIA-FUENTES, C. SALAZAR, E. CANO & F. VALLE - Caracterizaci6n de<br />

los pinares de Pil1l1s halepellsis Mill. en el sur de la Peninsula lberica 135<br />

Y. B. LlNHART. L. CHAOUNI-BENABDALLAH, J.-M. PARRY & J. D. THOMPSON - Selective<br />

herbivory of thyme chemotypes by a mollusk and a grasshopper 147<br />

M. VfLA & I. MUNOZ - Patterns and correlates of exotic and endemic plant taxa in the Balearic islands 153<br />

A. AIDOUD, H. SLLMANI, F. AlDOUD-LOUN1S & J. TOUFFET - Changements edaphiques le long<br />

d'un gradient d'intensite de piiturage dans une steppe d'Algerie 163<br />

M. ABD EL-GHANI - Soil variables affecting the vegetation of inland western desert of Egypt 173<br />

R. BESSAH, F. ROZE & D. NEDJRAOUI - Activite cellulolytique ill vilro de sols de deux steppes it<br />

alfa (Slipa tellllcissima L.) d' Algerie 185<br />

J. GUIOT, F. TORRE, R. CHEDDADJ. O. PEYRON, P. TARASOV, D. JOLLY, J.O. & KAPLAN ­<br />

The climate of the Mediterranean Basin and of Eurasia of the last glacial maximum as reconstruclcd by<br />

inverse vegetation modelling and pollen data 193<br />

O. MADON, S. GACHET & M. BARBERO - Innuence of study scale on the characterisation of plants<br />

community organisation in a Mediterranean grassland (Mont Ventoux, France) 205<br />

Analyses d'ouvrages 215<br />

Indexe dans BIOSIS et PASCAL (CNRS)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!