23.07.2014 Views

spg mitteilungen communications de la ssp - Schweizerische ...

spg mitteilungen communications de la ssp - Schweizerische ...

spg mitteilungen communications de la ssp - Schweizerische ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Nr. 40<br />

Juli 2013<br />

SPG MITTEILUNGEN<br />

COMMUNICATIONS DE LA SSP<br />

(a) SF+ (b) SF (c) SF-<br />

1<br />

1<br />

1<br />

2<br />

4<br />

2<br />

4<br />

2<br />

4<br />

3<br />

3<br />

3<br />

1<br />

2<br />

4<br />

1<br />

2<br />

4<br />

1<br />

2<br />

4<br />

The scientific community celebrates this year the<br />

centennary of the Atomic Mo<strong>de</strong>l of Niels Bohr.<br />

Read more (on p. 52) about the history of this outstanding<br />

event in physics, which is also the topic<br />

of the SCNAT Annual Congress (see p. 60).<br />

3 3<br />

3<br />

What have snowf<strong>la</strong>kes to do with a<br />

hot p<strong>la</strong>sma ? Find out on p. 36.<br />

Four years after its <strong>la</strong>unch the Herschel<br />

space observatory completed<br />

its observations about how stars and<br />

ga<strong>la</strong>xies are formed. The successful<br />

mission is <strong>de</strong>scribed on p. 42.<br />

Joint Annual Meeting of the<br />

Austrian Physical Society and Swiss Physical Society<br />

with<br />

Austrian and Swiss Societies for Astronomy and Astrophysics<br />

September 3 - 6, 2013, JKU Linz<br />

General information: page 10, preliminary program: page 12


SPG Mitteilungen Nr. 40<br />

Inhalt - Contenu - Contents<br />

Gemeinsame Jahrestagung in Linz, 03. - 06. September 2013 - Réunion annuelle commune à Linz, 3 - 6 septembre 2013 3<br />

Vorwort; Preisverleihung, Generalversammlung - Avant-Propos; Cérémonie <strong>de</strong> remise <strong>de</strong>s prix, Assemblée générale 3<br />

Informationen für die Mitglie<strong>de</strong>r - Informations pour les membres 4<br />

Zum Tod von Nobelpreisträger Heinrich Rohrer 9<br />

Allgemeine Tagungsinformationen - Informations générales sur <strong>la</strong> réunion 10<br />

Vorläufige Programmübersicht - Résumé préliminaire du programme 12<br />

Aussteller - Exposants 24<br />

Open Access, where do we stand today? 25<br />

Kurz<strong>mitteilungen</strong> - Short Communications 25, 45<br />

19 th Swiss Physics Olympiad 2013 (SPhO) in Aarau 26<br />

Das Rennen um die Industrieproduktion <strong>de</strong>r Zukunft 27<br />

First result from the AMS experiment 28<br />

Progress in Physics (33): Outreach: Can Physics Cross Boundaries? 30<br />

Progress in Physics (34): On the <strong>de</strong>velopment of physically-based regional climate mo<strong>de</strong>lling 32<br />

Progress in Physics (35): A snowf<strong>la</strong>ke in a million <strong>de</strong>gree p<strong>la</strong>sma 36<br />

Physics Anecdotes (17): IBM Research – Zurich, a Success Story 40<br />

Goodbye Herschel 42<br />

Structural MEMS Testing 44<br />

Physique et <strong>la</strong> Société: Quand <strong>la</strong> Physique rejoint le Sport 46<br />

History of Physics (8): On the Einstein-Grossmann Col<strong>la</strong>boration 100 Years ago 48<br />

Histoire <strong>de</strong> <strong>la</strong> Physique (9): Le modèle atomique <strong>de</strong> Bohr: origines, contexte et postérité (part 1) 52<br />

Buchbesprechung: Geschichte <strong>de</strong>s SIN 56<br />

Lehrerfortbildung: 18 Deutschschweizer Lehrer im Herz von CERN 58<br />

Annual Congress of SCNAT 60<br />

Präsi<strong>de</strong>nt / Prési<strong>de</strong>nt<br />

Dr. Andreas Schopper, CERN, Andreas.Schopper@cern.ch<br />

Vorstandsmitglie<strong>de</strong>r <strong>de</strong>r SPG / Membres du Comité <strong>de</strong> <strong>la</strong> SSP<br />

Physikausbildung und -för<strong>de</strong>rung /<br />

Education et encouragement à <strong>la</strong> physique<br />

Dr. Tibor Gyalog, Uni Basel, tibor.gyalog@unibas.ch<br />

Vize-Präsi<strong>de</strong>nt / Vice-Prési<strong>de</strong>nt<br />

Dr. Christophe Rossel, IBM Rüschlikon, rsl@zurich.ibm.com<br />

Sekretär / Secrétaire<br />

Dr. MER Antoine Pochelon, EPFL-CRPP, antoine.pochelon@epfl.ch<br />

Kassier / Trésorier<br />

Dr. Pascal Ruffieux, EMPA, pascal.ruffieux@empa.ch<br />

Kon<strong>de</strong>nsierte Materie / Matière Con<strong>de</strong>nsée (KOND)<br />

Prof. Christian Rüegg, PSI & Uni Genève, christian.rueegg@psi.ch, christian.rueegg@unige.ch<br />

Angewandte Physik / Physique Appliquée (ANDO)<br />

Dr. Ivo Furno, EPFL-CRPP, ivo.furno@epfl.ch<br />

Astrophysik, Kern- und Teilchenphysik /<br />

Astrophysique, physique nucléaire et corp. (TASK)<br />

Prof. Martin Pohl, Uni Genève, martin.pohl@cern.ch<br />

Theoretische Physik / Physique Théorique (THEO)<br />

Prof. Gian Michele Graf, ETH Zürich, gmgraf@phys.ethz.ch<br />

Physik in <strong>de</strong>r Industrie / Physique dans l‘industrie<br />

Dr. Kai Hencken, ABB Dättwil, kai.hencken@ch.abb.com<br />

Atomphysik und Quantenoptik /<br />

Physique Atomique et Optique Quantique<br />

Prof. Antoine Weis, Uni Fribourg, antoine.weis@unifr.ch<br />

Geschichte <strong>de</strong>r Physik / Histoire <strong>de</strong> <strong>la</strong> Physique<br />

Prof. Jan Lacki, Uni Genève, jan.<strong>la</strong>cki@unige.ch<br />

Physik <strong>de</strong>r Er<strong>de</strong>, Atmosphäre und Umwelt /<br />

Physique du globe et <strong>de</strong> l'environnement<br />

Dr. Stéphane Goyette, Uni Genève, stephane.goyette@unige.ch<br />

SPG Administration / Administration <strong>de</strong> <strong>la</strong> SSP<br />

Allgemeines Sekretariat (Mitglie<strong>de</strong>rverwaltung, Webseite, Druck, Versand, Redaktion Bulletin<br />

& SPG Mitteilungen) /<br />

Secrétariat générale (Service <strong>de</strong>s membres, internet, impression, envoi, rédaction Bulletin<br />

& Communications <strong>de</strong> <strong>la</strong> SSP)<br />

S. Albietz, SPG Sekretariat, Departement Physik,<br />

Klingelbergstrasse 82, CH-4056 Basel<br />

Tel. 061 / 267 36 86, Fax 061 / 267 37 84, sps@unibas.ch<br />

Buchhaltung / Service <strong>de</strong> <strong>la</strong> comptabilité<br />

F. Erkadoo, SPG Sekretariat, Departement Physik,<br />

Klingelbergstrasse 82, CH-4056 Basel<br />

Tel. 061 / 267 37 50, Fax 061 / 267 13 49, francois.erkadoo@unibas.ch<br />

Protokollführerin / Greffière<br />

Susanne Johner, SJO@zurich.ibm.com<br />

Wissenschaftlicher Redakteur/ Rédacteur scientifique<br />

Dr. Bernhard Braunecker, Braunecker Engineering GmbH,<br />

braunecker@bluewin.ch<br />

Impressum:<br />

Die SPG Mitteilungen erscheinen ca. 2-4 mal jährlich und wer<strong>de</strong>n an alle Mitglie<strong>de</strong>r abgegeben.<br />

Abonnement für Nichtmitglie<strong>de</strong>r:<br />

CHF 20.- pro Jahrgang (In<strong>la</strong>nd; Aus<strong>la</strong>nd auf Anfrage), incl. Lieferung <strong>de</strong>r Hefte sofort nach Erscheinen frei Haus. Bestellungen<br />

bzw. Kündigungen jeweils zum Jahresen<strong>de</strong> sen<strong>de</strong>n Sie bitte formlos an folgen<strong>de</strong> Adresse:<br />

Ver<strong>la</strong>g und Redaktion:<br />

<strong>Schweizerische</strong> Physikalische Gesellschaft, Klingelbergstr. 82, CH-4056 Basel, sps@unibas.ch, www.sps.ch<br />

Redaktionelle Beiträge und Inserate sind willkommen, bitte wen<strong>de</strong>n Sie sich an die obige Adresse.<br />

Namentlich gekennzeichnete Beiträge geben grundsätzlich die Meinungen <strong>de</strong>r betreffen<strong>de</strong>n Autoren wie<strong>de</strong>r. Die<br />

SPG übernimmt hierfür keine Verantwortung.<br />

Druck:<br />

Werner Druck & Medien AG, Kanonengasse 32, 4001 Basel<br />

2


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

Gemeinsame Jahrestagung in Linz, 03. - 06. September 2013<br />

Réunion annuelle commune à Linz, 3 - 6 septembre 2013<br />

Vorwort<br />

Avant-Propos<br />

Im Zweijahresrhythmus organisiert die SPG ihre Jahrestagung<br />

gemeinsam mit <strong>de</strong>r Österreichischen Physikalischen<br />

Gesellschaft (ÖPG) sowie <strong>de</strong>n <strong>Schweizerische</strong>n und Österreichischen<br />

Gesellschaften für Astronomie und Astrophysik<br />

(SGAA und ÖGAA). Dieser Modus hat sich in <strong>de</strong>n<br />

vergangenen Jahren bei <strong>de</strong>n sehr erfolgreichen Tagungen<br />

in Innsbruck (2009) und Lausanne (2011) bewährt. Die diesjährige<br />

Tagung in Linz soll diese Tradition fortsetzen und<br />

<strong>de</strong>n Dialog zwischen Physikern bei<strong>de</strong>r Län<strong>de</strong>r weiter vertiefen.<br />

Mit rund 400 eingereichten Abstracts in 15 Fachsitzungen,<br />

9 Plenarvorträgen und zwei öffentlichen Abendvorträgen,<br />

einer davon von Serge Haroche (Physiknobelpreisträger<br />

2012), steht ein sehr attraktives Programm zur Verfügung.<br />

Zu<strong>de</strong>m fin<strong>de</strong>t vor <strong>de</strong>r gemeinsamen Jahrestagung noch ein<br />

spezieller Energietag statt, zu <strong>de</strong>m alle Tagungsteilnehmer<br />

herzlich willkommen sind.<br />

Im Folgen<strong>de</strong>n fin<strong>de</strong>n Sie die für die SPG-Mitglie<strong>de</strong>r relevanten<br />

Gesellschaftsnachrichten, die wichtigsten Tagungsinformationen<br />

sowie eine vorläufige Programmübersicht.<br />

Das <strong>de</strong>finitive Programm wird in Kürze auf <strong>de</strong>r SPG-Webseite<br />

verfügbar sein.<br />

Der SPG-Vorstand hofft auf eine rege Teilnahme an <strong>de</strong>r Tagung<br />

und freut sich auf Ihren Besuch.<br />

Tous les <strong>de</strong>ux ans, <strong>la</strong> SSP organise sa réunion annuelle<br />

en col<strong>la</strong>boration avec <strong>la</strong> société autrichienne <strong>de</strong> physique<br />

(ÖPG) et les <strong>de</strong>ux sociétés nationales d'astronomie et<br />

d'astrophysique (SSAA et ÖGAA). Ce modèle a fait ses<br />

preuves au cours <strong>de</strong>s <strong>de</strong>rnières années <strong>de</strong> rencontres très<br />

fructueuses à Innsbruck (2009) et à Lausanne (2011). La<br />

conférence <strong>de</strong> cette année à Linz a comme but <strong>de</strong> poursuivre<br />

cette tradition et d’approfondir le dialogue entre les<br />

physiciens <strong>de</strong> ces <strong>de</strong>ux pays.<br />

Avec environ 400 résumés soumis à 15 séances, 9 conférences<br />

plénières et <strong>de</strong>ux conférences publiques, l'une par<br />

Serge Haroche (Prix Nobel <strong>de</strong> physique 2012), un programme<br />

très attrayant a été mis en p<strong>la</strong>ce. En outre, une<br />

journée spéciale <strong>de</strong> l'énergie aura lieu avant <strong>la</strong> réunion<br />

annuelle commune, à <strong>la</strong>quelle tous les participants <strong>de</strong> <strong>la</strong><br />

conférence sont les bienvenus.<br />

Vous trouverez ci-<strong>de</strong>ssous les nouvelles <strong>de</strong> <strong>la</strong> société d’intérêt<br />

pour les membres, ainsi que les informations les plus<br />

importantes sur <strong>la</strong> conférence et sur le programme provisoire.<br />

La version finale sera accessible sous peu sur le site<br />

<strong>de</strong> <strong>la</strong> SSP.<br />

Le comité <strong>de</strong> <strong>la</strong> SSP comptes donc sur une participation<br />

active et nombreuse à notre réunion annuelle et nous réjouissons<br />

<strong>de</strong> votre visite.<br />

Preisverleihung - Cérémonie <strong>de</strong> remise <strong>de</strong>s prix<br />

Mittwoch 04. September 2013, 11:30h - Mercredi 4 septembre 2013, 11:30h<br />

Johannes Kepler Universität Linz, Keplergebäu<strong>de</strong>, Hörsaal 1<br />

Es wer<strong>de</strong>n alle Preise von SPG und ÖPG in einer gemeinsamen<br />

Zeremonie verliehen.<br />

Tous les prix <strong>de</strong> <strong>la</strong> SSP et l'ÖPG seront remises dans une<br />

cérémonie commune.<br />

Generalversammlung 2013 - Assemblée générale 2013<br />

Donnerstag 05. September 2013, 12:00h - Jeudi 5 septembre 2013, 12:00h<br />

Johannes Kepler Universität Linz, Keplergebäu<strong>de</strong>, Hörsaal 4<br />

Traktan<strong>de</strong>n<br />

Ordre du jour<br />

1. Protokoll <strong>de</strong>r Generalversammlung vom<br />

21. Juni 2012<br />

Procès-verbal <strong>de</strong> l'assemblée générale du<br />

21 juin 2012<br />

2. Kurzer Bericht <strong>de</strong>s Präsi<strong>de</strong>nten Bref rapport du prési<strong>de</strong>nt<br />

3. Rechnung 2012, Revisorenbericht Bi<strong>la</strong>n 2012, rapport <strong>de</strong>s vérificateurs <strong>de</strong>s<br />

comptes<br />

4. Wahlen Elections<br />

5. Projekte Projets<br />

6. Diverses Divers<br />

3


SPG Mitteilungen Nr. 40<br />

Neue Mitglie<strong>de</strong>r 2012 -<br />

Nouveaux membres en 2012<br />

Acremann Yves, Adams Jonathan, Ancu Lucian Stefan,<br />

Andreussi Oliviero, Antognini Aldo, Bachmann Maja, Barhoumi<br />

Rafik, Bernard Laetitia, Bettler Marc-Olivier, Bigler<br />

Matthias, Bonvin Camille, Braun Oliver, Brunner Bernhard,<br />

Casa<strong>de</strong>i Diego, Castiglioni Luca, Cepellotti Andrea, Chandrasekaran<br />

Anand, Cheah Erik, Cholleton Danaël, Cohen<br />

Denis, Crivelli Paolo, Doglioni Caterina, Dragoni Daniele,<br />

Ehtesham Alireza, Fantner Georg, Fernan<strong>de</strong>s Vaz Carlos<br />

Antonio, Gibertini Marco, Goyette Stéphane, Havare Ali Kemal,<br />

Herzog Benedikt, Huppert Martin, Issler Mena, Jaffe<br />

Arthur, Jordan Inga, Knabenhans Mischa, Knopp Gregor,<br />

Kraus Peter, Krauth Felix, Küçükbenli Emine, Kuhn Felix<br />

Arjun, Laine Mikko, Leindl Mario, Locher Reto, Mariotti Nico<strong>la</strong>s,<br />

Marzari Nico<strong>la</strong>, Mathys Christoph, Mermod Philippe,<br />

Miguel Sanchez Javier, Montaruli Teresa, Moutafis Christoforos,<br />

Müller Andreas, Nguyen Ngoc Linh, O'Regan David<br />

Daniel, Pizzi Giovanni, Pozzorini Stefano, Rakotomiaramanana<br />

Barinjaka, Reinle-Schmitt Mathil<strong>de</strong> Léna, Ries Dieter,<br />

Rochman Dimitri, Rønnow Henrik Moodysson, Rückauer<br />

Bodo, Sabatini Ricardo, Salman Zaher, Schwarz Sacha,<br />

Si<strong>la</strong>tani Mahsa, Strassmann Peter, Südmeyer Thomas,<br />

Šulc Miros<strong>la</strong>v, Teh<strong>la</strong>r Andres, Tiwari Rakesh, Tolba Tamer,<br />

Tourneur Stéphane, van Megen Bram, Vaniček Jiří, Vindigni<br />

Alessandro, Walter Manuel, Wyszynski Grzegorz, Zimmermann<br />

Tomáš<br />

Ehrenmitglie<strong>de</strong>r - Membres d'honneur<br />

Prof. Hans Beck (2010)<br />

Dr. J. Georg Bednorz (2011)<br />

Prof. Jean-Pierre B<strong>la</strong>ser (1990)<br />

Prof. Jean-Pierre Borel (2001)<br />

Prof. Jean-Pierre Eckmann (2011)<br />

Prof. Charles P. Enz (2005)<br />

Prof. Øystein Fischer (2010)<br />

Prof. Hans Frauenfel<strong>de</strong>r (2001)<br />

Prof. Jürg Fröhlich (2011)<br />

Prof. Hermann Grun<strong>de</strong>r (2001)<br />

Prof. Hans-Joachim Güntherodt (2010)<br />

Dr. Martin Huber (2011)<br />

Prof. Verena Meyer (2001)<br />

Prof. K. Alex Müller (1991)<br />

Prof. Hans Rudolf Ott (2005)<br />

Prof. T. Maurice Rice (2010)<br />

Dr. Heinrich Rohrer (1990)<br />

Prof. Louis Sch<strong>la</strong>pbach (2010)<br />

Statistik - Statistique<br />

Assoziierte Mitglie<strong>de</strong>r - Membres associés<br />

A) Firmen<br />

• F. Hoffmann-La-Roche AG, 4070 Basel<br />

B) Universitäten, Institute<br />

• Albert-Einstein-Center for Fundamental Physics, Universität<br />

Bern, 3012 Bern<br />

• CERN, 1211 Genève 23<br />

• Département <strong>de</strong> Physique, Université <strong>de</strong> Fribourg,<br />

1700 Fribourg<br />

• Departement Physik, Universität Basel, 4056 Basel<br />

• Departement Physik, ETH Zürich, 8093 Zürich<br />

• EMPA, 8600 Dübendorf<br />

• Lab. <strong>de</strong> Physique <strong>de</strong>s Hautes Energies (LPHE), EPFL,<br />

1015 Lausanne<br />

• Paul Scherrer Institut, 5332 Villigen PSI<br />

• Physik-Institut, Universität Zürich, 8057 Zürich<br />

• Section <strong>de</strong> Physique, Université <strong>de</strong> Genève, 1211 Genève<br />

4<br />

C) Stu<strong>de</strong>ntenfachvereine<br />

• AEP - Association <strong>de</strong>s Etudiant(e)s en Physique, Université<br />

<strong>de</strong> Genève, 1211 Genève 4<br />

• Fachschaft Physik und Astronomie, Universität Bern,<br />

3012 Bern<br />

• Fachschaft Physique, Université <strong>de</strong> Fribourg, 1700 Fribourg<br />

• Fachverein Physik <strong>de</strong>r Universität Zürich (FPU),<br />

8057 Zürich<br />

• FG 14 (Fachgruppe für Physik-, Mathematik- und Versicherungswissenschaft),<br />

Universität Basel, 4056 Basel<br />

• Les Irrotationnels, EPFL, 1015 Lausanne<br />

• Verein <strong>de</strong>r Mathematik- und Physikstudieren<strong>de</strong>n an<br />

<strong>de</strong>r ETH Zürich (VMP), 8092 Zürich<br />

Verteilung <strong>de</strong>r Mitgliedskategorien -<br />

Répartition <strong>de</strong>s catégories <strong>de</strong> membres<br />

(31.12.2012)<br />

Or<strong>de</strong>ntliche Mitglie<strong>de</strong>r 726<br />

Doktoran<strong>de</strong>n 55<br />

Stu<strong>de</strong>nten 80<br />

Doppelmitglie<strong>de</strong>r DPG, ÖPG o<strong>de</strong>r APS 164<br />

Doppelmitglie<strong>de</strong>r PGZ 41<br />

Mitglie<strong>de</strong>r auf Lebenszeit 144<br />

Assoziierte Mitglie<strong>de</strong>r 19<br />

Bibliotheksmitglie<strong>de</strong>r 2<br />

Ehrenmitglie<strong>de</strong>r 18<br />

Beitragsfreie (Korrespon<strong>de</strong>nz) 7<br />

Total 1256<br />

4


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

Jahresbericht 2012 <strong>de</strong>s Präsi<strong>de</strong>nten - Rapport annuel 2012 du prési<strong>de</strong>nt<br />

The major event of our society in 2012 was once more the<br />

annual SPS meeting that took p<strong>la</strong>ce from 21-22 June 2012<br />

at the Hönggerberg campus of the ETHZ, jointly organized<br />

with the four National Centres of Competence in Research<br />

(NCCR) MaNEP, MUST, Nano and QSIT as well as with the<br />

Swiss Society for Crystallography. More than 550 persons<br />

atten<strong>de</strong>d the meeting. The scientific program was rather<br />

<strong>de</strong>nse with 6 plenary talks, 237 talks distributed over<br />

14 parallel sessions and 170 posters. Worth mentioning is<br />

the successful session of the new section "Earth, Atmosphere<br />

and Environmental Physics" and a <strong>de</strong>dicated session<br />

to celebrate the birth of crystallography in 1912 "100 Years<br />

of Diffraction". It was very satisfying to observe a <strong>la</strong>rge<br />

participation of young enthusiastic physicists sharing their<br />

research results and their experiences in a lively manner.<br />

The interest by the commercial exhibitors was once more<br />

well <strong>de</strong>monstrated by the attendance of 21 companies. As<br />

every year, the annual meeting was also the occasion to<br />

announce and present the winners of the SPS Awards in<br />

General Physics, Con<strong>de</strong>nsed Matter Physics and Applied<br />

Physics.<br />

It became a tradition that SPS organises in col<strong>la</strong>boration<br />

with the Physikalische Gesellschaft Zürich PGZ a joint symposium<br />

every year. In September 2012, PGZ and SPS celebrated<br />

together the 125 years of PGZ with a meeting in<br />

Zürich on "General re<strong>la</strong>tivity and its applications".<br />

Fostering its international re<strong>la</strong>tions, every other year the<br />

SPS organises its annual meeting together with the Austrian<br />

Physical Society ÖPG that will take p<strong>la</strong>ce in Linz in 2013.<br />

The SPS maintained tight links to the European Physical<br />

Society EPS, participating in its Council and in various activities<br />

of its groups. In 2012 our society also welcomed its<br />

first international Associate Member with domicile in Switzer<strong>la</strong>nd,<br />

namely CERN.<br />

In view of promoting young scientists, the SPS Young<br />

Physicist Forum YPF, that was created in 2010 and that<br />

regroups most of the Swiss physics stu<strong>de</strong>nt associations,<br />

has been accepted as a Commission of SPS in 2012. In the<br />

framework of this very active forum, the young physicists<br />

had organised a SPS sponsored visit to the International<br />

Laboratory for Particle Physics CERN at Geneva. As every<br />

year, our society also sponsored activities of the Swiss<br />

Young Physicists Tournament SYPT as well as of the Swiss<br />

Physics Olympiads SPhO, with two SPS prizes awar<strong>de</strong>d to<br />

the best male and female finalists of SPhO.<br />

Furthermore, our society also supported Swiss stu<strong>de</strong>nts for<br />

attending the 13 th IONS (International OSA Network of Stu<strong>de</strong>nts)<br />

conference, that was jointly organized by PhD stu<strong>de</strong>nts<br />

from EPFL and ETH and that took p<strong>la</strong>ce in Zürich and<br />

Lausanne from 9-12 Jan, 2013.<br />

Three times per year the SPS publishes its "Communications",<br />

which is the most important SPS publication to disseminate<br />

information about on-going activities within the<br />

society and to review scientific progress in various areas.<br />

High-c<strong>la</strong>ss articles have been published in the various,<br />

now well established rubrics. A paper copy is distributed<br />

to all members, whilst open access to this publication is<br />

also granted to the entire Swiss scientific community via<br />

the SPS homepage.<br />

SPS is a member organization of the Swiss Aca<strong>de</strong>my of<br />

Science SCNAT and part of the p<strong>la</strong>tform Mathematics, Astronomy<br />

and Physics MAP. With two SPS representatives<br />

in the organising committee, our society is supporting<br />

the p<strong>la</strong>tform MAP actively in organising the "SCNAT-Jahreskongress<br />

2013" on the occasion of the jubilee of "100<br />

Jahre Bohr'sches Atommo<strong>de</strong>ll".<br />

We are grateful to the organizational and financial support<br />

of SCNAT and acknowledge also support of the Swiss<br />

Aca<strong>de</strong>my of Engineering Science SATW. Thanks to a wellba<strong>la</strong>nced<br />

program the Swiss Physical Society could once<br />

more close its budget with a positive ba<strong>la</strong>nce for 2012.<br />

Andreas Schopper, SPS Presi<strong>de</strong>nt, May 2013<br />

Protokoll <strong>de</strong>r Generalversammlung vom 21. Juni 2012 in Zürich<br />

Protocole <strong>de</strong> l'assemblée générale du 21 juin 2012 à Zürich<br />

Traktan<strong>de</strong>n<br />

1. Protokoll <strong>de</strong>r Generalversammlung vom 16.06.2011<br />

2. Bericht <strong>de</strong>s Präsi<strong>de</strong>nten<br />

3. Rechnung 2011 & Revisorenbericht<br />

4. Anpassung <strong>de</strong>r Statuten<br />

5. Neue Sektion und Kommission<br />

6. Projekte<br />

7. Wahlen<br />

Der Präsi<strong>de</strong>nt, Christophe Rossel, eröffnet die Generalversammlung<br />

um 12:00 Uhr. Anwesend sind 41 Mitglie<strong>de</strong>r.<br />

1. Protokoll <strong>de</strong>r letzten GV vom 16.6.2011 in Lausanne<br />

Herrn Peter Wolff beanstan<strong>de</strong>t <strong>de</strong>n ihn betreffen<strong>de</strong>n ersten<br />

Satz unter Traktandum „6. Diverses“ und verweist auf das<br />

GV-Protokoll 2010 (Basel). Da keine Neuformulierung vorliegt,<br />

wird über die in <strong>de</strong>n SPG-Mitteilungen veröffentlichte<br />

Version abgestimmt und diese mit 35 Stimmen genehmigt,<br />

bei 5 Enthaltungen und 1 Gegenstimme.<br />

(Siehe dazu <strong>de</strong>n NACHTRAG am Schluss dieses Protokolls).<br />

2. Bericht <strong>de</strong>s Präsi<strong>de</strong>nten<br />

Der Jahresbericht 2011 <strong>de</strong>s Präsi<strong>de</strong>nten wur<strong>de</strong> auf Seite 5<br />

<strong>de</strong>r "SPG Mitteilungen Nr. 37" im Mai 2012 veröffentlicht.<br />

Christophe Rossel erläutert kurz einige Punkte:<br />

5


SPG Mitteilungen Nr. 40<br />

• Die gemeinsame Jahrestagung mit <strong>de</strong>r Österreichischen<br />

Physikalischen Gesellschaft (ÖPG) und <strong>de</strong>n<br />

bei<strong>de</strong>n nationalen Gesellschaften für Astronomie und<br />

Astrophysik (SGAA und ÖGAA) vom 15.-17. Juni 2011<br />

in Lausanne war wie<strong>de</strong>rum ein Erfolg mit rund 650 Teilnehmen<strong>de</strong>n,<br />

10 Plenarvorträgen, 470 Beiträgen verteilt<br />

auf 10 Parallel-Sitzungen, dazu zahlreichen Postern<br />

und 22 Ausstellern.<br />

• Die Generalversammlung 2011 ernannte vier neue Ehrenmitglie<strong>de</strong>r:<br />

Dr. J. Georg Bednorz, Prof. Jean-Pierre<br />

Eckmann, Prof. Jürg Fröhlich und Dr. Martin Huber.<br />

• Die Mitglie<strong>de</strong>rzahl ist auf etwa 1'250 gestiegen, was<br />

einer Zunahme von rund 10% gegenüber <strong>de</strong>m Vorjahr<br />

entspricht. Bei <strong>de</strong>n 18 Kollektiv- (neu: assoziierten) Mitglie<strong>de</strong>rn<br />

ist bei <strong>de</strong>n Firmen ein Rückgang zu verzeichnen,<br />

dafür sind mehr Universitäten und Stu<strong>de</strong>ntenorganisationen<br />

vertreten.<br />

3. Rechnung 2011 & Revisorenbericht<br />

Der Kassier, Pierangelo Gröning, präsentiert und erläutert<br />

die Jahresrechnung 2011, die <strong>de</strong>tailliert in <strong>de</strong>n "SPG-Mitteilungen<br />

Nr. 37" auf Seite 7 veröffentlicht wur<strong>de</strong>. Sie schliesst<br />

mit einem Gewinn von CHF 17'200.36 und einem Vereinsvermögen<br />

von CHF 36'606.87.<br />

Der Empfehlung <strong>de</strong>r Revisoren folgend genehmigt die Generalversammlung<br />

die Jahresrechnung 2011 und <strong>de</strong>r Kassier<br />

wird mit bestem Dank für die gute Rechnungsführung<br />

ent<strong>la</strong>stet.<br />

4. Anpassung <strong>de</strong>r Statuten<br />

Die Generalversammlung stimmt <strong>de</strong>r auf Seite 9 <strong>de</strong>r "SPG-<br />

Mitteilungen Nr. 37" veröffentlichten Anpassung <strong>de</strong>r Statuten<br />

einstimmig zu. Somit wird <strong>de</strong>r Begriff "Kollektivmitglie<strong>de</strong>r"<br />

durch "Assoziierte Mitglie<strong>de</strong>r" ersetzt und in Art. 2<br />

die Definition <strong>de</strong>r Gruppe B um "überstaatliche bzw. internationale"<br />

erweitert.<br />

5. Neue Sektion und Kommission<br />

Die Generalversammlung stimmt folgen<strong>de</strong>n Neugründungen<br />

einstimmig zu.<br />

• Neue Sektion:<br />

Physik <strong>de</strong>r Er<strong>de</strong>, Atmosphäre und Umwelt -<br />

Earth, Atmosphere and Environmental Physics -<br />

Physique du Globe et <strong>de</strong> l'Environnement<br />

• Neue Kommission:<br />

Young Physicists Forum<br />

6. Projekte<br />

• Im September 2013 soll die nächste gemeinsame Jahrestagung<br />

mit <strong>de</strong>r ÖPG in Linz stattfin<strong>de</strong>n.<br />

• In Zusammenarbeit mit <strong>de</strong>r PGZ wird am 29.9.2012 das<br />

Symposium „Allgemeine Re<strong>la</strong>tivitätstheorie und ihre<br />

Anwendungen“ an <strong>de</strong>r Universität Zürich, organisiert.<br />

• Das neu als Kommission integrierte „Young Physicists<br />

Forum“ wird Aktivitäten, Betriebsbesichtigungen und<br />

Exkursionen für Stu<strong>de</strong>nten organisieren.<br />

• Die Final-Run<strong>de</strong> <strong>de</strong>r Schweizer Physik-Olympia<strong>de</strong><br />

hat am 21./22. April 2012 in Aarau stattgefun<strong>de</strong>n. Die<br />

Goldmedaillen-Gewinner Thanh Phong Lê und Laura<br />

Gremion wur<strong>de</strong>n zusätzlich mit <strong>de</strong>n bei<strong>de</strong>n SPG-<br />

Nachwuchspreisen ausgezeichnet. Die Internationale<br />

Physik-Olympia<strong>de</strong> fin<strong>de</strong>t im Juli in Est<strong>la</strong>nd statt.<br />

• Ebenfalls im Juli 2012 wird das „International Young<br />

Physicists Tournament“ (IYPT) in Bad Sulgau (D) stattfin<strong>de</strong>n.<br />

• Die SPG könnte sich am Swiss Young Physicists' Tournament<br />

2013 beteiligen. Im Jahr 2016 wird das IYPT<br />

möglicherweise in <strong>de</strong>r Schweiz organisiert.<br />

• Im 2013 wird das Jubiläum "100 Jahre Bohr'sches<br />

Atommo<strong>de</strong>ll" gefeiert.<br />

• 2015 wur<strong>de</strong> zum „Internationalen Jahr <strong>de</strong>s Lichts“ bestimmt.<br />

Dann wird die SCNAT auch ihr 200jähriges Bestehen<br />

feiern.<br />

7. Wahlen<br />

Der Präsi<strong>de</strong>nt dankt <strong>de</strong>n bei<strong>de</strong>n ausschei<strong>de</strong>n<strong>de</strong>n Vorstandsmitglie<strong>de</strong>rn<br />

Urs Staub (Kon<strong>de</strong>nsierte Materie) und<br />

Pierangelo Gröning (Kassier) für Ihren <strong>la</strong>ngjährigen Einsatz.<br />

Und <strong>de</strong>r Vizepräsi<strong>de</strong>nt, Andreas Schopper, dankt <strong>de</strong>m zurücktreten<strong>de</strong>n<br />

Präsi<strong>de</strong>nten, Christophe Rossel, für seine<br />

vierjährige Amtszeit.<br />

In corpore wer<strong>de</strong>n einstimmig gewählt:<br />

• Präsi<strong>de</strong>nt (bisher Vizepräsi<strong>de</strong>nt): Dr. Andreas Schopper,<br />

CERN<br />

• Vize-Präsi<strong>de</strong>nt (bisher Präsi<strong>de</strong>nt): Dr. Christophe Rossel,<br />

IBM Research Zurich<br />

• Kassier (bisher Revisor): Dr. Pascal Ruffieux, EMPA<br />

• Kon<strong>de</strong>nsierte Materie (neu): Dr. Christian Rüegg, PSI<br />

• Theoretische Physik (bisher ad interim): Prof. Gian Michele<br />

Graf, ETH Zürich<br />

• Physik <strong>de</strong>r Er<strong>de</strong>, Atmosphäre und Umwelt (neu): Dr.<br />

Stéphane Goyette, Universität Genf<br />

Die übrigen Vorstandsmitglie<strong>de</strong>r bleiben für ihre restliche<br />

Amtszeit unverän<strong>de</strong>rt.<br />

Der neue Präsi<strong>de</strong>nt dankt <strong>de</strong>n Anwesen<strong>de</strong>n für ihr Erscheinen<br />

sowie <strong>de</strong>n Delegierten und seinen Vorstandskollegen<br />

für ihren Einsatz und die gute Zusammenarbeit.<br />

En<strong>de</strong> <strong>de</strong>r Generalversammlung: 12:45 Uhr.<br />

Zürich, 21. Juni 2012<br />

Die Protokollführerin: Susanne Johner<br />

NACHTRAG zu Punkt 1, Protokoll <strong>de</strong>r letzten GV vom<br />

16.06.2011 in Lausanne<br />

Nach <strong>de</strong>r GV stimmt Herr Peter Wolff folgen<strong>de</strong>r Neuformulierung<br />

zu:<br />

Der erste Satz unter Traktandum "6. Diverses" wird ersetzt<br />

durch:<br />

"Herr Peter Wolff erinnert an sein Anliegen betreffend die<br />

Schwierigkeiten, nicht-englische Artikel in wissenschaftlichen<br />

Zeitschriften zu publizieren, welches er an <strong>de</strong>r GV<br />

2010 in Basel geäussert hatte."<br />

6


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

Jahresrechnung 2012 - Bi<strong>la</strong>n annuel 2012<br />

Bi<strong>la</strong>nz per 31.12.2012<br />

Aktiven<br />

Um<strong>la</strong>ufsvermögen<br />

Postscheckkonto 55733,76<br />

Bank - UBS 230-627945.M1U 14378,51<br />

Debitoren - Mitglie<strong>de</strong>r 6450,00<br />

Debitoren - SCNAT/SATW u.a.m. 39180,80<br />

Transitorische Aktiven 2853,81<br />

Passiven<br />

An<strong>la</strong>gevermögen<br />

Beteiligung EP Letters 15840,00<br />

Mobilien 1,00<br />

Fremdkapital<br />

Mobiliar 1,00<br />

Mitglie<strong>de</strong>r Lebenszeit 59824,50<br />

Transitorische Passiven 10729,25<br />

Eigenkapital<br />

Vefügbares Vermögen 36606,87<br />

Total Passiven 134437,88 107161,62<br />

Gewinn 27276,26<br />

Total 134437,88 134437,88<br />

Verfügbares Vermögen per 31.12.12 nach Gewinnzuweisung 63883,13<br />

Erfolgsrechnung per 31.12.2012<br />

Aufwand<br />

Gesellschaftsaufwand<br />

EPS - Membership 14364,81<br />

SCNAT - Membership 8400,00<br />

SATW-Mitglie<strong>de</strong>rbeitrag 1750,00<br />

Ertrag<br />

SCNAT und SATW Zahlungs- und Verpflichtungskredite<br />

SPG-Jahrestagung 18240,86<br />

Schweizer Physik Olympia<strong>de</strong> 4000,00<br />

SPG Young Physicist's Forum 1180,80<br />

SCNAT/SPG Bulletin 9627,00<br />

SCNAT Periodika (SPG-Mitteilungen, Druckkosten) 15720,20<br />

SCNAT Int. Young Phys. Tournament 5500,00<br />

SCNAT Ent<strong>de</strong>ckungen <strong>de</strong>s Jahres 1912 4142,90<br />

SATW Earth Sciences 2350,00<br />

SATW Light and Sound Exhibition 3000,00<br />

Betriebsaufwand<br />

Löhne 11909,76<br />

Sozialleistungen 1806,60<br />

Porti/Telefonspesen/WWW- und PC-Spesen 814,95<br />

Versand (Porti Massensendungen) 7080,30<br />

Unkosten 3395,85<br />

Büromaterial 4492,30<br />

Ausseror<strong>de</strong>ntlicher Aufwand 4536,70<br />

Bankspesen 138,00<br />

Debitorenverluste Mitglie<strong>de</strong>r 1665,00<br />

Debitorenverlust SCNAT/SATW u.a.m. 5319,20<br />

Sekretariatsaufwand extern 12375,00<br />

Ertrag<br />

Mitglie<strong>de</strong>rbeiträge 98826,30<br />

Inserate/Flyerbei<strong>la</strong>gen SPG Mitteilungen 5170,00<br />

Aussteller 12744,94<br />

Zinsertrag 99,80<br />

Ertrag aus EP Letters Beteiligung 2745,45<br />

SCNAT und SATW Zahlungs- und Verpflichtungskredite<br />

SPG-Jahrestagung (SCNAT) 15000,00<br />

Schweizer Physik Olympia<strong>de</strong> 4500,00<br />

SPG Young Physicist's Forum 6000,00<br />

SCNAT Ent<strong>de</strong>ckungen <strong>de</strong>s Jahres 1912 4000,00<br />

SPG Bulletin (SCNAT) 5500,00<br />

Periodika (SPG-Mitteilungen, Druckkosten) (SCNAT) 4000,00<br />

SCNAT Int. Young Phys. Tournament 5500,00<br />

SATW Earth Sciences 2000,00<br />

SATW Light and Sound Exhibition 3000,00<br />

Total Aufwand / Ertrag 141810,23 169086,49<br />

Gewinn 27276,26<br />

Total 169086,49 169086,49<br />

7


SPG Mitteilungen Nr. 40<br />

Revisorenbericht zur Jahresrechnung 2012<br />

Die Jahresrechnung 2012 <strong>de</strong>r SPG wur<strong>de</strong> von <strong>de</strong>n unterzeichneten Revisoren geprüft und<br />

mit <strong>de</strong>n Belegen in Übereinstimmung befun<strong>de</strong>n.<br />

Die Revisoren empfehlen <strong>de</strong>r Generalversammlung <strong>de</strong>r SPG, die Jahresrechnung zu<br />

genehmigen und <strong>de</strong>n Kassier mit bestem Dank für die gute Rechnungsführung zu<br />

ent<strong>la</strong>sten.<br />

Die Revisoren <strong>de</strong>r SPG:<br />

Prof. Dr. Philipp Aebi<br />

Dr. Pierangelo Gröning<br />

Basel, 04. April 2013<br />

F. Erkadoo, SPG Büro, Departement Physik, Klingelbergstrasse 82, CH-4056 Basel<br />

Tel : 061 / 267 37 50, Fax : 061 / 267 13 49, Email : francois.erkadoo@unibas.ch<br />

8


News from SPS committee meetings (February & April)<br />

Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

Annual Meetings: The SPS meeting in 2014 will be held in Fribourg<br />

beginning of July, together with the National Centres of Competence<br />

in Research (NCCRs). The meeting in 2015 is p<strong>la</strong>nned with<br />

the Austrian Societies in Wien.<br />

Communications: The SPS has two major means of communication,<br />

the "SPG Mitteilungen" ("Communications <strong>de</strong> <strong>la</strong> SSP") and<br />

the SPS homepage (www.sps.ch). To further improve communication,<br />

from now on, we will report about <strong>de</strong>cisions from the executive<br />

committee meetings in the "SPG Mitteilungen". The editorial<br />

board is being en<strong>la</strong>rged, with the entire committee contributing<br />

to articles of the specific rubrics. With the aim of better publicizing<br />

colloquia, talks and seminars of general interest in Swiss<br />

aca<strong>de</strong>mic centres and universities, a list of these events and their<br />

links will be provi<strong>de</strong>d on the SPS website. You are most welcome<br />

to communicate events of interest to the SPS Secretariat<br />

(sps@unibas.ch).<br />

Projects: One of the main emphases of the SPS is to promote<br />

young aca<strong>de</strong>mics through a variety of activities and projects. The<br />

Young Physicists Forum (YPF), a commission of SPS also represented<br />

in the executive committee, organized a 2-day meeting on<br />

"Physics and Sport". (see p. 46 for a <strong>de</strong>tailed report). Another continuous<br />

en<strong>de</strong>avour of the SPS is to improve the contact between<br />

the teachers and the organizers of courses or training for secondary<br />

school teachers. The involvement of teachers varies from<br />

canton to canton, due to very different levels of encouragement<br />

(from the obligation of following paid courses during teaching time<br />

to the encouragement of following only courses at one’s expense<br />

and outsi<strong>de</strong> working time). In view of this year’s discovery of the<br />

Higgs particle, a visit to CERN took p<strong>la</strong>ce in cooperation with H. P.<br />

Beck and www.teilchenphysik.ch , in particu<strong>la</strong>r for teachers from<br />

the Swiss German. For the en<strong>la</strong>rgement of outreach to all domains<br />

of physics, it is felt that simi<strong>la</strong>r activities should <strong>de</strong>velop over the<br />

next years in other fields of physics.<br />

This year the SPS was once more involved in the Swiss Physics<br />

Olympiad (SPhO) by awarding 4 prizes, in the special recipients’<br />

configuration of 2013 including Liechtenstein in the winners. For<br />

the first time, Switzer<strong>la</strong>nd and Liechtenstein will organise the 2016<br />

International Physics Olympiad (typically 400 participants from 95<br />

countries), which will require additional organisational and scientific<br />

forces to be involved.<br />

There exists a <strong>de</strong>mand from secondary schools stu<strong>de</strong>nts to become<br />

members of the Society: as a very first action, we will try<br />

to establish an e-mail list, with the link to the electronic version of<br />

"SPS Communications" to be sent for each new publication.<br />

Contact to Aca<strong>de</strong>mies: The SATW has new structures and commissions<br />

(scientific advisory board, topical p<strong>la</strong>tforms, etc.) in<br />

which now more physicists can take part as experts; SPS will<br />

spread the information to its members. The SCNAT encourages<br />

participation to the "200 years SCNAT" Jubilee in 2015; the SPS<br />

will support the "Pop-up Lab" for this event, a project supported<br />

by AGORA, which is a SNF tool to intensify and fund dialogue<br />

between science and public.<br />

Contact to EPS: SPS has submitted a nomination to the EPS<br />

Physics Education Division Award. A <strong>de</strong>legation has participated<br />

to the Energy Group Meeting. A variety of SPS actions have been<br />

<strong>de</strong>fined to follow-up on the outcome of the EPS council meeting.<br />

Zum Tod von Nobelpreisträger Heinrich Rohrer<br />

Mit grosser Bestürzung und Trauer<br />

musste die SPG vom Tod ihres Ehrenmitglieds<br />

Heinrich Rohrer erfahren, <strong>de</strong>r<br />

am 16. Mai im Alter von 79 Jahren verstarb.<br />

Er war von 1963 bis 1997 am IBM<br />

Forschungszentrum in Rüschlikon tätig<br />

und gilt als einer <strong>de</strong>r massgeben<strong>de</strong>n<br />

Pioniere <strong>de</strong>r Nanowissenschaften, <strong>de</strong>ren<br />

Wer<strong>de</strong>gang aus <strong>de</strong>m Forschungsstadium<br />

heraus zur mittlerweile alle<br />

Bereiche <strong>de</strong>s täglichen Lebens erfassen<strong>de</strong>n<br />

Nanotechnologie er aktiv mitgestalten<br />

konnte. Für seine Erfindung<br />

<strong>de</strong>s Rastertunnelmikroskops wur<strong>de</strong> er<br />

1986 zusammen mit Gerd Binnig mit <strong>de</strong>r<br />

höchsten Auszeichnung in Physik, <strong>de</strong>m<br />

Nobelpreis, geehrt.<br />

Eine <strong>de</strong>r letzten beeindrucken<strong>de</strong>n Anwendungen<br />

seiner Pionierarbeit ist <strong>de</strong>r kurze Film "a Boy<br />

and his Atom" über einen Jungen, <strong>de</strong>r mit einem Atom<br />

spielt, und <strong>de</strong>r als kleinster Film <strong>de</strong>r Welt kürzlich von Wissenschaftlern<br />

am IBM Forschungs<strong>la</strong>bor Alma<strong>de</strong>n / San<br />

Jose (USA) produziert wur<strong>de</strong>. Im gewissen Sinn eine Parabel<br />

über Heini, <strong>de</strong>r gerne seine Begeisterung für die Nanowissenschaft<br />

weltweit an die junge Generation weitergab.<br />

Das mag auch noch folgen<strong>de</strong> kleine Begebenheit illustrieren:<br />

Als eine Gruppe von Leica-Physikern gegen En<strong>de</strong> <strong>de</strong>r<br />

80er Jahre während einer Zugfahrt von Lausanne nach<br />

Image courtesy of IBM Research – Zurich<br />

Heerbrugg unerwartete technische<br />

Schwierigkeiten in einem Gemeinschaftsprojekt<br />

mit <strong>de</strong>r EPFL <strong>la</strong>utstark<br />

bek<strong>la</strong>gte, kam Heini Rohrer aus <strong>de</strong>m<br />

Nebenabteil überraschend zu uns und<br />

meinte schelmisch, dass wir die Beschäftigung<br />

mit Problemen im Submikrometerbereich<br />

doch positiv als Chance<br />

für <strong>de</strong>n Einstieg in <strong>de</strong>n Nanobereich<br />

mit all seinen ungeahnten Möglichkeiten<br />

sehen sollten! Während wir Älteren noch<br />

recht skeptisch blickten, wur<strong>de</strong>n unsere<br />

jüngeren Kollegen durch diese ermuntern<strong>de</strong>n<br />

Worte sichtbar aufgerichtet.<br />

Seine Persönlichkeit und die Be<strong>de</strong>utung<br />

seines Wirkens wer<strong>de</strong>n von IBM unter<br />

folgen<strong>de</strong>m Link http://www.research.<br />

ibm.com/articles/heinrich-rohrer.shtml<br />

eindrücklich geschil<strong>de</strong>rt.<br />

So verlieren wir Physiker einen liebenswerten Freund und<br />

Kollegen, <strong>de</strong>ssen beschei<strong>de</strong>ne Art, sein subtiler Humor,<br />

seine grossartigen wissenschaftlichen Leistungen und vor<br />

allem seine stete Hilfsbereitschaft uns in bester Erinnerung<br />

bleiben wer<strong>de</strong>n.<br />

C. Rossel (IBM Research - Zurich) und B. Braunecker (früher<br />

Leica Geosystems)<br />

9


SPG Mitteilungen Nr. 40<br />

Allgemeine Tagungsinformationen - Informations générales sur <strong>la</strong> réunion<br />

Konferenzwebseite und Anmeldung<br />

Alle Teilnehmeranmeldungen wer<strong>de</strong>n über die Konferenzwebseite<br />

vorgenommen.<br />

www.sps.ch o<strong>de</strong>r www.jku.at/hfp/oepgsps13<br />

Anmel<strong>de</strong>schluß: 1. August 2013<br />

Tagungsort<br />

Johannes Kepler Universität Linz, Keplergebäu<strong>de</strong><br />

Tagungssekretariat<br />

Das Tagungssekretariat befin<strong>de</strong>t sich beim Haupteingang<br />

zur Tagung, vor <strong>de</strong>m Hörsaal 1.<br />

Öffnungszeiten:<br />

Di 03.09. 09:00 - 19:00<br />

Mi - Do 04. - 05.09. 08:00 - 19:00<br />

Fr 06.09. 08:00 - 15:00<br />

Alle Tagungsteilnehmer mel<strong>de</strong>n sich bitte vor <strong>de</strong>m Besuch<br />

<strong>de</strong>r ersten Veranstaltung beim Sekretariat an, wo<br />

Sie ein Namensschild und allfällige weitere Unter<strong>la</strong>gen<br />

erhalten sowie die Tagungsgebühr bezahlen.<br />

Wichtig: Ohne Namensschild ist kein Zutritt zu einer<br />

Veranstaltung möglich.<br />

Wir empfehlen Ihnen, wenn möglich <strong>de</strong>n Dienstag<br />

Nachmittag für die Anmeldung zu nutzen. So können<br />

Sie am Mittwoch direkt ohne Wartezeiten die Vorträge<br />

besuchen.<br />

Achtung: Das Tagungssekretariat gibt kein technisches<br />

o<strong>de</strong>r Büromaterial ab. Je<strong>de</strong>r Teilnehmer ist für seine<br />

Ausrüstung (Mobilrechner, Laserpointer, Adapter, Schere,<br />

Reissnägel, Folien usw.) selber verantwortlich !<br />

Hörsäle<br />

In allen Hörsälen stehen Beamer und Hellraumprojektoren<br />

zur Verfügung. Bitte bringen Sie Ihre eigenen Mobilrechner<br />

und evtl. Adapter und USB Stick/CD mit.<br />

Postersession<br />

Die Postersession fin<strong>de</strong>t am Mittwoch und Donnerstag<br />

Abend sowie am Freitag während <strong>de</strong>r Mittagspause in<br />

<strong>de</strong>r Halle statt. Bitte bringen Sie Befestigungsmaterial<br />

(Reissnägel, Klebestreifen) selbst mit. Die Posterwän<strong>de</strong><br />

sind entsprechend diesem Programm numeriert, sodaß<br />

je<strong>de</strong>r Teilnehmer "seine" Wand leicht fin<strong>de</strong>n sollte. Alle<br />

Poster sollen an allen drei Tagen präsentiert wer<strong>de</strong>n.<br />

Maximale Postergröße: A0 Hochformat<br />

Zahlung<br />

Wir bitten Sie, die Tagungsgebühren im Voraus zu bezahlen.<br />

Sie verkürzen damit die Wartezeiten am Tagungssekretariat,<br />

erleichtern uns die Arbeit und sparen<br />

darüber hinaus noch Geld !<br />

Die Angaben zur Zahlung wer<strong>de</strong>n während <strong>de</strong>r Anmeldung<br />

direkt auf <strong>de</strong>r Webseite angezeigt.<br />

Site web <strong>de</strong> <strong>la</strong> conférence et inscription<br />

L'inscription <strong>de</strong>s participants se fait sur le site web <strong>de</strong><br />

<strong>la</strong> conférence.<br />

www.sps.ch ou www.jku.at/hfp/oepgsps13<br />

Dé<strong>la</strong>i d'inscription: 1 er août 2013<br />

Lieu <strong>de</strong> <strong>la</strong> conférence<br />

Johannes Kepler Universität Linz, Bâtiment "Kepler"<br />

Secrétariat <strong>de</strong> <strong>la</strong> conférence<br />

Le secrétariat <strong>de</strong> <strong>la</strong> réunion se trouve juste à l'entrée,<br />

<strong>de</strong>vant l'auditoire 1.<br />

Heures d'ouverture :<br />

Mar 3.9. 09:00 - 19:00<br />

Mer - Jeu 4. - 5.9. 08:00 - 19:00<br />

Ven 6.9. 08:00 - 15:00<br />

Tous les participants doivent se présenter en premier<br />

lieu au secrétariat <strong>de</strong> <strong>la</strong> conférence afin <strong>de</strong> recevoir leur<br />

badge et les divers documents ainsi que pour le paiement<br />

<strong>de</strong>s frais d'inscription.<br />

Attention: Sans badge, l'accès aux sessions <strong>de</strong> <strong>la</strong> manifestation<br />

sera refusé.<br />

Nous vous recommandons <strong>de</strong> vous inscrire déjà mardi<br />

après-midi afin d'éviter <strong>de</strong>s temps d'attente inutiles<br />

mercredi matin.<br />

Attention: Le secrétariat <strong>de</strong> <strong>la</strong> conférence ne met aucun<br />

matériel technique ni matériel <strong>de</strong> bureau à disposition.<br />

Chaque participant est responsable <strong>de</strong> son équipement<br />

(ordinateur, pointeur <strong>la</strong>ser, adaptateurs, ciseaux, punaises,<br />

...) !<br />

Auditoires<br />

Les auditoires disposent tous d’un projecteur multimédia<br />

(beamer) et d'un projecteur pour transparents.<br />

Veuillez apporter votre ordinateur portable ainsi que<br />

d'éventuels accessoires tels que clé USB ou CD.<br />

Séance posters<br />

Les posters seront présentés dans le hall le mercredi<br />

et jeudi soir et pendant <strong>la</strong> pause <strong>de</strong> midi <strong>de</strong> vendredi.<br />

Veuillez amener vous-même le matériel nécessaire pour<br />

fixer les posters (punaises, ruban adhésif). Les panneaux<br />

<strong>de</strong> posters seront numérotés suivant le numéro<br />

<strong>de</strong> l'abstract indiqué dans le programme. Tous les posters<br />

<strong>de</strong>vraient rester installés pendant les trois jours.<br />

Dimension maximale: A0, format portrait<br />

Paiement<br />

Nous vous prions <strong>de</strong> régler d'avance vos frais d'inscription.<br />

De cette manière vous éviterez <strong>de</strong>s files d'attente<br />

et vous nous facilitez notre travail. En plus vous pourrez<br />

faire <strong>de</strong>s économies !<br />

Les informations pour le paiement sont indiquées directement<br />

sur <strong>la</strong> page web lors <strong>de</strong> l'enregistrement.<br />

10


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

Preise gültig bei Zahlung bis 1. August - Prix va<strong>la</strong>ble pour <strong>de</strong>s paiements avant le 1er août<br />

Kategorie - Catégorie<br />

EUR<br />

Mitglie<strong>de</strong>r von SPG, ÖPG, SGAA, ÖGAA - Membres <strong>de</strong> <strong>la</strong> SSP ÖPG, SSAA, ÖGAA 90.-<br />

Doktoran<strong>de</strong>n, die in einer <strong>de</strong>r obigen Gesellschaft Mitglied sind -<br />

70.-<br />

Doctorants qui sont membres d'une <strong>de</strong>s sociétés mentionnées ci-<strong>de</strong>ssus<br />

Doktoran<strong>de</strong>n, die NICHT Mitglied sind - Doctorants qui ne sont PAS membres 90.-<br />

Stu<strong>de</strong>nten VOR Master/Diplom Abschluß - Etudiants AVANT le <strong>de</strong>gré master/diplôme 30.-<br />

Plenar-/Einge<strong>la</strong><strong>de</strong>ne Sprecher, Preisträger - Conférenciers pléniers / invités, <strong>la</strong>uréats 0.-<br />

An<strong>de</strong>re Teilnehmer - Autres participants 120.-<br />

Konferenz Aben<strong>de</strong>ssen - Dîner <strong>de</strong> <strong>la</strong> conférence 70.-<br />

Zusch<strong>la</strong>g für Zahlungen nach <strong>de</strong>m 1. August sowie Barzahler an <strong>de</strong>r Tagung -<br />

20.-<br />

Supplément pour paiements effectués après le 1er août et pour paiements en espèces à <strong>la</strong> conférence<br />

Am Tagungssekretariat kann nur bar bezahlt wer<strong>de</strong>n (in<br />

EUR). Kreditkarten können lei<strong>de</strong>r nicht akzeptiert wer<strong>de</strong>n.<br />

ACHTUNG: Tagungsgebühren können nicht zurückerstattet<br />

wer<strong>de</strong>n.<br />

Kaffeepausen, Mittagessen<br />

Die Kaffeepausen und die zur Postersitzung gehören<strong>de</strong>n<br />

Apéros fin<strong>de</strong>n in <strong>de</strong>r Halle bei Händlerausstellung statt.<br />

Diese Leistungen sind in <strong>de</strong>r Konferenzgebühr enthalten.<br />

Die Mensen auf <strong>de</strong>m Campus sowie umliegen<strong>de</strong> Restaurants<br />

stehen zum Mittagessen zur Verfügung.<br />

Konferenz-Aben<strong>de</strong>ssen<br />

Das Aben<strong>de</strong>ssen fin<strong>de</strong>t am Donnerstag im Anschluß an<br />

die Postersession statt. Der Preis beträgt EUR 70.- pro<br />

Person (beinhaltet Transfer, Menü und Getränke) Bitte<br />

registrieren Sie sich unbedingt im Voraus, damit wir<br />

disponieren können. Eine Anmeldung vor Ort ist nicht<br />

möglich !<br />

Hotels und Anreise<br />

Alle Informationen fin<strong>de</strong>n Sie auf <strong>de</strong>r Konferenzwebseite:<br />

www.jku.at/hfp/oepgsps13<br />

Les paiements lors <strong>de</strong> <strong>la</strong> conférence ne pourront être<br />

effectués qu'en espèces (EUR). Les cartes <strong>de</strong> crédit ne<br />

pourront malheureusement pas être acceptées.<br />

ATTENTION: Les frais d'inscription ne pourront pas être<br />

remboursés.<br />

Pauses café, repas <strong>de</strong> midi<br />

Les pauses café, et les apéros pendant <strong>la</strong> séance posters<br />

se dérouleront dans le hall près <strong>de</strong>s exposants. Ces<br />

prestations sont inclues dans les frais d'inscription.<br />

Les restaurants du campus ainsi que <strong>de</strong>s restaurants<br />

autour <strong>de</strong> l'université sont disponible pour les repas <strong>de</strong><br />

midi.<br />

Dîner <strong>de</strong> <strong>la</strong> conférence<br />

Le dîner se tiendra le jeudi soir après <strong>la</strong> séance posters.<br />

Le prix est <strong>de</strong> EUR 70.- par personne (transfert, repas et<br />

boissons inclus). Veuillez s.v.p. absolument vous enregistrer<br />

d'avance pour <strong>de</strong>s raisons d'organisation. Il n'est<br />

plus possible <strong>de</strong> s'inscrire sur p<strong>la</strong>ce.<br />

Hôtels et Arrivée<br />

Tous les informations se trouvent sur le site web <strong>de</strong> <strong>la</strong><br />

conférence: www.jku.at/hfp/oepgsps13<br />

Neuer MANTIS Kontakt für<br />

die Schweiz und Österreich<br />

Das britische Unternehmen Mantis Deposition Ltd.<br />

ist seit <strong>de</strong>m 1. Oktober 2012 in Deutsch<strong>la</strong>nd mit<br />

einer eigenen Nie<strong>de</strong>r<strong>la</strong>ssung in Mainz vertreten, die<br />

für die Betreuung <strong>de</strong>r Kun<strong>de</strong>n in Deutsch<strong>la</strong>nd,<br />

Österreich und <strong>de</strong>r Schweiz zuständig ist.<br />

Mantis wur<strong>de</strong> im Jahre 2003 in Oxford von<br />

Wissenschaftlern mit Erfahrung in <strong>de</strong>n Bereichen<br />

Nanotechnologie sowie Mess-und<br />

Dünnschichttechnik gegrün<strong>de</strong>t. Ein Team von<br />

erfahrenen und hochqualifizierten Mitarbeitern trägt<br />

in Entwicklung, Produktion, Beratung, Instal<strong>la</strong>tion<br />

und Service zum Erfolg <strong>de</strong>s Unternehmens bei.<br />

Heute steht das Unternehmen für die Herstellung<br />

qualitativ hochwertiger Beschichtungskomponenten<br />

und Vakuumabschei<strong>de</strong>an<strong>la</strong>gen. Die Produkte<br />

wer<strong>de</strong>n sowohl in <strong>de</strong>r innovativen<br />

Materialforschung (Nanobeschichtungen,<br />

Moleku<strong>la</strong>rstrahlexpitaxie, Sputterprozessen uvm.)<br />

als auch in Pilot-Produktionsbeschichtungsan<strong>la</strong>gen<br />

mit Erfolg eingesetzt und stehen an <strong>de</strong>r Spitze <strong>de</strong>r<br />

Dünnschicht-Beschichtungstechnologie. Die Firma hat<br />

in kürzester Zeit mehr als 60 komplette An<strong>la</strong>gen<br />

weltweit verkauft.<br />

Neben universellen Standard Beschichtungssystemen<br />

wer<strong>de</strong>n auch An<strong>la</strong>gen nach Kun<strong>de</strong>nspezifikationen<br />

angeboten. Als beson<strong>de</strong>re Dienstleistung wird ein<br />

Entwicklungsbeschichtungsservice unter Verwendung<br />

<strong>de</strong>r eigenen Nanopartikel- Abscheidungsquelle<br />

angeboten.<br />

Mantis Deposition GmbH<br />

Alte Fahrkartendruckerei<br />

Mombacher Straße 52<br />

55122 Mainz<br />

Deutsch<strong>la</strong>nd<br />

Tel: +49(0)6131-3272520<br />

OfficeDE@mantis<strong>de</strong>position.com<br />

www.mantis<strong>de</strong>position.<strong>de</strong><br />

11


SPG Mitteilungen Nr. 40<br />

Vorläufige Programmübersicht - Résumé préliminaire du programme<br />

Das vollständige Programm wird allen Teilnehmern am Tagungssekretariat<br />

abgegeben sowie auf <strong>de</strong>r SPG-Webseite<br />

publiziert.<br />

Hinweise:<br />

- Je Beitrag wird nur <strong>de</strong>r präsentieren<strong>de</strong> Autor aufgeführt.<br />

- Die Postersitzung ist am Mittwoch und Donnerstag<br />

von 18:30 - ca. 20:00 (mit Apéro) sowie am Freitag von<br />

12:00 - 13:30.<br />

- (p) = Plenarsprecher, (i) = einge<strong>la</strong><strong>de</strong>ner Sprecher<br />

Special: Energy Day 2013<br />

Tuesday, 03.09.2013, HS 1<br />

Le programme final complet sera distribué aux participants<br />

au stand du secrétariat <strong>de</strong> <strong>la</strong> conférence et sera publié sur<br />

le site <strong>de</strong> <strong>la</strong> SSP.<br />

Indication:<br />

- seul le nom <strong>de</strong> l’auteur présentant <strong>la</strong> contribution a été<br />

indiqué.<br />

- <strong>la</strong> session poster a lieu le mercredi et jeudi <strong>de</strong> 18.30 à<br />

env. 20.00 (avec apéro) ainsi que le vendredi <strong>de</strong> 12:00<br />

à 13:30.<br />

- (p) = orateur <strong>de</strong> <strong>la</strong> session plénière, (i) = orateur invité<br />

Special: Thermoelectrics<br />

Tuesday, 03.09.2013, HS 4<br />

Time ID Energy Day<br />

Chair: Werner Spitzl<br />

10:00 21 Energiespeicherung: Das Vorwort zum Energietag<br />

2013<br />

Norbert Pillmayr<br />

10:15 22 Zukünftiges Energiesystem benötigt neue Lösungsansätze<br />

beson<strong>de</strong>rs bei <strong>de</strong>r Speicherung<br />

Horst Steinmüller<br />

10:45 23 Herausfor<strong>de</strong>rungen für <strong>de</strong>n Betrieb <strong>de</strong>s kontinentaleuropäischen<br />

Verbundnetzes<br />

Martin Geidl<br />

11:15 Coffee Break<br />

11:30 24 Smart Grid und das Hauskraftwerk<br />

Michael Zahradnik<br />

12:00 25 Wieviel erneuerbare Energie muss zukünftig gespeichert<br />

wer<strong>de</strong>n? Analyse <strong>de</strong>s zukünftigen<br />

Speicherbedarfs in Österreich mit einem hohen Anteil<br />

an erneuerbarer Energie.<br />

Gerfried Jungmeier<br />

12:30 Diskussion<br />

12:45 Lunch<br />

Chair: Brigitte Pagana-Hammer<br />

13:30 26 Technologische und Ökonomische Aspekte <strong>de</strong>r<br />

Elektrochemischen Energiespeicherung<br />

Stefan Koller<br />

14:00 27 Wasserstoffspeicherung durch Magnesiumhydrid<br />

Iris Bergmair<br />

14:30 28 Superconducting Magnetic Energy Storage<br />

Bartlomiej A. Glowacki<br />

15:00 29 Die Lithium-Ionen Batterie – von <strong>de</strong>r Knopfzelle zur<br />

Traktionsbatterie<br />

Michael Sternad<br />

15:30 Diskussion<br />

15:50 Schlußbemerkungen<br />

Norbert Pillmayr<br />

16:00 END<br />

18:00 RECEPTION<br />

19:00 Official Opening of the Joint Annual Meeting of<br />

ÖPG, SPS, ÖGAA and SSAA<br />

Public Lecture<br />

Chair: Günther Bauer, JKU Linz<br />

19:15 11 Using Nanostructures toward Achieving Energy<br />

Sustainability<br />

Mildred Dresselhaus, MIT (p)<br />

20:30 END<br />

Time ID Thermoelectrics<br />

Chair: Armando Rastelli, JKU Linz<br />

15:15 31 From Superconductivity Towards Thermoelectricity:<br />

Germanium Based Skutterudites<br />

E. Bauer (i)<br />

15:45 32 Half-Heusler compounds for thermoelectricity<br />

Sascha Populoh<br />

16:00 Coffee Break<br />

16:30 33 Seebeck Effect in the Kondo Insu<strong>la</strong>tor CeRu 4<br />

Sn 6<br />

un<strong>de</strong>r<br />

Magnetic Field<br />

Valentina Martelli<br />

16:45 34 Seebeck-effect in organic semiconductors<br />

Kristin Wil<strong>la</strong><br />

17:00 35 Crucial role of surface-segregation-driven intermixing<br />

on the thermal transport through p<strong>la</strong>nar Ge/Si<br />

super<strong>la</strong>ttices<br />

Peixuan Chen<br />

17:15 36 X-ray characterization of Si/Ge thermoelectric<br />

structures<br />

Tanja Etzelstorfer<br />

17:30 37 Intermetallic transition metal c<strong>la</strong>thrates<br />

Andrey Prokofiev<br />

17:45 END<br />

ID<br />

Thermoelectrics Poster<br />

41 Influence of process variables of ball milling and hot pressing<br />

on the thermoelectric performance of type I c<strong>la</strong>thrates<br />

Xinlin Yan<br />

42 Development of a Measuring P<strong>la</strong>tform for Thermoelectric<br />

Properties of Nanowires<br />

Günther Lientschnig<br />

43 Thermoelectric properties of melt-spun SPS sintered type-<br />

VIII Ba 8<br />

Ga 16<br />

Sn 30-x<br />

Ge x<br />

c<strong>la</strong>thrates<br />

Petr Tomes<br />

44 Experimental setup and sample processing for direct measurements<br />

of the cross-p<strong>la</strong>ne Seebeck coefficient of nanostructured<br />

Si/Ge materials<br />

Lukas Nausner<br />

45 Melt spinning of CoSb 3<br />

: e ect<br />

of microstructure on phonon<br />

thermal conductivity<br />

Matthias Ikeda<br />

46 Thermoelectric properties of the anisotropic Kondo insu<strong>la</strong>tor<br />

CeRu 4<br />

Sn 6<br />

Jonathan Haenel<br />

47 Resonant scattering induced thermopower peak in one dimensional<br />

disor<strong>de</strong>red systems<br />

Daniel Müller<br />

12


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

Special: Photovoltaics<br />

Tuesday, 03.09.2013, HS 5<br />

Time ID Photovoltaics<br />

Chair: Markus C<strong>la</strong>rk Scharber, JKU Linz<br />

14:45 51 Theory of light-harvesting in photosynthesis: From<br />

structure to function<br />

Thomas Renger<br />

15:15 52 Artificial Photosynthesis for the Storage of Chemical<br />

Energy<br />

Kerstin Oppelt<br />

15:30 53 Ultrathin, lightweight, and flexible organic so<strong>la</strong>r<br />

cells<br />

Matthew White<br />

15:45 54 Colloidal Quantum dot photovoltaics: Tuning optoelectronic<br />

properties<br />

Philipp Stadler<br />

16:00 Coffee Break<br />

16:30 55 Organic nanocrystals from <strong>la</strong>tent pigments for environmentally-friendly<br />

and biocompatible electronics<br />

Mykhailo Sytnyk<br />

16:45 56 Metal sulfi<strong>de</strong> nanoparticle/polymer hybrid so<strong>la</strong>r<br />

cells<br />

Gregor Trimmel<br />

17:00 57 Flexible Monograin Membrane Photovoltaic Membranes<br />

Axel Neisser<br />

17:15 58 15 years of research on organic so<strong>la</strong>r cells: lessons<br />

learned from 1 % to 10 % efficiency<br />

Christoph J. Brabec (i)<br />

18:00 END<br />

Plenary Session<br />

Wednesday, 04.09.2013, HS 1<br />

Time ID Plenary Session I<br />

Chair: NN<br />

08:55 Welcome note<br />

09:00 1 P<strong>la</strong>smons, forces and currents in atomic and molecu<strong>la</strong>r<br />

contacts<br />

Richard Berndt, Uni Kiel (p)<br />

09:40 2 Quantum simu<strong>la</strong>tion with Atoms, Ions and Molecules<br />

Peter Zoller, Uni Innsbruck (p)<br />

10:20 Coffee Break<br />

Chair: NN<br />

10:50 3 The Quantum Way of Doing Computations<br />

Rainer B<strong>la</strong>tt, Uni Innsbruck (p)<br />

11:30 Award Ceremony<br />

12:30 Lunch<br />

13:30 Topical Sessions<br />

18:30 Postersession and Apéro<br />

Public Lecture<br />

Chair: Rainer B<strong>la</strong>tt, Uni Innsbruck<br />

20:00 12 Manipu<strong>la</strong>tion of single quantum systems<br />

Serge Haroche, Collège <strong>de</strong> France (p)<br />

21:15 END<br />

Thursday, 05.09.2013, HS 1<br />

Time ID Plenary Session II<br />

Chair: NN<br />

09:00 4 100 years Bohr's Atomic Mo<strong>de</strong>l: Its birth and its importance<br />

in the rise of QM<br />

Jan Lacki, Uni Genève (p)<br />

09:40 5 Exop<strong>la</strong>nets and their atmospheres<br />

Lisa Kaltenegger, MPI Hei<strong>de</strong>lberg (p)<br />

10:20 Coffee Break<br />

Chair: NN<br />

10:50 6 GEO: Using Earth observation for Integrated Water<br />

Resources Management<br />

Doug<strong>la</strong>s Cripe, GEOSS Genève (p)<br />

11:30 16 Winner of the ÖPG Boltzmann Award<br />

12:00 General Assemblies<br />

12:30 Lunch<br />

13:30 Topical Sessions<br />

18:30 Postersession (continued)<br />

20:00 Conference Dinner<br />

Friday, 06.09.2013, HS 1<br />

Time ID Plenary Session III<br />

Chair: NN<br />

09:00 7 LHC - The first three years<br />

Rainer Wallny, ETH Zürich (p)<br />

09:40 8 Quantum phase transitions in con<strong>de</strong>nsed matter<br />

Silke Bühler-Paschen, TU Wien (p)<br />

10:20 Coffee Break<br />

Chair: Georg Pabst, Uni Graz<br />

10:50 9 Theoretical Insights into Structure of Animal Tissues<br />

Primoz Ziherl, Uni Ljubljana (p)<br />

11:30 17 Winner of the SPS ABB Award<br />

12:00 Best Poster Awards<br />

12:15 Postersession (continued), Lunch<br />

13:30 Topical Sessions<br />

15:30 END<br />

Careers for Physicists<br />

Thursday, 05.09.2013, K001A<br />

Time ID Careers for Physicists<br />

Chair: Kai Hencken, ABB Ba<strong>de</strong>n<br />

14:00 71 "Advanced Manufacturing", ein interessantes Feld<br />

für Physikerinnen und Physiker?<br />

Bernhard Braunecker (i)<br />

14:30 72 What does a physicist do at ETH Zürich if he is not<br />

in research?<br />

Bernd Rinn (i)<br />

15:00 73 On the Cutting Edge: Publication Dynamics and the<br />

Society of Scientific Journals<br />

Istvan Daruka<br />

15:30 Coffee Break<br />

13


SPG Mitteilungen Nr. 40<br />

16:00 74 A new generation of Physicists<br />

Stefano Verginelli (i)<br />

16:30 75 Workshop: Wie? Mit Physik Karriere machen?<br />

Josef Siess (i)<br />

17:00 END<br />

18:30 Postersession and Apéro<br />

20:00 Conference Dinner<br />

Physik und Schule<br />

Wednesday, 04.09.2013, K269D<br />

Time ID Physik und Schule<br />

Chair: Engelbert Stütz, JKU Linz<br />

13:15 81 Sexl-Preisträger: Preisvortrag 1<br />

13:35 82 Sexl-Preisträger: Preisvortrag 2<br />

14:00 83 Hat Aristoteles doch recht?<br />

Siegfried Bauer (i)<br />

Prämierte Fachbereichsarbeiten<br />

Chair: Leopold Mathelitsch, Uni Graz<br />

15:00 84 Introduction to Rutherford Backscattering Spectrometry<br />

(RBS)<br />

Maximilian Heinz Ruep<br />

15:15 85 Schwerelosigkeit und Mikrogravitation<br />

Bianca Neureiter<br />

15:30 Coffee Break<br />

16:00 86 Stringtheorie; Grundgedanken und ihr Einfluss auf<br />

Teilchenphysik und Kosmologie<br />

Stefan Purkhart<br />

16:15 87 Bildsensorik. Physikalische und technische Grund<strong>la</strong>gen<br />

am Beispiel <strong>de</strong>s CCD<br />

Stefan Janisch<br />

Chair: Engelbert Stütz, JKU Linz<br />

16:30 88 Präsentation <strong>de</strong>s österreichischen Teams <strong>de</strong>s IYPT<br />

2013<br />

16:50 89 Präsentation <strong>de</strong>s österreichischen Teams <strong>de</strong>r IPhO<br />

2013<br />

17:10 Sitzung <strong>de</strong>s FA Physik und Schule<br />

18:00 ENDE<br />

18:30 Postersession and Apéro<br />

ID<br />

Physik und Schule Poster<br />

91 Construction, <strong>de</strong>velopment and tests of a cost-effective<br />

force p<strong>la</strong>tform<br />

Florian Rie<strong>de</strong>r<br />

92 Schülervorstellungen zum Thema Strahlung<br />

Martin Hopf<br />

93 Astrobiology as an Interdisciplinary Starting Point to Natural<br />

Sciences<br />

Johannes Leitner<br />

94 Let`s P<strong>la</strong>y Physics! Making physics education physically - A<br />

project on the transit of the venus<br />

Christina Rothenhäusler<br />

95 Nanophysik am Beispiel eines Rastertunnelmikroskops in<br />

<strong>de</strong>r Schule<br />

Thomas Möst<br />

96 Professionswissen Physiklehramtsstudieren<strong>de</strong>r in Österreich<br />

Ingrid Krumphals<br />

KOND<br />

Wednesday, 04.09.2013, HS 5<br />

Time ID Magnetism, Superconductivity<br />

and Quantum Criticality<br />

Chair: Silke Bühler-Paschen, TU Wien<br />

13:30 101 Superconductivity in Materials without Inversion<br />

Symmetry<br />

Ernst Bauer (i)<br />

14:00 102 Quantum criticality of the heavy-fermion compound<br />

CeCoGe 2.2<br />

Si 0.8<br />

Julio Larrea<br />

14:15 103 Strong Pressure Depen<strong>de</strong>nce of the Magnetic<br />

Penetration Depth in Single Crystals of the Heavy-<br />

Fermion Superconductor CeCoIn 5<br />

Studied by Muon<br />

Spin Rotation<br />

Ludovic Howald<br />

14:30 104 Electric and magnetic coupling of quantum-critical<br />

materials to a microwave cop<strong>la</strong>nar wavegui<strong>de</strong> resonator<br />

at milli-Kelvin temperatures<br />

Diana Geiger<br />

14:45 105 Superconductivity and Quantum Criticality<br />

Johan Chang (i)<br />

15:15 106 About the origin of frustration in the magnetismdriven<br />

multiferroic YBaCuFeO 5<br />

Marisa Medar<strong>de</strong><br />

15:30 Coffee Break<br />

Neutrons and Synchrotron Radiation<br />

for Con<strong>de</strong>nsed Matter<br />

Chair: Oskar Paris, Uni Leoben<br />

16:00 111 X-ray absorption spectroscopy for element selective<br />

investigations of structure, valence and magnetism<br />

in doped oxi<strong>de</strong>s<br />

Andreas Ney (i)<br />

16:30 112 Growing semiconductor nitri<strong>de</strong>s into spintronic and<br />

magnetooptic materials<br />

Alberta Bonanni<br />

16:45 113 X-ray strain microscopy of inhomogoenously<br />

strained Ge micro-bridges<br />

Tanja Etzelstorfer<br />

17:00 114 A New Crystalline Phase of Gallium Phosphi<strong>de</strong>:<br />

Wurtzite Nanowires Investigated by X-ray Diffraction<br />

Dominik Kriegner<br />

17:15 115 In-situ synchrotron SAXS studies on Colloidal Nanocrystal<br />

Formation<br />

Rainer T. Lechner<br />

17:30 116 In-situ and ex-situ study of mesostructured silica<br />

synthesized in the gas phase<br />

Barbara Sartori<br />

17:45 117 Humidity Driven Pore-Lattice Deformation in Or<strong>de</strong>red<br />

Mesoporous Thin Films<br />

Parvin Sharifi<br />

18:00 118 Radiation assisted material synthesis and processing<br />

by <strong>de</strong>ep X-ray lithography<br />

Bene<strong>de</strong>tta Marmiroli<br />

18:15 119 Novel insights into photoemission from solids: Surface<br />

RABBITT yields absolute <strong>de</strong><strong>la</strong>ys and reveals<br />

temporal structure beyond transport phenomena.<br />

Luca Castiglioni<br />

18:30 Postersession and Apéro<br />

20:00 Public Lecture<br />

14


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

Thursday, 05.09.2013, HS 5<br />

Friday, 06.09.2013, HS 5<br />

Time ID Soft Matter and Other Systems I<br />

(Shared with the Biophysics session)<br />

Chair: Georg Pabst, Uni Graz<br />

13:30 121 Equilibrium and flow of cluster-forming complex<br />

fluids<br />

Christos N. Likos (i)<br />

14:00 122 Optimized Fourier Monte Carlo Simu<strong>la</strong>tion of Solid<br />

and Hexatic Membranes<br />

Andreas Troester<br />

14:15 123 Biomimetic folding particle chains<br />

Peter Oostrum<br />

Soft Matter and Other Systems II<br />

Chair: Oskar Paris, Uni Leoben<br />

14:30 124 Small Angle Scattering Study of the self-assembly<br />

of an amphiphilic <strong>de</strong>signer pepti<strong>de</strong> from the monomer<br />

to a helical superstructure<br />

Heinz Amenitsch<br />

14:45 125 Liquid Structure and the Noncoinci<strong>de</strong>nce Effect of<br />

Liquid Dimethyl Sulfoxi<strong>de</strong> Revisited<br />

Maurizio Musso<br />

15:00 126 Generation of multiply twinned Ag clusters (n


SPG Mitteilungen Nr. 40<br />

Surfaces, Interfaces and Thin Films<br />

Wednesday, 04.09.2013, HS 1<br />

Time ID Surfaces + organic thin films<br />

Chair: Christian Teichert, Uni Leoben<br />

13:30 201 Iso<strong>la</strong>ted Pd Sites on PdGa Mo<strong>de</strong>l Catalyst Surfaces<br />

Jan Prinz<br />

13:45 202 Metal clusters and simple adsorbates on ultra-thin<br />

ZrO 2<br />

/Pt 3<br />

Zr<br />

Joong Il J. Choi<br />

14:00 203 Mechanics of single molecules<br />

Ernst Meyer (i)<br />

14:30 204 Initial steps of indigo film growth on silicon dioxi<strong>de</strong><br />

Boris Scherwitzl<br />

14:45 205 Tuning the 1D-self-assembly of dicyano-functionalized<br />

helicene building-blocks<br />

Aneliia Shchyrba<br />

15:00 206 Using po<strong>la</strong>rized light in PEEM<br />

Thorsten Wagner<br />

15:15 207 Substrate enhanced intermolecu<strong>la</strong>r dispersion:<br />

Pentacene on Cu(110)<br />

Thomas Ules<br />

15:30 Coffee Break<br />

Theory + clusters<br />

Chair: Ernst Meyer, Uni Basel<br />

16:00 211 Ohmic contacts for resistance measurements of<br />

ultra-thin metal-on-silicon <strong>la</strong>yers<br />

Bernhard Lutzer<br />

16:15 212 Electrical and Physical Characterization of Interfacial<br />

Germanates in Ge-based MOS <strong>de</strong>vices<br />

Ole Bethge<br />

16:30 213 Numerical Simu<strong>la</strong>tions of a Capil<strong>la</strong>rity Driven Morphological<br />

Transition on the Nanoscale<br />

Istvan Daruka<br />

16:45 214 Reflectance Anisotropy spectrum of water covered<br />

Cu(110) surface studied from first principles<br />

Amirreza Baghbanpourasl<br />

17:00 215 Organic Semiconductors Interfaces Explored With<br />

Ab-initio Electronic Structure Methods<br />

Peter Puschnig (i)<br />

17:30 216 Solid-solid interfaces in metal oxi<strong>de</strong> nanoparticle<br />

ensembles<br />

Oliver Diwald<br />

17:45 217 Single gold nanoparticles as nanoscopic pH-sensors<br />

Cynthia Vidal<br />

18:00 218 Efficient random <strong>la</strong>sing from star-shaped nanoparticles<br />

Johannes Ziegler<br />

18:15 219 Growth of in-p<strong>la</strong>ne SiGe nanowires<br />

Hannes Watzinger<br />

18:30 Postersession and Apéro<br />

20:00 Public Lecture<br />

Thursday, 05.09.2013, HS 1<br />

Time ID Metho<strong>de</strong>s<br />

Chair: Peter Zeppenfeld, Uni Linz<br />

13:30 221 On-surface magnetochemistry: controlling spins in<br />

adsorbed molecules by a chemical switch<br />

Christian Wäckerlin (i)<br />

14:00 222 Electronic and Magnetic Properties of Surface-<br />

Supported Hydrocarbon Radicals Studied by Low-<br />

Temperature Scanning Tunneling Microscopy<br />

Stefan Müllegger<br />

14:15 223 Using AFM nanoin<strong>de</strong>ntation to investigate mechanical<br />

properties of cellulose fibers in controlled humidities<br />

Christian Ganser<br />

14:30 224 Helium Atom Scattering Measurements of the<br />

Sb(111) Surface<br />

Markus Po<strong>la</strong>nz<br />

14:45 225 Formation of HCN + in Heterogeneous Reactions of<br />

N 2+ and N + with Surface Hydrocarbons<br />

Martina Harnisch<br />

15:00 226 Hydrogen Induced Buckling of Gold Films<br />

Baran Eren<br />

15:15 ÖPG-OGD Division Meeting<br />

15:30 Coffee Break<br />

Oxi<strong>de</strong>s<br />

Chair: Ulrike Diebold, TU Wien<br />

16:00 231 Growth and Morphology of Epitaxial MgO Films on<br />

GaAs(001)<br />

Anirban Sarkar<br />

16:15 232 Compositional and structural study of homoepitaxial-STO<br />

based oxi<strong>de</strong>s heterostructures<br />

Mathil<strong>de</strong> L. Reinle-Schmitt<br />

16:30 233 Single Metal Adatoms on Fe 3<br />

O 4<br />

(001)-(√2x√2)R45°<br />

Gareth Parkinson (i)<br />

17:00 234 Water Gas Shift Chemistry at the Fe 3<br />

O 4<br />

(001) Surface<br />

Oscar Gamba<br />

17:15 235 STM and photoemission study of vacancies and hydroxyls<br />

at the SrTiO 3<br />

(110)-(4×1) surface<br />

Stefan Gerhold<br />

17:30 236 Interface Fermi states of LaAlO 3<br />

/SrTiO 3<br />

and re<strong>la</strong>ted<br />

heterostructures<br />

C<strong>la</strong>udia Cancellieri (i)<br />

18:00 237 Combined Spectroscopic Study of the Evolution<br />

from the Metallic Surface State on SrTiO 3<br />

to the Interface<br />

of LaAlO 3<br />

/SrTiO 3<br />

Nicho<strong>la</strong>s Plumb<br />

18:15 238 Field-induced migration of oxygen vacancies towards<br />

the surface of TiO 2<br />

anatase(101)<br />

Martin Setvin<br />

18:30 Postersession and Apéro<br />

20:00 Conference Dinner<br />

Friday, 06.09.2013, HS 1<br />

Time ID Graphene + flexible electronics<br />

Chair: Adolf Winkler, TU Graz<br />

13:30 241 Observing Graphene grow: In-situ metrology for<br />

controlled growth of graphene and carbon nanotubes<br />

Bernhard Bayer<br />

13:45 242 Optical characterization of atomically precise<br />

graphene nanoribbons<br />

Richard Denk<br />

14:00 243 Electronic Structure of Atomically Precise Graphene<br />

Nanoribbons<br />

Pascal Ruffieux<br />

14:15 244 Modification of exfoliated graphene: a case study<br />

Markus Kratzer (i)<br />

16


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

14:45 245 In-situ thin film transistor fabrication: Electrical and<br />

surface analytical characterization<br />

Roman Lassnig<br />

15:00 246 Valve metal anodic oxi<strong>de</strong>s for flexible electronics<br />

Andrei Ionut Mardare<br />

15:15 247 Direct writing of high-k metal oxi<strong>de</strong> dielectrics for<br />

flexible <strong>la</strong>rge area electronics<br />

Christian M. Siket<br />

15:30 END<br />

ID Surfaces, Interfaces and Thin Films Poster<br />

251 Stabilization mechanisms at po<strong>la</strong>r ZnO surfaces in i<strong>de</strong>al<br />

vacuum conditions: a SCC-DFTB study<br />

Stefan Huber<br />

252 Shockley Surface States Revisited: A Comprehensive Density<br />

Functional Study<br />

Bernd Kollmann<br />

253 Molecule-Substrate Hybridization Revealed by Angle-Resolved<br />

Photoemission Spectroscopy<br />

Dario Knebl<br />

254 Initial growth of quinacridone on Ag(111)<br />

Thorsten Wagner<br />

255 Adsorption of quinacridone on Cu(110) and Cu(110)-(2x1)O<br />

surfaces<br />

Harald Zaglmayr<br />

256 Attachment-limited nucleation and growth of organic films:<br />

Pentacene on sputter modified mica (001)<br />

Levent Tümbek<br />

257 Interfacial structure and <strong>de</strong>vice efficiency of an organic bi<strong>la</strong>yer<br />

heterojunction so<strong>la</strong>r cell<br />

Michael Zawodzki<br />

258 Adsorption of pentacene and perfluoro-pentacene on<br />

Cu(110) studied by reflectance difference spectroscopy<br />

Johannes Gall<br />

259 Influences of rippled titania surfaces on to the growth morphologies<br />

of 6P thin films<br />

Reinhold Wartbichler<br />

260 Hydrogen adsorption on TiO 2<br />

anatase(101)<br />

Benjamin Daniel<br />

261 Optical properties of metal doped ZnO thin films on g<strong>la</strong>ss<br />

and polymer substrates<br />

Meirzhan Dosmailov<br />

262 Negative muonium as a local probe for the <strong>de</strong>tection of the<br />

photo-induced inversion of a Ge surface <strong>la</strong>yer<br />

Thomas Prokscha<br />

263 Short-Term Metastable Effects in Amorphous Silicon So<strong>la</strong>r<br />

Modules<br />

Ankit Mittal<br />

264 Oxi<strong>de</strong> diffusion barriers on GaAs(001)<br />

Shibo Wang<br />

265 Formation of Tungsten Oxi<strong>de</strong> Nano<strong>la</strong>yers by (WO 3<br />

) 3<br />

Cluster<br />

Con<strong>de</strong>nsation on Ag(100)<br />

Thomas Obermüller<br />

266 Influence of the Ni content in AlCu alloy using the combinatorial<br />

approach.<br />

Martina Hafner<br />

267 Susceptibility measurements of Ni clusters embed<strong>de</strong>d in<br />

organic matrices<br />

Mariel<strong>la</strong> Denk<br />

268 Investigation of Single Ni Adatoms on the Magnetite (001)<br />

Surface<br />

Ro<strong>la</strong>nd Bliem<br />

269 Investigation of Exchange Coupled Composites with Scanning<br />

Transmission X-ray Microscopy<br />

Phillip Wohlhüter<br />

270 Spin resolved photoemission spectroscopy of Fe 3<br />

O 4<br />

: The<br />

effect of surface structure<br />

Jiri Pavelec<br />

271 Charge behavior on insu<strong>la</strong>ting monocrystallic surfaces by<br />

Kelvin probe force microscopy<br />

Monika Mirkowska<br />

272 Stabilization of explosive compounds on metallic surfaces<br />

Stefan Ralser<br />

273 Characterizations of HOPG and Graphene Treated with Low<br />

Temperature Hydrogen P<strong>la</strong>sma<br />

Baran Eren<br />

274 Characterization of thin two-element compound material<br />

films by time-of-flight Low Energy Ion Scattering<br />

Dietmar Roth<br />

275 Indication of phonon-assisted electron-hole re<strong>la</strong>xations on<br />

Sb(111) and Bi(111) in iHAS measurements<br />

Patrick Kraus<br />

276 Determination of atmospheric corrosion of coated steel<br />

surfaces by in situ infrared reflection absorption spectroscopy<br />

(IRRAS)<br />

Maurizio Musso<br />

277 Al-Si thin films for hydrogen reference materials<br />

Cezarina Ce<strong>la</strong> Mardare<br />

Nuclear, Particle- and Astroparticle Physics<br />

Wednesday, 04.09.2013, HS 6<br />

Time ID I: LHC Physics I<br />

Chair: Martin Pohl, Uni Genève<br />

13:30 301 Search for a Higgs-like Boson <strong>de</strong>caying into bottom<br />

quarks<br />

Philipp Eller<br />

13:45 302 Search for long lived charged and massive particles<br />

at LHCb <strong>de</strong>tector<br />

Thi Viet Nga La<br />

14:00 303 Measurement of differential iso<strong>la</strong>ted diphoton production<br />

cross section at CMS<br />

Marco Peruzzi<br />

14:15 304 Search for Higgs boson production in supersymmetric<br />

casca<strong>de</strong>s using fully hadronic final states<br />

Mario Masciovecchio<br />

14:30 305 Search for supersymmetry in hadronic final states<br />

with MT2 at CMS<br />

Hannsjörg Weber<br />

14:45 306 Search for supersymmetry in events with two opposite-sign<br />

same-f<strong>la</strong>vor leptons, jets and missing<br />

energy<br />

Marco - Andrea Buchmann<br />

15:00 307 Application of CMS and ATLAS Simplified Mo<strong>de</strong>ls<br />

Results to Theories Beyond the Standard Mo<strong>de</strong>l<br />

(BSM)<br />

Ursu<strong>la</strong> Laa<br />

15:15 308 Measurement of quarkonium po<strong>la</strong>rization at CMS<br />

Valentin Knünz<br />

15:30 Coffee Break<br />

II: Astroparticle and Non-accelerator Physics<br />

Chair: Eberhard Widmann, ÖAW Wien<br />

16:00 311 Neutron Capture Measurements on 62 Ni, 63 Ni and<br />

197<br />

Au and their Relevance for Stel<strong>la</strong>r Nucleosynthesis<br />

C<strong>la</strong>udia Le<strong>de</strong>rer (i)<br />

17


SPG Mitteilungen Nr. 40<br />

16:30 312 Latest Results of Searches for Point and Exten<strong>de</strong>d<br />

Sources with Time In<strong>de</strong>pen<strong>de</strong>nt and Time Depen<strong>de</strong>nt<br />

emissions of Neutrinos with the IceCube Neutrino<br />

Observatory<br />

Asen Christov (i)<br />

17:00 313 High resolution 3D-simu<strong>la</strong>tions of ga<strong>la</strong>ctic cosmic<br />

ray propagation using GALPROP<br />

Michael Werner<br />

17:15 314 The cosmological constant puzzle: Vacuum energies<br />

from QCD to dark energy<br />

Steven Bass<br />

17:30 315 Numerical 3D-hydrodynamic mo<strong>de</strong>lling of colliding<br />

winds in massive star binaries: particle acceleration<br />

and gamma-ray emission<br />

K<strong>la</strong>us Reitberger<br />

17:45 316 High precision tests of the Pauli Exclusion Principle<br />

for Electrons at LNGS<br />

Johann Marton<br />

18:00 317 Search of neutrinoless double beta <strong>de</strong>cay with the<br />

GERDA experiment<br />

Giovanni Benato<br />

18:15 318 qBounce: A quantized frequency reference with<br />

gravity-resonance-spectroscopy<br />

Gunther Cronenberg<br />

18:30 Postersession and Apéro<br />

20:00 Public Lecture<br />

Thursday, 05.09.2013, HS 6<br />

Time ID III: Protons and Neutrons<br />

Chair: Johann Marton, ÖAW Wien<br />

13:30 321 Spectroscopy apparatus for the measurement of<br />

the hyperfine structure of antihydrogen<br />

Chloe Malbrunot (i)<br />

14:00 322 A progress report on <strong>de</strong>tector and analysis <strong>de</strong>velopment<br />

for the Hbar-HFS experiment within the<br />

ASACUSA col<strong>la</strong>boration<br />

Clemens Sauerzopf<br />

14:15 323 Beamline Simu<strong>la</strong>tions for cold Antihydrogens<br />

Berna<strong>de</strong>tte Kolbinger<br />

14:30 324 Gravitational interaction of antihydrogen: the AEgIS<br />

experiment at CERN<br />

Michael Doser<br />

14:45 325 Design of the downstream interface in the AEgIS<br />

beamline<br />

Sebastian Lehner<br />

15:00 326 Ultracold neutrons for fundamental physics experiments<br />

at the Paul Scherrer Institute<br />

Bernhard Lauss (i)<br />

15:30 Coffee Break<br />

IV: Protons and Neutrons, F<strong>la</strong>vor Physics<br />

Chair: Christoph Schwanda, ÖAW Wien<br />

16:00 331 Comparison of the Larmor precession frequencies<br />

of 199 Hg and ultracold neutrons in the nEDM experiment<br />

at PSI<br />

Beatrice Franke<br />

16:15 332 Vector Cesium Magnetometer for the nEDM Experiment<br />

Samer Afach<br />

16:30 333 The future neutron beta <strong>de</strong>cay facility PERC<br />

Jacqueline Erhart<br />

16:45 334 Tailoring of po<strong>la</strong>rised neutron beams by means of<br />

spatial magnetic spin resonance<br />

Erwin Jericha<br />

17:00 335<br />

PMNS<br />

F<strong>la</strong>vour GUT mo<strong>de</strong>ls with u 13<br />

= u C<br />

/ 2<br />

Constantin Sluka<br />

17:15 336 Angu<strong>la</strong>r analysis of B d<br />

" K*µ + µ - with the ATLAS <strong>de</strong>tector<br />

Emmerich Kneringer<br />

17:30 337 Measurement of B (B 0 " J/cf), B s (B0 " J/cf' (1525))<br />

s 2<br />

and B (B 0 " s J/cK+ K - ) and a <strong>de</strong>termination of the<br />

B 0 " J/cf po<strong>la</strong>rization at the Belle experiment<br />

s<br />

Felicitas Thorne<br />

17:45 338 Measurement of |V cb<br />

| through exclusive semileptonic<br />

B -> D l n <strong>de</strong>cays with a tagged fully reconstructed<br />

B meson at the Belle experiment<br />

Robin G<strong>la</strong>ttauer<br />

18:00 339 Monte Carlo simu<strong>la</strong>tion for Kaonic <strong>de</strong>uterium studies<br />

Carolina Berucci<br />

18:15<br />

18:30 Postersession and Apéro<br />

20:00 Conference Dinner<br />

Friday, 06.09.2013, HS 6<br />

Time ID V: LHC Physics II and Detectors<br />

Chair: Rainer Wallny, ETH Zürich<br />

13:30 341 Measurement of Charged Particle Multiplicities<br />

with the ATLAS <strong>de</strong>tector at the LHC<br />

Wolfgang Lukas<br />

13:45 342 Jet production in association with a Z boson at CMS<br />

Andrea Carlo Marini<br />

14:00 343 The Readout System of the Belle II Silicon Vertex<br />

Detector<br />

Richard Thalmeier<br />

14:15 344 Interstrip capacitance of double si<strong>de</strong>d silicon strip<br />

<strong>de</strong>tectors<br />

Bernhard Leitl<br />

14:30 345 Over Saturation Behaviour of SiPMs at High Photon<br />

Exposure<br />

Lukas Gruber<br />

14:45 346 FLUKA studies of hadron-irradiated scintil<strong>la</strong>ting<br />

crystals for calorimetry at the High-Luminosity LHC<br />

Milena Quittnat<br />

15:00 347 Studies of radiation hardness of diamond strip<br />

trackers.<br />

Felix Bachmair<br />

15:15 348 Irradiation Studies with the New Digital Readout<br />

Chip for the Phase I Upgra<strong>de</strong> of the CMS Pixel Detector<br />

Jan Hoss<br />

15:30 END<br />

ID Nuclear, Particle- and Astrophysics Poster<br />

351 Measurement of the thermal neutron flux at the source for<br />

ultracold neutrons at the Paul Scherrer Institute<br />

Dieter Ries<br />

352 An uncompensated magnetic field drifts in a search for an<br />

electric dipole moment of the neutron (nEDM) carrying out<br />

at Paul Scherrer Institute (PSI).<br />

N Prashanth Pataguppi<br />

353 High-volume production of Silicon strip <strong>de</strong>tectors for particle<br />

physics experiments<br />

Thomas Bergauer<br />

354 Bethe–Salpeter Description of Light Pseudosca<strong>la</strong>r Mesons<br />

Wolfgang Lucha<br />

355 Lock-in based <strong>de</strong>tection scheme for a hydrogen beam<br />

Michael Wolf<br />

356 Spin po<strong>la</strong>rized atomic hydrogen beam source<br />

Martin Diermaier<br />

18


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

357 A neutron interferometric measurement and calcu<strong>la</strong>tion of<br />

a phase shift induced by Laue transmission<br />

Thomas Potocar<br />

358 Development of a novel muon beam line for next generation<br />

precision experiments<br />

Kim Siang Khaw<br />

359 Measurements and simu<strong>la</strong>tions of magnetic field insi<strong>de</strong> the<br />

ASACUSA Antihydrogen spin-flip cavity<br />

Nazli Di<strong>la</strong>ver<br />

360 Neutron Reflectometry as Matura project - Verifying the<br />

Wave-Particle Dualism at the NARZISS Instrument at the<br />

Paul Scherrer Institut.<br />

Car<strong>la</strong> Kreis<br />

Theoretical Physics<br />

Wednesday, 04.09.2013, K034D<br />

Time ID Theoretical Physics I<br />

Chair: Jakob Yngvason, Uni Wien<br />

14:00 401 Lattice effects on vortex dynamics in strongly corre<strong>la</strong>ted<br />

electron systems<br />

Sebastian Huber (i)<br />

14:30 402 Strongly Interacting Dipo<strong>la</strong>r Quantum Gases<br />

Robert Zillich (i)<br />

15:00 403 On currents, anomalies and the RG-behaviour of<br />

supersymmetric gauge theories.<br />

Jean-Pierre Derendiger (i)<br />

15:30 Coffee Break<br />

16:00 404 Maximally entangled sets<br />

Barbara Kraus (i)<br />

16:30 405 Geometry as a Semic<strong>la</strong>ssical Effect in a Quantum<br />

World - Emergent gravity from matrix mo<strong>de</strong>ls<br />

Daniel B<strong>la</strong>schke<br />

16:45 406 Electrostatic Interactions with Dielectric Samples<br />

in Scanning Probe Microscopies<br />

Alexis Baratoff<br />

17:00<br />

18:30 Postersession and Apéro<br />

20:00 Public Lecture<br />

Thursday, 05.09.2013, K034D<br />

Time ID Theoretical Physics II<br />

Chair: Gian Michele Graf, ETH Zürich<br />

13:30 411 Exterior Navier-Stokes problems in two dimensions:<br />

results and open questions<br />

Peter Wittwer (i)<br />

14:00 412 Quantum many-body effects in transport through<br />

quantum dots: renormalization-group approaches<br />

Sabine An<strong>de</strong>rgassen (i)<br />

14:30 413 Atomic clocks: A mathematical physics perspective<br />

Martin Fraas (i)<br />

15:00 414 Non-local perturbations of hyperbolic PDEs and<br />

QFT mo<strong>de</strong>ls on non-commutative spacetimes<br />

Gandalf Lechner (i)<br />

15:30 Coffee Break; END<br />

Applied, P<strong>la</strong>sma and Geophysics<br />

Wednesday, 04.09.2013, K153C<br />

Time ID Applied Physics<br />

Chair: Ivo Furno, CRPP-EPFL<br />

13:30 451 Analysis of the Microscopic Fluid Flow of State-ofthe-art<br />

Absorption Heat Pump Working Pairs un<strong>de</strong>r<br />

Operational Conditions<br />

Johann Emhofer<br />

13:45 452 Entwicklung eines Kon<strong>de</strong>nsationswindkanals zur<br />

Untersuchung <strong>de</strong>s Wärme- und Massetransports<br />

an Wärmeüberträgern<br />

Sanda Seichter<br />

14:00 453 Precision Metrology with a Dio<strong>de</strong>-Pumped Solid-<br />

State Laser Optical Frequency Comb<br />

Stephane Schilt<br />

14:15 454 I<strong>de</strong>ntifying Photoreaction Products in Cinnamatebased<br />

Photoalignment Materials<br />

Daniele Passerone<br />

14:30 455 Experimental and simu<strong>la</strong>ted results on adsorption<br />

of molecules on fullerenes.<br />

Alexan<strong>de</strong>r Kaiser<br />

14:45 456 Dual-Comb Spectroscopy based on Mid-IR Quantum-Casca<strong>de</strong>-Lasers<br />

Frequency-combs<br />

Gustavo Vil<strong>la</strong>res<br />

15:00 457 Coinci<strong>de</strong>nce Time Resolution(CTR) of PMT and<br />

SiPM and readout components<br />

Albulena Berisha Shabani<br />

15:15<br />

15:30 Coffee Break<br />

Geohysics and Applied Physics<br />

Chair: Stéphane Goyette, Uni Genève<br />

16:00 461 Towards an integrated Observation System of the<br />

B<strong>la</strong>ck Sea catchment<br />

Nico<strong>la</strong>s Ray (i)<br />

16:30 462 Cs-137 in Wildpilzen in Österreich: Verteilung und<br />

zeitliche Trends<br />

Herbert Lettner<br />

16:45 463 Simu<strong>la</strong>tion of microwave propagation and absorption<br />

in heterogeneous rocks<br />

Ronald Meisels<br />

17:00 464 Calcu<strong>la</strong>tion of atom evaporation rates using entropy<br />

production maximisation<br />

Frank Kassubek<br />

P<strong>la</strong>sma Physics<br />

Chair: Ivo Furno, CRPP-EPFL<br />

17:15 465 Zeitaufgelöste schnelle Messungen von Wachstumsrate<br />

und Teilchentransport in HIPIMS-P<strong>la</strong>smen<br />

Christian Maszl<br />

17:30 466 P<strong>la</strong>sma fluctuations study in the new closed fluxsurfaces<br />

configuration of the TORPEX experiment<br />

Fabio Avino<br />

17:45 467 Simu<strong>la</strong>ting the effect of fine radial structures resulting<br />

from non-adiabatic passing electrons on turbulent<br />

transport in the ITG and TEM regimes<br />

J. Dominski<br />

18:00 468 Characterization of rf discharges in non-thermal atmospheric<br />

pressure p<strong>la</strong>sma jets using helium<br />

Johann Laimer<br />

18:15 END<br />

18:30 Postersession and Apéro<br />

20:00 Public Lecture<br />

19


SPG Mitteilungen Nr. 40<br />

ID<br />

Applied, P<strong>la</strong>sma and Geophysics Poster<br />

481 Simu<strong>la</strong>ted insertion loss of noise barriers using the boundary<br />

element method<br />

Holger Waubke<br />

482 In-line measurements of chlorine containing polymers in an<br />

industrial waste sorting p<strong>la</strong>nt by <strong>la</strong>ser-induced breakdown<br />

spectroscopy<br />

Norbert Huber<br />

483 Element analysis of complex materials by calibration-free<br />

<strong>la</strong>ser-induced breakdown spectroscopy<br />

Johannes D. Pedarnig<br />

484 Variable Capacitance Energy Harvesting<br />

Robert Pichler<br />

485 Photoluminescence enhancement of Double-Walled Carbon<br />

Nanotubes filled with linear carbon chains<br />

Philip Rohringer<br />

486 Inter-atomic Coulombic Decay (ICD) of clusters upon electron<br />

impact<br />

Elias Jabbour Al Maalouf<br />

487 The Inner Structure of Jupiter’s Moon Europa – Estimations<br />

on the Physical Conditions at the Sea Floor of its Potential<br />

Subsurface Ocean<br />

Susanne Pol<strong>la</strong>ck-Drs<br />

488 The evolution of hotspots on Earth and Venus<br />

Elisabeth Fahrngruber<br />

489 Comparing Characteristics of Polygonal Impact Craters on<br />

Mercury and Venus<br />

Gerhard Weihs<br />

490 Mo<strong>de</strong>ling the evolution and fate of early Mars' hypothesized<br />

ocean<br />

Gabor Imre Kiss<br />

Atomic Physics and Quantum Optics<br />

Wednesday, 04.09.2013, HS 4<br />

Time ID Atomic Physics and Quantum Optics I<br />

Chair: NN<br />

13:30 501 Measuring higher-or<strong>de</strong>r interferences with a fivepath<br />

interferometer<br />

Thomas Kauten<br />

13:45 502 Extraction of Ionic Cores From Charged Helium Nanodroplets<br />

Michael Renzler<br />

14:00 503 Probing Non-Equilibrium Dynamics of Iso<strong>la</strong>ted<br />

Quantum Many-Body Systems<br />

Bernhard Rauer<br />

14:15 504 Buffer gas cooling of atoms and molecules<br />

Sarah Skoff<br />

14:30 505 Spectroscopic and Theoretical Studies of Chromium<br />

Doped Helium Nanodroplets<br />

Andreas Kautsch<br />

14:45 506 A graph state formalism for mutually unbiased bases<br />

Christoph Spengler<br />

15:00 507 Strong coupling between single atoms and nontransversal<br />

photons<br />

Christian Junge<br />

15:15 508 Interactions of He – in doped He droplets<br />

Michael Neustetter<br />

15:30 Coffee Break<br />

Time ID Atomic Physics and Quantum Optics II<br />

Chair: NN<br />

16:00 511 Decoration of anionic and cationic fullerenes with<br />

po<strong>la</strong>r and apo<strong>la</strong>r molecules.<br />

Niko<strong>la</strong>us Weinberger<br />

16:15 512 Nonequilibrium dynamics, Optimal Control and Nanofibers<br />

on an Atom Chip<br />

Dominik Fischer<br />

16:30 513 A Spin Po<strong>la</strong>rised Temperature Controlled Atomic<br />

Hydrogen Beamline<br />

Peter Caradonna<br />

16:45 514 Theoretical Investigation of Excited States of the<br />

Diatomic Molecule LiCa<br />

Johann Pototschnig<br />

17:00 515 Single atom cavity quantum electrodynamics with<br />

non-transversally po<strong>la</strong>rized light fields<br />

Michael Scheucher<br />

17:15 516 Mapping Magnetic Nanostructures Using Radical<br />

Pair Reactions<br />

Jofre Espigule Pons<br />

17:30 517 Merging two immiscible BECs of Rb and Cs for optimized<br />

production of RbCs ground-state molecules<br />

Lukas Reichsöllner<br />

17:45 518 Cavity cooling of free silicon nanoparticles in high<br />

vacuum<br />

Peter Asenbaum<br />

18:00 519 Integrated Mach-Zehn<strong>de</strong>r interferometer for Bose-<br />

Einstein con<strong>de</strong>nsates<br />

T. Berrada<br />

18:15 520 Entanglement Swapping over a 143 km free-space<br />

link<br />

Thomas Herbst<br />

18:30 Postersession and Apéro<br />

20:00 Public Lecture<br />

Thursday, 05.09.2013, HS 4<br />

Time ID Atomic Physics and Quantum Optics III<br />

Chair: NN<br />

13:30 521 Tenfold reduction of Brownian noise in high-reflectivity<br />

optical coatings<br />

Garrett D. Cole<br />

13:45 522 Doublon stability and <strong>de</strong>cay mechanisms<br />

M. J. Mark<br />

14:00 523 Cavity cooling of an optically levitated nanoparticle<br />

Niko<strong>la</strong>i Kiesel<br />

14:15 524 Entanglement properties of locally maximally entangleable<br />

states<br />

Martí Cuquet<br />

14:30 525 Decrease in query complexity for quantum computers<br />

with superposition of circuits<br />

M. Araujo<br />

14:45 526 Optimal state reconstruction for cavity-optomechanical<br />

systems via Kalman filtering<br />

Jason Hoelscher-Obermaier<br />

15:00 527 Quantum Entanglement of High Angu<strong>la</strong>r Momenta<br />

Robert Fickler<br />

15:15 528 Cooling-by-measurement and mechanical state tomography<br />

via pulsed optomechanics<br />

M. R. Vanner<br />

15:30 Coffee Break<br />

20


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

Time ID Atomic Physics and Quantum Optics IV<br />

Chair: NN<br />

16:00 531 Einstein-Podolsky-Rosen corre<strong>la</strong>tions from colliding<br />

Bose-Einstein con<strong>de</strong>nsates<br />

M. Ebner<br />

16:15 532 Real-Time Imaging of Quantum Entanglement<br />

Robert Fickler<br />

16:30 533 Creation of nitrogen-vacancy centres for cavity<br />

QED<br />

Kathrin Buczak<br />

16:45 534 Studies of Quantum Entanglement in 100 Dimensions<br />

Mario Krenn<br />

17:00 END<br />

18:30 Postersession and Apéro<br />

20:00 Conference Dinner<br />

ID Atomic Physics and Quantum Optics Poster<br />

541 Coupling Spins and Diamond Color Centers to<br />

Superconducting Cavities<br />

Stefan Putz<br />

542 Dipole-dipole influenced Ramsey interferometry<br />

Laurin Ostermann<br />

543 Ultracold atoms on a superconducting Atomchip<br />

Stefan Minniberger<br />

544 Coherent manipu<strong>la</strong>tion of cold cesium atoms in a nanofiberbased<br />

two-color dipole trap<br />

Daniel Reitz<br />

545 Coherence properties of cold cesium atomic spins in a<br />

nanofiber-based dipole trap<br />

Rudolf Mitsch<br />

546 see talk 516<br />

547 Photonic p<strong>la</strong>tform for experiments in higher dimensional<br />

quantum systems<br />

Christoph Schaeff<br />

548 Loophole- free Einstein Podolsky Rosen Experiment via<br />

Quantum Steering<br />

Bernhard Wittmann<br />

549 Quantum communication with satellites, its preparatory<br />

terrestrial free-space <strong>de</strong>monstrations and future missions<br />

Thomas Scheidl<br />

550 Laser <strong>de</strong>sorption/vaporization/ionization techniques for<br />

matter-wave interferometry<br />

Ugur Sezer<br />

Infrared Optical Nanostructures<br />

Wednesday, 04.09.2013, HS 3<br />

Time ID I: Quantum Casca<strong>de</strong> Lasers<br />

Chair: Karl Unterrainer, TU Wien<br />

13:30 601 Quantum casca<strong>de</strong> <strong>la</strong>ser frequency combs: spectroscopy<br />

and novel <strong>de</strong>velopments<br />

Jerome Faist (i)<br />

14:00 602 Bi-functional Quantum Casca<strong>de</strong> Laser/Detectors<br />

for Integrated Photonics<br />

Gottfried Strasser (i)<br />

14:30 603 Broadband external cavity tuning of a quantum casca<strong>de</strong><br />

<strong>la</strong>ser in the 3 - 4 µm window<br />

Sabine Riedi<br />

14:45 604 Terahertz spectroscopy of coupled cavity quantum<br />

casca<strong>de</strong> <strong>la</strong>sers<br />

Dominic Bachmann<br />

15:00 605 Terahertz Photonic Crystal Quantum Casca<strong>de</strong> Laser<br />

Coupled to a Second Or<strong>de</strong>r Bragg Vertical Extractor<br />

Christopher Bonzon<br />

15:15 606 From photonic crystal to micropil<strong>la</strong>r terahertz quantum<br />

casca<strong>de</strong> <strong>la</strong>sers and recent progress towards<br />

nanowire-based <strong>de</strong>vices<br />

Michael Krall<br />

15:30 Coffee Break<br />

II: Nanocrystals<br />

Chair: Gunther Springholz, JKU Linz<br />

16:00 611 Ultra strained Si and Ge for <strong>de</strong>vice applications<br />

Hans Sigg (i)<br />

16:30 612 Nanowires for so<strong>la</strong>r cell applications<br />

Knut Deppert (i)<br />

17:00 613 On polytypism in III-V nanowires<br />

Friedhelm Bechstedt (i)<br />

17:30 614 PbS nanocrystal photo<strong>de</strong>tectors with inorganic ligands<br />

Wolfgang Heiss (i)<br />

18:00 615 X-ray analysis of nanowires<br />

Julian Stangl<br />

18:15 616 Towards group IV direct gap semiconductors<br />

Martin G<strong>la</strong>ser<br />

18:30 Postersession and Apéro<br />

20:00 Public Lecture<br />

Thursday, 05.09.2013, HS 3<br />

Time ID III: Quantum Nanostructures<br />

Chair: Jérôme Faist, ETH Zürich<br />

13:30 621 Superconducting Split Ring Resonators for Ultrastrong<br />

Coupling<br />

Curdin Maissen<br />

13:45 622 Terahertz-induced nonlinear intersubband dynamics.<br />

Daniel Dietze<br />

14:00 623 Symmetric farfield, short-wavelength ( = 4.53 µm)<br />

MOPA quantum casca<strong>de</strong> <strong>la</strong>sers with Watt-level optical<br />

outpout power<br />

Boris<strong>la</strong>v Hinkov<br />

14:15 624 Optically pumped QD VECSEL for the Mid-Infrared<br />

Amir Khiar<br />

14:30 625 Intersublevel transition study of InAs/AlInAs quantum<br />

dashes by absorption, electroluminescence<br />

and magneto-tunneling spectroscopy<br />

Gian Lorenzo Paravicini Bagliani<br />

14:45 626 Erasing the exciton fine structure splitting in semiconductor<br />

quantum dots<br />

Rinaldo Trotta<br />

15:00 627 Grating-<strong>de</strong>sign based po<strong>la</strong>rization modifications of<br />

ring cavity quantum casca<strong>de</strong> <strong>la</strong>sers<br />

Rolf Szed<strong>la</strong>k<br />

15:15 628 Active control of THz-waves by coupling <strong>la</strong>rge-area<br />

CVD-graphene to a THz-Metamaterial<br />

Fe<strong>de</strong>rico Valmorra<br />

15:30 Coffee Break; END<br />

18:30 Postersession and Apéro<br />

20:00 Conference Dinner<br />

21


SPG Mitteilungen Nr. 40<br />

ID<br />

Infrared Optical Nanostructures Poster<br />

631 Enhancement of light extraction from aligned SiGe-based<br />

photonic crystal s<strong>la</strong>bs<br />

Magdalena Schatzl<br />

632 Optically driven current turnstile based on self-assembled<br />

semiconductor quantum dots<br />

Giancarlo Cerulo<br />

633 PbS quantum dots - silicon on insu<strong>la</strong>tor hybrid photonics<br />

Markus Humer<br />

634 Electronic and optical properties of strained and unstrained<br />

group-IV semiconductor Germanium alloys<br />

Kerstin Hummer<br />

635 Enhanced photoluminescence efficiency of SiGe is<strong>la</strong>nds integrated<br />

into <strong>la</strong>rge area photonic crystals<br />

Elisabeth Lausecker<br />

636 Tuning the emission properties of single semiconductor<br />

quantum dots via electro-e<strong>la</strong>stic fields<br />

Johannes Wildmann<br />

637 High power terahertz quantum casca<strong>de</strong> <strong>la</strong>ser for 63 μm<br />

Dana Turcinkova<br />

638 Quaternary Barrier InGaAs/AlInGaAs Terahertz Quantum<br />

Casca<strong>de</strong> Laser<br />

Keita Ohtani<br />

639 Distributed-Feedback Quantum Casca<strong>de</strong> Laser at 3.2 µm<br />

Johanna Wolf<br />

640 Tuning of resonances in photonic crystal photo<strong>de</strong>tectors<br />

Andreas Harrer<br />

641 Frequency noise in mid-infrared quantum casca<strong>de</strong> <strong>la</strong>sers<br />

Lionel Tombez<br />

642 Observation of THz Photo-luminescence from Multi<strong>la</strong>yer SiC<br />

Epitaxial Graphene Pumped by a Mid-infrared Quantum Casca<strong>de</strong><br />

Laser<br />

Peter Qiang Liu<br />

15:15 703 Innovating nanosensing technique to <strong>de</strong>tect living<br />

bacteria and reveal resistance to antibiotics<br />

Justin Notz<br />

15:30 Coffee Break<br />

Biophysics/Medical Physics<br />

Chair: Giovanni Dietler, EPF Lausanne<br />

Georg Pabst, Uni Graz<br />

16:00 711 Cell mechanics measured with Atomic force microscopy<br />

Jose Luis Toca- Herrera<br />

16:15 712 Measuring the stability of lipid membrane domains<br />

with nanometer resolution.<br />

Georg Fantner<br />

16:30 713 Protein partitioning in liquid-or<strong>de</strong>red (Lo) / liquiddisor<strong>de</strong>red<br />

(Ld) domains<br />

Benjamin Kollmitzer<br />

16:45 714 Filter gate closure inhibits ion but not water transport<br />

through potassium channels<br />

Peter Pohl<br />

17:00 715 Core-shell nanoparticles and their assembly<br />

Erik Reimhult<br />

17:15 716 Characterization of augmented bone structures<br />

with µ-computed tomography and Raman spectroscopy<br />

Johann Charwat-Pessler<br />

17:30 717 Raman spectroscopic investigation of urinary calculi<br />

and salivary stones<br />

Matthias E<strong>de</strong>r<br />

17:45 718 Saving Joint with Aerosolphysics<br />

Karoline Mühlbacher<br />

18:00 719 Probing metabolism in vivo in real time via hyperpo<strong>la</strong>rized<br />

NMR<br />

Arnaud Comment (i)<br />

18:30 END; Postersession and Apéro<br />

20:00 Conference Dinner<br />

Biophysics and Medical Physics<br />

Thursday, 05.09.2013, K153C<br />

Time ID Soft Matter<br />

(Shared with the Con<strong>de</strong>nsed Matter session)<br />

Go to HS 5<br />

Chair: Georg Pabst, Uni Graz<br />

13:30 121 Equilibrium and flow of cluster-forming complex<br />

fluids<br />

Christos N. Likos (i)<br />

14:00 122 Optimized Fourier Monte Carlo Simu<strong>la</strong>tion of Solid<br />

and Hexatic Membranes<br />

Andreas Troester<br />

14:15 123 Biomimetic folding particle chains<br />

Peter Oostrum<br />

14:30 Go back to K153C<br />

Biophysics<br />

Chair: Georg Pabst, Uni Graz<br />

14:30 701 Fluorescence and atomic force microscopy to<br />

visualize the interaction of HDL particles with lipid<br />

membranes<br />

Gerhard J. Schütz (i)<br />

15:00 702 Characterization of Curli A Production on Living<br />

Bacterial Surfaces by Scanning Probe Microscopy<br />

Yoojin Oh<br />

ID<br />

Biophysics and Medical Physics Poster<br />

721 Photomodification and Nanopatterning of Polystyrene for<br />

Bioapplications<br />

R. A. Barb<br />

722 Fractal characterization of tissue with the new Pyramid<br />

Method<br />

Michael Mayrhofer-Reinhartshuber<br />

723 The open pore of SecYEG does not show physiologically relevant<br />

ion selectivity<br />

Denis Knyazev<br />

724 Advancing high resolution structural analysis of lipid membranes<br />

using a generic algorithm<br />

Peter Heftberger<br />

725 Studies on the Cherenkov effect for improved TOF-PET<br />

Stefan Brunner<br />

726 Progress in the Structure-based Simu<strong>la</strong>tion of P<strong>la</strong>nt Light-<br />

Harvesting Complexes<br />

Frank Müh<br />

727 The <strong>de</strong>nsity and distribution of sacrificial bonds in polymer<br />

chains <strong>de</strong>termines the amount of dissipated energy<br />

S. Soran Nabavi<br />

728 STED-lithography nano-anchors with single protein capacity<br />

Richard Wollhofen<br />

729 These IgGs are ma<strong>de</strong> for walkin’: Random antibody movement<br />

on bacterial and viral surfaces<br />

Johannes Preiner<br />

730 Chemically tagged DNA tetrahedra as linker for single molecule<br />

force spectroscopy<br />

Michael Leitner<br />

22


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

731 Long and short lipid molecules experience the same interleaflet<br />

drag in lipid bi<strong>la</strong>yers<br />

Andreas Horner<br />

732 Bachelor thesis: Hyper Spectral Imaging with Two-Photon<br />

Microscopy<br />

Harald Razum<br />

733 Investigation of the pH stability of avidins and newly <strong>de</strong>veloped<br />

avidin mutants with atomic force microscopy based on<br />

single molecule sensors<br />

Me<strong>la</strong>nie Köhler<br />

734 Electrokinetic Trap<br />

Metin Kayci<br />

735 Towards a Non-Perturbative Theory of Optical Spectra of<br />

Pigment Protein Complexes: Application to the Water Soluble<br />

Chlorophyll Protein.<br />

Thanh-Chung Dinh<br />

17:15 820 Dynamical atmospheres of earth-like protop<strong>la</strong>nets<br />

Ernst Dorfi<br />

17:30 821 Constraining stel<strong>la</strong>r wind properties in habitable<br />

zones<br />

Colin Johnstone<br />

17:45 822 The analysis of young so<strong>la</strong>r-like stars and their stel<strong>la</strong>r<br />

winds observed with the EVLA to <strong>de</strong>fine mass<br />

loss rates<br />

Bibiana Fichtinger<br />

18:00 823 Stel<strong>la</strong>r magnetic fields and their potential influence<br />

on p<strong>la</strong>netary surroundings<br />

Theresa Lüftinger<br />

18:15 824 Photometry of different Minor Bodies and comparisons<br />

Mattia Galiazzo<br />

18:30 END; Postersession and Apéro<br />

20:00 Conference Dinner<br />

Astronomy and Astrophysics<br />

Thursday, 05.09.2013, K269D<br />

Time ID Astronomy and Astrophysics<br />

11:00 General Assembly ÖGAA<br />

12:30 Lunch<br />

13:30 801 Talk 1<br />

NN<br />

13:45 802 Talk 2<br />

NN<br />

14:00 803 Talk 3<br />

NN<br />

14:15 804 Talk 4<br />

NN<br />

Selected ÖGAA Talks<br />

Chair: NN<br />

Habitable Worlds:<br />

From Detection to Characterization<br />

Chair: NN<br />

14:30 811 Observing Exop<strong>la</strong>net Atmospheres: Recent Results<br />

from ESO and National Facilities<br />

Monika Lendl<br />

14:45 812 A massive stars' view on carbon-to-oxygen abundance<br />

ratios in exop<strong>la</strong>net host stars<br />

Norbert Przybil<strong>la</strong><br />

15:00 813 Composition of extraso<strong>la</strong>r p<strong>la</strong>nets<br />

Amaury Thiabaud<br />

15:15 814 The effect of metallicity in the envelope of protop<strong>la</strong>nets<br />

Julia Venturini<br />

15:30 Coffee Break<br />

16:00 815 Pathways to Habitability (PatH): An Austrian National<br />

Research Network<br />

Manuel Gü<strong>de</strong>l<br />

16:15 816 Long term evolution of protop<strong>la</strong>netary disks<br />

Alexan<strong>de</strong>r Stökl<br />

16:30 817 Formation of Chondrules in radiative shock waves<br />

Helmut Joham<br />

16:45 818 Formation of terrestrial p<strong>la</strong>nets in binary stel<strong>la</strong>r systems<br />

Zsolt Sándor<br />

17:00 819 A possible mo<strong>de</strong>l of water <strong>de</strong>livery by collisions in<br />

early p<strong>la</strong>netary systems<br />

Thomas I. Maindl<br />

ID<br />

Astronomy and Astrophysics Poster<br />

831 BRITE-Constel<strong>la</strong>tion and the chances for <strong>de</strong>tecting exop<strong>la</strong>nets<br />

Werner Weiss<br />

832 Simu<strong>la</strong>tions of Prebiotic Chemistry un<strong>de</strong>r Post-Impact Conditions<br />

on Titan<br />

Johannes Leitner<br />

833 On the Internal Structure of Ence<strong>la</strong>dus<br />

Ruth-Sophie Taubner<br />

834 Kepler-62 e and Kepler-62 f: The Potential Internal Structure<br />

of these habitable worlds<br />

Ruth-Sophie Taubner<br />

835 Theoretical mo<strong>de</strong>ls of p<strong>la</strong>netary system formation<br />

David Swoboda<br />

History of Physics<br />

Thursday, 05.09.2013, K012D<br />

Time ID History of Physics<br />

Chair: Heinz Krenn, Uni Graz<br />

13:30 901 Die Untersuchung p<strong>la</strong>netarer und interp<strong>la</strong>netarer<br />

Magnetfel<strong>de</strong>r: von <strong>de</strong>n ersten Satellitenmissionen<br />

bis zur Landung auf Asteroi<strong>de</strong>n und Kometen<br />

Konrad Schwingenschuh<br />

14:00 902 Die Novara-Weltumsegelung (1857-1859): Wen<strong>de</strong>punkt<br />

für Geophysik / Meteorologie / Ozeanographie<br />

in Österreich<br />

Bruno Besser<br />

14:15 903 Eine frühe Anwendung radioaktiver Tracer<br />

Heinrich Mitter<br />

14:30 904 G. E. Rosenthal, a follower of Deluc in northern Germany<br />

Jean-François Lou<strong>de</strong><br />

14:45 905 Die steinernen Schattenlinien <strong>de</strong>r Sonne: Die Sonnenuhren<br />

<strong>de</strong>s Andreas Pleninger<br />

Reinhard Folk<br />

15:00 906 The Incosistencies of the Lorentz transformations<br />

first formu<strong>la</strong>ted by Wol<strong>de</strong>mar Voigt in 1887<br />

Hartwig Thim<br />

15:15 Discussion<br />

15:30 Coffee Break<br />

23


SPG Mitteilungen Nr. 40<br />

Time ID Chair: Reinhard Folk, Uni Linz<br />

16:00 911 Physics in magnetic fields from Faraday to Pierre<br />

Weiss and his contemporaries<br />

Jean-François Lou<strong>de</strong><br />

16:30 912 Zur Erfindung <strong>de</strong>s Magnetinduktions-Zeigertelegraphen<br />

durch Charles Wheatstone<br />

Franz Pichler<br />

16:45 913 The Effective Mass Concept<br />

Gerhard Brunthaler<br />

17:00 914 Das Elektrotechnische Institut <strong>de</strong>r Universität Innsbruck,<br />

1907 – 1946. Ein 'vergessenes' Institut<br />

Armin Denoth<br />

17:15 915 Die Kommentare in Le Seurs und Jacquiers Ausgabe<br />

von Newtons Principia<br />

Harald Iro<br />

17:30 916 Viktor von Lang und Ernst Lecher – die Säulen <strong>de</strong>s<br />

I. Physikalischen Institutes<br />

Franz Sachslehner<br />

17:45 917 Das wissenschaftliche Exil in Großbritannien<br />

Wolfgang L. Reiter<br />

18:00 918 The *Squinting* in the Doppler-effect and the Hid<strong>de</strong>n<br />

Ether-drifts<br />

Karl Mocnik<br />

18:15 END<br />

18:30 Postersession and Apéro<br />

20:00 Conference Dinner<br />

Aussteller - Exposants<br />

Agilent Technologies, Vacuum Products Division,<br />

DE-60528 Frankfurt<br />

www.agilent.com<br />

Anton Paar GmbH, 8054 Graz;<br />

www.anton-paar.com/<br />

attocube systems AG, DE-80539 München<br />

www.attocube.com<br />

CryoVac GmbH & Co. KG, DE-53842 Troisdorf<br />

www.cryovac.<strong>de</strong><br />

Dr. Eberl MBE-Komponenten GmbH, DE-71263 Weil <strong>de</strong>r Stadt<br />

www.mbe-komponenten.<strong>de</strong><br />

EPL-IOP, UK-Bristol<br />

www.iop.org<br />

Finetech GmbH & Co. KG, DE-12681 Berlin<br />

www.finetech.<strong>de</strong><br />

Goodfellow GmbH, DE-61213 Bad Nauheim<br />

www.goodfellow.com<br />

Hositrad Deutsch<strong>la</strong>nd Vacuum Technology,<br />

DE-93047 Regensburg<br />

www.hositrad.com<br />

Mad City Labs GmbH, CH-8302 Kloten<br />

www.madcity<strong>la</strong>bs.eu<br />

Mantis Deposition GmbH, DE-55122 Mainz<br />

www.mantis<strong>de</strong>position.com<br />

MaTecK GmbH, DE-52428 Jülich<br />

www.mateck.<strong>de</strong><br />

Nanosurf AG, CH-4410 Liestal<br />

www.nanosurf.com<br />

Pfeiffer Vacuum Austria GmbH, AT-1150 Wien<br />

www.pfeiffer-vacuum.com<br />

Physik Instrumente (PI) GmbH & Co.KG, DE-76228 Karlsruhe<br />

www.pi.ws<br />

SPECS Surface Nano Analysis GmbH, DE-13355 Berlin<br />

www.specs.com<br />

VAQTEC - Scientific, DE-13189 Berlin<br />

www.vactec-scientific.com<br />

VAT – Deutsch<strong>la</strong>nd GmbH, DE-85630 Grasbrunn bei München<br />

www.vatvalve.com/<strong>de</strong>/contacts/vat-<strong>de</strong>utsch<strong>la</strong>nd<br />

VIDEKO GmbH, AT-2512 Oeynhausen<br />

www.vacuumtechnology.at<br />

Zurich Instruments, CH-8005 Zürich<br />

www.zhinst.com<br />

24


Open Access, where do we stand today?<br />

Your opinion interests us.<br />

Christophe Rossel, SPS Vice-Presi<strong>de</strong>nt<br />

Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

With the <strong>de</strong>velopment of Open Access (OA) where the research<br />

papers become freely accessible by the rea<strong>de</strong>rs, the<br />

aca<strong>de</strong>mic publishing scheme is changing rapidly all over<br />

the world. The general consensus is that the results of research<br />

should be accessible in the public domain so that<br />

they will bring benefits for public services and economic<br />

growth. They need nevertheless to un<strong>de</strong>rgo some quality<br />

control for relevance and reliability reasons and for avoiding<br />

misleading statements and erroneous conclusions. Open<br />

Access is not strictly speaking free access because somewhere<br />

time and money must be found to make it functioning.<br />

Any new business mo<strong>de</strong>l, different from the conventional<br />

subscription-based mo<strong>de</strong>l must then be robust and<br />

sustainable.<br />

In 2009 the European Physical Society (EPS) published a<br />

position paper, <strong>de</strong>c<strong>la</strong>ring its support, like other organizations,<br />

to the 2003 Berlin Dec<strong>la</strong>ration on Open Access to<br />

Knowledge in the Sciences and Humanities (http://oa.mpg.<br />

<strong>de</strong>/openaccess-berlin/berlin<strong>de</strong>c<strong>la</strong>ration.html).<br />

The ongoing discussions are based on several critical issues.<br />

Whereas most researchers are essentially concerned<br />

about publishing their results in the journal of their choice<br />

without concerns about any business mo<strong>de</strong>ls, librarians<br />

who are facing <strong>de</strong>creasing budgets and increasing journal<br />

prices are ready for alternatives to the subscription-based<br />

mo<strong>de</strong>l. But how to meet publication costs if the subscription<br />

income is removed?<br />

Part of the <strong>de</strong>bate is to <strong>de</strong>ci<strong>de</strong> whether the Gold OA mo<strong>de</strong>l<br />

where publishers get their revenues from authors rather<br />

than from rea<strong>de</strong>rs is preferable to the Green OA mo<strong>de</strong>l<br />

where the final refereed article is p<strong>la</strong>ced temporarily in their<br />

institutional repository, in a central repository, or on some<br />

other OA archive like arXiv for physics. Critical voices c<strong>la</strong>im<br />

that some <strong>de</strong>trimental embargo time of 6–12 months or<br />

longer might be associated with the Green OA mo<strong>de</strong>l, as<br />

done already by some non-OA journals.<br />

Funding is therefore a critical issue for research agencies<br />

and aca<strong>de</strong>mic institutions, which will have to subsidize not<br />

only the work of editors but also support charges re<strong>la</strong>ted to<br />

Gold OA. This leads to another concern, namely the aca<strong>de</strong>mic<br />

freedom. Critics c<strong>la</strong>im in<strong>de</strong>ed that full Open Access<br />

mo<strong>de</strong>l will see universities, not rea<strong>de</strong>rs, pay for articles to<br />

be published in journals, meaning the <strong>de</strong>cision on how to<br />

publish new research will rest with university and funding<br />

agencies administrators and not aca<strong>de</strong>mics themselves.<br />

Science Europe (www.scienceeurope.org), an umbrel<strong>la</strong><br />

organization of the most important research and funding<br />

institutions in Europe, has published in April 2013 a <strong>de</strong>c<strong>la</strong>ration<br />

entitled Principles for the Transition to Open Access<br />

to Research Publications. It <strong>de</strong>scribes the benefits of OA<br />

and proposes a set of common principles agreed by all its<br />

members to support the transition to full OA. It is stated<br />

that each organization will have to implement policies according<br />

to their own needs but in agreement with the proposed<br />

principles, viewed as a contribution to a global dialogues<br />

and cooperation with other stakehol<strong>de</strong>rs in Europe<br />

and worldwi<strong>de</strong>.<br />

Funding organizations, including the Swiss National Science<br />

Foundation, endorse both publications in openaccess<br />

journals and second publications on document<br />

servers. However, they are explicitly against supporting<br />

so-called hybrid publication mo<strong>de</strong>ls offered by most <strong>la</strong>rge<br />

commercial publishers. In<strong>de</strong>ed in the case of hybrid journals,<br />

the authors can, in exchange for a fee, p<strong>la</strong>ce the<br />

article with publishers on OA. This mo<strong>de</strong>l might result in<br />

double charges since on one si<strong>de</strong> libraries still pay for the<br />

journal subscriptions and licenses and, on the other, for the<br />

OA publication fees of the authors<br />

The OA policies of all participating institutions, including<br />

those in Switzer<strong>la</strong>nd, are published in the Registry of Open<br />

Access Repository Mandatory Archiving Policies (ROAR-<br />

MAP) and can be found un<strong>de</strong>r http://roarmap.eprints.org/.<br />

Since the active <strong>de</strong>bate on the economics and reliability<br />

of OA continues among researchers, librarians, universities<br />

and funding agencies administrators, government officials,<br />

and commercial publishers, the SPS Board would<br />

be very interested in collecting comments by its members<br />

in or<strong>de</strong>r to evaluate the general opinions prevailing in the<br />

Swiss scientific community. Please send your comments to<br />

sps@unibas.ch.<br />

Kurz<strong>mitteilungen</strong> - Short Announcements<br />

Initiative for Science in Europe<br />

The Initiative for Science in Europe is an in<strong>de</strong>pen<strong>de</strong>nt p<strong>la</strong>tform<br />

of European learned societies and scientific organizations<br />

whose aim is to promote mechanisms to support all<br />

fields of science at a European level, involve scientists in<br />

the <strong>de</strong>sign and implementation of European science policies,<br />

and to advocate strong in<strong>de</strong>pen<strong>de</strong>nt scientific advice<br />

in European policy making. In Winter 2012/13, ISE has coordinated<br />

the campaign "No-Cuts-On-Research.EU".<br />

More Info: http://www.initiative-science-europe.org/<br />

25


SPG Mitteilungen Nr. 40<br />

2013 PSI Summer School on Con<strong>de</strong>nsed Matter Research:<br />

Materials - structure and magnetism<br />

August 17-23, 2013, Lyceum Alpinum, Zuoz, Switzer<strong>la</strong>nd<br />

The 12 th edition of the PSI summer school on con<strong>de</strong>nsed<br />

matter physics is open for registration. This year the school<br />

will be <strong>de</strong>dicated to some of the main topics addressed at<br />

<strong>la</strong>rge scale user facilities such as neutron and muon sources<br />

or synchrotron photon sources: Materials - structure<br />

and magnetism.<br />

International experts and PSI staff members will introduce<br />

and <strong>de</strong>epen your knowledge not only about these scientific<br />

topics but also about the main methods applied to un<strong>de</strong>rstand<br />

the phenomena, which are presently at the forefront<br />

of mo<strong>de</strong>rn solid state physics and chemistry.<br />

The school is fully open to the national and non-national<br />

public and the <strong>la</strong>nguage of the school is English.<br />

Following the school a practical training is offered at PSI. It<br />

will allow a limited number of participants to get hands-on<br />

experience with state-of-the-art instrumentation using photons,<br />

neutrons, and muons.<br />

More information, the school’s programme and online registration<br />

is avai<strong>la</strong>ble from the school’s webpage:<br />

http://www.psi.ch/summerschool<br />

19 th Swiss Physics Olympiad 2013 (SPhO) in Aarau<br />

The final round of the Swiss Physics Olympiad took p<strong>la</strong>ce<br />

on March 23/24 in Aarau at the Neue Kantonsschule. The<br />

competition was held between twenty-four stu<strong>de</strong>nts from<br />

Switzer<strong>la</strong>nd and two from Liechtenstein.<br />

The selection process began in January with a preliminary<br />

round with a record participation of over 100 stu<strong>de</strong>nts, a<br />

success with 50% more participation than in earlier years.<br />

The stu<strong>de</strong>nts, aged between 16 and 20, had the chance to<br />

prepare for the final round at a three day training<br />

session at EPFL. The final round consisted of two<br />

challenging days, totalling no less than six and a<br />

half hours of theoretical and experimental exams,<br />

something like a Marathon! The top five participants<br />

– gold medals - will have the unique opportunity<br />

to travel to Denmark to represent Switzer<strong>la</strong>nd<br />

at the International Physics Olympiad in July.<br />

The award ceremony was a <strong>de</strong>dicated moment with talks<br />

and piano pieces, where one could feel the mood of the<br />

accomplished effort. After an excellent pedagogical talk by<br />

Gabriel Pa<strong>la</strong>cios on Fraunhofer lines, presi<strong>de</strong>nt of SPhO, it<br />

was the tour of the Swiss Physical Society – who is sponsoring<br />

the event – to present the mission and vision of the<br />

Society, and to proceed to the awards distribution.<br />

Antoine Pochelon, SPS Secretary<br />

The absolute best was Lukas Lang, from Liechtenstein.<br />

Followed just next by Sven Pfeiffer, from Münsingen (BE)<br />

and Rafael Winkler, from Mettauertal (AG). The SPS was<br />

happy to <strong>de</strong>liver the woman award to Viviane Kehl, from<br />

Küsnacht (ZH) who already illustrated herself in the preliminary<br />

round as 4 th and at the time best of the present Swiss<br />

winner group.<br />

Such an event is the opportunity to strengthen<br />

contact with offspring and teachers in a nice and<br />

stimu<strong>la</strong>ting climate. As summarized by Markus<br />

Meier, the local organizer: I hope and believe that<br />

this event (with SPS presentation and award giving)<br />

is the first and also successful contact of the<br />

SPS to future physicists. And truly, at this occasion<br />

young people of 15 or 16 were asking how to become<br />

member of the SPS and how they could be better<br />

informed about courses, seminars, ateliers … : a hint for the<br />

SPS to be well present for the young leaves.<br />

PS: Let us note that in Switzer<strong>la</strong>nd such Olympiads - in addition<br />

to Physics (www.swi<strong>ssp</strong>ho.ch) - are also organized in<br />

Biology, Chemistry, Informatics, Mathematics, Philosophy<br />

(www.olympiads.ch).<br />

The four recipients of the SPS awards: Sven Pfeiffer (first Swiss), Rafael Winkler (second Swiss), Viviane Kehl (first woman) and Lukas<br />

Lang (first Liechtensteiner and absolut best)<br />

26


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

Das Rennen um die Industrieproduktion <strong>de</strong>r Zukunft<br />

Rolf Hügli, SATW Generalsekretär<br />

Die Schweiz gehört bekanntlich zu <strong>de</strong>n innovativsten Län<strong>de</strong>rn<br />

<strong>de</strong>r Welt. Die Ausgaben für die Forschung sind hoch<br />

und auf Jahre hinaus gesichert. Wenn die Schweiz aber<br />

eine be<strong>de</strong>uten<strong>de</strong> Industrienation bleiben will, muss auch<br />

<strong>de</strong>r Produktionsstandort Schweiz eine Zukunft haben. Produktions-Knowhow<br />

gehört zu <strong>de</strong>n Schlüsselkompetenzen<br />

für die "alten Industrienationen", die nicht auf billige Arbeitskräfte<br />

setzen können.<br />

In <strong>de</strong>n letzten 5 Jahren hat die EU 10% ihrer Industrieproduktion<br />

und 3 Millionen Jobs verloren. Zumin<strong>de</strong>st vor<strong>de</strong>rhand<br />

hat sich die Schweiz gut behaupten können, weil<br />

ihre Industriegüter hochspezialisiert sind. Diese Produkte<br />

sind weniger preissensitiv und ihre Herstellung ist sehr anspruchsvoll.<br />

Ob dies in Zukunft hilft, ist ungewiss. Die Währungssituation<br />

ist nach wie vor angespannt und Län<strong>de</strong>r wie<br />

China und Indien sind im Begriff, immer komplexere Eigenprodukte<br />

zu entwickeln und herzustellen.<br />

Hinzu kommt, dass sich be<strong>de</strong>uten<strong>de</strong> Neuerungen bei <strong>de</strong>n<br />

Herstellungsverfahren abzeichnen. Die massgeblichen Treiber<br />

dafür sind:<br />

• weitgehen<strong>de</strong> Digitalisierung <strong>de</strong>r Wertschöpfungskette<br />

(Herstellungsdaten wer<strong>de</strong>n verschickt, nicht physische<br />

Produkte)<br />

• präzisere Verfahren bei <strong>de</strong>r automatischen maschinellen<br />

Bearbeitung (schnelle, hochwirksame Korrekturalgorithmen<br />

verbessern die automatisierte mechanische<br />

Bearbeitung)<br />

• völlig neue, additive Herstellungsverfahren (z.B. 3D<br />

Printing).<br />

Dadurch wird eine kostengünstige Produktion anspruchsvoller<br />

Komponenten an einem beliebigen Ort <strong>de</strong>r Welt<br />

<strong>de</strong>nkbar. Auch die rentable Produktion von Kleinstserien<br />

o<strong>de</strong>r Einzelstücken könnte damit gelingen.<br />

Während diese Entwicklung für qualifizierte Facharbeiter<br />

eine Gefahr darstellen könnte, bietet sie <strong>de</strong>n westlichen Industrienationen<br />

die Möglichkeit, dank kostengünstiger Produktion<br />

einen Teil <strong>de</strong>s verlorenen Marktes zurückzuerobern.<br />

Welcher Aspekt dominieren wird, ist völlig unk<strong>la</strong>r. Für <strong>de</strong>n<br />

Werkp<strong>la</strong>tz Schweiz ist es von grosser Be<strong>de</strong>utung, diese<br />

Trends zu verstehen und richtig darauf zu reagieren.<br />

Die SATW hat kürzlich ein Forum unter <strong>de</strong>m Titel "advanced<br />

manufacturing" veranstaltet. Unter <strong>de</strong>n Teilnehmern waren<br />

Produktions- und Materialexperten, Wissenschaftler und<br />

Repräsentanten von Verwaltung und Industrieverbän<strong>de</strong>n.<br />

Auch unter <strong>de</strong>n Anwesen<strong>de</strong>n herrschte keine Einigkeit, in<br />

welche Richtung sich die Dinge entwickeln wer<strong>de</strong>n. K<strong>la</strong>r<br />

herausgeschält haben sich jedoch zwei Dinge:<br />

• Die neuen Verfahren bestehen aus einzelnen Komponenten<br />

und Arbeitsschritten, die aufeinan<strong>de</strong>r abgestimmt<br />

sein müssen. Es ist daher empfehlenswert,<br />

diese Verfahren „vertikal integriert“, d.h. in Konsortien<br />

zu entwickeln, welche die ganze Wertschöpfungskette<br />

ab<strong>de</strong>cken.<br />

• C. M. C<strong>la</strong>yton hat <strong>de</strong>n Begriff <strong>de</strong>r "disruptiven" Innovation<br />

geprägt. Gemeint sind damit Verän<strong>de</strong>rungen,<br />

die auf (vom Markt) unerwarteten, neuen Prinzipien<br />

beruhen und die die Spielregeln einer ganzen Branche<br />

verän<strong>de</strong>rn können. Die erwähnten neuen Herstellungsmetho<strong>de</strong>n<br />

haben das Potential dazu. Allerdings<br />

ist unk<strong>la</strong>r, welche Verfahren sich wo durchsetzen wer<strong>de</strong>n.<br />

Damit entstehen grosse Investitionsrisiken. Da<br />

nicht gewartet wer<strong>de</strong>n kann, bis völlige K<strong>la</strong>rheit darüber<br />

herrscht, ist zu prüfen ob eine finanzielle För<strong>de</strong>rung<br />

von Pilotprojekten durch Bun<strong>de</strong>smittel (evtl. im<br />

Rahmen KTI o<strong>de</strong>r SNF) im Sinne eines Schwerpunktprogrammes<br />

angezeigt wäre.<br />

Die SATW wird dieses Thema weiter bearbeiten. Im Verbund<br />

<strong>de</strong>r europäischen technischen Aka<strong>de</strong>mien (Euro-CASE) ist<br />

sie an einem Diskussionspapier für die EU-Kommission beteiligt.<br />

Sie verfolgt zu<strong>de</strong>m <strong>de</strong>n Jahreskongress <strong>de</strong>r Canadian<br />

Aca<strong>de</strong>my of Engineering (CAE), an <strong>de</strong>m ähnliche Fragen<br />

diskutiert wer<strong>de</strong>n. Die SATW p<strong>la</strong>nt ausser<strong>de</strong>m im Herbst ein<br />

Folgemeeting mit einzelnen Teilnehmern <strong>de</strong>s Forums, um<br />

praktische Handlungsoptionen zu bestimmen. Zusätzlich<br />

möchte die SATW ihr Netzwerk mit Produktionsexperten<br />

aus <strong>de</strong>r Industrie verstärken. Gerne nimmt sie auch Beiträge<br />

o<strong>de</strong>r Anregungen von Mitglie<strong>de</strong>rn <strong>de</strong>r SPG entgegen.<br />

"Advanced Manufacturing’", ein interessantes Feld<br />

für Physikerinnen und Physiker?<br />

Mo<strong>de</strong>rne Produktionsmetho<strong>de</strong>n beruhen auf <strong>de</strong>r durchgängigen<br />

Digitalisierung nahezu aller Prozessschritte,<br />

vom Design über die eigentliche Fertigung bis zur Auslieferung.<br />

Dabei umfasst <strong>de</strong>r Begriff Digitalisierung sowohl<br />

computergesteuerte Datenerfassung, numerische<br />

Mo<strong>de</strong>llierung wie Echtzeit-Kommunikation. Weist das<br />

zu fertigen<strong>de</strong> Gerät ab einer gewissen Fertigungsstufe<br />

einen bestimmten Grad an interner Digitalisierung auf,<br />

kann es -ab dann- selber mit <strong>de</strong>n Produktionswerkzeugen<br />

kommunizieren, was zu Genauigkeitssteigerungen<br />

und Durch<strong>la</strong>ufzeitverkürzungen führt. Im gleichen Sinne<br />

kann die interne Digitalisierung später im Einsatz beim<br />

Kun<strong>de</strong>n die Kommunikation mit <strong>de</strong>r Herstellfirma o<strong>de</strong>r<br />

einem Provi<strong>de</strong>r ermöglichen, um die Dienstleistung <strong>de</strong>s<br />

Gerätes nur dann und dort abzurufen, wann und wo es<br />

vom Kun<strong>de</strong>n benötigt wird. Für <strong>de</strong>n Kun<strong>de</strong>n be<strong>de</strong>utet<br />

das eine <strong>de</strong>utliche Effizienzsteigerung seiner Arbeit und<br />

eine Senkung <strong>de</strong>r Betriebskosten.<br />

Im Mittelpunkt all dieser Ansätze steht die Erfassung <strong>de</strong>r<br />

realen Fertigungsabläufe und <strong>de</strong>ren mathematische Mo<strong>de</strong>llierung<br />

('Virtuelle Fabrik'). Das erfor<strong>de</strong>rt ein profun<strong>de</strong>s<br />

physikalisches Verständnis, wenn man an die technischen<br />

Machbarkeitsgrenzen gehen will. Für Industriephysiker<br />

öffnen sich attraktive Betätigungsfel<strong>de</strong>r<br />

B. Braunecker<br />

27


SPG Mitteilungen Nr. 40<br />

First result from the AMS experiment<br />

Martin Pohl, Center for Astroparticle Physics, CAP Genève<br />

Beginning of April 2013, the Alpha Magnetic Spectrometer<br />

(AMS) Col<strong>la</strong>boration published its first physics result in<br />

Physical Review Letters 1 . The AMS experiment is a powerful<br />

and sensitive particle physics spectrometer. As seen in<br />

Figure 1, AMS is located on the exterior of the International<br />

Space Station (ISS). Since its instal<strong>la</strong>tion on 19 May 2011 it<br />

has measured over 30 billion cosmic rays in the GeV to TeV<br />

energy range. Its permanent magnet and array of precision<br />

particle <strong>de</strong>tectors collect and i<strong>de</strong>ntify charged cosmic rays<br />

passing through. Over its long duration mission on the ISS,<br />

AMS will record signals from 16 billion cosmic rays every<br />

year and transmit them to Earth for analysis by the AMS<br />

Col<strong>la</strong>boration. This is the first of many physics results to be<br />

reported.<br />

onboard the final mission of space shuttle En<strong>de</strong>avour (STS-<br />

134) on 16 May 2011. Once installed on 19 May 2011, AMS<br />

was powered up and immediately began collecting data<br />

from primary sources in space and these were transmitted<br />

to the AMS Payload Operations Control Center located at<br />

CERN, Geneva, Switzer<strong>la</strong>nd.<br />

Once AMS became operational, the first task for the AMS<br />

Col<strong>la</strong>boration was to ensure that all instruments and systems<br />

performed as <strong>de</strong>signed and as tested on the ground.<br />

The AMS <strong>de</strong>tector, with its multiple redundancies, has proven<br />

to perform f<strong>la</strong>wlessly in space. Over the <strong>la</strong>st 22 months in<br />

flight, AMS col<strong>la</strong>borators have gained invaluable operational<br />

experience in running a precision spectrometer in space<br />

and mitigating the hazardous conditions to which AMS is<br />

exposed as it orbits the Earth every 90 minutes. Conditions<br />

like this are not encountered by ground-based accelerator<br />

experiments or satellite-based experiments and require<br />

constant vigi<strong>la</strong>nce in or<strong>de</strong>r to avoid irreparable damage.<br />

They inclu<strong>de</strong> the extreme thermal variations caused by so<strong>la</strong>r<br />

effects and the re-positioning of ISS onboard radiators<br />

and so<strong>la</strong>r arrays. In addition, the AMS operators regu<strong>la</strong>rly<br />

transmit software updates from the AMS POCC at CERN to<br />

the AMS computers in space in or<strong>de</strong>r to match the regu<strong>la</strong>r<br />

upgra<strong>de</strong>s of the ISS software and hardware.<br />

Figure 1: From its vantage point about 400 km above the Earth, the<br />

Alpha Magnetic Spectrometer (AMS) collects data from primordial<br />

cosmic rays that traverse the <strong>de</strong>tector.<br />

The first publication from the AMS Experiment is a major<br />

milestone for the AMS international col<strong>la</strong>boration. Hundreds<br />

of scientists, engineers, technicians and stu<strong>de</strong>nts from all<br />

over the world have worked together for over 18 years to<br />

make AMS a reality. The col<strong>la</strong>boration represents 16 countries<br />

from Europe, Asia and North America (Fin<strong>la</strong>nd, France,<br />

Germany, Italy, the Nether<strong>la</strong>nds, Portugal, Spain, Switzer<strong>la</strong>nd,<br />

Romania, Russia, Turkey, China, Korea, Taiwan, Mexico<br />

and the United States) un<strong>de</strong>r the lea<strong>de</strong>rship of Nobel<br />

Laureate Samuel Ting of M.I.T. The col<strong>la</strong>boration continues<br />

to work closely with the NASA AMS Project Management<br />

team from Johnson Space Center as it has throughout the<br />

entire process. Many countries have ma<strong>de</strong> important contributions<br />

to the AMS <strong>de</strong>tector construction and presently<br />

to the data analysis. These inclu<strong>de</strong> two groups from Switzer<strong>la</strong>nd,<br />

University of Geneva and ETHZ, supported by fe<strong>de</strong>ral<br />

and cantonal authorities as well as the SNF.<br />

AMS was constructed at universities and research institutes<br />

around the world and assembled at the European Organization<br />

for Nuclear Research, CERN, Geneva, Switzer<strong>la</strong>nd.<br />

It was <strong>la</strong>unched by NASA to the ISS as the primary payload<br />

1 AMS Col<strong>la</strong>boration, M. Agui<strong>la</strong>r et al., First Result from the Alpha<br />

Magnetic Spectrometer on the International Space Station: Precision<br />

Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5–350<br />

GeV, Phys. Rev. Lett. 110, 141102 (2013)<br />

28<br />

Positron fraction measurement<br />

In the initial 18 months period of space operations, from<br />

19 May 2011 to 10 December 2012, AMS analyzed 25 billion<br />

primary cosmic ray events. Of these, an unprece<strong>de</strong>nted<br />

number, 6.8 million, were unambiguously i<strong>de</strong>ntified as<br />

electrons and their antimatter counterpart, positrons. The<br />

6.8 million particles observed in the energy range 0.5 to<br />

350 GeV are the subject of the precision study reported in<br />

this first paper.<br />

Electrons and positrons are i<strong>de</strong>ntified by the accurate and<br />

redundant measurements provi<strong>de</strong>d by the various AMS instruments<br />

against a <strong>la</strong>rge background of protons. Positrons<br />

are clearly distinguished from this background through the<br />

robust rejection power of AMS of more than one in one million.<br />

Currently, the total number of positrons i<strong>de</strong>ntified by AMS,<br />

in excess of 400,000, is the <strong>la</strong>rgest number of energetic<br />

antimatter particles directly measured and analyzed from<br />

space. The first paper can be summarized as follows:<br />

AMS has measured the positron fraction (ratio of the positron<br />

flux to the combined flux of positrons and electrons)<br />

in the energy range 0.5 to 350 GeV. We have observed that<br />

from 0.5 to 10 GeV, the fraction <strong>de</strong>creases with increasing<br />

energy. The fraction then increases steadily between 10<br />

GeV to ~250 GeV. Yet the slope (rate of growth) of the positron<br />

fraction <strong>de</strong>creases by an or<strong>de</strong>r of magnitu<strong>de</strong> from 20 to<br />

250 GeV. At energies above 250 GeV, the spectrum appears<br />

to f<strong>la</strong>tten but to study the behavior above 250 GeV requires<br />

more statistics – the data reported represents ~10% of the


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

total expected. The positron fraction spectrum exhibits neither<br />

structure nor time <strong>de</strong>pen<strong>de</strong>nce. The positron to electron<br />

ratio shows no anisotropy indicating the energetic positrons<br />

are not coming from a preferred direction in space.<br />

Together, these features show evi<strong>de</strong>nce of a new physics<br />

phenomena. Figure 2 illustrates the AMS data presented in<br />

the first publication.<br />

statistics avai<strong>la</strong>ble distinguish the reported positron fraction<br />

spectrum from earlier experiments 3 , by extending the<br />

energy range and improving the precision by an or<strong>de</strong>r of<br />

magnitu<strong>de</strong>.<br />

Outlook<br />

AMS is a magnetic spectrometer with the ability to explore<br />

new physics because of its precision, statistics, energy<br />

range, capability to i<strong>de</strong>ntify different particles and nuclei and<br />

its long duration in space. It is expected that hundreds of<br />

billions of cosmic rays will be measured by AMS throughout<br />

the lifetime of the Space Station. The volume of raw data<br />

requires a massive analysis effort. The parameters of each<br />

signal collected are meticulously reconstructed, characterized<br />

and archived before they un<strong>de</strong>rgo analysis by multiple<br />

in<strong>de</strong>pen<strong>de</strong>nt groups of AMS physicists thus ensuring the<br />

accuracy of the physics results.<br />

Figure 2: The positron fraction measured by AMS <strong>de</strong>monstrates<br />

excellent agreement with the mo<strong>de</strong>l <strong>de</strong>scribed below. Even with<br />

the high statistics, 6.8 million events, and accuracy of AMS, the<br />

fraction shows no fine structure.<br />

The exact shape of the spectrum, as shown in Figure 2, exten<strong>de</strong>d<br />

to higher energies, will ultimately <strong>de</strong>termine whether<br />

this spectrum originates from the collision of dark matter<br />

particles or from pulsars in the ga<strong>la</strong>xy. The high level of accuracy<br />

of this data indicates that AMS may soon resolve<br />

this issue.<br />

Over the <strong>la</strong>st few <strong>de</strong>ca<strong>de</strong>s there has been much interest on<br />

the positron fraction from primary cosmic rays by both particle<br />

physicists and astrophysicists. The un<strong>de</strong>rlying reason<br />

is that by measuring the ratio between positrons and electrons<br />

and by studying the behavior of any excess across<br />

the energy spectrum, a better un<strong>de</strong>rstanding of the origin<br />

of dark matter and other physics phenomena may be obtained.<br />

The first AMS result has been analyzed using several phenomenological<br />

mo<strong>de</strong>ls, one of which is <strong>de</strong>scribed in the<br />

paper and inclu<strong>de</strong>d in Figure 2. This generic mo<strong>de</strong>l, with<br />

diffuse electron and positron components and a common<br />

source component, fits the AMS data surprisingly well. This<br />

agreement indicates that the positron fraction spectrum is<br />

consistent with electron positron fluxes each of which is the<br />

sum of its diffuse spectrum and a single energetic common<br />

source. In other words, a significant portion of the highenergy<br />

electrons and positrons originate from a common<br />

source. More specific mo<strong>de</strong>ls 2 based on dark matter self<br />

annihi<strong>la</strong>tion and/or pulsar sources in the Milky Way have<br />

been published immediately after the release of the AMS<br />

data.<br />

As shown in Figure 3, the accuracy of AMS and the high<br />

2 See e.g.: Andrea De Simone, Antonio Riotto, Wei Xuec, CERN-<br />

PH-TH/2013-054 (April 3, 2013). Tim Lin<strong>de</strong>n and Stefano Profumo,<br />

arXiv:1304.1791v1 [astro-ph.HE], (April 5, 2013). Peng-Fei Yin, Zhao-Huan<br />

Yu, Qiang Yuan and Xiao-Jun Bi, arXiv:1304.4128v1 [astro-ph.HE] (April<br />

15, 2013)<br />

Figure 3: A comparison of AMS results with recent published measurements.<br />

With the wealth of data emitted by primary cosmic rays<br />

passing through AMS, the Col<strong>la</strong>boration will also explore<br />

other topics such as the precision measurements of the boron<br />

to carbon ratio, nuclei and antimatter nuclei, and antiprotons,<br />

precision measurements of the helium flux, proton<br />

flux and photons, as well as the search for new physics and<br />

astrophysics phenomena such as strangelets.<br />

The AMS Col<strong>la</strong>boration will provi<strong>de</strong> new, accurate information<br />

over the lifetime of the Space Station as the AMS<br />

<strong>de</strong>tector continues its mission to explore new physics phenomena<br />

in the cosmos.<br />

(This article is based on http://press.web.cern.ch/tags/ams.)<br />

3 TS93: R. Gol<strong>de</strong>n et al., Astrophys. J. 457 (1996) L103. Wizard/<br />

CAPRICE: M. Boezio et al., Adv. Sp. Res. 27-4 (2001) 669. HEAT: J. J.<br />

Beatty et al., Phys. Rev. Lett. 93 (2004) 241102; M. A. DuVernois et al.,<br />

Astrophys. J. 559 (2001) 296. AMS-01: M. Agui<strong>la</strong>r et al., Phys. Lett. B 646<br />

(2007) 145. PAMELA: P. Picozza, Proc. of the 4 th International Conference<br />

on Particle and Fundamental Physics in Space, Geneva, 5-7 Nov. 2012,<br />

to be published. O. Adriani et al., Astropart. Phys. 34 (2010) 1; O. Adriani<br />

et al., Nature 458 (2009) 607. Fermi-LAT: M. Ackermann et al., Phys. Rev.<br />

Lett. 108 (2012) 011103.<br />

29


SPG Mitteilungen Nr. 40<br />

Progress in Physics (33)<br />

Outreach: Can Physics Cross Boundaries?<br />

Jean-Pierre Eckmann, Département <strong>de</strong> Physique Théorique et Section <strong>de</strong> Mathématiques, Université <strong>de</strong> Genève<br />

Recently, physical thinking has been making progress in<br />

domains at which it did not aim originally. In this contribution,<br />

I want to sketch some examples of what can be done.<br />

The method consists of finding systems which originate in<br />

complex or complicated structure or dynamics, and which<br />

can profit from questions physicists ask. The examples I<br />

want to present comprise biology, <strong>la</strong>nguage and the Worldwi<strong>de</strong>-web<br />

(WWW).<br />

I find it fascinating that re<strong>la</strong>tively simple methods, questions,<br />

and techniques from the exact sciences seem to be<br />

able to shed new light, and also new insight, into structures<br />

which are mostly self-generated. I want to suggest<br />

and illustrate that questions outsi<strong>de</strong> physics proper can be<br />

<strong>de</strong>veloped fruitfully by physicists. My story is neither totally<br />

new (see, e.g., [14]) nor as revolutionary as it may seem. I<br />

just want to convey my interest and pleasure in addressing<br />

"esoteric" questions with the tools of mathematics and<br />

physics.<br />

The discussion will be in the subject of "network theory,"<br />

and I first summarize some of its literature [1, 12] : With the<br />

advent of powerful computers on every scientist’s <strong>de</strong>sk, it<br />

has become easy to analyze <strong>la</strong>rge data sets. These data<br />

sets come often, and quite naturally, in the form of <strong>la</strong>rge<br />

networks (graphs, directed or undirected), where the no<strong>de</strong>s<br />

of the graph are certain objects, and the edges are certain<br />

binary re<strong>la</strong>tions between them. For example, the no<strong>de</strong>s<br />

could be individual researchers, and the links could signify<br />

that they either co-author a paper, or cite each other.<br />

Other examples are pages and links in the WWW, which<br />

connect two pages; airports and connections provi<strong>de</strong>d by<br />

commercial airlines; words and links between these words<br />

and their <strong>de</strong>finition in a dictionary. I will call such graphs<br />

real-life graphs 1 . Experimental automation, and the avai<strong>la</strong>bility<br />

of <strong>la</strong>rge databases through the internet provi<strong>de</strong> many<br />

interesting networks for analysis. The most useful ones are<br />

obtained in col<strong>la</strong>boration with experimental scientists.<br />

Continuing a long tradition in statistical physics, the studies<br />

of <strong>la</strong>rge networks often concentrate on their statistical<br />

properties. Erdős and Rényi <strong>de</strong>scribed a set of random<br />

graphs which are built as follows [3]: Take N no<strong>de</strong>s (N very<br />

<strong>la</strong>rge) and assume that the mean <strong>de</strong>gree (number of links<br />

coming out of a no<strong>de</strong>) is k > 0, in<strong>de</strong>pen<strong>de</strong>ntly of N. Then,<br />

paraphrasing Erdős and Rényi, one can make two statements:<br />

1. Such a graph looks locally like a tree (i.e., it has very<br />

few loops, and these loops are all very long) [4].<br />

2. The expected number of triangles is k 3 /6, (i.e., this<br />

number does not grow with N). (Longer loops are also<br />

rare 2 .)<br />

1 One may legitimately ask why only binary re<strong>la</strong>tions seem important, but<br />

I will argue <strong>la</strong>ter that triangles in these graphs p<strong>la</strong>y the role of three-bodyinteractions<br />

and are the main indicators of semantic contexts.<br />

2 It is actually quite easy to prove these statements, although, at first,<br />

they certainly seem totally anti-intuitive.<br />

3 also called "rich get richer"<br />

30<br />

The first surprise was the discovery that real-life graphs are<br />

not random in the above sense. In contrast to general results<br />

on random graphs, the graphs of "affinities" or "connections"<br />

between "authors," "entities" have very specific<br />

general properties, namely power <strong>la</strong>w behavior over several<br />

<strong>de</strong>ca<strong>de</strong>s [1]. By this, one means the statistics of the number<br />

N^ j h of no<strong>de</strong>s which are attached to exactly j others (the<br />

-c<br />

<strong>de</strong>gree of the no<strong>de</strong>). In formu<strong>la</strong>s, N^ j h . const.<br />

j for <strong>la</strong>rge<br />

j. The point here is that the <strong>de</strong>cay is a power <strong>la</strong>w, and not<br />

an exponential, pointing to the important feature of no<strong>de</strong>s<br />

in the graph with very many connections, many more than<br />

a Gaussian, or Poisson distribution would allow for. In many<br />

real-life graphs g takes a value between 2 and 3.<br />

What this means is that there are a few no<strong>de</strong>s which have<br />

a really high <strong>de</strong>gree. For example, in studying the connections<br />

in Twitter, one finds that there are a few no<strong>de</strong>s with<br />

over 100’000 "friends" (these are usually politicians, perhaps<br />

also singers), the interesting question here is whether<br />

they are friends (the singers) or whether they think they<br />

have friends (the politicians...).<br />

Many studies then concentrate on the dynamics of how<br />

such networks come into being. This is usually called the<br />

"preferential attachment" 3 problem [2], namely the i<strong>de</strong>a<br />

that the networks build up in time, and that people have a<br />

ten<strong>de</strong>ncy to connect to well-known other people (or services).<br />

These mo<strong>de</strong>ls have successfully exp<strong>la</strong>ined how longrange<br />

(scale-free) properties of graphs come about.<br />

Another important aspect of network studies is summarized<br />

un<strong>de</strong>r the term of "clustering coefficient" [18]. In contrast to<br />

the power <strong>la</strong>ws <strong>de</strong>scribed above, this is a local property of<br />

any graph. In mathematical terms, if a no<strong>de</strong> n has j neighbors,<br />

then you count the number t of triangles which have<br />

the no<strong>de</strong> n as a corner. Obviously, there cannot be more<br />

than T^<br />

j h = j^j - 1h / 2 such triangles, and the clustering<br />

coefficient is <strong>de</strong>fined as t/<br />

T^ j h, which is a number between<br />

0 and 1. A high clustering coefficient means that many of<br />

the possible triangles are actually realized.<br />

When I started to study real-life graphs [7], I was puzzled by<br />

the abundance of triangles, which appear or<strong>de</strong>rs of magnitu<strong>de</strong><br />

above (k 3 ) predicted by Erdős and Rényi. What<br />

does this mean? It soon turned out that triangles p<strong>la</strong>y a<br />

strong semantic role. In other words, in all studies of this<br />

type, one can attach meaning to this abundance.<br />

The first case where we discovered this phenomenon was<br />

the set of links in the WWW [7]. While there are many links<br />

which seem irrelevant, we found that those links which form<br />

triangles re<strong>la</strong>te to common interests of the owners of the<br />

pages involved. Carrying this i<strong>de</strong>a further, we found that<br />

triangles of connections among neurons of C. Elegans (a little<br />

worm with 302 neurons) organize their function. Another<br />

example is provi<strong>de</strong>d by triangles of e-mail messages sent<br />

between people, and this <strong>de</strong>termines their social grouping<br />

[8].


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

The neurons of C. Elegans and their connections: Height is clustering<br />

coefficient, color co<strong>de</strong>s function (motor, sensory,...)<br />

My final example is the appearance of loops in the <strong>de</strong>finitions<br />

of words in a dictionary [10]. Here, the graph is formed<br />

by arrows pointing from each word (actually nouns) to the<br />

words in their <strong>de</strong>finition. One finds not only triangles, but<br />

also bi-angles, back-and-forth, (which are synonyms) and<br />

also longer loops. When the loops are too long, there might<br />

be a jump in interpretation, such as at the broken arrow in<br />

railcar & rails & bar & weapon & instrument &<br />

skill Z train & railcar.<br />

But the surprising fact is that the medium size loops are<br />

semantically coherent, and their words form the core of the<br />

<strong>la</strong>nguage. (We checked that by comparing the core-words<br />

to those of [13].) And furthermore, as a bonus, one can<br />

show that they are re<strong>la</strong>ted to the historical appearance of<br />

new concepts in <strong>la</strong>nguage [9].<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

What fascinates me in all this is that questions and methods<br />

from physics can shed new light on several systems<br />

with complex dynamics or structure. The most accessible<br />

among such systems are those where sub-units are assembled<br />

without a master building p<strong>la</strong>n.<br />

The common structure which appears in such studies is<br />

that the more "interesting dynamics" (biochemistry, feedback)<br />

[16], the "meaning" (<strong>la</strong>nguage) [5] or "mechanisms"<br />

(emergent life) are all revealed by <strong>de</strong>viations from the natural<br />

statistical structures of random assemblies. In general, the<br />

connected objects have some "<strong>de</strong>eper" i<strong>de</strong>ntity (meaning,<br />

semantics) that curves the pathways back to some originating<br />

no<strong>de</strong>, in contrast to the "rich get richer" scenario.<br />

So far, these methods have allowed to give some insight<br />

into realms outsi<strong>de</strong> of physics proper. I am convinced that<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

The structuring of words in a dictionary.<br />

<br />

<br />

<br />

<br />

<br />

this outreach has an interesting future, and will penetrate<br />

further new domains.<br />

Where does all this lead? The studies I have presented all<br />

use only the topology of the network, but never the metrics,<br />

namely the way some real-life networks are embed<strong>de</strong>d in<br />

the space in which we live. Adding this component opens<br />

new possibilities, especially in studying aspects of life. This<br />

is so because many aspects of life are about spatial connections,<br />

organisms are a linked set of individual units that<br />

have to interact well and "intelligently" in or<strong>de</strong>r to function.<br />

It is too early to make strong methodological statements<br />

about how mathematics and physics can p<strong>la</strong>y a role in<br />

studying such problems, but certainly, a few studies on<br />

neuronal networks [6, 17], or the interaction of ants in colonies<br />

[11, 15] seem to me promising beginnings in <strong>de</strong>veloping<br />

a methodology for studies in living systems.<br />

References<br />

[1] R. Albert and A.-L. Barabási. Statistical mechanics of complex<br />

networks. Rev. Mo<strong>de</strong>rn Phys. 74 (2002), 47–97.<br />

[2] A.-L. Barabási and R. Albert. Emergence of scaling in random<br />

networks. Science 286 (1999), 509–512.<br />

[3] B. Bollobás. Random graphs, volume 73 of Cambridge Studies<br />

in Advanced Mathematics (Cambridge: Cambridge University<br />

Press, 2001), second edition.<br />

[4] A. Dembo and A. Montanari. Ising mo<strong>de</strong>ls on locally tree-like<br />

graphs. Ann. Appl. Probab. 20 (2010), 565–592.<br />

[5] B. Dorow, D. Widdows, K. Ling, J.-P. Eckmann, D. Sergi, and<br />

E. Moses. Using curvature and Markov clustering in graphs for<br />

lexical acquisition and word sense discrimination. In: MEAN-<br />

ING-2005, 2nd Workshop organized by the MEANING Project,<br />

February 3rd-4th 2005, Trento, Italy. (2005).<br />

[6] J.-P. Eckmann, O. Feinermann, L. Gruendlinger, E. Moses,<br />

J. Soriano, and T. Tlusty. The physics of living neural networks.<br />

Physics Reports 449 (2007), 54–76.<br />

[7] J.-P. Eckmann and E. Moses. Curvature of co-links uncovers<br />

hid<strong>de</strong>n thematic <strong>la</strong>yers in the World Wi<strong>de</strong> Web. Proc. Natl. Acad.<br />

Sci. USA 99 (2002), 5825–5829 (electronic).<br />

[8] J.-P. Eckmann, E. Moses, and D. Sergi. Entropy of dialogues<br />

creates coherent structures in e-mail traffic. Proc. Natl. Acad. Sci.<br />

USA 101 (2004), 14333–14337 (electronic).<br />

[9] D. Harper. Online Etymology Dictionary. (2010).<br />

[10] D. Levary, J.-P. Eckmann, E. Moses, and T. Tlusty. Loops and<br />

self-reference in the construction of dictionaries. Phys. Rev. X 2<br />

(2012), 031018.<br />

[11] D. P. Mersch, A. Crespi, and L. Keller. Tracking individuals<br />

shows spatial fi<strong>de</strong>lity is a key regu<strong>la</strong>tor of ant social organization.<br />

Science 340.<br />

[12] M. Newman, A.-L. Barabási, and D. J. Watts, eds. The structure<br />

and dynamics of networks. Princeton Studies in Complexity<br />

(Princeton, NJ: Princeton University Press, 2006).<br />

[13] C. Og<strong>de</strong>n. Basic English: a general introduction with rules and<br />

grammar (Kegan Paul, London, 1930).<br />

[14] L. Onsager. Nobel lecture, The motion of ions: Principles and<br />

concepts. In: Nobel Lectures (December 11, 1968).<br />

[15] N. Razin, J.-P. Eckmann, and O. Feinerman. Desert ants<br />

achieve reliable recruitment across noisy interactions. J. Royal<br />

Soc. Interface 10 (2013) 20130079.<br />

[16] S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs<br />

in the transcriptional regu<strong>la</strong>tion network of Escherichia coli. Nature<br />

Genetics 31 (2002), 64–68.<br />

[17] T. Tlusty and J.-P. Eckmann. Remarks on bootstrap perco<strong>la</strong>tion<br />

in metric networks. J. Phys. A 42 (2009), 205004, 11.<br />

[18] D. Watts and S. Strogatz. Collective dynamics of 'small-world'<br />

networks. Nature 393 (1998), 409–410.<br />

31


SPG Mitteilungen Nr. 40<br />

Progress in Physics (34)<br />

On the <strong>de</strong>velopment of physically-based regional climate mo<strong>de</strong>lling<br />

Stéphane Goyette<br />

Institute for Environmental Sciences, University of Geneva, 7 route <strong>de</strong> Drize, Geneva<br />

There are huge scientific and technical challenges in research<br />

directed towards un<strong>de</strong>rstanding climate and climate<br />

change. No clear picture of how the weather and climate<br />

system works emerged prior to the 20 th century because<br />

of the <strong>la</strong>ck of connection between atmospheric variables.<br />

In fact, there was still some doubt about <strong>de</strong>riving a theory<br />

about how to interpret daily weather patterns, general circu<strong>la</strong>tion<br />

of the atmosphere, and the global climate. Atmospheric<br />

physics reached a <strong>la</strong>ndmark in the early 20 th century<br />

when empirical climatology, theoretical meteorology and<br />

forecasting were about to converge into a conceptualisation<br />

of this "vast machine" (Edwards, 2010). The problem of<br />

un<strong>de</strong>rstanding the causes of weather, climate and climate<br />

change is not one to be solved quickly or easily, but contributing<br />

to its solution is particu<strong>la</strong>rly worthwhile. In fact, the<br />

status of the climate results from the complex interactions<br />

between the atmosphere with the physical and biological<br />

systems which bound it - the <strong>la</strong>kes and oceans, ice sheets,<br />

<strong>la</strong>nd and vegetation through a spectrum of temporal and<br />

spatial scales. These elements all <strong>de</strong>termine the state and<br />

the evolution of the Earth’s weather and climate, owing to<br />

a particu<strong>la</strong>r influence of the general circu<strong>la</strong>tion of the atmosphere<br />

which redistributes energy, along with the ocean<br />

currents, from the Tropics to the Poles. This highly-coupled<br />

system presents a genuine challenge for mo<strong>de</strong>llers, and<br />

this has led to a body of literature which <strong>de</strong>tails the range<br />

and hierarchy of numerical climate mo<strong>de</strong>ls (e.g. Trenberth,<br />

1996, Schlesinger, 1988).<br />

Back in 1904, Vilhelm Bjerknes recognised that a physically-based<br />

weather forecast is a fundamental initial-value<br />

problem in the mathematical sense; this was <strong>la</strong>ter c<strong>la</strong>ssified<br />

as predictability of the first kind according to Lorenz (1975).<br />

The foundation of what became a framework of studying<br />

the geophysical fluid motions in or<strong>de</strong>r to predict the state<br />

of the atmosphere was shaping up. The <strong>de</strong>rivation of the<br />

equations of motion began in the 17 th century with Newton’s<br />

Laws of Motion, which were <strong>la</strong>ter applied for fluid flow<br />

purposes by Euler and Bernoulli in the 18 th century. The<br />

mo<strong>de</strong>rn conservation of momentum formu<strong>la</strong>tion consists<br />

of a form of the Navier–Stokes equations, an extension of<br />

Euler’s (but for viscous flow), that <strong>de</strong>scribe hydrodynamical<br />

flow. A continuity equation, also accredited to Euler, represents<br />

the conservation of mass. Hadley in 1735, and Ferrel,<br />

around 1850, showed that the <strong>de</strong>flection of rising warm air<br />

is due to the Coriolis effect, a force that began to be used in<br />

connection with meteorology in the early 20 th century. The<br />

first <strong>la</strong>w of thermodynamics, a version of the <strong>la</strong>w of conservation<br />

of energy, was codified near the end of the 19 th century<br />

by a number of scientists, but the first full statements<br />

of the <strong>la</strong>w came earlier from C<strong>la</strong>usius and Rankine. This led<br />

to the thermal energy equation re<strong>la</strong>ting the overall temperature<br />

of the system to heat sources and sinks. The gas state<br />

variables were re<strong>la</strong>ted in 1834 when, C<strong>la</strong>peyron combined<br />

Boyle’s Law and Charles’ <strong>la</strong>w into the first statement of the<br />

i<strong>de</strong>al Gas Law. The basic ingredients employed to approximate<br />

atmospheric flow were then gathered to progress<br />

from concepts to operational computer forecasting, thus<br />

aiming at representing weather by numbers (Harper, 2008).<br />

The partitioning of the atmospheric fluid into a dry and water<br />

vapour mixture, according to the Dalton’s <strong>la</strong>w, was <strong>la</strong>ter<br />

inclu<strong>de</strong>d in numerical mo<strong>de</strong>ls; this premise led to a genuine<br />

improvement when the water cycle and its associated energy<br />

exchange was introduced as an extra equation, <strong>de</strong>scribing<br />

the transport of water vapour handling the effects of<br />

changes of water phases for calcu<strong>la</strong>ting precipitation. All of<br />

the above form the basic equations used today for weather<br />

forecasting and climate prediction. The conservation equations<br />

are partial differential equations. For a unit mass, with<br />

a frame of reference attached to the Earth and the origin at<br />

its centre, these equations may be written as follows (e.g.<br />

Washington and Parkinson, 1986, Hen<strong>de</strong>rson-Sellers and<br />

McGuffie, 1987, Jacobson, 1998, Coiffier, 2011):<br />

dV<br />

=-2X<br />

# V -<br />

1<br />

dp<br />

- dU<br />

+ F momentum equation (1)<br />

dt<br />

t<br />

dT dp<br />

=<br />

1<br />

c + Q m<br />

dt c p dt<br />

thermodynamic equation (2)<br />

dt<br />

=- td $ V<br />

dt<br />

continuity equation (3)<br />

dq<br />

dt<br />

p<br />

= M<br />

water vapour equation (4)<br />

= tRT<br />

equation of state (5)<br />

which gives us a set of seven equations with seven unknowns,<br />

where V represents the three-dimensional wind<br />

velocity, T is the air temperature, p is the pressure, q is<br />

the specific humidity, and t is the air <strong>de</strong>nsity, all varying in<br />

space and in time. The other quantities are: X is the angu<strong>la</strong>r<br />

of rotation of the Earth, is the geopotential <strong>de</strong>fined as<br />

the product of geometric height above the surface z by the<br />

acceleration due to gravity g, (the <strong>la</strong>tter including the Newtonian<br />

gravity and the centrifugal acceleration), R and c p<br />

are<br />

the specific gas constant and the specific heat at constant<br />

pressure, and t is the time. F, Q and M represent the sources<br />

and sinks of momentum (e.g. frictional forces), heat (e.g.<br />

so<strong>la</strong>r and infrared radiation, and <strong>la</strong>tent heat release) and<br />

moisture (e.g. evaporation and con<strong>de</strong>nsation), respectively,<br />

and their expression <strong>de</strong>pends on the scale of the atmospheric<br />

motion the mo<strong>de</strong>l aims to <strong>de</strong>scribe, and they represent<br />

subgrid-scale processes commonly expressed in<br />

terms of resolved quantities. In the prognostic equations<br />

(1-4), the <strong>de</strong>rivative of any sca<strong>la</strong>r quantities } with respect<br />

to time taken following the fluid is expressed as<br />

d} 2}<br />

= + V $ d}<br />

(6)<br />

dt 2t<br />

where the first term on the right is a local partial <strong>de</strong>riva-<br />

32


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

tive at a fixed point in the chosen frame of reference and<br />

the second the advection of the same quantity. Advection<br />

that induces non-linear effects is a transport mechanism of<br />

a quantity by a fluid due to its bulk motion. Simplification<br />

and transformation are required in or<strong>de</strong>r to resolve for some<br />

analytical solutions or the numerical methods used to seek<br />

numerical solutions. The discretization of these continuous<br />

equations would ren<strong>de</strong>r them amenable, using appropriate<br />

algorithms, to a numerical solution of the continuous behaviour<br />

of the circu<strong>la</strong>ting atmosphere.<br />

Around 1920, Richardson, who may be consi<strong>de</strong>red as the<br />

father of today’s mo<strong>de</strong>ls for weather and climate, tried to<br />

solve a simplified set of equations using numerical methods<br />

"by hand and step-by-step". However, his 6-hour<br />

"retrospective forecast" proved unrealistic. Computational<br />

instability and imba<strong>la</strong>nce in the initial data set were <strong>la</strong>ter<br />

found to be the cause of this "setback". However, in 1928,<br />

Courant, Friedrichs, and Lewy showed that a time step<br />

must be less than a certain value in explicit time-marching<br />

schemes to warrant stable numerical solutions using the<br />

method of finite differences. Then, Richardson realised that<br />

64’000 computers [human automata] would be nee<strong>de</strong>d to<br />

race the weather for the whole globe, but by the time he<br />

published "Weather Prediction by Numerical Process" in<br />

1922, fast computers were unavai<strong>la</strong>ble. The <strong>de</strong>velopment<br />

of complex mo<strong>de</strong>ls remained dormant until the <strong>de</strong>velopment<br />

of electronic computers handling self-programmed<br />

sequences of instructions. In 1950, Charney, Ragnar Fjörtoft,<br />

and von Neumann ma<strong>de</strong> the first numerical weather<br />

prediction (NWP) using "simplified" equations to represent<br />

<strong>la</strong>rge-scale eddy motion. This accomplishment then fostered<br />

the <strong>de</strong>velopment of more complex prediction mo<strong>de</strong>ls<br />

of even greater spatial resolution, allowing small scales of<br />

motion to be resolved. In 1956, Phillips <strong>de</strong>veloped a mo<strong>de</strong>l<br />

which could realistically <strong>de</strong>pict monthly and seasonal patterns<br />

in the troposphere, which became the first successful<br />

climate mo<strong>de</strong>l. Following Phillips’ work, several groups<br />

began working out General Circu<strong>la</strong>tion Mo<strong>de</strong>ls (GCMs) of<br />

the atmosphere of increasing complexities, including the<br />

effects of sub-systems such as these induced by oceans.<br />

The challenge of numerical mo<strong>de</strong>ls is to run forward in time<br />

much faster than the real atmosphere and oceans with<br />

avai<strong>la</strong>ble electronic computers. To do this, they must make<br />

a <strong>la</strong>rge number of simplifying assumptions. Although there<br />

have been great advances ma<strong>de</strong> in the discipline of climate<br />

mo<strong>de</strong>lling over the <strong>la</strong>st fifty years, the most sophisticated<br />

mo<strong>de</strong>ls remain very much simpler than that of the full climate<br />

system (McGuffie and Hen<strong>de</strong>rson-Sellers, 2001).<br />

The first atmospheric general circu<strong>la</strong>tion mo<strong>de</strong>l applied<br />

for long-term integrations, were <strong>de</strong>rived directly from numerical<br />

mo<strong>de</strong>ls <strong>de</strong>signed for short-term numerical weather<br />

forecasting, which did not have a global coverage at this<br />

time. Then, the advance of computing technologies, along<br />

with the requirements of weather predictions needing hemispheric<br />

or even global computational domains, the longer<br />

integration periods became a matter of avai<strong>la</strong>bility of computer<br />

resources. The early climate mo<strong>de</strong>l grid spacing was<br />

very coarse in the horizontal and vertical dimensions. The<br />

evolution towards greater resolution and increased complexity<br />

has been the rule since. This has been facilitated<br />

by the avai<strong>la</strong>bility of <strong>la</strong>rge computing technologies and<br />

by new algorithms and numerical methods thus allowing<br />

longer numerical time-stepping (Mote and O’Neil, 2000). To<br />

this day, climate mo<strong>de</strong>lling and weather forecasting groups<br />

co-exist, but the needs and focus of the two disciplines<br />

differ. For climate mo<strong>de</strong>lling, long-term mass, energy and<br />

moisture conservation is an important issue. This may thus<br />

be consi<strong>de</strong>red as a fundamental boundary-value problem<br />

in the mathematical sense, c<strong>la</strong>ssified as predictability of<br />

the second kind according to Lorenz (1975). Not all climate<br />

mo<strong>de</strong>ls originated from weather forecast mo<strong>de</strong>ls, however.<br />

Simpler mo<strong>de</strong>ls based on global energy conservation are<br />

collectively called Energy Ba<strong>la</strong>nce Mo<strong>de</strong>ls, or EBMs (Hen<strong>de</strong>rson-Sellers<br />

and McGuffie, 1987). They take into account<br />

the different forms of energy driving the climate system and<br />

look for a steady state solution for the surface temperature.<br />

Their main advantage is that they can be extensively used<br />

to do sensitivity studies of the role of external forcing on the<br />

surface temperature (that of the greenhouse gases, of the<br />

Earth’s orbital parameters in the very long term, the impacts<br />

of volcanic eruptions, etc.), which can thus be investigated<br />

at a low computational cost. However, the atmospheric circu<strong>la</strong>tion<br />

is not explicitly resolved so they cannot be used<br />

neither to forecast daily conditions nor the general circu<strong>la</strong>tion<br />

of the atmosphere.<br />

During the early days of weather forecasting, the computational<br />

domains were restricted to an area of interest. These<br />

Limited Area Mo<strong>de</strong>ls (LAMs) were <strong>de</strong>veloped to enable<br />

short range predictions to be ma<strong>de</strong> over a <strong>la</strong>rge domain.<br />

Their major drawback is that flow field values have to be<br />

specified at the area boundary for each time step. Later on,<br />

to overcome this problem, these field values were interpo<strong>la</strong>ted<br />

from those obtained from a global <strong>la</strong>rger-scale mo<strong>de</strong>l.<br />

This technique has led to "nested mo<strong>de</strong>ls" that are the basis<br />

of operational prediction systems in most meteorological<br />

services. Following the pioneering work in the U.S. in<br />

the 1980s (e.g. Giorgi et al., 1989), the approach, consisting<br />

of driving a high resolution LAM <strong>la</strong>teral boundaries with<br />

low-resolution GCM flow fields, entered the scene (Laprise,<br />

2008). In practice, one or<strong>de</strong>r of magnitu<strong>de</strong> in resolution can<br />

be gained with this approach, so the small-scale structures<br />

of atmospheric circu<strong>la</strong>tion can be reproduced. One advantage<br />

of such a LAM is that it can also be driven by atmospheric<br />

reanalyses (data <strong>de</strong>rived from global observations<br />

using data assimi<strong>la</strong>tion schemes and mo<strong>de</strong>ls), rather than<br />

by GCM outputs; this feature is very convenient for <strong>de</strong>velopment<br />

and validation purposes. When LAMs are applied<br />

to long time scales, they are referred to as Regional Climate<br />

Mo<strong>de</strong>ls (RCMs). They are now exploited in a number of research<br />

centres around the world and used in a wi<strong>de</strong> range of<br />

climate applications, from pa<strong>la</strong>eoclimate to anthropogenic<br />

climate change studies (IPCC, 2007). The <strong>de</strong>velopment and<br />

application of such numerical tools has been motivated by<br />

the needs of assessing what the impact of global climate<br />

will be in different regions. This downscaling approach is<br />

very versatile since RCMs are locatable in any part of the<br />

world. Moreover, simu<strong>la</strong>ting climate and climate change at<br />

the regional and national levels is of paramount importance<br />

for policymaking. Any regional climate mo<strong>de</strong>lling approach<br />

affords focusing over an area of the globe with a regional<br />

grid-point spacing of a few tens of kms in the horizontal, for<br />

operational use on climate timescales. Furthermore, even<br />

when the increase of computing power will permit the operational<br />

use of GCMs at a resolution of a few tens of km,<br />

33


SPG Mitteilungen Nr. 40<br />

Global reanalysis (~ 2.5° x 2.5°) or GCM simu<strong>la</strong>ted outputs<br />

20-km RCM<br />

2-km<br />

RCM<br />

Figure 1. Regional climate mo<strong>de</strong>ls self-nesting methodology<br />

indicating two computational domains onto<br />

which simu<strong>la</strong>tions are performed. Starting with low<br />

resolution GCM outputs or global reanalysis, the finegrain<br />

<strong>de</strong>tails of the flow fields are downscaled in a<br />

step-wise manner to 2 km grid-spacing. The intermediate<br />

5-km RCM domain has been omitted for better<br />

c<strong>la</strong>rity. The re<strong>la</strong>tive humidity, represented in colour<br />

sha<strong>de</strong>s, is meant to show how the increase in the horizontal<br />

resolution impacts on the reproduction of these<br />

small scale <strong>de</strong>tails.<br />

the RCM approach could still be useful, allowing reaching<br />

resolution of a few kms for a simi<strong>la</strong>r computational load. In<br />

principle, specific physical parameterizations for the sources<br />

and sinks of momentum, heat and moisture, respectively<br />

F, Q and M as <strong>de</strong>picted in Eqs (1) - (2), and (4) are scale<br />

<strong>de</strong>pen<strong>de</strong>nt. In the historical <strong>de</strong>velopment of RCMs, these<br />

parameterisations often benefited from packages coming<br />

from either NWPs or from GCMs. Improvements to existing<br />

schemes and also new <strong>de</strong>velopments were nevertheless<br />

<strong>de</strong>emed necessary. This enables RCMs to be applied<br />

to a <strong>la</strong>rge range of atmospheric flows. This downscaling<br />

technique can be further exten<strong>de</strong>d to finer <strong>de</strong>tail with the<br />

casca<strong>de</strong> self-nesting capability as shown in Fig 1 (Goyette<br />

et al., 2001). The enhancement of horizontal resolution,<br />

also prompted for on the specification of surface boundary<br />

conditions as a sizeable portion of the performance of<br />

RCMs relies on the surface forcing not captured by GCMs.<br />

Their success <strong>de</strong>pends on their ability to respond to these<br />

forcing factors in a realistic manner in space and time. An<br />

important surface forcing not captured by GCMs (Fig 2.)<br />

which has received much attention <strong>la</strong>tely is the regional influence<br />

of in<strong>la</strong>nd water bodies (Goyette et al., 2000). Also,<br />

much attention is being paid to the capability of RCMs to<br />

reproduce extreme events. Wind gusts are fundamental<br />

characteristics of the variability of wind climate; physicallybased<br />

parameterization to simu<strong>la</strong>te gusts has been <strong>de</strong>veloped<br />

to better capture the effects of extremes associated<br />

with these features (Goyette et al., 2003).<br />

There is also a need for future climate projection at local and<br />

regional scales. In addition, climate mo<strong>de</strong>ls, either global or<br />

regional, are constantly improved so as to inclu<strong>de</strong> stateof-the-art<br />

numerical schemes, physical parameterizations,<br />

new scenarios for greenhouse gas forcing, etc. to warrant<br />

realistic simu<strong>la</strong>tions at an ever-increasing spatial resolution.<br />

For example, the European project "PRUDENCE" was<br />

34


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

20-km RCM<br />

2-km<br />

RCM<br />

Figure 2. Surface topography prescribed as a lower boundary<br />

condition in a 20- and a 2-km RCM. Local weather and climate<br />

are significantly influenced by local topographical features such as<br />

mountains. Small-scale topographical features are not resolved by<br />

GCMs neither by low resolution RCMs (e.g. 20-km RCM) due to<br />

the coarse resolution of their computational grids.<br />

aimed at quantifying confi<strong>de</strong>nce and uncertainties in predictions<br />

of future European climate and its impacts using a<br />

suite of high resolution RCMs driven by a coarser resolution<br />

GCM (Christensen et al., 2002).<br />

Ultra-high climate simu<strong>la</strong>tions, i.e. 30 years or more with an<br />

horizontal grid spacing on the or<strong>de</strong>r of one kilometre, is not<br />

foreseen in the near future due to as yet ina<strong>de</strong>quate computational<br />

resources. Some specific case studies using RCMs<br />

with 2 and even 1 km grid spacing have been carried out<br />

for short term integrations to test the downscaling ability of<br />

such an approach (Goyette, 2001). The analysis has shown<br />

that the mo<strong>de</strong>l cannot overcome the massive increase in<br />

resolution from coarse resolution GCM or reanalysis data<br />

down to these fine scales without introducing intermediate<br />

steps (Fig 1). The casca<strong>de</strong> self-nesting method requires, for<br />

long-term simu<strong>la</strong>tions, that the ratio between successive<br />

grid meshes should range between 3 and 5 to avoid numerical<br />

inconsistencies. However, 2.2-km numerical weather<br />

predictions do exist and this mo<strong>de</strong>l is particu<strong>la</strong>rly aimed at<br />

assisting in short-term local forecasting, showing skill for<br />

a 24-h forecast (COSMO 1 ). Much research remains to be<br />

done, <strong>de</strong>spite all the post World War II achievements. There<br />

are still many scientific and technical challenges in weather<br />

and climate research, and contributing to these innovations<br />

and findings is in<strong>de</strong>ed worthwhile.<br />

1 www.meteosuisse.admin.ch/web/fr/meteo/previsions_numeriques/<br />

cosmo.html<br />

References<br />

Coiffier, J.: Fundamentals of numerical weather prediction. Cambridge<br />

University Press, Cambridge 2011, 340 pp.<br />

Charney, J., R. Fjørtoft, J. von Neumann, 1950: Numerical Integration<br />

of the Barotropic Vorticity Equation. Tellus, 2, 237-254.<br />

Christensen, J. H., T. Carter, F. Giorgi, 2002: PRUDENCE Employs<br />

New Methods to Assess European Climate Change, EOS, 83,<br />

147.<br />

Courant, R., Friedrichs, K., Lewy, H., 1928: "Über die partiellen<br />

Differenzengleichungen <strong>de</strong>r mathematischen Physik", Mathematische<br />

Annalen, 100 (1), 32–74.<br />

Edwards, P.: A vast machine: Computer mo<strong>de</strong>ls, climate data, and<br />

the politics of global warming. MIT Press, Cambridge, 2010,<br />

518 pp.<br />

Giorgi. F, and G.T. Bates, 1989: The climatological skill of a regional<br />

mo<strong>de</strong>l over complex terrain, Mon. Weather Rev. 11,<br />

2325–2347.<br />

Goyette, S, O. Brasseur, and M. Beniston, 2003: Application of<br />

a new wind gust parameterisation. Multi-scale case studies<br />

performed with the Canadian RCM. J. of Geophys. Res., 108,<br />

4374-4390.<br />

Goyette, S., M. Beniston, D. Caya, J. P. R. Laprise, and P. Jungo,<br />

2001: Numerical investigation of an extreme storm with the<br />

Canadian Regional Climate Mo<strong>de</strong>l: The case study of windstorm<br />

VIVIAN, Switzer<strong>la</strong>nd, February 27, 1990. Clim. Dyn., 18,<br />

145 - 178.<br />

Goyette, S., N. A. McFar<strong>la</strong>ne, and G. M. F<strong>la</strong>to, 2000: Application<br />

of the Canadian Regional Climate Mo<strong>de</strong>l to the Laurentian<br />

Great Lakes region: Implementation of a <strong>la</strong>ke mo<strong>de</strong>l. Atmos.-<br />

Ocean, 38, 481 - 503.<br />

Harper, K. J.: Weather by the numbers: The genesis of mo<strong>de</strong>rn<br />

meteorology. MIT Press 2008, 308 pp.<br />

Hen<strong>de</strong>rson-Sellers, A, and K. McGuffie: A climate mo<strong>de</strong>lling primer.<br />

Wiley, Chichester, 2006, 296 pp.<br />

IPCC 2007, Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis,<br />

K. B. Averyt, M. Tignor and H. L. Miller (eds.). Contribution<br />

of Working Group I to the Fourth Assessment Report of<br />

the Intergovernmental Panel on Climate Change. Cambridge<br />

University Press, Cambridge, United Kingdom and New York,<br />

NY, USA, 996 pp.<br />

Jacobson, M. Z.: Fundamentals of atmospheric mo<strong>de</strong>lling. Cambridge<br />

University Press, Cambridge 1998, 828 pp.<br />

Laprise, R, 2008: Regional climate mo<strong>de</strong>lling. J. Comput. Phys,<br />

227, 3641-3666.<br />

Lorenz, E. N.: Climate predictability. In: The Physical Basis of Climate<br />

and Climate Mo<strong>de</strong>lling, WMO GARP Publ. Ser. No. 16,<br />

1975, 265 pp.<br />

McGuffie, K, and A. Hen<strong>de</strong>rson-Sellers, 2001: Forty years of numerical<br />

climate mo<strong>de</strong>lling. Int. J Climatol., 12, 1067 - 1109.<br />

Mote, P., and A. O’Neill, Numerical Mo<strong>de</strong>ling of the Global Atmosphere<br />

in the Climate System. Kluwer Aca<strong>de</strong>mic Publishers<br />

2000, Boston, Massachusetts, 517 pp.<br />

Phillips, N. A., 1956: The general circu<strong>la</strong>tion of the atmosphere:<br />

a numerical experiment. Quart. J. Roy. Meteor. Soc. 82, 123–<br />

154.<br />

Richardson, L. F.: Weather prediction by numerical processes.<br />

Cambridge University Press (reprinted by Dover Publications,<br />

1966), 236 pp.<br />

Schlesinger, M (ed.): Physically-based mo<strong>de</strong>lling and simu<strong>la</strong>tion of<br />

climate and climatic change - Part 1 and 2, Nato ASI Series C,<br />

No 243,Kluwer Aca<strong>de</strong>mic Publisher, Dordrecht 1988, 1084 pp.<br />

Washington, W., and C. Parkinson: An introduction to three-dimensional<br />

climate mo<strong>de</strong>ling. University Science books, 1986,<br />

Mill Valley, CA, 322 pp.<br />

WMO, The World Meteorological Organisation: The physical basis<br />

of climate and climate mo<strong>de</strong>lling. Garp Publication series No<br />

16, WMO/ICSU, Geneva 1975, 265 pp.<br />

35


SPG Mitteilungen Nr. 40<br />

Progress in Physics (35)<br />

A snowf<strong>la</strong>ke in a million <strong>de</strong>gree p<strong>la</strong>sma<br />

Y. Martin, B. Labit, H. Reimer<strong>de</strong>s, W. Vijvers<br />

CRPP, EPFL, Association EURATOM – Confédération Suisse, CH-1015 Lausanne<br />

Introduction<br />

Fusion is the energy that powers the stars. Harnessing fusion<br />

on Earth would offer the world almost inexhaustible,<br />

environmentally clean and safe energy, see box 1. Research<br />

and <strong>de</strong>velopment performed during a few <strong>de</strong>ca<strong>de</strong>s already<br />

brought significant results. In the domain of magnetic confinement,<br />

for instance, 16MW of fusion power have been<br />

produced in the JET tokamak [1] in 1997. Since then an<br />

international col<strong>la</strong>boration was set to build the next step<br />

<strong>de</strong>vice, ITER 1 , the first fusion reactor that would <strong>de</strong>liver<br />

500 MW of fusion power, 10 times the power injected into<br />

the <strong>de</strong>vice, see box 2. Recently, the European fusion scientists,<br />

un<strong>de</strong>r the banner of European Fusion Development<br />

Agreement 2 (EFDA), <strong>de</strong>veloped and published a roadmap 3<br />

that <strong>de</strong>scribes the steps and the challenges to achieve the<br />

production of electricity from fusion before 2050, see box<br />

3. The steps consist in completing the construction of ITER,<br />

operating ITER, <strong>de</strong>signing, building and operating DEMO, a<br />

prototype reactor that would provi<strong>de</strong> the electrical network<br />

1 ITER: www.iter.org<br />

2 EFDA: www.efda.org<br />

3 Fusion roadmap: http://www.efda.org/efda/activities/the-road-tofusion-electricity/<br />

with several hundreds of MW. The roadmap is divi<strong>de</strong>d into<br />

8 missions, including the 'heat exhaust' issue: if one extrapo<strong>la</strong>tes<br />

from the present <strong>de</strong>vices to a reactor gra<strong>de</strong> <strong>de</strong>vice,<br />

the heat flux <strong>de</strong>nsity produced by particles escaping<br />

from the p<strong>la</strong>sma would reach levels that may exceed the<br />

material capabilities. To mitigate the heat flux impact several<br />

strategies are proposed. One of these strategies aims<br />

at the exploration of the so-called snowf<strong>la</strong>ke configuration.<br />

The scientists of the CRPP-EPFL were the first to realise a<br />

snowf<strong>la</strong>ke configuration in a tokamak, thanks to the high<br />

shaping capability of the TCV tokamak but especially to<br />

the hard work of these <strong>de</strong>dicated scientists. It should be<br />

emphasized that this work was subsequently awar<strong>de</strong>d the<br />

R&D100 prize in 2012 4 . This paper presents the achieved<br />

snowf<strong>la</strong>ke configuration and its advantages with respect to<br />

heat exhaust.<br />

P<strong>la</strong>sma configuration<br />

The TCV tokamak is equipped with 16 in<strong>de</strong>pen<strong>de</strong>ntly driven<br />

poloidal field coils that are used for shaping the p<strong>la</strong>sma.<br />

Depending on the combination of coil currents, the p<strong>la</strong>s-<br />

4 R&D magazine: http://www.rdmag.com/award-winners/2012/08/highperformance-tokamak-exhaust<br />

Fusion<br />

The fusion of hydrogen isotopes, <strong>de</strong>uterium and tritium,<br />

is the easiest reaction that could be implemented<br />

on Earth, because of its higher cross section at a lower<br />

temperature than other possible reactions.<br />

Temperatures of about 100 MºC must be achieved<br />

so that fusion power becomes exploitable. Before<br />

reaching these temperatures, a gas turns to p<strong>la</strong>sma<br />

wherein particles are ionised.<br />

Magnetic fields then provi<strong>de</strong> a good way to gui<strong>de</strong> the<br />

ionised particles.<br />

The most attractive magnetic confinement <strong>de</strong>vice so<br />

far is the tokamak, a toroidal <strong>de</strong>vice wherein a poloidal<br />

field, induced by a toroidal current, is superimposed to<br />

a toroidal magnetic field to form the magnetic structure<br />

that gui<strong>de</strong>s and maintains the p<strong>la</strong>sma away from the<br />

vacuum vessel walls. In addition poloidal field coils are<br />

used to shape the p<strong>la</strong>sma.<br />

To reach the required temperatures, the p<strong>la</strong>sma is heated<br />

by either energetic neutral particles or by microwaves<br />

<strong>de</strong>livering their power in the p<strong>la</strong>sma through<br />

different possible resonant schemes.<br />

The CRPP-EPFL tokamak, called TCV 1 for 'Tokamak<br />

à Configuration Variable' has a high shaping capability<br />

and an Electron Cyclotron Heating (ECH) system of 4.5<br />

MW.<br />

Figure: The CRPP-EPFL Tokamak à Configuration Variable (TCV).<br />

Cyan: vacuum vessel; green: main toroidal field coils; orange:<br />

poloidal field coils (for p<strong>la</strong>sma current induction and p<strong>la</strong>sma shaping);<br />

yellow: microwave <strong>la</strong>unchers; pink: p<strong>la</strong>sma. TCV diameter:<br />

3.3m<br />

1 http://crpp.epfl.ch/research_TCV<br />

36


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

ma either lies against the carbon tile covered wall of the<br />

vacuum vessel, the so-called limited configuration, or is<br />

fully <strong>de</strong>tached from the wall thanks to the presence of a null<br />

point in the poloidal field (X-point) and the resulting separatrix<br />

that <strong>de</strong>limits the p<strong>la</strong>sma as shown in Fig. 1. In the<br />

<strong>la</strong>tter configuration, the so-called divertor configuration, the<br />

p<strong>la</strong>sma is not in immediate contact with the wall. Particles<br />

that escape from the p<strong>la</strong>sma are diverted towards the vessel<br />

wall, along the 'separatrix legs', towards a more remote<br />

position than in the limited configuration. In addition, the<br />

journey of particles escaping from a diverted p<strong>la</strong>sma is particu<strong>la</strong>rly<br />

long because the low value of the poloidal field in<br />

the vicinity of the X-point leads to almost entirely toroidal<br />

trajectories. For these reasons, higher performances can<br />

be achieved in diverted p<strong>la</strong>smas, making this configuration<br />

most suitable for fusion reactors.<br />

However, those escaping particles may damage the surface<br />

of the divertor because they <strong>de</strong>posit their significant<br />

energy on a re<strong>la</strong>tively small area leading to unacceptably<br />

high heat flux <strong>de</strong>nsities. The snowf<strong>la</strong>ke configuration has<br />

been proposed as a potential solution to mitigate the strong<br />

heat flux in the divertor.<br />

and SF-, reflecting the excess or <strong>la</strong>ck of current flowing in<br />

the conductors, respectively. The distance between the two<br />

X-points, indicated by the green crosses, normalized by the<br />

minor radius of the p<strong>la</strong>sma torus, is used as the measure,<br />

<strong>de</strong>noted s, of the proximity to the perfect snowf<strong>la</strong>ke.<br />

SF+ SF SF-<br />

I d1<br />

I p<br />

(a) ( b ) ( c)<br />

Figure 2: Schematic representation of a perfect snowf<strong>la</strong>ke configuration<br />

(b). Upper lobe represents the p<strong>la</strong>sma while the lower lobes<br />

encompass the current conductors. A small vertical disp<strong>la</strong>cement<br />

of the p<strong>la</strong>sma would generate the (a) or (c) configurations <strong>de</strong>pending<br />

of the direction of the disp<strong>la</strong>cement.<br />

I d2<br />

(a) SF+ (b) SF (c) SF-<br />

1<br />

1<br />

1<br />

#19421 t=2.2s<br />

#24239 t=0.37s<br />

2<br />

4<br />

2<br />

4<br />

2<br />

4<br />

Figure 1: Comparison of p<strong>la</strong>sma cross-sections in the limited (left,<br />

19421) and diverted (right, 24239) configurations. Also shown are<br />

the vessel and p<strong>la</strong>sma shaping coils cross-sections.<br />

Snowf<strong>la</strong>ke configuration<br />

A snowf<strong>la</strong>ke configuration is obtained when not only the<br />

poloidal field vanishes, as in the diverted configuration, but<br />

also its first <strong>de</strong>rivatives. This second or<strong>de</strong>r null implies that<br />

six separatrix sprout from the X-point instead of four for the<br />

diverted configuration, as shown in sketch (b) of Fig. 2. The<br />

name 'snowf<strong>la</strong>ke' comes from this 6-fold geometry. In the<br />

sketch, the upper lobe represents the p<strong>la</strong>sma enclosed in<br />

its separatrix while the lower lobes encompass two poloidal<br />

field coils. The vacuum vessel then cuts both lower lobes<br />

resulting in four separatrix legs instead of two. It directly<br />

reveals the advantage of such a configuration: the heat flux<br />

power may be diverted towards four sections of the vacuum<br />

vessel walls, thereby reducing the heat flux <strong>de</strong>nsities<br />

onto the divertor p<strong>la</strong>tes. If the configuration slightly <strong>de</strong>viates<br />

from the perfect snowf<strong>la</strong>ke shown in Fig. 2b, it produces the<br />

other configurations shown in Fig. 2. These variants of the<br />

snowf<strong>la</strong>ke configuration are <strong>la</strong>belled SF+ (snowf<strong>la</strong>ke plus)<br />

37<br />

1<br />

2<br />

3<br />

4<br />

1<br />

2<br />

3<br />

3 3<br />

3<br />

Figure 3: Equilibrium reconstruction and tangential views of the<br />

p<strong>la</strong>sma obtained with a CCD camera at three different times during<br />

a p<strong>la</strong>sma discharge in which the p<strong>la</strong>sma was vertically disp<strong>la</strong>ced<br />

to go through the variant configurations shown in Fig. 2.<br />

4<br />

1<br />

2<br />

3<br />

4


SPG Mitteilungen Nr. 40<br />

The snowf<strong>la</strong>ke configuration was proposed by Ryutov et al<br />

[2,3]. It was experimentally realised for the first time in the<br />

TCV tokamak at the CPPP-EPFL [4] and then reproduced in<br />

the NSTX spherical tokamak at the Princeton P<strong>la</strong>sma Physics<br />

Laboratory [5] and more recently in the DIII-D tokamak<br />

at General Atomics [6].<br />

Fig. 3 shows an example of a TCV discharge wherein the<br />

p<strong>la</strong>sma was vertically shifted to reveal the different snowf<strong>la</strong>ke<br />

configurations <strong>de</strong>scribed in the schematic representation<br />

(Fig. 2). The p<strong>la</strong>sma equilibrium reconstructions, based<br />

on magnetic measurements, are shown in the first row. The<br />

numbering 1-4 helps to i<strong>de</strong>ntify the regions where the separatrix<br />

legs reach the vacuum vessel walls. Locations 1 & 4<br />

are called primary locations since they correspond to the<br />

divertor legs of the traditional divertor configuration (field<br />

lines surrounding the p<strong>la</strong>sma hit the wall at the primary location).<br />

In opposition locations 2 & 3 are called secondary<br />

regions due to the absence of direct connection with the<br />

vicinity of the p<strong>la</strong>sma.<br />

The second row exhibits tangential views of the p<strong>la</strong>sma<br />

obtained with a CCD camera. Since most line radiation<br />

originates from re<strong>la</strong>tively "cold" p<strong>la</strong>sma, the measurement<br />

of the emitted visible light provi<strong>de</strong>s an excellent mean to<br />

locate the edge of the p<strong>la</strong>sma as well as the separatrix legs.<br />

This series of measurements shows a clear agreement between<br />

both information sources.<br />

In all three cases shown in Fig. 3, the emitted light clearly<br />

reveals that all separatrix become active. This suggests<br />

that the low poloidal field in the vicinity of the null point enhances<br />

the cross-field transport. If this transport were sufficiently<br />

<strong>la</strong>rge it could not only distribute the heat among four<br />

divertor legs instead of two, but also wi<strong>de</strong>n the power flux<br />

ITER<br />

ITER, currently un<strong>de</strong>r construction in the south of France,<br />

aims to <strong>de</strong>monstrate that fusion is an energy source of<br />

the future. ITER is a col<strong>la</strong>boration between European Union,<br />

including Switzer<strong>la</strong>nd, Japan, South Korea, China,<br />

India, Russia and United States.<br />

Main goals<br />

• Ratio of fusion power to input power <strong>la</strong>rger than 10<br />

(Q>10)<br />

• Fusion power up to 500 MW<br />

• Test of key technologies such as divertor materials<br />

and b<strong>la</strong>nket modules wherein neutrons will <strong>de</strong>liver<br />

their energy and breed tritium<br />

Main parameters<br />

• P<strong>la</strong>sma major & minor radii: 6.2 m & 2 m<br />

• Toroidal field: 5.3T<br />

• P<strong>la</strong>sma current: 15 MA<br />

• P<strong>la</strong>sma duration: 500 s<br />

Figure: ITER. Orange: divertor; dark blue: b<strong>la</strong>nket modules. ITER diameter: 28.6m<br />

38


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

channel at each leg and thereby further reduce the power<br />

flux <strong>de</strong>nsity onto material surfaces. Dedicated measurements<br />

were done in the most promising scenario for ITER:<br />

the H-mo<strong>de</strong>.<br />

H-mo<strong>de</strong> and snowf<strong>la</strong>kes<br />

In the early 1980's, tokamak experiments performed in<br />

diverted configuration revealed the existence of an operational<br />

regime wherein the confinement of particles and<br />

energy sud<strong>de</strong>nly increases by a factor of two [7]. It was<br />

called H-mo<strong>de</strong> regime (H for 'high') and has since been obtained<br />

in most tokamaks. By comparing results obtained<br />

in several <strong>de</strong>vices it was shown that the additional heating<br />

power should exceed a threshold that <strong>de</strong>pends on the<br />

p<strong>la</strong>sma <strong>de</strong>nsity, the p<strong>la</strong>sma size and the main toroidal field<br />

[8]. The improvement in the p<strong>la</strong>sma confinement properties<br />

observed in this H-mo<strong>de</strong> regime makes it the selected<br />

operational mo<strong>de</strong> for the ITER baseline scenario. Unfortunately,<br />

H-mo<strong>de</strong>s are generally accompanied with p<strong>la</strong>sma<br />

edge instabilities (ELM) that repeatedly release particles towards<br />

the divertor in sharp bursts that threaten the divertor<br />

material.<br />

H-mo<strong>de</strong>s are also regu<strong>la</strong>rly obtained and investigated in<br />

TCV diverted p<strong>la</strong>smas. Soon after the realisation of the<br />

first snowf<strong>la</strong>ke in TCV, efforts have been <strong>de</strong>dicated to the<br />

search for H-mo<strong>de</strong>s in snowf<strong>la</strong>ke configuration and results<br />

came soon: the access to the H-mo<strong>de</strong> regime occurs at approximately<br />

the same power as in the quadrupole diverted<br />

configuration. The confinement improvement is simi<strong>la</strong>r or<br />

even slightly better.<br />

Regarding the heat flux to the divertor, <strong>de</strong>dicated measurements<br />

were performed. The high pressure observed near<br />

Fusion electricity – EFDA roadmap<br />

European scientists established the necessary steps<br />

and challenges that should be solved in or<strong>de</strong>r to realise<br />

a fusion reactor that would provi<strong>de</strong> the electrical<br />

network with electricity before 2050.<br />

Steps<br />

• 2012-2020: Construction of ITER<br />

• 2020-2030: Exploitation of ITER<br />

• 2030-2050: Construction and exploitation of<br />

DEMO<br />

Challenges<br />

• P<strong>la</strong>sma regimes of operation<br />

• Heat exhaust<br />

• Neutron resistant materials<br />

• Tritium self-sufficiency<br />

• Integration of intrinsic safety features<br />

• Integrated DEMO <strong>de</strong>sign<br />

• Competitive cost of electricity<br />

• Stel<strong>la</strong>rator<br />

The roadmap to fusion electricity can be downloa<strong>de</strong>d<br />

from: http://www.efda.org/efda/activities/the-road-tofusion-electricity/<br />

the second or<strong>de</strong>r null even increased the cross-field transport<br />

re<strong>la</strong>tive to the conventional configuration. This resulted<br />

in an efficient distribution of the power on the secondary<br />

divertor regions as shown in Fig. 4. The power <strong>de</strong>posited<br />

onto the divertor tiles, measured in regions <strong>la</strong>belled 1 and<br />

3 in Fig. 3, shows a strong reduction in the primary divertor<br />

region while the secondary zone receives a significantly<br />

<strong>la</strong>rger fraction. [9].<br />

Fraction of ELM energy loss (%)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Snowf<strong>la</strong>ke<br />

Primary region<br />

Second. region<br />

Traditional<br />

divertor<br />

0<br />

0 0.5 1 1.5<br />

σ<br />

Figure 4: Fraction of the ELM energy loss reaching two of the divertor<br />

p<strong>la</strong>tes as a function of s, the measure of the proximity to the<br />

perfect snowf<strong>la</strong>ke (perfect at s=0). When the snowf<strong>la</strong>ke is formed<br />

by <strong>de</strong>creasing s below 0.75, up to 20% of the power (red curve)<br />

reaches the divertor at the additional location (<strong>la</strong>bel 3 in Fig. 3)<br />

while the power <strong>de</strong>creases (blue curve) at the primary location (<strong>la</strong>bel<br />

1 in Fig. 3).<br />

Conclusions<br />

CRPP-EPFL scientists have <strong>de</strong>monstrated the feasibility<br />

of the snowf<strong>la</strong>ke configuration and shown the advantage<br />

of the corresponding increase of the number of separatrix<br />

legs, in the form of a significant reduction of the heat flow<br />

onto the divertor p<strong>la</strong>tes. While snowf<strong>la</strong>kes will not likely be<br />

achievable in ITER, <strong>de</strong>sign studies for the subsequent <strong>de</strong>vice,<br />

DEMO, are evaluating the snowf<strong>la</strong>ke configuration as<br />

a potential divertor solution.<br />

[1] M. Keilhacker et al., Nucl. Fus. 39 (1999) 209.<br />

[2] D. D. Ryutov et al., Phys. P<strong>la</strong>smas 14 (2007) 064502.<br />

[3] D. D. Ryutov et al., Phys. P<strong>la</strong>smas 15 (2008) 092501.<br />

[4] F. Piras et al., P<strong>la</strong>sma Phys. Control. Fusion 51 (2009) 055009.<br />

[5] V. A. Soukhanovskii et al., Phys. P<strong>la</strong>smas 19 (2012) 082504.<br />

[6] S. L. Allen et al., 24th IAEA FEC Conf. 2012, PD/1-2.<br />

[7] F. Wagner et al., Phys. Rev. Lett. 49 (1982) 1408.<br />

[8] Y. Martin et al., Jou. Phys. Conf. Ser. 123 (2008) 012033.<br />

[9] W. Vijvers et al., IAEA FEC Conf. 2012, San Diego, US.<br />

39


SPG Mitteilungen Nr. 40<br />

An Industrial Lab Grows in Switzer<strong>la</strong>nd<br />

As the Zurich Lab recognizes its 50 th year in the leafy Zurich<br />

suburb of Rüschlikon, a closer look inspects the <strong>de</strong>tails of<br />

how this <strong>la</strong>b became the home of four Nobel Prize <strong>la</strong>ureates<br />

and countless innovations spanning material sciences,<br />

<strong>communications</strong>, analytics and Big Data.<br />

There are several reasons why IBM was consi<strong>de</strong>ring a research<br />

<strong>la</strong>b outsi<strong>de</strong> of the United States in the 1950s. At this<br />

time IBM was in its heyday. The company was financially<br />

strong, and the success of the recently opened San Jose<br />

<strong>la</strong>b ma<strong>de</strong> the management realize the benefits of having research<br />

conducted with the support of headquarters in New<br />

York, but without the local stress and peer pressure.<br />

Physics Anecdotes (17)<br />

IBM Research – Zurich, a Success Story<br />

Chris Sciacca and Christophe Rossel<br />

Switzer<strong>la</strong>nd wasn’t IBM’s first option for a European research<br />

<strong>la</strong>b; London and Amsterdam were also on the short<br />

list, and in 1955 an IBM electrical engineer named Arthur<br />

Samuel was tasked with scouting the three cities.<br />

Fig. 1. The building of IBM Research in Adliswil in 1956. Inset: Ambros<br />

Speiser, first <strong>la</strong>b director, in discussion with Thomas Watson<br />

Jr., CEO of IBM<br />

While officials in Eng<strong>la</strong>nd were receptive to the i<strong>de</strong>a, the<br />

proposed location was in the suburbs of London that he <strong>de</strong>scribed<br />

as, "the most dismal p<strong>la</strong>ces that I have ever seen."<br />

And shortly after, Samuel passed on Eng<strong>la</strong>nd and travelled<br />

to Switzer<strong>la</strong>nd, to a completely different experience - he<br />

never ma<strong>de</strong> it on to Amsterdam.<br />

Simultaneously, as Samuel was visiting Switzer<strong>la</strong>nd, Ambros<br />

Speiser, a young Swiss electrical engineer from ETH<br />

Zurich, had applied for positions at Remington Rand and<br />

IBM. He never got a response from Rand, but by that summer<br />

Speiser became an IBMer.<br />

How to Build a Research Lab<br />

Now that Speiser was on board he was tasked with building<br />

a new <strong>la</strong>boratory, and the challenges he faced were<br />

immense.<br />

As he tells it in the IEEE Annals of the History of Computing<br />

[1], "There was no established pattern to follow - an industrial<br />

<strong>la</strong>boratory, separate from production facilities, did not<br />

exist in Switzer<strong>la</strong>nd."<br />

But Speiser knew he nee<strong>de</strong>d to be close to Zurich, its universities<br />

and within reach of public transport. After viewing<br />

a number of locations, he <strong>de</strong>ci<strong>de</strong>d to rent the wing of a<br />

Swiss stationary company in Adliswil, which was at the end<br />

of a tram line and only a few kilometers from the city.<br />

Having the building for the new <strong>la</strong>b, Speiser nee<strong>de</strong>d brilliant<br />

scientists and engineers. Leveraging his acquaintances,<br />

professional societies and contacts at ETH, he began a<br />

recruiting campaign and quickly amassed a team from all<br />

parts of Europe.<br />

The goal set by IBM management was to build new and<br />

better computer hardware. At the time everyone knew that<br />

vacuum tubes would be rep<strong>la</strong>ced by solid-state circuits,<br />

40<br />

so it was obvious that IBM should begin <strong>de</strong>veloping transistors<br />

and magnetic <strong>de</strong>vices, but this was never formalized.<br />

This <strong>la</strong>ck of direction weighed heavily on Speiser’s mind because<br />

he knew that simi<strong>la</strong>r research was being conducted<br />

insi<strong>de</strong> and outsi<strong>de</strong> of IBM and that they would never achieve<br />

the global recognition he so <strong>de</strong>sired by doing the same<br />

science as everyone else.<br />

After building a stronger rapport with Research’s new management<br />

team in 1958, Speiser was given new direction<br />

for the Zurich Lab to change from electronics to physics,<br />

with a focus on solid-state as the basis for electronic <strong>de</strong>vices<br />

of the future.<br />

Once again Speiser went on recruiting missions across Europe<br />

to find young, creative physicists. Little did he know<br />

at the time that he was also <strong>la</strong>ying the groundwork for what<br />

would become a renowned team for <strong>de</strong>ca<strong>de</strong>s to come.<br />

Fig. 2. Hans Peter Louis one of the earlier research staff members<br />

in the 50’s, in front of a prototype technology called the phototron,<br />

which was never finished.


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

Moving to Rüschlikon<br />

In addition to electrical engineering and physics, Speiser<br />

soon ad<strong>de</strong>d a mathematics <strong>de</strong>partment, and quickly the <strong>la</strong>b<br />

was outgrowing its mo<strong>de</strong>st space in Adliswil. Knowing that<br />

the growth would continue and to establish a more stable<br />

reputation, he requested approval from Thomas Watson Jr.,<br />

IBM’s CEO at the time and son of the foun<strong>de</strong>r, to look for<br />

a new location where the <strong>la</strong>b would have its own facilities.<br />

Again, Speiser knew the new <strong>la</strong>b had to be close to the city,<br />

the airport, but most importantly to ETH Zurich, and after<br />

some <strong>de</strong>bate a 10-acre site was purchased in Rüschlikon<br />

for $400,000.<br />

As for the actual <strong>de</strong>sign of the <strong>la</strong>b, Speiser’s main tenant<br />

was that it created spaces for personal interaction, which<br />

he referred to as "a vital process for a research <strong>la</strong>boratory".<br />

To assure this i<strong>de</strong>a, instead of building up, he wanted<br />

the <strong>la</strong>b to be horizontal with long corridors to encourage<br />

chance meetings, simi<strong>la</strong>r to the <strong>de</strong>sign of Bell Laboratories<br />

in New Jersey. It was also important for the <strong>la</strong>b to have a<br />

proper cafeteria for informal discussion and an auditorium<br />

for guest lectures. While initially this was met with some<br />

skepticism because of its costs, he eventually got his wish<br />

and construction started in 1961. The <strong>la</strong>b was officially inaugurated<br />

in front of several hundred guests on 23 May<br />

1963, that is, 50 years ago.<br />

Fig. 3. Introduced in 1956, the IBM 305 RAMAC (Random Access<br />

Memory Accounting System) was an electronic general purpose<br />

data-processing machine that maintained business records on a<br />

real-time basis. The 305 RAMAC was one of the <strong>la</strong>st vacuum tube<br />

systems <strong>de</strong>signed by IBM, and more than 1000 of them were built<br />

before production en<strong>de</strong>d in 1961.<br />

Impacting the Future of the Lab<br />

In the coming <strong>de</strong>ca<strong>de</strong>, the groundwork of Speiser and his<br />

successor began to bear fruit. The i<strong>de</strong>a to start a physics<br />

<strong>de</strong>partment resulted in the hiring of Heinrich Rohrer and<br />

Karl Alex Müller, who through their research and subsequent<br />

publications began to cement a strong reputation for<br />

the Zurich Lab, which reached its apex in the mid-80s when<br />

these two scientists and their colleagues Gerd Binnig and<br />

Georg Bednorz were recognized with the Nobel Prize for<br />

Physics in 1986 and 1987.<br />

This period also saw the addition of a new line of research<br />

in <strong>communications</strong>. Once again the <strong>la</strong>b succee<strong>de</strong>d with the<br />

<strong>de</strong>velopment of the token ring and trellis-co<strong>de</strong>d modu<strong>la</strong>tion,<br />

each p<strong>la</strong>ying a critical role in making the Internet what<br />

it is today.<br />

By 1987 the <strong>la</strong>b also had its own manufacturing line for<br />

semiconductor <strong>la</strong>sers which were used by telecommunication<br />

equipment manufacturers. The research became<br />

so successful that the Uniphase Corporation acquired the<br />

technology and the people from IBM for $45 million, a huge<br />

sum for the future tele<strong>communications</strong> giant with only 500<br />

people at the time.<br />

The Crash and Recovery<br />

With the end of the 80s, towards the mid-90s, IBM found<br />

itself in a dire position. IBM’s near-<strong>de</strong>ath experience was<br />

caused by its failure to recognize that the 40-year-old mainframe<br />

computing mo<strong>de</strong>l was out of touch with the needs of<br />

clients, and other firms like Sun Microsystems pounced on<br />

the opportunity.<br />

This experience also impacted IBM Research. Throughout<br />

the 1970s IBM Research was corporate fun<strong>de</strong>d, it had its<br />

own research agenda and occasionally it did some technology<br />

transfer, but it was not done in a very coordinated<br />

manner because the funding kept coming every year and<br />

the profit margins were strong. This affor<strong>de</strong>d the scientists<br />

the freedom they nee<strong>de</strong>d.<br />

By the 1980s IBM began doing more applied research, and<br />

management took a more active role in influencing the direction<br />

in which the <strong>de</strong>velopments had to go. For example,<br />

IBM started joint programs between Research and the<br />

product divisions with a shared agenda that both parties,<br />

Research and Development, had to agree upon. IBM also<br />

created col<strong>la</strong>borative teams to accelerate the transfer of<br />

research results which went into products spanning from<br />

storage to personal computers. It’s strange to look back at<br />

this now, as today this seems so obvious.<br />

In the 1990s change truly came. To preserve Research, scientists<br />

in Zurich tried to become more proactive in working<br />

on actual customer problems. At the time this was unheard<br />

of at IBM and a <strong>la</strong>rge reason why the company stumbled.<br />

The i<strong>de</strong>a was to interact with clients, gain insights into their<br />

challenges, and find solutions. The concept was a great<br />

success, and in 2000 the Zurich Lab opened up a <strong>de</strong>dicated<br />

facility called the Industry Solutions Lab (ISL), with the<br />

goal of hosting and interacting with clients on a daily basis.<br />

Today, there are simi<strong>la</strong>r facilities around the world hosting<br />

hundreds of clients every month and working directly with<br />

clients. This is a fundamental strategy across all twelve IBM<br />

Research <strong>la</strong>bs on the six continents. "The world is now our<br />

<strong>la</strong>b," as says Dr. John E. Kelly III, IBM senior vice presi<strong>de</strong>nt<br />

and director of Research.<br />

IBM Research in Zurich Today<br />

Un<strong>de</strong>r the direction of seven successive <strong>la</strong>b directors, the<br />

expansion in Zurich continued well into 2000s. Today, there<br />

are five <strong>de</strong>partments, namely, storage, computer science<br />

and systems in addition to physics (science and technology)<br />

and mathematics (mathematics and computational<br />

sciences).<br />

41


SPG Mitteilungen Nr. 40<br />

In addition, the <strong>la</strong>b has a new cutting-edge facility called<br />

the Binnig and Rohrer Nanotechnology Center, named for<br />

the two Nobel Laureates. When the current <strong>la</strong>b director requested<br />

the funding to upgra<strong>de</strong> the existing clean rooms on<br />

the campus he was greeted with a pleasant surprise: "I was<br />

told to make it much bigger and to find a partner. ETH Zurich<br />

was an obvious and logical choice," says Dr. Matthias<br />

Kaiserswerth, the current director of IBM Research - Zurich.<br />

No one could have predicted it, but Speiser’s intuition to<br />

keep the <strong>la</strong>b close to ETH Zurich was a fortuitous <strong>de</strong>cision.<br />

Nobel Laureates K. Alex Müller, Georg Bednorz and Heinrich<br />

Rohrer all came from ETH. And now nearly 60 years<br />

<strong>la</strong>ter, the partners built a $90 million facility, which features<br />

a <strong>la</strong>rge clean room and in particu<strong>la</strong>r six Noise Free Labs<br />

unlike any in the world.<br />

Outsi<strong>de</strong> of the nano world, IBM scientists are working on<br />

some of the greatest challenges of our society today.<br />

On Earth Day 2013, scientists in Zurich announced that<br />

they will be building an affordable photovoltaic system<br />

capable of concentrating so<strong>la</strong>r radiation 2,000 times and<br />

converting 80 percent of the incoming radiation into useful<br />

energy. The system can also provi<strong>de</strong> <strong>de</strong>salinated water and<br />

cool air in sunny, remote locations where both are often in<br />

short supply.<br />

Another team is col<strong>la</strong>borating with a consortium of scientists<br />

in the Nether<strong>la</strong>nds and South Africa on extremely fast,<br />

but low-power exascale computer systems aimed at <strong>de</strong>veloping<br />

advanced technologies for handling the Big Data<br />

that will be produced by the Square Kilometer Array (SKA),<br />

the world’s <strong>la</strong>rgest and most sensitive radio telescope that<br />

consortium will build.<br />

And to improve the much-strained energy grid, IBM scientists<br />

are col<strong>la</strong>borating with utility companies in Denmark,<br />

Austria and Switzer<strong>la</strong>nd to improve to ba<strong>la</strong>nce between <strong>de</strong>mand<br />

and the supply of renewable energy.<br />

While much has changed at IBM Research – Zurich, the<br />

essence of col<strong>la</strong>boration and the spirit of innovation and<br />

excellence that Speiser envisioned remains true to this day.<br />

Fig. 4. The newly built Binnig and Rohrer Nanotechnology Center<br />

and as inset an example of the complete atomic structure of a<br />

pentacene molecule resolved by AFM [2]. The extreme resolution<br />

of the C, H atoms and chemical bonds is achieved by the CO molecule<br />

attached to the tip.<br />

[1] A. P. Speiser, IEEE Annals of the History of Computing 20(1), 15<br />

(Jan.-March 1998).<br />

[2] L. Gross, F. Mohn, N. Moll, P. Liljeroth, G. Meyer, Science 325,<br />

1110 (2009).<br />

On April 29 this year the Herschel space observatory exhausted<br />

its supply of helium that cooled the sensors in the<br />

far-infrared and submillimeter range, wavelengths that cannot<br />

be observed from the ground. Herschel was put into the<br />

Lagrange position L2 in the Sun-Earth system, 1.5 million<br />

kilometres from us. Four years after its <strong>la</strong>unch by the European<br />

Space Agency (ESA), the mission completed its novel<br />

observations about how stars and thus ga<strong>la</strong>xies form and<br />

evolve throughout the universe. The Herschel observatory<br />

was sent to space with 2,300 litres of superfluid helium. The<br />

helium was pumped around the spacecraft in such a way as<br />

to cool the three observing instruments and gradually evaporated<br />

in the process. Herschel cannot observe without<br />

cooling below 1 K in the most critical components, but the<br />

amount was limited and chosen to out<strong>la</strong>st the expected lifetime<br />

of the cutting-edge, but new-to-space electronics.<br />

Herschel excee<strong>de</strong>d expectations both in technology and<br />

science. The technical <strong>de</strong>velopments required by the unusual<br />

observing wavelengths <strong>de</strong><strong>la</strong>yed the start by more than<br />

two years. Swiss industry provi<strong>de</strong>d the <strong>la</strong>rge cryostat and<br />

Goodbye Herschel<br />

Arnold Benz, ETH Zürich<br />

42<br />

the optical assemblies for the HIFI instrument; the low-noise<br />

low-power indium phosphi<strong>de</strong> amplifiers for HIFI (Heterodyne<br />

Instrument for the Far Infrared) were <strong>de</strong>veloped at<br />

ETH Zürich, software for HIFI at the Fachhochschule FHNW<br />

in Windisch. After four years in space all three instruments<br />

on board were still fully operational.<br />

Herschel's observations have revealed the cosmos in unprece<strong>de</strong>nted<br />

<strong>de</strong>tail at these wavelengths. This raised interest<br />

in the astronomical community and resulted in 160<br />

"first results papers" within the first four months of scientific<br />

data taking. However, most results emerged and still do<br />

so after careful data analysis, mo<strong>de</strong>lling and interpretation.<br />

Some highlights of my personal selection are <strong>de</strong>scribed below.<br />

Herschel observations allowed studying ga<strong>la</strong>xies in the<br />

early universe that form stars at prodigious rates and apparently<br />

also in the absence of mergers. Other processes<br />

like inflowing interga<strong>la</strong>ctic streams of cold gas may thus<br />

be equally effective. In nearby active ga<strong>la</strong>xies, on the other


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

The region of ionized molecules in the inner parts of star<br />

and p<strong>la</strong>net forming regions is certainly a field of future research.<br />

On the other hand, O 2<br />

, also not observable from the<br />

ground, was much har<strong>de</strong>r to <strong>de</strong>tect than predicted. Free<br />

oxygen, not bound to carbon monoxi<strong>de</strong>, doesn’t seem to<br />

be in molecu<strong>la</strong>r gas form, but might hi<strong>de</strong> in silicates of the<br />

interstel<strong>la</strong>r dust.<br />

The Herschel image is a composite of observations at 70 (blue),<br />

160 (green), and 250 – 500 μm (red) wavelengths indicating hot,<br />

warm and cold regions, respectively. The image size is 2×2 <strong>de</strong>gree<br />

in the constel<strong>la</strong>tion of the Southern Cross. Note cloud cores (white<br />

dots) located on fi<strong>la</strong>ments (Credit: ESA and the SPIRE & PACS<br />

consortia).<br />

intensity<br />

hand, Herschel found for the first time vast amounts of outflowing<br />

molecu<strong>la</strong>r gas that may <strong>de</strong>plete a ga<strong>la</strong>xy's supply<br />

to form new stars.<br />

In observations of our own ga<strong>la</strong>xy, Herschel i<strong>de</strong>ntified the<br />

presence of a fi<strong>la</strong>mentary network in the gas of molecu<strong>la</strong>r<br />

clouds, fi<strong>la</strong>ments which contain cloud cores that will col<strong>la</strong>pse<br />

un<strong>de</strong>r their own weight to form stars. Herschel <strong>de</strong>monstrated<br />

that fi<strong>la</strong>ments are nearly everywhere in clouds<br />

and that they are a key to star formation. It is not clear how<br />

fi<strong>la</strong>ments originate; intersecting shock waves and magnetic<br />

fields are proposed.<br />

A chief goal of Herschel is the study of the chemical composition<br />

of cosmic objects through high-resolution spectroscopy,<br />

and in particu<strong>la</strong>r the search for water in the gas<br />

state, which cannot be observed from the ground. Of special<br />

interest at ETH Zürich were the chemical network of water<br />

in star formation and the evolution of protostel<strong>la</strong>r disks.<br />

Herschel found gaseous water already in a cold pre-stel<strong>la</strong>r<br />

core before the start of star formation. It amounts to a few<br />

million times the amount of water in the Earth's oceans. The<br />

10 million year old disc surrounding nearby star TW Hydrae<br />

still contains a water supply equivalent to several thousand<br />

times Earth's oceans. Disks ol<strong>de</strong>r than some 60 million years<br />

were observed to contain not enough gas to form new<br />

p<strong>la</strong>nets. These findings suggest that water p<strong>la</strong>yed an important<br />

role throughout the formation of the so<strong>la</strong>r system.<br />

Several molecules were discovered in interstel<strong>la</strong>r clouds for<br />

the first time. We mo<strong>de</strong>lled the chemistry in regions of star<br />

formation in an attempt to predict which molecules – especially<br />

ionised ones – exist there and could be used to<br />

infer the physical conditions. In particu<strong>la</strong>r, ultraviolet and<br />

X-ray irradiation change the chemistry and heat the col<strong>la</strong>psing<br />

envelope and its walls to the outflows. The surprise:<br />

new molecules in interstel<strong>la</strong>r space, like SH + , OH + , and<br />

H 2<br />

O + were discovered to be more abundant than expected.<br />

frequency<br />

The Herschel space observatory has discovered ionized water,<br />

H 2<br />

O + , in absorption at a location where a massive star is forming<br />

in the W3 molecu<strong>la</strong>r cloud. The star- forming region in the Perseus<br />

spiral arm of the Milky Way ga<strong>la</strong>xy is completely opaque in visual<br />

light shown as background in colour (Diameter of image: 500 light<br />

years; credit: ESA/ETH Zürich/Sierra Remote Observatories, Don<br />

Goldman, CA, USA).<br />

The water profile in the atmospheres of Mars is studied at<br />

the University of Bern. For the first time the water vapour<br />

was <strong>de</strong>termined from a global perspective yielding a view<br />

on overall seasonal changes. The group was also part of<br />

the team that discovered O 2<br />

in the Mars atmosphere.<br />

Two weeks after the end of the helium the Herschel observatory<br />

was moved away from the Lagrange point and the<br />

communication was terminated. The loss of pointing control<br />

ends the direct contact with Herschel. The observatory<br />

will slowly drift away from Earth and orbit in<strong>de</strong>finitely the<br />

Sun like a small p<strong>la</strong>net.<br />

Herschel has observed more than we expected, but the<br />

project is not over yet. More than 35,000 scientific observations<br />

were executed with Herschel, and more than 50.000<br />

lines have been <strong>de</strong>tected with the HIFI instrument alone.<br />

They will eventually be i<strong>de</strong>ntified, analyzed in more <strong>de</strong>tail,<br />

and mo<strong>de</strong>lled. Only limited parts of the data are fully exploited.<br />

It will probably be a long time before the next opportunity<br />

to gather this kind of data in space. Due to the breadth<br />

and completeness throughout the entire wavelength range,<br />

the Herschel data are bound to be unparalleled for many<br />

years to come. In a year, all the data will become a public<br />

legacy. Most important will be their combination with<br />

observations at other wavelengths, such as the millimetre/<br />

submillimetre telescope ALMA in Chile. ESA has just announced<br />

a Herschel data analysis course for beginners.<br />

43


SPG Mitteilungen Nr. 40<br />

Structural MEMS Testing<br />

Alex Dommann and Antonia Neels*<br />

EMPA, Lerchenfeldstrasse 5, 9014 St. Gallen, alex.dommann@empa.ch<br />

*CSEM, Microsystems Technology Division, 2002 Neuchâtel<br />

In single crystal silicon (SCSi) based <strong>de</strong>vices, stress and<br />

loading in operation introduces <strong>de</strong>fects during the Micro-<br />

ElectroMechanical Systems (MEMS) life time and increases<br />

the risk of failure. Reliability studies on potential<br />

failure sources have an impact on MEMS <strong>de</strong>sign and are<br />

essential to assure the long term functioning of the <strong>de</strong>vice.<br />

Defects introduced by Deep Reactive-Ion Etching (DRIE),<br />

thermal annealing, dicing and bonding and also the <strong>de</strong>vice<br />

environment (radiations, temperature) influence the crystalline<br />

perfection and have a direct impact on the mechanical<br />

properties of MEMS and their aging behavior. Defects and<br />

<strong>de</strong>formations are analyzed using High Resolution X-ray Diffraction<br />

Methods (HRXRD) such as Reciprocal Space Maps<br />

(RSM). Micro systems technology can be highly reliable,<br />

but can be different from those of solid-state electronics.<br />

Therefore testing techniques must be <strong>de</strong>veloped to accelerate<br />

MEMS-specific failures [1 - 4].<br />

which is <strong>de</strong>tected via the broa<strong>de</strong>ning of the X-ray peak<br />

in a "rocking-curve" (RC) measurement. Analysis is performed<br />

with high resolution X-ray diffraction. The set-up is<br />

composed by curved multi<strong>la</strong>yer x-ray mirrors named after<br />

Herbert Göbel (Göbel mirror) in front of the X-ray tube, followed<br />

by a monochromator for monochromatization and<br />

collimation of X-ray beams by using a 4-Crystal monochromator<br />

with two channel-cut Ge [220] called Bartels monochromator<br />

(Fig. 2). Two configurations are possible for the<br />

diffracted beam si<strong>de</strong>, <strong>de</strong>pending on the methods applied:<br />

Rocking curve (RC) or Reciprocal space map (RSM). Both<br />

methods allow measuring strain and <strong>de</strong>fects concentration<br />

in a crystal. The instrument used for HRXRD is shown (Figure<br />

1).<br />

New MEMS fabrication processes and packaging concepts<br />

find applications in areas where a high reliability is nee<strong>de</strong>d<br />

such as in aerospace, automotive or watch industry. This<br />

creates a strong <strong>de</strong>mand in quality control and failure analysis<br />

and also brings new challenges, particu<strong>la</strong>rly in the fields<br />

of testing and qualification. Non-<strong>de</strong>structive HRXRD methods<br />

are applied to monitor the mobility of <strong>de</strong>fects and strain<br />

Figure 1: Diffractometer used for HRXRD applications.<br />

HRXRD allows measuring the strain of a crystal with high<br />

resolution (Fig. 1). We use HRXRD to assess the strain in<br />

DRIE etched processed silicon beams. Strain <strong>de</strong>forms the<br />

silicon beam leading to an appreciable sample curvature<br />

A rocking curve (RC) is obtained as angu<strong>la</strong>r distribution<br />

of the reflected X-ray beam, when the <strong>de</strong>tector is<br />

set at a specific Bragg angle and when the sample is<br />

rotated about small angles normal to the Bragg p<strong>la</strong>ne<br />

axis. The rocking curve is broa<strong>de</strong>ned by disruptions of<br />

the p<strong>la</strong>ne parallelity and by crystal <strong>de</strong>fects like those<br />

introduced by mechanical stress. Reciprocal space<br />

mapping (RSM) adds, by the restriction of the angu<strong>la</strong>r<br />

acceptance of the <strong>de</strong>tector, another dimension to<br />

the information avai<strong>la</strong>ble from the HRXRD experiment.<br />

Strain and tilt elements being present in a sample are<br />

i<strong>de</strong>ntified separately. An excellent introduction to both<br />

analytical methods can be found at http://prism.mit.<br />

edu/xray/tutorials.htm. See 'Basics of High Resolution<br />

X-Ray Diffraction for Studying Epitaxial Thin Films'.<br />

Fig 2: Diffractometer setup for RSM’s (<strong>de</strong>tector position 1) and RC’s (<strong>de</strong>tector position 2)<br />

44


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

As the Q-factor is not only <strong>de</strong>pen<strong>de</strong>nt on the vacuum level<br />

of the MEMS cavity but also on the strain state of the <strong>de</strong>vice,<br />

the simultaneous data collection for the Q factor <strong>de</strong>termination<br />

and the strain state is evi<strong>de</strong>nt. The packaging<br />

induced strain created at the important interfaces such as<br />

the interfaces close to the bonding material and more importantly<br />

to the <strong>de</strong>vice <strong>la</strong>yer has been analyzed by means<br />

of X-ray Rocking Curves (Fig. 3). The stress profile can be<br />

<strong>de</strong>termined. Especially the strain close to the functional <strong>de</strong>vice<br />

is important as the strain state influences the application<br />

relevant physical parameters such as the resonance<br />

frequency and the Q factor in resonator.<br />

The combination of functional testing with state-of-the-art<br />

X-ray methods for the evaluation of <strong>de</strong>fect and strain gradients<br />

will serve as a useful tool for setting up a fundamental<br />

un<strong>de</strong>rstanding of the reliability and also aging problems of<br />

MEMS.<br />

References<br />

Figure 3: Schematic HRXRD measurement setup and silicon crystal<br />

orientation (top) and measured rocking curves RC’s from the<br />

bonding interface 1 of the <strong>de</strong>vice <strong>la</strong>yer to the bonding interface 2<br />

(bottom) resulting in a stress profiling.<br />

and along the MEMS fabrication and packaging processes.<br />

RSM is a powerful tool for evaluating the strain state of<br />

the entire structure. Due to the much more limited vertical<br />

divergence and the very small horizontal divergence of<br />

the RSM settings, it is possible to get a 'g-function like'<br />

reciprocal-space probe which is almost invariant over the<br />

Ewald sphere. Figure 2 shows a setup used for measuring<br />

such RSMs.<br />

HRXRD is a very sensitive and non-<strong>de</strong>structive technique<br />

for <strong>de</strong>termining the strain in MEMS <strong>de</strong>vices.<br />

An example of such a test structure is a silicon based piezoelectric<br />

resonator (Fig. 3), <strong>de</strong>veloped at CSEM, targeting<br />

vacuum hermetic wafer-level packaging technology [5]. The<br />

monitoring of quality factors (Q) for the resonators permits<br />

to evaluate the pressure level (hermeticity) of the <strong>de</strong>vice<br />

cavity and the leakage rate.<br />

[1] A. Dommann, A. Neels, “Reliability of MEMS” (2011), Proceedings<br />

of SPIE - The International Society for Optical Engineering,<br />

7928, art. no. 79280B.<br />

[2] A. Neels, A. Dommann, A. Schifferle, O. Papes, E. Mazza, Reliability<br />

and Failure in Single Crystal Silicon MEMS Devices, Microelectronics<br />

Reliability, 48, 1245-1247, 2008.<br />

[3] Herbert R. Shea ; Reliability of MEMS for space applications,<br />

Proc. SPIE Int. Soc. Opt. Eng. 6111, 61110A (2006).<br />

[4] Schweitz, J.-Å; Mechanical Characterization of Thin Films by<br />

Micromechanical Techniques, MRS Bulletin, XVII, 7, 1992, pp.34-<br />

45.<br />

[5] J. Baborowski, et al. "Wafer level packaging technology for<br />

silicon resonators", Procedia Chemistry 1, 1535-1538 (July 2009).<br />

Alex Dommann's research concentrates on the<br />

structuring, coating and characterization of thin films,<br />

MEMS and interfaces. In July 2013 he was appointed<br />

Head of Departement "Materials meet Life" at Empa,<br />

Swiss Fe<strong>de</strong>ral Laboratories for Materials Science and<br />

Technology. He is member of different national and international<br />

committees.<br />

Antonia Neels is heading the XRD Application Lab of<br />

CSEM’s Microsystems Technology Division. She has a<br />

broad experience in the application of X-ray diffraction<br />

methods for microsystems (MEMS) and thin films with<br />

respect to quality control and failure mo<strong>de</strong> analysis.<br />

Kurz<strong>mitteilungen</strong> (Fortsetzung)<br />

Felicitas Pauss und Karl Ga<strong>de</strong>mann neu im Vorstand SCNAT<br />

Die Physikerin Felicitas Pauss und <strong>de</strong>r Chemiker Karl Ga<strong>de</strong>mann<br />

sind an <strong>de</strong>r Delegiertenversammlung <strong>de</strong>r Aka<strong>de</strong>mie<br />

<strong>de</strong>r Naturwissenschaften Schweiz (SCNAT) am 24. Mai<br />

2013 in Bern neu in <strong>de</strong>n Vorstand gewählt wor<strong>de</strong>n. Zu<strong>de</strong>m<br />

wur<strong>de</strong> <strong>de</strong>r Verein <strong>Schweizerische</strong>r Naturwissenschaftslehrerinnen<br />

und -lehrer in die Aka<strong>de</strong>mie aufgenommen. Die<br />

Professorin für Experimentelle Teilchenphysik, Felicitas<br />

Pauss, forscht an <strong>de</strong>r ETH Zürich und am CERN in Genf,<br />

wo sie die «Internationalen Beziehungen» führt. Karl Ga<strong>de</strong>mann<br />

ist Professor für organische Chemie an <strong>de</strong>r Universität<br />

Basel und aktueller Präsi<strong>de</strong>nt <strong>de</strong>r P<strong>la</strong>tform Chemistry<br />

<strong>de</strong>r SCNAT. 2012 wur<strong>de</strong> er mit <strong>de</strong>m renommierten Latsis-<br />

Preis ausgezeichnet. Felicitas Pauss nimmt ab Juni 2013<br />

Einsitz im Vorstand, Karl Ga<strong>de</strong>mann ab Januar 2014. In <strong>de</strong>n<br />

Vorstand wie<strong>de</strong>rgewählt wur<strong>de</strong> Helmut Weissert von <strong>de</strong>r<br />

ETH Zürich.<br />

Quelle: SCNAT Newsletter Juni 2013<br />

45


SPG Mitteilungen Nr. 40<br />

Paul Scherrer Institute: User facilities - calls for proposals<br />

The Paul Scherrer Institute (PSI) in Villigen operates four<br />

major user <strong>la</strong>boratories: a third generation X-ray synchrotron<br />

source (SLS), the only continuous spal<strong>la</strong>tion neutron<br />

source worldwi<strong>de</strong> (SINQ), the world’s most powerful continuous-beam<br />

μSR facility (SμS) and a meson factory for<br />

fundamental nuclear and elementary particle physics (LTP).<br />

In fact, PSI is the only p<strong>la</strong>ce worldwi<strong>de</strong> to offer the three<br />

major probes for con<strong>de</strong>nsed matter research (synchrotron<br />

X-rays, neutrons and muons) on one campus.<br />

The instal<strong>la</strong>tions are all open access user facilities and offer<br />

regu<strong>la</strong>r calls for proposals.<br />

More information is avai<strong>la</strong>ble here:<br />

http://www.psi.ch/useroffice/proposal-<strong>de</strong>adlines<br />

Contact address:<br />

Paul Scherrer Institute phone: +41-56-310-4666<br />

User Office<br />

email: useroffice@psi.ch<br />

5232 Villigen PSI<br />

User facility<br />

Proposal submission<br />

<strong>de</strong>adline<br />

SLS<br />

all beamlines, except PX-I,-II,-III Mar 15, Sep 15<br />

PX beamlines Feb 15, Jun 15, Oct 15<br />

SINQ<br />

all beamlines May 15, Nov 15<br />

SμS<br />

DOLLY, GPD, GPS, LEM and LTF Dec 10<br />

GPD, GPS and LTF June 11<br />

PARTICLE PHYSICS<br />

all Dec 10<br />

Physique et <strong>la</strong> Société<br />

Quand <strong>la</strong> Physique rejoint le Sport<br />

Christophe Rossel<br />

Une quarantaine d’étudiants et étudiantes en physique <strong>de</strong>s<br />

universités suisses se sont réunis les 17 et 18 mai 2013 à<br />

Macolin pour un atelier <strong>de</strong> travail sur le thème Physique<br />

et Sport. Organisée dans le cadre du Forum <strong>de</strong>s Jeunes<br />

Physiciens (YPF) en col<strong>la</strong>boration avec <strong>la</strong> Société Suisse<br />

<strong>de</strong> Physique (SSP) et l’office fédéral du sport (OFSPO) cette<br />

réunion a permis à ces jeunes <strong>de</strong> se rencontrer dans une<br />

atmosphère amicale.<br />

L’YPF a été créé en 2009 à l’instigation <strong>de</strong> <strong>la</strong> SSP, grâce au<br />

soutien financier <strong>de</strong> l’Académie suisse <strong>de</strong>s sciences naturelles<br />

(SCNAT) et <strong>de</strong> sa p<strong>la</strong>teforme MAP. Les buts du Forum<br />

sont d’encourager <strong>la</strong> communication entre les sociétés<br />

d’étudiants en physique entre elles, avec les physiciens<br />

professionnels membres <strong>de</strong> <strong>la</strong> SSP ainsi que <strong>de</strong> créer une<br />

p<strong>la</strong>teforme pour discuter <strong>de</strong>s sujets d’intérêts communs et<br />

organiser <strong>de</strong>s évènements divers tels que visites ou séminaires.<br />

C’est dans ce contexte qu’a eu lieu ce premier workshop<br />

sur le splendi<strong>de</strong> site <strong>de</strong> <strong>la</strong> Haute école fédérale <strong>de</strong> sport<br />

(HEFS) <strong>de</strong> Macolin. Arrivés le vendredi soir les étudiants<br />

ont été reçus officiellement par le recteur <strong>de</strong> cette école,<br />

Walter Mengisen, qui leur a décrit <strong>la</strong> fonction et les activités<br />

<strong>de</strong> l’OFSPO qui est un centre <strong>de</strong> prestations, <strong>de</strong> formation<br />

et d’entraînement au service du sport d’élite, du sport <strong>de</strong><br />

compétition et du sport popu<strong>la</strong>ire.<br />

Après une soirée conviviale <strong>de</strong> discussion et <strong>de</strong> jeux au bar<br />

et <strong>la</strong> nuit passée au Grand Hôtel, les participants se sont<br />

retrouvés le samedi matin pour <strong>la</strong> série <strong>de</strong> conférences prévues<br />

au programme. Après une introduction générale sur le<br />

thème et l’organisation du workshop par Christophe Rossel,<br />

le premier conférencier, Didier Stau<strong>de</strong>nman du département<br />

<strong>de</strong> mé<strong>de</strong>cine <strong>de</strong> l’université <strong>de</strong> Fribourg a présenté<br />

le sujet <strong>de</strong> <strong>la</strong> biomécanique et <strong>de</strong> l’activation muscu<strong>la</strong>ire<br />

à une audience attentive. En particulier, il a décrit <strong>la</strong> tech-<br />

Une partie <strong>de</strong>s participants réunis <strong>de</strong>vant le Grand Hôtel <strong>de</strong> Macolin avec une vue imprenable sur les alpes<br />

46


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

nique d'électromyographie (EMG) qui permet d'enregister<br />

et analyser les signaux électriques produits par les variations<br />

physiologiques <strong>de</strong>s fibres muscu<strong>la</strong>ires.<br />

Dans une secon<strong>de</strong> présentation Pierre Cornu, avocat et<br />

conseiller juridique pour les affaires d’intégrité et <strong>de</strong> régu<strong>la</strong>tions<br />

à l’UEFA ainsi qu’au Centre international d’étu<strong>de</strong> du<br />

sport (CIES) <strong>de</strong> Neuchâtel a développé le sujet <strong>de</strong>s manipu<strong>la</strong>tions<br />

dans les compétitions sportives et <strong>la</strong> bonne gouvernance.<br />

De manière captivante avec maints exemples il<br />

a évoqué les paris illégaux, les manipu<strong>la</strong>tions en football,<br />

le dopage et ses effets pervers ainsi que les métho<strong>de</strong>s <strong>de</strong><br />

contrôle et <strong>de</strong> sanctions disciplinaires.<br />

Pascal Arnold, doctorant à l’Institut <strong>de</strong>s systèmes mécaniques<br />

<strong>de</strong> le l’ETHZ nous a ensuite expliqué les défis humains<br />

et technologiques dans le bobsleigh <strong>de</strong> compétition.<br />

De manière remarquable il nous a décrit toutes les étapes<br />

techniques dans <strong>la</strong> construction d’un bob professionnel<br />

qu’il a développé dans le cadre <strong>de</strong> sa thèse <strong>de</strong> doctorat.<br />

Par chance un exemp<strong>la</strong>ire d’un tel bob a été exposé en<br />

présence du pilote professionnel Rico Peter <strong>de</strong> l’équipe Suisse.<br />

II qui a aussi répondu aux nombreuses questions.<br />

Démonstration d’agilité sur <strong>la</strong> s<strong>la</strong>ckline<br />

Changement <strong>de</strong> décors l’après-midi où l’occasion a été<br />

donnée <strong>de</strong> passer <strong>de</strong> <strong>la</strong> théorie à <strong>la</strong> pratique grâce au soutien<br />

organisationnel <strong>de</strong> Bruno Tschanz. Sous un soleil radieux<br />

et en tenue sportive les participants se sont rendus à <strong>la</strong><br />

salle et au sta<strong>de</strong> <strong>de</strong> <strong>la</strong> Fin du Mon<strong>de</strong> pour tester différentes<br />

instal<strong>la</strong>tions. Par exemple ils ont pu se mesurer aux professionnels<br />

<strong>de</strong> l’équipe <strong>de</strong> bob du Lichtenstein à <strong>la</strong> poussée<br />

d’engins d’entrainement simi<strong>la</strong>ires sur roues ou encore<br />

tester leur habileté d’équilibristes en s<strong>la</strong>ckline, ou littéralement<br />

cor<strong>de</strong> souple. Dans ce sport créé dans les années 80,<br />

l’objectif est <strong>de</strong> se dép<strong>la</strong>cer ou <strong>de</strong> faire <strong>de</strong>s figures sur une<br />

sangle légèrement é<strong>la</strong>stique et ceci sans aucun accessoire.<br />

Un autre clou <strong>de</strong>s activités sportives a été sans conteste<br />

le football joué avec analyse <strong>de</strong>s performances <strong>de</strong> chaque<br />

joueur, visionné sur petit écran après <strong>la</strong> partie. Enfin chacun<br />

a aussi pu tester les signaux induits par le mouvement <strong>de</strong><br />

leur biceps grâce à un système <strong>de</strong> mesure électriques avec<br />

électro<strong>de</strong>s multiples et en comprendre les principes avec<br />

les explications <strong>de</strong> Didier Stau<strong>de</strong>nman.<br />

Pascal Arnold présentant les caractéristiques techniques du bob<br />

Suisse II en présence <strong>de</strong> son pilote Rico Peter<br />

Tous les secrets <strong>de</strong> <strong>la</strong> mesure <strong>de</strong> position en sport nous ont<br />

été révélés par Martin Rumo <strong>de</strong> <strong>la</strong> Haute école fédérale <strong>de</strong><br />

sport <strong>de</strong> Macolin. Il a expliqué les développements récents<br />

dans les instruments d’analyse <strong>de</strong> performance dans les<br />

sports d’élite et en particulier les métho<strong>de</strong>s <strong>de</strong> mesures locales<br />

<strong>de</strong> <strong>la</strong> position <strong>de</strong>s joueurs <strong>de</strong> football et du ballon. En<br />

effet les données 3D obtenues en temps réel permettent un<br />

entraînement précis, une observation exacte et une analyse<br />

<strong>de</strong> chaque joueur et <strong>de</strong> l’équipe.<br />

Finalement le <strong>de</strong>rnier conférencier, Benedikt Fasel du Laboratoire<br />

<strong>de</strong> mesure et d'analyse <strong>de</strong>s mouvements <strong>de</strong> l’EPFL<br />

s’est exprimé sur les métho<strong>de</strong>s d’analyse du mouvement et<br />

en particulier sur <strong>la</strong> prévention <strong>de</strong>s acci<strong>de</strong>nts dans les compétitions<br />

<strong>de</strong> ski alpin. Il a expliqué l’utilisation <strong>de</strong> senseurs<br />

inertiels p<strong>la</strong>cées sur le skieur, <strong>de</strong> caméras 3D ou du GPS<br />

pour mesurer <strong>la</strong> trajectoires, les forces et <strong>la</strong> dynamique du<br />

corps pendant <strong>la</strong> <strong>de</strong>scente et comment utiliser les données<br />

pour optimaliser <strong>la</strong> géométrie <strong>de</strong>s skis.<br />

Un bel exercice sportif, <strong>la</strong> poussée du bob à <strong>de</strong>ux<br />

C’est enthousiastes et presque à regret que les participants<br />

ont quitté le site en fin d’après-midi pour retourner chez<br />

eux après une journée riche en information scientifique et<br />

technique et en activités sportives.<br />

47


SPG Mitteilungen Nr. 40<br />

Introduction<br />

History of Physics (8)<br />

On the Einstein-Grossmann Col<strong>la</strong>boration 100 Years ago<br />

Norbert Straumann, Institute for Theoretical Physics, Uni Zürich<br />

Einstein’s path to general re<strong>la</strong>tivity (GR) mean<strong>de</strong>red steeply,<br />

encountered confusing forks, and also inclu<strong>de</strong>d a big U-<br />

turn. In this brief account I discuss in some <strong>de</strong>tail Einstein's<br />

remarkable progress beginning in August 1912, after his<br />

second return to Zürich, until Spring 1913. Before we come<br />

to this, some indications of what he had already achieved<br />

until this period are necessary.<br />

In 1907, while writing a review article on special re<strong>la</strong>tivity<br />

(SR), Einstein specu<strong>la</strong>ted – attempting to un<strong>de</strong>rstand the<br />

empirical equality of inertial and gravitational mass – on the<br />

possibility of extending the principle of re<strong>la</strong>tivity to accelerated<br />

motion, and ad<strong>de</strong>d an important section on gravitation<br />

in his review [2] 1 . With this "basic i<strong>de</strong>a", which he referred<br />

to as principle of equivalence, he went beyond the framework<br />

of SR. His (special formu<strong>la</strong>tion) of the equivalence<br />

principle – "the most fortunate thought of my life" – became<br />

the guiding thread in his search for a re<strong>la</strong>tivistic theory of<br />

gravitation. Until 1911 Einstein worked apparently mainly<br />

on the quantum puzzles and did not publish anything about<br />

gravitation, but continued to think about the problem. In<br />

[3] he writes: "Between 1909-1912 while I had to teach<br />

theoretical physics at the Zürich and Prague Universities I<br />

pon<strong>de</strong>red ceaselessly on the problem". When Einstein realized<br />

in 1911 that gravitational light <strong>de</strong>flection should be<br />

experimentally observable [4], he took up the problem of<br />

gravitation again and began to "work like a horse" in <strong>de</strong>veloping<br />

a coherent theory of the static gravitational fields.<br />

Since he had found that the velocity of light <strong>de</strong>pends on the<br />

gravitational potential, he conclu<strong>de</strong>d that the speed of light<br />

p<strong>la</strong>ys the role of the gravitational potential, and proposed a<br />

non-linear field equation, in which the gravitational energy<br />

<strong>de</strong>nsity itself acts as a source of the gravitational potential.<br />

Therefore, the field equation implied that the principle of<br />

equivalence is valid only for infinitely small spatial regions.<br />

In the second of his Prague papers on "gravito-statics" [5]<br />

he also showed how the equations of electrodynamics and<br />

thermodynamics are modified in the presence of a static<br />

gravitational field. At this point he began to investigate the<br />

dynamical gravitational field.<br />

Einstein gains Marcel Grossmann as a col<strong>la</strong>borator<br />

When Einstein arrived in Zürich in early August, he was<br />

convinced that a metric field of spacetime, generalizing<br />

the Minkowski metric to a pseudo-Riemannian dynamical<br />

metric, was the right re<strong>la</strong>tivistic generalization of Newton’s<br />

potential. The main question was to find the basic equation<br />

for this field. But how to achieve this was in the dark<br />

and he looked for mathematical help. Fortunately, Marcel<br />

Grossmann, his old friend since his stu<strong>de</strong>nt time, was now<br />

also professor at the ETH and Einstein succee<strong>de</strong>d in gain-<br />

1 References to papers that have appeared in the Collected Papers of<br />

Albert Einstein (CPAE) [1] are always cited by volume and document of<br />

CPAE.<br />

48<br />

ing him as a col<strong>la</strong>borator in his search for the gravitational<br />

field equation. In a 1955 reminiscence, shortly before his<br />

<strong>de</strong>ath, Einstein wrote [3]:<br />

I was ma<strong>de</strong> aware of these [works by Ricci and Levi-Civita]<br />

by my friend Grossmann in Zürich, when I put the<br />

problem to investigate generally covariant tensors, whose<br />

components <strong>de</strong>pend only on the <strong>de</strong>rivatives of the coefficients<br />

of the quadratic fundamental invariant.<br />

He at once caught fire, although as a mathematician he<br />

had a somewhat sceptical stance towards physics. (...)<br />

He went through the literature and soon discovered that<br />

the indicated mathematical problem had already been<br />

solved, in particu<strong>la</strong>r by Riemann, Ricci and Levi-Civita.<br />

This entire <strong>de</strong>velopment was connected to the Gaussian<br />

theory of curved surfaces, in which for the first time systematic<br />

use was ma<strong>de</strong> of generalized coordinates.<br />

Louis Kollros, another stu<strong>de</strong>nt friend of Einstein, who was<br />

also mathematics professor at the ETH during this time, remembered<br />

also in 1955 [6]:<br />

[Einstein] spoke to Grossmann about his troubles and<br />

said one day: "Grossmann, you must help me, otherwise<br />

I’ll go crazy ! ".<br />

The fruitful col<strong>la</strong>boration of<br />

Einstein and Grossmann<br />

led to the famous joint article<br />

with the mo<strong>de</strong>st title<br />

"Outline of a Generalized<br />

Theory of Re<strong>la</strong>tivity and a<br />

Theory of Gravitation" [7],<br />

one of the most important<br />

physics papers in the<br />

twentieth century. A lot of<br />

additional insight can be<br />

gained from Einstein’s <strong>de</strong>tailed<br />

'Zürich Notebook'<br />

[8]. It is really fascinating<br />

Figure 1: Marcel Grossmann.<br />

to study these research<br />

notes, because one can see Einstein at work, and theoretical<br />

physics at its best: A <strong>de</strong>licate interp<strong>la</strong>y between physical<br />

reasoning, based on an intuitive estimate of the most<br />

relevant empirical facts, and – equally important – mathematical<br />

structural aspects and requirements. We shall see<br />

that already <strong>la</strong>te in 1912 Einstein came very close to his<br />

final theory, but physical and conceptual arguments, that<br />

will be discussed <strong>la</strong>ter, convinced him for a long time that –<br />

with "heavy heart" – he had to abandon the general covariance<br />

of the gravitational field equation. In a letter to Lorentz<br />

[9] he called this the "ugly dark spot" of the theory. With<br />

this <strong>de</strong>cision, based on erroneous judgement, Einstein lost<br />

almost three years until physics and mathematics came<br />

into harmony in his beautiful general theory of re<strong>la</strong>tivity.<br />

The Einstein-Grossmann theory, published almost exactly<br />

hundred years ago, contains, however, virtually all essential<br />

elements of Einstein’s <strong>de</strong>finite gravitation theory.


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

The corresponding Euler-Lagrange equation is the geo<strong>de</strong>sic<br />

equation of motion for a point particle. Consi<strong>de</strong>ring<br />

an incoherent dust distribution as an ensemble of particles,<br />

Einstein guesses that the energy-momentum conservation<br />

<strong>la</strong>w of special re<strong>la</strong>tivity, n<br />

T mn = f m , with the energy-stress<br />

tensor T mn = 0<br />

u m u n ( 0<br />

= rest-mass matter <strong>de</strong>nsity, u m = fourvelocity<br />

field) and an external force <strong>de</strong>nsity f m , should be<br />

rep<strong>la</strong>ced by<br />

1<br />

mo<br />

( g g T )<br />

1<br />

ab<br />

2o<br />

- nm - 2ngabT<br />

= 0 (2)<br />

-g<br />

2<br />

(g := <strong>de</strong>t(g mn<br />

). The <strong>de</strong>tails of Einstein’s consi<strong>de</strong>rations are<br />

<strong>de</strong>scribed in his Part I, Sect. 4 of the "Entwurf" paper by<br />

Einstein and Grossmann [7]. This is just an explicit form of<br />

the equation n<br />

T mn<br />

= 0, as stated by Grossmann in his Part II<br />

of [7]. Later in Sect. 6 of [7] Einstein generalizes Maxwell’s<br />

equations in generally covariant form. This part has survived<br />

in GR. The coupling of electromagnetic fields to external<br />

gravitational fields is not yet formalized to the " $ " rule,<br />

as a mathematically precise expression of a local version of<br />

the equivalence principle.<br />

In search of the gravitational field equation<br />

Figure 2: Cover sheet of the Einstein-Grossmann "Entwurf" paper.<br />

Requirements to be satisfied by the future theory<br />

The following mixture of physical and mathematical properties<br />

of a re<strong>la</strong>tivistic theory of gravitation are among Einstein’s<br />

main guiding principles:<br />

• The theory reduces to the Newtonian limit for weak<br />

fields and slowly moving matter.<br />

• Conservation <strong>la</strong>ws for energy and momentum must<br />

hold.<br />

• The equivalence principle must be embodied.<br />

• The theory respects a generalized principle of re<strong>la</strong>tivity<br />

to accelerating frames, taking into account that gravitation<br />

and inertia are <strong>de</strong>scribed by one and the same<br />

metric field g mn<br />

. Einstein expressed this by the requirement<br />

of general covariance of the basic equations (to<br />

become a much <strong>de</strong>bated subject).<br />

Non-gravitational <strong>la</strong>ws in external gravitational fields<br />

The easier part of the new theory was to <strong>de</strong>scribe the coupling<br />

of external gravitational fields to matter and electromagnetic<br />

fields. In one of the Prague papers Einstein had<br />

<strong>de</strong>rived the equation of motion for a point particle in a static<br />

field from a variational principle, which is now generalized<br />

in an natural manner to<br />

2<br />

n o<br />

d # ds = 0, ds = g no dx dx .<br />

(1)<br />

Soon, Einstein begins to look for candidate field equations.<br />

The pages before 27 of the Zürich Notebook show that he<br />

was not yet acquainted with the absolute calculus of Ricci<br />

and Levi-Civita. On p. 27, referring to Grossmann, Einstein<br />

writes down the expression for the fully covariant Riemann<br />

curvature tensor R abg<br />

. Next, he forms by contraction the<br />

Ricci tensor R mn<br />

. The resulting terms involving second<br />

<strong>de</strong>rivatives consist, besi<strong>de</strong> g ab a<br />

b<br />

g mn<br />

, of three additional<br />

terms. Einstein writes below their sum: "should vanish"<br />

["sollte verschwin<strong>de</strong>n"]. The reason is that he was looking<br />

for a field equation of the following general form:<br />

with<br />

no<br />

no<br />

C 6 g@ = lT<br />

,<br />

(3)<br />

no<br />

ab no<br />

C 6 g@ = 2a( g 2bg<br />

) + terms that vanish in linear<br />

approximation. (4)<br />

After long complicated calcu<strong>la</strong>tions, Einstein discovers that<br />

the Ricci tensor is of the <strong>de</strong>sired form, when the coordinates<br />

are assumed to be harmonic. (Rea<strong>de</strong>rs who are not familiar<br />

with this may regard this as a kind of gauge condition,<br />

analogous to the Lorentz condition in electrodynamics.)<br />

This seems to look good, and Einstein begins to analyse<br />

the linear weak field approximation of the field equation 2<br />

R<br />

= lT<br />

.<br />

no no (5)<br />

(Rea<strong>de</strong>rs, familiar with GR, know that Einstein has to run<br />

into problems, because of the contracted Bianchi i<strong>de</strong>ntity.)<br />

2 Never before had Einstein used in his work such advanced and complex<br />

mathematics. This is expressed in a letter to Arnold Sommerfeld on 29<br />

October 1912 (CPAE, Vol. 5, Doc. 421): “But one thing is certain: never<br />

before in my life have I toiled any where near as much, and I have gained<br />

enormous respect for mathematics, whose more subtle parts I consi<strong>de</strong>red<br />

until now, in my ignorance, as pure luxury. Compared with this problem,<br />

the original theory of re<strong>la</strong>tivity is child’s p<strong>la</strong>y.”<br />

49


SPG Mitteilungen Nr. 40<br />

The weak field approximation<br />

The linearized harmonic coordinate condition becomes for<br />

h no: = g no - hno ( hno : Minkowski metric)<br />

na<br />

( h<br />

1 na<br />

2n<br />

- h h)<br />

= 0<br />

(6)<br />

2<br />

(h := h μ , indices are now raised and lowered by means of<br />

μ<br />

the Minkowski metric). This is nowadays usually called the<br />

Hilbert condition, but Einstein imposed it already in 1912.<br />

The field equation becomes an inhomogeneous wave<br />

equation:<br />

Xh<br />

=-2lT<br />

no no (7)<br />

Einstein takes for T mn<br />

his earlier expression for dust.<br />

But now he runs into a serious problem:<br />

From n T mn<br />

= 0 in the weak field limit, it follows that<br />

o<br />

X( 2 h no ) = 0 hence the harmonic coordinate condition requires<br />

X( 2 o h)<br />

= 0 , and therefore the trace of the the field<br />

equation implies Xh =- 2lT = const., T:<br />

= T<br />

n n . For dust<br />

this requires that T = -r 0<br />

= const. This is, of course, unacceptable.<br />

One would not even be able to <strong>de</strong>scribe a star,<br />

with a smooth distribution of matter localized in a finite region<br />

of space.<br />

Einstein’s modified linearized field equation<br />

Now, something very interesting happens. Einstein avoids<br />

this problem by modifying the field equation (7) to<br />

X( h -<br />

1<br />

h h)<br />

=-2lT<br />

2<br />

no no no (8)<br />

Then the harmonic coordinate condition (6) is compatible<br />

with n<br />

T mn = 0 . Remarkably, (8) is the linearized equation<br />

of the final theory (in harmonic coordinates). One won<strong>de</strong>rs<br />

why Einstein did not try at this point the analogous substitution<br />

R no $ R no - 2 g no R or Tno $ Tno - 2 g no T in the full<br />

1<br />

1<br />

non-linear equation (5), which would have led to the final<br />

field equation of GR. One probable reason for this is connected<br />

with the Newtonian limit.<br />

The problem with the Newtonian limit<br />

The problem with the Newtonian limit was, it appears, one<br />

of the main reasons why Einstein abandoned the general<br />

covariance of the field equation. Apparently, (8) did<br />

not reduce to the correct limit. That it leads to the Poisson<br />

equation for g 00<br />

(x) is fine, but because of the harmonic<br />

coordinate condition the metric can not be spatially f<strong>la</strong>t.<br />

(The almost Newtonian approximation of (6) and (8) is <strong>de</strong>rived<br />

in textbooks on GR; see, e.g., [11], Sect. 4.2.) Einstein<br />

found this unacceptable. He was convinced that for<br />

(weak) static gravitational fields the metric must be of the<br />

form (g mn<br />

) = diag(g 00<br />

(x), 1, 1, 1), as he already noted on p. 1<br />

of his research notes. I won<strong>de</strong>r why he did not remember<br />

his cautious remark in one of his Prague papers [12] on<br />

static gravitational fields, in which – while assuming spatial<br />

f<strong>la</strong>tness – he warned that this may very well turn out to be<br />

wrong, and says that actually it does not hold on a rotating<br />

disk. Since a non-f<strong>la</strong>tness would not affect the geo<strong>de</strong>sic<br />

equation in the Newtonian limit, there is actually, as we<br />

all know, no problem. But Einstein realized this only three<br />

years <strong>la</strong>ter 3 . Well(!): "If wise men did not err, fools should<br />

<strong>de</strong>spair" (Wolfgang Goethe).<br />

At the time, Einstein arrived at the conviction that there<br />

were other difficulties implied by generally covariant field<br />

equations. One was connnected with energy-momentum<br />

conservation (see [10].)<br />

The 'hole' argument against general covariance<br />

At the time when he finished the paper with Grossmann,<br />

Einstein wrote to Ehrenfest on May 28, 1913: "The conviction<br />

to which I have slowly struggled through is that there<br />

are no preferred coordinate systems of any kind. However,<br />

I have only partially succee<strong>de</strong>d, even formally, in reaching<br />

this standpoint." (CPAE, Vol. 5, Doc. 441.) In a lecture given<br />

to the Annual Meeting of the Swiss Naturforschen<strong>de</strong> Gesellschaft<br />

in September 1913, Einstein stated: "It is possible<br />

to <strong>de</strong>monstrate by a general argument that equations<br />

that completely <strong>de</strong>termine the gravitational field cannot be<br />

generally covariant with respect to arbitrary substitutions."<br />

(CPAE, Vol. 4, Doc. 16.) He repeated this statement shortly<br />

afterwards in his Vienna lecture [13] of September 23, 1913.<br />

The so-called "hole" ("Loch") argument runs as follows<br />

(instead of coordinate transformations, I use a more mo<strong>de</strong>rn<br />

<strong>la</strong>nguage): Imagine a finite region D of spacetime – the<br />

'hole' – in which the stress-energy tensor vanishes. Assume<br />

that a metric field g is a solution of a generally covariant<br />

field equation. Apply now a diffeomorphism on g,<br />

Figure 3: A typical page in Einstein's 'Zürich Notebook', CPAE,<br />

Vol. 4, Doc. 10, p.262.<br />

50<br />

3 In his calcu<strong>la</strong>tion of the perihelion motion (on the basis of the vacuum<br />

equations R mn<br />

= 0) it became clear to him that spatial f<strong>la</strong>tness did not hold<br />

even for weak static fields.


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

producing *g (push-forward), and choose the diffeomorphism<br />

such that it leaves the spacetime region outsi<strong>de</strong> D<br />

pointwise fixed. Clearly, g and *g are different solutions<br />

of the field equation that agree outsi<strong>de</strong> D. In other words,<br />

generally covariant field equations allow huge families of<br />

solutions for one and the same matter distribution (outsi<strong>de</strong><br />

the hole). At the time, Einstein found this unacceptable, because<br />

this was in his opinion a dramatic failure of what he<br />

called the <strong>la</strong>w of causality (now usually called <strong>de</strong>terminism).<br />

He then thought that the energy-momentum tensor should<br />

(for appropriate boundary or initial conditions) <strong>de</strong>termine<br />

the metric uniquely.<br />

It took a long time until Einstein un<strong>de</strong>rstood that this nonuniqueness<br />

is an expression of what we now call gauge<br />

invariance, analogous to the local invariance of our gauge<br />

theories in elementary particle physics. On January 3, 1916<br />

he wrote to Besso: "Everything in the hole argument was<br />

correct up to the final conclusion."<br />

The role of diffeomorphism invariance of GR, especially for<br />

the Cauchy problem, was first un<strong>de</strong>rstood by Hilbert.<br />

Final remarks<br />

When Einstein was finishing his work on GR un<strong>de</strong>r great<br />

stress and was suspending all correspon<strong>de</strong>nce with colleagues,<br />

he still found time to communicate with Michele<br />

Besso. On November 17, 1915 he mailed a postcard from<br />

Berlin, that contains the great news:<br />

I have worked with great success during these months. General<br />

covariant gravitational equations. Motions of the perihelion<br />

quantitatively exp<strong>la</strong>ined. (...). You will be amazed. I<br />

worked horribly strenuously [schau<strong>de</strong>rhaft angestrengt], [it<br />

is] strange that one can endure that. (...) (CPAE, Vol. 8, Part<br />

A, Doc. 147).<br />

Besso passed this card on to Zangger: "I enclose the historical<br />

card of Einstein, reporting the setting of the capstone<br />

of an epoch that began with Newton’s 'apple'."<br />

The discovery of the general theory of re<strong>la</strong>tivity has often<br />

been justly praised as one of the greatest intellectual<br />

achievements of a human being. At the ceremonial presentation<br />

of Hubacher’s bust of A. Einstein in Zürich, W. Pauli<br />

said:<br />

The general theory of re<strong>la</strong>tivity then completed and - in<br />

contrast to the special theory - worked out by Einstein<br />

alone without simultaneous contributions by other researchers,<br />

will forever remain the c<strong>la</strong>ssic example of a<br />

theory of perfect beauty in its mathematical structure.<br />

Auszug aus einem Interview von Res Jost mit Otto<br />

Stern, <strong>de</strong>r mit Einstein von Prag nach Zürich kam<br />

und zwei Jahre später an <strong>de</strong>r ETH (mit einem Gutachten<br />

von Einstein) habilitierte:<br />

In Zürich war's natürlich sehr schön (...) und beson<strong>de</strong>rs<br />

<strong>de</strong>swegen interessant, weil Laue an <strong>de</strong>r Universität<br />

war. Ausser<strong>de</strong>m waren Ehrenfest und Tatjana (...)<br />

min<strong>de</strong>stens ein Vierteljahr, vielleicht auch etwas länger<br />

zu Besuch (...). Das gab natürlich immer herrliche Diskussionen<br />

im Kolloquium (...). Wir waren auch ein paar<br />

jüngere Leute, die ganz eifrig waren. Ehrenfest nannte<br />

uns immer <strong>de</strong>n 'Dreistern'. Das waren <strong>de</strong>r Herzfeld<br />

und <strong>de</strong>r Kern (und ich). (Kern hatte <strong>de</strong>n Doktor bei Debye<br />

gemacht.) Debye war ja <strong>de</strong>r Vorgänger von Laue<br />

an <strong>de</strong>r Universität (...). Nur <strong>de</strong>r Weiss (...), Pierre Weiss<br />

war damals Experimentalphysiker und Institutsdirektor,<br />

<strong>de</strong>r kam nie ins Kolloquium. Er verbot auch das<br />

Rauchen, das war furchtbar (...). Dem Einstein konnte<br />

man das aber nicht verbieten. Infolge<strong>de</strong>ssen, wenn<br />

es eben zu schlimm war, dann bin ich einfach ins<br />

Einstein'sche Zimmer gegangen (...) und konnte mich<br />

mit ihm unterhalten (...). Das gab dann immer lebhafte<br />

Diskussionen (...) über damals völlig ungelöste Rätsel<br />

<strong>de</strong>r Quantentheorie. Das einzige, was man über<br />

Quantentheorie wirklich wusste, war die P<strong>la</strong>nck'sche<br />

Formel, Schluss (...). Ich bin auch ins Kolleg zu Einstein<br />

gegangen (...), das war (...) auch sehr schön,<br />

aber nicht für Anfänger. Einstein hat sich ja nie richtig<br />

vorbereitet auf die Vorlesung, aber er war eben doch<br />

Einstein (...), wenn er da so herumgemorkst hat, war<br />

es doch sehr interessant (...), immer sehr raffiniert gemacht<br />

und sehr physikalisch vor allen Dingen (...).<br />

References<br />

[1] CPAE, The collected papers of Albert Einstein, Edited by J.<br />

Stachel et al., Vols. 1-12. Princeton: Princeton University Press,<br />

1987–2010.<br />

[2] A. Einstein, On the Re<strong>la</strong>tivity Principle and the Conclusions<br />

Drawn from It, CPAE, Vol. 2, Doc. 47.<br />

[3] A. Einstein, Erinnerungen-Souveniers, <strong>Schweizerische</strong> Hochschulzeitung<br />

28 (Son<strong>de</strong>rheft) (1955), pp. 145-153; reprinted as<br />

"Autobiographische Skizze", in Carl Seelig, ed., Helle Zeit-Dunkle<br />

Zeit. In Memoriam Albert Einstein, Zürich, Europa Ver<strong>la</strong>g, 1955,<br />

pp. 9-17.<br />

[4] A. Einstein, On the Influence of Gravitation on the Propagation<br />

of Light, CPAE, Vol. 3, Doc. 23.<br />

[5] A. Einstein, On the Theory of the Static Gravitational Field,<br />

CPAE, Vol. 4, Doc. 4.<br />

[6] L. Kollros, Erinnerungen-Souveniers, <strong>Schweizerische</strong> Hochschulzeitung<br />

28 (Son<strong>de</strong>rheft) (1955), pp. 169-173; reprinted as<br />

"Erinnerungen eines Kommilitonen", in Carl Seelig, ed., Helle Zeit-<br />

Dunkle Zeit. In Memoriam Albert Einstein, Zürich, Europa Ver<strong>la</strong>g,<br />

1955, pp. 17-31.<br />

[7] A. Einstein and M. Grossmann, Outline of a Generalized Theory<br />

of Re<strong>la</strong>tivity and a Theory of Gravitation, CPAE, Vol. 4, Doc.<br />

13. Entwurf einer verallgemeinerten Re<strong>la</strong>tivitätstheorie und einer<br />

Theorie <strong>de</strong>r Gravitation, Zeitschrift für Mathematik und Physik, 62,<br />

225-259 (1914).<br />

[8] A. Einstein, Research Notes on a Generalized Theory of Gravitation,<br />

August 1912, CPAE, Vol. 4, Doc. 10.<br />

[9] A. Einstein, Letter to H.A. Lorentz, CPAE, Vol. 5, Doc. 470.<br />

[10] N. Straumann, Einstein’s Zürich Notebook and his Journey<br />

to General Re<strong>la</strong>tivity, Ann. Phys. (Berlin) 523, 488 (2011); [arXiv:1106.0900].<br />

[11] N. Straumann, General Re<strong>la</strong>tivity, Graduate Texts in Physics,<br />

Springer Berlin, 2013.<br />

[12] A. Einstein, The Speed of Light and the Statics of the Gravitational<br />

Field, CPAE, Vol. 4, Doc. 3.<br />

[13] A. Einstein, On the Present State of the Problem of Gravitation,<br />

CPAE, Vol. 4, Doc. 17.<br />

51


SPG Mitteilungen Nr. 40<br />

Histoire <strong>de</strong> <strong>la</strong> Physique (9)<br />

Le modèle atomique <strong>de</strong> Bohr: origines, contexte et postérité (part 1)<br />

Jan Lacki, Uni Genève<br />

Nous célébrons cette année le centième anniversaire du<br />

modèle atomique <strong>de</strong> Niels Bohr. Pour le physicien, il est le<br />

commencement <strong>de</strong> <strong>la</strong> route qui al<strong>la</strong>it mener à <strong>la</strong> formu<strong>la</strong>tion<br />

<strong>de</strong> <strong>la</strong> mécanique quantique; pour l'homme <strong>de</strong> <strong>la</strong> rue,<br />

il symbolise à lui tout seul <strong>la</strong> nature quantique du mon<strong>de</strong><br />

atomique. Nombre <strong>de</strong> ses particu<strong>la</strong>rités sont <strong>de</strong>puis passées<br />

dans les esprits et se sont banalisées: c'est oublier<br />

combien ce modèle a été révolutionnaire à son époque et<br />

combien il reste encore aujourd'hui paradoxal, mais <strong>de</strong> ces<br />

paradoxes profonds et fructueux qui ont pavé <strong>la</strong> voie <strong>de</strong><br />

<strong>la</strong> physique contemporaine. L'atome <strong>de</strong> Bohr appartient<br />

ainsi à cette c<strong>la</strong>sse restreinte <strong>de</strong> gran<strong>de</strong>s idées qui ont fait<br />

basculer le cours <strong>de</strong> <strong>la</strong> science. Malgré cette importance,<br />

peu <strong>de</strong> personnes, y compris les physiciens, connaissent le<br />

contexte précis <strong>de</strong> <strong>la</strong> découverte <strong>de</strong> Bohr et <strong>la</strong> formu<strong>la</strong>tion<br />

qu'il donna à ses idées. Son article, tout comme, pour donner<br />

un autre exemple notable, celui d'Einstein initiant <strong>la</strong> re<strong>la</strong>tivité<br />

en 1905, est aujourd'hui peu connu et encore moins<br />

lu. Le centennaire du modèle <strong>de</strong> Bohr offre une excellente<br />

occasion <strong>de</strong> revenir sur cet épiso<strong>de</strong> capital <strong>de</strong> l'histoire <strong>de</strong><br />

<strong>la</strong> physique quantique.<br />

1 Une courte histoire <strong>de</strong> <strong>la</strong> spectroscopie<br />

Quand Bohr entre en scène, l'étu<strong>de</strong> <strong>de</strong>s spectres est vieille<br />

<strong>de</strong> plus d'un <strong>de</strong>mi-siècle, et ses racines remontent encore<br />

plus loin 1 . L'histoire commence avec l'observation du<br />

spectre so<strong>la</strong>ire par le britannique William H. Wol<strong>la</strong>ston, qui<br />

relève en 1802 l'existence <strong>de</strong>s raies sombres; elles intrigueront<br />

ensuite fortement Joseph v. Fraunhofer qui en comptera<br />

476 entre 1814 et 1815. Fraunhofer introduira aussi dans<br />

le champ <strong>de</strong> <strong>la</strong> spectroscopie l'usage <strong>de</strong>s réseaux et obtiendra<br />

ainsi <strong>de</strong>s résultats remarquables sur <strong>la</strong> re<strong>la</strong>tion entre<br />

l'angle d'observation et <strong>la</strong> longueur d'on<strong>de</strong> <strong>de</strong>s raies. Il se<br />

livrera également à l'étu<strong>de</strong> <strong>de</strong>s spectres d'émission provenant<br />

<strong>de</strong> f<strong>la</strong>mmes colorées ou encore d'étincelles produites<br />

par décharge <strong>de</strong>s machines électrostatiques. L'étu<strong>de</strong> <strong>de</strong>s<br />

spectres électriques se poursuivra et se systématisera avec<br />

l'utilisation <strong>de</strong>s bobines d'induction et, dans les années<br />

1845-1850, <strong>de</strong> <strong>la</strong> bobine <strong>de</strong> Ruhmkorff.<br />

Il reviendra à Gustav Kirchhoff (1859) d'apporter <strong>de</strong>s arguments<br />

décisifs en faveur <strong>de</strong> l'interprétation <strong>de</strong>s raies<br />

sombres du soleil comme <strong>de</strong>s raies d'absorption. Observons<br />

que c'est dans le contexte <strong>de</strong> ces travaux que Kirchhoff<br />

parviendra à une découverte capitale pour le développement<br />

ultérieur <strong>de</strong> <strong>la</strong> physique. Réfléchissant sur le<br />

rapport entre les pouvoirs d'émission et d'absorption d'un<br />

corps à une longueur d'on<strong>de</strong> et température données, Kirchhoff<br />

obtient son fameux résultat affirmant son universalité<br />

pour tout corps. C'est le début <strong>de</strong> <strong>la</strong> problématique du<br />

rayonnement du corps noir qui amènera à <strong>la</strong> toute fin du<br />

siècle à <strong>la</strong> loi du rayonnement <strong>de</strong> P<strong>la</strong>nck et <strong>la</strong> découverte<br />

<strong>de</strong>s quanta.<br />

A défaut d'une correspondance stable entre les éléments et<br />

leurs spectres (on a réalisé dans les années 1870 qu'un élément<br />

peut produire plusieurs spectres selon les conditions<br />

physiques ce qui met fin à l'espoir d'une spectrochimie), on<br />

observe tout <strong>de</strong> même d'autres régu<strong>la</strong>rités. On remarque<br />

<strong>de</strong>s analogies entre les spectres d'éléments aux mêmes<br />

propriétés chimiques et on relève <strong>de</strong>s rapports numériques<br />

entre raies d'un même élément (Mascart 1869, Lecoq <strong>de</strong><br />

Boisbaudrant 1869, Cornu 1885). L'observation <strong>de</strong>s doublets<br />

et triplets suggère que l'on a affaire à <strong>de</strong>s harmoniques.<br />

Les tentatives d'expliquer les spectres sur <strong>la</strong> base<br />

d'une mécanique <strong>de</strong> vibrations en analogie avec les phénomènes<br />

sonores s'en trouvent renforcées. Les spectres<br />

à raies correspondraient aux vibrations internes <strong>de</strong>s molécules<br />

alors que leur interaction dans les liqui<strong>de</strong>s et les soli<strong>de</strong>s<br />

conduirait aux spectres continus (Clifton 1866, Stoney<br />

1868, 1871). L'hypothèse d'harmoniques perd cependant<br />

<strong>de</strong> son attrait à partir <strong>de</strong>s années 1880: certaines raies seraient<br />

associées à <strong>de</strong>s harmoniques d'ordre trop élevé par<br />

rapport à ce qui est physiquement p<strong>la</strong>usible. Alors que l'on<br />

ne croit plus à une explication aussi simple <strong>de</strong>s spectres,<br />

<strong>la</strong> conviction <strong>de</strong> l'existence <strong>de</strong> lois bien définies régissant<br />

les fréquences spectrales et susceptibles <strong>de</strong> renseigner sur<br />

les mécanismes internes à l'atome va cependant croissant.<br />

L'histoire <strong>de</strong> <strong>la</strong> spectroscopie franchit une étape capitale<br />

avec l'obtention <strong>de</strong> premières lois empiriques pour les longueurs<br />

d'on<strong>de</strong> <strong>de</strong>s raies. La formule <strong>de</strong> Balmer (1885) pour<br />

les raies d'Ångström <strong>de</strong> l'hydrogène (1868), d'une précision<br />

remarquable, donne une impulsion forte à <strong>la</strong> recherche<br />

<strong>de</strong> formules empiriques <strong>de</strong> plus en plus générales. Cellesci<br />

culminent avec les contributions <strong>de</strong> Rydberg (1890) et<br />

bien sûr <strong>de</strong> Ritz avec son principe <strong>de</strong> combinaisons (1908).<br />

Ces travaux s'appuient <strong>de</strong> manière fondamentale sur <strong>la</strong> découverte<br />

récente, pour <strong>de</strong>s éléments chimiquement semb<strong>la</strong>bles,<br />

<strong>de</strong> l'existence <strong>de</strong> séries homologues aux propriétés<br />

communes comme celles <strong>de</strong> présenter un point d'accumu<strong>la</strong>tion<br />

vers les hautes fréquences avec <strong>de</strong>s intensités <strong>de</strong><br />

raies al<strong>la</strong>nt décroissant.<br />

2 La spectroscopie et <strong>la</strong> structure <strong>de</strong> l'atome: questions<br />

et enjeux au tournant du siècle<br />

1 Pour <strong>de</strong>s étu<strong>de</strong>s détaillées <strong>de</strong> l'histoire <strong>de</strong> <strong>la</strong> spectroscopie, on<br />

consultera H. Dingle, A Hundred Years of Spectroscopy, British Journal<br />

of History of Science, vol. 1 (1963), 199-216 ; M.C. Lawrence, The Role of<br />

Spectroscopy in the Acceptance of an Internally Structured Atom (1860-<br />

1920), thèse <strong>de</strong> doctorat, University of Wisconsin, 1964 ; W. McGucken,<br />

Nineteenth-Century Spectroscopy : <strong>de</strong>velopment of the un<strong>de</strong>rstanding of<br />

spectra, 1802-1897, Johns Hopkins Press, 1969 ; J. C. D. Brand, Lines<br />

of Light: The Sources of Dispersive Spectroscopy, 1800-1930, Gordon<br />

& Breach Science Pub., 1995 ou encore M. Sail<strong>la</strong>rd, Histoire <strong>de</strong> <strong>la</strong><br />

spectroscopie, Cahiers d'histoire et <strong>de</strong> philosophie <strong>de</strong>s sciences, no 26<br />

(1988).<br />

52<br />

L'obtention <strong>de</strong> formules empiriques pour les fréquences<br />

<strong>de</strong> séries <strong>de</strong> raies ne pouvait qu'aviver les tentatives pour<br />

concevoir un modèle <strong>de</strong> l'atome. Des modèles dynamiques<br />

avaient été proposés bien avant l'avènement <strong>de</strong> <strong>la</strong> théorie<br />

<strong>de</strong>s quanta et <strong>la</strong> découverte <strong>de</strong> l'électron. La conception <strong>de</strong><br />

<strong>la</strong> lumière comme ondu<strong>la</strong>tion d'un éther é<strong>la</strong>stique suggérait<br />

que les spectres résultaient <strong>de</strong> vibrations molécu<strong>la</strong>ires<br />

transmises mécaniquement à l'éther (Stokes 1852, Stoney<br />

1868). La question <strong>de</strong> <strong>la</strong> structure atomique qui permettait


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

ces vibrations ne pouvait donner lieu qu'à <strong>de</strong>s spécu<strong>la</strong>tions.<br />

Suivant les travaux <strong>de</strong> Helmholtz sur l'hydrodynamique<br />

<strong>de</strong>s vortex dans un flui<strong>de</strong> idéal (1858), William Thomson<br />

(Lord Kelvin) proposait déjà en 1867 un modèle <strong>de</strong> l'atome<br />

comme un vortex <strong>de</strong> l'éther. Plus que les résultats <strong>de</strong> <strong>la</strong><br />

spectroscopie, <strong>la</strong> découverte <strong>de</strong> l'électron (1896) rendit<br />

obsolètes ces premières tentatives. Avec l'idée d'électrons<br />

comme corpuscules fondamentaux <strong>de</strong> <strong>la</strong> matière, et<br />

donc <strong>de</strong> l'atome, on disposait d'un nouveau principe <strong>de</strong><br />

sa construction en prenant en compte l'émission <strong>de</strong> rayonnement<br />

électromagnétique par <strong>de</strong>s charges en accélération.<br />

Le mécanisme d'excitation mécanique <strong>de</strong> l'éther était<br />

remp<strong>la</strong>cé par celui <strong>de</strong> l'excitation électromagnétique par le<br />

mouvement <strong>de</strong> l'électron <strong>de</strong>venu oscil<strong>la</strong>teur hertzien (Larmor<br />

1897, pressenti par Stoney 1889). La difficulté principale<br />

consistait alors à concilier les conditions assurant les<br />

stabilités mécanique et radiative <strong>de</strong> l'atome. En effet, on<br />

savait <strong>de</strong>puis longtemps (Earnshaw 1831) qu'un système<br />

<strong>de</strong> corpuscules sous l'effet mutuel <strong>de</strong>s forces en inverse du<br />

carré <strong>de</strong> <strong>la</strong> distance ne pouvait donner lieu à <strong>de</strong>s configurations<br />

statiques stables: il fal<strong>la</strong>it donc que les électrons <strong>de</strong><br />

l'atome soient en mouvement. Ce<strong>la</strong> impliquait à son tour<br />

que ces électrons <strong>de</strong>vaient, pour rester confinés et assurer<br />

<strong>la</strong> permanence <strong>de</strong> l'atome, subir nécessairement <strong>de</strong>s accélérations<br />

et donc rayonner <strong>de</strong> l'énergie électromagnétique,<br />

ce qui hypothéquait <strong>de</strong> nouveau <strong>la</strong> stabilité <strong>de</strong> l'atome par<br />

perte <strong>de</strong> son énergie.<br />

Larmor montrait cependant en 1897 que les déperditions<br />

d'énergie pour un système <strong>de</strong> charges accélérées pouvaient<br />

être limitées, voire nulles, si <strong>la</strong> somme vectorielle <strong>de</strong>s<br />

accélérations était nulle. On le voit, <strong>la</strong> satisfaction simultanée<br />

<strong>de</strong> conditions assurant <strong>la</strong> stabilité constituait déjà en<br />

soi un problème formidable mais il fal<strong>la</strong>it encore que les solutions<br />

<strong>de</strong> ce problème soient en nombre suffisant pour expliquer<br />

<strong>la</strong> variété d'éléments chimiques connus. Comme si<br />

ces défis ne suffisaient pas, tout modèle stable <strong>de</strong> l'atome<br />

<strong>de</strong>vait <strong>de</strong> surcroît rendre compte <strong>de</strong>s raies spectrales en<br />

accord avec les formules empiriques <strong>de</strong> Rydberg et Ritz.<br />

Au vu <strong>de</strong> ces multiples exigences, souvent contradictoires,<br />

il n'est pas étonnant que peu <strong>de</strong> modèles atomiques réussissaient<br />

à les satisfaire toutes et encore, ils ne le faisaient<br />

qu'au prix d'hypothèses au caractère ad hoc marqué 2 . En<br />

1901, James H. Jeans proposait pour chaque électron <strong>de</strong><br />

l'atome l'existence d'un partenaire positif <strong>de</strong> même masse.<br />

Dans l'état normal <strong>de</strong> l'atome, <strong>la</strong> configuration d'ensemble<br />

pouvait être stable grâce à l'hypothèse d'une force compensant<br />

l'interaction électrostatique ; le spectre résultait<br />

<strong>de</strong>s oscil<strong>la</strong>tions électroniques autour <strong>de</strong>s positions d'équilibre.<br />

Avec ses "dynami<strong>de</strong>s", Philipp Lenard concevait au<br />

contraire <strong>de</strong>s paires <strong>de</strong> charges où le partenaire <strong>de</strong> l'électron<br />

avait une masse sensiblement plus gran<strong>de</strong> (1903).<br />

Nous nous souvenons mieux aujourd'hui <strong>de</strong>s conceptions<br />

<strong>de</strong> Jean Perrin qui, en 1901, suggérait un atome p<strong>la</strong>nétaire<br />

avec une charge positive retenant les charges négatives en<br />

orbite. Le Japonais Hantaro Nagaoka 1904 s'inspirait pour<br />

sa part <strong>de</strong>s réflexions <strong>de</strong> jeune Maxwell sur <strong>la</strong> stabilité gravitationnelle<br />

<strong>de</strong>s anneaux <strong>de</strong> Saturne (1860) pour proposer<br />

un modèle saturnien où <strong>de</strong>s anneaux <strong>de</strong> charges négatives<br />

en orbite présentent <strong>de</strong>s oscil<strong>la</strong>tions responsables <strong>de</strong>s<br />

2 Pour une étu<strong>de</strong> <strong>de</strong>s modèles atomiques proposés dans le cadre <strong>de</strong><br />

<strong>la</strong> physique c<strong>la</strong>ssique, voir Bruno Carazza et Nadia Robotti, Exp<strong>la</strong>ining<br />

Atomic Spectra within C<strong>la</strong>ssical Physics: 1897-1913, Annals of Science,<br />

vol. 59 (2002), 299-320.<br />

raies. Comme il s'avéra rapi<strong>de</strong>ment, le modèle <strong>de</strong> Nagaoka,<br />

basé sur les forces électrostatiques et non gravitationnelles,<br />

présentait en fait <strong>de</strong>s problèmes <strong>de</strong> stabilité mécanique,<br />

un handicap plus sérieux que celui <strong>de</strong> <strong>la</strong> déperdition<br />

d'énergie par rayonnement qui pouvait être résolu selon les<br />

lignes suggérées par Larmor.<br />

Dès 1903, J. J. Thomson concevait à son tour un modèle<br />

qui marqua pendant quelques années les esprits. Selon sa<br />

conception, <strong>la</strong> charge positive <strong>de</strong> l'atome était distribuée<br />

<strong>de</strong> manière uniforme dans tout le volume <strong>de</strong> l'atome. Les<br />

électrons, distribués en anneaux, tournaient à l'intérieur.<br />

S'appuyant sur les observations <strong>de</strong> Larmor, Thomson mettait<br />

beaucoup d'espoir dans le fait que ses configurations<br />

électroniques, pourvu qu'un nombre suffisant d'électrons<br />

soit considéré, présentaient un moment dipo<strong>la</strong>ire total nul,<br />

ce qui assurait, à cet ordre, l'absence <strong>de</strong> rayonnement<br />

électromagnétique. Peu <strong>de</strong> temps après le même Thomson<br />

montrait cependant que le nombre d'électrons dans l'atome<br />

<strong>de</strong>vait être <strong>de</strong> même ordre <strong>de</strong> gran<strong>de</strong>ur que le nombre atomique<br />

(1906). Ce<strong>la</strong> mettait fin à <strong>de</strong> nombreux modèles qui<br />

multipliaient le nombre <strong>de</strong>s électrons à outrance, à commencer<br />

par le sien.<br />

La contrainte sur le nombre d'électrons présents dans<br />

l'atome permit à l'époque <strong>de</strong> trancher aussi l'importante<br />

question <strong>de</strong> savoir si l'ensemble <strong>de</strong> raies du spectre pouvait<br />

être imputé à une seule source, un atome dans une<br />

seule configuration, ou si <strong>de</strong>s configurations différentes<br />

d'un même atome, voire <strong>de</strong>s variétés atomiques différentes,<br />

<strong>de</strong>vaient être envisagées pour chaque raie. Comme<br />

les solutions à une seule source pour l'ensemble du spectre<br />

impliquaient un nombre prohibitif d'électrons 3 , on finit par<br />

pencher en faveur <strong>de</strong> configurations atomiques différentes<br />

pour chaque raie.<br />

Une étu<strong>de</strong> <strong>de</strong>s modèles atomiques ne <strong>de</strong>vrait pas à ce<br />

sta<strong>de</strong> omettre les conceptions du suisse Walter Ritz et <strong>de</strong><br />

son compatriote Arthur Schidlof. Comme j'eus déja l'occasion<br />

<strong>de</strong> traiter du parcours scientifique <strong>de</strong> ces <strong>de</strong>ux pionniers<br />

<strong>de</strong> <strong>la</strong> physique théorique suisse dans les Communications<br />

4 je terminerai juste sur une remarque. Les modèles<br />

<strong>de</strong> Ritz étaient caractéristiques <strong>de</strong> leur temps. Tout comme<br />

ceux <strong>de</strong> ses contemporains, ils étaient a posteriori handicapés<br />

par <strong>la</strong> conjonction d'une physique c<strong>la</strong>ssique et d'hypothèses<br />

ad hoc. Schidlof, en prenant en compte l'existence<br />

du quantum d'action (1911), apparaît au contraire se mettre<br />

résolument du côté d'une physique nouvelle 5 . Sa pensée<br />

est pourtant encore insuffisamment affranchie <strong>de</strong> <strong>la</strong> tradition<br />

c<strong>la</strong>ssique: elle ne visait pas tant l'obtention d'un modèle<br />

quantique <strong>de</strong> l'atome qu'une explication <strong>de</strong> l'existence<br />

et <strong>de</strong> <strong>la</strong> valeur du quantum d'action <strong>de</strong> P<strong>la</strong>nck. Ce sera tout<br />

le contraire avec <strong>la</strong> contribution <strong>de</strong> Bohr.<br />

3 L'avancée <strong>de</strong> Niels Bohr<br />

Quand Bohr propose son modèle, les quanta viennent à<br />

peine d'être acceptés comme une réalité physique incon-<br />

3 Voir Carazza et Robotti, op. cit., pp. 313-315.<br />

4 J. Lacki, Arthur Schidlof, un pionnier <strong>de</strong> <strong>la</strong> physique théorique suisse,<br />

Communications <strong>de</strong> <strong>la</strong> SSP, no 34, mai 2011, 48-51; Walter Ritz (1878-<br />

1909), the revolutionary c<strong>la</strong>ssical physicist, Communications <strong>de</strong> <strong>la</strong> SSP,<br />

no 35, septembre 2011, 26-29.<br />

5 A. Schidlof, Zur Aufklärung <strong>de</strong>r universellen elektrodynamischen<br />

Be<strong>de</strong>utung <strong>de</strong>r P<strong>la</strong>nckschen Strahlungskonstanten h, Annalen <strong>de</strong>r Physik,<br />

vol. 340 (1911), 90-100.<br />

53


SPG Mitteilungen Nr. 40<br />

tournable. Autant on salue en 1900 <strong>la</strong> loi du rayonnement<br />

du corps noir <strong>de</strong> P<strong>la</strong>nck comme une gran<strong>de</strong> réussite, autant<br />

on fait peu <strong>de</strong> cas, pour ne pas dire qu'on rejette, l'explication<br />

("désespérée" comme l'avait qualifiée lui-même<br />

P<strong>la</strong>nck) <strong>de</strong> cette loi en termes <strong>de</strong> discontinuités dans les<br />

échanges énergétiques entre matière et rayonnement. Des<br />

années après <strong>la</strong> découverte <strong>de</strong> P<strong>la</strong>nck on en cherchera encore<br />

une justification "c<strong>la</strong>ssique". Il y a pourtant <strong>de</strong>s esprits<br />

qui prennent les quanta d'emblée au sérieux, ainsi le jeune<br />

Einstein qui contribuera pour beaucoup à leur donner une<br />

respectabilité. Dans l'un <strong>de</strong>s articles <strong>de</strong> sa "merveilleuse<br />

année" 1905 Einstein montre que dans le régime <strong>de</strong> Wien<br />

(gran<strong>de</strong>s fréquences/petites températures) les propriétés<br />

thermodynamiques d'un volume d'énergie électromagnétique<br />

monochromatique <strong>de</strong> fréquence n sont thermodynamiquement<br />

semb<strong>la</strong>bles à celles d'un gaz <strong>de</strong> corpuscules<br />

d'énergie individuelle hn 6 . Ces "grains" d'énergie, dont<br />

Einstein se gar<strong>de</strong> encore bien d'affirmer l'existence physique<br />

autonome, signalent un aspect corpuscu<strong>la</strong>ire <strong>de</strong> <strong>la</strong><br />

lumière: plus tard Einstein montrera, toujours dans le cadre<br />

d'une analyse <strong>de</strong> propriétés énergétiques, que cet aspect<br />

cohabite avec celui, c<strong>la</strong>ssique et familier, <strong>de</strong>s phénomènes<br />

ondu<strong>la</strong>toires 7 . C'est l'application <strong>de</strong> <strong>la</strong> nature "granu<strong>la</strong>ire"<br />

<strong>de</strong> l'énergie électromagnétique à l'explication <strong>de</strong> l'effet photoélectrique,<br />

plutôt que <strong>la</strong> re<strong>la</strong>tivité, qui apportera à Einstein<br />

son prix Nobel 8 . En 1907 Einstein récidive sur le chemin <strong>de</strong><br />

l'exploration <strong>de</strong>s conséquences "quantiques" <strong>de</strong> <strong>la</strong> loi <strong>de</strong><br />

P<strong>la</strong>nck: si on comprend cette <strong>de</strong>rnière comme remp<strong>la</strong>cant<br />

l'énergie moyenne c<strong>la</strong>ssique d'un oscil<strong>la</strong>teur unidimensionnel,<br />

kT, par l'expression:<br />

kT "<br />

ho<br />

ho<br />

e kT - 1<br />

alors pourquoi ne pas opérer cette substitution pour les oscil<strong>la</strong>teurs<br />

matériels modélisant <strong>la</strong> matière dans les soli<strong>de</strong>s ?<br />

9<br />

Le résultat permet d'expliquer immédiatement <strong>la</strong> décroissance<br />

<strong>de</strong>s chaleurs spécifiques à basse température, l'une<br />

<strong>de</strong>s énigmes qui, vers <strong>la</strong> fin du XIX e siècle, constituait un<br />

argument puissant contre <strong>la</strong> théorie cinétique <strong>de</strong>s gaz et<br />

contre toute reconstruction <strong>de</strong> <strong>la</strong> thermodynamique sur <strong>la</strong><br />

base d'une mécanique <strong>de</strong>s constituants atomiques: grâce<br />

à Einstein, on comprend que ce n'était pas tant cette approche<br />

qui était fautive, mais les lois mécaniques sur les-<br />

6 Über einen die Erzeugung und Verwandlung <strong>de</strong>s Lichtes betreffen<strong>de</strong>n<br />

heuristischen Gesichtspunkt, Annalen <strong>de</strong>r Physik, vol. 17 (1905), pp. 132-<br />

148<br />

7 Entwicklung unserer Anschauungen über das Wesen und die<br />

Konstitution <strong>de</strong>r Strahlung, Physikalische Zeitschrift, vol. 10 (1909),<br />

817-825, conférence donnée lors du 81 e congrès <strong>de</strong> <strong>la</strong> Gesellschaft<br />

Deutscher Naturforscher à Salzburg. Einstein y argumente aussi en faveur<br />

d'un quantum <strong>de</strong> lumière aux propriétés résolument corpuscu<strong>la</strong>ires. Il<br />

faudra cependant encore <strong>de</strong>s années avant que l'idée ne s'impose: les<br />

expériences <strong>de</strong> <strong>la</strong> diffusion <strong>de</strong> Compton (1923) jouèrent ici un rôle décisif.<br />

Il est intéressant d'observer que Niels Bohr lui-même rejettera intialement<br />

<strong>la</strong> réalité <strong>de</strong>s corpuscules <strong>de</strong> lumière préférant dans un premier temps<br />

voir dans les aspects corpuscu<strong>la</strong>ires une manifestation <strong>de</strong> l'insuffisance,<br />

à l'échelle atomique, <strong>de</strong>s <strong>de</strong>scriptions spatio-temporelles, voir par<br />

exemple Dugald Murdoch, Niels Bohr's philosophy of physics, Cambridge<br />

University Press, 1989.<br />

8 On connaît bien les hésitations du comité du Nobel <strong>de</strong> physique à<br />

récompenser Einstein pour <strong>la</strong> re<strong>la</strong>tivité, voir R. M. Friedman, The Politics<br />

of Excellence: Behind the Nobel Prize in Science, W. H. Freeman Books,<br />

2001.<br />

9 Die P<strong>la</strong>ncksche Theorie <strong>de</strong>r Strahlung und die Theorie <strong>de</strong>r spezifischen<br />

Wärme, Annalen <strong>de</strong>r Physik, vol. 22 (1907),180-190.<br />

54<br />

quelles elle s'appuyait 10 .<br />

Ces <strong>de</strong>ux succès, où le génie d'Einstein se révèle autant<br />

que dans son article sur l'électrodynamique <strong>de</strong>s corps en<br />

mouvement, contribuent plus que tout autre, à convaincre<br />

<strong>la</strong> communauté <strong>de</strong> l'intérêt <strong>de</strong> l'hypothèse quantique et,<br />

progressivement, <strong>de</strong> l'existence réelle <strong>de</strong>s quanta. La première<br />

conférence Solvay en 1911 dont nous connaissons<br />

<strong>la</strong> photographie emblématique est consacrée à "La théorie<br />

du rayonnement et les quanta": on peut dire que ses travaux<br />

officialisent les quanta comme partie intégrante <strong>de</strong> <strong>la</strong><br />

physique 11 . Cependant, nous sommes encore loin d'une<br />

modification que les quanta opéreraient sur les lois <strong>de</strong>s<br />

systèmes individuels: dans ses <strong>de</strong>ux travaux Einstein tire<br />

les conséquences <strong>de</strong> l'existence <strong>de</strong>s quanta à partir d'un<br />

travail d'analyse <strong>de</strong>s lois phénoménologiques obtenues par<br />

ses prédécesseurs (Wien, P<strong>la</strong>nck, etc.) mais il ne les dérive<br />

pas d'une modification postulée <strong>de</strong>s lois <strong>de</strong> base <strong>de</strong> <strong>la</strong> mécanique<br />

ou <strong>de</strong> l'électrodynamique affectant les constituants<br />

élementaires 12 . Bohr se confrontera en revanche frontalement<br />

à ces lois c<strong>la</strong>ssiques et c'est précisément pour cette<br />

raison que sa contribution est une étape capitale sur le chemin<br />

<strong>de</strong> <strong>la</strong> mécanique quantique.<br />

A l'époque <strong>de</strong> <strong>la</strong> formu<strong>la</strong>tion <strong>de</strong> son modèle Niels Bohr est<br />

<strong>de</strong>puis mars 1912 col<strong>la</strong>borateur au <strong>la</strong>boratoire <strong>de</strong> Rutherford<br />

à Manchester. Il vient à peine <strong>de</strong> défendre sa thèse<br />

à Copenhague sur "<strong>la</strong> théorie électronique <strong>de</strong>s métaux"<br />

(1911). Après un séjour décevant chez J. J. Thomson à<br />

Cambridge qui voit les <strong>de</strong>ux hommes s'affronter à propos<br />

du... modèle atomique <strong>de</strong> Thomson, Bohr se tourne<br />

vers Rutherford 13 . Celui-ci vient à l'époque d'apporter <strong>de</strong>s<br />

arguments décisifs contre <strong>la</strong> conception <strong>de</strong> Thomson en<br />

montrant que les expériences <strong>de</strong> <strong>la</strong> diffusion à <strong>la</strong>rge angle<br />

<strong>de</strong>s particules alpha concluent aux effets d'une déflection<br />

unique sur <strong>de</strong>s centres <strong>de</strong> diffusion intraatomiques: le<br />

noyau atomique est découvert 14 . L'accueil que Bohr reçoit<br />

<strong>de</strong> <strong>la</strong> part du Néo-zé<strong>la</strong>ndais est d'emblée meilleur que celui<br />

que lui a reservé Thomson. Rutherford est convaincu <strong>de</strong><br />

l'importance <strong>de</strong>s idées <strong>de</strong> P<strong>la</strong>nck et encourage les efforts<br />

<strong>de</strong> son jeune collègue. Dans son <strong>la</strong>boratoire Bohr travaille<br />

sur l'absorption <strong>de</strong>s particules alpha par <strong>la</strong> matière et c'est<br />

pour lui l'occasion <strong>de</strong> se rapprocher encore plus <strong>de</strong> <strong>la</strong> pro-<br />

10 Pour les critiques <strong>de</strong> <strong>la</strong> théorie cinétique au XIXe siècle, voir S. Brush,<br />

The kind of motion we call heat. A History of the Kinetic Theory of Gases in<br />

the Nineteenth Century, North Hol<strong>la</strong>nd, 1986.<br />

11 C'est Walter Nernst, impressionné par les travaux d'Einstein, qui<br />

persua<strong>de</strong> le riche industriel Ernest Solvay <strong>de</strong> financer une conférence<br />

solennelle consacrée à <strong>la</strong> physique quantique, voir D. Kormos Barkan,<br />

The Witches' Sabbath: The First International Solvay Congress in Physics,<br />

Science in Context, vol. 6 (1993), 59-82. aussi M.-C. Bustamante, Paul<br />

Langevin et le Conseil Solvay <strong>de</strong> 1911, Images <strong>de</strong> <strong>la</strong> physique, 2011, 3-9.<br />

12 Ce<strong>la</strong> permet <strong>de</strong> comprendre comment Einstein est dans ces<br />

années indiscutablement un père fondateur <strong>de</strong> <strong>la</strong> théorie quantique alors<br />

qu'il <strong>de</strong>viendra, un dizaine d'années plus tard, un féroce critique <strong>de</strong> <strong>la</strong><br />

mécanique quantique. L'existence <strong>de</strong>s quanta n'entrait à ce moment pas<br />

en conflit avec les convictions profon<strong>de</strong>s d'Einstein sur <strong>la</strong> réalité et sur<br />

<strong>la</strong> manière dont nous <strong>de</strong>vrions <strong>la</strong> décrire: les thèmes d'indéterminisme,<br />

<strong>de</strong> l'inexistence <strong>de</strong> propriétés objectives <strong>de</strong>s systèmes, contre lesquels<br />

Einstein se battra jusqu'à <strong>la</strong> fin, n'étaient pas (encore) affleurants à<br />

<strong>la</strong> surface <strong>de</strong> <strong>la</strong> nouvelle physique quantique. Tout changera avec <strong>la</strong><br />

mécanique quantique et surtout l'interprétation qu'en prônera Bohr.<br />

13 Dans son survol "60 years of quantum mechanics", E. U. Condon<br />

rapporte que Bohr, suite à son désaccord avec Thomson, avait été<br />

"poliment invité" à aller voir ailleurs, voir Physics Today, vol. 15 (1962), 45.<br />

14 The scattering of alpha and beta particles by matter and the structure<br />

of the atom, Philosophical Magazine, vol. 21 (1911), 669-688.


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

blématique <strong>de</strong> l'atome 15 . Le modèle nucléaire <strong>de</strong> l'atome<br />

suggéré par Rutherford offre un cadre prometteur mais entraîne<br />

aussi son lot <strong>de</strong> problèmes. En particulier, Bohr réalise<br />

que les lois dynamiques c<strong>la</strong>ssiques sont impuissantes<br />

à fixer seules une échelle pour sa taille. En termes d'analyse<br />

dimensionnelle, il manque un ingrédient: le modèle <strong>de</strong><br />

Rutherford faisant intervenir les masses et les charges <strong>de</strong>s<br />

électrons, on peut se convaincre qu'il est impossible <strong>de</strong><br />

construire à partir <strong>de</strong> là une constante ayant <strong>la</strong> dimension<br />

d'une longueur. Tout change cependant si l'on introduit<br />

<strong>la</strong> constante <strong>de</strong> P<strong>la</strong>nck: on peut alors former l'expression<br />

h 2 /me 2 qui a non seulement <strong>la</strong> bonne dimension mais aussi<br />

le bon ordre <strong>de</strong> gran<strong>de</strong>ur atomique (h 2 /me 2 2·10 -10 m). La<br />

stratégie <strong>de</strong> Bohr al<strong>la</strong>it dès lors différer considérablement<br />

<strong>de</strong> celle <strong>de</strong> ses pré<strong>de</strong>cesseurs comme Schidlof. Alors que<br />

ce <strong>de</strong>rnier espérait, comme on l'a vu, justifier <strong>la</strong> valeur <strong>de</strong><br />

<strong>la</strong> constante h sur <strong>la</strong> base d'un mécanisme atomique décrit<br />

en termes c<strong>la</strong>ssiques, Bohr renverse <strong>la</strong> perspective en<br />

prenant acte <strong>de</strong> l'existence du quantum d'action et <strong>de</strong> sa<br />

valeur h pour rendre compte <strong>de</strong> <strong>la</strong> structure <strong>de</strong> l'atome et<br />

dériver les propriétés <strong>de</strong> son spectre. Il fal<strong>la</strong>it encore qu'il<br />

comprenne comment lier <strong>la</strong> constante <strong>de</strong> P<strong>la</strong>nck au champ<br />

<strong>de</strong> ses recherches. De retour à Copenhague dès septembre<br />

1912, Bohr ne prenait pas encore en considération ce que<br />

les données spectroscopiques pouvaient lui enseigner mais<br />

dès qu'il eut compris l'importance <strong>de</strong>s formules établies<br />

par Balmer, Rydberg et Ritz, les pièces du puzzle commencèrent<br />

à s'assembler: "dès que je pris connaissance <strong>de</strong> <strong>la</strong><br />

formule <strong>de</strong> Balmer, toute cette affaire <strong>de</strong>vint c<strong>la</strong>ire" 16 .<br />

Nous pouvons maintenant examiner les idées fortes du<br />

modèle <strong>de</strong> Bohr, non pas tant pour les découvrir (elles sont<br />

passées <strong>la</strong>rgement dans notre culture), mais pour examiner<br />

comment Bohr les exposa à l'origine dans sa publication 17 .<br />

Pour un atome constitué d'une charge positive E autour <strong>de</strong><br />

<strong>la</strong>quelle orbite une charge égale mais <strong>de</strong> signe opposé e,<br />

l'énergie totale est:<br />

W T V<br />

1 2<br />

= + = mv +<br />

Ee<br />

2<br />

2 r<br />

La condition <strong>de</strong> stabilité pour une orbite circu<strong>la</strong>ire <strong>de</strong> rayon<br />

r et fréquence n donne<br />

mv<br />

r<br />

2<br />

Ee<br />

2<br />

=- m r<br />

Ee<br />

2<br />

, ~ =-<br />

2<br />

,<br />

r<br />

r<br />

et, pour l'atome d'hydrogène (E = -e),<br />

2<br />

2<br />

2<br />

m r<br />

e<br />

2 e<br />

2<br />

~ =<br />

2<br />

( ~ =<br />

3<br />

= ( 2ro)<br />

.<br />

r<br />

mr<br />

2<br />

Ainsi W =-<br />

e<br />

, alors que o<br />

2r<br />

2<br />

3<br />

=-<br />

8W<br />

2 4<br />

.<br />

4r<br />

e m<br />

15 On the theory of the <strong>de</strong>crease of velocity of moving electrified particles<br />

on passing through matter, Philosophical Magazine, vol. 25 (1913), 10-31.<br />

16 "As soon as I saw Balmer's formu<strong>la</strong>, the whole thing was immediately<br />

clear to me", cité par Max Jammer, The conceptual <strong>de</strong>velopement of<br />

quantum mechanics, McGraw Hill, 1966, p. 77.<br />

17 On the constitution of atoms and molecules, Philosophical Magazine,<br />

vol. 26 (1913), 1-25, 476-502, 857-875.<br />

La donnée <strong>de</strong> l'energie détermine donc entièrement l'orbite<br />

circu<strong>la</strong>ire correspondante 18 .<br />

Mais comment faire entrer l'hypothèse <strong>de</strong>s quanta, et <strong>la</strong> dimension<br />

<strong>de</strong> h, dans le problème <strong>de</strong> <strong>la</strong> structure <strong>de</strong> l'atome ?<br />

Certes, <strong>la</strong> quantification <strong>de</strong>s échanges énergétiques entre<br />

<strong>la</strong> matière et le rayonnement doit avoir une conséquence<br />

au niveau <strong>de</strong> <strong>la</strong> structure atomique, mais comment faire le<br />

lien ? Bohr propose <strong>de</strong> considérer le processus <strong>de</strong> <strong>la</strong> formation<br />

<strong>de</strong> l'atome par <strong>la</strong> capture d'un électron par le noyau.<br />

Infiniment loin du noyau l'électron est libre, W = 0. Supposons<br />

qu'il soit capturé sur une orbite d'énergie W négative<br />

(état lié !). Par <strong>la</strong> conservation <strong>de</strong> l'énergie, une quantité<br />

d'énergie positive, -W, doit être libérée dans le processus:<br />

Bohr, suivant l'hypothèse quantique, suppose que c'est<br />

sous <strong>la</strong> forme d'un rayonnement d'un certain nombre t (entier<br />

!) <strong>de</strong> quanta d'énergie. Il pose:<br />

- W = xhol / xh o , (1) 2<br />

avec <strong>la</strong> fréquence du quantum rayonné n' posée égale à<br />

<strong>la</strong> moitié (!) <strong>de</strong> <strong>la</strong> fréquence <strong>de</strong> révolution mécanique <strong>de</strong><br />

l'orbite <strong>de</strong> capture. L'hypothèse <strong>de</strong> Bohr fixe, parmi le<br />

continuum <strong>de</strong>s énergies un nombre infini, mais néanmoins<br />

discret, d'entre elles :<br />

2 4<br />

- W =<br />

2r<br />

e m 1<br />

2 2<br />

. (2)<br />

h x<br />

La différence <strong>de</strong>s énergies, pour <strong>de</strong>ux nombres t 1<br />

et t 2<br />

donnés est alors :<br />

2 4<br />

D W =-<br />

2r<br />

e m 1 1<br />

2 c 2<br />

-<br />

2 m ;<br />

h x2<br />

x1<br />

Si <strong>de</strong> tels processus <strong>de</strong> changement <strong>de</strong> niveau énergétique<br />

surviennent dans l'atome, on doit supposer, avec Bohr,<br />

qu'ils donnent lieu à une émission/absorption <strong>de</strong> quanta<br />

d'énergie <strong>de</strong> rayonnement électromagnétique <strong>de</strong> frequence<br />

n' donnée par <strong>la</strong> formule<br />

2 4<br />

hol =- DW<br />

=<br />

2r<br />

e m 1 1<br />

2 c 2<br />

-<br />

2 m .<br />

h x2<br />

x1<br />

En posant t 2<br />

= 2, et t 1<br />

= 3; 4; 5; ... <strong>la</strong> formule ci-<strong>de</strong>ssus<br />

reproduit les valeurs <strong>de</strong>s fréquences <strong>de</strong>s raies spectrales<br />

<strong>de</strong> <strong>la</strong> série <strong>de</strong> Balmer (1885) exprimée, dans <strong>la</strong> formule <strong>de</strong><br />

Rydberg (1890), par:<br />

ol = Rcc 1 1<br />

2<br />

-<br />

2 m .<br />

x2<br />

x1<br />

Bohr avait donc réussi à obtenir <strong>la</strong> valeur <strong>de</strong> <strong>la</strong> constante <strong>de</strong><br />

Rydberg R à partir <strong>de</strong> constantes élémentaires,<br />

2 4<br />

R =<br />

2r<br />

e m<br />

3<br />

.<br />

ch<br />

18 En fait on peut montrer que le résultat s'applique aussi aux orbites<br />

elliptiques: leur grand axe 2r et <strong>la</strong> fréquence <strong>de</strong> rotation <strong>de</strong> l'électron n sont<br />

déterminés par <strong>la</strong> donnée <strong>de</strong> l'énergie <strong>de</strong> l'orbite et ne <strong>de</strong>pen<strong>de</strong>nt pas <strong>de</strong><br />

<strong>la</strong> valeur <strong>de</strong> l'excentricité.<br />

Pour <strong>de</strong>s raisons éditoriales, <strong>la</strong> suite <strong>de</strong> cet article apparaîtra dans les prochaines Communications <strong>de</strong> <strong>la</strong> SSP, no. 41.<br />

55


SPG Mitteilungen Nr. 40<br />

Geschichte <strong>de</strong>s SIN<br />

Buchbesprechung von Andreas Pritzker<br />

Im Hinblick auf Scherrers Emeritierung 1960 wählte <strong>de</strong>r<br />

Bun<strong>de</strong>srat 1959 Jean-Pierre B<strong>la</strong>ser zu <strong>de</strong>ssen Nachfolger<br />

an <strong>de</strong>r ETH. B<strong>la</strong>ser "erbte" die Zyklotronp<strong>la</strong>nungsgruppe.<br />

Unter <strong>de</strong>m Eindruck <strong>de</strong>r weltweiten Entwicklung strebte<br />

B<strong>la</strong>ser allerdings anstelle eines Zyklotrons für die Kernphysik<br />

eine Maschine an, die <strong>de</strong>n Einstieg in die Hochenergiephysik<br />

ermöglichte. Er wur<strong>de</strong> dabei unterstützt durch <strong>de</strong>n<br />

Theoretiker Res Jost, <strong>de</strong>r die Hochenergiephysik als fruchtbares<br />

künftiges Arbeitsgebiet betrachtete.<br />

B<strong>la</strong>ser, <strong>de</strong>r En<strong>de</strong> Februar 2013 seinen 90. Geburtstag feiern<br />

konnte, verfolgte dabei die I<strong>de</strong>e eines grossen Teilchenbeschleunigers,<br />

<strong>de</strong>n die ETH für sämtliche schweizerischen<br />

Universitäten betreiben sollte. In <strong>de</strong>n 1950er Jahren waren<br />

weltweit mehrere Maschinen im Bereich um 500 MeV gebaut<br />

wor<strong>de</strong>n. Sie ermöglichten es, Mesonen künstlich zu<br />

erzeugen und vorerst als solche zu studieren. Der nächste<br />

Schritt war die I<strong>de</strong>e, Mesonen als Werkzeuge einzusetzen.<br />

Die Mesonen wur<strong>de</strong>n mit Protonenbeschleunigern erzeugt.<br />

Für die sogenannten Mesonenfabriken waren hohe Protonenströme<br />

- man sprach von 100 Mikroamp - notwendig.<br />

Andreas Pritzker: Geschichte <strong>de</strong>s SIN. 188 Seiten,<br />

ISBN 978-3-905993-10-3, munda-Ver<strong>la</strong>g.<br />

Das Buch erzählt die Geschichte <strong>de</strong>s <strong>Schweizerische</strong>n Instituts<br />

für Nuklearforschung (SIN). Das Institut wur<strong>de</strong> 1968<br />

gegrün<strong>de</strong>t und ging 1988 ins Paul Scherrer Institut (PSI)<br />

über. Die Gründung <strong>de</strong>s SIN erfolgte in einer Zeit, als die<br />

Physik als Schlüsseldisziplin für die technologische und<br />

gesellschaftliche Entwicklung galt. Der Schritt war für ein<br />

kleines Land wie die Schweiz ungewöhnlich und zeugte<br />

von Mut und Weitsicht. Ungewöhnlich waren in <strong>de</strong>r Folge<br />

die Leistungen <strong>de</strong>s SIN im weltweiten Vergleich sowie sein<br />

Einfluss auf die schweizerische, teils auf die internationale<br />

Wissenschaftspolitik.<br />

Die Ausgangs<strong>la</strong>ge war günstig. Die ETH Zürich war bereits<br />

in <strong>de</strong>n 1930er Jahren führend im Gebiet <strong>de</strong>r Kernphysik.<br />

Zu<strong>de</strong>m wur<strong>de</strong> in <strong>de</strong>n 1950er Jahren das CERN in Genf gegrün<strong>de</strong>t.<br />

An bei<strong>de</strong>m war Paul Scherrer, Leiter <strong>de</strong>s Physikalischen<br />

Instituts <strong>de</strong>r ETH, massgeblich beteiligt. Er sorgte<br />

früh dafür, dass an <strong>de</strong>r ETH Teilchenbeschleuniger als Forschungsinstrumente<br />

eingesetzt wur<strong>de</strong>n. Eines davon war<br />

das berühmte ETH-Zyklotron. Als sich <strong>de</strong>ssen Nutzungsmöglichkeiten<br />

in <strong>de</strong>n 1950er Jahren allmählich erschöpften,<br />

grün<strong>de</strong>te Scherrer die Zyklotronp<strong>la</strong>nungsgruppe, welche<br />

<strong>de</strong>n Bau einer leistungsfähigeren Maschine für die Kernphysik<br />

zum Ziel hatte. Bereits diese hätte <strong>de</strong>n Rahmen<br />

eines einzelnen Hochschulinstituts gesprengt. In <strong>de</strong>r P<strong>la</strong>nungsgruppe<br />

waren <strong>de</strong>nn auch die Universitäten von Basel<br />

und Zürich vertreten.<br />

56<br />

Der Ringbeschleuniger <strong>de</strong>s SIN mit seinen Erbauern im September<br />

1973<br />

Hans Wil<strong>la</strong>x, <strong>de</strong>n bereits Scherrer als Physiker angestellt<br />

hatte, entwarf das zweistufige Zyklotron-Konzept, das später<br />

unter seiner Leitung verwirklicht wur<strong>de</strong>. Obschon <strong>de</strong>m<br />

Projekt, wie bei solchen Vorhaben üblich, Opposition aus<br />

Hochschulkreisen erwuchs, waren Bun<strong>de</strong>srat Tschudi und<br />

ETH-Präsi<strong>de</strong>nt Pallmann entschlossen, es zu verwirklichen,<br />

weil sie sich starke Impulse für <strong>de</strong>n Forschungsstandort<br />

Schweiz versprachen. Die Eidgenössischen Räte bewilligten<br />

1965 (im Rahmen einer Baubotschaft, welche auch die<br />

ersten Bauten <strong>de</strong>r ETH-Hönggerberg umfasste) einen Baukredit<br />

von beinahe 100 Millionen Franken. Und auf Anfang<br />

1968 wur<strong>de</strong> das SIN als Annexanstalt <strong>de</strong>r ETH gegrün<strong>de</strong>t.<br />

Von 1966 an entwickelten zumeist junge, begabte Physiker<br />

unter <strong>de</strong>r Leitung von B<strong>la</strong>ser und Wil<strong>la</strong>x an <strong>de</strong>r ETH, dann<br />

bei <strong>de</strong>r Maschinenfabrik Oerlikon das SIN-Zyklotron, und<br />

ab 1968 wur<strong>de</strong> das Institut auf <strong>de</strong>r grünen Wiese in Villigen,<br />

gegenüber <strong>de</strong>m ebenfalls zur ETH gehören<strong>de</strong>n Eidgenössischen<br />

Institut für Reaktorforschung (EIR) erbaut. Im Februar<br />

1974 war es dann soweit: das SIN produzierte die<br />

ersten Pionen.


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

Gute Stimmung im Kontrollraum <strong>de</strong>s SIN am 24. Februar 1974, als<br />

die ersten Pionen produziert wur<strong>de</strong>n.<br />

Die Beschleunigeran<strong>la</strong>ge erfüllte sämtliche Erwartungen.<br />

Sie wur<strong>de</strong> in <strong>de</strong>n folgen<strong>de</strong>n Jahrzehnten <strong>la</strong>ufend ausgebaut<br />

und erreichte in ihrem Einsatzbereich die Weltspitze. Ihre<br />

Qualität <strong>la</strong>g aber darin, dass sie, als die Teilchenphysik an<br />

Aktualität verlor, zusätzlich für viele weitere Forschungsprogramme<br />

in Medizin und Materialwissenschaften eingesetzt<br />

wor<strong>de</strong>n konnte. Sie ist heute noch ein Standbein <strong>de</strong>s PSI.<br />

Dass diese Geschichte nun in allgemein verständlicher<br />

Form vorliegt, ist das Verdienst einiger von Anfang an am<br />

Projekt beteiligter Physiker, welche die Initiative dazu ergriffen,<br />

so<strong>la</strong>nge noch Zeitzeugen befragt wer<strong>de</strong>n konnten.<br />

Wie immer zeigen die offiziellen Dokumente nur einen Ausschnitt<br />

<strong>de</strong>r Wirklichkeit. Will man <strong>de</strong>n Menschen, die ihren<br />

Beitrag zum Gelingen leisteten, nahe kommen, braucht es<br />

persönliche Erinnerungen. Der Text stützt sich auf bei<strong>de</strong>s.<br />

Er hält zu<strong>de</strong>m die Geschehnisse in zahlreichen (schwarzweiss)<br />

Bil<strong>de</strong>rn fest.<br />

Wi<strong>de</strong>rstand gegen das SIN-Projekt<br />

Das Projekt <strong>de</strong>r Mesonenfabrik traf teilweise bei <strong>de</strong>n Physikern<br />

auf Wi<strong>de</strong>rstand. Beson<strong>de</strong>rs die Kernphysiker hätten<br />

lieber eine Maschine gehabt, wie sie von <strong>de</strong>r ursprünglichen<br />

Zyklotron-P<strong>la</strong>nungsgruppe ETH-Uni Zürich-Uni Basel gep<strong>la</strong>nt<br />

gewesen war. Die Projektleiter <strong>de</strong>r Mesonenfabrik gingen<br />

daher einen Kompromiss ein, in<strong>de</strong>m sie als Injektor für<br />

<strong>de</strong>n Ringbeschleuniger das Philips-Zyklotron wählten. Da<br />

dieses nicht geeignet war für <strong>de</strong>n späteren Hochstromausbau,<br />

entwickelte das SIN schon bald <strong>de</strong>n Injektor II nach<br />

<strong>de</strong>mselben Prinzip wie für <strong>de</strong>n Ringbeschleuniger.<br />

Im Hinblick auf <strong>de</strong>n SIN-Baukredit in <strong>de</strong>r ETH-Baubotschaft<br />

1965 wandte sich eine Gruppe von Physikern an Bun<strong>de</strong>srat<br />

Tschudi, um das Projekt zu verhin<strong>de</strong>rn. Tschudi und<br />

ETH-Präsi<strong>de</strong>nt Pallmann liessen sich nicht beirren. Tschudi<br />

meinte B<strong>la</strong>ser gegenüber, dass ein Projekt, das <strong>de</strong>rmassen<br />

auf Opposition stosse, gut sein müsse; er solle weiterfahren<br />

damit.<br />

Der Autor arbeitete in <strong>de</strong>n 1980er Jahren selbst am<br />

SIN, später beim ETH-Rat und schliesslich in <strong>de</strong>r Direktion<br />

<strong>de</strong>s PSI.<br />

Die Opposition f<strong>la</strong>mmte in <strong>de</strong>n Eidgenössischen Räten<br />

nochmals beim teuerungsbedingten Zusatzkredit in <strong>de</strong>r<br />

ETH-Baubotschaft 1972 auf. Sprecher <strong>de</strong>r Opposition war<br />

<strong>de</strong>r Basler Stan<strong>de</strong>sherr Wenk, <strong>de</strong>r sich wohl auf eine Intervention<br />

von Basler Physikern stützte. Das veran<strong>la</strong>sste Bun<strong>de</strong>srat<br />

Tschudi zur Erklärung:<br />

"Die Finanzverwaltung ist in <strong>de</strong>r Lage, dieses Kreditbegehren<br />

zu beurteilen, weil die Direktion <strong>de</strong>r Finanzverwaltung<br />

in <strong>de</strong>r Baukommission für das <strong>Schweizerische</strong> Institut für<br />

Nuklearforschung mitwirkt. Ich muss - Herr Wenk hat das<br />

schon gesagt - unterstreichen: die Finanzverwaltung ist <strong>de</strong>r<br />

Meinung, dass hier ein beson<strong>de</strong>rs mustergültiger Bau erstellt<br />

wird, <strong>de</strong>r in bezug auf P<strong>la</strong>nung <strong>de</strong>s Baus, auf sparsame<br />

Bauausführung an<strong>de</strong>rn als Mo<strong>de</strong>ll dienen kann, dass also in<br />

Bezug auf die Sparsamkeit und die gute Bauorganisation,<br />

die gute P<strong>la</strong>nung <strong>de</strong>s Baues <strong>de</strong>r Baukommission, die unter<br />

Leitung <strong>de</strong>s früheren Direktors <strong>de</strong>r Brown Boveri, Herrn Dr.<br />

Seippel, steht, das beste Zeugnis ausgestellt wer<strong>de</strong>n kann."<br />

Andreas Pritzker hat mit Unterstützung von Kollegen<br />

aus <strong>de</strong>m ehemaligen <strong>Schweizerische</strong>n Institut<br />

für Nuklearforschung (SIN) die Vorgeschichte, Gründung<br />

und Forschungsaktivitäten <strong>de</strong>s SIN nachgezeichnet.<br />

Es wird lebendig, mit zahlreichen Anekdoten<br />

umrahmt beschrieben, wie die erste Schweizer<br />

Grossforschungsan<strong>la</strong>ge, eine "Mesonenfabrik", mit<br />

<strong>de</strong>m von Hans Wil<strong>la</strong>x entworfenen zweistufigen Protonenbeschleuniger<br />

mit Injektor- und Ringzyklotron,<br />

in Zusammenarbeit mit <strong>de</strong>r Industrie realisiert wur<strong>de</strong>.<br />

Eng verbun<strong>de</strong>n mit <strong>de</strong>r Geschichte <strong>de</strong>s SIN ist<br />

das Wirken von Prof. Dr. Jean-Pierre B<strong>la</strong>ser. Er war<br />

Initiant dieser strategischen Forschungsinitiative, die<br />

<strong>de</strong>n Aufbau eines nationalen Forschungs<strong>la</strong>bors für<br />

universitäre Forschungsbedürfnisse auch ausserhalb<br />

<strong>de</strong>r Grund<strong>la</strong>genphysik zum Ziel hatte. Er war Grün<strong>de</strong>r<br />

und Direktor <strong>de</strong>s SIN während <strong>de</strong>n 20 Jahren seines<br />

Bestehens. Und er war auch einer <strong>de</strong>r Hauptinitianten<br />

für die Zusammenführung <strong>de</strong>s SIN mit <strong>de</strong>m Eidgenössischen<br />

Institut für Reaktorforschung (EIR) zum Paul<br />

Scherrer Institut (PSI) im Jahre 1988. Andreas Pritzker<br />

zeigt in <strong>de</strong>r Nachzeichnung <strong>de</strong>r SIN-Geschichte wie<br />

die breiten naturwissenschaftlichen Interessen von<br />

Jean-Pierre B<strong>la</strong>ser über die Physik hinaus zur Realisierung<br />

und För<strong>de</strong>rung von einzigartigen Projekten im<br />

Bereich <strong>de</strong>r Medizin (Krebstherapie und -diagnostik),<br />

<strong>de</strong>r Material- und Festkörperforschung (Spal<strong>la</strong>tionsneutronenquelle,<br />

Supraleitung) und <strong>de</strong>r Energieforschung<br />

(Kernfusion) führten. Das Buch über das SIN<br />

gibt einen guten Einblick in <strong>de</strong>n Forschungsbetrieb einer<br />

Institution, die grosse Forschungsan<strong>la</strong>gen kreiert<br />

und betreibt und diese auch externen Forschen<strong>de</strong>n<br />

zur Verfügung stellt. Das Buch ist sehr lesenswert.<br />

Es ist auch eine Hommage an Jean-Pierre B<strong>la</strong>ser, <strong>de</strong>r<br />

dieses Jahr bei guter Gesundheit seinen 90. Geburtstag<br />

feiern konnte.<br />

Martin Jermann, Paul Scherrer Institut<br />

57


SPG Mitteilungen Nr. 40<br />

Lehrerfortbildung:<br />

18 Deutschschweizer Lehrer im Herz von CERN<br />

Christine P<strong>la</strong>ss (Text und Bil<strong>de</strong>r)<br />

Im Rahmen <strong>de</strong>r Nachwuchsför<strong>de</strong>rung setzt sich die SPG<br />

für die Lehrerfortbildung im Gebiet <strong>de</strong>r Physik ein. Im Frühjahr<br />

wur<strong>de</strong> aus aktuellem An<strong>la</strong>ss, im Zusammenhang mit<br />

<strong>de</strong>r Higgs-Ent<strong>de</strong>ckung am CERN, eine Lehrerfortbildung<br />

mit Schwerpunkt Teilchenphysik zusammen mit teilchenphysik.ch<br />

durchgeführt. Anfang Juni 2013 reisten 18 Lehrerinnen<br />

und Lehrer aus <strong>de</strong>r Deutschschweiz nach Genf. Der<br />

Weiterbildungstag am CERN vermittelte ihnen Anschauungsmaterial<br />

und Experimente, um Hochenergiephysik zu<br />

unterrichten.<br />

"Das ist eine einmalige Gelegenheit, <strong>de</strong>n Detektor zu besichtigen!",<br />

erkannten acht Physiklehrer <strong>de</strong>r Kantonschule<br />

Zug, als ihr Kollege Markus Schmidinger ihnen von seiner<br />

Ein<strong>la</strong>dung ans CERN erzählte. Schmidinger hatte an einer<br />

Fortbildung zu Teilchenphysik in Bern teilgenommen und<br />

war zur Folgeveranstaltung ans CERN nach Genf einge<strong>la</strong><strong>de</strong>n<br />

wor<strong>de</strong>n. Höflich fragte er an, ob seine Kollegen wohl<br />

mitkommen dürften? Initiator Hans Peter Beck, Physiker<br />

am CERN und Dozent <strong>de</strong>r Uni Bern, überlegte nicht <strong>la</strong>nge.<br />

Er konzipierte sein Programm so um, dass es auch ohne<br />

Vorbildung verständlich war. Insgesamt nahmen18 Lehrerinnen<br />

und Lehrer aus <strong>de</strong>r Kantonsschule Ausserschwyz,<br />

<strong>de</strong>m Gymnasium Oberaargau, <strong>de</strong>m Gymnasium Rämibühl<br />

in Zürich und <strong>de</strong>m Gymnasium Biel die Chance wahr, das<br />

CERN von innen kennen zu lernen. Um trotz längerer Anreise<br />

einen vollen Tag am CERN zu erleben, waren sie bereits<br />

am Tag zuvor angereist und konnten kostenlos im CERN-<br />

Hostel übernachten.<br />

Es gehört zum Verständnis <strong>de</strong>s Conseil Européen pour<br />

<strong>la</strong> Recherche Nucléaire (kurz CERN) die Schulbildung zu<br />

unterstützen. "Wir möchten, dass mo<strong>de</strong>rne Physik in die<br />

Schulen Einzug fin<strong>de</strong>t und <strong>de</strong>r Unterricht nicht bei <strong>de</strong>r<br />

schiefen Ebene aufhört", erklärt Hans Peter Beck. Aus aller<br />

Welt kommen Lehrkräfte ans CERN um sich dort tage- und<br />

wochen<strong>la</strong>ng fortzubil<strong>de</strong>n o<strong>de</strong>r gemeinsam mit ihren Schülern<br />

eines <strong>de</strong>r faszinierendsten Forschungszentren <strong>de</strong>r Welt<br />

kennen zu lernen.<br />

Im Herz von CERN, <strong>de</strong>r Protonenquelle. Am Mo<strong>de</strong>ll erklärt Mick<br />

Storr, wie <strong>de</strong>m Wasserstoffgas hier die Protonen entzogen wer<strong>de</strong>n,<br />

die dann im Large Hadron Colli<strong>de</strong>r (LHC) miteinan<strong>de</strong>r kollidieren.<br />

Nach <strong>de</strong>r kurzen Einführung durch Hans Peter Beck geht<br />

es direkt ins Herz von CERN, <strong>de</strong>n LINAC2. Hier wer<strong>de</strong>n die<br />

Protonen bereitgestellt, die sie im Large Hadron Colli<strong>de</strong>r<br />

aufeinan<strong>de</strong>r schiessen. "Welcome to the Startrek Enterprise",<br />

scherzt Mick Storr, als wir <strong>de</strong>n Vorraum zur Protonenquelle<br />

betreten. Er erstrahlt im Design <strong>de</strong>r 70er Jahre, und<br />

das ist kein Retro, son<strong>de</strong>rn Original. Fehlt nur noch, dass<br />

Captain Kirk um die Ecke kommt. Mick Storr weiss, wie<br />

er seinen Besuchern die Scheu vor <strong>de</strong>r High-End-Physik<br />

nehmen kann. Doch was vielleicht noch viel wichtiger ist,<br />

er schätzt sehr, was die Lehrer in <strong>de</strong>n Schulen leisten: "Die<br />

physikalischen Grund<strong>la</strong>gen, die Sie an Ihren Schulen vermitteln,<br />

sind die Grund<strong>la</strong>ge von allem, was hier im CERN<br />

passiert", sagt Mick Storr und lädt seine Zuhörer ein, das,<br />

was sie heute sehen, auch einmal mit ihren Schülern zu besichtigen.<br />

Hans Peter Beck erklärt das CERN und wie Lehrer ihre Schüler mit<br />

einfachen Mo<strong>de</strong>llen und Experimenten an Teilchenphysik heranführen<br />

können.<br />

58<br />

Original-Kontrollraum <strong>de</strong>r Protonenquelle.


Communications <strong>de</strong> <strong>la</strong> SSP No. 40<br />

Mit <strong>de</strong>m Bus geht es zur nächsten Station, <strong>de</strong>m LHCb-<br />

Experiment. "Sie haben ein Riesenglück, dass Sie direkt<br />

in <strong>de</strong>n Detektor reingehen können! Das hab ich selbst<br />

seit zehn Jahren nicht mehr gemacht", begrüsst Andreas<br />

Schopper seine Besucher. Der Physiker am CERN hat<br />

das LHCb Experiment mit aufgebaut und ist Präsi<strong>de</strong>nt <strong>de</strong>r<br />

<strong>Schweizerische</strong>n Physikalischen Gesellschaft (SPG). Sie<br />

hat die Reisekosten für die Lehrer ans CERN übernommen.<br />

Bevor ein Fahrstuhl die Reisegruppe 100 Meter ins<br />

Erdinnere beför<strong>de</strong>rt, erklärt Schopper an einem Mo<strong>de</strong>ll,<br />

was das Beson<strong>de</strong>re am LHCb ist. 700 Wissenschaftler aus<br />

61 Institutionen und 16 Län<strong>de</strong>rn forschen dort nach <strong>de</strong>n<br />

Unterschie<strong>de</strong>n zwischen Materie und Antimaterie. Aus <strong>de</strong>r<br />

Schweiz sind die ETH Lausanne und die Universität Zürich<br />

am Experiment beteiligt. So untersuchten die Forscher<br />

erstmals <strong>de</strong>n Zerfall eines weiteren Teilchens, <strong>de</strong>ssen Messung<br />

abermals beweist, dass Materie und Antimaterie nicht<br />

exakt symmetrisch sind.<br />

Nach einer zügigen Fahrt in 100 Meter Tiefe wartet die<br />

nächste Schleuse. Radioaktivität, vor <strong>de</strong>r auf <strong>de</strong>r Tür gewarnt<br />

wird, herrscht zur Zeit <strong>de</strong>s Shutdowns hier unten<br />

zwar nicht. Trotz<strong>de</strong>m hat Schopper ein Dosimeter dabei,<br />

da es sich um eine kontrollierte Zone han<strong>de</strong>lt, für die bestimmte<br />

Sicherheitsvorkehrungen gelten. Langweilig wird<br />

es <strong>de</strong>n Physikern während <strong>de</strong>s Shutdowns übrigens trotz<strong>de</strong>m<br />

nicht, <strong>de</strong>nn es gibt noch riesige Datenmengen, die auf<br />

ihre Auswertung warten, wie Markus Joos erklärt. Der Informatiker<br />

arbeitet an <strong>de</strong>r Software, die die Messergebnisse<br />

aufzeichnet, filtert und speichert. 100 Petabyte Rohdaten<br />

sind auf 40.000 Festp<strong>la</strong>tten und 40.000 Bandkassetten gespeichert.<br />

Bandkassetten? Tatsächlich setzten die Informatiker<br />

am CERN auf diese vermeintlich veralteten Speichermedien,<br />

da sie die Daten 100 Mal sicherer aufbewahren als<br />

eine Festp<strong>la</strong>tte.<br />

durch <strong>de</strong>n LHC hindurch. Gäbe es keine Supraleitungen<br />

müsste <strong>de</strong>r LHC <strong>de</strong>n Umfang <strong>de</strong>s Äquators haben.<br />

Unsere vorletzte Station ist <strong>de</strong>r Kontrollraum <strong>de</strong>s Alpha<br />

Magnetic Spectrometer (AMS2). Der schüttelsichere Detektor<br />

wur<strong>de</strong> 16 Jahre <strong>la</strong>ng gebaut und getestet, mit <strong>de</strong>m<br />

letzten Spaceshuttle zur Internationalen Raumstation (ISS)<br />

geschossen und von NASA Astronauten auf <strong>de</strong>r ISS installiert.<br />

Dort jagt er nach Antimaterie. Wenigstens ein einziges<br />

Anti-Helium. Noch besser zwei. Zehn, um ein Paper zu<br />

veröffentlichen. Die Wissenschaftler gehen nämlich davon<br />

aus, dass beim Urknall riesige Mengen von Materie und<br />

Anti-Materie freigesetzt wur<strong>de</strong>n, um sich sogleich wie<strong>de</strong>r<br />

gegenseitig zu zerstören. Nach dieser Theorie dürfte es<br />

keine stabile Antimaterie in unserem Universum geben –<br />

es sei <strong>de</strong>nn, AMS2 lieferte <strong>de</strong>n Gegenbeweis. Bis<strong>la</strong>ng hat<br />

AMS2 noch keine Antimaterie dingfest gemacht. Dafür fan<strong>de</strong>n<br />

Wissenschaftler signifikante Hinweise auf unbekannte<br />

Quellen kosmischer Strahlung, die beantworten könnten,<br />

was es mit <strong>de</strong>r dunklen Materie auf sich hat.<br />

Doch man braucht gar nicht ins All o<strong>de</strong>r ans CERN reisen,<br />

um Teilchen zu sehen. Wie sie ihren Schülern Elektronen<br />

und Alphateilchen in einem Experiment zeigen können, erfahren<br />

die Lehrer am Nachmittag beim Bau einer Nebelkammer.<br />

Rasch ist k<strong>la</strong>r, hier sind Profis am Werk. In Win<strong>de</strong>seile<br />

haben sie die Nebelkammern fachgerecht aufgebaut und<br />

die Gardinen zugezogen. Dann <strong>la</strong>uern sie auf Teilchen, die<br />

sich im Licht <strong>de</strong>r Taschen<strong>la</strong>mpe zeigen. "Joh, jetzt seh' ich<br />

eins", ruft einer. "Was für ein dicker Brummer!", stellt ein<br />

an<strong>de</strong>rer fest. Kleine wurmförmige Partikel bewegen sich<br />

horizontal und vertikal durch <strong>de</strong>n Lichtstrahl. Das einfache<br />

wie eindrückliche Experiment lässt sich sogar mit P<strong>la</strong>stikbecher<br />

und Alu-Aschenbecher durchführen. Trockeneis ist<br />

allerdings unentbehrlich.<br />

Die Lehrer sind von ihrem abwechslungsreichen Tag am<br />

CERN sichtlich begeistert. Als "sehr eindrücklich", beurteilt<br />

Markus Schmidinger <strong>de</strong>n Tag am CERN: "Es ist etwas an<strong>de</strong>res,<br />

wenn man das Experiment vor Ort sieht und Zutritt<br />

zu einer Welt erhält, die einem sonst verborgen bleibt". Er<br />

nimmt viele Anregungen mit nach Hause, die er gleich umsetzen<br />

will: "Zum Beispiel bei <strong>de</strong>r Lorentzkraft im Unterricht<br />

zeigen, dass es keine blosse Theorie ist, son<strong>de</strong>rn Ingenieure<br />

am CERN damit arbeiten."<br />

Gerfried Wiener von <strong>de</strong>r Uni Wien erklärt, warum Supraleitungen<br />

im LHC zum Einsatz kamen. Alle dürfen mal testen, wie schwer<br />

konventionelle Kupferkabel sind, die in <strong>de</strong>r Lage wären, 13000<br />

Ampère zu leiten, ohne zu schmelzen.<br />

Danach geht es weiter zur Magnettesthalle. Anhand einiger<br />

Mo<strong>de</strong>lle erklärt Gerfried Wiener von <strong>de</strong>r Universität Wien,<br />

wie <strong>de</strong>r LHC gebaut wur<strong>de</strong> und welche Hür<strong>de</strong>n dabei zu<br />

bewältigen waren. Allein die Kabel! 13000 Ampère <strong>la</strong>ufen<br />

Das von PD Dr. Hans Peter Beck (Universität Bern/<br />

CERN) initiierte 1. Deutschschweizer Lehrerprogramm<br />

am CERN wur<strong>de</strong>, in Zusammenarbeit mit www.teilchenphysik.ch,<br />

durch die fachliche und finanzielle<br />

Unterstützung von CERN und <strong>de</strong>r <strong>Schweizerische</strong>n<br />

Physikalischen Gesellschaft (SPG) ermöglicht. In regelmässigen<br />

Abstän<strong>de</strong>n wer<strong>de</strong>n weitere Programme<br />

für Schweizer Lehrer/innen folgen. Anmeldungen zu<br />

einer weiteren Fortbildung am 8./9. November zu diesem<br />

Thema, inklusive CERN Besuch, wer<strong>de</strong>n schon<br />

jetzt unter indico.cern.ch/event/swissteachers entgegengenommen.<br />

59


Annual Congress 2013 of the Swiss Aca<strong>de</strong>my of Sciences (SCNAT)<br />

The Quantum Atom at 100 –<br />

Niels Bohr’s Legacy<br />

Fotos: shutterstock.com | PSI<br />

November 21-22, 2013 | Winterthur<br />

The congress will celebrate the 100 th anniversary of Niels Bohr’s publication<br />

„On the Constitution of Atoms and Molecules“ and offer an overview on subsequent<br />

<strong>de</strong>velopments, leading to the mo<strong>de</strong>rn version of quantum mechanics and its implications<br />

and to the current un<strong>de</strong>rstanding of the constitution of matter.<br />

The Zurich University of Applied Science in Winterthur will host this year’s congress.<br />

• Aspects of Bohr’s 1913 Atomic Theory: Helge Kragh, University of Aarhus, Denmark<br />

• From Bohr’s Atom to Quantum Mechanics: Olivier Darrigol, CRNS, Paris<br />

• Ultrahigh-Resolution Spectroscopy of the Hydrogen Atom: Thomas U<strong>de</strong>m, MPI Quantum Optics, Garching<br />

• Muonic Hydrogen: Atomic Physics for Nuclear Structure: Randolf Pohl, MPI Quantum Optics, Garching<br />

• Antihydrogen: Past, Present, Future: Michael Doser, CERN, Geneva<br />

• Hydrogen, the Most Abundant Element in the Universe: Ruth Durrer, University of Geneva<br />

• Defining and Measuring Time: From Cesium to Atomic Clocks: Jacques Vanier, University of Montreal,<br />

Canada<br />

• Rydberg States of Atoms and Molecules: Frédéric Merkt, ETH Zurich<br />

• Manipu<strong>la</strong>ting trapped Photons and raising Schrödinger Cats of Light: Serge Haroche, Nobel Laureate<br />

2012, ENS and Collège <strong>de</strong> France, Paris<br />

• At the End of the Periodic Table: Yuri Oganessian, JINR, FLNR, Dubna, Russia<br />

• Insights and Puzzles in Particle Physics: Heinrich Leutwyler, University of Bern<br />

• Quantum Mechanics and Photosynthesis: Rienk van Gron<strong>de</strong>lle, VU Amsterdam, The Nether<strong>la</strong>nds<br />

Public Evening Lecture: Reinhard Werner, Leibniz Universität Hannover:<br />

Die Bohr-Einstein-Debatte zur Quantenmechanik<br />

There is no conference fee for registered participants. Registration Deadline: November 1 st , 2013<br />

More information and registration: http://congress13.scnat.ch

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!