02.07.2013 Views

Plant Community Structure, Fire Disturbance, and Recovery in ...

Plant Community Structure, Fire Disturbance, and Recovery in ...

Plant Community Structure, Fire Disturbance, and Recovery in ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CENTRE FOR THE STUDY OF BIOLOGICAL DIVERSITY<br />

UNIVERSITY OF GUYANA<br />

Contributions to the Study of Biological Diversity<br />

Volume 3: 1-166<br />

<strong>Plant</strong> <strong>Community</strong> <strong>Structure</strong>, <strong>Fire</strong> <strong>Disturbance</strong>, <strong>and</strong> <strong>Recovery</strong> <strong>in</strong><br />

Mangrove Swamps of the Wa<strong>in</strong>i Pen<strong>in</strong>sula, Guyana<br />

by<br />

Thomas H. Hollowell<br />

Centre for the Study of Biological Diversity<br />

University of Guyana, Faculty of Natural Sciences<br />

Turkeyen Campus<br />

Georgetown, Guyana<br />

2009


Thomas H. Hollowell, Smithsonian Institution. <strong>Plant</strong> <strong>Community</strong> <strong>Structure</strong>, <strong>Fire</strong><br />

<strong>Disturbance</strong>, <strong>and</strong> <strong>Recovery</strong> <strong>in</strong> Mangrove Swamps of the Wa<strong>in</strong>i Pen<strong>in</strong>sula, Guyana.<br />

Contributions to the Study of Biological Diversity, volume 3: 166 pages.-<br />

Soil fires dur<strong>in</strong>g the 1997 to 1998 El Niño caused high mortality among mangroves of Wa<strong>in</strong>i Pen<strong>in</strong>sula, a potential<br />

protected area. Impacts <strong>and</strong> early recovery were <strong>in</strong>vestigated, with basel<strong>in</strong>e floristic <strong>and</strong> ecological analyses.<br />

<strong>Plant</strong> species <strong>and</strong> communities were surveyed. 118 species were documented. Approximately 64.6 km 2 of swampl<strong>and</strong><br />

were burned, 26.6 km 2 classified as mangrove, the largest reported mangrove fire. Regional, cont<strong>in</strong>ental, <strong>and</strong> global floral<br />

aff<strong>in</strong>ities are explored. Of 240 species <strong>in</strong> five Wa<strong>in</strong>i <strong>and</strong> two <strong>in</strong>l<strong>and</strong> communities, 79% occurred <strong>in</strong> only one; coastal<br />

vegetation exhibited high beta diversity. The Wa<strong>in</strong>i held many species with Neotropical (33%) <strong>and</strong> Pantropical (27%)<br />

distributions but few Guiana Shield endemics (1.6%). The presence of the Asian mangrove palm, Nypa fruticans, <strong>in</strong> the<br />

study area is exam<strong>in</strong>ed, <strong>in</strong>clud<strong>in</strong>g extent, possible sources, potential spread, <strong>and</strong> reported dispersal to Tr<strong>in</strong>idad.<br />

Six 0.1-hectare Avicennia swamp vegetation plots were sampled over four years. Unburned swamp basal area was<br />

21.25 m 2 /ha, <strong>in</strong>creas<strong>in</strong>g 2.5% to 3.5% annually. Burned swamp basal area was at least 20.43 m 2 /ha before fires, with<br />

estimated biomass greater than unburned swamp. Sapl<strong>in</strong>g, seedl<strong>in</strong>g, <strong>and</strong> herbaceous cover <strong>in</strong> the unburned swamp was low,<br />

<strong>and</strong> variable <strong>in</strong> the burned swamp, with probable hydrology l<strong>in</strong>ks. Spatial patterns of Avicennia trees were generally<br />

overdispersed. Wa<strong>in</strong>i mangrove basal area <strong>and</strong> height approached worldwide medians; stem density was much lower.<br />

Unburned swamps near Wa<strong>in</strong>i Po<strong>in</strong>t are apparently younger than to the southeast, with irregular seedl<strong>in</strong>g recruitment.<br />

In burned swamp regeneration, establishment distances of seedl<strong>in</strong>gs from parents had a mean of 24.2 meters for<br />

Laguncularia, 4.8 meters for Avicennia, <strong>and</strong> 8.9 meters for Rhizophora. Mangrove plant<strong>in</strong>gs explored restoration potentials.<br />

Rhizophora plant<strong>in</strong>gs were successful <strong>in</strong> burned swamp, given sufficient elevation. After 10.5 months, Rhizophora racemosa<br />

<strong>in</strong> unburned swamp was about half the height of those <strong>in</strong> burned areas (56 cm vs 129 cm); wet condition plant<strong>in</strong>gs outsurvived<br />

<strong>and</strong> outgrew drought plant<strong>in</strong>gs. No Laguncularia or Avicennia plant<strong>in</strong>gs survived, suggest<strong>in</strong>g narrow hydrological<br />

requirements.<br />

Geomorphology <strong>in</strong>fluences mangrove dispersal, establishment, population structure, <strong>and</strong> disturbance on the Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula. Its mangrove swamps are unique <strong>in</strong> the Neotropics <strong>and</strong> valuable biologically <strong>and</strong> culturally.<br />

Results here suggest<strong>in</strong>g that the Wa<strong>in</strong>i flora is essentially separate from the Guiana Shield flora <strong>and</strong> bears more<br />

aff<strong>in</strong>ity to the Caribbean region are not surpris<strong>in</strong>g, but lends support to the idea that biodiversity studies <strong>and</strong> conservation<br />

efforts should be pursued with an awareness of that dist<strong>in</strong>ction.<br />

DATE OF PUBLICATION: February 2009<br />

Cover: Keith David measur<strong>in</strong>g a large Avicennia germ<strong>in</strong>ans tree encountered near the Wa<strong>in</strong>i River,<br />

along transect A. Photo Tom Hollowell, Smithsonian Institution.<br />

Contributions from the Centre for the Study of Biological Diversity, University of Guyana,<br />

Faculty of Natural Sciences, Turkeyen Campus, Georgretown, Guyana, South America.<br />

POSTMASTER: Send address changes to the Editor, Centre for the Study of Biological Diversity,<br />

University of Guyana, Faculty of Natural Sciences, Turkeyen Campus, Georgretown,<br />

Guyana, South America.


CONTENTS<br />

INTRODUCTION .............................................................................................................<br />

ACKNOWLEDGEMENTS ..............................................................................................<br />

CHAPTER 1. THE WAINI PENINSULA ENVIRONMENT AND ITS FLORA<br />

INTRODUCTION ...................................................................................................................<br />

Study Site ..........................................................................................................................<br />

Climate .............................................................................................................................<br />

Geomorphology ................................................................................................................<br />

Soils ..................................................................................................................................<br />

The Wa<strong>in</strong>i Pen<strong>in</strong>sula <strong>Fire</strong>s of 1997-1998 ..........................................................................<br />

MATERIALS AND METHODS .............................................................................................<br />

<strong>Plant</strong> Collection Field Work ..............................................................................................<br />

<strong>Plant</strong> Identification, Classification <strong>and</strong> Distribution .......................................................<br />

<strong>Plant</strong> Species List ..............................................................................................................<br />

<strong>Plant</strong> Communities ...........................................................................................................<br />

Burned Area Del<strong>in</strong>eation ..................................................................................................<br />

RESULTS ................................................................................................................................<br />

<strong>Plant</strong>s of the Wa<strong>in</strong>i Pen<strong>in</strong>sula ............................................................................................<br />

<strong>Plant</strong> Communities on the Wa<strong>in</strong>i Pen<strong>in</strong>sula ......................................................................<br />

Beaches .............................................................................................................................<br />

Coastal Mangrove Swamps ..............................................................................................<br />

Mixed Freshwater Swamps ..............................................................................................<br />

The River<strong>in</strong>e Mangrove Swamps .....................................................................................<br />

Burned Areas ....................................................................................................................<br />

<strong>Plant</strong> Collections of Interest ..............................................................................................<br />

DISCUSSION ..........................................................................................................................<br />

CHAPTER 2. PLANTS OF THE WAINI PENINSULA IN REGIONAL AND<br />

GLOBAL CONTEXT<br />

INTRODUCTION ...................................................................................................................<br />

Study Sites <strong>and</strong> Background .............................................................................................<br />

Quackal <strong>and</strong> Manicole <strong>Plant</strong> Communities ......................................................................<br />

The Northwest District .....................................................................................................<br />

Delta Amacuro ..................................................................................................................<br />

Regional <strong>and</strong> Global Aff<strong>in</strong>ities of the Wa<strong>in</strong>i Pen<strong>in</strong>sula Flora ...........................................<br />

METHODS ..............................................................................................................................<br />

Comparison of the Wa<strong>in</strong>i Flora with Quackal <strong>and</strong> Manicole <strong>Plant</strong> Communities ............<br />

Northwest District ............................................................................................................<br />

Delta Amacuro ..................................................................................................................<br />

Regional <strong>and</strong> Global Aff<strong>in</strong>ities .........................................................................................<br />

RESULTS ................................................................................................................................<br />

Quackal <strong>and</strong> Manicole Communities ...............................................................................<br />

Northwest District ............................................................................................................<br />

Delta Amacuro ..................................................................................................................<br />

Regional <strong>and</strong> Global Aff<strong>in</strong>ities .........................................................................................<br />

DISCUSSION ..........................................................................................................................<br />

Quackal <strong>and</strong> Manicole Communities ...............................................................................<br />

Northwest District ............................................................................................................<br />

7<br />

8<br />

9<br />

9<br />

10<br />

11<br />

14<br />

15<br />

16<br />

16<br />

17<br />

17<br />

17<br />

17<br />

20<br />

20<br />

20<br />

22<br />

23<br />

24<br />

26<br />

27<br />

29<br />

31<br />

33<br />

33<br />

34<br />

34<br />

35<br />

36<br />

36<br />

36<br />

37<br />

38<br />

38<br />

39<br />

39<br />

41<br />

43<br />

43<br />

44<br />

44<br />

45


Delta Amacuro ..................................................................................................................<br />

Regional <strong>and</strong> Global Aff<strong>in</strong>ities .........................................................................................<br />

CONCLUSION .......................................................................................................................<br />

CHAPTER 3. THE MANGROVE PALM NYPA FRUTICANS WURMB.: A<br />

WIDESPREAD EXOTIC SPECIES IN NORTHWESTERN GUYANA<br />

INTRODUCTION ...................................................................................................................<br />

NYPA HISTORY AND RANGE ..............................................................................................<br />

NYPA FRUTICANS OUTSIDE OF ITS MODERN NATIVE RANGE ..................................<br />

DISPERSAL OF NYPA TO TRINIDAD .................................................................................<br />

POSSIBLE SOURCES OF PRESENT NEOTROPICAL NYPA POPULATIONS ................<br />

ECOLOGICAL CONSIDERATIONS ....................................................................................<br />

CONTROL OF NYPA ..............................................................................................................<br />

NEEDS FOR ADDITIONAL STUDY ..................................................................................<br />

CONCLUSIONS ....................................................................................................................<br />

CHAPTER 4. STRUCTURE OF BURNED AND UNBURNED AVICENNIA L.<br />

FOREST, WAINI PENINSULA,GUYANA<br />

INTRODUCTION ...................................................................................................................<br />

METHODS ..............................................................................................................................<br />

Study Site ..........................................................................................................................<br />

Plot Establishment ............................................................................................................<br />

Measurements ..................................................................................................................<br />

Alness Village Plot ...........................................................................................................<br />

Dispersion Patterns of Trees .............................................................................................<br />

Biomass ............................................................................................................................<br />

Comparison with Other Plot Data .....................................................................................<br />

RESULTS ................................................................................................................................<br />

Tree Mapp<strong>in</strong>g <strong>and</strong> Inventory ............................................................................................<br />

Dbh <strong>and</strong> Tree Height .........................................................................................................<br />

Basal Area .........................................................................................................................<br />

Dispersion .........................................................................................................................<br />

Density <strong>and</strong> Population Turnover <strong>in</strong> the Avicennia Forest ................................................<br />

Biomass ............................................................................................................................<br />

Small Woody <strong>Plant</strong>s ..........................................................................................................<br />

Herbaceous <strong>Plant</strong>s ............................................................................................................<br />

Well Levels .......................................................................................................................<br />

DISCUSSION ..........................................................................................................................<br />

Guyana Plots .....................................................................................................................<br />

Dispersion .........................................................................................................................<br />

Biomass ...........................................................................................................................<br />

Comparisons with Worldwide Plot Basal Area Data ........................................................<br />

Population Turnover <strong>in</strong> the Avicennia Forest ....................................................................<br />

Herbs <strong>and</strong> Seedl<strong>in</strong>gs .........................................................................................................<br />

Role of Water Levels .........................................................................................................<br />

CONCLUSION .......................................................................................................................<br />

CHAPTER 5. DISPERSAL AND ESTABLISHMENT OF MANGROVE<br />

PROPAGULES FOLLOWING FIRES<br />

INTRODUCTION ..................................................................................................................<br />

Seed Dispersal ..................................................................................................................<br />

45<br />

45<br />

46<br />

49<br />

49<br />

50<br />

51<br />

52<br />

54<br />

55<br />

55<br />

56<br />

59<br />

60<br />

60<br />

61<br />

62<br />

63<br />

63<br />

64<br />

64<br />

64<br />

64<br />

64<br />

67<br />

67<br />

68<br />

68<br />

68<br />

69<br />

72<br />

73<br />

73<br />

74<br />

75<br />

75<br />

76<br />

76<br />

77<br />

78<br />

81<br />

81


Dispersal <strong>in</strong> Mangrove Swamps .......................................................................................<br />

Dispersal <strong>in</strong> Disturbed Mangrove Swamps ......................................................................<br />

METHODS ..............................................................................................................................<br />

Study Site ..........................................................................................................................<br />

Propagule Dispersal <strong>and</strong> Establishment ...........................................................................<br />

Propagule <strong>Plant</strong><strong>in</strong>gs ..........................................................................................................<br />

RESULTS ................................................................................................................................<br />

Propagule Dispersal <strong>and</strong> Establishment ...........................................................................<br />

Propagule <strong>Plant</strong><strong>in</strong>gs ..........................................................................................................<br />

DISCUSSION ..........................................................................................................................<br />

Propagule Dispersal <strong>and</strong> Establishment ...........................................................................<br />

Propagule <strong>Plant</strong><strong>in</strong>gs .........................................................................................................<br />

REFERENCES ..........................................................................................................................<br />

APPENDIX 1: Mangrove Ecosystems <strong>and</strong> <strong>Fire</strong> <strong>in</strong> the Tropics .................................................. 112<br />

APPENDIX 2: <strong>Plant</strong> Species Listed for the Wa<strong>in</strong>i Pen<strong>in</strong>sula, with Synonymy ........................ 129<br />

APPENDIX 3: Prelim<strong>in</strong>ary Species List of the Vascular <strong>Plant</strong>s of the<br />

Northwest District of Guyana .....................................................................................<br />

APPENDIX 4: Species Disparities Between the Northwest District, Guyana<br />

<strong>and</strong> Delta Amacuro, Venezuela .................................................................................... 155<br />

82<br />

83<br />

84<br />

84<br />

85<br />

85<br />

86<br />

86<br />

87<br />

93<br />

93<br />

97<br />

99<br />

136


Contributions to the Study of Biological Diversity Vol. 3<br />

<strong>Plant</strong> <strong>Community</strong> <strong>Structure</strong>, <strong>Fire</strong> <strong>Disturbance</strong>, <strong>and</strong> <strong>Recovery</strong> <strong>in</strong><br />

Mangrove Swamps of the Wa<strong>in</strong>i Pen<strong>in</strong>sula, Guyana<br />

The Wa<strong>in</strong>i Pen<strong>in</strong>sula is the site of the<br />

majority of Guyana’s rema<strong>in</strong><strong>in</strong>g mangrove<br />

swamps. In the ongo<strong>in</strong>g development of<br />

Guyana’s protected areas system (EPA Guyana<br />

2002), there has been a focus on the “Shell<br />

Beach” portion of the Wa<strong>in</strong>i Pen<strong>in</strong>sula as a<br />

c<strong>and</strong>idate site, primarily because of its extensive<br />

mangrove swamps <strong>and</strong> mar<strong>in</strong>e turtle nest<strong>in</strong>g<br />

beaches (Humm 2001). The area is important<br />

beyond its uniqueness with<strong>in</strong> Guyana, as the<br />

high-sediment coastl<strong>in</strong>e of the Guianas differs<br />

significantly from Caribbean mangrove sett<strong>in</strong>gs<br />

that are most often studied <strong>in</strong> the Neotropics.<br />

There was a basic need for description of the<br />

plant communities <strong>in</strong> the prospective protected<br />

area, to provide basel<strong>in</strong>e floristic <strong>and</strong> ecological<br />

<strong>in</strong>formation upon which future scientific<br />

research <strong>and</strong> monitor<strong>in</strong>g can build. In the<br />

broader perspective, it is important with<strong>in</strong><br />

mangrove ecology to exp<strong>and</strong> documentation of<br />

the variety of biotic elements, structures, <strong>and</strong><br />

disturbances that occur <strong>in</strong> mangrove ecosystems,<br />

to provide for suitable underst<strong>and</strong><strong>in</strong>g,<br />

protection, <strong>and</strong> management (Ellison 2002; F<strong>in</strong>n<br />

et al. 1998; Jiménez et al. 1985). The disturbance<br />

of the study site just prior to field work offered<br />

opportunities to address basic questions about<br />

the nature of mangrove dispersal <strong>and</strong> recovery.<br />

As a basis for study, plant specimens were<br />

collected <strong>and</strong> identified, <strong>and</strong> a vouchered species<br />

list was assembled for the Wa<strong>in</strong>i Pen<strong>in</strong>sula.<br />

Some of those collections exp<strong>and</strong>ed documented<br />

species ranges. The plant collection results were<br />

compared to other available botanical data for<br />

the region, at various scales, to place the Wa<strong>in</strong>i<br />

by<br />

Thomas H. Hollowell 1<br />

INTRODUCTION<br />

flora <strong>in</strong> environmental <strong>and</strong> biogeographic<br />

context.<br />

In addition, the plant communities of the<br />

Wa<strong>in</strong>i Pen<strong>in</strong>sula were classified, described, <strong>and</strong><br />

mapped. As part of that task, the unusual<br />

phenomenon of large-scale fires <strong>in</strong> the mangrove<br />

swamps was documented, <strong>in</strong>clud<strong>in</strong>g estimates<br />

of the extent of impacted plant communities.<br />

Documentation of the fires formed a<br />

contribution to knowledge of disturbance types<br />

that have been known to affect mangrove<br />

systems. The fires occurred dur<strong>in</strong>g the extreme<br />

El Niño event of 1997 to 1998, <strong>and</strong> so may have<br />

been l<strong>in</strong>ked to global climate change processes<br />

(Laurance 1998; Snedaker 1995).<br />

Among the plant species present, the Asian<br />

mangrove species, Nypa fruticans Wurmb., was<br />

of particular <strong>in</strong>terest <strong>and</strong> so was documented <strong>and</strong><br />

reviewed <strong>in</strong> detail. Nypa Wurmb. is an exotic<br />

species that may spread <strong>in</strong> important river<strong>in</strong>e<br />

mangrove swamps of the Wa<strong>in</strong>i Pen<strong>in</strong>sula<br />

region, mak<strong>in</strong>g it a concern both <strong>in</strong> Guyana <strong>and</strong><br />

neighbor<strong>in</strong>g countries.<br />

Ecological vegetation plots were<br />

established <strong>and</strong> resampled to provide new<br />

<strong>in</strong>formation on the structure of the Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula’s coastal mangrove forests <strong>and</strong> on the<br />

<strong>in</strong>itial course of regeneration <strong>in</strong> the fire-affected<br />

mangrove forests. Those structural data allowed<br />

comparisons with <strong>in</strong>formation on other<br />

mangrove systems of the world <strong>and</strong> will aid<br />

additional population structure <strong>and</strong> succession<br />

trend studies.<br />

Mangrove zonation patterns have been<br />

attributed to both physical <strong>and</strong> chemical factors<br />

1 Master of Science, George Mason University, 1992<br />

This volume was orig<strong>in</strong>ally a portion of a dissertation submitted <strong>in</strong> partial fulfillment of the requirements of the degree of<br />

Doctor of Philosophy at George Mason University. Director: Donald P. Kelso, Associate Professor Environmental Science<br />

<strong>and</strong> Policy<br />

7


8<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

(McKee 1993, 1995b) <strong>and</strong> to abilities of various<br />

mangrove species to disperse <strong>and</strong> establish<br />

(Clarke et al. 2001b; McGu<strong>in</strong>ness 1997a;<br />

Rab<strong>in</strong>owitz 1978a). To <strong>in</strong>vestigate possible<br />

factors <strong>in</strong> the fire-disturbed environment, trial<br />

plant<strong>in</strong>gs of mangrove species were undertaken<br />

<strong>in</strong> both disturbed <strong>and</strong> undisturbed habitats. The<br />

plant<strong>in</strong>gs tested the abilities of species to<br />

establish <strong>in</strong> local conditions, <strong>in</strong>dependent of<br />

their dispersal ability. The results might have<br />

implications for potential restoration<br />

approaches <strong>and</strong> provide <strong>in</strong>formation on the roles<br />

of dispersal limitation versus environmental<br />

conditions <strong>in</strong> mangrove regeneration.<br />

The fire-affected swamps also presented a<br />

unique sett<strong>in</strong>g to test establishment patterns of<br />

mangrove propagules <strong>in</strong> an environment where<br />

coastal tides <strong>and</strong> currents were absent. A method<br />

was devised for sampl<strong>in</strong>g the establishment<br />

patterns of mangrove propagules from the<br />

scattered surviv<strong>in</strong>g parent trees <strong>in</strong> the burned<br />

swamps. The establishment data provide<br />

<strong>in</strong>sights <strong>in</strong>to the possible path of vegetation<br />

recovery.<br />

These studies were a first attempt to<br />

assemble critical <strong>in</strong>formation that may serve to<br />

<strong>in</strong>tegrate the swamps of the Wa<strong>in</strong>i Pen<strong>in</strong>sula <strong>in</strong>to<br />

the broader underst<strong>and</strong><strong>in</strong>g of mangrove ecology<br />

<strong>in</strong> the Neotropics, <strong>and</strong> to <strong>in</strong>form the cont<strong>in</strong>ued<br />

establishment of Guyana’s Protected Areas<br />

System. It is hoped that future studies will be<br />

encouraged to move beyond the work presented<br />

here. Because the chapters were written to be<br />

published separately, some repetition was<br />

<strong>in</strong>evitable, however it is hoped that it has been<br />

kept to a m<strong>in</strong>imum.<br />

ACKNOWLEDGMENTS<br />

For assistance with logistics <strong>and</strong> plann<strong>in</strong>g,<br />

great gratitude goes to Vicki Funk, Carol<br />

Kelloff, <strong>and</strong> Marilyn Hansel of the<br />

Smithsonian’s Biological Diversity of the<br />

Guiana Shield Program, as well as to Carol Ailes<br />

of the Smithsonian’s National Museum of<br />

Natural History travel office. For <strong>in</strong>structive <strong>and</strong><br />

enjoyable field experiences <strong>in</strong> the highl<strong>and</strong>s of<br />

Guyana <strong>and</strong> for help at the US National<br />

Herbarium, thanks go to H. David Clarke of the<br />

University of North Carol<strong>in</strong>a at Asheville. In<br />

the field essential assistance was given by<br />

Audley James, Violet James, Romeo DeFreitas,<br />

Annette Arjoon, Peter Pritchard, Neville<br />

Waldron, Doekie Arjoon, Chris Ch<strong>in</strong>, Matt<br />

Sewell, Keith David, Karen Redden, Wiltshire<br />

H<strong>in</strong>ds, Narad Persaud, Lloyd Savory, Arnold<br />

Benjam<strong>in</strong>, Emily Duvall <strong>and</strong> Renee LeBlanc.<br />

In Georgetown, Guyana help was given by Tsitsi<br />

McPherson, Margaret <strong>and</strong> Malcolm Chan-A-<br />

Sue, Dyantie Nara<strong>in</strong>e, <strong>and</strong> Phillip Da Silva. At<br />

George Mason University thanks go to<br />

professors Ted Bradley, Barry Haack, Don<br />

Kelso, Sheryl Luzzadder-Beach, Larry<br />

Rockwood, <strong>and</strong> Lee Talbot, for their teach<strong>in</strong>g,<br />

advice, encouragement, <strong>and</strong> tolerance.<br />

For assistance with identification of plant<br />

specimens, thanks go to Pedro Acevedo, Frank<br />

Almeda, Rupert Barneby, Germán Carnevali,<br />

Eric Christenson, Tom Croat, Piero Delprete,<br />

Larry Dorr, Bob Faden, Christian Feuillet, Vicki<br />

Funk, Eric Gouda, Susan Grose, Terry Henkel,<br />

Walter Holmes, Emmet Judziewicz, Carol<br />

Kelloff, Job Kuijt, G.P. Lewis, Paul Maas, Greg<br />

McKee, Mike Nee, Dan Nicolson, Jim Norris,<br />

Dar<strong>in</strong> Penneys, John Pipoly, Susan Renner,<br />

Harold Rob<strong>in</strong>son, Matt Sewell, Alan R. Smith,<br />

Mark Strong, <strong>and</strong> Charlotte Taylor. Many of<br />

those identifications were facilitated by the<br />

specimen sort<strong>in</strong>g <strong>and</strong> distribution staff of the<br />

Smithsonian’s Biological Diversity of the<br />

Guiana Shield Program, as was the distribution<br />

of identified specimens. Credit also goes to the<br />

entire staff of the Smithsonian’s US National<br />

Herbarium for build<strong>in</strong>g <strong>and</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g such a<br />

valuable resource of plant specimens.<br />

I thank all of my family; especially my wife<br />

Carol Regier; our daughters Irena <strong>and</strong> Andrea,<br />

our son Ashley, <strong>and</strong> their gr<strong>and</strong>mother Nair<br />

Regier, for their perseverance through the many<br />

months of field work <strong>and</strong> years of busy<br />

weekends <strong>and</strong> even<strong>in</strong>gs; also gratitude goes to<br />

my parents Cici <strong>and</strong> Robert Hollowell for<br />

provid<strong>in</strong>g a basis of respect for the environment<br />

<strong>and</strong> a good early education, <strong>and</strong> to my sisters<br />

Julie Hollowell <strong>and</strong> Laura Hollowell for their<br />

encouragement.<br />

This is number 143 <strong>in</strong> the Smithsonian<br />

Biological Diversity of the Guiana Shield<br />

publication series.


Contributions to the Study of Biological Diversity Vol. 3<br />

CHAPTER 1.<br />

THE WAINI PENINSULA ENVIRONMENT AND ITS FLORA<br />

INTRODUCTION<br />

Any protected natural area is well served<br />

by the assembly of comprehensive basel<strong>in</strong>e<br />

<strong>in</strong>formation <strong>and</strong> by ongo<strong>in</strong>g environmental<br />

description <strong>and</strong> monitor<strong>in</strong>g. The broad goal of<br />

this chapter is to provide a detailed, <strong>in</strong>itial<br />

documentation of the plant species <strong>and</strong> plant<br />

communities of the Wa<strong>in</strong>i Pen<strong>in</strong>sula, to serve<br />

as a foundation for future studies <strong>and</strong><br />

management. The Wa<strong>in</strong>i Pen<strong>in</strong>sula is a proposed<br />

reserve <strong>in</strong> northern Guyana that has been known<br />

for its mar<strong>in</strong>e turtle nest<strong>in</strong>g beaches <strong>and</strong><br />

conservation activities. It is also the location of<br />

long stretches of coastal mangrove swamps,<br />

freshwater swamps, <strong>and</strong> extensive <strong>in</strong>tertidal<br />

mudflats that are habitat for many types of<br />

wildlife. Included are a description of the study<br />

site, a summary of the botanical collections<br />

made to document the flora, <strong>and</strong> descriptions<br />

of basic vegetation zones. The quantity of new<br />

distributional <strong>in</strong>formation revealed by plant<br />

collections activities is of scientific <strong>in</strong>terest, as<br />

that allows <strong>in</strong>sight <strong>in</strong>to the state of basic<br />

knowledge about an area, which guides future<br />

data gather<strong>in</strong>g efforts for research <strong>and</strong><br />

conservation activities. A more accurate<br />

del<strong>in</strong>eation of Guyana’s mangrove communities,<br />

which are of high conservation concern, is<br />

desirable consider<strong>in</strong>g the wide variations <strong>in</strong><br />

exist<strong>in</strong>g estimates for the country (Saenger et<br />

al. 1983; Snedaker 1986; Spald<strong>in</strong>g et al. 1997).<br />

As part of the plant community description, an<br />

estimate was also made of areas affected by the<br />

1998 soil fires on the Wa<strong>in</strong>i Pen<strong>in</strong>sula. Those<br />

fires were unusual for their impact to large areas<br />

of mangrove swamp, which is an ecosystem type<br />

normally considered to be unaffected by fire.<br />

Appendix 1 provides additional review of<br />

mangrove ecology <strong>in</strong> Guyana, <strong>in</strong>clud<strong>in</strong>g<br />

relationships to fire <strong>in</strong> the wet tropics. Appendix<br />

2 fully lists the plant species that were<br />

documented for the Wa<strong>in</strong>i Pen<strong>in</strong>sula.<br />

STUDY SITE<br />

Guyana is located <strong>in</strong> northeastern South<br />

America on the Atlantic Ocean, just north of the<br />

Equator (Figure 1.1). The Wa<strong>in</strong>i Pen<strong>in</strong>sula is a<br />

relatively undisturbed, coastal region of northern<br />

Guyana (Figure 1.2). It is the site of most of<br />

Guyana’s rema<strong>in</strong><strong>in</strong>g <strong>in</strong>tact coastal ecosystems,<br />

<strong>in</strong>clud<strong>in</strong>g mangrove swamps, freshwater<br />

swamps, flooded savannas, <strong>and</strong> their associated<br />

fauna. The pen<strong>in</strong>sula’s “wild coast” stretches for<br />

more than 75 kilometers along the Atlantic<br />

Ocean, from near the Venezuelan border (59º<br />

50' W, 8º 25' N), southeast almost to the mouth<br />

of the Pomeroon River (59º 05' W, 8º N). For<br />

this paper, the study area <strong>in</strong>cludes approximately<br />

the northern third of the Wa<strong>in</strong>i Pen<strong>in</strong>sula, from<br />

Figure 1.1. Location map of Guyana, with major<br />

rivers.<br />

9


10<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Figure 1.2. Site map of the Wa<strong>in</strong>i Pen<strong>in</strong>sula, Guyana, with localities referred to <strong>in</strong> the text. The area framed<br />

comprises much of the Northwest District.<br />

its northwestern po<strong>in</strong>t to 59º 30' W, cover<strong>in</strong>g a<br />

l<strong>and</strong> area of about 190 km 2 . That portion of the<br />

Wa<strong>in</strong>i Pen<strong>in</strong>sula is also commonly referred to<br />

as “Shell Beach.” The study area is part of a<br />

c<strong>and</strong>idate site for Guyana’s newly established<br />

National Protected Areas System (EPA Guyana<br />

2004; Humm 2001), which at the time of this<br />

fieldwork consisted only of Kaieteur National<br />

Park (Kelloff 2003).<br />

The coastal pla<strong>in</strong> of Guyana is composed<br />

of f<strong>in</strong>e sediments that primarily settled from<br />

waters of the current flow<strong>in</strong>g from the Amazon<br />

River’s mouth, which is over 1,000 kilometers<br />

to the southeast. Prior to colonization by<br />

European nations, most of the Guyana coast was<br />

probably l<strong>in</strong>ed by broad mangrove forests that<br />

graded <strong>in</strong>to freshwater swamps <strong>and</strong> flooded<br />

savannas, <strong>and</strong> then <strong>in</strong>to lowl<strong>and</strong> tropical forests<br />

(Richardson 1987). In the more densely<br />

populated southeastern part of Guyana’s coastal<br />

pla<strong>in</strong>, around the capital Georgetown, those<br />

swamps <strong>and</strong> savannas were dra<strong>in</strong>ed <strong>and</strong><br />

converted to agriculture <strong>and</strong> settlements early<br />

<strong>in</strong> the country’s colonial history. However, <strong>in</strong><br />

the Northwest District of Guyana (also known<br />

as the Barima-Wa<strong>in</strong>i Division; Figure 2.1) there<br />

have been limitations on access to coastal l<strong>and</strong>s:<br />

by l<strong>and</strong> due to the absence of roads <strong>and</strong> presence<br />

of numerous swamps <strong>and</strong> rivers, <strong>and</strong> by sea<br />

because of the broad tidal mudflats extend<strong>in</strong>g<br />

up to several kilometers out from shore. As a<br />

result, long stretches of the coast have rema<strong>in</strong>ed<br />

sparsely settled <strong>and</strong> largely unmodified.<br />

Climate<br />

Based on the life zone classification of<br />

Holdridge et al (1971), that comb<strong>in</strong>es <strong>in</strong>fluences<br />

of temperature, elevation, <strong>and</strong> ra<strong>in</strong>fall, the Wa<strong>in</strong>i


Contributions to the Study of Biological Diversity Vol. 3<br />

Pen<strong>in</strong>sula is capable of form<strong>in</strong>g a Tropical Moist<br />

Forest. Because of its location near the equator,<br />

Guyana’s climate is dom<strong>in</strong>ated by the equatorial<br />

trough <strong>and</strong> the seasonal movements of the<br />

<strong>in</strong>tertropical convergence (ITC) (Snow 1976).<br />

The mean annual temperature for the coastal<br />

zone of Guyana is approximately 26.5ºC, with<br />

a 1ºC to 1.5ºC range between the mean<br />

temperatures of the warmest <strong>and</strong> coolest months,<br />

which co<strong>in</strong>cide with the dry <strong>and</strong> wet seasons<br />

respectively. The trade w<strong>in</strong>ds consistently blow<br />

from the east-northeast or the east, with monthly<br />

mean speeds vary<strong>in</strong>g from 3 to 4 m/second.<br />

Precipitation patterns are characterized by two<br />

dry seasons <strong>and</strong> two wet seasons per year. The<br />

major wet season runs from April to August,<br />

with a m<strong>in</strong>or wet season from November to<br />

February. Mean annual ra<strong>in</strong>fall <strong>in</strong> the coastal<br />

area of the Northwest District has been reported<br />

from approximately 2,500 mm per year (Snow<br />

1976) to 3,400 mm per year (K. Richardson,<br />

pers. comm.). The wettest month is sometimes<br />

reported as June, with an mean ra<strong>in</strong>fall of 400<br />

mm (Snow 1976), or January with a mean<br />

ra<strong>in</strong>fall of 500 mm (K. Richardson, pers.<br />

comm.). Dur<strong>in</strong>g a typical year <strong>in</strong> the stronger<br />

dry season of February-April, only 5 to 10 days<br />

per month receive ra<strong>in</strong>fall (Snow 1976).<br />

Snow (1976) noted that a zone of m<strong>in</strong>imum<br />

ra<strong>in</strong>fall probably occurs along a narrow b<strong>and</strong> of<br />

the coast of northern South America, with a peak<br />

<strong>in</strong> precipitation reached less than 50 kilometers<br />

<strong>in</strong>l<strong>and</strong>, caused by effects of <strong>in</strong>creased surface<br />

roughness of forests upon air leav<strong>in</strong>g the ocean.<br />

This has been confirmed by many observations<br />

(Hollowell, unpublished) of ra<strong>in</strong> develop<strong>in</strong>g<br />

several kilometers <strong>in</strong>l<strong>and</strong> from the Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula while extreme coastal areas rema<strong>in</strong>ed<br />

dry. The typically low number of ra<strong>in</strong> days <strong>in</strong><br />

the dry season, comb<strong>in</strong>ed with reduced ra<strong>in</strong>fall<br />

immediately along the coast <strong>and</strong> a drought<br />

caused by a strong El Niño event, led to<br />

extremely dry conditions <strong>in</strong> the coastal forests<br />

of the Wa<strong>in</strong>i Pen<strong>in</strong>sula <strong>in</strong> 1997-1998.<br />

Geomorphology<br />

The coastal pla<strong>in</strong> sediments of the Guianas<br />

were deposited <strong>in</strong> recent times on the marg<strong>in</strong>s<br />

of the Guiana Shield, which is a natural<br />

geological unit characterized by ancient bedrock<br />

with s<strong>and</strong>stone <strong>and</strong> igneous highl<strong>and</strong>s (Gibbs<br />

11<br />

& Barron 1993; Huber 1995a). The Guiana<br />

Shield is geologically dist<strong>in</strong>ct from the more<br />

recently uplifted Andean highl<strong>and</strong>s. It is<br />

bounded for the most part by the Atlantic Ocean<br />

to the east, the Or<strong>in</strong>oco River to the north <strong>and</strong><br />

west, <strong>and</strong> the Negro <strong>and</strong> Amazon Rivers to the<br />

South. The Shield is widely considered to be a<br />

region of high biotic endemicity (Huber 1995c),<br />

possibly due to hav<strong>in</strong>g served as a refugium for<br />

tropical forest species dur<strong>in</strong>g prolonged periods<br />

of dry climate <strong>in</strong> the Pleistocene epoch (1.8 mya<br />

to 11,000 years bp), or due to the ancient, varied,<br />

<strong>and</strong> isolated l<strong>and</strong>scapes of the region (Col<strong>in</strong>vaux<br />

1987).<br />

From the Or<strong>in</strong>oco Delta south to the<br />

Amazon River, the coast of South America is<br />

geologically referred to as a “passive marg<strong>in</strong>,”<br />

with deep sediments deposited over the<br />

tectonically stable Guiana Shield (Di Croce et<br />

al. 1999). That stability is reflected <strong>in</strong> estimates<br />

that relative sea level <strong>in</strong> the region has been<br />

relatively stationary s<strong>in</strong>ce post-glacial rises<br />

ended perhaps 6,000 B.P., although sea levels<br />

possibly surpassed that of the present by as much<br />

as five meters from 6,000 to 3,000 B.P. (Pirazzoli<br />

1991). By some accounts, the section of the<br />

Guyana coast <strong>in</strong>clud<strong>in</strong>g the Wa<strong>in</strong>i Pen<strong>in</strong>sula has<br />

been subject to some uplift <strong>in</strong> recent geological<br />

times (Gibbs & Barron 1993), while others<br />

suggest that subsidence may have been a factor<br />

along the northwestern coast of Guyana<br />

(Br<strong>in</strong>kman & Pons 1968). Williams (1989)<br />

employed archaeological evidence to <strong>in</strong>fer that<br />

subsidence <strong>in</strong> the Guyana’s northwest ended<br />

around 3,400 years B.P. The presence of mar<strong>in</strong>e<br />

sediments on higher elevations <strong>in</strong> the central<br />

parts of the Wa<strong>in</strong>i Pen<strong>in</strong>sula suggests that <strong>in</strong><br />

geologically recent times, relative sea levels<br />

may have once been several meters higher than<br />

present or that moderate uplift has occurred. The<br />

area is close enough to a geologically active area<br />

beg<strong>in</strong>n<strong>in</strong>g just south of Tr<strong>in</strong>idad (Di Croce et<br />

al. 1999) that associated m<strong>in</strong>or uplift or<br />

subsidence around the study site could be<br />

plausible.<br />

The Shield’s basement granites are<br />

estimated to be as far as 500 meters below the<br />

surface along Guyana’s northwest coast (Di<br />

Croce et al. 1999). The coast of the Guianas is,<br />

<strong>in</strong> essence, the major portion of the coastal delta<br />

of the Amazon River. The Essequibo, Wa<strong>in</strong>i, <strong>and</strong>


12<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Or<strong>in</strong>oco Rivers probably contribute a m<strong>in</strong>or<br />

amount of sediment <strong>in</strong> comparison to the<br />

Amazon River. The coast is geomorphically<br />

similar to the coast of eastern Sumatra, based<br />

on an analysis of several coastal characteristics<br />

(Jelgersma et al. 1993). Both are deltaic<br />

environments with a wide coastal shelf, a<br />

prograd<strong>in</strong>g shore of very f<strong>in</strong>e sediments, little<br />

subsidence or uplift, strong longshore transport,<br />

low wave energy, small tidal range, <strong>and</strong> no<br />

<strong>in</strong>fluence of tropical cyclones. A geomorphic<br />

classification commonly applied to this type of<br />

mangrove environment is River Dom<strong>in</strong>ated<br />

Alluvial Pla<strong>in</strong> (Thom 1984; Woodroffe 1992).<br />

The width of the lower coastal pla<strong>in</strong> of<br />

Guyana varies about from about 75 kilometers<br />

at the Corentyne River on the Sur<strong>in</strong>am border<br />

to 25 kilometers near the Venezuelan border<br />

(Vann 1969). The coastl<strong>in</strong>e is characterized by<br />

cycles of accretion <strong>and</strong> erosion of mudflat clay<br />

<strong>and</strong> silt sediments, which are known locally as<br />

“sl<strong>in</strong>g mud”(Richardson 1987; Wells &<br />

Coleman 1981). The Wa<strong>in</strong>i section of the coast<br />

has apparently been prograd<strong>in</strong>g, <strong>in</strong> a manner<br />

similar to the coastl<strong>in</strong>e of the Or<strong>in</strong>oco Delta to<br />

the northwest (Bureau of Economic Geology<br />

2002). Along parts of the Guyana coast coastal<br />

currents have led to erosion loss of diked l<strong>and</strong>,<br />

<strong>in</strong>clud<strong>in</strong>g l<strong>and</strong> near Georgetown that was once<br />

populated or cultivated as recently as 1972;<br />

signs of these changes are visible <strong>in</strong> radar<br />

satellite imagery (S<strong>in</strong>ghroy 1996). Sizable<br />

sediment deposits were colonized by<br />

mangroves, primarily Avicennia, between the<br />

Essequibo <strong>and</strong> Pomeroon Rivers <strong>in</strong> the 1990’s<br />

(pers. obs).<br />

Slow migration of the mudbanks along the<br />

coast leads to a smaller-scale cycle of shore<br />

erosion <strong>and</strong> redeposition that is unlike typical<br />

coastal dynamics that would produce relatively<br />

straight coastl<strong>in</strong>es (Lakhan & Pepper 1997). As<br />

part of those cycles, coarser s<strong>and</strong> <strong>and</strong> shell<br />

fragments are released from the sediments <strong>and</strong><br />

deposited to form beach ridges that may<br />

accumulate up to 200 meters <strong>in</strong> width (Prost<br />

1989; Vann 1969). The beach ridges often isolate<br />

sections of mangrove forest from the sea. Along<br />

other stretches of the Wa<strong>in</strong>i coast waves wash<br />

directly <strong>in</strong>to the mangrove forest. Dur<strong>in</strong>g the<br />

time of this field work (1997-2001), the widest<br />

beach ridge on the Wa<strong>in</strong>i Pen<strong>in</strong>sula was Almond<br />

Beach, the location of a mar<strong>in</strong>e turtle monitor<strong>in</strong>g<br />

camp (8° 23' 58'’ N, 59° 45' 16" W) <strong>and</strong> base<br />

camp for these studies, where the ridge<br />

measured over 160 meters wide. That shell<br />

deposit was perhaps two meters deep <strong>and</strong><br />

conta<strong>in</strong>ed a lens of nearly fresh water<br />

(approximately 1 psu sal<strong>in</strong>ity, Hollowell,<br />

unpublished data). To illustrate the variability<br />

of the ridges, profiles were surveyed for one<br />

wide section <strong>and</strong> one narrow section of beach<br />

ridge, illustrated <strong>in</strong> Figures 1.3 <strong>and</strong> 1.4. The<br />

wider beach ridges roughly co<strong>in</strong>cided with areas<br />

of mangrove swamp that dried adequately to<br />

Figure 1.3. Beach profile between Almond Beach Camp <strong>and</strong> Wa<strong>in</strong>i Po<strong>in</strong>t, an area of narrow beach ridge near<br />

plots 1, 2 <strong>and</strong> 6. Beyond 25 m was Avicennia swamp, which borders the beach ridge with a low swale. It was<br />

not unusual for waves to spill sea water <strong>in</strong>to the swamp dur<strong>in</strong>g extreme tides. Profiles were started near the<br />

boundary between mudflats <strong>and</strong> shell substrate.


Contributions to the Study of Biological Diversity Vol. 3<br />

Figure 1.4. Beach profile at Almond Beach camp, near plots 2, 4 <strong>and</strong> 5, an area with a wide beach ridge that,<br />

at the time of survey <strong>in</strong> April 2001, had several small structures <strong>and</strong> gardens. The swale at 70 m was deeper <strong>in</strong><br />

some places than shown, <strong>and</strong> formed a slightly brackish pond persist<strong>in</strong>g through most dry seasons. Beyond<br />

170 m was Avicennia swamp that burned <strong>in</strong> early 1998. Waves from extreme storms have flooded <strong>in</strong>terior<br />

sections of the beach ridge, but rarely reached the mangrove swamp.<br />

burn <strong>in</strong> the 1998 soil fires (Figure1.5).<br />

Figure 1.5. Location of beach ridges on the Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula, shown <strong>in</strong> relation to burned areas <strong>and</strong><br />

settlements or camps.<br />

Inl<strong>and</strong> beach ridges occur with<strong>in</strong> the coastal<br />

mangrove swamps; these run approximately<br />

parallel to the present shorel<strong>in</strong>e. Such ridges are<br />

evidence of long-term coastal accretion, as they<br />

represent former shorel<strong>in</strong>es; they are often<br />

termed “cheniers” <strong>in</strong> the literature (Prost 1989,<br />

1997; Wells & Coleman 1981), <strong>and</strong> the coast of<br />

the Guianas is one of the few true chenier coasts<br />

of the world. The region of South American<br />

cheniers stretches from the mouth of the<br />

Amazon River north through the Or<strong>in</strong>oco Delta<br />

(Bacon 1990). The other major chenier coast <strong>in</strong><br />

the New World is the Louisiana chenier pla<strong>in</strong><br />

of the Mississippi River delta (Huh et al. 2001;<br />

13<br />

Wells & Coleman 1981). On the Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula, the largest cheniers rise about one<br />

meter above the surround<strong>in</strong>g swamp surface <strong>and</strong><br />

support non-mangrove vegetation dom<strong>in</strong>ated by<br />

trees <strong>in</strong>clud<strong>in</strong>g Term<strong>in</strong>alia catappa L. <strong>and</strong><br />

Spondias momb<strong>in</strong> L. Differences <strong>in</strong> hydrology,<br />

vegetation cover, or surface reflectance of shells<br />

often allow cheniers to be dist<strong>in</strong>guishable <strong>in</strong><br />

satellite imagery. The cheniers on the Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula sometimes co<strong>in</strong>cide with transitions<br />

<strong>in</strong> plant community composition. There are<br />

accounts from older residents of the Almond<br />

Beach area describ<strong>in</strong>g the largest chenier, now<br />

over 700 meters from the present shore, as<br />

hav<strong>in</strong>g been the location of the shorel<strong>in</strong>e with<strong>in</strong><br />

their memories; these accounts have not been<br />

confirmed, but could be subject to comparison<br />

with older maps <strong>and</strong> aerial photos. Vann (1969)<br />

also reports observations of shell ridges str<strong>and</strong>ed<br />

up to 300 yards from shore that had been beach<br />

by the ocean 30 years earlier, corroborat<strong>in</strong>g the<br />

local accounts.<br />

Like most coastal plant communities, those<br />

of the Wa<strong>in</strong>i Pen<strong>in</strong>sula are <strong>in</strong>fluenced<br />

considerably by local geomorphic processes<br />

over time (August<strong>in</strong>us 1995; Thom 1967, 1975;<br />

Woodroffe 1992). Although direct build<strong>in</strong>g of<br />

l<strong>and</strong> has been attributed to mangrove vegetation<br />

<strong>in</strong> early literature, that has been largely<br />

discounted (Woodroffe 1992). Still, mangroves<br />

probably play some role <strong>in</strong> secur<strong>in</strong>g l<strong>and</strong> built<br />

up through geomorphic processes, both by<br />

slow<strong>in</strong>g wave erosion <strong>and</strong>, as suggested by Wells


14<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

<strong>and</strong> Coleman (1981), through new root biomass<br />

of Avicennia L. trees <strong>in</strong> newly colonized<br />

mudflats <strong>in</strong>creas<strong>in</strong>g substrate elevation enough<br />

to allow survival of a st<strong>and</strong>. Zones of recent<br />

coastal accretion are easily identified from the<br />

sea by b<strong>and</strong>s of Avicennia sapl<strong>in</strong>gs <strong>and</strong> small<br />

trees (Figure 1.6), while erod<strong>in</strong>g shore segments<br />

are usually marked by fallen Avicennia trees<br />

(Figure 1.7).<br />

Figure 1.6. Avicennia sapl<strong>in</strong>gs recently established<br />

on new sediments <strong>in</strong> front of mature trees, on the<br />

Wa<strong>in</strong>i Pen<strong>in</strong>sula coast just southeast of Kamwatta<br />

Beach.<br />

Develop<strong>in</strong>g countries with populated lowly<strong>in</strong>g<br />

l<strong>and</strong>, such as Guyana, are particularly<br />

vulnerable to economic <strong>and</strong> environmental<br />

impacts from sea level <strong>in</strong>creases (Gabche et al.<br />

2000). A sea level rise <strong>in</strong> the 0.09 to 0.88 meter<br />

range has been predicted by the year 2100<br />

(IPCC 2001), <strong>and</strong> the Government of Guyana<br />

estimates that the entire Wa<strong>in</strong>i Pen<strong>in</strong>sula would<br />

be severely affected by a one meter rise <strong>in</strong> sea<br />

level (EPA Guyana 2000). Sea level rise could<br />

result <strong>in</strong> substantial changes <strong>in</strong> the extent of<br />

mangrove ecosystems world-wide (Pernetta<br />

1993). To survive under such circumstances,<br />

mangrove communities must either migrate<br />

<strong>in</strong>l<strong>and</strong> or survive on accret<strong>in</strong>g substrates. In<br />

general, high sediment <strong>in</strong>put mangrove systems<br />

such on the coast of the Guianas are more likely<br />

to withst<strong>and</strong> moderately ris<strong>in</strong>g sea levels (Field<br />

1995), particularly <strong>in</strong> contrast to Caribbean<br />

mangrove systems that are often situated on<br />

slowly accret<strong>in</strong>g peat substrates (Ellison 1993;<br />

Ellison & Stoddart 1991; Park<strong>in</strong>son et al. 1994).<br />

Although the coastal pla<strong>in</strong> of the Guianas could<br />

serve as a refuge for mangrove communities,<br />

<strong>in</strong> populated areas any l<strong>and</strong>ward migration of<br />

mangrove forests would be impossible.<br />

Figure 1.7. Shore erosion along the Wa<strong>in</strong>i Pen<strong>in</strong>sula<br />

coast between Almond Beach <strong>and</strong> Kamwatta Beach,<br />

show<strong>in</strong>g fallen Avicennia trees. Dur<strong>in</strong>g higher tides<br />

waves wash over a very small beach ridge <strong>and</strong> <strong>in</strong>to<br />

the forest.<br />

Mangrove systems along the Guyana coast<br />

might be subject to accelerated isolation from<br />

tidal <strong>in</strong>fluence if sedimentation <strong>in</strong>creases as a<br />

result of changes <strong>in</strong> upl<strong>and</strong> l<strong>and</strong> uses that cause<br />

erosion, as has been reported on parts of coastal<br />

Thail<strong>and</strong> (Panapitukkul et al. 1998).<br />

Soils<br />

The soils of the Wa<strong>in</strong>i Pen<strong>in</strong>sula are the<br />

product of slow accretion of very f<strong>in</strong>e sediments<br />

<strong>in</strong> very deep layers over recent geological time<br />

(Br<strong>in</strong>kman & Pons 1968; Gibbs & Barron 1993).<br />

Soils of the Wa<strong>in</strong>i Pen<strong>in</strong>sula have been classified<br />

as Demerara Series, Coronie deposits, of the<br />

Comow<strong>in</strong>e phase (Br<strong>in</strong>kman & Pons 1968),<br />

which are mar<strong>in</strong>e clays with high base<br />

saturation, deposited less than 1,000 years ago.<br />

The clay soils of the Wa<strong>in</strong>i Pen<strong>in</strong>sula swamps<br />

are comparable to those of the Wia Wia reserve<br />

of coastal Sur<strong>in</strong>am, which were described by<br />

Pons <strong>and</strong> Pons (1975) as typic Endoaqerts (at<br />

the time, termed Typic Haplaquepts). The Wa<strong>in</strong>i<br />

soils could alternately be classified as Vertisols<br />

s<strong>in</strong>ce they marg<strong>in</strong>ally meet the requirement of<br />

form<strong>in</strong>g cracks on a regular basis (Soil Survey<br />

Staff 1998), as observed dur<strong>in</strong>g droughts of<br />

extreme dry seasons. These young, extremely<br />

f<strong>in</strong>e clay soils are highly reduced by anaerobic<br />

conditions dur<strong>in</strong>g long periods of <strong>in</strong>undation.<br />

Such reduced soils are <strong>in</strong>dicated by a gleyed<br />

color (grey, low chroma color), most often<br />

measured on the Wa<strong>in</strong>i Pen<strong>in</strong>sula at 7.5 YR 4/1<br />

us<strong>in</strong>g the st<strong>and</strong>ard Munsell soil color system<br />

(Munsell Color 1992). The shallower portions


Contributions to the Study of Biological Diversity Vol. 3<br />

of those soils <strong>in</strong>cluded high chroma mottles,<br />

around Munsell color 7.5 YR 4/4, that usually<br />

result from seasonal fluctuation of water tables.<br />

There was little horizon development other than<br />

a surface layer of organic material that ranges<br />

from 5-15 cm <strong>in</strong> thickness. Most of the<br />

mangrove swamp soils of the Wa<strong>in</strong>i Pen<strong>in</strong>sula<br />

had such organic horizons, aga<strong>in</strong> similar to those<br />

reported for Sur<strong>in</strong>am’s coastal mangrove<br />

swamps (Pons & Pons 1975). In the Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula’s more <strong>in</strong>l<strong>and</strong> Mixed Freshwater<br />

swamps, the organic horizon was observed to<br />

be as much as 15-20 cm thick, but was m<strong>in</strong>imal<br />

<strong>in</strong> areas where the upper soil layers had been<br />

burned <strong>in</strong> 1998. Such organic layers are quite<br />

shallow compared to “pegasse” peat that is<br />

several meters deep <strong>in</strong> coastal pla<strong>in</strong> swamps<br />

located farther <strong>in</strong>l<strong>and</strong> than the Wa<strong>in</strong>i Pen<strong>in</strong>sula<br />

sites, most notably the Mauritia flexuosa L.f.<br />

palm savannas <strong>in</strong> the Santa Rosa vic<strong>in</strong>ity of the<br />

Northwest District (van Andel 2000a).<br />

The beach ridges <strong>and</strong> cheniers are<br />

composed of f<strong>in</strong>e shell fragments with m<strong>in</strong>imal<br />

coarse s<strong>and</strong>. These very young soils can be<br />

classified as typic Psammaquents or Psamments<br />

(Soil Survey Staff 1998), with f<strong>in</strong>e shell<br />

materials probably derived from both river<strong>in</strong>e<br />

<strong>and</strong> oceanic sources (Br<strong>in</strong>kman & Pons 1968).<br />

The offshore mudflats could possibly be<br />

classified as Halic Typic Hydraquents, although<br />

they are likely unsuitable for colonization (Soil<br />

Survey Staff 1998), <strong>in</strong> which case they should<br />

be considered non-soil, be<strong>in</strong>g too frequently<br />

<strong>in</strong>undated <strong>and</strong>/or unstable to usually support<br />

plant growth.<br />

S<strong>in</strong>ce the Wa<strong>in</strong>i Pen<strong>in</strong>sula was deposited<br />

slowly by accretion of mar<strong>in</strong>e sediments, the<br />

<strong>in</strong>terior area has probably been above sea level<br />

longer than l<strong>and</strong> near the ocean, <strong>and</strong> l<strong>and</strong> nearer<br />

to Wa<strong>in</strong>i Po<strong>in</strong>t may be more recent than the<br />

southeastern portion of the Pen<strong>in</strong>sula. Older<br />

deposits have been subject to more leach<strong>in</strong>g of<br />

salts by ra<strong>in</strong>s, greater accumulation of organic<br />

matter from vegetation, <strong>and</strong> possible changes<br />

<strong>in</strong> elevation. Generally, soil sal<strong>in</strong>ity is higher<br />

near the ocean, limit<strong>in</strong>g the number of plant<br />

species that may become established. The soils<br />

of the <strong>in</strong>terior Mixed Freshwater swamps are<br />

similar to those of the Coastal Mangrove<br />

swamps, be<strong>in</strong>g very f<strong>in</strong>e, gray clays of mar<strong>in</strong>e<br />

orig<strong>in</strong>. The porewater sal<strong>in</strong>ity of these soils was<br />

15<br />

generally low enough, less than 10 psu<br />

(Hollowell, unpublished data), to allow nonmangrove<br />

plant communities.<br />

The Venezuelan state of Delta Amacuro<br />

borders Guyana’s Northwest District; it is<br />

largely situated on the coastal pla<strong>in</strong>, with alluvial<br />

<strong>and</strong> mar<strong>in</strong>e soils similar to those of the Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula <strong>and</strong> the coastal pla<strong>in</strong> of Guyana. The<br />

southern third of Delta Amacuro is geologically<br />

part of the Guiana Shield, with soils derived<br />

mostly from granitic bedrock (Huber 1995a).<br />

This <strong>in</strong>cludes part of the low mounta<strong>in</strong>s of the<br />

Serranía Imataca along its border with the state<br />

of Bolívar. Those mounta<strong>in</strong>s are primarily<br />

composed of granitic bedrock with greenstones,<br />

similar to the mounta<strong>in</strong>s of Guyana’s Northwest<br />

District but dist<strong>in</strong>ct from the s<strong>and</strong>stones <strong>and</strong><br />

<strong>in</strong>trusive rocks of the Pakaraima mounta<strong>in</strong>s to<br />

the south.<br />

The Wa<strong>in</strong>i Pen<strong>in</strong>sula <strong>Fire</strong>s of 1997-1998<br />

The El Niño event of 1997-1998 was one<br />

of the more substantial that have been recorded<br />

(Trenberth 1999). Severe flood<strong>in</strong>g occurred <strong>in</strong><br />

northwestern South America, while there was a<br />

substantial decrease <strong>in</strong> ra<strong>in</strong>fall <strong>in</strong>tensity <strong>and</strong><br />

frequency <strong>in</strong> northeastern South America.<br />

Guyana was one of the hardest hit countries,<br />

along with neighbor<strong>in</strong>g portions of Venezuela<br />

<strong>and</strong> Brazil. Below normal ra<strong>in</strong>s began <strong>in</strong> the<br />

Guyana region <strong>in</strong> June 1997. By March 1998,<br />

parts of Guyana had ra<strong>in</strong>fall deficits of more<br />

than 1,000 mm <strong>and</strong> river flows approximately<br />

20 percent of normal (WMO 1999). M<strong>in</strong>or fires<br />

result<strong>in</strong>g from that drought were reported for<br />

small, white-s<strong>and</strong> areas <strong>in</strong> Guyana (Hammond<br />

& Steege 1998). Widespread, uncontrolled forest<br />

fires were also reported dur<strong>in</strong>g that time from<br />

the state of Roraima, <strong>in</strong> northern Brazil, just west<br />

of southern Guyana, affect<strong>in</strong>g 12,000 km 2 to<br />

33,000 km 2 of forest (Barbosa & Fearnside<br />

1999; Barbosa et al. 2003; Cochrane & Schulze<br />

1998). Also dur<strong>in</strong>g that period, droughts led to<br />

fires of even greater extent <strong>in</strong> Indonesia,<br />

destroy<strong>in</strong>g over 50,000 km 2 of forest <strong>and</strong><br />

caus<strong>in</strong>g widespread respiratory problems<br />

downw<strong>in</strong>d (K<strong>in</strong>naird & O’Brien 1998; Legg &<br />

Laumonier 1999; Trenberth 1999).<br />

Although unusual for mangrove<br />

ecosystems, the 1998 soil fires on the Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula have been poorly documented. There


16<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

were apparently no reports <strong>in</strong> the Guyanese<br />

media, <strong>and</strong> limited knowledge of the fires<br />

reached any governmental offices. One brief<br />

report of possible fires <strong>in</strong> the Wa<strong>in</strong>i Pen<strong>in</strong>sula<br />

area occurred <strong>in</strong> the literature, based on satellite<br />

detection dur<strong>in</strong>g March 1998 (Grégoire et al.<br />

1998). That report was based on analysis of<br />

AVHRR 1-kilometer resolution satellite<br />

imagery, where a s<strong>in</strong>gle po<strong>in</strong>t of possible fire<br />

was detected near the northwestern end of the<br />

Wa<strong>in</strong>i Pen<strong>in</strong>sula. The same report <strong>in</strong>dicated fires<br />

<strong>in</strong> mangroves <strong>and</strong> coastal vegetation <strong>in</strong> Sur<strong>in</strong>am,<br />

<strong>and</strong> predicted serious consequences <strong>in</strong>clud<strong>in</strong>g<br />

<strong>in</strong>creased coastal erosion <strong>and</strong> impacts on<br />

fisheries.<br />

Accord<strong>in</strong>g to residents, the Wa<strong>in</strong>i pen<strong>in</strong>sula<br />

fires were <strong>in</strong>itiated by multiple, un<strong>in</strong>tended<br />

escapes of agricultural fires at small settlements<br />

on coastal beach ridges. Spontaneous<br />

combustion of peat soils might be a slight<br />

possibility dur<strong>in</strong>g droughts (L<strong>in</strong>deman 1953;<br />

Viosca 1931), although the peat of the Almond<br />

Beach swamps was probably not thick enough<br />

to present that risk. Residents of Almond Beach<br />

have recounted carry<strong>in</strong>g water <strong>in</strong> attempts to<br />

ext<strong>in</strong>guish soil fires early <strong>in</strong> their course. The<br />

fires burned for several months, work<strong>in</strong>g<br />

through the swamp forest from late 1997 until<br />

the return of ra<strong>in</strong>s <strong>in</strong> April 1998. Dur<strong>in</strong>g that<br />

period, smoke often made navigation on the<br />

Wa<strong>in</strong>i River difficult.<br />

Two extensive areas of the Wa<strong>in</strong>i Pen<strong>in</strong>sula<br />

swamps were burned. The Almond Beach burn<br />

ran adjacent to the Atlantic beach ridge from<br />

the Pen<strong>in</strong>sula’s northernmost settlement at<br />

Almond Beach, the site of a mar<strong>in</strong>e turtle<br />

monitor<strong>in</strong>g camp, to the last coastal settlement<br />

<strong>in</strong> the vic<strong>in</strong>ity, about 7 kilometers to the<br />

southeast. For several years follow<strong>in</strong>g the fires,<br />

crowns of dead st<strong>and</strong><strong>in</strong>g Avicennia trees at the<br />

Almond Beach burn were visible from the<br />

ocean. The Kamwatta burn occurred about 20<br />

kilometers to the southeast of Almond Beach.<br />

Those fires came with<strong>in</strong> 250 meters of the ocean<br />

near Kamwatta Beach (Figure 1.2), where a<br />

temporary mar<strong>in</strong>e turtle monitor<strong>in</strong>g camp was<br />

located. Possible outliers of the Kamwatta burn<br />

were visible along short stretches of the Wa<strong>in</strong>i<br />

River near homesteads.<br />

Tree mortality was very high as a result of<br />

both of these burns. The mortality resulted from<br />

at least two factors: the high fire sensitivity of<br />

mangrove plants, <strong>and</strong> the manner <strong>in</strong> which the<br />

fires passed twice through many areas, with the<br />

first pass burn<strong>in</strong>g upper organic soil horizons<br />

(5-15 cm thick near Almond Beach), <strong>and</strong> second<br />

pass additionally fueled by leaves fallen from<br />

shocked <strong>and</strong> newly killed trees (local<br />

<strong>in</strong>habitants, pers. comm). Cochrane (1998)<br />

refers to similar double fires <strong>in</strong> upl<strong>and</strong> tropical<br />

forests follow<strong>in</strong>g the accumulation of dead<br />

leaves on the forest floor.<br />

MATERIALS AND METHODS<br />

<strong>Plant</strong> Collection Field Work<br />

For characterization of the flora of the Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula, plant specimens were collected,<br />

identified <strong>and</strong> processed for deposit <strong>in</strong> herbaria<br />

to provide vouchers for a guide to the plants of<br />

the Wa<strong>in</strong>i Pen<strong>in</strong>sula, vouchers for the<br />

composition of plant communities, <strong>and</strong> vouchers<br />

for ecological plots <strong>in</strong> the local mangrove<br />

swamp. At least one collection was made of each<br />

species encountered, <strong>in</strong>clud<strong>in</strong>g any plants that<br />

were potentially dist<strong>in</strong>ct from other species<br />

previously collected.<br />

<strong>Plant</strong> collections were made on field trips<br />

from 1997 through 2001. Fertile plant material<br />

was selected <strong>in</strong> the field; at least three duplicate<br />

collections were made whenever possible to<br />

provide sheets for the herbaria at the University<br />

of Guyana’s (GRB) Centre for the Study of<br />

Biological Diversity (CSBD) <strong>and</strong> at the<br />

Smithsonian Institution (US). Sterile collections<br />

were made <strong>in</strong> only a few cases when no fertile<br />

material was found. Associated plant<br />

description, habitat, <strong>and</strong> location data were<br />

recorded, with geographic coord<strong>in</strong>ates recorded<br />

us<strong>in</strong>g a h<strong>and</strong>-held Geographic Position<strong>in</strong>g<br />

System (GPS) with an accuracy of 15 meters.<br />

Specimens were field pressed <strong>and</strong> air dried <strong>in</strong><br />

the Almond Beach camp on the Wa<strong>in</strong>i Pen<strong>in</strong>sula.<br />

Air dry<strong>in</strong>g of botanical collections <strong>in</strong> the field<br />

can be impractical <strong>in</strong> the wet <strong>in</strong>terior of Guyana,<br />

where the common practice has been <strong>in</strong>terim<br />

preservation <strong>in</strong> an ethanol solution. However,<br />

field dry<strong>in</strong>g is often possible <strong>in</strong> the relatively<br />

dry, w<strong>in</strong>dy environment of the Almond Beach<br />

camp. Because of that, the collections of<br />

Hollowell number series from 200 to 754 were<br />

not treated with any preservatives. All specimens


Contributions to the Study of Biological Diversity Vol. 3<br />

were transported to the CSBD for any f<strong>in</strong>al<br />

dry<strong>in</strong>g, sort<strong>in</strong>g, <strong>and</strong> process<strong>in</strong>g for export<br />

permits.<br />

Where possible, photographs were taken of<br />

species collected <strong>in</strong> the area. Copies of selected<br />

slides <strong>and</strong> image files are held by the<br />

Smithsonian Institution <strong>and</strong> by the CSBD. It is<br />

planned to use those photographs as part of an<br />

illustrated list<strong>in</strong>g of plant species <strong>in</strong> a separate<br />

volume.<br />

<strong>Plant</strong> Identification, Classification <strong>and</strong><br />

Distribution<br />

<strong>Plant</strong>s were identified us<strong>in</strong>g available<br />

botanical keys, most notably treatments from<br />

the Flora of the Guianas (Görts-van Rijn 1985<br />

- 2006) <strong>and</strong> the Flora of the Venezuelan Guayana<br />

(Steyermark et al. 1995 - 2005). As neither of<br />

these are complete, numerous other publications<br />

were also utilized (e.g., various regional floras<br />

<strong>and</strong> guides (Gentry 1993; Lanjouw 1964-;<br />

Lasser 1964-1992; Pulle 1932-; Ribeiro et al.<br />

1999), botanical journal articles, <strong>and</strong> botanical<br />

monographs). The U.S. National Herbarium at<br />

the Smithsonian Institution (US) was a valuable<br />

reference for confirm<strong>in</strong>g determ<strong>in</strong>ations <strong>and</strong><br />

resolv<strong>in</strong>g problems. In several cases,<br />

identifications were provided by specialists <strong>in</strong><br />

particular plant families.<br />

Follow<strong>in</strong>g identification, name data were<br />

added to the Smithsonian’s Biological Diversity<br />

of the Guianas Shield’s (BDG) plant collection<br />

database, labels were produced for all duplicate<br />

specimens, <strong>and</strong> the specimens were distributed.<br />

The first duplicate sheet of all collections was<br />

returned to the University of Guyana’s (BRG),<br />

<strong>and</strong> the second duplicate was mounted for the<br />

US National Herbarium. Any additional sheets<br />

were distributed to various herbaria <strong>in</strong> the United<br />

States, South America, <strong>and</strong> Europe. Collection<br />

<strong>and</strong> identification <strong>in</strong>formation were <strong>in</strong>cluded<br />

with specimens returned to the CSBD.<br />

<strong>Plant</strong> nomenclature was st<strong>and</strong>ardized <strong>and</strong><br />

synonyms obta<strong>in</strong>ed from the Smithsonian’s<br />

Biological Diversity of the Guiana Shield<br />

Program (BDG) database for the Checklist of<br />

the plants of the Guiana Shield, on which<br />

Boggan et al. (1997) <strong>and</strong> Hollowell et al. (2001)<br />

were based.<br />

17<br />

<strong>Plant</strong> Species List<br />

Species were placed on the Wa<strong>in</strong>i Pen<strong>in</strong>sula<br />

plant species list if they were collected or<br />

observed <strong>in</strong> the study area (west of 59° 30' W).<br />

Cultivated plants were not <strong>in</strong>cluded <strong>in</strong> most<br />

<strong>in</strong>stances, except if they were considered<br />

dom<strong>in</strong>ant <strong>in</strong> sizable areas of the vegetation or if<br />

they were naturalized or likely to become<br />

naturalized. Authors of plant names were listed<br />

follow<strong>in</strong>g the Lat<strong>in</strong> name <strong>and</strong> were st<strong>and</strong>ardized<br />

accord<strong>in</strong>g to Brummitt <strong>and</strong> Powell (1992).<br />

Synonyms <strong>in</strong>cluded with species lists were<br />

obta<strong>in</strong>ed from the Checklist of the <strong>Plant</strong>s of the<br />

Guiana Shield database (Boggan et al. 1997;<br />

Hollowell et al. 2001), as well as from the Flora<br />

of the Venezuelan Guayana (Steyermark et al.<br />

1995 - 2005) <strong>and</strong> nomenclatural databases<br />

(Missouri Botanical Garden 1995-present; <strong>Plant</strong><br />

Names Project 1999-present). Synonyms are<br />

listed alphabetically by genus <strong>and</strong> specific<br />

epithet, along with the currently accepted name<br />

of that species.<br />

<strong>Plant</strong> Communities<br />

The vegetation on the Wa<strong>in</strong>i Pen<strong>in</strong>sula was<br />

classified <strong>in</strong>to four basic types, from the coast<br />

to the Wa<strong>in</strong>i River: 1) Beaches, 2) Coastal<br />

Mangrove swamps, 3) Mixed Freshwater<br />

swamps, <strong>and</strong> 4) River<strong>in</strong>e Mangrove swamps.<br />

Most of the vegetation of the Wa<strong>in</strong>i Pen<strong>in</strong>sula<br />

was dom<strong>in</strong>ated by typical beach, mangrove, <strong>and</strong><br />

freshwater swamp species of the Neotropics.<br />

That dom<strong>in</strong>ance was presumably <strong>in</strong>fluenced by<br />

both the limit<strong>in</strong>g factor of sal<strong>in</strong>ity <strong>and</strong> the high<br />

availability of fruits <strong>and</strong> seeds dispersed by the<br />

ocean. In that sett<strong>in</strong>g, the characteristics of<br />

available plant species were also important <strong>in</strong><br />

determ<strong>in</strong><strong>in</strong>g community composition <strong>and</strong><br />

zonation. A previous estimate of plant<br />

communities on the Wa<strong>in</strong>i Pen<strong>in</strong>sula was given<br />

<strong>in</strong> the Prelim<strong>in</strong>ary Vegetation Map of Guyana<br />

(Huber et al. 1995), adapted <strong>in</strong> Figure 1.8. Here,<br />

those boundaries have been ref<strong>in</strong>ed through<br />

<strong>in</strong>terpretation of L<strong>and</strong>sat 7 Enhanced Thematic<br />

Mapper plus (ETM + ) imagery <strong>and</strong> fieldwork,<br />

<strong>in</strong>clud<strong>in</strong>g GPS georeferenced plant collections<br />

<strong>and</strong> notes made dur<strong>in</strong>g transects across the<br />

Pen<strong>in</strong>sula.<br />

Burned Area Del<strong>in</strong>eation<br />

A post-burn L<strong>and</strong>sat ETM + scene with little


18<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Figure 1.8. Classifications for the Wa<strong>in</strong>i Pen<strong>in</strong>sula<br />

from the Prelim<strong>in</strong>ary Vegetation Map of Guyana<br />

(Huber et al. 1995) digitized onto a UTM base<br />

digitized from satellite imagery. River<strong>in</strong>e Mangrove<br />

swamps were not differentiated from Coastal<br />

Mangrove swamps <strong>in</strong> the orig<strong>in</strong>al map, but are shown<br />

here based on their location along the Wa<strong>in</strong>i River.<br />

The map=s areas of Mangrove swamp are 74.8 km 2 ,<br />

River<strong>in</strong>e Mangrove 25.2 km 2 , <strong>and</strong> Swamp Woodl<strong>and</strong><br />

95.0 km 2 .<br />

cloud cover over the area of <strong>in</strong>terest on the Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula was identified. That scene was<br />

acquired on 3 December 1999, about 20 months<br />

after the end of the Wa<strong>in</strong>i Pen<strong>in</strong>sula soil fires,<br />

cover<strong>in</strong>g Path 232, Row 54. The U.S. Geological<br />

Survey EROS Data Center provided the scene<br />

<strong>in</strong> “GeoTIFF” format, which is readily displayed<br />

with st<strong>and</strong>ard Geographic Information System<br />

(GIS) software, Universal Transverse Mercator<br />

(UTM) projection for Zone 21 north, central<br />

meridian -57º, <strong>and</strong> processed with systematic<br />

geometric <strong>and</strong> radiometric corrections. L<strong>and</strong>sat<br />

ETM + images have a spatial resolution of<br />

approximately 28.5 meters <strong>in</strong> visible <strong>and</strong><br />

<strong>in</strong>frared b<strong>and</strong>s. The scene was cropped to the<br />

area of <strong>in</strong>terest, 59º30' to 59º49’30'’W <strong>and</strong> 8º12'<br />

to 8º25’N, approximately 35.8 kilometers x 25.2<br />

kilometers cover<strong>in</strong>g about 902 km 2 , <strong>in</strong>clud<strong>in</strong>g<br />

appoximately195 km 2 of the Wa<strong>in</strong>i Pen<strong>in</strong>sula.<br />

For <strong>in</strong>itial field work, a false color composite<br />

Figure 1.9. L<strong>and</strong>sat ETM+ display of a portion of the scene for path 232 row 54, 3 December 1999, cropped<br />

to show the upper Wa<strong>in</strong>i Pen<strong>in</strong>sula. The clouds <strong>in</strong> the lower left portion of the view were typical for most<br />

areas of l<strong>and</strong> of the full scene. The Almond Beach burn near Wa<strong>in</strong>i Po<strong>in</strong>t was much more dist<strong>in</strong>ct <strong>in</strong> false<br />

color composite (FCC) display than the Kamwatta burn at lower right, which was characterized by less open<br />

water <strong>and</strong> more recover<strong>in</strong>g vegetation; the Kamwatta area of the scene was subject to confusion from nearby<br />

clouds <strong>and</strong> cloud shadows.


Contributions to the Study of Biological Diversity Vol. 3<br />

(FCC) scene was composed <strong>in</strong> ArcView 3.3<br />

(ESRI 2002), us<strong>in</strong>g b<strong>and</strong> 2 (green, 0.53 - 0.61<br />

:m), b<strong>and</strong> 3 (red, 0.63-0.69 :m), <strong>and</strong> b<strong>and</strong> 4<br />

(near-<strong>in</strong>frared, 0.78-0.90 :m) (Figure 1.9, <strong>in</strong><br />

grayscale).<br />

Japanese Earth Resources Satellite (JERS-<br />

1) Synthetic Aperture Radar images from<br />

October 1995 were obta<strong>in</strong>ed from the Global<br />

Ra<strong>in</strong> Forest Mapp<strong>in</strong>g Project (2001). The image<br />

was registered <strong>in</strong> ArcView by creation of a<br />

‘world file’ (ESRI 2002) with coord<strong>in</strong>ates of the<br />

po<strong>in</strong>t of orig<strong>in</strong> <strong>and</strong> the fraction of a degree<br />

represented by one pixel on each axis. Features<br />

visible <strong>in</strong> the JERS image (Figure 1.10) served<br />

as an additional guide for del<strong>in</strong>eation of preburn<br />

plant community boundaries.<br />

Figure 1.10. JERS-1 radar image of the entire Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula, acquired <strong>in</strong> October 1995, resolution 3 arcseconds,<br />

about 95 meters at the latitude of this image.<br />

On the coastal pla<strong>in</strong>, dark areas primarily represent<br />

open water <strong>and</strong> smooth moist surfaces, while areas<br />

of high return represent dist<strong>in</strong>ct settlements or areas<br />

of flooded, <strong>in</strong>tact forest, which is the likely<br />

<strong>in</strong>terpretation along the coast near the right side of<br />

the image. Hills are visible along the center of the<br />

left edge, near the Northwest District=s adm<strong>in</strong>istrative<br />

seat, Mabaruma.<br />

Ground-truth transects were made across<br />

the Wa<strong>in</strong>i Pen<strong>in</strong>sula <strong>in</strong> <strong>and</strong> near the Almond<br />

Beach burn <strong>in</strong> April <strong>and</strong> October 2001. Two<br />

transects were made through central parts of the<br />

burn, <strong>and</strong> two others were made near each end<br />

of the burn (Figure 1.11). Transects were spaced<br />

approximately 2.5 to 3.5 km apart. Transect A<br />

crossed the Pen<strong>in</strong>sula near its northwestern end,<br />

<strong>in</strong> unburned forest. Transect B was made from<br />

the vic<strong>in</strong>ity of Almond Beach camp across<br />

19<br />

burned swampl<strong>and</strong>. Transect C started just east<br />

of the Almond Beach school, cross<strong>in</strong>g burned<br />

swampl<strong>and</strong> <strong>and</strong> <strong>in</strong>tact forest near the Wa<strong>in</strong>i<br />

River. Transect D was <strong>in</strong>tended to pass beyond<br />

the southeastern end the Almond Beach burn,<br />

however was adapted <strong>in</strong> the field to co<strong>in</strong>cide<br />

with a boundary of the burn. Transect E was a<br />

shorter exploration made beyond the<br />

southeastern limit of the Almond Beach burn.<br />

Along the transects at localities with<br />

dist<strong>in</strong>ctive vegetation types, vegetation<br />

transitions, burn boundaries, or plant collection<br />

localities, coord<strong>in</strong>ates were recorded us<strong>in</strong>g a<br />

GPS receiver, plant species at those locations<br />

were noted. Voucher specimens were collected<br />

wherever a species was previously uncollected<br />

or field identification was uncerta<strong>in</strong>. Transects<br />

B <strong>and</strong> C were each traversed twice, due to the<br />

time required to <strong>in</strong>itially clear or mark routes.<br />

A post-burn profile was composed to<br />

provide a visual representation of plant<br />

communities across the Almond Beach burn at<br />

transect C. The first tropical forest survey<br />

utiliz<strong>in</strong>g profiles was apparently performed <strong>in</strong><br />

Guyana (at that time British Guiana) by Davis<br />

<strong>and</strong> Richards (1933), detail<strong>in</strong>g a mixed lowl<strong>and</strong><br />

forest on Moraballi Creek near the Essequibo<br />

River; for that study all trees along a narrow<br />

transect were cut <strong>and</strong> measured as the profile<br />

was drawn. While Ellison (2002) argued that<br />

mangrove community profiles are subjective<br />

representations of structure <strong>and</strong> zonation unless<br />

they are l<strong>in</strong>ked to quantitative data, generalized<br />

Figure 1.11. Positions of transects across the Almond<br />

Beach burn (B, C, D) <strong>and</strong> outside of the burn (A, E)<br />

on the Wa<strong>in</strong>i Pen<strong>in</strong>sula. Po<strong>in</strong>ts <strong>in</strong>dicate locations of<br />

GPS read<strong>in</strong>gs where plant community <strong>in</strong>formation<br />

was gathered.


20<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

profiles have been of value for advanc<strong>in</strong>g<br />

concepts of variability among mangrove<br />

zonation patterns (Toml<strong>in</strong>son 1986), <strong>and</strong> they<br />

can been useful for convey<strong>in</strong>g system structure<br />

to policy makers <strong>and</strong> for provid<strong>in</strong>g background<br />

for later studies. L<strong>in</strong>deman (1953) used profile<br />

diagrams for his descriptions of coastal<br />

vegetation <strong>in</strong> Sur<strong>in</strong>am, along transects from 2<br />

to 16 kilometers <strong>in</strong> length.<br />

Pre-fire plant communities were manually<br />

drawn by on-screen digitization of polygons<br />

(Duke et al. 2003; Wilton & Sa<strong>in</strong>tilan 2000) <strong>in</strong><br />

ArcView 3.3 GIS (ESRI 2002), follow<strong>in</strong>g<br />

patterns visible <strong>in</strong> the 3 December 1999 L<strong>and</strong>sat<br />

ETM + FCC image, <strong>and</strong> <strong>in</strong> <strong>in</strong>dividual b<strong>and</strong>s,<br />

comb<strong>in</strong>ed with transect field data <strong>and</strong><br />

observations. Patterns from the JERS-1 imagery<br />

assisted <strong>in</strong> community del<strong>in</strong>eation, particularly<br />

<strong>in</strong> burned areas. Mangrove swamp areas were<br />

divided between pure Avicennia L. swamps,<br />

found near the coast, <strong>and</strong> Mixed Mangrove<br />

swamps with both Avicennia L. <strong>and</strong> Rhizophora<br />

L. trees. Non-mangrove freshwater swamp areas<br />

were divided between Ficus L.-Euterpe Mart.<br />

swamps <strong>and</strong> Pterocarpus dom<strong>in</strong>ated Mixed<br />

Freshwater swamps found closer to the River<strong>in</strong>e<br />

Mangroves.<br />

To estimate burned areas, L<strong>and</strong>sat ETM +<br />

b<strong>and</strong>s 3 (red) <strong>and</strong> 4 (near <strong>in</strong>frared) were used <strong>in</strong><br />

comb<strong>in</strong>ation with data <strong>and</strong> observations from<br />

transects across the pen<strong>in</strong>sula. S<strong>in</strong>ce different<br />

qualities of burned swamp could be discerned<br />

<strong>in</strong> the red <strong>and</strong> <strong>in</strong>frared b<strong>and</strong>s, a separate<br />

del<strong>in</strong>eation was performed for each b<strong>and</strong>, us<strong>in</strong>g<br />

manual, on-screen digitization of polygons<br />

(Wilton & Sa<strong>in</strong>tilan 2000) with ArcView<br />

software (ESRI 2002). A l<strong>in</strong>ear contrast stretch<br />

was performed for each b<strong>and</strong>, until boundaries<br />

between burns <strong>and</strong> <strong>in</strong>tact forest, as observed <strong>in</strong><br />

the field, became discernable. Polygons of the<br />

burn boundaries were digitized us<strong>in</strong>g the<br />

adjusted b<strong>and</strong> images as a guide. A union of the<br />

b<strong>and</strong> 3 <strong>and</strong> b<strong>and</strong> 4 del<strong>in</strong>eations was made to<br />

form polygons of total impacted areas <strong>in</strong> the<br />

Almond Beach <strong>and</strong> Kamwatta burns. Totals for<br />

burned areas were tabulated by vegetation type<br />

<strong>in</strong> ArcView 3.3, by <strong>in</strong>tersection of polygons for<br />

plant communities with those for burned areas.<br />

RESULTS<br />

<strong>Plant</strong>s of The Wa<strong>in</strong>i Pen<strong>in</strong>sula<br />

A total of 118 names of plant species<br />

documented for the Wa<strong>in</strong>i Pen<strong>in</strong>sula are<br />

<strong>in</strong>cluded <strong>in</strong> Appendix 2, with a synonymy. A<br />

more detailed analysis of the composition of the<br />

plants documented for the Wa<strong>in</strong>i Pen<strong>in</strong>sula is<br />

presented <strong>in</strong> Chapter 2.<br />

<strong>Plant</strong> Communities on the Wa<strong>in</strong>i Pen<strong>in</strong>sula<br />

Transect A crossed unburned, young<br />

Avicennia swamp forest with some areas of<br />

dense Laguncularia C.F.Caertn. shrub<br />

understory, <strong>in</strong>to mixed mangrove forest with<br />

mature Avicennia <strong>and</strong> Rhizophora trees <strong>and</strong><br />

often very dense Acrostichum L. fern understory,<br />

<strong>and</strong> f<strong>in</strong>ally <strong>in</strong>to River<strong>in</strong>e Mangrove forest<br />

dom<strong>in</strong>ated by Rhizophora racemosa G.Mey..<br />

Transect B crossed through low elevation<br />

burned Avicennia forest, <strong>in</strong>to burned Mixed<br />

Mangrove forest regenerat<strong>in</strong>g with broad<br />

expanses of Typha L. or shallow water <strong>and</strong> v<strong>in</strong>es,<br />

<strong>and</strong> f<strong>in</strong>ally burned Mixed Freshwater forest, up<br />

to the River<strong>in</strong>e Mangrove forest. Transect C ran<br />

through burned young Avicennia forest, across<br />

the largest chenier encountered <strong>in</strong> the area, <strong>in</strong>to<br />

burned Mixed Mangrove forest, up a very<br />

shallow slope to the area of the highest<br />

elevations with a small Roystonea D.F.Cook.<br />

community, to a broad area of burned Mixed<br />

Swamp forest with some Ficus trees <strong>and</strong> many<br />

dead Euterpe palms, <strong>and</strong> often shallow water.<br />

Beyond that zone, elevation slowly decreases<br />

until near the river soil moisture apparently<br />

discouraged fires <strong>in</strong> 1998. There a belt of<br />

unburned Mixed Swamp forest was<br />

encountered, dom<strong>in</strong>ated by Pterocarpus<br />

offic<strong>in</strong>alis Jacq. with occasional, extremely large<br />

Avicennia trees, <strong>and</strong> f<strong>in</strong>ally a b<strong>and</strong> of River<strong>in</strong>e<br />

Mangrove swamp up to 400 meters wide along<br />

the Wa<strong>in</strong>i river, dom<strong>in</strong>ated by Rhizophora<br />

racemosa. Transect C is detailed with a<br />

vegetation profile <strong>in</strong> Figure 1.12.<br />

Dur<strong>in</strong>g the course of the transects it became<br />

evident that some areas not easily discernable<br />

<strong>in</strong> the L<strong>and</strong>sat FCC image had been burned.<br />

Opposite - Figure 1.12. <strong>Plant</strong> community profile diagram across the Wa<strong>in</strong>i Pen<strong>in</strong>sula at the Almond Beach<br />

burn.


Contributions to the Study of Biological Diversity Vol. 3<br />

21


22<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Transect D, on the southeastern end the Almond<br />

Beach burn, unexpectedly co<strong>in</strong>cided with that<br />

boundary of the burn, which had been expected<br />

to be well outside of the burned area. It was<br />

determ<strong>in</strong>ed at that time to follow the boundary<br />

<strong>and</strong> record characteristic po<strong>in</strong>ts with GPS to<br />

provide additional <strong>in</strong>formation for del<strong>in</strong>eation<br />

of burns. Transect E was a shorter <strong>in</strong>vestigation<br />

started beyond the southeastern limit of the<br />

Almond Beach burn. In that area of Mixed<br />

Mangrove swamp, progress on foot was slow,<br />

<strong>in</strong> part because of frequent Rhizophora proproots<br />

<strong>and</strong> occasional treefall disturbances with<br />

dense understory of Acrostichum ferns <strong>and</strong><br />

v<strong>in</strong>es. No transects were made <strong>in</strong>to the<br />

Kamwatta burn. Because of confusion with<br />

nearby clouds on the L<strong>and</strong>sat FCC image, the<br />

extent of that burn was not fully apparent until<br />

a short excursion was made for about 1<br />

kilometer <strong>in</strong>to the area.<br />

A map of approximate pre-burn plant<br />

communities of the Wa<strong>in</strong>i Pen<strong>in</strong>sula is shown<br />

<strong>in</strong> Figure 1.13. Total areas are given by<br />

community type <strong>in</strong> the first column of Table 1.1.<br />

Figure 1.13. <strong>Plant</strong> communities of the Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula prior to fires, estimated from the 3<br />

December 1999 L<strong>and</strong>sat ETM + image <strong>and</strong> transects<br />

on the ground.<br />

The area of Avicennia mangrove swamp near<br />

the tip of Wa<strong>in</strong>i Pen<strong>in</strong>sula was approximately<br />

11.7 km 2 . Areas of three other plant community<br />

types were similar, with 56.9 km 2 of Mixed<br />

Mangrove swamp, 59.9 km 2 of Ficus-Euterpe<br />

swamp, 55.3 km 2 of Mixed Freshwater swamp,<br />

<strong>and</strong> 10.4 km 2 of River<strong>in</strong>e Mangrove swamp. The<br />

small population of Roystonea palms was not<br />

discernable <strong>in</strong> satellite imagery, possibly due to<br />

m<strong>in</strong>or cloud cover <strong>in</strong> the vic<strong>in</strong>ity. The Roystonea<br />

population was estimated dur<strong>in</strong>g field visits to<br />

cover less than 0.1 km 2 .<br />

- Beaches<br />

Beach vegetation nearest to the ocean was<br />

composed of a few specialized v<strong>in</strong>e, herb, <strong>and</strong><br />

small shrub species (Figure 1.14), all of which<br />

are common along Neotropical coasts.<br />

Dom<strong>in</strong>ant beachfront v<strong>in</strong>es were Ipomoea pescaprae<br />

(L.) R. Br., Canavalia rosea (Sw.) DC.,<br />

<strong>and</strong> Passiflora foetida L., all of which occurred<br />

out to the high water l<strong>in</strong>e. The common herb on<br />

the fore-beaches was Sesuvium portulacastrum<br />

Figure 1.14. Typical Beach vegetation on the Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula, with Sesuvium portulacastrum <strong>in</strong> the<br />

foreground <strong>and</strong> Ipomoea pes-caprae beh<strong>in</strong>d.<br />

Cultivated coconut (Cocos nucifera) trees are present<br />

<strong>in</strong> the background. The coarse texture of the shell<br />

substrate is apparent.<br />

Table 1.1. Areas of Wa<strong>in</strong>i Pen<strong>in</strong>sula plant communities <strong>in</strong> the Almond Beach <strong>and</strong> Kamwatta burns from<br />

manual del<strong>in</strong>eations. Beach <strong>and</strong> lagoon areas were not affected by fires.<br />

Forest type<br />

Avicennia forest<br />

Mixed Mangrove forest<br />

River<strong>in</strong>e Mangrove forest<br />

Pterocarpus forest<br />

Ficus-Euterpe forest<br />

Total<br />

Wa<strong>in</strong>i Pre-burn<br />

11.7 km2 56.9 km2 10.4 km2 55.3 km2 59.9 km2 194.1 km2 Almond Beach Burn<br />

5.2 km2 15.7 km2 none<br />

2.9 km2 10.4 km2 34.1 km2 Kamwatta Burn<br />

none<br />

5.5 km2 none<br />

5.4 km2 19.6 km2 30.5 km2


Contributions to the Study of Biological Diversity Vol. 3<br />

(L.) L. Shrubs <strong>in</strong>cluded Conocarpus erectus L.<br />

(a mangrove associate), Talipariti tiliaceum (L.)<br />

Fryxell (= Hibiscus tiliaceusL.), Thespesia<br />

populnea (L.) Sol. ex Corrêa, <strong>and</strong> Caesalp<strong>in</strong>ia<br />

bonduc (L.) Roxb. These were occasionally<br />

<strong>in</strong>terspersed with juveniles of mangrove species,<br />

particularly Laguncularia racemosa (L.) C.F.<br />

Gaertn. <strong>and</strong> Avicennia germ<strong>in</strong>ans (L.) Stearn.<br />

Apparently the shallow water over mud flats,<br />

the shell marg<strong>in</strong>s, or the high silt content of the<br />

coastal water are not conducive to the<br />

establishment of Rhizophora seedl<strong>in</strong>gs<br />

immediately along the coast (Pons & Pons<br />

1975), although Rhizophora propagules were<br />

sometimes found str<strong>and</strong>ed on the shell s<strong>and</strong> of<br />

the forebeach.<br />

Dur<strong>in</strong>g field work, the beach ridges of the<br />

Wa<strong>in</strong>i coast ranged from a few meters to over<br />

150 meters <strong>in</strong> width. Where these were<br />

sufficiently wide, somewhat higher diversity of<br />

shrubs <strong>and</strong> trees was found on the back beach<br />

towards the mangrove swamps, with species<br />

<strong>in</strong>clud<strong>in</strong>g Spondias momb<strong>in</strong> L., Annona glabra<br />

L. <strong>and</strong> Mor<strong>in</strong>da citrifolia L. Just below the<br />

surface, the wider beach ridges conta<strong>in</strong>ed lenses<br />

of nearly fresh water with sal<strong>in</strong>ity as low as 1<br />

psu (Hollowell, unpublished). Because of<br />

available fresh water, the back beach was <strong>in</strong><br />

places a site of agricultural activities. The<br />

dom<strong>in</strong>ant crop grown for trade was Cocos<br />

nucifera L. (Coconut), which grows well <strong>in</strong> the<br />

shell substrate over rich mud. Manihot esculenta<br />

Crantz (Cassava) is also commonly cultivated<br />

for community use, along with a variety of<br />

garden vegetables <strong>and</strong> ornamentals. Naturalized<br />

Carica papaya L. (Pawpaw, Papaya) was found<br />

frequently on beach ridges, usually 10 or more<br />

meters from the shore. Term<strong>in</strong>alia catappa L.<br />

(East Indian Almond) is a naturalized tree found<br />

on both beach ridges <strong>and</strong> higher cheniers farther<br />

<strong>in</strong>l<strong>and</strong>. The small tree or shrub Mor<strong>in</strong>da<br />

citrifolia L. (Noni), an Asian native widely<br />

known for medic<strong>in</strong>al values, is scattered <strong>in</strong> the<br />

back beach up to the marg<strong>in</strong>s of the mangrove<br />

swamp.<br />

- Coastal Mangrove Swamps<br />

Mangrove swamps are common along<br />

nearly all tropical shorel<strong>in</strong>es where wave energy<br />

is low. They are dom<strong>in</strong>ated by woody plants<br />

with a tolerance to salt water (Toml<strong>in</strong>son 1986).<br />

While mangrove species belong to several plant<br />

23<br />

families, they have all developed structural <strong>and</strong><br />

physiological adaptations to the sal<strong>in</strong>ity,<br />

waterlogged soils, <strong>and</strong> dispersal <strong>and</strong><br />

establishment challenges of the coastal<br />

environment (Ball 1988). Adaptations <strong>in</strong>clude<br />

roots that function to exchange air <strong>and</strong> provide<br />

support <strong>in</strong> waterlogged soils, a capacity to<br />

exclude or secrete salt, <strong>and</strong> fruits that germ<strong>in</strong>ate<br />

at least partially while on the parent or dur<strong>in</strong>g<br />

dispersal by water. The number of mangrove<br />

species is several times higher <strong>in</strong> the Western<br />

Pacific than the Atlantic region.<br />

The Coastal Mangrove swamps were<br />

divided <strong>in</strong>to two subsets, Avicennia forest <strong>and</strong><br />

Mixed Mangrove forest (Figure 1.13). Swamp<br />

areas nearest to the ocean were most often<br />

dom<strong>in</strong>ated by Avicennia germ<strong>in</strong>ans (L.) Stearn<br />

(Black Mangrove, Courida) which reached 30<br />

meters <strong>in</strong> height (Figure 1.15). Where the<br />

coastl<strong>in</strong>e has been accret<strong>in</strong>g, Avicennia<br />

Figure 1.15. A pure Avicennia Coastal Mangrove<br />

swamp near Wa<strong>in</strong>i Po<strong>in</strong>t, show<strong>in</strong>g the dense carpet<br />

of pneumatophores. Trees <strong>in</strong> this area were measured<br />

as up to about 50 cm diameter <strong>and</strong> 32 meters <strong>in</strong><br />

height. The pneumatophores allow gas exchange for<br />

the roots. Most of these trees lean to the west due to<br />

the soft soil <strong>and</strong> the prevail<strong>in</strong>g trade w<strong>in</strong>ds.<br />

germ<strong>in</strong>ans is usually the first species to colonize<br />

a mudflat, <strong>and</strong> where monospecific st<strong>and</strong>s of this<br />

species are found near the ocean, the trees often<br />

fell with<strong>in</strong> a narrow range of <strong>in</strong>termediate<br />

diameters, suggest<strong>in</strong>g that they might be the first<br />

generation on new l<strong>and</strong>. A large area of this type<br />

occurred at the northwest end of the Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula, <strong>in</strong>clud<strong>in</strong>g the swamp <strong>in</strong> the vic<strong>in</strong>ity<br />

of Almond Beach. In the Mixed Mangrove<br />

swamp Avicennia was found with Rhizophora


24<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

mangle L. (Red Mangrove, Mangro) trees which<br />

may also reach heights of 30 meters or more.<br />

Farther to the southeast <strong>and</strong> <strong>in</strong>l<strong>and</strong> from Almond<br />

Beach, the coastal forests are presumably older,<br />

<strong>and</strong> more diverse.<br />

The third major mangrove species of the<br />

Neotropics, Laguncularia racemosa (L.) C.F.<br />

Gaertn. (White Mangrove, Kayara), does not<br />

often reach the stature of Avicennia or<br />

Rhizophora trees <strong>in</strong> the Guianas, but it was<br />

common as an understory shrub or treelet, as<br />

well as along the marg<strong>in</strong>s of coastal lagoons.<br />

Laguncularia has been observed <strong>in</strong> Guyana <strong>and</strong><br />

other countries to be a very successful colonizer<br />

of swamps follow<strong>in</strong>g disturbances (Baldw<strong>in</strong> et<br />

al. 2001; Delgado et al. 2001; Elster 2000; Roth<br />

1992; Woodroffe 1983). The f<strong>in</strong>al dom<strong>in</strong>ant<br />

component of the mangrove swamp understory<br />

<strong>in</strong>cluded two species of Acrostichum (Mangrove<br />

Fern, Monkey Bush). Those are similar, large<br />

terrestrial ferns; Acrostichum aureum L. was<br />

common throughout the mangrove swamps,<br />

while Acrostichum danaeifolium Langsd. &<br />

Fisch. is occasional <strong>in</strong> more <strong>in</strong>l<strong>and</strong> locations.<br />

Either can become very dense <strong>in</strong> Mixed<br />

Mangrove swamp. The mangrove associate<br />

Conocarpus erectus L. was found on chenier<br />

ridges with<strong>in</strong> the swamps <strong>and</strong> sometimes <strong>in</strong> the<br />

shrubby thickets along coastal lagoons <strong>and</strong> back<br />

beaches. As is typical for mangrove swamps<br />

around the world, the Avicennia swamps near<br />

the coast have a fairly open understory (Janzen<br />

1985; Lugo 1986; Snedaker & Lahmann 1988),<br />

allow<strong>in</strong>g easy walk<strong>in</strong>g, particularly dur<strong>in</strong>g dry<br />

seasons.<br />

Mangrove swamps along Guyana’s Atlantic<br />

coast are well developed where they have been<br />

undisturbed by agriculture or urban<br />

development (Bacon 1990; Vann 1959, 1969;<br />

Wells & Coleman 1981). In places beach ridges<br />

separate swamps from tidal <strong>in</strong>undation, although<br />

waves at high tide often wash over narrower<br />

beach ridges <strong>and</strong> directly <strong>in</strong>to the mangrove<br />

swamp. Those swamps beh<strong>in</strong>d beach ridges can<br />

also be referred to as occluded swamps, due to<br />

their separation from the sea. Such conditions<br />

have been documented <strong>in</strong> a few cases <strong>in</strong> the both<br />

the Neotropics (Lugo 1981; Stoddart et al. 1973;<br />

Vegas Vilarrúbia & Rull 2002; Woodroffe 1983)<br />

<strong>and</strong> the old world (Fosberg 1947; Steenis 1984;<br />

Woodroffe 1988). With<strong>in</strong> the classification of<br />

Lugo <strong>and</strong> Snedaker (1974) those swamps fall<br />

<strong>in</strong>to the category of Bas<strong>in</strong> Mangrove, <strong>and</strong> <strong>in</strong><br />

some areas fit the classification of Hammock<br />

mangrove forest, a category added by Lugo<br />

(1980). Inlets <strong>in</strong>to tidal streams are <strong>in</strong>frequent<br />

on the Wa<strong>in</strong>i Pen<strong>in</strong>sula <strong>and</strong> can become blocked<br />

by sediment deposits, form<strong>in</strong>g lagoons beh<strong>in</strong>d<br />

beach ridges.<br />

The Coastal Mangrove swamps of the<br />

Guianas do not conform to the zonation pattern<br />

typically described for the low sediment swamps<br />

of the Caribbean, <strong>in</strong> which Rhizophora occupies<br />

the position closest to the sea, with Avicennia<br />

as a back mangrove species followed by<br />

Laguncularia <strong>and</strong> Conocarpus as species of the<br />

transition to freshwater swamp or upl<strong>and</strong>. A<br />

pattern of zonation similar to that on the Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula was also reported for the Wia Wia<br />

Bank <strong>in</strong> northeastern Sur<strong>in</strong>am by L<strong>in</strong>deman<br />

(1953), though he noted an absence of<br />

Conocarpus. That arrangement was also<br />

confirmed for French Guiana by Fromard<br />

(1998). There Laguncularia was reported to be<br />

at least as common as Avicennia <strong>in</strong> the pioneer<br />

coastal communities, though Avicennia still<br />

became the dom<strong>in</strong>ant species of mature coastal<br />

swamps.<br />

- Mixed Freshwater Swamps<br />

Towards the <strong>in</strong>terior of the Wa<strong>in</strong>i Pen<strong>in</strong>sula,<br />

the Coastal Mangrove swamp plant community<br />

graded <strong>in</strong>to Mixed Freshwater swamp. The<br />

length of that transition varied but usually<br />

spanned one to two kilometers. In that zone,<br />

occasional Avicennia germ<strong>in</strong>ans (L.)Stearn trees<br />

<strong>and</strong> Rhizophora trees persist, usually as large<br />

<strong>in</strong>dividuals. The Mixed Freshwater swamp<br />

group was divided <strong>in</strong>to two subsets, Ficus -<br />

Euterpe forest <strong>and</strong> Pterocarpus forest (Figure<br />

1.13), which was mixed with several other tree<br />

<strong>and</strong> understory species. Ficus spp. trees were a<br />

significant component of the Ficus-Euterpe<br />

portion, particularly large Ficus amazonica<br />

(Miq.) Miq., of which several <strong>in</strong>dividuals<br />

survived the 1997-1998 soil fires <strong>in</strong> places where<br />

all other trees were killed. Individuals of Ficus<br />

eximia Schott, a similar member of the Ficus<br />

citrifolia group may also occur on the Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula. In the center of the pen<strong>in</strong>sula, parts<br />

of the swamp had been dom<strong>in</strong>ated by Euterpe<br />

cf. oleracea Mart. (Manicole palm) with<br />

scattered Ficus. In sections surveyed, all Euterpe


Contributions to the Study of Biological Diversity Vol. 3<br />

trees had been killed by the recent fires, leav<strong>in</strong>g<br />

numerous fallen trunks. After the fires those<br />

areas were very open <strong>and</strong> dom<strong>in</strong>ated by a mosaic<br />

of v<strong>in</strong>es, Typha, sedges, <strong>and</strong> various herbs.<br />

Dur<strong>in</strong>g wet periods, scattered shallow pools with<br />

float<strong>in</strong>g vegetation were common there.<br />

The species richness of the Mixed<br />

Freshwater swamp <strong>in</strong>creased <strong>in</strong> the Pterocarpus<br />

forest zone up to the transition to River<strong>in</strong>e<br />

Mangrove swamps along the Wa<strong>in</strong>i River, <strong>in</strong><br />

forests where Pterocarpus offic<strong>in</strong>alis Jacq.<br />

(Corkwood) was common. Just before enter<strong>in</strong>g<br />

the River<strong>in</strong>e Mangrove swamp, there was a belt<br />

dom<strong>in</strong>ated by Pterocarpus mixed with<br />

occasional, extremely large Avicennia<br />

germ<strong>in</strong>ans trees, some of which measured over<br />

two meters dbh (Figure 1.16); small Avicennia<br />

trees or seedl<strong>in</strong>gs were not common <strong>in</strong> that area.<br />

Some of these exceed the size of Avicennia trees<br />

at Maranhão, Brazil, reported by Lacerda et al.<br />

(2002) to grow <strong>in</strong> excess of one meter dbh.<br />

Fromard (1998) described a similar species<br />

Figure 1.16. Mixed Freshwater forest near the<br />

transition to River<strong>in</strong>e Mangrove forest. This<br />

Avicennia germ<strong>in</strong>ans tree was measured at over 2<br />

meters dbh, though it was not measured above the<br />

buttresses. Pterocarpus offic<strong>in</strong>alis trees were also<br />

found <strong>in</strong> this zone near the Wa<strong>in</strong>i River.<br />

25<br />

zonation <strong>in</strong> French Guiana, mov<strong>in</strong>g <strong>in</strong>l<strong>and</strong> up<br />

the rivers from Coastal Mangroves towards<br />

Euterpe <strong>and</strong> Pterocarpus forest with fewer, but<br />

very large, Avicennia <strong>and</strong> Rhizophora trees,<br />

which he attributed to <strong>in</strong>creas<strong>in</strong>g <strong>in</strong>fluence of<br />

river<strong>in</strong>e rather than tidal hydrology.<br />

The trees Machaerium lunatum (L. f.)<br />

Ducke, Inga <strong>in</strong>goides (Rich.) Willd., Zygia<br />

latifolia (L.) Fawc. & Rendle <strong>and</strong> Clusia<br />

palmicida Rich. ex Planch. & Triana were<br />

occasional <strong>in</strong> the Mixed Freshwater swamps,<br />

particularly <strong>in</strong> Pterocarpus zones. There the<br />

understory <strong>in</strong>cluded Cassipourea guianensis<br />

Aubl., Ilex guianensis (Aubl.) Kuntze <strong>and</strong><br />

Malouetia tamaquar<strong>in</strong>a (Aubl.) A. DC., as well<br />

as several species of ferns <strong>in</strong>clud<strong>in</strong>g Blechnum<br />

serrulatum Rich., Pteris pungens Willd., <strong>and</strong><br />

Nephrolepis biserrata (Sw.) Schott. V<strong>in</strong>es <strong>and</strong><br />

lianas noted <strong>in</strong> those swamps <strong>in</strong>cluded Monstera<br />

adansonii Schott, Syngonium podophyllum<br />

Schott, <strong>and</strong> Hippocratea volubilis L. as well as<br />

several v<strong>in</strong>es that had become dom<strong>in</strong>ant <strong>in</strong> the<br />

burned swamp <strong>in</strong>clud<strong>in</strong>g Cissus verticillata (L.)<br />

Nicolson & C.E. Jarvis, <strong>and</strong> Cydista<br />

aequ<strong>in</strong>octialis (L.) Miers. While trees <strong>in</strong> the<br />

Coastal Mangrove swamps were host to few<br />

epiphytes, probably due to sal<strong>in</strong>ity from the<br />

ocean, several epiphytic species were found <strong>in</strong><br />

the Mixed Freshwater swamps, <strong>in</strong>clud<strong>in</strong>g the<br />

bromeliads Aechmea nudicaulis (L.) Griseb. <strong>and</strong><br />

Guzmania l<strong>in</strong>gulata (L.) Mez, the cactus<br />

Rhipsalis baccifera (J.S. Muell.) Stearn, <strong>and</strong> the<br />

orchids Epidendrum ciliare L. <strong>and</strong> Prosthechea<br />

aemula (L<strong>in</strong>dl.) Higg<strong>in</strong>s. Some epiphytic<br />

species were recorded <strong>in</strong> the Mixed Freshwater<br />

forest only as survivors on the branches of fallen<br />

trees killed by fires, <strong>in</strong>clud<strong>in</strong>g the cactus<br />

Epiphyllum phyllanthus (L.) Haw. <strong>and</strong> the orchid<br />

Trichocentrum lanceanum (L<strong>in</strong>dl.) M.W. Chase<br />

& N.H. Williams.<br />

An unexpected feature of the Mixed<br />

Freshwater swamps was the isolated population<br />

of Roystonea oleracea (Jacq.) O.F. Cook,<br />

consist<strong>in</strong>g of perhaps 120 scattered <strong>in</strong>dividuals<br />

of all sizes (Figure 1.17). That population<br />

survived the 1998 soil fires while most<br />

surround<strong>in</strong>g vegetation was killed except for a<br />

few large Ficus trees. Prior to the documentation<br />

of that population, no species of the genus<br />

Roystonea had been recorded <strong>in</strong> the Guianas<br />

outside of cultivation (Zona 1996). The remote


26<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Figure 1.17. Location of the Roystonea oleracea<br />

community on the Wa<strong>in</strong>i Pen<strong>in</strong>sula, with<strong>in</strong> the<br />

approximate area of the elevated central zone of the<br />

pen<strong>in</strong>sula that became known as APalm Hill.@ The<br />

<strong>in</strong>itial excursion to the site was made on 8 April 2001<br />

(Palm Sunday).<br />

location of the population strongly suggested<br />

that it was not likely planted by people.<br />

- The River<strong>in</strong>e Mangrove Swamps<br />

The swamps that l<strong>in</strong>e the tidal Wa<strong>in</strong>i River<br />

are <strong>in</strong>undated twice daily with brackish river<br />

water, s<strong>in</strong>ce there are no barriers to tides similar<br />

to the beach ridges isolat<strong>in</strong>g many Coastal<br />

Mangrove swamps. That allows comparatively<br />

unimpeded dispersal of mangrove propagules<br />

<strong>in</strong> this zone, which may be partly responsible<br />

for the dom<strong>in</strong>ance of Rhizophora racemosa G.<br />

Mey., which fr<strong>in</strong>ges the Wa<strong>in</strong>i River <strong>and</strong> extends<br />

<strong>in</strong>l<strong>and</strong> on the soft, muddy substrate to the tidal<br />

limit. That species is very similar to R. mangle<br />

<strong>in</strong> vegetative appearance, hav<strong>in</strong>g similar<br />

conspicuous prop <strong>and</strong> aerial roots <strong>and</strong><br />

<strong>in</strong>dist<strong>in</strong>guishable leaves <strong>and</strong> bark. It differs<br />

dist<strong>in</strong>ctively from R. mangle <strong>in</strong> hav<strong>in</strong>g 30 to 60<br />

flowers per <strong>in</strong>florescence, as compared to 2 to<br />

3 for Rhizophora mangle; <strong>in</strong> hav<strong>in</strong>g buds with<br />

obtuse apices as opposed to buds with acute<br />

apices <strong>in</strong> Rhizophora mangle; <strong>and</strong> <strong>in</strong> hav<strong>in</strong>g<br />

propagules with much longer hypocotyls<br />

extend<strong>in</strong>g from the viviparous fruits, up to 50<br />

cm. <strong>in</strong> length as opposed to hypocotyls up to 20<br />

cm <strong>in</strong> length <strong>in</strong> Rhizophora mangle (Gray 1981).<br />

Rhizophora racemosa trees tend to have more<br />

aerial roots extend<strong>in</strong>g from higher branches to<br />

the water’s surface. Those two Rhizophora<br />

species have been considered by some to form<br />

the hybrid Rhizophora x harrisonii Leechm.,<br />

which has been ascribed to similar brackish<br />

river<strong>in</strong>e habitats <strong>and</strong> is supposedly <strong>in</strong>termediate<br />

between the two species <strong>in</strong> reproductive<br />

morphology (Gray 1981; Toml<strong>in</strong>son 1986). In<br />

practice, it was difficult to dist<strong>in</strong>guish that<br />

putative hybrid from R. racemosa, <strong>and</strong> some<br />

specialists consider it to be synonymous with<br />

R. racemosa (Duke et al. 2001). In several<br />

descriptions of river<strong>in</strong>e mangroves <strong>in</strong> the<br />

Guianas, R. racemosa has been unmentioned,<br />

with only the name R. mangle used, although<br />

that is almost certa<strong>in</strong>ly <strong>in</strong>accurate.<br />

The River<strong>in</strong>e Mangrove swamp understory<br />

was, <strong>in</strong> places, moderately dense with<br />

Rhizophora sapl<strong>in</strong>gs <strong>and</strong> Acrostichum aureum<br />

ferns (Figure 1.18). The non-native mangrove<br />

palm Nypa fruticans Wurmb. was also common<br />

<strong>in</strong> the River<strong>in</strong>e Mangrove swamp, sometimes<br />

Figure 1.18. River<strong>in</strong>e Mangrove forest dom<strong>in</strong>ated by<br />

Rhizophora racemosa. Some Nypa fruticans palms<br />

were <strong>in</strong> the understory (center background) <strong>and</strong> some<br />

fronds of the mangrove fern Acrostichum are visible<br />

<strong>in</strong> the foreground.<br />

<strong>in</strong> dense patches along river marg<strong>in</strong>s <strong>and</strong> often<br />

as an occasional component of the understory.<br />

Upriver, around 59° 30' W, Nypa was no longer<br />

present. At that po<strong>in</strong>t Rhizophora trees were also<br />

<strong>in</strong>frequent along the river marg<strong>in</strong>, although they<br />

were observed as far up the Wa<strong>in</strong>i River as its<br />

confluence with the Barama River, <strong>and</strong> were<br />

seen occasionally on the Baramanni River.<br />

Along some segments of the Wa<strong>in</strong>i River the<br />

roots of Rhizophora racemosa were found<br />

covered with the red alga Bostrichia <strong>and</strong><br />

occasionally with barnacles. Farther up the river,<br />

where the water became less brackish,<br />

freshwater swamp tree species <strong>in</strong>clud<strong>in</strong>g<br />

Pterocarpus, Mora Benth., Machaerium Pers.,<br />

Inga Mill., Euterpe <strong>and</strong> Pachira Aubl. were


<strong>in</strong>creas<strong>in</strong>gly common along the banks.<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Burned Areas<br />

The manual del<strong>in</strong>eation us<strong>in</strong>g the L<strong>and</strong>sat<br />

red b<strong>and</strong> (3) <strong>in</strong>cluded 27.4 km 2 of burned<br />

vegetation at Almond Beach <strong>and</strong> 28.8 km 2 of<br />

burned vegetation at the Kamwatta (Figure<br />

1.19). The major result of the fires detected <strong>in</strong><br />

b<strong>and</strong> 3 was apparently bare soil, which reflected<br />

Figure 1.19. Manual del<strong>in</strong>eation of burned areas<br />

us<strong>in</strong>g L<strong>and</strong>sat ETM + b<strong>and</strong> 3, red.<br />

red portions of the spectrum <strong>and</strong> appeared as<br />

light areas of the image. Us<strong>in</strong>g L<strong>and</strong>sat b<strong>and</strong> 4<br />

(near <strong>in</strong>frared), the manual del<strong>in</strong>eation <strong>in</strong>cluded<br />

26.5 km 2 of burned vegetation at Almond Beach<br />

<strong>and</strong> 22.6 km 2 of burned vegetation at the<br />

Kamwatta site (Figure 1.20). That b<strong>and</strong> was<br />

useful for detect<strong>in</strong>g vegetation (high reflectance)<br />

<strong>and</strong> open water (low reflectance). The burned<br />

area totals were calculated by a union of the red<br />

Figure 1.20. Manual del<strong>in</strong>eation of burned areas<br />

us<strong>in</strong>g L<strong>and</strong>sat ETM + b<strong>and</strong> 4, near <strong>in</strong>frared.<br />

27<br />

<strong>and</strong> near <strong>in</strong>frared b<strong>and</strong> results. The <strong>in</strong>tersection<br />

of the total burns with the plant communities<br />

classifications provided areas of each<br />

community that were impacted. Totals burned<br />

areas for each plant community type <strong>and</strong> locality<br />

are given <strong>in</strong> Table 1.1. It was estimated that 34.5<br />

km 2 of the forests <strong>in</strong> the Almond Beach area<br />

were burned, <strong>and</strong> 30.5 km 2 of the forests <strong>in</strong> the<br />

Kamwatta area were burned, for a total of 64.6<br />

km 2 of burned forest for the entire area of <strong>in</strong>terest<br />

on the Wa<strong>in</strong>i Pen<strong>in</strong>sula (Figure 1.21). Areas of<br />

burns detected with each of the two L<strong>and</strong>sat<br />

b<strong>and</strong>s are listed by locality <strong>in</strong> Table 1.2.<br />

Figure 1.21. Comb<strong>in</strong>ed areas of manual del<strong>in</strong>eations<br />

of burns us<strong>in</strong>g the red <strong>and</strong> <strong>in</strong>frared b<strong>and</strong>s from the<br />

December 3 1999 L<strong>and</strong>sat ETM + image. The total<br />

burned area was measured as 64.58 km 2 .<br />

Table 1.2. Manual burn del<strong>in</strong>eation results by burn<br />

area <strong>and</strong> b<strong>and</strong>s 3 (Red) <strong>and</strong> 4 (Near Infrared), for<br />

the L<strong>and</strong>sat ETM + image of 3 December 1999.<br />

B<strong>and</strong> / area<br />

IR Almond Beach<br />

IR Kamwatta<br />

RED Almond Beach<br />

RED Kamwatta<br />

km 2<br />

26.4<br />

21.9<br />

27.4<br />

28.7<br />

The fires left large areas with few surviv<strong>in</strong>g<br />

mangrove trees to supply propagules for<br />

regeneration. After that large-scale disturbance,<br />

limitations on dispersal would likely retard<br />

recolonization by some species. Species that are<br />

w<strong>in</strong>d or animal dispersed might be favored over<br />

those dependent on water dispersal.<br />

Additionally, variations of soil sal<strong>in</strong>ity levels


28<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

would further <strong>in</strong>fluence the species that might<br />

become dom<strong>in</strong>ant. There has been substantial<br />

variation <strong>in</strong> <strong>in</strong>itial recovery of burned areas.<br />

In many locations, the <strong>in</strong>itial regrowth after<br />

the fires <strong>in</strong> Coastal Mangrove swamp <strong>and</strong> Mixed<br />

Freshwater swamp was dom<strong>in</strong>ated by v<strong>in</strong>es,<br />

most notably Ipomoea tiliacea (Willd.) Choisy,<br />

Mikania micrantha Kunth, Cydista<br />

aequ<strong>in</strong>octialis (L.) Miers <strong>and</strong> Entada<br />

polystachya (L.) DC. In places the tangle of<br />

v<strong>in</strong>es became thick enough to walk upon nearly<br />

a meter above the ground (Figure 1.22). Other<br />

broad areas were dom<strong>in</strong>ated by dense,<br />

Figure 1.22. Heavy growth of v<strong>in</strong>es three years after<br />

fires, <strong>in</strong> the former Euterpe swamp. The dom<strong>in</strong>ant<br />

species was Ipomoea tiliacea, which grew over tall<br />

stalks of Montrichardia l<strong>in</strong>ifera. In the distance<br />

nearer the Wa<strong>in</strong>i River was unburned Mixed<br />

Freshwater forest is visible, dom<strong>in</strong>ated by<br />

Pterocarpus offic<strong>in</strong>alis <strong>in</strong>terspersed with very large<br />

Avicennia trees.<br />

Figure 1.23. Burned Coastal Mangrove forest near<br />

Kamwatta Beach, approximately three years after<br />

fires. This area had become dom<strong>in</strong>ated by dense<br />

Acrostichum ferns.<br />

sometimes monospecific st<strong>and</strong>s of herbaceous<br />

species such as Acrostichum ferns (Figure 1.23)<br />

or Typha dom<strong>in</strong>gensis Pers. (cattails) (Figure<br />

1.24).<br />

Figure 1.24. An expanse of Typha <strong>in</strong> burned<br />

Avicennia Coastal Mangrove forest, three years after<br />

the fires. It was estimated that this Typha st<strong>and</strong><br />

covered up to 2.6 km2, start<strong>in</strong>g approximately 1.4<br />

km beh<strong>in</strong>d the Almond Beach camp, extend<strong>in</strong>g<br />

towards Wa<strong>in</strong>i Po<strong>in</strong>t.<br />

Another dist<strong>in</strong>ctive vegetation type visible<br />

on L<strong>and</strong>sat ETM + imagery was a narrow b<strong>and</strong><br />

of dense herbaceous vegetation found <strong>in</strong> a few<br />

spots between burns on former Ficus-Euterpe<br />

swamp <strong>and</strong> Mixed Freshwater swamp near the<br />

river. Acrostichum ferns <strong>and</strong> the large,<br />

herbaceous aroid Montrichardia grew thickly<br />

there, mixed with several species of v<strong>in</strong>e (Figure<br />

1.25). Those areas were characterized by high<br />

Figure 1.25. Vegetation <strong>in</strong> the belt of dense<br />

Montrichardia (broad leaves) <strong>and</strong> Acrostichum ferns<br />

near unburned Mixed Freshwater forest near the<br />

Wa<strong>in</strong>i River. Several months later this area was<br />

overrun with v<strong>in</strong>es (pictured: Keith David).


Contributions to the Study of Biological Diversity Vol. 3<br />

reflectance <strong>in</strong> both <strong>in</strong>frared <strong>and</strong> red b<strong>and</strong>s.<br />

Burned areas <strong>in</strong> the pure Avicennia swamp<br />

of the northern portion of the Wa<strong>in</strong>i Pen<strong>in</strong>sula<br />

were <strong>in</strong>vestigated <strong>in</strong> more detail with ecological<br />

plots (see Chapter 4). Those swamps suffered<br />

nearly full tree mortality <strong>and</strong> have undergone<br />

slow early regeneration. Initially, <strong>in</strong> wet seasons<br />

they were covered with deeper surface water<br />

than neighbor<strong>in</strong>g unburned areas, probably<br />

result<strong>in</strong>g from a comb<strong>in</strong>ation of decreased<br />

transpiration <strong>and</strong> lowered elevation from<br />

combustion of the upper organic soil layer.<br />

When surface water was present they were<br />

dom<strong>in</strong>ated by float<strong>in</strong>g vegetation, first Lemna<br />

aequ<strong>in</strong>octialis Welw., which was followed after<br />

the first year by Limnobium laevigatum (Humb.<br />

& Bonpl. ex Willd.) He<strong>in</strong>e (Figure 1.26). Such<br />

areas that were covered with float<strong>in</strong>g plants were<br />

not dist<strong>in</strong>guishable from forest <strong>in</strong> b<strong>and</strong> 3 of the<br />

L<strong>and</strong>sat images, while sparse vegetation <strong>and</strong><br />

bare soil were apparent. Areas of open, st<strong>and</strong><strong>in</strong>g<br />

water were obvious <strong>in</strong> the near <strong>in</strong>frared b<strong>and</strong><br />

(4) due to very low return.<br />

Fig. 1.26 Burned area <strong>in</strong> the pure Avicennia swamp of the<br />

northern portion of the Wa<strong>in</strong>i Pen<strong>in</strong>sula. When surface<br />

water was present they were dom<strong>in</strong>ated by float<strong>in</strong>g<br />

vegetation, first Lemna aequ<strong>in</strong>octialis Welw., followed by<br />

Limnobium laevigatum (Humb. & Bonpl. Ex willd.) He<strong>in</strong>e.<br />

Later <strong>in</strong> those areas, shrubby Laguncularia<br />

racemosa (L.) C.F. Gaertn. trees became<br />

established; that species is often considered the<br />

most disturbance adapted of Neotropical<br />

mangrove species (Ball 1980; Elster 2000; Elster<br />

et al. 1999; Roth 1992; Woodroffe 1983), as it<br />

has the smallest, <strong>and</strong> so presumably most easily<br />

29<br />

dispersed, propagules.<br />

In areas that were not apparent as obviously<br />

burned <strong>in</strong> the FCC image but were actually<br />

recover<strong>in</strong>g from fires, most were lightly to<br />

moderately covered with herbaceous vegetation<br />

<strong>in</strong>clud<strong>in</strong>g v<strong>in</strong>es, Typha, <strong>and</strong> Acrostichum, which<br />

reflected adequate near-IR (b<strong>and</strong> 4) to make<br />

them difficult to dist<strong>in</strong>guish from undisturbed<br />

vegetation. Most of those areas were also<br />

slightly elevated <strong>and</strong> not covered with st<strong>and</strong><strong>in</strong>g<br />

water or with highly saturated soils that<br />

contribute to low return <strong>in</strong> the near-IR.<br />

The Kamwatta burn was the subject of<br />

limited field work, as it was not <strong>in</strong>itially<br />

discerned <strong>in</strong> the L<strong>and</strong>sat FCC, perhaps due to<br />

limited areas of st<strong>and</strong><strong>in</strong>g water, <strong>and</strong> confusion<br />

with adjacent areas of clouds <strong>and</strong> cloud shadows<br />

<strong>in</strong> the far southeastern part of the view.<br />

Nonetheless, manual del<strong>in</strong>eation of the<br />

Kamwatta burn us<strong>in</strong>g separate b<strong>and</strong>s 3 <strong>and</strong> 4<br />

was practicable <strong>and</strong> consistent with prelim<strong>in</strong>ary<br />

field <strong>in</strong>vestigations <strong>in</strong> the area. In the future it<br />

would be useful to conduct additional field<br />

<strong>in</strong>vestigations <strong>in</strong> that area south of Kamwatta<br />

Beach to determ<strong>in</strong>e if fires had occurred there.<br />

<strong>Plant</strong> Collections of Interest<br />

Some plant collections made dur<strong>in</strong>g field<br />

work were of particular <strong>in</strong>terest because they<br />

represented new <strong>in</strong>formation on the ranges of<br />

species. In the first section, collections from the<br />

Wa<strong>in</strong>i Pen<strong>in</strong>sula are covered, followed by<br />

collections made elsewhere <strong>in</strong> the Northwest<br />

District.<br />

- On the Wa<strong>in</strong>i Pen<strong>in</strong>sula:<br />

Rhizoclonium africanum Kütz<strong>in</strong>g,<br />

Cladophoraceae, det. J. Norris, 2000: Hollowell,<br />

Arjoon <strong>and</strong> Ch<strong>in</strong> 255, collected 4 November<br />

1998. This algal species is newly recorded for<br />

the Guianas. It is known from mangrove swamps<br />

<strong>in</strong> Brazil, Central America, the Caribbean, <strong>and</strong><br />

the west coast of Africa. Through <strong>in</strong>troduction<br />

it is nearly pantropical <strong>in</strong> mangrove swamps<br />

(Guiry & Nic Dhonncha 2004). The collection<br />

was made just beh<strong>in</strong>d the beach ridge<br />

approximately 4 kilometers southeast of Wa<strong>in</strong>i<br />

Po<strong>in</strong>t. Rhizoclonium was collected on<br />

pneumatophores of Avicennia trees, <strong>and</strong> was<br />

very common <strong>in</strong> the wetter parts of the Coastal<br />

Mangrove swamps near the beach ridges.


30<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Although green algae are photosynthetic protists<br />

rather than true plants, this is listed because the<br />

study of algae is typically grouped with<strong>in</strong> the<br />

discipl<strong>in</strong>e of botany.<br />

Amaranthus australis (A. Gray) J.D. Sauer,<br />

Amaranthaceae, det. T. Hollowell, 2001:<br />

Hollowell, A. James <strong>and</strong> Savory 352, collected<br />

12 May 2000. This was apparently the second<br />

collection for Guyana; the other known<br />

collection was M.S. Grewal <strong>and</strong> H. Lall 305<br />

(held at Utrecht Herbarium), from the Shell<br />

Beach area <strong>in</strong> 1977. The species is also known<br />

<strong>in</strong> the Guianas from two collections made <strong>in</strong><br />

French Guiana <strong>and</strong> two collections made <strong>in</strong><br />

Sur<strong>in</strong>am (R.A. DeFilipps, pers. comm.). This<br />

collection was made to the southeast of<br />

Kamwatta Beach (see Figure 1.2), <strong>in</strong> open water<br />

of scrubby mangrove swamp that was possibly<br />

affected by a small fire around 1992 (Audley<br />

James, pers. comm).<br />

Nypa fruticans Wurmb., Arecaceae, det. T.<br />

Hollowell, 1997: Hollowell et al. 213, collected<br />

16 June 1997. This was the first known South<br />

American voucher for this Asian mangrove<br />

palm, collected along the banks of the Mora<br />

Passage between the mouth of the Wa<strong>in</strong>i River<br />

<strong>and</strong> the Barima River (Figure 1.2). Nypa is a<br />

monotypic genus <strong>and</strong> is unusual among both<br />

mangroves <strong>and</strong> palms because of its<br />

dichotomously branch<strong>in</strong>g, rhizomatous form<br />

(Toml<strong>in</strong>son 1986; Tralau 1964); only the fronds<br />

<strong>and</strong> reproductive structures of Nypa extend<br />

above the riverbank mud. Nypa is common <strong>in</strong><br />

River<strong>in</strong>e Mangrove swamps along the tidal<br />

Wa<strong>in</strong>i River, Barima River, <strong>and</strong> Mora Passage.<br />

This species may be spread<strong>in</strong>g <strong>in</strong> the Northwest<br />

District, displac<strong>in</strong>g some native Rhizophora<br />

racemosa trees. Nypa fruits have been reported<br />

str<strong>and</strong>ed on beaches <strong>in</strong> Tr<strong>in</strong>idad (Bacon 2001).<br />

<strong>Plant</strong>s have been recorded on the Caribbean<br />

coast of Panama (Duke 1991), <strong>and</strong> Nypa has<br />

become a widespread exotic species <strong>in</strong> the Niger<br />

Delta (Sunderl<strong>and</strong> & Morak<strong>in</strong>yo 2002). It has<br />

long been utilized <strong>in</strong> Asia for many purposes,<br />

particularly thatch<strong>in</strong>g, but it has only rarely been<br />

observed <strong>in</strong> use <strong>in</strong> Guyana.<br />

Roystonea oleracea (Jacq.) O.F. Cook,<br />

Arecaceae, det. T. Hollowell, 2002: Hollowell<br />

<strong>and</strong> H<strong>in</strong>ds 593, collected 21 October 2001. This<br />

was apparently the first record of native<br />

Roystonea for the Guianas. It was collected <strong>in</strong><br />

fruit from the isolated population midway across<br />

the Wa<strong>in</strong>i Pen<strong>in</strong>sula, with an elevation of 5-10<br />

meters above sea level. It was composed of 50-<br />

60 mature trees up to 20 meters high, with a<br />

number of juvenile palms present (Figure 1.27).<br />

These palms may have been able to survive fires<br />

because palm cambium tissues are protected by<br />

Fig. 1.27 The first native population of Roystonea oleracea<br />

(Jacq.) O.F. Cook found midway across the Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula. This isolated population was composed of 50-<br />

60 mature trees up to 20 meter high, with a number of<br />

juvenile palms present.<br />

their <strong>in</strong>ternal position (Cochrane 2003). The<br />

species was known from Venezuela <strong>in</strong>clud<strong>in</strong>g a<br />

few localities <strong>in</strong> Delta Amacuro <strong>and</strong> Bolívar<br />

states, <strong>and</strong> from Colombia. Some of those<br />

populations have been reported as native (Zona<br />

1996). Roystonea oleracea also occurs <strong>in</strong> coastal<br />

swamps of Tr<strong>in</strong>idad <strong>and</strong> Tobago (Bonadie 1998),<br />

<strong>and</strong> Barbados (Zona 1996), apparently <strong>in</strong><br />

slightly elevated locations similar to that of the<br />

Wa<strong>in</strong>i Pen<strong>in</strong>sula population. Species of<br />

Roystonea have been cultivated <strong>in</strong> cities <strong>and</strong><br />

towns of the Guianas, but the Wa<strong>in</strong>i Pen<strong>in</strong>sula<br />

population occurred far from any settlement <strong>and</strong><br />

more than 20 kilometers from Mabaruma, the<br />

nearest town with cultivated Roystonea.<br />

Ipomoea violacea L., Convolvulaceae, det.<br />

T. Hollowell, 2002: Hollowell 217, collected 17<br />

June 1997. This was possibly the second<br />

collection <strong>in</strong> Guyana of the white-flowered,<br />

coastal species. Collected along a narrow beach<br />

ridge west of Almond Beach. The other known<br />

specimen was collected by G.S. Jenman<br />

(collection number 5068, at US as Ipomoea<br />

macrantha Roem. & Schult.) <strong>in</strong> 1889 <strong>in</strong> “coastal


Contributions to the Study of Biological Diversity Vol. 3<br />

l<strong>and</strong>s” of Guyana. It is a widespread coastal v<strong>in</strong>e<br />

<strong>in</strong> the Caribbean <strong>and</strong> has a nearly pantropical<br />

distribution.<br />

Sesbania sericea (Willd.) DC., Fabaceae,<br />

det. T. Hollowell, 2000: Hollowell, A. James <strong>and</strong><br />

Savory 351. Collected along a beach ridge swale<br />

to the southeast of Kamwatta Beach. The other<br />

known collection of this species from Guyana<br />

was made by A.S. Hitchcock (collection number<br />

16626) <strong>in</strong> 1919, with the collection habitat listed<br />

as “among weeds” <strong>in</strong> the Georgetown Botanic<br />

Garden. The species is native to Asia, possibly<br />

to Sri Lanka (Howard 1976).<br />

- In the Northwest District of Guyana:<br />

Passiflora amicorum Wurdack,<br />

Passifloraceae, det. C. Feuillet, 2000: Hollowell<br />

<strong>and</strong> V. James 383, collected 16 May 2000.<br />

Collected on “Kiss<strong>in</strong>g Rock” hill north of<br />

Mabaruma. This was the first collection of the<br />

species for the Guianas; it was previously known<br />

only from Bolívar state of Venezuela. This redflowered<br />

v<strong>in</strong>e was grow<strong>in</strong>g upon low understory<br />

vegetation on a steep hillside, <strong>in</strong> partial shade.<br />

Werauhia gigantea (Mart. ex Schult. f.) J.R.<br />

Grant. (=Vriesea amazonica (Baker) Mez.),<br />

Bromeliaceae, det. E.J. Gouda, 2002: Hollowell,<br />

A. James <strong>and</strong> V. James 386, collected 16 May<br />

2000. This was apparently the second collection<br />

of the species <strong>in</strong> Guyana, the previous record<br />

be<strong>in</strong>g from Mabura Hill <strong>in</strong> central Guyana,<br />

collected by R. Ek (1997). This specimen was<br />

collected from the branches of a Rhizophora<br />

racemosa tree overhang<strong>in</strong>g the Aruka River near<br />

“Kiss<strong>in</strong>g Rock” <strong>in</strong> the Mabaruma vic<strong>in</strong>ity.<br />

Habenaria sp. nov.? Orchidaceae, det. G.<br />

Carnevali, 2002. Hollowell <strong>and</strong> H<strong>in</strong>ds 607,<br />

collected 22 October 2001. This white-flowered,<br />

terrestrial orchid was not matched by other<br />

Habenaria species (fide Germán Carnevali,<br />

CICY) <strong>and</strong> is await<strong>in</strong>g further exam<strong>in</strong>ation.<br />

Collected on terra firme, approximately 100<br />

meters from the Wa<strong>in</strong>i River well upriver from<br />

tidal <strong>in</strong>fluence, near an ab<strong>and</strong>oned sawmill.<br />

Miconia m<strong>in</strong>utiflora (Bonpl.) DC.<br />

Melastomataceae, det. F. Almeda <strong>and</strong> D.<br />

Penneys, 2002. Hollowell <strong>and</strong> H<strong>in</strong>ds 724,<br />

collected 4 November 2001. This was the first<br />

collection of the species for Guyana. Specimens<br />

of this shrub were collected near the Wauna Oil<br />

31<br />

Palm Estate, a small agricultural experimental<br />

station that is located about 12 kilometers to the<br />

west-southwest of Mabaruma.<br />

DISCUSSION<br />

These plant collections <strong>in</strong> Northwest<br />

Guyana were carried out as part of ecological<br />

research rather than as part of comprehensive<br />

plant collection expeditions. Dedicated<br />

collection efforts would almost certa<strong>in</strong>ly yield<br />

additional plant species records for the Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula. The number of species records<br />

result<strong>in</strong>g from this fieldwork that were found to<br />

be of <strong>in</strong>terest highlights the degree to which the<br />

flora of this lowl<strong>and</strong> region has been undersampled.<br />

Compared to remote <strong>in</strong>terior areas <strong>in</strong><br />

Guyana, the coastal pla<strong>in</strong> of the Northwest<br />

District can be easily accessed, <strong>and</strong> additional<br />

field work might be relatively <strong>in</strong>expensive for<br />

the <strong>in</strong>formation yielded. As the state of botanical<br />

research <strong>in</strong> Guyana advances, there will be more<br />

effort to underst<strong>and</strong> species distributions at the<br />

level of a variety of ecosystems <strong>and</strong> for smaller<br />

political units. While exist<strong>in</strong>g specimen data can<br />

be modeled with GIS to <strong>in</strong>vestigate probable<br />

species distributions (Funk & Richardson 2002;<br />

Funk et al. 2005; Funk et al. 1999), the needs to<br />

verify models <strong>and</strong> produce more accurate <strong>and</strong><br />

complete <strong>in</strong>put data will always depend upon<br />

plant collect<strong>in</strong>g expeditions. A substantial<br />

amount of fieldwork, plant identification, <strong>and</strong><br />

museum work will be required to provide those<br />

specimens <strong>and</strong> data.<br />

Changes <strong>in</strong> the global climate could have<br />

significant effects on Guyana’s coastal<br />

ecosystems, chang<strong>in</strong>g the types of dom<strong>in</strong>ant<br />

plant communities. Increased severity of El<br />

Niño events could lead to higher fire frequencies<br />

on the northwest coast of Guyana, particularly<br />

if population pressure grows, <strong>in</strong>creas<strong>in</strong>g the<br />

chances of ignition. Guyana’s occasional<br />

extreme droughts make it vulnerable to<br />

<strong>in</strong>cremental forest degradation <strong>in</strong> which fires can<br />

play a key role (Cochrane 2002, 2003). The 1998<br />

fires on the Wa<strong>in</strong>i Pen<strong>in</strong>sula had severe impacts<br />

on coastal swamp habitats, <strong>and</strong> effects on forest<br />

composition are likely to persist. <strong>Fire</strong>s among<br />

the Wa<strong>in</strong>i Pen<strong>in</strong>sula mangroves were possibly<br />

less anomalous than they <strong>in</strong>itially seem


32<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

(L<strong>in</strong>deman 1953; Pons & Pons 1975), <strong>and</strong> may<br />

be a large-scale case of fire’s role <strong>in</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g<br />

mangrove/marsh boundaries, as documented for<br />

some other regions (Lugo 1997; Middleton<br />

1999; Odum et al. 1982; Wade et al. 1980). The<br />

fires may represent an occasional phenomenon<br />

that has occurred <strong>in</strong> the coastal zone of the<br />

Guianas, where mangrove forests become<br />

isolated from the ocean, result<strong>in</strong>g <strong>in</strong> at least a<br />

temporary conversion to non-mangrove<br />

communities.<br />

The Wa<strong>in</strong>i fires clearly provide a case for<br />

the <strong>in</strong>clusion of fire <strong>in</strong> the list of disturbances<br />

that can affect large areas of mangrove swamp<br />

(F<strong>in</strong>n et al. 1998; Jiménez et al. 1985). It is not<br />

known if the fires documented here were the<br />

first <strong>in</strong> those coastal swamps. Sampl<strong>in</strong>g for the<br />

presence of charcoal at promis<strong>in</strong>g sites <strong>in</strong> central<br />

portions of the Wa<strong>in</strong>i Pen<strong>in</strong>sula might answer<br />

that question. Such potential sites could <strong>in</strong>clude<br />

areas of slightly higher elevation, <strong>and</strong> areas that<br />

are unusual <strong>in</strong> older imagery, particularly where<br />

breaks <strong>in</strong> forest are suspected.<br />

The fires have also provided a natural<br />

experiment on the effects of disturbance on<br />

biodiversity <strong>and</strong> plant community structure<br />

(Field et al. 1998), <strong>and</strong> present cont<strong>in</strong>ued<br />

opportunities for descriptive <strong>and</strong> comparative<br />

studies of mangroves <strong>in</strong> northeastern South<br />

America. Such studies of pre- <strong>and</strong> postdisturbance<br />

environments create basel<strong>in</strong>es for<br />

future monitor<strong>in</strong>g <strong>and</strong> analyses, <strong>and</strong> hopefully<br />

will encourage anticipation <strong>and</strong> prevention of<br />

fires. An effective mechanism for alert<strong>in</strong>g<br />

environmental authorities <strong>and</strong> prompt field work<br />

are needed <strong>in</strong> rapidly chang<strong>in</strong>g, post-fire<br />

ecosystems, requir<strong>in</strong>g commitment to<br />

conservation, monitor<strong>in</strong>g, <strong>and</strong> response.<br />

The assembly of background environmental<br />

<strong>in</strong>formation, <strong>in</strong>clud<strong>in</strong>g censuses of plant <strong>and</strong><br />

animal species <strong>and</strong> mapp<strong>in</strong>g, are central to the<br />

description, underst<strong>and</strong><strong>in</strong>g <strong>and</strong> management of<br />

protected areas <strong>and</strong> other sites of environmental<br />

importance. Such basel<strong>in</strong>e biodiversity<br />

<strong>in</strong>formation is essential for monitor<strong>in</strong>g changes<br />

over time, <strong>and</strong> makes comparative studies<br />

between sites possible. Catalogs of species are<br />

also a primary tool for utilization of protected<br />

areas for education, <strong>and</strong> it is hoped that the<br />

<strong>in</strong>formation presented here will be encourage<br />

additional scientific, conservation, <strong>and</strong><br />

educational efforts.


Contributions to the Study of Biological Diversity Vol. 3<br />

CHAPTER 2<br />

PLANTS OF THE WAINI PENINSULA IN REGIONAL<br />

AND GLOBAL CONTEXT<br />

INTRODUCTION<br />

The conservation value of a particular<br />

natural site may be derived not just from its<br />

species composition, but from the contrast of<br />

the species of the site with those of adjacent or<br />

related localities. This chapter <strong>in</strong>vestigates<br />

relationships between the Wa<strong>in</strong>i Pen<strong>in</strong>sula flora<br />

<strong>and</strong> the species of nearby plant communities,<br />

the species of the Northwest District of Guyana,<br />

<strong>and</strong> the species of the adjacent Venezuelan state<br />

of Delta Amacuro. The phytogeographic<br />

aff<strong>in</strong>ities of the Wa<strong>in</strong>i Pen<strong>in</strong>sula flora at the<br />

regional, cont<strong>in</strong>ental, <strong>and</strong> global scales were<br />

explored through classification of species<br />

distribution ranges. Those comparisons also<br />

served as an example of the state of botanical<br />

knowledge on lowl<strong>and</strong> forests <strong>in</strong> northeastern<br />

South America. Comparisons of Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula plant communities were made with<br />

two coastal pla<strong>in</strong> plant communities <strong>in</strong> the<br />

Northwest District near Santa Rosa, as<br />

documented by van Andel (2000a).<br />

Comparisons were also made of the Wa<strong>in</strong>i <strong>and</strong><br />

Northwest District floras with the flora of the<br />

neighbor<strong>in</strong>g coastal Venezuelan state of Delta<br />

Amacuro, with the goal of underst<strong>and</strong><strong>in</strong>g the<br />

level of diversity between the sites. This has<br />

implications both for the direction of additional<br />

basic research <strong>and</strong> ideally <strong>in</strong> the design of<br />

protected areas <strong>in</strong> the region. F<strong>in</strong>ally, a regional<br />

<strong>and</strong> global phytogeographic analysis was made<br />

for the Wa<strong>in</strong>i flora. The questions addressed here<br />

<strong>in</strong>clude to what degree the flora of the Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula is unique <strong>in</strong> relation to neighbor<strong>in</strong>g<br />

ecosystems, to all of Guyana, to the Guiana<br />

Shield region of northeastern South America,<br />

<strong>and</strong> to broader biogeographic areas. At the larger<br />

regional scales, the question is asked whether<br />

such coastal pla<strong>in</strong> environments of the Guianas<br />

should be considered as part of the Guiana<br />

Shield flora or as units of a dist<strong>in</strong>ct Neotropical<br />

or Caribbean coastal flora. It is of <strong>in</strong>terest<br />

whether additional botanical collection activities<br />

33<br />

such as undertaken <strong>in</strong> this relatively lowdiversity<br />

region of South America can add<br />

significantly to botanical knowledge.<br />

Comparisons of species checklists cover<strong>in</strong>g<br />

areas of <strong>in</strong>termediate size have been used<br />

recently to analyze similarities <strong>and</strong> differences<br />

among sites that are c<strong>and</strong>idates for protection<br />

or under consideration for additional detailed<br />

<strong>in</strong>vestigations (Clarke & Funk 2005; Clarke et<br />

al. 2001a; Kelloff 2002; Kelloff & Funk 2004).<br />

That approach relies only upon species presence<br />

<strong>and</strong> absence, allow<strong>in</strong>g what may be an early<br />

opportunity for biodiversity analysis. Such<br />

qualitative data are frequently the only available<br />

<strong>in</strong>formation cover<strong>in</strong>g large parts of tropical<br />

South America. While ecological plot data sets<br />

can be very useful for detailed quantitative<br />

analyses, they have been available to date for<br />

small to moderately sized plots that are widely<br />

separated (Condit et al. 2002; Pitman et al. 1999;<br />

Pitman et al. 2001). As an alternative, qualitative<br />

species list-based data are comparatively easily<br />

compiled from exist<strong>in</strong>g publications such as<br />

regional florulas. Those sources can be<br />

augmented by data from the large, though often<br />

<strong>in</strong>completely utilized reservoirs of <strong>in</strong>formation<br />

held <strong>in</strong> the world’s herbaria (Funk 2003a, b).<br />

An important condition for validity of all scales<br />

of comparison is st<strong>and</strong>ardization of the<br />

biodiversity data utilized. This greatly facilitated<br />

by the availability of computerized<br />

nomenclatural databases, <strong>and</strong> for botanical<br />

research <strong>in</strong> particular, nomenclature <strong>in</strong>clud<strong>in</strong>g<br />

complete, l<strong>in</strong>ked synonymies. All of these data<br />

sources <strong>and</strong> data quality tools require substantial<br />

<strong>in</strong>vestment to create, ma<strong>in</strong>ta<strong>in</strong>, <strong>and</strong> apply.<br />

STUDY SITES AND<br />

BACKGROUND<br />

The study site on the northern portion of<br />

Guyana’s Wa<strong>in</strong>i Pen<strong>in</strong>sula is described <strong>in</strong> detail<br />

<strong>in</strong> Chapter 1. Other localities mentioned <strong>in</strong> the<br />

text or from which data were utilized are


34<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

<strong>in</strong>dicated <strong>in</strong> Figure 2.1. Additional plant data<br />

were obta<strong>in</strong>ed or compiled for the sites listed<br />

below.<br />

Figure 2.1. The Northwest District of Guyana,<br />

show<strong>in</strong>g localities <strong>in</strong> the text. Georeferenced<br />

collection sites from this study <strong>and</strong> from herbarium<br />

specimens are <strong>in</strong>dicated by the symbol •<br />

Quackal <strong>and</strong> Manicole <strong>Plant</strong> Communities<br />

The Quackal <strong>and</strong> Manicole plant<br />

communities are coastal pla<strong>in</strong> vegetation types<br />

that were studied by van Andel (2000a), who<br />

considered them to grade <strong>in</strong>to Coastal Mangrove<br />

swamps, mak<strong>in</strong>g them of <strong>in</strong>terest for<br />

comparison with the plant communities of the<br />

Wa<strong>in</strong>i Pen<strong>in</strong>sula. Van Andel’s research sites<br />

were located near Santa Rosa (7º41’N,<br />

58º55’W) <strong>and</strong> Assakata (7º44’N, 59º04’W), <strong>in</strong><br />

the southeastern portion of the Northwest<br />

District (Figure 2.1). She described the Quackal<br />

swamp woodl<strong>and</strong> as dom<strong>in</strong>ated by Tabebuia<br />

<strong>in</strong>signis (Miq.) S<strong>and</strong>with, Macrosamanea<br />

pubiramea (Steud.) Barneby & J.W. Grimes,<br />

<strong>and</strong> Symphonia globulifera L. f. The manicole<br />

swamp was dom<strong>in</strong>ated by Euterpe palm species<br />

<strong>and</strong> was also rich <strong>in</strong> Pentaclethra macroloba<br />

(Willd.) Kuntze, Symphonia globulifera L. f.,<br />

<strong>and</strong> Virola sur<strong>in</strong>amensis (Rol. ex Rottb.) Warb.<br />

A comparison of the list of species collected<br />

from these two areas was also used to enhance<br />

the species list formed for the Northwest<br />

District.<br />

The Northwest District<br />

The Northwest District covers<br />

approximately 19,190 km 2 , about 9.5 % of<br />

Guyana’s total area. Of that area, approximately<br />

1,000 km 2 , or 5.5%, of the Northwest is<br />

conta<strong>in</strong>ed with<strong>in</strong> the Wa<strong>in</strong>i Pen<strong>in</strong>sula, here<br />

considered to span from Wa<strong>in</strong>i Po<strong>in</strong>t to<br />

Baramanni Lake, <strong>in</strong>clud<strong>in</strong>g most of the district’s<br />

Atlantic coastl<strong>in</strong>e. The 190 km 2 study area on<br />

the Wa<strong>in</strong>i Pen<strong>in</strong>sula comprises about 1% of the<br />

area of the Northwest District. The only large<br />

town <strong>in</strong> the region is the adm<strong>in</strong>istrative center<br />

Mabaruma, adjacent to Port Kumaka on the<br />

Aruka River (Figure 2.1). Most of the towns of<br />

the district are accessible via its many rivers.<br />

Early major collection expeditions <strong>in</strong> the<br />

Northwest District were undertaken by the<br />

Schomburgk brothers <strong>and</strong> by J.S. de la Cruz.<br />

The German brothers Robert H. <strong>and</strong> Moritz<br />

Richard Schomburgk explored the Northwest <strong>in</strong><br />

1841, as part of work for the British Government<br />

<strong>in</strong> del<strong>in</strong>eation of the boundaries of British<br />

Guiana (Schomburgk 1922; Schomburgk 1896).<br />

The basecamp for that expedition was at Port<br />

Kumaka. At the beg<strong>in</strong>n<strong>in</strong>g of the expedition, the<br />

Schomburgk party camped on the beach ridge<br />

of Wa<strong>in</strong>i Po<strong>in</strong>t. They recorded no detailed<br />

description of the flora there, although Richard<br />

Schomburgk made an account of birdlife, as well<br />

as notes on the heat of the open sun, the plentiful<br />

mosquitos, <strong>and</strong> the types of small shells that<br />

make up the beach (Schomburgk 1922).<br />

Unfortunately, nearly all of the Schomburgk<br />

botanical specimens from that expedition were<br />

lost to mold <strong>and</strong> decay (van Dam 2002).<br />

Juan S. de la Cruz was a plant collector for<br />

the New York Botanical Garden, work<strong>in</strong>g under<br />

contract to the prom<strong>in</strong>ent botanist H.A. Gleason<br />

(Ek 1990). Cruz collected <strong>in</strong> many regions of<br />

Guyana, particularly along the rivers of the<br />

Northwest District <strong>and</strong> the upper Mazaruni<br />

River bas<strong>in</strong>. From an analysis of collect<strong>in</strong>g dates<br />

on Cruz specimens, it appears that he made at<br />

least six collect<strong>in</strong>g trips to the Northwest<br />

District. Two of these trips were extensive, <strong>in</strong><br />

August to September 1921 <strong>and</strong> <strong>in</strong> May 1922.<br />

From the collection number ranges found, it is<br />

estimated that Cruz made over 1,400 plant<br />

collections <strong>in</strong> the Northwest from 1921 to 1927,<br />

approximately 80% of which are represented at<br />

the US National herbarium, accord<strong>in</strong>g to<br />

database records of the BDG program.<br />

More recently, T<strong>in</strong>de van Andel (2000a;<br />

2000b), of the University of Utrecht <strong>and</strong>


Contributions to the Study of Biological Diversity Vol. 3<br />

Tropenbos Foundation, made numerous plant<br />

collections <strong>in</strong> the Northwest from 1995-1997 as<br />

part of research on non-timber forest products<br />

<strong>in</strong> the region, <strong>in</strong>clud<strong>in</strong>g voucher collections for<br />

her ecological plots <strong>in</strong> the Santa Rosa vic<strong>in</strong>ity,<br />

located just to the south of the Wa<strong>in</strong>i Pen<strong>in</strong>sula.<br />

Those research sites start <strong>in</strong> freshwater forests<br />

apparently just <strong>in</strong>l<strong>and</strong> of coastal plant<br />

communities that <strong>in</strong>clude some mangrove<br />

species. A summary of early botanical collectors<br />

who worked <strong>in</strong> the Northwest Region is given<br />

<strong>in</strong> Table 2.1. Georeferenced plant collection sites<br />

<strong>in</strong> the Northwest District are shown <strong>in</strong> Figure<br />

2.1.<br />

Delta Amacuro<br />

The Flora of the Venezuelan Guayana<br />

(Steyermark et al. 1995 - 2005) <strong>in</strong>cludes list<strong>in</strong>gs<br />

of the plant species for the Venezuelan state of<br />

Delta Amacuro, located adjacent to the<br />

Northwest District of Guyana (Figure 2.2). This<br />

allowed a comparison to be made between the<br />

species known from the Northwest District <strong>and</strong><br />

the species listed for Delta Amacuro. Wa<strong>in</strong>i<br />

Po<strong>in</strong>t is located with<strong>in</strong> 6 kilometers of Delta<br />

Amacuro, which <strong>in</strong>cludes the large delta of the<br />

Or<strong>in</strong>oco River. North of the Wa<strong>in</strong>i Pen<strong>in</strong>sula,<br />

the coastl<strong>in</strong>e of Delta Amacuro possesses<br />

vegetation predom<strong>in</strong>antly of swamp forest <strong>and</strong><br />

35<br />

marshl<strong>and</strong> along the Or<strong>in</strong>oco River’s many<br />

distributaries.<br />

The state of Delta Amacuro covers<br />

approximately 36,663 km 2 , nearly twice the area<br />

of the Northwest District <strong>and</strong> approximately 8%<br />

of the 472,000 km 2 Venezuelan Guayana, which<br />

is the Venezuelan portion of the Guiana Shield<br />

region Gibbs & Barron, 1993) as covered <strong>in</strong> the<br />

floral treatment by Steyermark et al. (1995 -<br />

2005). Huber (1995c), cit<strong>in</strong>g Pannier <strong>and</strong> Fra<strong>in</strong>o<br />

Figure 2.2. The location of the state of Delta<br />

Amacuro, Venezuela <strong>in</strong> relation to the Northwest<br />

District, Guyana.<br />

Table 2.1. Major historical (pre-1980) collect<strong>in</strong>g trips <strong>in</strong> Northwestern Guyana from US National<br />

Herbarium records.<br />

Collector<br />

Schomburgk, M.R. <strong>and</strong> R H.<br />

Jenman, G.S.<br />

ImThurn, E.F.<br />

Bartlett, A.W.<br />

Beckett, J.E.<br />

Ward, R.<br />

Hitchcock, A.S.<br />

Cruz, J.S. de la<br />

Altson, R.A.<br />

Archer, W.A.<br />

Fanshawe, D.B.<br />

Cowan, R.S.<br />

Maguire, B.<br />

Mori, S.A.<br />

Maas, P.J.M.<br />

Year<br />

1841<br />

1896<br />

1897<br />

1905<br />

1906<br />

1907<br />

1920<br />

1921-23,1927<br />

1926<br />

1934<br />

1945<br />

1955<br />

1955<br />

1976<br />

1977<br />

Localities<br />

Wa<strong>in</strong>i R., Mora Passage, Barima R., Aruka R.<br />

Barima R.<br />

Aruka R., Barima R.<br />

Aruka R., Barima R.<br />

Baramanni, Wa<strong>in</strong>i R.<br />

Aruka R.<br />

Morawhanna, Issorora, Aruka R., Yarikita R., Amakura R.<br />

Wa<strong>in</strong>i R., ‘Marabo Shortcut’, Barima R., Amakura R.,<br />

Moruca R.<br />

Mabaruma<br />

Mabaruma, Aruka R., Barima R., Koriabo R., Wauna<br />

Wa<strong>in</strong>i R., Aruka R., Mabaruma<br />

Barima R.<br />

Matthew’s Ridge<br />

Matthew’s Ridge<br />

Aquero, Kwebana


36<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

de Pannier (1989), reported that 4,600 km 2 of<br />

the state, about 12.5% of the total area, was<br />

mangrove swamp, although that was possibly<br />

an overestimate result<strong>in</strong>g from <strong>in</strong>clusion of nonmangrove<br />

areas (Spald<strong>in</strong>g et al. 1997). That<br />

compares to only 890 km 2 of mangrove swamp<br />

<strong>in</strong> the Northwest District of Guyana (Huber et<br />

al. 1995), which is about 4.6% of the district’s<br />

total area. Although Delta Amacuro has a<br />

considerably larger area of lowl<strong>and</strong>s, maximum<br />

elevations <strong>in</strong> Delta Amacuro <strong>and</strong> the Northwest<br />

District are similar. Elevations on Serranía de<br />

Imataca <strong>in</strong> Delta Amacuro exceed 500 meters<br />

at the border with Bolívar State, while <strong>in</strong> the<br />

Northwest District elevations approach 600<br />

meters <strong>in</strong> the extreme western parts of the<br />

Barama River watershed at its border with<br />

Bolívar, <strong>and</strong> approach 500 meters <strong>in</strong> the<br />

headwaters of the Kaituma river <strong>and</strong> <strong>in</strong> the<br />

Kauramembu Mounta<strong>in</strong>s on its southern border<br />

with Guyana’s Cuyuni-Mazaruni Division. The<br />

southern portion of Serranía Imataca extends<br />

<strong>in</strong>to the Northwest <strong>and</strong> forms the upper<br />

watershed of the Barima River. Therefore,<br />

because of its proximity <strong>and</strong> comparable<br />

geomorphic sett<strong>in</strong>g, the flora of the Or<strong>in</strong>oco<br />

Delta might be expected to have a high degree<br />

of similarity to the flora of the Wa<strong>in</strong>i Pen<strong>in</strong>sula.<br />

The lower plant species diversity of the<br />

lowl<strong>and</strong>s of Delta Amacuro, <strong>in</strong> comparison to<br />

the neighbor<strong>in</strong>g highl<strong>and</strong>s of the Guiana Shield,<br />

has led to less <strong>in</strong>terest <strong>in</strong> <strong>and</strong> under-sampl<strong>in</strong>g<br />

of its vegetation. For its area, far fewer<br />

collections have been made by early collect<strong>in</strong>g<br />

expeditions <strong>in</strong> Delta Amacuro than <strong>in</strong> Amazonas<br />

or Bolívar. Out of more than 25,600 collections<br />

from the three states of the Venezuelan Guayana<br />

that have been databased from the US National<br />

Herbarium, only 4.8% were collected from<br />

Delta Amacuro. Although that region is not a<br />

likely source for many species new to science,<br />

its flora is possibly <strong>in</strong>completely known, which<br />

can bias studies of regional diversity <strong>and</strong><br />

conservation efforts.<br />

Regional <strong>and</strong> Global Aff<strong>in</strong>ities of the Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula Flora<br />

The plant communities of the Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula <strong>in</strong>clude many coastal species that<br />

have very broad distributions. In addition to this<br />

oceanic <strong>in</strong>fluence, the Pen<strong>in</strong>sula makes up the<br />

outer edge of the coastal pla<strong>in</strong> along the<br />

northeastern side of Guiana Shield. The Guiana<br />

Shield is a dist<strong>in</strong>ct geological <strong>and</strong> biological unit<br />

that is isolated <strong>in</strong> northeastern South America<br />

by broad surround<strong>in</strong>g lowl<strong>and</strong>s <strong>and</strong> the Amazon,<br />

Negro <strong>and</strong> Or<strong>in</strong>oco River system (Gibbs &<br />

Barron 1993; Huber 1995a; Kelloff & Funk<br />

2004). The degree to which proximity to the<br />

Shield’s upl<strong>and</strong>s is reflected <strong>in</strong> the Wa<strong>in</strong>i flora<br />

is a central question, as are the degrees to which<br />

other geographic aff<strong>in</strong>ities are apparent <strong>in</strong> the<br />

flora. In an effort to illum<strong>in</strong>ate the floral<br />

aff<strong>in</strong>ities of one particular site, Kelloff <strong>and</strong> Funk<br />

(2004) performed a biogeographic analysis of<br />

the flora of Kaieteur National Park, Guyana, one<br />

of Guyana’s few protected areas, located <strong>in</strong><br />

central Guyana on s<strong>and</strong>stones of the Shield’s<br />

Roraima formation. That analysis utilized a<br />

classification based on distribution ranges of<br />

each species to produce a summary of global<br />

aff<strong>in</strong>ities of the entire flora. In part, the<br />

<strong>in</strong>spiration for that method was the<br />

biogeographic <strong>in</strong>vestigations of British botanist<br />

Joseph Hooker (1817-1911), which have been<br />

summarized by Brund<strong>in</strong> (1966). Hooker’s goal<br />

was to underst<strong>and</strong> the history underly<strong>in</strong>g the<br />

distributions of plant taxa of the Antarctic<br />

circumpolar regions. Also <strong>in</strong>corporated <strong>in</strong>to the<br />

method here is the phytogeographic work of<br />

Leon Croizat (1964). However, where Croizat<br />

connected ranges of disparate taxa with l<strong>in</strong>ear<br />

“tracks,” Kelloff <strong>and</strong> Funk grouped all species<br />

of a site of <strong>in</strong>terest <strong>in</strong>to a limited set of<br />

generalized, nested distribution classes for the<br />

biogeographic analysis.<br />

METHODS<br />

Comparison of the Wa<strong>in</strong>i Flora with<br />

Quackal <strong>and</strong> Manicole <strong>Plant</strong> Communities<br />

Follow<strong>in</strong>g the approach of Clarke et al.<br />

(2001a), a similarity matrix was assembled for<br />

the species present <strong>in</strong> a total of seven vegetation<br />

types. These <strong>in</strong>cluded five vegetation types from<br />

the Wa<strong>in</strong>i pen<strong>in</strong>sula: Beach, Coastal Mangrove<br />

forest, Mixed Freshwater forest, River<strong>in</strong>e<br />

Mangrove forest, <strong>and</strong> Burned areas; <strong>and</strong> the two<br />

vegetation types drawn from van Andel’s<br />

(2000a) ecological plots <strong>in</strong> the coastal pla<strong>in</strong> of<br />

the Northwest District: Quackal swamp <strong>and</strong><br />

Manicole swamp. Burned areas were <strong>in</strong>cluded


Contributions to the Study of Biological Diversity Vol. 3<br />

as a group to explore at what level they might<br />

bear similarity to any of the other plant<br />

communities. NTSYSpc (Rohlf 1997) statistical<br />

software was used for the cluster<strong>in</strong>g of those<br />

plant community data. Cluster<strong>in</strong>g was<br />

performed us<strong>in</strong>g simple match<strong>in</strong>g coefficients,<br />

with the Sequential, Agglomerative,<br />

Hierarchical, <strong>and</strong> Nested cluster<strong>in</strong>g method<br />

(SAHN) <strong>and</strong> the Unweighted Pair-Group<br />

Method, Arithmetic average (UPGMA), based<br />

on algorithms from Sneath <strong>and</strong> Sokal (1973).<br />

Possible sources of error <strong>in</strong> comparisons of<br />

plant communities <strong>in</strong>cluded misidentification of<br />

plant specimens, which could change the<br />

amounts of overlap between communities.<br />

Misidentification was m<strong>in</strong>imized by<br />

determ<strong>in</strong>ation of specimens at major botanical<br />

<strong>in</strong>stitutions that host many specialists <strong>and</strong> have<br />

fairly complete, up to date collections for<br />

reference. Also of concern are <strong>in</strong>complete or<br />

biased sampl<strong>in</strong>g, which may <strong>in</strong>clude undersampl<strong>in</strong>g<br />

of trees <strong>and</strong> of plants sterile at the time<br />

of sampl<strong>in</strong>g, <strong>and</strong> differences <strong>in</strong> sampl<strong>in</strong>g effort<br />

<strong>and</strong> scale. Problems from assignment of species<br />

to particular vegetation types must be<br />

considered. Some of the species may be present<br />

<strong>in</strong> the beach community, s<strong>in</strong>ce they are found<br />

<strong>in</strong> beach substrate, but are primarily on the<br />

marg<strong>in</strong>s of a neighbor<strong>in</strong>g community <strong>and</strong> might<br />

be best treated as outliers from that community.<br />

As with many of these vegetation groups, the<br />

beach community itself could be subdivided <strong>in</strong>to<br />

f<strong>in</strong>er units such as ocean front, central beach<br />

ridge, <strong>and</strong> back beach near mangrove swamps;<br />

similar concerns could be formed for a unit<br />

regard<strong>in</strong>g boundaries. A f<strong>in</strong>al consideration is<br />

sampl<strong>in</strong>g bias, particularly the Quackal <strong>and</strong><br />

Manicole samples which were obta<strong>in</strong>ed from<br />

one hectare plots, while the Wa<strong>in</strong>i samples were<br />

taken dur<strong>in</strong>g sampl<strong>in</strong>g transects. However, these<br />

do represent a similar degree of sampl<strong>in</strong>g<br />

<strong>in</strong>tensity for each vegetation type, <strong>and</strong><br />

substantial possible disparity may be mitigated<br />

by the use of qualitative (presence/absence)<br />

rather than quantitative comparisons.<br />

Northwest District<br />

A checklist of plants of the Northwest<br />

District was assembled from five sources: 1)<br />

collections made on the Wa<strong>in</strong>i Pen<strong>in</strong>sula dur<strong>in</strong>g<br />

this study, 2) collections made <strong>in</strong> the Northwest<br />

37<br />

District by the BDG program s<strong>in</strong>ce 1986, 3) the<br />

dataset of Northwest District collections held<br />

at the US herbarium, 4) the 625 species listed<br />

by van Andel (2000b) based on her collections<br />

made <strong>in</strong> Guyana from 1995 to1997, <strong>and</strong> 5) some<br />

specimen <strong>in</strong>formation from onl<strong>in</strong>e databases,<br />

e.g., the Missouri Botanical Garden’s (1995present)<br />

TROPICOS database, <strong>and</strong> the New<br />

York Botanical Garden’s website (1996present).<br />

The result<strong>in</strong>g names at the species level<br />

were matched with the database for the<br />

Checklist of the <strong>Plant</strong>s of the Guiana Shield<br />

(Hollowell et al. 2001) to st<strong>and</strong>ardize<br />

nomenclature <strong>and</strong> correct errors. Those species<br />

known only from cultivation were not used <strong>in</strong><br />

analyses but were <strong>in</strong>cluded <strong>in</strong> the full checklist<br />

for the Northwest District (Appendix 3), <strong>and</strong><br />

noted as cultivated. The status of species as<br />

cultivated was determ<strong>in</strong>ed by literature checks<br />

<strong>in</strong> DeFilipps (1992), Boggan et al. (1997), van<br />

Andel (2000b), <strong>and</strong> Hollowell et al. (2001).<br />

Species that had apparently escaped cultivation<br />

<strong>and</strong> become naturalized were also noted. Taxa<br />

determ<strong>in</strong>ed only to genus were <strong>in</strong>cluded if they<br />

represented the only record for that genus.<br />

Contributions of recent collections to the lists<br />

were calculated as an <strong>in</strong>dication of the status of<br />

knowledge of the region’s flora.<br />

Figure 2.3. Nested floristic distribution zones used<br />

<strong>in</strong> analysis of plant species aff<strong>in</strong>ities for the Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula. 1. Guiana Shield. 2. Northern South<br />

America. 3. Neotropical. 3a. Neotropical <strong>in</strong>clud<strong>in</strong>g<br />

Caribbean. 4. Neotropical <strong>and</strong> Western Africa. 5.<br />

South America (not <strong>in</strong>dicated). 6. Western<br />

Hemisphere. 7. Pantropical, between 23.5° N <strong>and</strong><br />

23.5° S. 8. Cosmopolitan (not <strong>in</strong>dicated). The Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula flora had the greatest aff<strong>in</strong>ity (33%) with<br />

the Neotropical + Caribbean zone, followed by the<br />

Pantropical zone (27%).


38<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Delta Amacuro<br />

Comparisons with the flora of Delta<br />

Amacuro were made with species published <strong>in</strong><br />

the Flora of the Venezuelan Guayana<br />

(Steyermark et al. 1995 - 2005), which <strong>in</strong>cluded<br />

all pteridophytes (ferns) <strong>and</strong> spermatophyte<br />

families (seed bear<strong>in</strong>g plants). Those were<br />

compared with species for the Northwest<br />

District of Guyana compiled to form the<br />

prelim<strong>in</strong>ary checklist given <strong>in</strong> Appendix 3, to<br />

estimate the amount of overlap between the<br />

floras of the two regions. S<strong>in</strong>ce the neighbor<strong>in</strong>g<br />

political divisions share similar geological <strong>and</strong><br />

elevational properties, those species not<br />

<strong>in</strong>cluded <strong>in</strong> the overlaps also suggest<br />

distributional records that might be found if<br />

collection efforts were cont<strong>in</strong>ued. At the US<br />

National Herbarium, ongo<strong>in</strong>g data collection of<br />

plant specimens collected <strong>in</strong> the Venezuelan<br />

Table 2.2. <strong>Plant</strong> collectors <strong>in</strong> Delta Amacuro, Venezuela<br />

Collector<br />

Rusby, H.H. <strong>and</strong> R.W. Squires<br />

Bond, F.E., T.S. Gill<strong>in</strong> <strong>and</strong> S. Brown<br />

Curran, H.M. <strong>and</strong> M. Haman<br />

Cardona, F.<br />

G<strong>in</strong>es, H.<br />

Wurdack, J.J. <strong>and</strong> J.V. Monach<strong>in</strong>o<br />

Steyermark, J.A.<br />

Marcano-Berti, L. (with Zapata <strong>and</strong><br />

Salcedo <strong>in</strong> 1977)<br />

Breteler, F.J.<br />

Blanco, C.<br />

De Bruijn, J.<br />

Ruiz-Teran, L. <strong>and</strong> S. Lopez-<br />

Palacios<br />

Davidse, G. <strong>and</strong> A.C. Gonzalez<br />

Aymard, G.<br />

Fernández, A.<br />

Montoya, S.<br />

Diaz, W.<br />

Year<br />

1896<br />

1911<br />

1917<br />

1943<br />

1952,<br />

1954<br />

1955<br />

1960,<br />

1964,<br />

1977<br />

1964,<br />

1965,<br />

1977<br />

1966<br />

1965,<br />

1966<br />

1967<br />

1973<br />

1979<br />

1987<br />

1987<br />

1993<br />

1997<br />

Guayana, <strong>in</strong>clud<strong>in</strong>g Delta Amacuro, allowed an<br />

updated summary of historical collect<strong>in</strong>g efforts<br />

<strong>in</strong> Delta Amacuro. Those are listed <strong>in</strong> Table 2.2.<br />

Although they were listed <strong>in</strong> an earlier<br />

compilation by Huber (1995b), R. Liesner <strong>and</strong><br />

F. Delascio are not <strong>in</strong>cluded because these<br />

researcher’s names have been found on Delta<br />

Amacuro specimens only as secondary<br />

collectors with J. Steyermark <strong>in</strong> 1977.<br />

Regional <strong>and</strong> Global Aff<strong>in</strong>ities<br />

To analyze the Wa<strong>in</strong>i flora, all species were<br />

assigned to one of eight generalized, nested<br />

classes of biogeographic aff<strong>in</strong>ity: Guiana Shield,<br />

Northern South America, Neotropical (with a<br />

dist<strong>in</strong>ction between those <strong>in</strong>cluded <strong>in</strong> or outside<br />

of the Antilles), Trans-Atlantic, Western<br />

Hemisphere, Pantropical, <strong>and</strong> Cosmopolitan.<br />

Those correspond to a subset of the classes<br />

Localities<br />

Paloma, Manoa, Sacupana, Santa Catal<strong>in</strong>a, Eleanor<br />

Creek<br />

CaZos of the Or<strong>in</strong>oco Delta<br />

CaZo Paijana, Isla de San Carlos, CaZo Pedernales<br />

Puerto Caropita<br />

Guayo, Isla Burojoida, Jotacuay, Teiua, Curiapo,<br />

Ibaruma, Los Piedras, Araguabisi, Puerto Baja,<br />

Koboima, Tobejuba, Wiuiqu<strong>in</strong>a<br />

CaZo Jobure, Río Gr<strong>and</strong>e del Or<strong>in</strong>oco, Río<br />

Cuyub<strong>in</strong>i, Río Acure, Río Ibaruma, Serrania<br />

Imataca, Río Guanamo<br />

San Victor, Río Amacura, Río Cuyub<strong>in</strong>i, Sierra<br />

Imataca, Cerro La Paloma, Río Acure, Río Gr<strong>and</strong>e,<br />

CaZo Atoiba, CaZo Jotajana, CaZo Joba-Suburu<br />

(CaZo Jota-Sabuca?).<br />

East of Río Gr<strong>and</strong>e near border of Bolívar, Cano<br />

Araguao, Cano Arature, CaZo Gu<strong>in</strong>iqu<strong>in</strong>a<br />

Río Gr<strong>and</strong>e o Toro, near Bolívar border<br />

Río Gr<strong>and</strong>e, near Bolívar border<br />

Río Gr<strong>and</strong>e o Toro, near Bolívar border<br />

La Ladera, CaZo Mánamo, Pedernales<br />

ESE of Los Castillos de Guayana, trail to the Rio<br />

San José<br />

Río Gr<strong>and</strong>e, CaZo Orocoima<br />

Antonio Diaz<br />

Cerro CaZo Acoima<br />

Mun. Tucupita Piacoa


Contributions to the Study of Biological Diversity Vol. 3<br />

employed by Kelloff <strong>and</strong> Funk (2004). The<br />

classifications are illustrated <strong>in</strong> the map <strong>in</strong><br />

Figure 2.3.<br />

The Guiana Shield distribution (1) <strong>in</strong>cludes<br />

species that are, fairly strictly, restricted to that<br />

geologic formation’s igneous <strong>and</strong> sedimentary<br />

bedrock <strong>and</strong> areas <strong>in</strong>fluenced by that area’s<br />

outwash. It <strong>in</strong>cludes southern Venezuela, most<br />

of the three Guianas, <strong>and</strong> parts of northern Brazil<br />

<strong>and</strong> scattered outliers <strong>in</strong> southeastern Colombia.<br />

The Northern South America distribution<br />

(2) <strong>in</strong>cludes species found <strong>in</strong> the Guiana Shield<br />

as well as the Northern Andes, the cont<strong>in</strong>ent’s<br />

Pacific coast south to the arid Peruvian coast,<br />

<strong>and</strong> much of the Amazon Bas<strong>in</strong> lowl<strong>and</strong>s to<br />

about 7 degrees south. The Andes reach much<br />

higher elevations than the Guiana Shield<br />

highl<strong>and</strong>s. Many of the habitats <strong>in</strong> this zone are<br />

wet to extremely wet.<br />

The Neotropical distribution (3) <strong>in</strong>cludes<br />

all of the Americas between approximately 23.5<br />

degrees north <strong>and</strong> 23.5 degrees south, with<br />

subclasses either <strong>in</strong>clud<strong>in</strong>g or exclud<strong>in</strong>g<br />

distribution <strong>in</strong> the Antilles (3a). Follow<strong>in</strong>g<br />

climate patterns, this unit is mapped to the south<br />

of the Tropic of Capricorn on the Atlantic coast<br />

of South America, <strong>and</strong> to the north of that<br />

latitude on the Pacific coast, which is <strong>in</strong>fluenced<br />

by strong, cool ocean currents from the south.<br />

The Trans-Atlantic distribution (4)<br />

accommodates species native to both the<br />

Neotropics <strong>and</strong> tropical Africa. Here this<br />

distribution is applied predom<strong>in</strong>antly to<br />

mangrove species, thus the mapp<strong>in</strong>g <strong>in</strong> Figure<br />

2.3 is adapted from the Atlantic-east Pacific<br />

distribution from mangroves by Toml<strong>in</strong>son<br />

(1986)<br />

The South American distribution (5) is<br />

essentially self-explanatory, <strong>and</strong> is <strong>in</strong>dicated on<br />

Figure 2.3 only by the l<strong>and</strong>mass of the cont<strong>in</strong>ent.<br />

The Western Hemisphere distribution (6)<br />

<strong>in</strong>cludes species adapted to a broad climate<br />

range. It <strong>in</strong>cludes species that extend <strong>in</strong>to the<br />

subtropics <strong>and</strong> temperate zones of North <strong>and</strong><br />

South America.<br />

The Pantropical distribution (7) covers<br />

tropical areas nearly worldwide, from 23.5<br />

degrees north to 23.5 degrees south.<br />

Cosmopolitan (8) species are those known<br />

from both tropical, sub-tropical, <strong>and</strong> <strong>in</strong> some<br />

cases temperate areas, nearly worldwide. Here<br />

39<br />

the Neotropical <strong>and</strong> Pantropical classifications<br />

both <strong>in</strong>clude species that might to some degree<br />

extend <strong>in</strong>to the Subtropics.<br />

RESULTS<br />

Quackal <strong>and</strong> Manicole Communities<br />

Forty-four species were shared between the<br />

126 Wa<strong>in</strong>i species recorded <strong>and</strong> the list of all<br />

species recorded by van Andel for the entire<br />

District. That 35% overlap <strong>in</strong>cludes 5 species<br />

that are either cultivated or escaped from<br />

cultivation, Cocos nucifera L., Luffa cyl<strong>in</strong>drica<br />

M.Roem., Pedilanthus tithymaloides (L.)Poit.,<br />

Gossypium barbadense L., <strong>and</strong> Jatropha<br />

gossypiifolia L..<br />

Only seven taxa were shared between the<br />

Wa<strong>in</strong>i Pen<strong>in</strong>sula (126 species) <strong>and</strong> van Andel’s<br />

Quackal <strong>and</strong> Manicole plots (138 species ). That<br />

is approximately a 5.5 % overlap relative to the<br />

species of the Wa<strong>in</strong>i Pen<strong>in</strong>sula. Of 240 total<br />

plant taxa for all sites, only 51 were shared <strong>in</strong><br />

any way among the seven vegetation types.<br />

Considered separately, collections result<strong>in</strong>g<br />

from this research on the Wa<strong>in</strong>i Pen<strong>in</strong>sula <strong>and</strong><br />

other sites <strong>in</strong> the Northwest added 99 species to<br />

the basel<strong>in</strong>e list formed from historic collections,<br />

while van Andel (2000a) collections added 308<br />

species to the basel<strong>in</strong>e list. Thirteen of those<br />

species were added by both efforts.<br />

The similarity matrix <strong>and</strong> tree matrix,<br />

displayed as a phenogram (similarity-based<br />

dendrogram), from the UPGMA cluster<strong>in</strong>g of<br />

the seven coastal pla<strong>in</strong> communities are shown<br />

<strong>in</strong> Figure 2.4. A cophenetic matrix was formed<br />

from the UPGMA tree matrix <strong>and</strong> run aga<strong>in</strong>st<br />

the orig<strong>in</strong>al matrix to test the goodness of fit of<br />

the cluster<strong>in</strong>g results to the orig<strong>in</strong>al data set,<br />

us<strong>in</strong>g a Mantel test for matrix correspondence<br />

(Rohlf 1997). That resulted <strong>in</strong> a high probability<br />

(p = 0.995) that a r<strong>and</strong>om Z-value would be less<br />

than the Z-value derived from the comparison<br />

of matrices, <strong>in</strong>dicat<strong>in</strong>g a close fit <strong>in</strong> the UPGMA<br />

cluster<strong>in</strong>g. Alternate tests of s<strong>in</strong>gle-l<strong>in</strong>k <strong>and</strong><br />

complete-l<strong>in</strong>k cluster<strong>in</strong>g methods yielded<br />

phenograms very similar to those from UPGMA<br />

cluster<strong>in</strong>g, <strong>in</strong>dicat<strong>in</strong>g that the clusters are quite<br />

dist<strong>in</strong>ct (Rohlf 1997).<br />

Coastal Mangrove <strong>and</strong> River<strong>in</strong>e Mangrove<br />

swamps clustered together. The two mangrove<br />

swamp types differed <strong>in</strong> part because different


40<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Figure 2.4. Similarity matrix <strong>and</strong> cluster diagram for five major Wa<strong>in</strong>i Pen<strong>in</strong>sula plant community types:<br />

Coastal Mangrove swamp, River<strong>in</strong>e Mangrove swamp, Mixed Freshwater swamp, Burned areas, <strong>and</strong> Beach,<br />

as well as the Quackal <strong>and</strong> Manicole communities <strong>in</strong> southeastern Northwest Region (van Andel 2000a).<br />

Based on species presence <strong>and</strong> absence.<br />

Rhizophora species were present, R. mangle <strong>in</strong><br />

the Coastal swamp <strong>and</strong> R. racemosa <strong>in</strong> the<br />

River<strong>in</strong>e swamp; the River<strong>in</strong>e Mangrove<br />

community also conta<strong>in</strong>ed a few epiphytic<br />

species while the coastal community conta<strong>in</strong>ed<br />

none. Several species were <strong>in</strong>cluded <strong>in</strong> Coastal<br />

but not River<strong>in</strong>e Mangroves that were not strict<br />

halophytes; these were possibly excluded from<br />

the River<strong>in</strong>e areas because they are not adapted<br />

to tidal fluctuations that are absent <strong>in</strong> the<br />

occluded Coastal swamps. Those mangrove<br />

vegetation types cluster together <strong>in</strong> part because<br />

of their low species richness (18 <strong>and</strong> 8 species<br />

respectively), although they shared only two<br />

species, Acrostichum aureum <strong>and</strong> Avicennia<br />

germ<strong>in</strong>ans. Those two species were also shared<br />

with the more diverse Mixed Freshwater swamp<br />

(34 species), with which the mangrove swamps<br />

clustered. The Mixed Freshwater swamp shared<br />

four species with River<strong>in</strong>e Mangrove <strong>and</strong> one<br />

with Coastal Mangrove.<br />

The Burned areas (39 species) clustered<br />

with the group<strong>in</strong>g of the above three<br />

communities, Coastal <strong>and</strong> River<strong>in</strong>e Mangroves<br />

<strong>and</strong> Mixed Freshwater. Five of the ten species<br />

shared with those communities were remnants<br />

from mangrove swamps formerly <strong>in</strong> those<br />

burned areas, <strong>and</strong> the other five were colonists,<br />

<strong>in</strong>clud<strong>in</strong>g Acrostichum ferns from mangrove<br />

habitats <strong>and</strong> v<strong>in</strong>es from Mixed Freshwater areas.<br />

Unaffected areas of these communities also<br />

surrounded the burned area <strong>and</strong> contributed seed<br />

for regeneration. The dist<strong>in</strong>ction of the burned<br />

areas from the previous three was due <strong>in</strong> part to<br />

the presence of a larger number of species, many<br />

of which are disturbance-adapted. Those <strong>in</strong>clude<br />

w<strong>in</strong>d-dispersed species, members of the<br />

Amaranthaceae, v<strong>in</strong>es, <strong>and</strong> float<strong>in</strong>g <strong>and</strong> aquatic<br />

species that benefitted from the <strong>in</strong>creases <strong>in</strong> open<br />

water. Among the w<strong>in</strong>d dispersed species that<br />

were not found <strong>in</strong> the unburned swamps were<br />

Typha dom<strong>in</strong>gensis Pers., several ferns, Mikania<br />

micrantha Kunth, Cydista aequ<strong>in</strong>octialis,<br />

Sarcostemma clausum(Jacq.)Schult., Entada<br />

polystachya (L.)DC, <strong>and</strong> Securidaca diversifolia<br />

(L.)S.F.Blake. Animal dispersed species <strong>in</strong> the


Contributions to the Study of Biological Diversity Vol. 3<br />

burned areas <strong>in</strong>cluded Coussapoa asperifolia<br />

Trécul, Aeschynomene sensitiva Sw., Heliconia<br />

psittacorum L.f., Hibiscus bifurcatus Cav., <strong>and</strong><br />

Solanum stramoniifolium Jacq. as well as several<br />

species of Amaranthaceae with t<strong>in</strong>y seeds that<br />

may be w<strong>in</strong>d blown at times.<br />

The Beach community (38 species) was<br />

primarily composed of species highly<br />

specialized for the coastal environment, many<br />

of which were not found <strong>in</strong> other vegetation<br />

zones. That community clustered with the four<br />

previous groups <strong>in</strong> part because of the presence<br />

of <strong>in</strong>dividuals of mangrove species <strong>and</strong><br />

mangrove associates that were common <strong>in</strong><br />

neighbor<strong>in</strong>g habitats, <strong>in</strong>clud<strong>in</strong>g Laguncularia<br />

racemosa, Avicennia germ<strong>in</strong>ans <strong>and</strong><br />

Conocarpus erectus. Those occurred<br />

occasionally at the top of narrow beach ridges<br />

<strong>and</strong> often on beach borders of coastal lagoons.<br />

Some v<strong>in</strong>es of the back beach were shared with<br />

the burned areas, <strong>in</strong>clud<strong>in</strong>g Sarcostemma<br />

clausum, Cissus verticillata, <strong>and</strong> Ipomoea<br />

tiliacea (Willd.)Choisy; Vigna luteola<br />

(Jacq.)Benth. was shared with Mixed<br />

Freshwater swamp.<br />

None of the Beach taxa were present <strong>in</strong><br />

either Quackal or Manicole communities. The<br />

similarity of those two communities with the<br />

other four Wa<strong>in</strong>i Pen<strong>in</strong>sula communities was<br />

based on only seven shared species. The Quackal<br />

community as surveyed by van Andel was more<br />

diverse (70 species) than any one of the Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula communities, probably reflect<strong>in</strong>g low<br />

soil sal<strong>in</strong>ity because of its distance from the<br />

ocean (approximately 12 kilometers at the<br />

Quackal plot). Van Andel considered the<br />

Quackal vegetation type to grade <strong>in</strong>to mangrove<br />

swamp; the four species that it shared with the<br />

Wa<strong>in</strong>i were Euterpe oleracea, Clusia palmicida,<br />

Cassipourea guianensis Aubl., <strong>and</strong><br />

Calyptranthes sp., all shared with the Mixed<br />

Freshwater swamp community, which may have<br />

contributed to its cluster<strong>in</strong>g more closely than<br />

the Manicole community with the Wa<strong>in</strong>i<br />

communities.<br />

The Manicole community was the richest<br />

of the seven (96 species) <strong>and</strong> also the most<br />

distant from coastal communities. The plot near<br />

Assakata village on the Baramanni River was<br />

approximately 17 kilometers from the Atlantic<br />

Ocean. This community had a significant<br />

41<br />

overlap with the Quackal site, shar<strong>in</strong>g 28<br />

species. Of those, 18 are trees; the other shared<br />

species were divided among shrubs, herbs, <strong>and</strong><br />

v<strong>in</strong>es. The six species that those two sites shared<br />

with the Wa<strong>in</strong>i Pen<strong>in</strong>sula communities were<br />

Monstera adansonii, Euterpe oleracea, Clusia<br />

palmicida, Cassipourea guianensis,<br />

Pterocarpus offic<strong>in</strong>alis, <strong>and</strong> Peperomia glabella<br />

(Sw.)A.Dietr.. Although the Manicole<br />

community shared more species with the Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula communities than the Quackal<br />

community shared with the Wa<strong>in</strong>i Pen<strong>in</strong>sula,<br />

those species were drawn from the Manicole<br />

community’s higher number of species, <strong>and</strong> the<br />

shared species were spread among several Wa<strong>in</strong>i<br />

communities. Four species were shared with the<br />

Mixed Freshwater community, the epiphyte<br />

Peperomia was shared with the River<strong>in</strong>e<br />

Mangrove area, <strong>and</strong> the v<strong>in</strong>e Monstera was<br />

shared with the Coastal Mangrove community.<br />

Calyptranthes sp. also occurred <strong>in</strong> Coastal<br />

Mangrove, Mixed Freshwater, <strong>and</strong> Quackal<br />

communities.<br />

Of the 240 species from all seven sites, 189<br />

(79%) were known from only one site; those<br />

were divided among 26 from Burned areas (66%<br />

of its species), 28 from the Beach community<br />

( 76% of its species), 8 from Coastal Mangrove<br />

swamp (42% of its species), 17 from Mixed<br />

Freshwater swamp (50% of its species), 4 from<br />

River<strong>in</strong>e Mangrove swamp (50% of its species),<br />

41 from Quackal swamp (59% of its species),<br />

<strong>and</strong> 65 from Manicole swamp (68% of its<br />

species).<br />

Northwest District<br />

A prelim<strong>in</strong>ary list of 1449 vascular plant<br />

species from the Northwest District is given <strong>in</strong><br />

Appendix 3. Those species were approximately<br />

22% of the known vascular flora of Guyana,<br />

currently st<strong>and</strong><strong>in</strong>g at 6,700 species (Boggan et<br />

al. 1997; Hollowell et al. 2001). Additionally,<br />

105 cultivated species, one alga <strong>and</strong> six mosses<br />

were <strong>in</strong>cluded on the list. Mosses <strong>and</strong> alga are<br />

poorly collected <strong>and</strong> analyzed <strong>in</strong> the Northwest<br />

District, as throughout the Guiana Shield, <strong>and</strong><br />

are <strong>in</strong>cluded with the hope of encourag<strong>in</strong>g future<br />

research. A previous collections-based<br />

compilation for the Northwest District listed 484<br />

species of vascular plants (BDG 2001).<br />

Collections made dur<strong>in</strong>g these studies on the


42<br />

4004<br />

54.10%<br />

713<br />

53.09%<br />

72<br />

61.54%<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Orchidaceae<br />

Rubiaceae<br />

Poaceae<br />

Fabaceae<br />

Melastomataceae<br />

Cyperaceae<br />

Caesalp<strong>in</strong>iaceae<br />

Mimosaceae<br />

Euphorbiaceae<br />

Asteraceae<br />

Myrtaceae<br />

Clusiaceae<br />

Apocynaceae<br />

Araceae<br />

Chrysobalanaceae<br />

Piperaceae<br />

Bromeliaceae<br />

Bignoniaceae<br />

Lauraceae<br />

Annonaceae<br />

603<br />

415<br />

316<br />

306<br />

279<br />

274<br />

179<br />

172<br />

167<br />

149<br />

144<br />

127<br />

117<br />

117<br />

115<br />

111<br />

110<br />

109<br />

104<br />

90<br />

8.15%<br />

5.61%<br />

4.27%<br />

4.13%<br />

3.77%<br />

3.70%<br />

2.42%<br />

2.32%<br />

2.26%<br />

2.01%<br />

1.95%<br />

1.72%<br />

1.58%<br />

1.58%<br />

1.55%<br />

1.50%<br />

1.49%<br />

1.47%<br />

1.41%<br />

1.22%<br />

x<br />

x<br />

Rubiaceae<br />

Fabaceae<br />

Orchidaceae<br />

Melastomataceae<br />

Poaceae<br />

Cyperaceae<br />

Mimosaceae<br />

Araceae<br />

Euphorbiaceae<br />

Asteraceae<br />

Apocynaceae<br />

Caesalp<strong>in</strong>iaceae<br />

Arecaceae<br />

Bignoniaceae<br />

Clusiaceae<br />

Chrysobalanaceae<br />

Malpighiaceae<br />

Piperaceae<br />

Annonaceae<br />

Lauraceae<br />

78<br />

62<br />

57<br />

51<br />

51<br />

40<br />

37<br />

33<br />

33<br />

31<br />

27<br />

26<br />

25<br />

25<br />

25<br />

24<br />

24<br />

24<br />

20<br />

20<br />

5.81%<br />

4.62%<br />

4.24%<br />

3.80%<br />

3.80%<br />

2.98%<br />

2.76%<br />

2.46%<br />

2.46%<br />

2.31%<br />

2.01%<br />

1.94%<br />

1.86%<br />

1.86%<br />

1.86%<br />

1.79%<br />

1.79%<br />

1.79%<br />

1.49%<br />

1.49%<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

Fabaceae<br />

Araceae<br />

Convolvulaceae<br />

Cyperaceae<br />

Amaranthaceae<br />

Arecaceae<br />

Asteraceae<br />

Malvaceae<br />

Orchidaceae<br />

Poaceae<br />

Apocynaceae<br />

Bromeliaceae<br />

Combretaceae<br />

Mimosaceae<br />

Moraceae<br />

Pteridaceae<br />

Rhizophoraceae<br />

Cactaceae<br />

Euphorbiaceae<br />

Myrtaceae<br />

6<br />

5<br />

5<br />

5<br />

4<br />

4<br />

4<br />

4<br />

4<br />

4<br />

3<br />

3<br />

3<br />

3<br />

3<br />

3<br />

3<br />

2<br />

2<br />

2<br />

5.13%<br />

4.27%<br />

4.27%<br />

4.27%<br />

3.42%<br />

3.42%<br />

3.42%<br />

3.42%<br />

3.42%<br />

3.42%<br />

2.56%<br />

2.56%<br />

2.56%<br />

2.56%<br />

2.56%<br />

2.56%<br />

2.56%<br />

1.71%<br />

1.71%<br />

1.71%<br />

x<br />

spp. Prop. Guy&Wa<strong>in</strong>i<br />

spp. Prop. NW&Guy<br />

spp. Prop. Wa<strong>in</strong>i&NW<br />

GUYANA NORTHWEST WAINI<br />

Table 2.3. Rank<strong>in</strong>gs of the 20 most species rich families for the Northwest, all Guyana, <strong>and</strong> the Wa<strong>in</strong>i Pen<strong>in</strong>sula. The n<strong>in</strong>e families shared by all are<br />

listed <strong>in</strong> bold face type, <strong>and</strong> those families shared at two <strong>in</strong>dicated <strong>in</strong> columns with an “x”.


Contributions to the Study of Biological Diversity Vol. 3<br />

Wa<strong>in</strong>i Pen<strong>in</strong>sula <strong>and</strong> dur<strong>in</strong>g <strong>in</strong>cidental field trips<br />

farther <strong>in</strong>l<strong>and</strong> <strong>in</strong> the Northwest were the only<br />

source for 90 species <strong>in</strong> the list. Of those, 53,<br />

approach<strong>in</strong>g half of the Wa<strong>in</strong>i flora, were known<br />

only from Wa<strong>in</strong>i Pen<strong>in</strong>sula collections, <strong>and</strong> those<br />

taxa are <strong>in</strong>dicated <strong>in</strong> the list <strong>in</strong> Appendix 3.<br />

To illustrate the relative composition of the<br />

regional flora at vary<strong>in</strong>g scales, Table 2.3 ranks<br />

the 20 most species-rich families for each of the<br />

three areas: the Northwest District, all Guyana,<br />

<strong>and</strong> the Wa<strong>in</strong>i Pen<strong>in</strong>sula. The overall highest<br />

rank<strong>in</strong>g family among all sites was Fabaceae<br />

(Papilionoid legumes), which ranked fourth <strong>in</strong><br />

all Guyana, second <strong>in</strong> the Northwest, <strong>and</strong> first<br />

<strong>in</strong> the Wa<strong>in</strong>i flora. N<strong>in</strong>e families were shared <strong>in</strong><br />

the top 20 families among all three areas:<br />

Fabaceae, Orchidaceae, Poaceae, Cyperaceae,<br />

Mimosaceae, Araceae, Euphorbiaceae,<br />

Asteraceae (Compositae) <strong>and</strong> Apocynaceae. Of<br />

the top 20 families, 18 were shared between the<br />

rank<strong>in</strong>gs of the Northwest District <strong>and</strong> all<br />

Guyana, while 11 of the top 20 families were<br />

shared between the Wa<strong>in</strong>i <strong>and</strong> all Guyana. The<br />

Arecaceae (Palmae), which ranked 14 th <strong>in</strong> the<br />

Northwest were 23 rd <strong>in</strong> the full Guyana rank<strong>in</strong>gs;<br />

the Malpighiaceae, which were ranked 19 th <strong>in</strong><br />

the Northwest were 21 st <strong>in</strong> the Guyana rank<strong>in</strong>gs.<br />

Table 2.4. <strong>Plant</strong> species collected on the Wa<strong>in</strong>i<br />

pen<strong>in</strong>sula not listed for Delta Amacuro. One variety<br />

is also listed. Ten of these are primarily coastal,<br />

<strong>in</strong>dicated by *.<br />

Amaranthaceae Alternanthera sessilis<br />

Arecaceae Nypa fruticans *<br />

Aristolochiaceae Aristolochia trilobata<br />

Caricaceae Carica papaya<br />

Combretaceae Conocarpus erectus *<br />

Combretaceae Term<strong>in</strong>alia catappa *<br />

Convolvulaceae Ipomoea violacea *<br />

Cuscutaceae Cuscuta umbellata<br />

Fabaceae-Caesal. Caesalp<strong>in</strong>ia bonduc *<br />

Fabaceae-Mimos. Entada polystachya<br />

Fabaceae-Papil. Sesbania sericea *<br />

Lygodiaceae Lygodium venustum<br />

Malvaceae Thespesia populnea *<br />

Myrtaceae Psidium guajava<br />

Orchidaceae Epidendrum ciliare<br />

Passifloraceae Passiflora foetida var. foetida<br />

Poaceae Paspalum distichum<br />

Poaceae Sporobolus virg<strong>in</strong>icus *<br />

Pteridaceae Acrostichum danaeifolium *<br />

Rubiaceae Mor<strong>in</strong>da citrifolia *<br />

43<br />

Delta Amacuro<br />

The Flora of the Venezuelan Guayana<br />

(Steyermark et al. 1995 - 2005) listed 1649<br />

species of pteridophytes <strong>and</strong> spermatophytes for<br />

the state of Delta Amacuro. Among those species<br />

193 (11.7%) were not listed for Guyana. Given<br />

the proximity <strong>and</strong> environmental similarities, a<br />

portion of those species might be expected to<br />

be found <strong>in</strong> the Guyana’s Northwest District<br />

with additional collect<strong>in</strong>g effort.<br />

Also, several species were collected on the<br />

Wa<strong>in</strong>i Pen<strong>in</strong>sula <strong>and</strong> <strong>in</strong> other parts of the<br />

Northwest District that were not listed for Delta<br />

Amacuro <strong>in</strong> the Flora of the Venezuelan<br />

Guayana. Table 2.4 lists 19 plant species <strong>and</strong><br />

one variety that were collected <strong>in</strong> the Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula vic<strong>in</strong>ity that were not recorded for<br />

Delta Amacuro. In addition, the alga<br />

Rhizoclonium africanum apparently had not<br />

been documented for Delta Amacuro, although<br />

it is almost surely present <strong>in</strong> the coastal<br />

Avicennia swamps.<br />

Appendix 4 lists plant species from the<br />

Northwest District that were not yet recorded<br />

from Delta Amacuro. Sources <strong>in</strong>clude records<br />

from this study’s ancillary trips beyond the<br />

Wa<strong>in</strong>i Pen<strong>in</strong>sula site to <strong>in</strong>terior localities near<br />

Mabaruma <strong>and</strong> Kwebana (see Figure 2.1), as<br />

well as from collection-based literature (van<br />

Andel 2000b) <strong>and</strong> from specimens at the US<br />

National Herbarium. That list <strong>in</strong>cludes 517<br />

species of vascular plants from the Northwest,<br />

without cultivated or naturalized species, more<br />

than 31% of the 1649 species currently known<br />

for that state.<br />

Regional <strong>and</strong> Global Aff<strong>in</strong>ities<br />

The strongest aff<strong>in</strong>ity of the Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula flora was with the Neotropical<br />

distribution category <strong>in</strong>clud<strong>in</strong>g the Antilles<br />

(zones 3 + 3a <strong>in</strong> Figure 2.3), which accounted<br />

for approximately 33% of the Wa<strong>in</strong>i species. The<br />

next strongest aff<strong>in</strong>ity was with the Pantropical<br />

distribution category (zone 7), <strong>in</strong>clud<strong>in</strong>g<br />

approximately 27% of the species. The<br />

Neotropical - African, or transatlantic,<br />

distribution (zone 4) comprised about 10% of<br />

the species, <strong>in</strong>clud<strong>in</strong>g all mangrove <strong>and</strong><br />

mangrove-associate taxa, be<strong>in</strong>g those <strong>in</strong> the<br />

genera Avicennia, Laguncularia, Rhizophora,<br />

<strong>and</strong> Conocarpus. Notably, only 1.6% of the


44<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Table 2.5. Floral aff<strong>in</strong>ities of Wa<strong>in</strong>i Pen<strong>in</strong>sula distribution categories, results, <strong>and</strong> comparison to the floral<br />

aff<strong>in</strong>ities <strong>in</strong> those categories for the Kaieteur Falls area (Kelloff <strong>and</strong> Funk 2004).<br />

Zone<br />

3a<br />

7<br />

4<br />

3<br />

2<br />

8<br />

5<br />

6<br />

1<br />

Distribution<br />

Neotropical (with Antilles)<br />

Pantropical<br />

Neotropical + Africa<br />

Neotropical (exclud<strong>in</strong>g Antilles)<br />

Northern South America<br />

Cosmopolitan<br />

South America<br />

Western Hemisphere<br />

Guiana Shield<br />

TOTAL<br />

Wa<strong>in</strong>i species were found to have a distribution<br />

considered as restricted to the Guiana Shield<br />

region (zone 1). The totals for each distribution<br />

category are given <strong>in</strong> Table 2.5, by their rank <strong>in</strong><br />

the Wa<strong>in</strong>i Pen<strong>in</strong>sula flora, along with the<br />

correspond<strong>in</strong>g proportion from Kelloff <strong>and</strong><br />

Funk’s (2004) analysis of Kaieteur National<br />

Park.<br />

DISCUSSION<br />

Wa<strong>in</strong>iSpecies<br />

42<br />

35<br />

13<br />

11<br />

8<br />

8<br />

5<br />

4<br />

2<br />

128<br />

Quackal <strong>and</strong> Manicole Communities<br />

The turnover of species, mov<strong>in</strong>g from the<br />

coastal communities <strong>in</strong>l<strong>and</strong> <strong>in</strong>to the Quackal <strong>and</strong><br />

Manicole communities, showed a high level of<br />

beta diversity, the change <strong>in</strong> species composition<br />

across <strong>in</strong>termediate distances. That illustrated<br />

the contribution of the coastal pla<strong>in</strong> flora to both<br />

species <strong>and</strong> l<strong>and</strong>scape level diversity of Guyana.<br />

In the case of the Wa<strong>in</strong>i Pen<strong>in</strong>sula, the species<br />

turnover is likely driven <strong>in</strong> part by changes <strong>in</strong><br />

oceanic <strong>in</strong>fluence, particularly sal<strong>in</strong>ity, as well<br />

as by the results of ocean dispersal along the<br />

coast <strong>and</strong> perhaps <strong>in</strong>creased precipitation <strong>in</strong>l<strong>and</strong><br />

from the ocean. S<strong>in</strong>ce a high proportion of<br />

species were found to be unique to each<br />

community, it might be expected that this trend<br />

cont<strong>in</strong>ues <strong>in</strong> the <strong>in</strong>l<strong>and</strong> direction. The<br />

implication of that for conservation is the<br />

liklihood that coastal pla<strong>in</strong> diversity would be<br />

difficult to adequately represent with<strong>in</strong> any<br />

small area. Rather, significantly broad transects<br />

of contiguous or <strong>in</strong>termittent sites along the<br />

Wa<strong>in</strong>iProportion<br />

32.8%<br />

27.3%<br />

10.2%<br />

8.6%<br />

6.3%<br />

6.3%<br />

3.9%<br />

3.1%<br />

1.6%<br />

100%<br />

KaieteurProportion<br />

14.8%<br />

1.8%<br />

1.4%<br />

11.6%<br />

26.1%<br />

0.4%<br />

0.2%<br />

0.4%<br />

17.2%<br />

73.9%<br />

gradient from ocean to highl<strong>and</strong>s might be more<br />

effective as reserves.<br />

The Manicole site shared more species, <strong>and</strong><br />

a slightly higher proportion of its species, with<br />

the Wa<strong>in</strong>i flora than the Quackal site that<br />

actually clustered closer to the Wa<strong>in</strong>i<br />

communities. That illustrated how differences<br />

<strong>in</strong> species richness of the sites might play as<br />

significant a role <strong>in</strong> the outcome of the cluster<strong>in</strong>g<br />

method as the number of shared species.<br />

The Mixed Freshwater swamp on the Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula, some parts of which were dom<strong>in</strong>ated<br />

by Euterpe (Manicole) palms prior to the fires<br />

of 1998, may have held more species <strong>in</strong> common<br />

with van Andel’s Manicole or Quackal sites<br />

before that disturbance. The Mixed Freshwater<br />

swamp was a dist<strong>in</strong>ct entity, conta<strong>in</strong><strong>in</strong>g elements<br />

characteristic of both types of mangrove<br />

communities, <strong>and</strong> it also possessed many unique<br />

species. Those were apparently plant species<br />

that could adequately tolerate the low to<br />

moderate sal<strong>in</strong>ity of the <strong>in</strong>terior, although not<br />

higher sal<strong>in</strong>ities of the mangrove swamps. The<br />

Beach community was dist<strong>in</strong>ct from the other<br />

Wa<strong>in</strong>i communities because of the presence of<br />

coastal specialist species. The beach clustered<br />

with those communities <strong>in</strong> part because they<br />

shared species, <strong>and</strong> because of the lack of<br />

overlap with species of the more <strong>in</strong>l<strong>and</strong><br />

Manicole <strong>and</strong> Quackal communities. In the<br />

Burned areas, the <strong>in</strong>creased species richness will<br />

probably be a short-term phenomenon. Several<br />

species that were present before the fires<br />

persisted or were quickly reestablished, while


Contributions to the Study of Biological Diversity Vol. 3<br />

only a few of the most sensitive species were<br />

elim<strong>in</strong>ated. The dom<strong>in</strong>ance of most of the<br />

disturbance-adapted species will likely be<br />

temporary, while others, such as Typha, may<br />

persist for long periods.<br />

Northwest District<br />

The family rank<strong>in</strong>gs illustrate moderate<br />

consistency at higher taxonomic levels between<br />

the countrywide flora <strong>and</strong> those of the Northwest<br />

District <strong>and</strong> the Wa<strong>in</strong>i Pen<strong>in</strong>sula. Of families<br />

listed only <strong>in</strong> the Wa<strong>in</strong>i top rank<strong>in</strong>g, most have<br />

a high component of wetl<strong>and</strong>-adapted species,<br />

such as Malvaceae, Combretaceae, Moraceae,<br />

Rhizophoraceae, Arecaceae. Also represented<br />

for the Wa<strong>in</strong>i were disturbance adapted families<br />

such as Amaranthaceae, <strong>and</strong> Pteridaceae, <strong>and</strong> a<br />

family dom<strong>in</strong>ated by v<strong>in</strong>es, the Convolvulaceae.<br />

The number of species records contributed<br />

to the list for the Northwest District by recent<br />

collection efforts illustrates the <strong>in</strong>complete state<br />

of <strong>in</strong>vestigations <strong>in</strong>to the region’s flora. Limited<br />

f<strong>in</strong>ancial <strong>and</strong> professional resources require that<br />

collect<strong>in</strong>g efforts be aimed at the localities most<br />

promis<strong>in</strong>g for shedd<strong>in</strong>g light on biodiversity <strong>and</strong><br />

conservation questions. Associated with this,<br />

there is a great need to make additional historical<br />

collection data available for such analyses.<br />

Prepar<strong>in</strong>g additional museum specimen data is<br />

labor <strong>in</strong>tensive but is cost effective <strong>in</strong><br />

comparison to perform<strong>in</strong>g new fieldwork, <strong>and</strong><br />

will provide <strong>in</strong>creas<strong>in</strong>gly useful data to answer<br />

biodiversity questions <strong>and</strong> guide future research.<br />

As biodiversity research efforts progress <strong>in</strong><br />

Guyana, compilation of species distributions<br />

will likely become <strong>in</strong>creas<strong>in</strong>gly focused on the<br />

f<strong>in</strong>er levels of detail, such as by political<br />

divisions with<strong>in</strong> countries. The tendency to use<br />

political divisions should be tempered by the<br />

grow<strong>in</strong>g ability to analyze a grow<strong>in</strong>g body of<br />

georeferenced specimen data us<strong>in</strong>g climatic,<br />

geological, elevational, <strong>and</strong> distance data with<br />

geographic <strong>in</strong>formation systems, allow<strong>in</strong>g<br />

questions to be more readily framed <strong>and</strong><br />

answered <strong>in</strong> terms of environmental <strong>and</strong><br />

ecological units.<br />

Delta Amacuro<br />

It is still not certa<strong>in</strong> how much overlap<br />

should be expected for plant species of the Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula <strong>and</strong> <strong>in</strong> Delta Amacuro. Collect<strong>in</strong>g<br />

45<br />

expeditions <strong>in</strong> almost any under-collected<br />

locality of the Guiana Shield region tend to yield<br />

new distributional records. Few botanical<br />

collections <strong>in</strong> Delta Amacuro have taken place<br />

along the coast near to Guyana; the closest<br />

known coastal collection locality is Punta<br />

Barima, more than 70 kilometers northwest<br />

along the Atlantic coast from the Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula. Although both areas have similar<br />

coastal <strong>and</strong> estuar<strong>in</strong>e environments, it was found<br />

that over 30% of the plants listed for the<br />

Northwest District are not known for Delta<br />

Amacuro. This difference can be compared to<br />

the same statistic for nearby areas. Twenty-one<br />

percent of Sur<strong>in</strong>am’s known vascular plant<br />

species are not recorded for French Guiana, <strong>and</strong><br />

18% are not recorded for Guyana. However, <strong>in</strong><br />

comparison, for the diverse, mounta<strong>in</strong>ous<br />

Venezuelan segment of the Guiana Shield, 42%<br />

of the plant species listed for Bolívar state are<br />

currently not listed for Amazonas state<br />

(Steyermark et al. 1995 - 2005). Latitud<strong>in</strong>al <strong>and</strong><br />

edaphic differences between the Northwest <strong>and</strong><br />

Delta Amacuro, particularly the extensive<br />

deltaic environment found only <strong>in</strong> Delta<br />

Amacuro, <strong>in</strong> addition to the high overall level<br />

of endemicity <strong>in</strong> the Guiana Shield region,<br />

suggest that a sizable portion of the plant species<br />

listed <strong>in</strong> only one region will cont<strong>in</strong>ue to be<br />

unnknown <strong>in</strong> the other. Still, only the assembly<br />

<strong>and</strong> analysis of additional collections can clarify<br />

the relationship between the two areas.<br />

These comparisons highlight the<br />

<strong>in</strong>complete state of botanical knowledge of these<br />

regions, <strong>and</strong> should serve as <strong>in</strong>centives <strong>and</strong> goals<br />

for plant specimen collect<strong>in</strong>g efforts. They will<br />

also hopefully serve as encouragement for<br />

further analyses of the spatial patterns of the<br />

turnover of species <strong>in</strong> the tropics.<br />

Regional <strong>and</strong> Global Aff<strong>in</strong>ities<br />

The differences between aff<strong>in</strong>ities of the<br />

Wa<strong>in</strong>i Pen<strong>in</strong>sula flora <strong>and</strong> those of the species<br />

of the <strong>in</strong>terior Kaieteur location illustrated some<br />

<strong>in</strong>terest<strong>in</strong>g po<strong>in</strong>ts. The coastal Wa<strong>in</strong>i<br />

communities <strong>in</strong>cluded many species with broad<br />

ranges, with the four top categories be<strong>in</strong>g<br />

Neotropical <strong>and</strong> Pantropical distributions <strong>and</strong><br />

the sixth ranked category be<strong>in</strong>g Cosmopolitan,<br />

which <strong>in</strong>cluded a variety of herbs. The fifthranked<br />

category, Northern South America, <strong>and</strong>


46<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

the last category, Guiana Shield, represented the<br />

two most species-rich groups for the Kaieteur<br />

area. The Neotropical distribution ranked fairly<br />

high at both sites, with the distribution <strong>in</strong>clud<strong>in</strong>g<br />

the Antilles be<strong>in</strong>g the highest ranked Wa<strong>in</strong>i<br />

group <strong>and</strong> the third ranked group of Kaieteur;<br />

the non-Antillean Neotropical species ranked<br />

fourth at both sites. The Neotropical aff<strong>in</strong>ities<br />

of the Wa<strong>in</strong>i Pen<strong>in</strong>sula flora were strongly<br />

<strong>in</strong>fluenced by species with isl<strong>and</strong> distributions,<br />

which reflects its close association with the<br />

Atlantic Ocean.<br />

The m<strong>in</strong>imal presence with<strong>in</strong> the Wa<strong>in</strong>i<br />

flora of species endemic to the Guiana Shield<br />

supports the idea that the Wa<strong>in</strong>i Pen<strong>in</strong>sula<br />

should be treated as floristically dist<strong>in</strong>ct from<br />

the Shield, reflect<strong>in</strong>g the effect of the Amazonderived<br />

sediments that have buried the Shield’s<br />

crystall<strong>in</strong>e bedrock, often by hundreds of<br />

meters. The Atlantic Ocean is a dispersal vector<br />

that supplies propagules of species well adapted<br />

for the sal<strong>in</strong>e soils, <strong>and</strong> has an overwhelm<strong>in</strong>g<br />

<strong>in</strong>fluence on the flora. The Wa<strong>in</strong>i is actually<br />

fairly near to the geologic Shield, be<strong>in</strong>g less than<br />

15 kilometers from the hills near the town of<br />

Mabaruma.<br />

The lowl<strong>and</strong>s of the Wa<strong>in</strong>i Pen<strong>in</strong>sula, the<br />

Guyana coastal pla<strong>in</strong>, <strong>and</strong> the Or<strong>in</strong>oco Delta<br />

section of Delta Amacuro should, <strong>in</strong> the strict<br />

sense, be excluded from def<strong>in</strong>itions of the<br />

Guiana Shield <strong>in</strong> accounts of its flora <strong>and</strong> fauna<br />

as well as for conservation purposes. That does<br />

not reduce the importance of coastal habitats<br />

such as found on the Wa<strong>in</strong>i Pen<strong>in</strong>sula. Rather,<br />

it should be a confirmation of that coastal area’s<br />

dist<strong>in</strong>ctness on the regional level. Not only are<br />

those plant communities limited to a relatively<br />

narrow strip of coastal pla<strong>in</strong>, bounded by ocean<br />

<strong>and</strong> the Guiana Shield, but their community<br />

structures <strong>and</strong> sett<strong>in</strong>gs are different from the<br />

Antillean coastal plant communities because of<br />

their geomorphic position on the Amazon<br />

River’s coastal delta, which is unique<br />

worldwide.<br />

CONCLUSION<br />

In the larger scope of Guyana’s<br />

biodiversity, the Wa<strong>in</strong>i flora is not rich <strong>in</strong> rare<br />

endemic species from spectacular<br />

environments, such as are found on the isolated<br />

tepuis of the Guiana Shield. However, the<br />

coastal zone is a unique <strong>and</strong> limited unit of the<br />

l<strong>and</strong>scapes of Guyana <strong>and</strong> northern South<br />

America. The pen<strong>in</strong>sula is threatened <strong>in</strong> more<br />

ways than less accessible <strong>in</strong>terior ecosystems,<br />

both from local sources from accidental fires,<br />

on the national level by unplanned settlement<br />

or unsusta<strong>in</strong>able exploitation, <strong>and</strong> at the global<br />

level by climate changes that might <strong>in</strong>crease the<br />

risk of fires <strong>and</strong> threaten this low-ly<strong>in</strong>g pen<strong>in</strong>sula<br />

through sea-level rise.<br />

Comparisons with other ecosystems <strong>in</strong><br />

Guyana help to illustrate the high levels of beta<br />

diversity across the l<strong>and</strong>scape <strong>in</strong> the low<br />

elevations of the coastal pla<strong>in</strong> <strong>and</strong> highlight the<br />

need to gather more <strong>in</strong>formation from all<br />

ecosystem types <strong>in</strong> Guyana <strong>and</strong> neighbor<strong>in</strong>g<br />

Venezuela. The number of species records added<br />

for the Northwest by collections on the Wa<strong>in</strong>i<br />

alone highlights the <strong>in</strong>completeness of<br />

knowledge of the flora of that region, <strong>and</strong> the<br />

number of species not recorded for Delta<br />

Amacuro shows a similar need for that<br />

Venezuelan state. As the level of botanical<br />

knowledge for a country grows, research moves<br />

towards compil<strong>in</strong>g species distributions at<br />

regional levels, <strong>and</strong> analyses of species diversity<br />

<strong>and</strong> plann<strong>in</strong>g of collect<strong>in</strong>g activities will become<br />

<strong>in</strong>creas<strong>in</strong>gly focused on gaps <strong>in</strong> regional<br />

knowledge.<br />

In the future, additional collections from<br />

many herbaria should be entered <strong>in</strong>to databases<br />

<strong>and</strong> st<strong>and</strong>ardized to improve the completeness<br />

of checklists <strong>and</strong> biodiversity analyses. With the<br />

tools of georeferenced data sets <strong>and</strong> GIS<br />

software, analyses may eventually be possible<br />

that utilize collection data <strong>in</strong> ways that l<strong>in</strong>k to<br />

<strong>and</strong> compliment both qualitative, spatially broad<br />

regional checklists <strong>and</strong> highly quantitative,<br />

spatially limited ecological plot studies.<br />

Through GIS analyses of adequate, high quality<br />

collections data, expeditions can be planned that<br />

effectively target under-sampled habitats <strong>in</strong><br />

important areas (Funk et al. 2005).<br />

Results here suggest<strong>in</strong>g that the Wa<strong>in</strong>i flora<br />

is essentially separate from the Guiana Shield<br />

flora <strong>and</strong> bears more aff<strong>in</strong>ity to the Caribbean<br />

region are not surpris<strong>in</strong>g, but lends support to<br />

the idea that biodiversity studies <strong>and</strong><br />

conservation efforts should be pursued with an


Contributions to the Study of Biological Diversity Vol. 3<br />

awareness of that dist<strong>in</strong>ction. The coastal pla<strong>in</strong><br />

should be excluded from the Guiana Shield<br />

when considered <strong>in</strong> any strict sense. In<br />

consideration of that, the coastal pla<strong>in</strong> rema<strong>in</strong>s<br />

a unique ecosystem <strong>in</strong> Guyana that has suffered<br />

a high rate of disturbance <strong>and</strong> merits its share<br />

of study <strong>and</strong> protection.<br />

This analysis of the plants of the Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula should help to stimulate <strong>in</strong>terest <strong>in</strong><br />

the Wa<strong>in</strong>i Pen<strong>in</strong>sula’s <strong>in</strong>clusion <strong>in</strong> Guyana’s<br />

fledgl<strong>in</strong>g Protected Areas System (EPA Guyana<br />

2004; Kelloff 2003). Protected areas always<br />

benefit from the availability of plentiful<br />

<strong>in</strong>formation on the diversity of habitats <strong>and</strong><br />

makeup of communities. Basel<strong>in</strong>e <strong>in</strong>formation<br />

may be built upon <strong>and</strong> used for comparison with<br />

future surveys to <strong>in</strong>crease underst<strong>and</strong><strong>in</strong>g <strong>and</strong><br />

benefit management <strong>in</strong> the face of ris<strong>in</strong>g<br />

population <strong>and</strong> climate change impacts.<br />

Documentation of local flora <strong>and</strong> fauna also<br />

47<br />

<strong>in</strong>creases the value of protected areas for<br />

educational purposes. On the Wa<strong>in</strong>i Pen<strong>in</strong>sula,<br />

<strong>in</strong> large part because of sea turtle conservation<br />

activities, there has been a steady flow of local<br />

Amer<strong>in</strong>dian students visit<strong>in</strong>g Almond Beach.<br />

Students have been encouraged to take an<br />

<strong>in</strong>terest <strong>in</strong> conservation issues <strong>and</strong> benefit from<br />

all additional <strong>in</strong>formation on the area.<br />

While botanical diversity of the Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula is modest <strong>in</strong> comparison to several<br />

other parts of Guyana, the area adds significantly<br />

to the diversity of l<strong>and</strong>scapes found <strong>in</strong> the<br />

country. Similar coastal areas were long ago<br />

permanently converted to farm <strong>and</strong> urban l<strong>and</strong>.<br />

The l<strong>and</strong>scape also has substantial cultural<br />

significance, as the large majority of the<br />

population of Guyana has always lived <strong>in</strong> the<br />

country’s coastal zone, <strong>and</strong> the Wa<strong>in</strong>i Pen<strong>in</strong>sula<br />

is a prime example of that ecosystem type.


48<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Doekie (Jackie) Arjoon <strong>and</strong> Chris Ch<strong>in</strong> of the<br />

University of Guyana, <strong>in</strong> unburned Avicennia<br />

mangrove swamp near Wa<strong>in</strong>i Po<strong>in</strong>t, dur<strong>in</strong>g<br />

Whittaker plot establishment <strong>in</strong> November<br />

1998.<br />

Keith David <strong>and</strong> Karen Redden on the prop roots<br />

of a Rhizophora mangle tree near the edge of<br />

the Kamwatta burn. A Bromelia plumieri plant<br />

(collection THH 413) is visible beh<strong>in</strong>d them.<br />

Keith David of the University of Guyana, <strong>in</strong> the<br />

unburned Avicennia mangrove swamps near<br />

Wa<strong>in</strong>i Po<strong>in</strong>t, <strong>in</strong> April 2001. Keith also collected<br />

Lepidoptera specimens dur<strong>in</strong>g this trip to the<br />

Wa<strong>in</strong>i Pen<strong>in</strong>sula.<br />

Karen Redden with the fruit of Entada<br />

polystachya (Fabaceae, collection THH 423)<br />

found along the central, v<strong>in</strong>e covered portion<br />

of transect “C”, <strong>in</strong> early 2001.


Contributions to the Study of Biological Diversity Vol. 3<br />

CHAPTER 3.<br />

THE MANGROVE PALM NYPA FRUTICANS WURMB.:<br />

A WIDESPREAD EXOTIC SPECIES<br />

IN NORTHWESTERN GUYANA<br />

INTRODUCTION<br />

Among the plant species present on the<br />

Wa<strong>in</strong>i Pen<strong>in</strong>sula, Nypa fruticans, the Asian<br />

mangrove palm is of particular <strong>in</strong>terest. One of<br />

the most press<strong>in</strong>g current issues <strong>in</strong><br />

environmental conservation is detection,<br />

documentation, <strong>and</strong> management of <strong>in</strong>vasive<br />

exotic species. That concern is exemplified by<br />

the widespread presence of Nypa <strong>in</strong> the<br />

Northwest District of Guyana. The grow<strong>in</strong>g<br />

appreciation of the ecological, social, <strong>and</strong><br />

economic benefits of mangrove ecosystems has<br />

focused attention on potential threats, <strong>in</strong> terms<br />

of both the scientific <strong>and</strong> environmental policy.<br />

The goals of this chapter is to more fully<br />

document the presence of Nypa <strong>in</strong> South<br />

America, review <strong>in</strong>formation that might be<br />

relevant to underst<strong>and</strong><strong>in</strong>g its arrival <strong>in</strong> the<br />

Northwest District of Guyana, <strong>and</strong> exam<strong>in</strong>e its<br />

possible sources <strong>and</strong> potential for spread with<strong>in</strong><br />

the region, as a basis for future research <strong>and</strong><br />

appropriate management of the region’s<br />

River<strong>in</strong>e Mangroves.<br />

NYPA HISTORY AND RANGE<br />

Nypa fruticans Wurmb. is the only species<br />

<strong>in</strong> the monotypic genus Nypa Steck. It is native<br />

to the Indo-West Pacific region, thriv<strong>in</strong>g <strong>in</strong> high<br />

sediment estuaries from the Philipp<strong>in</strong>es to the<br />

Malay Pen<strong>in</strong>sula, the Ganges Delta, Sri Lanka,<br />

<strong>and</strong> Northern Australia (Toml<strong>in</strong>son 1986).<br />

Nypa’s trunk comb<strong>in</strong>es dichotomous branch<strong>in</strong>g<br />

<strong>and</strong> rhizomatous habit, <strong>and</strong> grows beneath mud,<br />

features unique among both mangroves <strong>and</strong><br />

palms (Toml<strong>in</strong>son 1973, 1986; Uhl &<br />

Dransfield 1987). It prefers habitats with<br />

moderate sal<strong>in</strong>ities <strong>and</strong> low wave energy. Those<br />

characteristics allow Nypa to form dense,<br />

monospecific patches <strong>in</strong> the <strong>in</strong>tertidal zone<br />

along tropical estuaries.<br />

49<br />

Nypa is an ancient genus. Through analyses<br />

of fossil fruit <strong>and</strong> pollen evidence it has been<br />

documented as one of the earliest known<br />

mangrove genera, occurr<strong>in</strong>g <strong>in</strong> the Late<br />

Cretaceous period (about 70 mya) (Duke et al.<br />

1997; Ellison et al. 1999; Gee 1989), <strong>and</strong> pollen<br />

represent<strong>in</strong>g Nypa is known from northern South<br />

America at that time (Graham 1995). Nypa was<br />

the dom<strong>in</strong>ant mangrove <strong>in</strong> the Neotropics,<br />

<strong>in</strong>clud<strong>in</strong>g the western Venezuelan coast, <strong>in</strong> the<br />

Middle Eocene period (45 mya) (Rull 1998,<br />

2001) <strong>and</strong> was present <strong>in</strong> South America from<br />

the Maastrichtian stage of the late Cretaceous<br />

through the Eocene period (65-34 mya) (Gee<br />

2001). It later disappeared from the Neotropics<br />

sometime after the Late Eocene (40 mya) (Gee<br />

2001; Graham 1995; Tralau 1964), <strong>and</strong> has been<br />

restricted to Southeastern Asia s<strong>in</strong>ce the<br />

Miocene epoch (20 mya) (Ellison et al. 1999).<br />

The ancient distributions of Nypa have been<br />

used as an illustration of the pr<strong>in</strong>ciple of<br />

cont<strong>in</strong>ental drift (Raven & Axelrod 1975), <strong>and</strong><br />

Nypa pollen is one of the earliest identifiable<br />

examples of a likely extant angiosperm species<br />

(Toml<strong>in</strong>son 1986).<br />

Throughout its modern natural range <strong>in</strong> Asia<br />

Nypa is heavily utilized. Descriptions of the<br />

species <strong>and</strong> discussions of its utility have been<br />

published for nearly a century (Conrado & Ayala<br />

1906; Fong 1992; Halos 1981; Hamilton &<br />

Murphy 1988; Miah et al. 2003; Päivöke et al.<br />

1984). It is particularly valued for its leaves<br />

which are used as thatch<strong>in</strong>g material (FAO 1994;<br />

Miah et al. 2003) <strong>and</strong> is also used for production<br />

of alcohol <strong>and</strong> v<strong>in</strong>egar derived from sap<br />

collected from the cut peduncle (Melana 1980;<br />

Miah et al. 2003; Päivöke et al. 1984). The<br />

hardened endosperm of Nypa has been used as<br />

a “vegetable ivory” similar to that of the Tagua<br />

Palm, Phytelephas Ruiz & Pav., of Central<br />

America <strong>and</strong> western South America, which <strong>in</strong><br />

the past has been considered possibly Nypa’s<br />

closest relative with<strong>in</strong> the Arecaceae. However


50<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

that relationship has been refuted by recent<br />

molecular studies that place Nypa as a basal<br />

group sister to all other palms (Lewis & Doyle<br />

2001) or basal if exclud<strong>in</strong>g the subfamily<br />

Calamoideae (Asmussen & Chase 2001), which<br />

<strong>in</strong>cludes the Moriche or Ité Palm Mauritia, a<br />

dist<strong>in</strong>ctive feature of the vegetation of the<br />

Venezuelan Llanos <strong>and</strong> the coastal pla<strong>in</strong> swamps<br />

of Guyana.<br />

NYPA FRUTICANS OUTSIDE<br />

OF ITS MODERN NATIVE RANGE<br />

Nypa fruticans has become a widespread<br />

exotic species <strong>in</strong> some estuaries of Western<br />

Africa, where it was <strong>in</strong>troduced <strong>in</strong> the early 20 th<br />

century, particularly <strong>in</strong> the Niger Delta<br />

(Sunderl<strong>and</strong> & Morak<strong>in</strong>yo 2002; Ukpong 1995).<br />

Duke (1991) first documented Nypa <strong>in</strong> the<br />

modern Neotropics from a small population at<br />

the mouth of Panama’s Rio Majugual, <strong>in</strong> the<br />

Figure 3.1. Map of northwestern Guyana, show<strong>in</strong>g<br />

the known range of Nypa, from personal observations<br />

dur<strong>in</strong>g river travel. The Guiana current flows <strong>in</strong> the<br />

direction of the Or<strong>in</strong>oco Delta <strong>and</strong> Tr<strong>in</strong>idad.<br />

vic<strong>in</strong>ity of the Caribbean seaport Colón, near<br />

the northern, Caribbean end of the Panama<br />

Canal. More recently, viable Nypa fruits have<br />

been reported from beaches of Tr<strong>in</strong>idad by<br />

Bacon (2001), who successfully germ<strong>in</strong>ated<br />

some of these str<strong>and</strong>ed fruits <strong>in</strong> the laboratory.<br />

An <strong>in</strong>itial account of Nypa populations along<br />

the rivers of the Northwest District of Guyana<br />

was given by Pritchard (1993), whose published<br />

segment on Nypa went largely unnoted with<strong>in</strong><br />

his general review of palms <strong>in</strong> Guyana. That<br />

knowledge of Nypa’s presence <strong>in</strong> Guyana has<br />

not been applied to subsequent discussions of<br />

Nypa <strong>in</strong> the Neotropics. In light of the <strong>in</strong>creas<strong>in</strong>g<br />

attention to the presence of Nypa outside of its<br />

native range <strong>and</strong> of its environmental<br />

implications, there is a need for further<br />

description <strong>and</strong> documentation of the<br />

populations established <strong>in</strong> Guyana.<br />

Nypa’s presence <strong>in</strong> Guyana also has bear<strong>in</strong>g<br />

on recent speculation about the orig<strong>in</strong> of Nypa<br />

propagules found str<strong>and</strong>ed on beaches <strong>in</strong><br />

Tr<strong>in</strong>idad (Bacon 2001).<br />

From 1997 to 2001, dur<strong>in</strong>g <strong>in</strong>vestigations<br />

of coastal Avicennia germ<strong>in</strong>ans swamps <strong>in</strong><br />

Northwestern Guyana, Nypa palms were<br />

observed along the banks of the Wa<strong>in</strong>i River as<br />

far as 42 kilometers upstream from the river’s<br />

mouth. These colonies are thickest over most<br />

of the length of the Mora Passage, a connector<br />

between the Wa<strong>in</strong>i <strong>and</strong> the Barima Rivers. Nypa<br />

also grows along the Barima River from the<br />

Mora Passage to the Aruka River, <strong>and</strong> on the<br />

Aruka River as far upstream as the district<br />

adm<strong>in</strong>istrative seat, Mabaruma. It is very likely<br />

that Nypa is present <strong>in</strong> Venezuela downstream<br />

along the Barima River as it flows towards the<br />

southern Or<strong>in</strong>oco Delta. Smaller colonies of<br />

Nypa, mentioned by Pritchard (1993), still exist<br />

on the Pomeroon River upstream nearly to the<br />

town of Charity. The currently observed range<br />

of Nypa <strong>in</strong> Guyana is shown <strong>in</strong> Figure 3.1.<br />

Even the densest areas of Nypa along the<br />

Mora Passage (Figure 3.2) are mixed with the<br />

river<strong>in</strong>e red mangrove Rhizophora racemosa G.<br />

Figure 3.2. Nypa grow<strong>in</strong>g along the banks of the Mora<br />

Passage, <strong>in</strong>terspersed with the prop-rooted river<strong>in</strong>e<br />

red mangrove Rhizophora racemosa.


Contributions to the Study of Biological Diversity Vol. 3<br />

Mey., although Nypa sometimes dom<strong>in</strong>ates the<br />

river’s fr<strong>in</strong>ge. Nypa is often scattered <strong>in</strong> the<br />

understory of the <strong>in</strong>tertidal Rhizophora<br />

racemosa swamp. Nypa <strong>in</strong>fructescences up to<br />

25 cm <strong>in</strong> diameter, composed of approximately<br />

Figure 3.3. A Nypa <strong>in</strong>fructescence collected as part<br />

of Hollowell et al. #213, from along the banks of the<br />

Mora Passage.<br />

70 fruits (Figure 3.3), are common <strong>in</strong> these<br />

populations. When mature, the spherical heads<br />

break up, <strong>and</strong> the viviparous fruits disperse with<br />

the currents. As part of recent fieldwork <strong>in</strong> the<br />

region a voucher collection of Nypa fruticans<br />

Figure 3.4. Label <strong>in</strong>formation for the voucher<br />

collection of Nypa fruticans <strong>in</strong> the Northwest District<br />

of Guyana, as distributed with specimens.<br />

was made along the Mora Passage (Figure 3.4).<br />

Along the ocean beaches of the Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula, germ<strong>in</strong>ated propagules are<br />

occasionally found str<strong>and</strong>ed (Figure 3.5),<br />

similarly to those documented recently <strong>in</strong><br />

Tr<strong>in</strong>idad by Bacon (2001). Established Nypa<br />

plants have never been observed dur<strong>in</strong>g many<br />

walks <strong>and</strong> boat trips along this part of Guyana’s<br />

51<br />

Atlantic coast. The entire coast of the Guianas<br />

is bordered by extensive mudflats, derived<br />

primarily from Amazon River sediments<br />

(Br<strong>in</strong>kman & Pons 1968; Gibbs & Barron 1993).<br />

This coastal habitat is apparently <strong>in</strong>hospitable<br />

to Nypa, possibly due to wave energy <strong>and</strong> the<br />

shift<strong>in</strong>g nature of the mudflats. Neither has Nypa<br />

been seen <strong>in</strong> the Avicennia dom<strong>in</strong>ated mangrove<br />

swamps immediately beh<strong>in</strong>d the low coastal<br />

beach ridges along the Atlantic coast, <strong>and</strong> it is<br />

uncerta<strong>in</strong> whether that habitat would be<br />

amenable to Nypa.<br />

DISPERSAL OF NYPA TO<br />

TRINIDAD<br />

Bacon (2001) suggested the possibility that<br />

Nypa fruticans propagules found str<strong>and</strong>ed on<br />

beaches <strong>in</strong> Tr<strong>in</strong>idad orig<strong>in</strong>ated from known<br />

populations <strong>in</strong> West Africa <strong>and</strong> were dispersed<br />

by prevail<strong>in</strong>g currents across the Atlantic ocean<br />

<strong>and</strong> north along the eastern coast of South<br />

America. In one day, along a 500 meter stretch<br />

of Manzanilla Beach <strong>in</strong> eastern Tr<strong>in</strong>idad, Bacon<br />

<strong>and</strong> students collected a total of 53 Nypa<br />

propagules, <strong>in</strong>clud<strong>in</strong>g 12 viable propagules<br />

(Bacon 2001), which would be extraord<strong>in</strong>ary if<br />

attributable to trans-Atlantic dispersal.<br />

Consider<strong>in</strong>g the trans-Atlantic distribution of<br />

several mangrove taxa, successful dispersal <strong>and</strong><br />

establishment over these distances might occur<br />

rarely. However, the Atlantic Ocean is a<br />

formidable barrier (Duke et al. 2001), <strong>and</strong><br />

Figure 3.5. A viable Nypa propagule found str<strong>and</strong>ed<br />

on the beach of the Wa<strong>in</strong>i Pen<strong>in</strong>sula, approximately<br />

5 km east of Wa<strong>in</strong>i Po<strong>in</strong>t. The beach is composed of<br />

small shell fragments; off the beach mudflats extend<br />

seaward for several kilometers.


52<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

dispersal even with<strong>in</strong> mangrove biogeographic<br />

regions can be a limit<strong>in</strong>g factor on distributions<br />

of some species (Duke et al. 1998). A high<br />

degree of separation of other trans-Atlantic<br />

mangrove species has also been supported by<br />

differences <strong>in</strong> the composition of foliar waxes<br />

between separated populations (Rafii et al.<br />

1996). Trans-Atlantic dispersal is a<br />

consideration <strong>in</strong> the study of the limited number<br />

of plant genera <strong>and</strong> species with disjunctions;<br />

such dispersal events occur at long <strong>in</strong>tervals, <strong>in</strong><br />

the range required for speciation (Renner 2004).<br />

The Nypa populations <strong>in</strong> Guyana provide<br />

plentiful propagule sources with<strong>in</strong> effective<br />

dispersal range of Tr<strong>in</strong>idad. The distance to be<br />

covered is approximately 260 kilometers<br />

directly along the prevail<strong>in</strong>g Guiana Current<br />

from the mouth of the Wa<strong>in</strong>i River to Manzanilla<br />

Beach <strong>in</strong> Tr<strong>in</strong>idad. Surface velocities of the<br />

Guiana Current range from 41 to 123 cm/second<br />

(Gyory et al. 2003), ideally allow<strong>in</strong>g dispersal<br />

times from northwestern Guyana to Manzanilla<br />

Beach of 7.3 to 2.4 days respectively. In contrast,<br />

dispersal across the Atlantic Ocean is a daunt<strong>in</strong>g<br />

proposition. The South Equatorial Current flows<br />

approximately 6,000 kilometers from the Niger<br />

Delta across the Atlantic Ocean towards the<br />

mouth of the Amazon River. From satellitetracked<br />

drift buoy data (WOCE Data Products<br />

Committee 2002), the current’s maximum<br />

velocity appears to be around 60 cm/second <strong>and</strong><br />

may commonly reach only 30 cm/second<br />

(Bonhoure et al. 2004). Under ideal conditions<br />

these velocities would translate to a dispersal<br />

time from Africa to South America of 4 to 8<br />

months (Figure 3.6). That does not <strong>in</strong>clude an<br />

approximately 1,000 kilometers of additional<br />

dispersal <strong>in</strong> the more rapid Guiana current before<br />

reach<strong>in</strong>g Tr<strong>in</strong>idad over an estimated 15 - 45<br />

days. Those dispersal times are around the upper<br />

limits suggested by floatation trials with other<br />

mangrove species; up to 5 months for Avicennia<br />

mar<strong>in</strong>a Vierh. (Clarke 1993) <strong>and</strong> over 107 days<br />

for Rhizophora (Rab<strong>in</strong>owitz 1978a). No<br />

published floatation data could be located for<br />

Nypa propagules.<br />

POSSIBLE SOURCES OF<br />

PRESENT NEOTROPICAL<br />

NYPA POPULATIONS<br />

Neither the Nypa populations <strong>in</strong> Guyana<br />

<strong>and</strong> Panama nor the propagules collected <strong>in</strong><br />

Tr<strong>in</strong>idad have an established source. Nypa has<br />

likely been present <strong>in</strong> northwest Guyana for<br />

several decades, <strong>and</strong> some elder <strong>in</strong>habitants of<br />

far northwestern Guyana state that there is no<br />

time <strong>in</strong> memory that Nypa palms did not grow<br />

along the marg<strong>in</strong>s of the Mora Passage. As<br />

Figure 3.6. Mapped data po<strong>in</strong>ts from 1997 WOCE drift buoy experiments (WOCE 2002) <strong>in</strong> the equatorial<br />

Atlantic Ocean. The <strong>in</strong>dicated track is the fastest found for the South Equatorial Current, cover<strong>in</strong>g about half<br />

of the 6,000 km distance from the Niger Delta to the Guianas <strong>in</strong> approximately three months.


Contributions to the Study of Biological Diversity Vol. 3<br />

mentioned by Pritchard (1993), Nypa palms<br />

have been under cultivation for many decades<br />

<strong>in</strong> the Botanic Gardens <strong>in</strong> Guyana’s capital,<br />

Georgetown. A 1955 guide to the Botanic<br />

Gardens (Anonymous 1955) describes Nypa <strong>in</strong><br />

two ponds grow<strong>in</strong>g so vigorously that the ponds<br />

would be completely overrun if the palms were<br />

not regularly pruned. These were likely<br />

<strong>in</strong>troduced <strong>in</strong> the late 19 th century dur<strong>in</strong>g the<br />

Botanic Garden’s heyday under the direction of<br />

the British botanist George Jenman (McCracken<br />

1997). Georgetown’s extensive system of<br />

dra<strong>in</strong>age canals certa<strong>in</strong>ly provides a feasible<br />

fruit dispersal route to the Atlantic Ocean <strong>and</strong><br />

<strong>in</strong>to the Guiana current, which flows towards<br />

Guyana’s northwest coast (see Figure 3.1). Nypa<br />

fruits could then easily be carried by tidal fluxes<br />

<strong>in</strong>to coastal rivers with moderate flows, such as<br />

the Pomeroon <strong>and</strong> Wa<strong>in</strong>i. Entry <strong>in</strong>to river<br />

systems may be re<strong>in</strong>forced by estuar<strong>in</strong>e<br />

circulation patterns that can drive mangrove<br />

propagules towards channel centers dur<strong>in</strong>g flood<br />

tides <strong>and</strong> <strong>in</strong>to slower currents close to river<br />

banks dur<strong>in</strong>g ebb tides (Stieglitz & Ridd 2001).<br />

The distance from Georgetown to the mouth of<br />

the Wa<strong>in</strong>i River is about 260 kilometers, similar<br />

to the distance between the Wa<strong>in</strong>i <strong>and</strong> Tr<strong>in</strong>idad.<br />

It is also possible that fruits from the live<br />

specimens <strong>in</strong> the Botanic Garden were<br />

<strong>in</strong>tentionally <strong>in</strong>troduced <strong>in</strong>to the rivers of the<br />

Northwest District.<br />

It is difficult to propose trans-Atlantic<br />

dispersal for the Nypa population that was<br />

reported from Panama. Among the logical<br />

explanations are <strong>in</strong>tentional <strong>in</strong>troduction, escape<br />

from cultivation (seeds are available on a few<br />

horticultural websites) or transport <strong>in</strong> ballast<br />

water from one of the many ships that travel<br />

through the Panama Canal. Duke (1991) did not<br />

speculate as to the source of <strong>in</strong>troduction <strong>in</strong><br />

Panama, but he rejected the idea that the<br />

population near Colón was a relict of the ancient<br />

Nypa distribution, on the basis that the plants<br />

would not have escaped detection for such a<br />

prolonged time; he did not discuss the possibility<br />

of trans-Atlantic dispersal.<br />

Another scenario is the <strong>in</strong>troduction of<br />

Nypa to northwestern Guyana by Dutch<br />

plantation owners, who were active <strong>in</strong> the region<br />

<strong>in</strong> the mid-18th century (Daly 1995), <strong>and</strong><br />

ma<strong>in</strong>ta<strong>in</strong>ed colonies on the Barima River<br />

53<br />

(Schomburgk 1896). Erosion control could have<br />

been a concern of planters. Local people tell<br />

stories of the Mora Passage hav<strong>in</strong>g once been<br />

so narrow that monkeys could travel on branches<br />

from one bank to another. Richard Schomburgk<br />

explored northwestern Guyana <strong>in</strong> 1841 with his<br />

brother Robert, while under contract to del<strong>in</strong>eate<br />

the boundaries of British Guiana (van Dam<br />

2002). He estimated the entrance to the Mora<br />

Passage to be only 116 feet (35 meters) wide,<br />

<strong>and</strong> he described the passage as a w<strong>in</strong>d<strong>in</strong>g,<br />

natural waterway, with strong tidal currents<br />

(Schomburgk 1922). There are some anecdotal<br />

accounts (local <strong>in</strong>habitants, pers. comm.) of the<br />

Mora Passage’s orig<strong>in</strong> as a canal planned by the<br />

Dutch <strong>and</strong> dug with slave labor. Vann (1969)<br />

estimated the width of the Mora Passage to be<br />

over 300 feet (92 meters) wide <strong>in</strong> 1956, <strong>and</strong><br />

hypothesized that the waterway orig<strong>in</strong>ated<br />

through crevass<strong>in</strong>g <strong>and</strong> scour<strong>in</strong>g by flood waters<br />

of the Barima River. He estimated that the<br />

Mora’s depth had <strong>in</strong>creased by nearly one half<br />

foot per year s<strong>in</strong>ce measurements were made<br />

by the Schomburgk brothers. Measurements<br />

from 1999 L<strong>and</strong>sat satellite imagery (28.5 m<br />

resolution) show the Mora Passage as presently<br />

up to 200 meters wide along much of it course<br />

(Hollowell, unpublished). Regardless of the<br />

Mora Passage’s orig<strong>in</strong>, it appears that the Barima<br />

River has been <strong>in</strong>creas<strong>in</strong>gly captured by the<br />

Wa<strong>in</strong>i River via the Mora Passage. The strong<br />

tidal flows would encourage bank erosion, <strong>and</strong><br />

eroded sediments may have contributed to a 6<br />

kilometers long forested deposit which diverts<br />

the passage before it enters the mouth of the<br />

Wa<strong>in</strong>i River.<br />

If Nypa has a long history <strong>in</strong> the area, it<br />

should have been recorded <strong>in</strong> botanical records.<br />

Both Robert <strong>and</strong> Richard Schomburgk were<br />

accomplished botanists; between them they<br />

described nearly 30 Guianan plant species that<br />

are still valid today (Boggan et al. 1997;<br />

Hollowell et al. 2001). In 1841 Robert<br />

Schomburgk (1896), reported numerous Trooli<br />

palms (Manicaria saccifera Gaertn.) <strong>and</strong><br />

Manicole palms (Euterpe spp.) along the<br />

riverbanks between the mouth of the Aruka<br />

River <strong>and</strong> the Wa<strong>in</strong>i River, but he does not<br />

mention other palms along the banks, <strong>and</strong> it is<br />

unlikely that he would have confused either<br />

Euterpe’s tall, th<strong>in</strong> form or Manicaria’s broad


54<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

fronds with united p<strong>in</strong>nae with Nypa’s<br />

dist<strong>in</strong>ctive form. Robert’s brother, Richard<br />

Schomburgk, reported Euterpe palms <strong>in</strong> his<br />

writ<strong>in</strong>gs (1922), compar<strong>in</strong>g their beauty to<br />

Leopold<strong>in</strong>ia pulchra Mart.:<br />

“Though the banks of the Mora had already<br />

claimed my entire <strong>in</strong>terest, this was nevertheless<br />

very much more <strong>in</strong>creased by those of the<br />

Barima. The loveliest of palms, Euterpe<br />

oleracea Mart., Manicaria saccifera Gaert.,<br />

stretched their proud fronds up above the dark<br />

succulent mass of foliage <strong>and</strong> vied with the<br />

slender Leopold<strong>in</strong>ia pulchra Mart. both <strong>in</strong><br />

beauty of growth <strong>and</strong> formation of leaf...”<br />

Several other early plant collectors <strong>in</strong><br />

Northwestern Guyana (Table 3.1) have also<br />

failed to record any presence of Nypa, although<br />

the chief mode of travel with<strong>in</strong> this region was,<br />

<strong>and</strong> still is, by boat. In his detailed review of<br />

the riparian vegetation of Guyana, Fanshawe<br />

(1954), who traveled <strong>and</strong> collected plants <strong>in</strong> the<br />

Northwest, <strong>in</strong>cludes no mention of Nypa.<br />

Neither is Nypa listed <strong>in</strong> recent taxonomic<br />

treatments of palm species of the American<br />

tropics (Henderson 1995; Henderson et al.<br />

1995), which require review of a high<br />

percentage of historical collections held <strong>in</strong><br />

herbaria of the world. This should be considered<br />

with the knowledge that, compared to other plant<br />

groups, the large, <strong>and</strong> sometimes prickly, palms<br />

are typically under-collected.<br />

ECOLOGICAL CONSIDERATIONS<br />

It is useful to consider Nypa’s future <strong>in</strong> the<br />

estuar<strong>in</strong>e mangrove swamps <strong>in</strong> terms of<br />

conditions for successful <strong>in</strong>vasion listed by Lugo<br />

(1998) <strong>in</strong> his review of <strong>in</strong>vasion of mangrove<br />

ecosystems. Nypa is an obligate halophyte, <strong>and</strong><br />

so there is no reason to assume that the <strong>in</strong>vasion<br />

is temporary. The conditions that Nypa has<br />

occupied <strong>in</strong> Guyana are typical of its native<br />

environment, along tidal river marg<strong>in</strong>s of<br />

moderate sal<strong>in</strong>ity. The <strong>in</strong>vasion is not a response<br />

to microsite conditions, such as a period of<br />

freshwater <strong>in</strong>undation <strong>in</strong> a bas<strong>in</strong> mangrove<br />

swamp. The major shift <strong>in</strong> the environment has<br />

been the <strong>in</strong>creased disturbances of river banks<br />

<strong>and</strong> perhaps some <strong>in</strong>creased sedimentation from<br />

disturbances <strong>in</strong> the watershed, which might be<br />

favorable to Nypa establishment. In<br />

northwestern Guyana, Nypa seems to have<br />

established frequently near homesteads or other<br />

areas of riverbank disturbance.<br />

The small, though grow<strong>in</strong>g, human<br />

population <strong>in</strong> the region has not yet caused<br />

significant stresses <strong>in</strong> the river<strong>in</strong>e mangrove<br />

forests; harvest<strong>in</strong>g of Rhizophora bark for<br />

tann<strong>in</strong>s has been practiced on an small scale,<br />

although it is possibly <strong>in</strong>creas<strong>in</strong>g (Allan et al.<br />

2002). The only event necessary for the Nypa<br />

<strong>in</strong>vasion was probably the <strong>in</strong>troduction of this<br />

well-adapted species to an environment from<br />

which it had been biogeographically isolated.<br />

So, while Lugo (1998) characterized mangrove<br />

Table 3.1. Early plant collectors of the Northwest District of Guyana, from US National Herbarium hold<strong>in</strong>gs.<br />

Collector<br />

Schomburgk, M.R. <strong>and</strong> R H.<br />

Jenman, G.S.<br />

ImThurn, E.F.<br />

Bartlett, A.W.<br />

Beckett, J.E.<br />

Ward, R.<br />

Hitchcock, A.S.<br />

Cruz, J.S. de la<br />

Altson, R.A.<br />

Archer, W.A.<br />

Fanshawe, D.B.<br />

Cowan, R.S.<br />

Year<br />

1841<br />

1896<br />

1897<br />

1905<br />

1906<br />

1907<br />

1920<br />

1922-23<br />

1926<br />

1934<br />

1945<br />

1955<br />

Localities<br />

Wa<strong>in</strong>i R., Mora Passage, Barima R., Aruka R.<br />

Barima R.<br />

Aruka R., Barima R.<br />

Aruka R., Barima R.<br />

Baramanni, Wa<strong>in</strong>i R.<br />

Aruka R.<br />

Morawhanna, Issorora, Aruka R., Yarikita R., Amakura R.<br />

Wa<strong>in</strong>i R., ‘Marabo Shortcut’, Barima R., Amakura R.<br />

Mabaruma<br />

Mabaruma, Aruka R., Barima R., Koriabo R., Wauna<br />

Wa<strong>in</strong>i R., Aruka R., Mabaruma<br />

Barima R.


Contributions to the Study of Biological Diversity Vol. 3<br />

ecosystems as difficult to <strong>in</strong>vade <strong>and</strong> relatively<br />

easy to rehabilitate, this would not apply to<br />

<strong>in</strong>vasion by the few species that are true<br />

mangroves, which total 70 species worldwide,<br />

accord<strong>in</strong>g to Duke et al. (1998). In Hawaii <strong>and</strong><br />

Tahiti, mangroves have been <strong>in</strong>tentionally<br />

<strong>in</strong>troduced to isl<strong>and</strong>s that were once mangrovefree,<br />

<strong>and</strong> have become nuisance species (Allen<br />

1998). The mangrove fern Acrostichum is also<br />

sometimes considered a nuisance, due to<br />

<strong>in</strong>terfere with regeneration <strong>in</strong> some disturbed<br />

mangrove swamps (Blanchard & Prado 1995;<br />

Ellison 2000a; Toml<strong>in</strong>son 1986).<br />

It is expected that the Nypa <strong>in</strong>vasion<br />

<strong>in</strong> Guyana may be persistent, based <strong>in</strong> part of<br />

its current extensive distribution. The abilities<br />

of Nypa to spread vegetatively <strong>and</strong> to produce<br />

plentiful propagules enhance chances of its<br />

additional spread along the rivers of Guyana.<br />

CONTROL OF NYPA<br />

In its native range the control of Nypa is<br />

not a critical issue. In fact, <strong>in</strong> a few locations<br />

such as the Sundarbans of India, Nypa is<br />

reported to be under threat due to changes <strong>in</strong><br />

hydrology <strong>and</strong> soil sal<strong>in</strong>ity (Badve & Sakurkar<br />

2003; Sukhendu et al. 2002). In Nigeria,<br />

eradication of Nypa has been proposed by<br />

corporate <strong>and</strong> governmental agencies as a<br />

element of restoration of the Niger Delta<br />

(Sunderl<strong>and</strong> & Morak<strong>in</strong>yo 2002), as attempts<br />

at Nypa control through <strong>in</strong>creased utilization<br />

have not been effective. Efforts to control a few<br />

areas of the alien mangrove Rhizophora <strong>in</strong><br />

Hawaii have been very expensive (Allen 1998).<br />

Surpris<strong>in</strong>gly, there have been recommendations<br />

for Nypa plant<strong>in</strong>gs <strong>in</strong> the Volta estuary of Ghana,<br />

as part of efforts to remediate impacts of dam<br />

construction on the river (Rub<strong>in</strong> et al. 1998).<br />

Such unnecessary <strong>in</strong>troductions should be<br />

viewed as ecologically risky <strong>in</strong> light of the<br />

nuisance that Nypa has become <strong>in</strong> Nigeria.<br />

In Panama, the populations of Nypa that<br />

were documented by Duke (1991) <strong>in</strong> the Colón<br />

Free Zone of the Panama Canal have reportedly<br />

been destroyed by coastal construction activities<br />

(Neal Smith, Smithsonian Tropical Research<br />

Institute, pers. comm.), though possibly isolated<br />

<strong>in</strong>dividuals have survived <strong>in</strong> impoundments<br />

55<br />

along the west shore of Bahia Limón to the west<br />

of Colón. Due to limited knowledge of its<br />

presence <strong>and</strong> extent, there is not yet any<br />

recognition of a need to control Nypa <strong>in</strong> Guyana;<br />

it is possible that <strong>in</strong>creased utilization could<br />

serve as a m<strong>in</strong>or control on its spread there. A<br />

few <strong>in</strong>stances of Nypa harvest <strong>and</strong> thatch<strong>in</strong>g<br />

with Nypa fronds have been observed near the<br />

small settlement of Morawhanna at the western<br />

end of the Mora Passage, probably because the<br />

Trooli palm, Manicaria saccifera Gaertn. has<br />

become <strong>in</strong>creas<strong>in</strong>gly scarce, as its fronds are the<br />

preferred thatch<strong>in</strong>g material <strong>in</strong> the region.<br />

NEEDS FOR<br />

ADDITIONAL STUDY<br />

There is <strong>in</strong>creas<strong>in</strong>g concern about the<br />

<strong>in</strong>creases <strong>in</strong> <strong>and</strong> effects of <strong>in</strong>vasive plant species<br />

worldwide (Mack & Lonsdale 2001). The<br />

conservation community also needs <strong>in</strong>formation<br />

about this potentially aggressive exotic species,<br />

which could have significant effects on structure<br />

<strong>and</strong> function of important river<strong>in</strong>e mangrove<br />

communities. Due to their close connection with<br />

river waters, Guyana’s river<strong>in</strong>e mangrove<br />

swamps, which are most susceptible to <strong>in</strong>vasion<br />

by Nypa, may function more effectively as fish<br />

habitat <strong>and</strong> a source of nutrients <strong>and</strong> organic<br />

matter than the coastal mangroves isolated<br />

beh<strong>in</strong>d beach ridges (Ewel et al. 1998).<br />

Ecological research <strong>in</strong>to the dynamics of<br />

competition between Nypa with Rhizophora<br />

racemosa <strong>and</strong> <strong>in</strong>to the growth <strong>and</strong> reproduction<br />

of Nypa <strong>in</strong> Guyana would be useful <strong>in</strong><br />

underst<strong>and</strong><strong>in</strong>g the possible future of Nypa <strong>in</strong> the<br />

region <strong>and</strong> could <strong>in</strong>form considerations of<br />

control or restoration efforts, either through<br />

eradication or utilization.<br />

The presence of Nypa <strong>in</strong> the Neotropics<br />

poses questions relevant to the study of<br />

biogeography. The feasibility of trans-Atlantic<br />

dispersal should be tested with floatation<br />

experiments on Nypa propagules, as<br />

demonstrated for mangrove species found <strong>in</strong><br />

Panama by Rab<strong>in</strong>owitz (1978a), <strong>in</strong>clud<strong>in</strong>g<br />

assessment of viability at <strong>in</strong>tervals (Duke et al.<br />

1998). This might also <strong>in</strong>clude trials with<br />

vary<strong>in</strong>g sal<strong>in</strong>ities of water, which could affect<br />

buoyancy <strong>and</strong> viability, as the Guiana current


56<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

can be diluted with substantial freshwater from<br />

the Amazon River. Molecular evidence may be<br />

useful <strong>in</strong> determ<strong>in</strong><strong>in</strong>g whether the sources of<br />

Nypa <strong>in</strong> Guyana, Tr<strong>in</strong>idad, <strong>and</strong> Panama<br />

orig<strong>in</strong>ated from African populations,<br />

<strong>in</strong>troductions directly from Asia, or from the<br />

plants under cultivation <strong>in</strong> the Georgetown<br />

Botanical Garden. Possibly analyses of<br />

microsatellites would be a useful approach to<br />

molecular study of this issue (Godoy & Jordano<br />

2001).<br />

Records of the Dutch East Indies Company<br />

might hold <strong>in</strong>formation of possible <strong>in</strong>troduction<br />

of Nypa to settlements <strong>in</strong> the Barima River area<br />

or other clues that may shed light on the history<br />

of the Mora Passage. An undertak<strong>in</strong>g as<br />

ambitious as a 6 kilometers canal from the<br />

Barima River to the Wa<strong>in</strong>i River should also be<br />

documented <strong>in</strong> historical records.<br />

S<strong>in</strong>ce they are restricted to brackish river<br />

fr<strong>in</strong>ges, these Nypa - Rhizophora swamps may<br />

be relatively easy to del<strong>in</strong>eate <strong>and</strong> study. The<br />

extent of Nypa patches along rivers <strong>in</strong><br />

Northwestern Guyana could be readily mapped<br />

by boat us<strong>in</strong>g a Global Position<strong>in</strong>g System<br />

(GPS), <strong>and</strong> resampl<strong>in</strong>g over a period of years<br />

would produce a picture of Nypa dynamics.<br />

Once a reasonable portion of the Nypa affected<br />

area is mapped, it may be possible to generalize<br />

that distribution to the entire region us<strong>in</strong>g large<br />

scale aerial photography (Manson et al. 2001;<br />

Wilton & Sa<strong>in</strong>tilan 2000) or high resolution,<br />

multispectral airborne imagery (Green et al.<br />

1998); however, the more affordable L<strong>and</strong>sat<br />

imagery probably lacks adequate spatial<br />

resolution to detect fr<strong>in</strong>g<strong>in</strong>g b<strong>and</strong>s of Nypa.<br />

The distributaries of the Or<strong>in</strong>oco River<br />

Delta should also be surveyed for populations<br />

of Nypa; it would not be surpris<strong>in</strong>g if it was<br />

found there. Those populations would represent<br />

additional sources for propagules that could be<br />

dispersed to Tr<strong>in</strong>idad. If documented, the<br />

presence of Nypa <strong>in</strong> the Or<strong>in</strong>oco Delta should<br />

be of <strong>in</strong>terest to Venezuelan botanists <strong>and</strong><br />

conservation organizations. Certa<strong>in</strong>ly, any<br />

control strategies must be considered <strong>in</strong> light of<br />

many factors, with adequate attention to<br />

un<strong>in</strong>tended effects.<br />

CONCLUSIONS<br />

Nypa as an <strong>in</strong>vasive species appears to be<br />

an grow<strong>in</strong>g phenomenon <strong>in</strong> the tropical Atlantic<br />

Ocean region. If the source for Nypa <strong>in</strong> Guyana<br />

has been present for over a century <strong>in</strong> the<br />

Botanic Garden <strong>in</strong> Georgetown, but the species<br />

has only recently spread to the Mora Passage<br />

region, it can be concluded that <strong>in</strong>itial<br />

colonization from <strong>in</strong>termediate distances might<br />

be uncommon, but once accomplished, local<br />

expansion may be rapid. It may only be a matter<br />

of time before Nypa becomes established as a<br />

nuisance <strong>in</strong> suitable sites of Tr<strong>in</strong>idad <strong>and</strong><br />

Venezuela’s Or<strong>in</strong>oco Delta. However, it should<br />

be noted that Duke (1991) warned of the<br />

<strong>in</strong>evitable spread of Nypa throughout the Central<br />

American Atlantic coastal region prior to its<br />

disappearance from Panama. Tr<strong>in</strong>idad’s Nariva<br />

Swamp National Park may be of special<br />

concern, as it is located only a few kilometers<br />

to the south of Manzanilla Beach where so many<br />

viable Nypa propagules have been observed.<br />

Tr<strong>in</strong>idad’s Caroni Swamp, near Port of Spa<strong>in</strong><br />

on the Gulf of Paria may also be vulnerable.<br />

The brackish waters of these areas should be<br />

monitored for Nypa. Documentation of the full<br />

extent of colonization <strong>and</strong> densities <strong>in</strong><br />

northwestern South America <strong>and</strong> comparison<br />

with characteristics of Nypa <strong>in</strong> its native range<br />

could provide additional <strong>in</strong>sight <strong>in</strong>to the<br />

<strong>in</strong>vasion <strong>and</strong> reasons for its success (Hierro et<br />

al. 2005). Underst<strong>and</strong><strong>in</strong>g the regional history,<br />

dispersal, <strong>and</strong> ecology of this palm will be<br />

critical to mangrove conservation efforts.


Contributions to the Study of Biological Diversity Vol. 3<br />

Wiltshire H<strong>in</strong>ds <strong>in</strong> Avicennia forest with<br />

plentiful Acrostichum ferns <strong>and</strong> Philodendron<br />

v<strong>in</strong>es, on transect “D” <strong>in</strong> November 2001.<br />

Professor Philip DaSilva of the University of<br />

Guyana, who provided support for research on<br />

the Wa<strong>in</strong>i Pen<strong>in</strong>sula, at the front door of the<br />

Centre for the Study of Biological Diversity.<br />

57<br />

Mangrove activities sometimes <strong>in</strong>tersected with<br />

those of the Guyana Mar<strong>in</strong>e Turtle Conservation<br />

Society (GMTCS). On the way to<br />

reconnaissance of a burned area at Kamwatta<br />

Beach, Keith David, Karen Redden <strong>and</strong> Donald<br />

James of GMTCS help free a str<strong>and</strong>ed Green<br />

Sea Turtle (Chelonia mydas). Over 100 eggs<br />

were also transported to a GMTCS nursery.<br />

Wiltshire H<strong>in</strong>ds press<strong>in</strong>g the afternoon’s plant<br />

specimens on the porch of the Kwebana guest<br />

house, November 2001. Kwebana is the site of<br />

an ab<strong>and</strong>oned lumber mill on the Wa<strong>in</strong>i River<br />

upstream of tidal <strong>in</strong>fluence.


58<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Amer<strong>in</strong>dian students from Moruca <strong>in</strong>spect a<br />

Leatherback Sea Turtle (Dermochelys coriacea)<br />

recently hatched <strong>in</strong> the Almond Beach GMTCS<br />

nursery prior to releas<strong>in</strong>g it that even<strong>in</strong>g.<br />

Audley James at Almond Beach camp, with his<br />

gr<strong>and</strong>son Alex. A former turtle hunter, Audley<br />

became one of the key people <strong>in</strong> GMTCS.<br />

Romeo DeFritas, son of Violet <strong>and</strong> Audley<br />

James <strong>and</strong> a ma<strong>in</strong>stay of the GMTCS, with h<strong>and</strong><br />

cha<strong>in</strong>-sawn Rhizophora mangle lumber<br />

harvested nearby for construction at the Almond<br />

Beach camp.<br />

Violet James, who with her husb<strong>and</strong> Audley<br />

James <strong>and</strong> son Romeo DeFritas, managed many<br />

of the activities at the Almond Beach mar<strong>in</strong>e<br />

turtle monitor<strong>in</strong>g camp.


Contributions to the Study of Biological Diversity Vol. 3<br />

CHAPTER 4.<br />

STRUCTURE OF BURNED AND UNBURNED<br />

AVICENNIA FOREST, WAINI PENINSULA, GUYANA<br />

INTRODUCTION<br />

<strong>Fire</strong>s burned across extensive parts of<br />

northeastern South America from 1997 to 1998<br />

(Barbosa & Fearnside 1999; Cochrane &<br />

Schulze 1998), <strong>and</strong> at that time soil fires<br />

occurred <strong>in</strong> mangrove <strong>and</strong> freshwater swamps<br />

of the Wa<strong>in</strong>i Pen<strong>in</strong>sula (Chapter 1, this<br />

manuscript). Those soil fires highlighted the<br />

need to improve underst<strong>and</strong><strong>in</strong>g of the Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula’s mangrove ecosystems <strong>and</strong> their<br />

response to disturbances for the benefit of longterm<br />

management of the area.<br />

Ecological plots have long been considered<br />

one of the best methods for collect<strong>in</strong>g such<br />

detailed plant community <strong>in</strong>formation. Early<br />

mangrove studies were descriptive, often<br />

convey<strong>in</strong>g species zonation of mangrove<br />

swamps <strong>and</strong> propos<strong>in</strong>g explanations for the<br />

observations (Clarke & Hannon 1969; Davis<br />

1940; Fosberg 1947; L<strong>in</strong>deman 1953; Macnae<br />

1963). Those studies frequently <strong>in</strong>cluded<br />

vegetation profiles illustrat<strong>in</strong>g mangrove<br />

zonation patterns. Profiles are still occasionally<br />

produced, often <strong>in</strong>corporat<strong>in</strong>g <strong>in</strong>formation on<br />

physical characteristics such as soil type <strong>and</strong><br />

sal<strong>in</strong>ity (L<strong>in</strong>deman 1953; Odum et al. 1982;<br />

Thom 1967). One of the earliest quantitative<br />

ecological studies of mangroves was carried out<br />

by Golley et al. (1962) <strong>in</strong> Puerto Rico, <strong>in</strong> which<br />

biomass, carbon cycle measurements, <strong>and</strong><br />

zoological trophic data were collected. By the<br />

1970s, ecological plots were a fairly common<br />

method for census <strong>and</strong> description of mangrove<br />

swamps (Pool et al. 1977). Allometric formulas<br />

for estimat<strong>in</strong>g mangrove forest biomass us<strong>in</strong>g<br />

dbh values have been created for above-ground<br />

biomass <strong>in</strong> mangrove forests <strong>in</strong> Puerto Rico<br />

(Golley et al. 1962), French Guiana (Fromard<br />

et al. 1998) <strong>and</strong> Florida (Ross et al. 2001), <strong>and</strong><br />

for above-ground plus root biomass <strong>in</strong> Pakistan<br />

(Snedaker et al. 1995). The mangroves of<br />

Guyana have been the subject of limited<br />

59<br />

ecological study. Ramdass et al. (1997) collected<br />

plot data for an Avicennia forest near Alness<br />

Village on the country’s southeastern coast.<br />

Mangrove litterfall dynamics were <strong>in</strong>vestigated<br />

by Chale (1996) near Onverwagt (see Figure<br />

4.5) southeast of Georgetown, where high levels<br />

of small litter productivity were found, at 1771<br />

g/m 2 /yr, which is approximately double the<br />

typical rates reported for Caribbean mangroves<br />

<strong>and</strong> similar to values reported for tropical<br />

ra<strong>in</strong>forests.<br />

Mangrove research on the Wa<strong>in</strong>i Pen<strong>in</strong>sula<br />

was carried out to address several questions<br />

about the nature of that plant community. If the<br />

coastal Avicennia forests have been recently<br />

established <strong>in</strong> stages on an accret<strong>in</strong>g geomorphic<br />

formation, their structure should vary over<br />

space, with the more recently established st<strong>and</strong>s<br />

possess<strong>in</strong>g less biomass, <strong>and</strong> vary over time if<br />

st<strong>and</strong>s are so recent as to have not approached a<br />

structural equilibrium of maturity. Mature st<strong>and</strong>s<br />

that have not been disturbed should possess a<br />

relatively constant structure due to growth <strong>and</strong><br />

mortality be<strong>in</strong>g balanced. The distribution <strong>in</strong><br />

diameter classes of trees will <strong>in</strong>dicate some<br />

aspects of population dynamics of st<strong>and</strong>s. Data<br />

collected from the st<strong>and</strong><strong>in</strong>g trees <strong>in</strong> the burned<br />

mangrove plots, with<strong>in</strong> months after the fires,<br />

allowed reasonable comparisons with the liv<strong>in</strong>g<br />

trees of the unburned plots. Also, spatial patterns<br />

of trees with<strong>in</strong> those plots may reflect st<strong>and</strong><br />

history. The early course <strong>and</strong> stability of plant<br />

community recovery immediately after<br />

disturbances may be assessed by observ<strong>in</strong>g<br />

<strong>in</strong>itial changes <strong>in</strong> vegetation cover. It is also<br />

useful to compare the mangroves of the Guianas<br />

with those of the Neotropics <strong>and</strong> the world, <strong>in</strong><br />

order to underst<strong>and</strong> the ways <strong>in</strong> which they are<br />

either unique or similar.<br />

The vegetation plot data <strong>in</strong> this study<br />

provide <strong>in</strong>itial structural <strong>in</strong>formation on both<br />

<strong>in</strong>tact <strong>and</strong> fire-affected mangrove ecosystems on<br />

the Wa<strong>in</strong>i Pen<strong>in</strong>sula, <strong>and</strong> allow comparisons<br />

with values for other mangrove systems <strong>in</strong>


60<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

several parts of the world. Early succession<br />

follow<strong>in</strong>g the fires was <strong>in</strong>vestigated through<br />

analysis of the changes <strong>in</strong> herbaceous vegetation<br />

<strong>in</strong> the burned <strong>and</strong> unburned plots.<br />

METHODS<br />

Study Site<br />

The study site was located near the<br />

northernmost po<strong>in</strong>t of Guyana, on the Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula. Plots were established <strong>in</strong> two areas<br />

just <strong>in</strong>l<strong>and</strong> of Almond Beach (8° 23' 58'’ N, 59°<br />

45' 16" W), a few kilometers to the east of Wa<strong>in</strong>i<br />

Po<strong>in</strong>t (Figure 4.1). In early 1998, parts of the<br />

mangrove forest of this area were killed by<br />

widespread soil fires, with the burn extend<strong>in</strong>g<br />

from the coastal beach ridge several kilometers<br />

<strong>in</strong>to the <strong>in</strong>terior of the pen<strong>in</strong>sula. A detailed site<br />

description, list<strong>in</strong>g of plant species of the Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula, <strong>and</strong> description of the extent of the<br />

areas burned <strong>in</strong> the 1998 fires are given <strong>in</strong><br />

Chapter 1.<br />

A total of six plots were established, three<br />

<strong>in</strong> Avicennia germ<strong>in</strong>ans forest with high<br />

mortality from the fires <strong>and</strong> three <strong>in</strong> unburned<br />

Avicennia forest toward Wa<strong>in</strong>i Po<strong>in</strong>t from<br />

Almond Beach. The unburned plots were located<br />

<strong>in</strong> an area <strong>in</strong>l<strong>and</strong> from a narrow beach ridge;<br />

burned plots were located <strong>in</strong>l<strong>and</strong> from the<br />

Guyana Mar<strong>in</strong>e Turtle Conservation Society<br />

(GMTCS) camp, which is located on a broad<br />

beach ridge.<br />

Data were also used from the one hectare<br />

Man <strong>and</strong> Biosphere style mangrove plot located<br />

near Alness Village (Ramdass et al. 1997), on<br />

southeastern Guyana’s lower coastal pla<strong>in</strong>,<br />

between the Corentyne <strong>and</strong> Berbice Rivers,<br />

(6º12’N, 57º18' W, see Figure 4.5). The Alness<br />

Village plot was located <strong>in</strong> a pure Avicennia<br />

germ<strong>in</strong>ans st<strong>and</strong> that had been utilized by cutt<strong>in</strong>g<br />

for poles by local residents. The use of the MAB<br />

Figure 4.1. Location of modified Whittaker plots <strong>in</strong> burned <strong>and</strong> unburned Avicennia forest on the Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula.


Contributions to the Study of Biological Diversity Vol. 3<br />

method made those data very comparable to data<br />

from the Almond Beach plots.<br />

Plot Establishment<br />

Three 0.1 ha modified Whittaker vegetation<br />

sampl<strong>in</strong>g plots (Campbell et al. 2002; SI/MAB<br />

1998; Stohlgren et al. 1995; Whittaker 1960,<br />

1973) were established for each treatment, be<strong>in</strong>g<br />

burned <strong>and</strong> unburned Avicennia swamp. Due to<br />

the low diversity of the plant community, hav<strong>in</strong>g<br />

an essentially monospecific tree component <strong>and</strong><br />

fewer than ten herbaceous species, that<br />

sampl<strong>in</strong>g area was determ<strong>in</strong>ed to be adequate.<br />

The use of three r<strong>and</strong>omly placed plots allowed<br />

for the reduction of placement biases <strong>and</strong><br />

<strong>in</strong>fluences of small-scale irregularities <strong>in</strong> the<br />

forests. Features of the Dallmeier et al. (1992)<br />

one hectare plot protocol were adapted for use<br />

with<strong>in</strong> the modified Whittaker plot layout,<br />

<strong>in</strong>clud<strong>in</strong>g tagg<strong>in</strong>g of all trees of 10 cm dbh or<br />

more <strong>and</strong> mapp<strong>in</strong>g of tree locations with<strong>in</strong> the<br />

plot. The plots were established six to seven<br />

months after the end of fires <strong>and</strong> were resampled<br />

three times over a 35 month period <strong>in</strong><br />

order to monitor changes <strong>in</strong> tree dbh <strong>and</strong> cover<br />

of seedl<strong>in</strong>gs <strong>and</strong> herbaceous vegetation. Trees<br />

<strong>in</strong> the burned area were measured for dbh <strong>and</strong><br />

mapped only once, to capture <strong>in</strong>formation on<br />

pre-fire structure. The unburned forest plots<br />

were resampled twice to provide <strong>in</strong>formation<br />

about the growth rates <strong>and</strong> mortality of trees,<br />

<strong>and</strong> herbs <strong>and</strong> tree seedl<strong>in</strong>gs were resampled<br />

three times <strong>in</strong> both areas.<br />

Each plot was laid out from a r<strong>and</strong>omly<br />

placed corner stake. Corners were determ<strong>in</strong>ed<br />

by measur<strong>in</strong>g a r<strong>and</strong>omly determ<strong>in</strong>ed 50 to 250<br />

meters along the boundary of the swamp either<br />

east or west parallel to the coast l<strong>in</strong>e, from a<br />

s<strong>in</strong>gle start<strong>in</strong>g po<strong>in</strong>t for each forest type. Then<br />

a r<strong>and</strong>omly determ<strong>in</strong>ed 100 to 300 meters <strong>in</strong>l<strong>and</strong><br />

was measured <strong>in</strong>to the swamp perpendicular<br />

from the swamp edge. The GPS coord<strong>in</strong>ates of<br />

those northeast plot corners (Table 4.1), along<br />

with the presence of durable tags, should allow<br />

relocation of the plots for several years. The<br />

northeast corner of each plot was marked with<br />

a steel rod. Each 0.1 ha plot was 20 m x 50 m <strong>in</strong><br />

size, positioned with the long axis oriented east<br />

to west (Figure 4.2). The other three corners<br />

were established us<strong>in</strong>g a Tracon surveyor’s<br />

compass <strong>and</strong> tape measure. All corners were<br />

61<br />

marked with large, plastic surveyor’s stakes. Plot<br />

boundaries were temporarily marked with str<strong>in</strong>g<br />

for convenience dur<strong>in</strong>g the surveys. To utilize<br />

the tree mapp<strong>in</strong>g functions of SI/MAB Biomon<br />

software (Comiskey et al. 1999), each 50 m long<br />

plot was divided <strong>in</strong>to two 20 m x 20 m quadrats<br />

<strong>and</strong> one 10 m x 20 m quadrat (Figure 4.3). To<br />

fully characterize the vegetation, separate<br />

measurements were made on herbaceous <strong>and</strong><br />

woody plants.<br />

For sampl<strong>in</strong>g of small woody plants,<br />

subplots of three sizes (A, B, C) were set with<strong>in</strong><br />

the 0.1 ha plots for collection of data on herbs<br />

<strong>and</strong> small woody plants. Those were not<br />

permanently marked. Ten “A” subplots of 0.5<br />

Figure 4.2. Layout of modified Whittaker plot <strong>and</strong><br />

subplots. Adapted from Stohlgren et al. (1995) <strong>and</strong><br />

Stohlgren <strong>and</strong> Chong (1997).<br />

Figure 4.3. Division of the 0.1 ha plots <strong>in</strong>to 20 m x<br />

20 m quadrats compatible with the Biomon program=s<br />

tree mapp<strong>in</strong>g.<br />

Table 4.1. Coord<strong>in</strong>ates of the northeast corners of<br />

the six 0.1 ha modified Whittaker plots, <strong>in</strong> decimal<br />

degrees, determ<strong>in</strong>ed by GPS with<strong>in</strong> 15 m.<br />

Plot number<br />

1 - Burned<br />

2 - Burned<br />

3 - Unburned<br />

4 - Unburned<br />

5 - Unburned<br />

6 - Burned<br />

Latitude<br />

8.40220<br />

8.40147<br />

8.39744<br />

8.39673<br />

8.39617<br />

8.40156<br />

Longitude<br />

-59.77903<br />

-59.78069<br />

-59.75664<br />

-59.75550<br />

-59.75522<br />

-59.77733


62<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

m 2 <strong>in</strong> area, were sampled with a 1 m x 0.5 m<br />

frame dropped at 12 m <strong>in</strong>tervals, four along each<br />

side <strong>and</strong> one at each end of each plot. Two “B”<br />

subplots placed <strong>in</strong> opposite corners were 10 m 2<br />

<strong>in</strong> area, 2 m x 5 m <strong>in</strong> size. A central “C” subplot<br />

was 100 m 2 , 20 m x 5 m <strong>in</strong> size.<br />

All woody plants over 10 cm dbh were<br />

mapped by measur<strong>in</strong>g distance from any two<br />

adjacent corners, <strong>and</strong> these measurements were<br />

converted to x-y coord<strong>in</strong>ates, calculated by<br />

triangulation (Figure 4.4) us<strong>in</strong>g the Biomon<br />

program (Comiskey et al. 1999). All trees 10<br />

cm dbh or greater were measured at breast<br />

height, the species recorded, <strong>and</strong> labeled with<br />

heavy alum<strong>in</strong>um tags stamped with the plot,<br />

subplot, <strong>and</strong> tree numbers, attached just above<br />

the dbh level.<br />

Figure 4.4. Mapp<strong>in</strong>g of tree locations <strong>in</strong> quadrats of<br />

SI-MAB plots us<strong>in</strong>g triangulation from any two<br />

corners. Adapted from Dallmeier et al. (1992).<br />

Water level above or below the substrate<br />

was measured to provide basic data on<br />

hydrological changes that might have an<br />

<strong>in</strong>fluence on vegetation <strong>and</strong> to compare<br />

fluctuations <strong>in</strong> water table between the two sites.<br />

Two 10.2 cm (4 <strong>in</strong>ch) diameter, 1.5 m long pvc<br />

well pipes were <strong>in</strong>stalled 0.75 m deep, one<br />

between the burned plots <strong>and</strong> one between the<br />

unburned plots. The bottoms of the well pipes<br />

were covered with several thicknesses of porous<br />

fiberglass screen<strong>in</strong>g, <strong>and</strong> the tops were provided<br />

with removable caps to prevent evaporation.<br />

Measurements<br />

For herbs <strong>and</strong> small woody plants, <strong>in</strong> each<br />

of the ten ‘A’ subplots the percent areal coverage<br />

of each herbaceous species was visually<br />

estimated <strong>and</strong> recorded. <strong>Plant</strong> species sampled<br />

as herbs <strong>in</strong>cluded tree seedl<strong>in</strong>gs less than 1 cm<br />

dbh. In the two ‘B’ subplots all woody plants<br />

greater than or equal to1 cm but less than 5 cm<br />

dbh were measured <strong>and</strong> recorded. In the central<br />

“C” subplot all woody plants greater than or<br />

equal to 5 cm but less than 10 cm dbh were<br />

measured. Measurements were performed at the<br />

time of plot establishment <strong>in</strong> November 1998<br />

<strong>and</strong> on three subsequent visits <strong>in</strong> May 2000,<br />

April 2001 <strong>and</strong> October 2001. The first two<br />

sampl<strong>in</strong>gs occurred dur<strong>in</strong>g fairly wet conditions,<br />

with st<strong>and</strong><strong>in</strong>g water <strong>in</strong> both liv<strong>in</strong>g <strong>and</strong> burned<br />

forests, while the April 2001 measurements were<br />

made dur<strong>in</strong>g dry conditions, evidenced by<br />

crack<strong>in</strong>g of soil surfaces <strong>in</strong> the burned swamp.<br />

The October 2001 measurements were made<br />

dur<strong>in</strong>g moderately dry conditions, with no<br />

st<strong>and</strong><strong>in</strong>g water <strong>in</strong> either plot area.<br />

For woody plants, <strong>in</strong> each of the six 0.1-ha<br />

plots, dbh <strong>and</strong> height of all trees 10 cm dbh or<br />

greater were measured <strong>in</strong> November 1998. For<br />

the first census only tree heights were estimated<br />

us<strong>in</strong>g a simple cl<strong>in</strong>ometer at measured distances<br />

from the bases of trees. Height measurements<br />

were not made after the <strong>in</strong>itial census. Trees<br />

were tagged <strong>and</strong> mapped with<strong>in</strong> the quadrats,<br />

<strong>and</strong> the distances from corners were entered <strong>in</strong>to<br />

the SI/MAB Biomon software. The status of<br />

each tree as liv<strong>in</strong>g or dead was recorded; data<br />

from dead trees were not <strong>in</strong>cluded <strong>in</strong> most<br />

analyses. The first census <strong>in</strong>cluded Avicennia<br />

trees <strong>in</strong> the three burned plots that were killed<br />

by fire only a few months after their death.<br />

Subsequent large woody plant measurements<br />

were not made on the burned plots as the dead<br />

trees decayed. The three unburned plots were<br />

re-censussed for tree dbh at approximately 17<br />

month <strong>in</strong>tervals dur<strong>in</strong>g May 2000 <strong>and</strong> October<br />

2001. Basal areas were calculated from dbh<br />

us<strong>in</strong>g the formula (0.5*dbh) 2 * B, <strong>and</strong> then<br />

expressed as m 2 /hectare. All statistical tests,<br />

except where noted, were performed us<strong>in</strong>g the<br />

S-plus statistical software (Insightful<br />

Corporation 2001).<br />

The water table was monitored with the use<br />

of a th<strong>in</strong> dip-stick marked <strong>in</strong> 1 cm <strong>in</strong>crements.<br />

Water depth above or below the soil surface was<br />

measured monthly at both wells by mar<strong>in</strong>e turtle<br />

monitor<strong>in</strong>g crew members, start<strong>in</strong>g dur<strong>in</strong>g the


Contributions to the Study of Biological Diversity Vol. 3<br />

first plot sampl<strong>in</strong>gs <strong>in</strong> November 1998 <strong>and</strong><br />

cont<strong>in</strong>u<strong>in</strong>g until the drought <strong>in</strong> March 2001.<br />

Alness Village Plot<br />

Data from the Avicennia germ<strong>in</strong>ans<br />

community at Alness Village <strong>in</strong> the Berbice<br />

River region (Figure 4.5) provided the only<br />

additional mangrove data from Guyana with<br />

which comparisons to Wa<strong>in</strong>i Pen<strong>in</strong>sula<br />

Figure 4.5. Location of Alness Village on the<br />

southeastern Guyana coast, site of an Avicennia forest<br />

1 ha plot (Ramdass et al, 1997) <strong>and</strong> Onverwagt, site<br />

of an Avicennia litterfall study (Chale, 1996).<br />

mangrove physical structure <strong>and</strong> changes could<br />

be made, <strong>and</strong> effects of usage by local<br />

populations can be evaluated. As with the<br />

Almond Beach plots, the Dallmeier et al. (1992)<br />

plot method had been used to establish <strong>and</strong><br />

census that 1 hectare plot <strong>in</strong> 1995 <strong>and</strong> 1996.<br />

Twenty-five quadrats of 400 m 2 each were set<br />

up <strong>in</strong> a 2-quadrat wide belt, with one row 10<br />

quadrats long <strong>and</strong> the other 15 quadrats long<br />

(Figure 4.6). All trees of 10 cm or greater dbh<br />

were measured. Tree heights were recorded only<br />

<strong>in</strong> 1996, dur<strong>in</strong>g the second census. These data<br />

were obta<strong>in</strong>ed from Ramdass et al. (1997); an<br />

electronic version of data from the Alness plot<br />

was not available, <strong>and</strong> so those data pr<strong>in</strong>ted <strong>in</strong><br />

the report were re-entered <strong>in</strong>to the SI/MAB<br />

Biomon software.<br />

Dispersion Patterns of Trees<br />

For an analysis of the arrangement of trees<br />

<strong>in</strong> these plots, the dispersion pattern of<br />

<strong>in</strong>dividuals was calculated. Data from the <strong>in</strong>itial<br />

63<br />

1998 census only were used to measure<br />

dispersion for both the unburned <strong>and</strong> the burned<br />

plots. For each plot the XY coord<strong>in</strong>ates of<br />

<strong>in</strong>dividuals were calculated us<strong>in</strong>g the SI/MAB<br />

Biomon program (Comiskey et al. 1999). The<br />

Chen <strong>and</strong> Getis (1998) Po<strong>in</strong>t Pattern Analysis<br />

(PPA) package was utilized through its on-l<strong>in</strong>e<br />

application (Aldstadt et al. 1998), us<strong>in</strong>g the<br />

nearest neighbor algorithm to determ<strong>in</strong>e whether<br />

the spatial pattern of <strong>in</strong>dividuals was r<strong>and</strong>om,<br />

clustered, or over-dispersed. The nearest<br />

neighbor analysis calculates distances between<br />

each po<strong>in</strong>t <strong>and</strong> the closest po<strong>in</strong>t <strong>and</strong> compares<br />

those distances to expected distance values from<br />

a r<strong>and</strong>om sample of po<strong>in</strong>ts from a complete<br />

spatial r<strong>and</strong>omness pattern (Chen & Getis 1998).<br />

Figure 4.6. Layout of the Alness Village 1 hectare<br />

plot (Ramdass et al. 1997) with quadrat numbers <strong>and</strong><br />

tree locations. Quadrats 1-20 were used for dispersion<br />

analysis. This diagram of the l<strong>in</strong>ear plot has been<br />

divided <strong>in</strong>to two parts for display.


64<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

The output of the PPA program <strong>in</strong>cludes basic<br />

two dimensional statistics <strong>and</strong> a Z statistic (the<br />

st<strong>and</strong>ard normal variate) <strong>in</strong>dicat<strong>in</strong>g the<br />

probability of significant clump<strong>in</strong>g or overdispersion.<br />

The Alness Village 1 hectare plot was<br />

irregularly shaped, however a 0.8 ha portion<br />

formed a s<strong>in</strong>gle rectangle two quadrats wide<br />

(Figure 4.6) provid<strong>in</strong>g data that was compatible<br />

with requirements for the PPA software. The XY<br />

coord<strong>in</strong>ates for that rectangle were calculated<br />

from values for the component quadrats <strong>and</strong> run<br />

with the PPA software (Chen & Getis 1998).<br />

Biomass<br />

Us<strong>in</strong>g the allometric equations derived by<br />

Fromard et al. (1998), from Avicennia tree<br />

measurements <strong>in</strong> French Guiana, the aboveground<br />

biomass values for mangroves at<br />

Almond Beach <strong>and</strong> Alness Village were<br />

estimated for comparison with the values from<br />

French Guiana. The Fromard et al. (1998)<br />

formula for Avicennia trees above 4 cm dbh is:<br />

biomass = 0.14 * dbh 2.4 , with dbh <strong>in</strong> cm <strong>and</strong> the<br />

result<strong>in</strong>g biomass <strong>in</strong> kilograms; it <strong>in</strong>cludes dry<br />

weight of wood, leaves, fruit <strong>and</strong> flower, <strong>and</strong><br />

above-ground roots. For comparison with<br />

swamps of Guyana, additional mangrove<br />

biomass values from the literature were<br />

assembled from reviews by Lugo <strong>and</strong> Snedaker<br />

(1974) <strong>and</strong> Fromard et al. (1998) <strong>and</strong> plotted.<br />

Comparison with Other Plot Data<br />

To further illustrate the relationship of the<br />

Wa<strong>in</strong>i Pen<strong>in</strong>sula mangroves among mangrove<br />

ecosystems worldwide, basal area <strong>and</strong> stem<br />

density data for mangrove forests <strong>in</strong> several<br />

localities were compiled from sources <strong>in</strong> the<br />

literature (Bosire et al. 2003; Brocklehurst &<br />

Edmeades 2003; Cardona & Botero 1998; Chen<br />

& Twilley 1999; C<strong>in</strong>trón et al. 1978; Fromard<br />

et al. 1998; Golley et al. 1962; Kjerfve 1998;<br />

Lacerda et al. 2002; Lugo & C<strong>in</strong>trón 1975; Pool<br />

et al. 1977; Ramdass et al. 1997; Ross et al.<br />

2001; Roth 1992; Sherman et al. 2000; Snedaker<br />

et al. 1992; Walters 2000). Any reported mean<br />

tree or canopy heights were recorded, as were<br />

the geomorphic type of the swamps. Where<br />

possible the site locations were assigned to 5degree<br />

latitud<strong>in</strong>al classes.<br />

RESULTS<br />

Tree Mapp<strong>in</strong>g <strong>and</strong> Inventory<br />

Maps of tree locations on the six plots are<br />

given <strong>in</strong> Figures 4.7 to 4.12. A total of 65 trees<br />

(64 dead, <strong>in</strong>clud<strong>in</strong>g trees likely killed by fires<br />

<strong>and</strong> recently fallen, <strong>and</strong> 1 liv<strong>in</strong>g tree) were<br />

measured <strong>in</strong> the three comb<strong>in</strong>ed 0.1-ha plots <strong>in</strong><br />

the burned site (plots 1, 2, 6; Figures 4.7, 4.8,<br />

<strong>and</strong> 4.9), <strong>and</strong> 170 <strong>in</strong>dividual trees (dead <strong>and</strong><br />

alive) over all three sampl<strong>in</strong>gs <strong>in</strong> the unburned<br />

Avicennia swamp plots (plots 3, 4, 5; Figures<br />

4.10, 4.11, <strong>and</strong> 4.12).<br />

A. Dbh <strong>and</strong> Tree Height<br />

In the unburned forest, differences from any<br />

one sampl<strong>in</strong>g to the next were not statistically<br />

significant (p= 0.558 for 1998 vs 2000 <strong>and</strong> p=<br />

0.227 for 2000 vs 2001), while the difference<br />

approached the p=0.05 significance level<br />

between the first <strong>and</strong> last sampl<strong>in</strong>g (p= 0.076<br />

for 1998 vs 2001), <strong>in</strong>dicat<strong>in</strong>g that st<strong>and</strong> structure<br />

might be chang<strong>in</strong>g slowly over time, possibly<br />

to be <strong>in</strong>terpreted as a fairly young forest<br />

matur<strong>in</strong>g. Statistical tests paired by <strong>in</strong>dividual<br />

trees resulted <strong>in</strong> very low p-values, as would be<br />

expected s<strong>in</strong>ce <strong>in</strong>dividual trees almost <strong>in</strong>variably<br />

change over time. The unpaired tests were more<br />

suitable for evaluation of overall st<strong>and</strong> structure.<br />

The dbh of the trees rema<strong>in</strong><strong>in</strong>g <strong>in</strong> the burned<br />

plots were measured after <strong>in</strong>itial plot<br />

establishment <strong>in</strong> 1998, a few months after the<br />

end of fires. Trees <strong>in</strong> the burned plots which had<br />

apparently fallen recently were also measured,<br />

<strong>and</strong> it was assumed that any trees that were dead<br />

prior to the fires had been consumed. Dead trees<br />

<strong>in</strong> the unburned plots were omitted from these<br />

comparisons. For the unburned plots only the<br />

1998 data were used for comparisons. Variances<br />

<strong>and</strong> skewness between these data were different<br />

enough to <strong>in</strong>dicate use of non-parametric tests.<br />

Significant differences between dbh of burned<br />

<strong>and</strong> unburned plots were found with the nonparametric<br />

Wilcoxon rank-sum test, with a pvalue<br />

of 0.004.<br />

The maximum dbh recorded <strong>in</strong> the first<br />

sampl<strong>in</strong>g for trees at the burned site (65.5 cm)<br />

was higher than that of the unburned site (50<br />

cm). The mean dbh value at the burned site of<br />

31.3 cm was significantly higher than the value<br />

of 23.3 cm at the unburned site (p=0.0004,


Contributions to the Study of Biological Diversity Vol. 3<br />

Figure 4.7. Plot 1, unburned Avicennia swamp at<br />

Almond Beach. The symbol size represents the<br />

relative size of each tree that was mapped.<br />

Figure 4.9. Plot 6, unburned Avicennia swamp at<br />

Almond Beach. The symbol size represents the<br />

relative size of each tree that was mapped. L<strong>in</strong>es<br />

extend<strong>in</strong>g from a symbol represent fallen trees <strong>and</strong><br />

the direction of fall.<br />

Figure 4.11. Plot 4, burned Avicennia swamp at<br />

Almond Beach. The symbol size represents the<br />

relative size of each tree that was mapped. L<strong>in</strong>es<br />

extend<strong>in</strong>g from a symbol represent fallen trees <strong>and</strong><br />

the direction of fall; <strong>in</strong> the case of burned plots those<br />

were assumed to have been liv<strong>in</strong>g trees prior to fires.<br />

Welch’s modified two-sample t-test). The<br />

median dbh values were 28.5 cm for the burned<br />

site <strong>and</strong> 23.1 cm for the unburned site. Diameter<br />

class frequencies for the burned plots are<br />

graphed <strong>in</strong> Figure 4.13, <strong>and</strong> for the unburned<br />

plots (2001 census) are shown <strong>in</strong> Figure 4.14.<br />

The 1997 Alness plot <strong>and</strong> the 1998 unburned<br />

plot at Almond Beach had markedly different<br />

structures. The Alness mean dbh values of 16.15<br />

cm <strong>in</strong> 1995 <strong>and</strong> 16.49 cm <strong>in</strong> 1996 were not<br />

significantly different (t-test, p=0.59). The mean<br />

65<br />

Figure 4.8. Plot 2, unburned Avicennia swamp at<br />

Almond Beach. The symbol size represents the<br />

relative size of each tree that was mapped.<br />

Figure 4.10. Plot 3, burned Avicennia swamp at<br />

Almond Beach. The symbol size represents the<br />

relative size of each tree that was mapped. L<strong>in</strong>es<br />

extend<strong>in</strong>g from a symbol represent fallen trees <strong>and</strong><br />

the direction of fall; <strong>in</strong> the case of burned plots those<br />

were assumed to have been liv<strong>in</strong>g trees prior to fires.<br />

Figure 4.12. Plot 5, burned Avicennia swamp at<br />

Almond Beach. The symbol size represents the<br />

relative size of each tree that was mapped. L<strong>in</strong>es<br />

extend<strong>in</strong>g from a symbol represent fallen trees <strong>and</strong><br />

the direction of fall; <strong>in</strong> the case of burned plots those<br />

were assumed to have been liv<strong>in</strong>g trees prior to fires.<br />

dbh was 23.3 cm at Almond Beach compared to<br />

16.3 cm <strong>and</strong> at Alness; the median dbh at<br />

Almond Beach of 23.1 cm was significantly<br />

higher (p=0, Wilcoxon rank-sum test) than the<br />

median of 15 cm at Alness. For the Alness<br />

Village plots, a dbh distribution for the 1996<br />

sampl<strong>in</strong>g is graphed <strong>in</strong> Figure 4.17.<br />

Maximum tree heights were 36 meters <strong>in</strong><br />

the burned forest <strong>and</strong> 34 meters <strong>in</strong> the unburned<br />

forest. Mean tree heights were 21.3 meters <strong>in</strong><br />

the burned site <strong>and</strong> 18 meters <strong>in</strong> the unburned


66<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Figure 4.13. Dbh class distribution for the three<br />

burned plots comb<strong>in</strong>ed (0.3 ha), at Almond Beach,<br />

from the 1998 sampl<strong>in</strong>g. Only liv<strong>in</strong>g stems are<br />

assumed to have rema<strong>in</strong>ed after the fire. Recently<br />

fallen trees killed <strong>in</strong> the fires were measured <strong>and</strong><br />

<strong>in</strong>cluded. The graph suggests periodic waves of<br />

successful recruitment. The higher frequency <strong>in</strong> the<br />

25-30 cm size class is also seen <strong>in</strong> the unburned<br />

swamp.<br />

Figure 4.14. Dbh class distribution for the three<br />

unburned plots, comb<strong>in</strong>ed (0.3 ha), at Almond Beach,<br />

2001. Only liv<strong>in</strong>g stems were <strong>in</strong>cluded.<br />

site; those were not significantly different (p=<br />

0.268, Wilcoxon rank-sum test). A graph of tree<br />

height classes for unburned <strong>and</strong> burned plots is<br />

given <strong>in</strong> Figure 4.15. A plot of dbh vs height for<br />

all unbroken trees <strong>in</strong> all plots is provided <strong>in</strong><br />

Figure 4.16; a logarithmic regression provided<br />

a best fit for those data, with a formula of<br />

y=12.066 Ln (x)-16.595, R 2 =0.585, which could<br />

be employed to estimate tree height <strong>in</strong> other<br />

Avicennia forests. Tree height data were<br />

collected for Alness only <strong>in</strong> 1996, result<strong>in</strong>g <strong>in</strong> a<br />

mean height of 6.8 meters <strong>and</strong> a maximum<br />

height of 19 meters. Mean tree height at Alness<br />

was 6.8 meters compared to 20.7 meters at<br />

Almond Beach. The median tree height at Alness<br />

Village of 6 meters was significantly lower (p=0,<br />

Figure 4.15. Dbh class distribution for 1996 sampl<strong>in</strong>g<br />

of the Alness Village plot (1 ha). (Ramdass et al.<br />

1997). Only liv<strong>in</strong>g stems are <strong>in</strong>cluded. This plot is<br />

reported by the researchers as hav<strong>in</strong>g been frequently<br />

disturbed.<br />

Figure 4.16. Height class distribution for trees <strong>in</strong><br />

unburned <strong>and</strong> burned plots at Almond Beach, 1998<br />

sampl<strong>in</strong>g. Mean tree heights were 21.3 m <strong>in</strong> the<br />

burned plots <strong>and</strong> 18 m <strong>in</strong> the unburned plots. Medians<br />

were not significantly different, (p= 0.268 us<strong>in</strong>g<br />

Wilcoxon ranksum test).<br />

Figure 4.17. Tree diameter vs tree height for all<br />

unbroken trees <strong>in</strong> the Almond Beach plots, with a<br />

log-normal trend l<strong>in</strong>e.


Contributions to the Study of Biological Diversity Vol. 3<br />

Wilcoxon rank-sum test) than the 1998 Almond<br />

Beach unburned plot median of 21 meters. A<br />

graph of tree heights classes for the Alness<br />

Village plot is provided <strong>in</strong> Figure 4.18. Summary<br />

statistics for the plots over all years sampled are<br />

listed <strong>in</strong> Table 4.2.<br />

Figure 4.18. Alness Village plot tree height frequency<br />

distribution.<br />

Table 4.2. Summary statistics for trees <strong>in</strong> unburned <strong>and</strong> burned plots at the Almond Beach sites <strong>and</strong> the Alness<br />

Village site<br />

Site<br />

Burned 1998<br />

Unburned 1998<br />

Unburned 2000<br />

Unburned 2001<br />

Alness 1995<br />

Alness 1996<br />

Maximum<br />

65.5<br />

50.0<br />

51.4<br />

52.5<br />

47.5<br />

49.0<br />

B. Basal Area<br />

The basal area for trees that were located<br />

<strong>in</strong> the comb<strong>in</strong>ed three burned plots, measured<br />

only <strong>in</strong> 1998, was 20.43 m 2 /ha. The basal areas<br />

of liv<strong>in</strong>g trees <strong>in</strong> the comb<strong>in</strong>ed three unburned<br />

plots, were 21.25 m 2 /ha <strong>in</strong> 1998, 22.36 m 2 /ha <strong>in</strong><br />

2000 <strong>and</strong> 23.16 m 2 /ha <strong>in</strong> 2001. Over the 34<br />

month study period, basal area <strong>in</strong> the three<br />

unburned plots <strong>in</strong>creased by 1.91 m 2 /ha. Three<br />

pairs of t-tests were made to compare means<br />

between the three years for the grouped<br />

unburned plots. Between the three years<br />

variances of distributions were similar, therefore<br />

t-tests were acceptable; they were used for both<br />

paired <strong>and</strong> unpaired data. For the Alness Village<br />

plots sampled by Ramdass et al. (1997), basal<br />

dbh (cm) Height (m)<br />

Mean Median Maximum Mean<br />

31.3<br />

23.3<br />

24.0<br />

25.5<br />

16.1<br />

16.3<br />

28.5<br />

23.1<br />

24.0<br />

25.9<br />

14.95<br />

15.0<br />

36<br />

34<br />

na<br />

na<br />

na<br />

19<br />

21.3<br />

20.7<br />

na<br />

na<br />

na<br />

6.8<br />

67<br />

areas were 10.07 m 2 /ha <strong>in</strong> 1995 <strong>and</strong> 10.28 m 2 /<br />

ha <strong>in</strong> 1996 (not significantly different, p=0.42).<br />

C. Dispersion<br />

For the unburned plots, nearest neighbor<br />

analysis of plot 1 resulted <strong>in</strong> an observed mean<br />

distance between trees of 2.22 m while the<br />

expected distance was 2.48 m, with a z-value of<br />

-1.16. This negative Z statistic value <strong>in</strong>dicates<br />

that, while a clustered distribution was observed,<br />

it was not quite significantly different from a<br />

r<strong>and</strong>om distribution at the p=0.05 level. For plot<br />

2 the mean distance between trees was 2.75 m<br />

with an expected distance of 2.66 m. The Z<br />

statistic obta<strong>in</strong>ed from the nearest-neighbor<br />

analysis suggested slightly over-dispersed<br />

(uniform) distribution, however the tendency<br />

was not significantly different from a r<strong>and</strong>om<br />

distribution, with Z=0.33. For plot 6 the mean<br />

distance between trees was 2.48, with an<br />

expected distance of 2.18. The Z statistic value<br />

of 1.686 <strong>in</strong>dicated a tendency toward over-<br />

Median<br />

22<br />

21<br />

na<br />

na<br />

na<br />

6<br />

dispersion but slightly below statistical<br />

significance at the p=0.05 level.<br />

For the three burned plots, all po<strong>in</strong>t pattern<br />

analyses resulted <strong>in</strong> positive Z statistic values<br />

<strong>in</strong>dicative of over-dispersion, however with no<br />

significant tendencies (Z statistic values were <<br />

1.96, p>0.05). Plot 3 data showed a mean<br />

distance between trees of 3.80 m, <strong>and</strong> an<br />

expected value of 3.28 m with a Z statistic value<br />

of 1.331. The mean distance between trees <strong>in</strong><br />

plot 4 was 4.40 m, with an expected value of<br />

3.83 m <strong>and</strong> a Z statistic value of 1.076. Plot 5<br />

had an mean distance between trees of 3.80 m<br />

<strong>and</strong> an expected distance of 3.39 m with Z<br />

statistic value of 0.99.


68<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

The Alness Village plot nearest neighbor<br />

analysis found an mean distance between trees<br />

of 1.86 m, with an expected distance of 2.34 m,<br />

<strong>in</strong>dicat<strong>in</strong>g a highly significant clustered<br />

distribution of trees for that plot (Z = -7.2114).<br />

D. Density <strong>and</strong> Population Turnover<br />

<strong>in</strong> the Avicennia Forest<br />

Stem densities between the two sites were<br />

very similar, with Alness density be<strong>in</strong>g 445<br />

stems per ha compared to an Almond Beach<br />

unburned plot density of 440 stems per ha.<br />

Alness stem density decreased from 445 stems/<br />

ha to 436 stems/ha over the one year <strong>in</strong>terval.<br />

In the three 0.1-ha unburned Avicennia plots,<br />

only four new trees entered the >10 cm<br />

population over the 34 month study period: two<br />

dur<strong>in</strong>g the 1998-2000 <strong>in</strong>terval <strong>and</strong> two dur<strong>in</strong>g<br />

the 2000-2001 <strong>in</strong>terval. Over the same <strong>in</strong>tervals,<br />

a total of 29 trees died or disappeared from the<br />

liv<strong>in</strong>g Avicennia plots, seven dur<strong>in</strong>g the 1998-<br />

2000 <strong>in</strong>terval <strong>and</strong> 22 dur<strong>in</strong>g the 2000-2001<br />

<strong>in</strong>terval.<br />

The number of liv<strong>in</strong>g trees <strong>in</strong> the three<br />

unburned plots (0.3 ha total) was 132 <strong>in</strong> the 1998<br />

census, 130 <strong>in</strong> 2000 <strong>and</strong> 115 <strong>in</strong> 2001,<br />

correspond<strong>in</strong>g to per ha densities of 440, 433.3<br />

<strong>and</strong> 383.3 stems respectively. The density of<br />

liv<strong>in</strong>g trees therefore decreased <strong>in</strong> the first<br />

<strong>in</strong>terval by 6.7 per ha <strong>and</strong> <strong>in</strong> the second <strong>in</strong>terval<br />

by 50 per ha. In the burned plots, only 64 trees<br />

were located <strong>in</strong> the s<strong>in</strong>gle census, a density of<br />

213.3 trees per ha. The Alness Village plot had<br />

a density of 445 stems/ha <strong>in</strong> the first census <strong>and</strong><br />

436 stems/ha <strong>in</strong> the second census, a decrease<br />

of 9 stems/ha.<br />

E. Biomass<br />

Estimated biomass values for the Almond<br />

Table 4.3. Biomass <strong>and</strong> basal area values for plots at<br />

Almond Beach by site <strong>and</strong> year <strong>and</strong> for Alness Village<br />

by year. Biomass values were calculated from the<br />

allometric formula of Fromard et al. (1998).<br />

Site<br />

Unburned 1998<br />

Unburned 2000<br />

Unburned 2001<br />

Burned 1998<br />

Alness 1995<br />

Alness 1996<br />

Biomass<br />

kg/ha<br />

145,637<br />

155,641<br />

163,632<br />

165,207<br />

58,605<br />

60,300<br />

Basal area<br />

m 2 /ha<br />

21.25<br />

22.36<br />

23.16<br />

20.43<br />

10.07<br />

10.27<br />

Beach plots <strong>and</strong> for the Ramdass et al. (1997)<br />

Alness Village plots are given with the<br />

correspond<strong>in</strong>g basal areas <strong>in</strong> Table 4.3. The 1998<br />

biomass value for the burned plots of 165,207<br />

kg/ha was slightly higher than the unburned plot<br />

mean of 154,970 kg/ha, though the basal area<br />

totals for the burned plots was lower than for<br />

the unburned plots.<br />

Worldwide biomass values gathered from<br />

the literature are summarized <strong>in</strong> descend<strong>in</strong>g<br />

order <strong>in</strong> Table 4.4 <strong>and</strong> graphed <strong>in</strong> Figure 4.19.<br />

The Guyana values from Almond Beach <strong>and</strong><br />

Alness Village plots are emphasized (bold pr<strong>in</strong>t)<br />

<strong>in</strong> both the graph <strong>and</strong> table. The maximum<br />

biomass value was 460,000 kg per ha, from a<br />

plot <strong>in</strong> Malaya, while the mean for all values,<br />

<strong>in</strong>clud<strong>in</strong>g dwarf <strong>and</strong> early successional st<strong>and</strong>s,<br />

was 159,328 kg/ha, <strong>in</strong> the range of values from<br />

the Almond Beach plots.<br />

Figure 4.19. Mangrove biomass values (kg/ha) from<br />

compiled studies, sources <strong>in</strong>cluded Lugo & Snedaker<br />

(1974) <strong>and</strong> Fromard (1998). Values from Guyana are<br />

shaded black, others from the Neotropics are <strong>in</strong> black,<br />

<strong>and</strong> values from the Asian-Pacific region are <strong>in</strong> white.<br />

Labels for values from this study are labeled <strong>in</strong> bold<br />

type. Units are <strong>in</strong> dry weight.<br />

Small Woody <strong>Plant</strong>s<br />

The “B” subplots sampled very few<br />

<strong>in</strong>dividuals from 1 cm <strong>and</strong> less than 5 cm dbh<br />

(sapl<strong>in</strong>gs). Only one liv<strong>in</strong>g <strong>in</strong>dividual <strong>in</strong> the size<br />

range was recorded <strong>in</strong> all unburned plots over<br />

all census dates, an Avicennia sapl<strong>in</strong>g of 2.8 cm<br />

dbh <strong>in</strong> plot 6 <strong>in</strong> the October 2001 census. Dur<strong>in</strong>g<br />

that sampl<strong>in</strong>g there were 14 Laguncularia <strong>and</strong><br />

four Avicennia sapl<strong>in</strong>gs located <strong>in</strong> the “B”<br />

subplots of plot 4 <strong>in</strong> the burned swamp. The<br />

basal areas of these small sapl<strong>in</strong>gs were 0.10


Contributions to the Study of Biological Diversity Vol. 3<br />

Table 4.4. Mangrove biomass values from 46 additional plot sites worldwide, compiled from the literature, <strong>in</strong><br />

descend<strong>in</strong>g order. Values from Almond Beach <strong>and</strong> the Alness Village study are highlighted <strong>in</strong> bold face.<br />

Biomass Values<br />

Malaya<br />

Indonesia<br />

Indonesia<br />

Indonesia<br />

Australia<br />

Fr. Guiana<br />

Malaya<br />

Indonesia<br />

Panama<br />

Panama<br />

Sri Lanka<br />

Australia<br />

Andaman Isl.<br />

Sri Lanka<br />

Indonesia<br />

Florida, river<strong>in</strong>e<br />

Guyana 1998 (burned)<br />

Florida<br />

Thail<strong>and</strong><br />

Florida, fr<strong>in</strong>ge<br />

Guadeloupe<br />

Malaya<br />

Guyana 1998<br />

Florida, overwash<br />

Florida<br />

Andaman Isl.<br />

Florida, overwash<br />

India<br />

Florida, fr<strong>in</strong>ge<br />

Japan<br />

New Zeal<strong>and</strong><br />

India<br />

Guadeloupe<br />

Florida, river<strong>in</strong>e<br />

Florida, fr<strong>in</strong>ge<br />

Sri Lanka<br />

Puerto Rico<br />

Puerto Rico<br />

Senegal<br />

Guyana, Alness 1995<br />

Guadeloupe<br />

Florida, Isl<strong>and</strong><br />

Philipp<strong>in</strong>es<br />

Fr. Guiana<br />

Florida<br />

Florida<br />

New Zeal<strong>and</strong><br />

India<br />

Mean<br />

Median<br />

Max<br />

M<strong>in</strong><br />

Biomass kg/ha<br />

460,000<br />

436,400<br />

406,600<br />

356,800<br />

341,000<br />

315,000<br />

314,000<br />

299,100<br />

279,212<br />

279,200<br />

240,000<br />

220,800<br />

214,000<br />

193,000<br />

178,200<br />

173,900<br />

165,207<br />

164,000<br />

159,100<br />

152,868<br />

152,300<br />

147,000<br />

145,637<br />

129,645<br />

124,600<br />

124,000<br />

119,582<br />

118,700<br />

117,523<br />

108,100<br />

104,100<br />

101,900<br />

98,600<br />

98,218<br />

86,192<br />

71,000<br />

62,900<br />

62,850<br />

60,000<br />

58,605<br />

52,800<br />

48,968<br />

45,936<br />

31,500<br />

8,200<br />

7,900<br />

6,800<br />

5,800<br />

159,328<br />

127,123<br />

460,000<br />

5,800<br />

Source<br />

Fromard, 1998<br />

Fromard, 1998<br />

Fromard, 1998<br />

Fromard, 1998<br />

Fromard, 1998<br />

Fromard, 1998<br />

Fromard, 1998<br />

Fromard, 1998<br />

Lugo & Snedaker, 1974<br />

Fromard, 1998<br />

Fromard, 1998<br />

Fromard, 1998<br />

Fromard, 1998<br />

Fromard, 1998<br />

Fromard, 1998<br />

Lugo & Snedaker, 1974<br />

This study (Fromard equation)<br />

Fromard, 1998<br />

Fromard, 1998<br />

Lugo & Snedaker, 1974<br />

Fromard, 1998<br />

Fromard, 1998<br />

This study (Fromard equation)<br />

Lugo & Snedaker, 1974<br />

Fromard, 1998<br />

Fromard, 1998<br />

Lugo & Snedaker, 1974<br />

Fromard, 1998<br />

Lugo & Snedaker, 1974<br />

Fromard, 1998<br />

Fromard, 1998<br />

Fromard, 1998<br />

Fromard, 1998<br />

Lugo & Snedaker, 1974<br />

Lugo & Snedaker, 1974<br />

Fromard, 1998<br />

Fromard, 1998<br />

Lugo & Snedaker, 1974<br />

Fromard, 1998<br />

Ramdass et al., 1998 (Fromard eq.)<br />

Fromard, 1998<br />

Lugo & Snedaker, 1974<br />

Lugo & Snedaker, 1974<br />

Fromard, 1998<br />

Fromard, 1998<br />

Fromard, 1998<br />

Fromard, 1998<br />

Fromard, 1998<br />

69


70<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

m 2 /ha <strong>in</strong> the unburned swamp <strong>and</strong> 2.02 m 2 /ha<br />

<strong>in</strong> the burned swamp. In the three 0.01 ha “C”<br />

subplots <strong>in</strong> the unburned swamp, only four<br />

sapl<strong>in</strong>gs from 5 cm dbh up to 10 cm dbh were<br />

found <strong>in</strong> the three unburned “C” plots <strong>in</strong> the<br />

first census, six sapl<strong>in</strong>gs <strong>in</strong> the second census,<br />

<strong>and</strong> seven <strong>in</strong> the third census, with total basal<br />

areas of 0.68, 0.87 <strong>and</strong> 1.1 m 2 /ha respectively.<br />

A summary of changes <strong>in</strong> small woody plant<br />

basal areas is illustrated <strong>in</strong> Figure 4.20.<br />

Figure 4.20. Changes <strong>in</strong> basal area for burned plots,<br />

for small woody plant species from 1 cm dbh to less<br />

than10 cm dbh, over three sampl<strong>in</strong>gs.<br />

Herbaceous <strong>Plant</strong>s<br />

Herbaceous vegetation composition varied<br />

dramatically over four sampl<strong>in</strong>gs. The<br />

vegetation <strong>in</strong> both burned <strong>and</strong> unburned plot<br />

areas was <strong>in</strong>fluenced to a great degree by recent<br />

precipitation amounts <strong>and</strong> the levels of st<strong>and</strong><strong>in</strong>g<br />

water <strong>in</strong> the swamp, which varied significantly.<br />

In the unburned plots, the first sampl<strong>in</strong>g <strong>in</strong><br />

November 1998 took place after a period of high<br />

ra<strong>in</strong>fall, which was reflected <strong>in</strong> 33% areal<br />

coverage of the small float<strong>in</strong>g aquatic plant<br />

Lemna aequ<strong>in</strong>octialis Welw. <strong>and</strong> some presence<br />

of Rhizoclonium africanum algae on<br />

pneumatophores of the Avicennia trees. Drier<br />

conditions prior to the second sampl<strong>in</strong>g <strong>in</strong> April<br />

2000 apparently provided good conditions for<br />

germ<strong>in</strong>ation of Avicennia propagules, when the<br />

highest coverage rate of those was recorded, at<br />

just over 2% . The third sampl<strong>in</strong>g <strong>in</strong> April 2001<br />

followed an extended dry period, <strong>and</strong> almost no<br />

herbaceous vegetation was recorded other than<br />

a few Avicennia seedl<strong>in</strong>gs. For the f<strong>in</strong>al sampl<strong>in</strong>g<br />

of October 2001, conditions had been less dry,<br />

<strong>and</strong> there was a slight <strong>in</strong>crease <strong>in</strong> the coverage<br />

of Avicennia seedl<strong>in</strong>gs.<br />

While herbaceous vegetation was largely<br />

absent from the unburned Avicennia plots<br />

(Figure 4.21), it was present <strong>in</strong> the burned<br />

swamp throughout the sampl<strong>in</strong>gs (Figure 4.22).<br />

The float<strong>in</strong>g aquatic Lemna aequ<strong>in</strong>octialis was<br />

common for several months follow<strong>in</strong>g the fires,<br />

Figure 4.21. Changes <strong>in</strong> percent areal coverage of<br />

herbaceous species <strong>in</strong> unburned Avicennia plots, over<br />

four sampl<strong>in</strong>gs, 1998-2001.<br />

Figure 4.22. Changes <strong>in</strong> percent areal coverage of<br />

herbaceous species <strong>in</strong> burned Avicennia plots, over<br />

four sampl<strong>in</strong>gs, 1998-2001.<br />

with 53.8% cover dur<strong>in</strong>g the 1998 sampl<strong>in</strong>g.<br />

Dur<strong>in</strong>g the May 2000 sampl<strong>in</strong>g, two years after<br />

the fires, the predom<strong>in</strong>ant float<strong>in</strong>g aquatic<br />

vegetation was Limnobium laevigatum (Humb.<br />

& Bonpl. ex Willd.) He<strong>in</strong>e (58.8% cover), along<br />

with some spots of the sprawl<strong>in</strong>g terrestrial herb<br />

Alternanthera sessilis (L.) R.Br. ex DC (14%<br />

cover) <strong>and</strong> Acrostichum ferns on a few slightly<br />

elevated areas present <strong>in</strong> the vic<strong>in</strong>ity but not<br />

sampled. The April 2001 sampl<strong>in</strong>g followed a<br />

strong dry season, <strong>and</strong> the dom<strong>in</strong>ant herbaceous<br />

vegetation <strong>in</strong> the burned areas was<br />

Alternanthera (12.6% cover). The f<strong>in</strong>al


Contributions to the Study of Biological Diversity Vol. 3<br />

sampl<strong>in</strong>g <strong>in</strong> October 2001 also followed a dry<br />

season, <strong>and</strong> showed a sharp <strong>in</strong>crease <strong>in</strong><br />

dom<strong>in</strong>ance of Alternanthera (67.5% cover) <strong>in</strong><br />

the burned area plots <strong>and</strong> an <strong>in</strong>crease <strong>in</strong> seedl<strong>in</strong>gs<br />

of white mangrove Laguncularia racemosa<br />

(from 0.07% to 1.33% cover) which were<br />

concentrated <strong>in</strong> areas near the scattered<br />

surviv<strong>in</strong>g <strong>in</strong>dividuals of that species.<br />

Chi square analyses were performed with<br />

herbaceous plants both burned <strong>and</strong> unburned<br />

plot data matrices by species over the four<br />

sampl<strong>in</strong>g periods (Table 4.5), test<strong>in</strong>g for<br />

differences between expected <strong>and</strong> observed<br />

values of percent cover. Expected values were<br />

derived from the product of the percent coverage<br />

Table 4.5. Mean percent cover for herbaceous species over the four sampl<strong>in</strong>gs <strong>in</strong> burned <strong>and</strong> unburned plots.<br />

These data presented <strong>in</strong> graphical form <strong>in</strong> Figure 4.21 for unburned plots <strong>and</strong> 4.23 for burned plots.<br />

Acrostichum<br />

Alternanthera<br />

Avicennia<br />

Cissus<br />

Ceratophyllum<br />

Cyperus<br />

Eclipta<br />

Laguncularia<br />

Lemna<br />

Limnobium<br />

Mor<strong>in</strong>da<br />

Rhabdadenia<br />

Rhizoclonium<br />

Bostrichia<br />

Total % cover<br />

1998<br />

0.33<br />

0.83<br />

53.83<br />

2.33<br />

4.67<br />

62.00<br />

2000<br />

14.07<br />

0.03<br />

0.07<br />

0.37<br />

0.83<br />

5.83<br />

58.83<br />

1.67<br />

3.33<br />

85.03<br />

2001<br />

12.60<br />

0.13<br />

1.13<br />

3.73<br />

0.07<br />

0.03<br />

17.70<br />

totals for the column <strong>and</strong> row of each<br />

comb<strong>in</strong>ation of date <strong>and</strong> taxon, divided by the<br />

gr<strong>and</strong> total for all comb<strong>in</strong>ations. Percent<br />

coverage for all “A” subplots <strong>in</strong> the three plots<br />

at each site were averaged. For both burned <strong>and</strong><br />

unburned sites, differences <strong>in</strong> values for<br />

herbaceous cover were statistically significant<br />

between the species over the four sampl<strong>in</strong>gs,<br />

with p < 0.001 <strong>in</strong> both burned <strong>and</strong> unburned<br />

habitats.<br />

Pr<strong>in</strong>cipal Components Analysis (PCA)<br />

allows summarization of multivariate data for<br />

visualization <strong>in</strong> two or three dimensional<br />

Burned Unburned<br />

2001b<br />

67.50<br />

0.07<br />

0.27<br />

1.33<br />

1.17<br />

70.33<br />

1998<br />

0.37<br />

33.33<br />

4.53<br />

38.23<br />

2000<br />

0.03<br />

2.03<br />

2.07<br />

2001<br />

0.37<br />

0.37<br />

2001b<br />

0.33<br />

1.63<br />

0.07<br />

2.03<br />

71<br />

display, by determ<strong>in</strong><strong>in</strong>g optimal st<strong>and</strong>ardized<br />

l<strong>in</strong>ear comb<strong>in</strong>ations of many variables. PCA was<br />

performed us<strong>in</strong>g herbaceous data from all six<br />

plots over the four sampl<strong>in</strong>g dates from 1998 to<br />

2001.<br />

In the PCA Ord<strong>in</strong>ation, the three first axes<br />

(Figure 4.23) account for over 98% of the<br />

variance <strong>in</strong> this ord<strong>in</strong>ation (Figure 4.24). Three<br />

taxa have the major <strong>in</strong>fluence (load<strong>in</strong>gs) on these<br />

components: Alternanthera, Lemna, <strong>and</strong><br />

Limnobium (Figure 4.25). The pr<strong>in</strong>cipal<br />

components biplot graph displays the orig<strong>in</strong>al<br />

taxon variables on the same axes with the<br />

transformed observations.<br />

The Lemna vector represented the relative<br />

load<strong>in</strong>gs of the two most important pr<strong>in</strong>cipal<br />

components for the 1998 sampl<strong>in</strong>g, trend<strong>in</strong>g<br />

towards the position of po<strong>in</strong>ts for plots 3 (po<strong>in</strong>t<br />

#9), 4 (#13) <strong>and</strong> 5 (#17). The highest values for<br />

Lemna <strong>in</strong> plot 4 were nearly matched by those<br />

for plot 1 (#1). The Limnobium vector had as its<br />

extreme po<strong>in</strong>ts the 2000 sampl<strong>in</strong>g <strong>in</strong> burned<br />

plots 3 (#10), 4 (#14) <strong>and</strong> 5 (#18). The<br />

Alternanthera vector showed extremes on the<br />

October 2001 sampl<strong>in</strong>g, <strong>in</strong> burned plots 3 (#12),<br />

4 (#16) <strong>and</strong> 5 (#20). Alternanthera was also<br />

strongly represented <strong>in</strong> the March 2001<br />

sampl<strong>in</strong>g <strong>in</strong> plot 4 (#15).


72<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Figure 4.23. Pr<strong>in</strong>cipal Components Analysis (PCA)<br />

biplot for percent areal coverage of herbaceous<br />

vegetation <strong>in</strong> burned plots. The coverage for the<br />

float<strong>in</strong>g aquatics Lemna <strong>and</strong> Limnobium <strong>and</strong> the<br />

annual herb Alternanthera account for most of the<br />

variance with<strong>in</strong> the data.<br />

Figure 4.24. Relative importance of the Pr<strong>in</strong>cipal<br />

Components for herbaceous vegetation of burned<br />

plots. The cumulative importance for the first three<br />

components is 98.8%, <strong>in</strong>dicat<strong>in</strong>g that they are<br />

overwhelm<strong>in</strong>gly responsible for variances <strong>in</strong> these<br />

data.<br />

All other species <strong>in</strong> the PCA ord<strong>in</strong>ation had<br />

m<strong>in</strong>or cover <strong>and</strong> were outweighed by other taxa,<br />

<strong>and</strong> so clustered <strong>in</strong> the center of the graph.<br />

Except for the occurrence of moderate Lemna<br />

coverage <strong>in</strong> 1998, the unburned plots fell <strong>in</strong>to<br />

that space because of very sparse herbaceous<br />

cover.<br />

Well Levels<br />

Hydrology <strong>in</strong> the Wa<strong>in</strong>i Pen<strong>in</strong>sula<br />

Figure 4.25. Load<strong>in</strong>gs for the pr<strong>in</strong>cipal components<br />

for herb species <strong>in</strong> the burned plots.<br />

Avicennia swamps is dom<strong>in</strong>ated by ra<strong>in</strong>fall,<br />

because tidal <strong>in</strong>fluence is limited by beach ridges<br />

along much of the coast. Outlets to the ocean<br />

are <strong>in</strong>frequent, <strong>and</strong> creeks dra<strong>in</strong><strong>in</strong>g the swamps<br />

often empty first <strong>in</strong>to lagoons, some of which<br />

are above mean sea level, limit<strong>in</strong>g tidal<br />

<strong>in</strong>fluence. Changes <strong>in</strong> the lagoon outlets can<br />

have significant <strong>in</strong>fluence on hydrology of the<br />

swamps near the coast. Well levels recorded <strong>in</strong><br />

the burned <strong>and</strong> unburned Avicennia swamps are<br />

shown <strong>in</strong> Figure 4.26. Water levels <strong>in</strong> both<br />

burned <strong>and</strong> unburned plots followed very similar<br />

patterns of fluctuation, <strong>and</strong> rema<strong>in</strong>ed above the<br />

Figure 4.26. Well levels <strong>in</strong> burned <strong>and</strong> unburned areas<br />

over the period from the first to third sampl<strong>in</strong>gs of<br />

herbaceous vegetation. A drought <strong>in</strong> early 2001 is<br />

conspicuous, though its severity was far less than<br />

the 1997-1998 drought that led to the fires on Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula.


Contributions to the Study of Biological Diversity Vol. 3<br />

surface of the substrate until early 2001. Those<br />

peaked around 25 cm above the surface dur<strong>in</strong>g<br />

wet seasons.<br />

DISCUSSION<br />

Guyana Plots<br />

Avicennia swamps are typical of early<br />

succession on the coasts of the Guianas, as<br />

evidenced by monospecific b<strong>and</strong>s of young trees<br />

on accret<strong>in</strong>g parts of the coastl<strong>in</strong>e. This was<br />

evidenced by the Avicennia community<br />

documented here through the <strong>in</strong>creases <strong>in</strong> size<br />

of <strong>in</strong>dividual trees between the “younger” area<br />

of the unburned plots <strong>and</strong> the burned plots <strong>in</strong><br />

supposedly “older” areas farther from the Wa<strong>in</strong>i<br />

Po<strong>in</strong>t. There was also an <strong>in</strong>crease <strong>in</strong> mean dbh<br />

<strong>and</strong> biomass with<strong>in</strong> the unburned swamp over<br />

time, from sampl<strong>in</strong>g to sampl<strong>in</strong>g. The mean dbh<br />

value of the burned plots was significantly (p=<br />

0.004) more than the mean for the unburned<br />

plots at Almond Beach, but it is also possible<br />

that some smaller liv<strong>in</strong>g stems <strong>in</strong> the burned<br />

swamp were completely consumed by fire. Both<br />

the maximum diameters <strong>and</strong> maximum tree<br />

heights recorded <strong>in</strong> the burned swamp were also<br />

higher than <strong>in</strong> the unburned swamp, suggest<strong>in</strong>g<br />

that the forest structures of the two areas were<br />

different before the fires, <strong>and</strong> that the burned<br />

area was a somewhat more mature mangrove<br />

st<strong>and</strong>. Probably neither st<strong>and</strong> had reached an<br />

equilibrium s<strong>in</strong>ce their <strong>in</strong>itial establishments.<br />

Basal areas of liv<strong>in</strong>g trees <strong>in</strong> the unburned plots<br />

<strong>in</strong>creased over both sampl<strong>in</strong>g <strong>in</strong>tervals, 1.11 m 2 /<br />

ha <strong>in</strong> the first <strong>in</strong>terval <strong>and</strong> only 0.8 m 2 /ha <strong>in</strong> the<br />

second, suggest<strong>in</strong>g that it was a young, grow<strong>in</strong>g<br />

st<strong>and</strong>. An observed gradual <strong>in</strong>crease <strong>in</strong><br />

frequency of Rhizophora trees <strong>in</strong> the swamps<br />

along the Wa<strong>in</strong>i Pen<strong>in</strong>sula coast to the southeast<br />

of Almond Beach also supported the idea that<br />

an equilibrium had not been reached.<br />

The very low numbers of seedl<strong>in</strong>gs <strong>and</strong><br />

trees less than 10 cm dbh also suggested that<br />

recruitment was poor, <strong>and</strong> occurred periodically<br />

rather than consistently from year to year. Dbh<br />

distributions of trees with<strong>in</strong> the Almond Beach<br />

Avicennia swamps, with <strong>in</strong>terspersed classes of<br />

high <strong>and</strong> low frequency, suggest periodic<br />

recruitment waves.<br />

Although both median basal areas <strong>and</strong> tree<br />

73<br />

heights were significantly higher at Almond<br />

Beach than at Alness Village, the occurrence of<br />

a few <strong>in</strong>dividuals with dbh similar to the<br />

maximum at Almond Beach (49 cm dbh vs 50<br />

cm dbh) suggests that the Alness Village st<strong>and</strong><br />

had been present for some time <strong>and</strong> might have<br />

matured to a structure similar to the Almond<br />

Beach st<strong>and</strong>s, if undisturbed by tree cutt<strong>in</strong>g.<br />

Utilization impacts should be considered <strong>in</strong> the<br />

development of mangrove management plans.<br />

Prior to this Almond Beach plot study no data<br />

from Guyana were available to allow<br />

comparison with the Alness Village Avicennia<br />

forest.<br />

Stem density also decreased slightly <strong>in</strong> the<br />

Alness Village plots over the one year <strong>in</strong>terval,<br />

while basal area <strong>in</strong>creased, although differences<br />

between the two years were not highly<br />

significant. Still, the <strong>in</strong>crease suggested an<br />

Avicennia population that was grow<strong>in</strong>g <strong>and</strong><br />

perhaps recover<strong>in</strong>g from disturbance. Ramdass<br />

et al. (1997) conjectured that ongo<strong>in</strong>g low-level<br />

disturbances occurred <strong>in</strong> that swamp, probably<br />

through periodic cutt<strong>in</strong>g, but he also believed<br />

that the visible tree tags <strong>in</strong> the Alness plots may<br />

have made local people may wary of utiliz<strong>in</strong>g<br />

those trees. Stem density data were available for<br />

89 of the worldwide plots compiled from the<br />

literature, with values rang<strong>in</strong>g from 267 stems/<br />

ha to 47,330 stems/ha. The comb<strong>in</strong>ed Almond<br />

Beach unburned plots had a stem density of 413<br />

stems/ha, compared to the compiled median of<br />

3,120 stems/ha for all plots <strong>and</strong> the mean of<br />

5,493.8 stems/ha. Stem densities from those<br />

plots are graphed with Almond Beach values <strong>in</strong><br />

Figure 4.27.<br />

Tree heights were compiled for 61<br />

worldwide plots, with st<strong>and</strong> height values<br />

rang<strong>in</strong>g from 2.9 meters to 23 meters; the<br />

median for those values was 10 meters <strong>and</strong> the<br />

mean 10.98 meters. That compares to mean<br />

heights of 18 meters <strong>in</strong> the unburned Almond<br />

Beach swamp <strong>and</strong> 21.3 meters <strong>in</strong> the burned<br />

swamp, with respective medians of 18 meters<br />

<strong>and</strong> 22.5 meters. The tallest trees at Almond<br />

beach were 34 meters <strong>in</strong> the unburned swamp<br />

<strong>and</strong> 36 meters <strong>in</strong> the burned swamp. In the<br />

Alness Village plot, out of 438 tree height<br />

measurements made <strong>in</strong> 1996, the mean tree<br />

height was 6.98 meters <strong>and</strong> the median 7 meters,<br />

with a maximum recorded tree height of 19


74<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

meters.<br />

The River<strong>in</strong>e Swamps on the Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula were not sampled, however some<br />

large Rhizophora trees were observed along the<br />

rivers, <strong>and</strong> scattered, unusually large Avicennia<br />

trees were observed near the upl<strong>and</strong> boundary<br />

of River<strong>in</strong>e Swamps. The river<strong>in</strong>e systems are<br />

more frequently flushed than the coastal bas<strong>in</strong><br />

swamps, due to the latter’s separation from tides<br />

by beach ridges. It is quite possible that higher<br />

basal area values occur <strong>in</strong> the River<strong>in</strong>e<br />

Mangroves as a result of the lower sal<strong>in</strong>ity that<br />

was typical <strong>in</strong> those soils (generally >20 psu near<br />

the Atlantic beach ridges <strong>and</strong>


Contributions to the Study of Biological Diversity Vol. 3<br />

of patchy disturbance patterns due to utilization.<br />

The cluster<strong>in</strong>g of <strong>in</strong>dividuals might also reflect<br />

localized Avicennia propagule sources or<br />

irregular str<strong>and</strong><strong>in</strong>g of propagules on logs,<br />

branches or slight variations <strong>in</strong> topography.<br />

Additionally, the cluster<strong>in</strong>g may be <strong>in</strong>dicative<br />

of low levels of competition from th<strong>in</strong>n<strong>in</strong>g by<br />

utilization, which would keep basal area low<br />

(10.28 m 2 /ha <strong>in</strong> 1996 vs 21.25 m 2 /ha <strong>in</strong> 1998<br />

for Almond Beach unburned plots) <strong>and</strong> prevent<br />

competition that might lead to overdispersion.<br />

In general, the dispersion results <strong>in</strong>dicated that<br />

the Almond Beach Avicennia forests had been<br />

established long enough without disturbance for<br />

competition to beg<strong>in</strong> to exhibit an overdispersed<br />

pattern (Wells & Getis 1999).<br />

Biomass<br />

While basal area values determ<strong>in</strong>ed for the<br />

burned plots were lower than the unburned plots<br />

<strong>in</strong> the same year, estimated biomass values were<br />

slightly higher for the burned plots. It should<br />

also be noted that dbh measurements for trees<br />

<strong>in</strong> the burned forest were probably an<br />

underestimate of pre-burn structure, s<strong>in</strong>ce the<br />

trees shed their bark shortly after fire mortality,<br />

<strong>and</strong> may have shrunken slightly dur<strong>in</strong>g dry<strong>in</strong>g.<br />

It is possible that some live trees may have been<br />

entirely consumed dur<strong>in</strong>g the fires, although it<br />

is more likely that only dead trees were<br />

consumed. Comparisons of biomass provide a<br />

variation on comparisons between st<strong>and</strong>s. By<br />

transform<strong>in</strong>g dbh data to account for the<br />

consequences of diameter changes, biomass<br />

values are more sensitive to differences <strong>in</strong> tree<br />

size, <strong>and</strong> they allow better differentiation<br />

between young st<strong>and</strong>s with many small trees <strong>and</strong><br />

mature st<strong>and</strong>s with fewer but larger <strong>in</strong>dividuals.<br />

Allometric formulas such as those provided by<br />

Fromard et al. (1998) are a useful tool. The mean<br />

wood biomass value for the burned plots,<br />

165,207 kg/ha, could contribute to an estimate<br />

of the amount of carbon that will be released to<br />

the atmosphere as the dead wood decomposes.<br />

Root biomass <strong>and</strong> soil would be responsible for<br />

additional carbon release from the fires.<br />

Snedaker et al. (1995) found that Avicennia<br />

mar<strong>in</strong>a trees <strong>in</strong> Pakistan had root biomass that<br />

was approximately 47-57% of total biomass, so<br />

assum<strong>in</strong>g that Neotropical Avicennia is similar,<br />

carbon loss estimates for the fires might be<br />

75<br />

doubled. Dur<strong>in</strong>g this field work, the depth of<br />

the organic layer lost to burn<strong>in</strong>g <strong>in</strong> the Avicennia<br />

swamp was estimated by an <strong>in</strong>formal survey of<br />

length of pneumatophores above the soil surface<br />

<strong>in</strong> burned <strong>and</strong> unburned patches of swamp,<br />

under the assumption that pre-fire hydrology<br />

was similar between the sites. That yielded a<br />

difference between the means of 4.6 cm (N=40,<br />

p-value=0.001), which could be considered<br />

depth of organic soil lost <strong>in</strong> the fires. Organic<br />

soil samples were not collected for analyses of<br />

carbon content, but soil samples from similar<br />

sites could be obta<strong>in</strong>ed from the site for<br />

estimates <strong>in</strong> the future.<br />

Comparisons with Worldwide Plot Basal<br />

Area Data<br />

The compilation of plot values from studies<br />

<strong>in</strong> the literature yielded a total of 96 sites, of<br />

which 95 <strong>in</strong>cluded basal area values <strong>and</strong> most<br />

<strong>in</strong>cluded stem density values. The great majority<br />

of those data were drawn from studies that<br />

sampled all trees 2.5 cm dbh <strong>and</strong> greater.<br />

Almond Beach unburned plots had an almost<br />

negligible number of stems between 2.5 cm <strong>and</strong><br />

10 cm dbh, (only seven stems <strong>in</strong> the 5-10 cm<br />

range, represent<strong>in</strong>g additional basal area of only<br />

1 cm/ha) mak<strong>in</strong>g the Almond Beach data<br />

comparable to the compiled plot data.<br />

Basal areas <strong>in</strong> the compiled plot data ranged<br />

from 1.17 m 2 /ha to 96.4 m 2 /ha. The mean basal<br />

area for the Almond Beach unburned plots was<br />

23.2 m 2 /ha, almost exactly the median value<br />

from the compiled sites of 23.25 m 2 /ha <strong>and</strong> near<br />

the mean value of 25.6 m 2 /ha.<br />

Latitude classes could be determ<strong>in</strong>ed for 94<br />

of the compiled sites. There were no strong<br />

trends <strong>in</strong> mangrove basal area (m 2 /ha) vs<br />

latitude, though possibly this could be<br />

demonstrated with a larger data set that was<br />

balanced <strong>in</strong> other factors. The non-parametric<br />

Kruskal-Wallis rank-sum test was used to<br />

compare the 6 latitude classes with 8 or more<br />

values, <strong>and</strong> resulted <strong>in</strong> a p-value = 0.167,<br />

<strong>in</strong>dicat<strong>in</strong>g no statistically significant difference.<br />

Basal area values (m 2 /ha) for the sites are<br />

grouped by latitude class <strong>in</strong> Figure 4.28.<br />

Compiled basal area data were grouped by<br />

swamp geomorphic type accord<strong>in</strong>g to the<br />

classification of Lugo <strong>and</strong> Snedaker (1974).<br />

Overwash type swamps were not <strong>in</strong>cluded, as


76<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

there was not an adequate number of values.<br />

There was no significant difference between<br />

fr<strong>in</strong>g<strong>in</strong>g (coastal) <strong>and</strong> bas<strong>in</strong> (<strong>in</strong>terior) mangrove<br />

types (p-value = 0.84). River<strong>in</strong>e swamp basal<br />

areas were significantly higher than either<br />

fr<strong>in</strong>g<strong>in</strong>g or bas<strong>in</strong>, with p= 0.005 for river<strong>in</strong>e vs<br />

fr<strong>in</strong>g<strong>in</strong>g swamps <strong>and</strong> p= 0.019 for river<strong>in</strong>e vs<br />

bas<strong>in</strong> swamps. Basal area values for the sites<br />

are grouped by geomorphic type <strong>in</strong> Figure 4.29.<br />

Population Turnover <strong>in</strong> the Avicennia Forest<br />

The higher rates of mortality observed<br />

dur<strong>in</strong>g the <strong>in</strong>terval between the second <strong>and</strong> third<br />

sampl<strong>in</strong>gs might have been due to a moderate<br />

drought; precipitation <strong>in</strong> northern Guyana for<br />

January - June 2001 was less than 40% of the<br />

1961-1990 average (Waple et al. 2002). Basal<br />

areas of liv<strong>in</strong>g trees did <strong>in</strong>crease over both of<br />

those <strong>in</strong>tervals, 1.11 m 2 /ha <strong>in</strong> the first <strong>in</strong>terval<br />

<strong>and</strong> only 0.8 m 2 /ha <strong>in</strong> the second. That <strong>in</strong>dicates<br />

that the Avicennia forest sampled is still a young,<br />

grow<strong>in</strong>g st<strong>and</strong> that has not yet reached<br />

equilibrium s<strong>in</strong>ce establishment. The loss of<br />

stems as the plots mature is a typical selfth<strong>in</strong>n<strong>in</strong>g<br />

pattern of a young forest. Avicennia,<br />

like other tropical tree species, does not form<br />

annual growth r<strong>in</strong>gs found <strong>in</strong> temperate trees,<br />

prevent<strong>in</strong>g direct analysis of population<br />

structure. However, patterns of fluctuat<strong>in</strong>g tree<br />

frequencies among dbh classes seen <strong>in</strong> both<br />

burned <strong>and</strong> unburned plots (Figures 4.15 <strong>and</strong><br />

4.16) suggest <strong>in</strong>termittent periods of<br />

recruitment, which is also consistent with<br />

variable numbers of seedl<strong>in</strong>gs <strong>in</strong> herbaceous<br />

layers of the plots, with the low number of<br />

sapl<strong>in</strong>g sized trees, <strong>and</strong> with the low success<br />

rates of plant<strong>in</strong>gs of Avicennia propagules<br />

(Chapter 5).<br />

Figure 4.28. Compiled basal area values grouped <strong>in</strong>to<br />

5-degree latitud<strong>in</strong>al classes.<br />

Figure 4.29. Compiled basal area values grouped by<br />

geomorphic type of the mangrove forests.<br />

Herbs <strong>and</strong> Seedl<strong>in</strong>gs<br />

Coverage of herbs <strong>in</strong> both burned <strong>and</strong><br />

unburned plots was highly variable <strong>in</strong> both cover<br />

<strong>and</strong> species composition. In the unburned areas,<br />

there was significant cover of only Lemna dur<strong>in</strong>g<br />

wet periods, with the alga Rhizoclonium<br />

africanum on Avicennia pneumatophores also<br />

apparent when swamps were flooded. There was<br />

almost no herbaceous cover <strong>in</strong> unburned<br />

swamps dur<strong>in</strong>g dry periods, <strong>and</strong> what was<br />

observed ma<strong>in</strong>ly consisted of <strong>in</strong>frequent<br />

Acrostichum ferns.<br />

The year of the sampl<strong>in</strong>g shows a strong<br />

relationship to species <strong>in</strong> the PCA ord<strong>in</strong>ation of<br />

the herbaceous data, most likely driven by<br />

variations <strong>in</strong> ra<strong>in</strong>fall. While hydrology was<br />

apparently a major <strong>in</strong>fluence on herbaceous<br />

cover changes, other environmental factors such<br />

as nutrient levels could have an effect on<br />

competition between Lemna <strong>and</strong> Limnobium, as<br />

could tim<strong>in</strong>g of their dispersal to the burned site.<br />

Lemna was present <strong>in</strong> nearby unburned<br />

Avicennia forest, which may have given it an<br />

immediate advantage of proximity for early<br />

colonization, while Limnobium is possibly a<br />

more aggressive occupier of space <strong>in</strong> the open<br />

water of the burned swamp. Alternanthera is<br />

evidently comparatively drought resistant <strong>and</strong><br />

almost ma<strong>in</strong>ta<strong>in</strong>ed its 2000 level of coverage<br />

<strong>in</strong>to the very dry sampl<strong>in</strong>g period <strong>in</strong> early 2001,<br />

after which it exp<strong>and</strong>ed further.<br />

Avicennia seedl<strong>in</strong>gs seem to undergo cyclic<br />

establishments with high mortality <strong>and</strong> only very


Contributions to the Study of Biological Diversity Vol. 3<br />

rare graduation to larger sizes. This is evidenced<br />

<strong>in</strong> the very sparse density of sapl<strong>in</strong>gs <strong>and</strong> small<br />

trees that were found <strong>in</strong> the plots. In general,<br />

the young, unburned Avicennia forest conformed<br />

to common concepts of sparseness of mangrove<br />

understories (Janzen 1985; Lugo 1986),<br />

although exceptions were seen <strong>in</strong> dense<br />

understories that were observed <strong>in</strong> older, mixed<br />

mangrove st<strong>and</strong>s <strong>in</strong> parts of the Wa<strong>in</strong>i Pen<strong>in</strong>sula<br />

<strong>in</strong> areas of sparse canopy <strong>and</strong> treefall<br />

disturbance. In general, the number of<br />

understory <strong>and</strong> epiphytic species found <strong>in</strong> the<br />

mangrove swamps <strong>in</strong>creased with distance from<br />

the ocean <strong>and</strong> its sal<strong>in</strong>ity. Certa<strong>in</strong>ly the set of<br />

plant species that can survive the sal<strong>in</strong>ity <strong>and</strong><br />

anaerobic soils of mangrove swamps is limited,<br />

<strong>and</strong> that number may be further reduced when a<br />

forest is <strong>in</strong>tact, <strong>in</strong> which case there would be<br />

high competition for light, nutrients <strong>and</strong> water.<br />

The unburned Avicennia forest would<br />

presumably have low rates of treefalls because<br />

it was a young st<strong>and</strong>, <strong>and</strong> so there would be<br />

fewer gaps with <strong>in</strong>creased resources. The<br />

unburned forest plots were located near the<br />

ocean where soil sal<strong>in</strong>ities reached very high<br />

levels dur<strong>in</strong>g droughts (<strong>in</strong> excess of 50 psu <strong>in</strong><br />

October 2001, T. Hollowell, unpublished data),<br />

which may also have elim<strong>in</strong>ated unadapted<br />

understory species. In the Avicennia forest near<br />

Wa<strong>in</strong>i Po<strong>in</strong>t there was additionally a very high<br />

density of pneumatophores, which play a role<br />

<strong>in</strong> limit<strong>in</strong>g establishment or survival of<br />

understory species, although such an effect has<br />

apparently not yet been addressed <strong>in</strong> mangrove<br />

ecological studies. Snedaker <strong>and</strong> Lahmann<br />

(1988) had to impose a strict def<strong>in</strong>ition of<br />

mangrove communities, <strong>in</strong>clud<strong>in</strong>g frequent tidal<br />

<strong>in</strong>undation <strong>and</strong> lack of disturbance, <strong>in</strong> order to<br />

ma<strong>in</strong>ta<strong>in</strong> the concept of a characteristically<br />

sparse mangrove understory. However, it may<br />

be best to accept that mangrove systems are so<br />

variable <strong>in</strong> geomorphology, hydrology, <strong>and</strong><br />

disturbance regimes that understory densities<br />

can vary widely, with the stress of sal<strong>in</strong>ity<br />

favor<strong>in</strong>g more extreme values at the low end.<br />

Role of Water Levels<br />

Water levels <strong>in</strong> the burned swamp had<br />

obvious effects on changes <strong>in</strong> herbaceous<br />

species presence <strong>and</strong> cover. In the burned<br />

swamp, st<strong>and</strong><strong>in</strong>g water, bright sunlight, <strong>and</strong><br />

77<br />

<strong>in</strong>creased nutrient levels led to high densities<br />

of float<strong>in</strong>g aquatics, at first Lemna<br />

aequ<strong>in</strong>octialis (Figure 4.30) <strong>and</strong> later<br />

Limnobium laevigatum (Figure 4.31). For<br />

several months after the fires there were<br />

substantial areas of submerged filamentous<br />

green algae, probably flourish<strong>in</strong>g <strong>in</strong> the elevated<br />

levels of nutrients released by the fires. The<br />

unburned Avicennia forest also had areas of<br />

substantial Lemna cover dur<strong>in</strong>g the period of<br />

highest water. Surface water levels were farther<br />

above the substrate <strong>in</strong> the burned swamp after<br />

the fires due to both the lower<strong>in</strong>g of the substrate<br />

by burn<strong>in</strong>g of organic layers <strong>and</strong> most likely<br />

reduced evapotranspiration from trees. When<br />

Figure 4.30. Burned Avicennia forest near Almond<br />

Beach, at plot 5, <strong>in</strong> November 1998. The herbaceous<br />

vegetation is almost entirely dom<strong>in</strong>ated by the small<br />

float<strong>in</strong>g aquatic Lemna aequ<strong>in</strong>octialis.<br />

Figure 4.31. Burned Avicennia forest near Almond<br />

Beach, at plot 4, <strong>in</strong> May 2000. The herbaceous<br />

vegetation is dom<strong>in</strong>ated by the float<strong>in</strong>g aquatic<br />

Limnobium laevigatum, with some scattered clumps<br />

of small Acrostichum ferns <strong>and</strong> Cyperus.


78<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

water levels <strong>in</strong> the burned swamp fell dur<strong>in</strong>g<br />

droughts, the sprawl<strong>in</strong>g herb Alternanthera<br />

sessilis, which was found only on a few slightly<br />

elevated spots dur<strong>in</strong>g earlier sampl<strong>in</strong>gs, became<br />

the dom<strong>in</strong>ant herb (Figure 4.32). In later<br />

sampl<strong>in</strong>gs of herbs <strong>in</strong> the burned plots, with the<br />

water table far below the surface, herbaceous<br />

vegetation was scarce, <strong>and</strong> the soil surface was<br />

covered with salt crystals. In the unburned<br />

forest, the drier periods also co<strong>in</strong>cided with<br />

lower numbers of Avicennia seedl<strong>in</strong>gs sampled.<br />

In unburned plots follow<strong>in</strong>g the drought, the<br />

<strong>in</strong>creases <strong>in</strong> Avicennia tree dbh <strong>and</strong> basal area<br />

were also lower, with an mean <strong>in</strong>crease of 0.3<br />

cm dbh <strong>and</strong> 25.7 cm 2 basal area <strong>in</strong> the first<br />

(wetter) <strong>in</strong>terval compared to 0.04 cm dbh <strong>and</strong><br />

18.5 cm 2 basal area <strong>in</strong> the second (drier) <strong>in</strong>terval.<br />

The water level <strong>in</strong> the burned plots was<br />

consistently slightly higher than <strong>in</strong> the unburned<br />

plots until early 2000, after which the level was<br />

slightly higher <strong>in</strong> the unburned plots. It is not<br />

certa<strong>in</strong> whether that was attributable to changes<br />

<strong>in</strong> evapotranspiration as vegetation <strong>in</strong> the burned<br />

plots changed or if there were changes <strong>in</strong> the<br />

dra<strong>in</strong>age via creeks <strong>and</strong> lagoons from the burned<br />

swamp. As the early 2001 drought <strong>in</strong>tensified,<br />

water table levels <strong>in</strong> both areas dropped<br />

dramatically, with levels <strong>in</strong> the unburned swamp<br />

fall<strong>in</strong>g more, possibly because of cont<strong>in</strong>ued<br />

evapotranspiration from trees of the mature<br />

forest, while <strong>in</strong> the burned swamp herbaceous<br />

vegetation cover fell sharply. When<br />

measurements were discont<strong>in</strong>ued <strong>in</strong> March<br />

2001, the water table <strong>in</strong> the unburned swamp<br />

was 73 cm below the surface, while <strong>in</strong> the burned<br />

area it was 35 cm below surface. After water<br />

levels <strong>in</strong> the burned swamp fell below the soil<br />

surface, evaporation would be greatly reduced,<br />

while <strong>in</strong> the unburned swamp the trees would<br />

cont<strong>in</strong>ue to transport water <strong>in</strong>to the atmosphere.<br />

CONCLUSION<br />

Many aspects of the mangrove forests of<br />

northern Wa<strong>in</strong>i Pen<strong>in</strong>sula are l<strong>in</strong>ked to cycles<br />

of drought <strong>and</strong> ra<strong>in</strong>, particularly because the<br />

swamps are often isolated from tidal <strong>in</strong>fluences.<br />

Dry periods may <strong>in</strong>crease the chances of fire<br />

disturbances <strong>and</strong> serve to control presence of<br />

non-halophytic species. Wet periods may allow<br />

Figure 4.32. Burned Avicennia swamp near Almond<br />

Beach, between plots 4 <strong>and</strong> 6, <strong>in</strong> November 2001.<br />

The herbaceous vegetation is dom<strong>in</strong>ated by<br />

Alternanthera sessilis. There are also clusters of<br />

Acrostichum ferns <strong>and</strong> scattered young, shrubby<br />

Laguncularia trees (left foreground).<br />

wider dispersal of propagules, <strong>and</strong> water levels<br />

may control which species can become<br />

established. Herbaceous vegetation was<br />

observed to vary greatly with wet <strong>and</strong> dry cycles.<br />

The data here have provided some evidence that<br />

these forests were recently established <strong>and</strong> that<br />

seedl<strong>in</strong>g recruitment has been <strong>in</strong>termittent.<br />

Coastal Avicennia swamps <strong>in</strong> the Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula area have been apparently <strong>in</strong>creas<strong>in</strong>g<br />

<strong>in</strong> biomass over time. Many of the mangrove<br />

swamps of the northern part of the Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula are near monocultures of Avicennia,<br />

however over time occasional dispersal of<br />

Rhizophora <strong>and</strong> Laguncularia may add to their<br />

species diversity, as part of the slow transition<br />

to a mixed coastal mangrove forest if they are<br />

undisturbed. It seems very likely that the forests<br />

of the Wa<strong>in</strong>i represent a chronosequence of plant<br />

community development, with the youngest,<br />

least developed areas found nearer to Wa<strong>in</strong>i<br />

Po<strong>in</strong>t. In comparison to mangrove swamps <strong>in</strong><br />

other parts of the world, the Wa<strong>in</strong>i coastal<br />

mangroves are fairly average <strong>in</strong> basal area <strong>and</strong><br />

biomass, but very low <strong>in</strong> stem density. The<br />

Avicennia dbh <strong>and</strong> height class distributions for<br />

both burned <strong>and</strong> unburned sites suggest that<br />

seedl<strong>in</strong>g recruitment has occurred <strong>in</strong> episodes,<br />

<strong>and</strong> that can help to expla<strong>in</strong> the very low density<br />

of seedl<strong>in</strong>gs that were observed <strong>in</strong> the unburned<br />

swamp. It can be hypothesized that the low


Contributions to the Study of Biological Diversity Vol. 3<br />

density reflects the climate-driven hydrological<br />

variations of the non-tidal swamps, with<br />

recruitment only occurr<strong>in</strong>g dur<strong>in</strong>g rare periods<br />

of optimal conditions.<br />

Follow<strong>in</strong>g the soil fires, the species<br />

diversity of the disturbed coastal Avicennia<br />

swamps <strong>in</strong>creased, primarily because of an<br />

<strong>in</strong>crease <strong>in</strong> opportunistic species that disperse<br />

quickly <strong>in</strong>to the available space. The herbaceous<br />

component of those post-disturbance swamps<br />

changed rapidly, apparently l<strong>in</strong>ked to<br />

fluctuations <strong>in</strong> the weather through its effects<br />

on hydrology <strong>and</strong> sal<strong>in</strong>ity. The composition of<br />

the tree community <strong>in</strong> the burned areas appears<br />

to be chang<strong>in</strong>g from a near monoculture of<br />

Avicennia to dom<strong>in</strong>ation, for the immediate<br />

future, by Laguncularia trees, driven by<br />

scattered survivors of the species <strong>and</strong> effective<br />

dispersal of their relatively small fruits. In<br />

unburned swamps of Almond Beach<br />

Laguncularia is a common understory species<br />

at <strong>in</strong>termediate distances from the coast.<br />

Laguncularia is a comparatively weedy<br />

mangrove species <strong>and</strong> has been seldom observed<br />

to dom<strong>in</strong>ate mangrove forests <strong>in</strong> the Guianas,<br />

<strong>and</strong> it will be of great <strong>in</strong>terest to know if that<br />

species will give way to other mangrove<br />

dom<strong>in</strong>ants.<br />

The Laguncularia trees that <strong>in</strong>itially<br />

colonized the burned site were generally very<br />

low <strong>and</strong> spread<strong>in</strong>g, which could lead to a forest<br />

of low biomass. Some Amazonian forests have<br />

been found to return to pre-burn<strong>in</strong>g biomass <strong>and</strong><br />

79<br />

dbh values, although not of similar species<br />

composition, with<strong>in</strong> 40 years (Ferreira & Prance<br />

1999), <strong>and</strong> long-term monitor<strong>in</strong>g of the forest<br />

structure <strong>in</strong> the Almond Beach burn would be<br />

useful for comparison to those observations, <strong>in</strong><br />

order to see if mangrove systems behave<br />

similarly to upl<strong>and</strong> tropical systems.<br />

The mangrove forests of the Caribbean,<br />

which occur more often <strong>in</strong> areas of lower<br />

sedimentation, on calcareous substrates<br />

relatively low <strong>in</strong> nutrients, are generally more<br />

limited <strong>in</strong> extent than those of the Guianas<br />

(Sealey & Bustamante 1999). In several<br />

respects, the mangrove ecosystems of the<br />

Guianas are more geomorphically similar to<br />

those of high sediment coasts of South Asia<br />

rather than to those of the Caribbean (Jelgersma<br />

et al. 1993). For <strong>in</strong>stance, <strong>in</strong> some river deltas<br />

of India Avicennia is considered the predom<strong>in</strong>ant<br />

pioneer (Blasco 1975), as the genus is <strong>in</strong> the<br />

Guianas. The Avicennia forests of the Guianas<br />

were shown here to be somewhat dist<strong>in</strong>ct from<br />

other Neotropical mangrove ecosystems, which<br />

might be a factor <strong>in</strong> decisions regard<strong>in</strong>g their<br />

protection. The Amazon is the world’s largest<br />

river, <strong>and</strong> its coastal delta is globally unique <strong>and</strong><br />

<strong>in</strong>cludes the coast of the Guianas. This<br />

description of the most seaward portion of the<br />

Wa<strong>in</strong>i Pen<strong>in</strong>sula swamps should serve to<br />

stimulate additional <strong>in</strong>vestigations <strong>and</strong> to raise<br />

awareness of the unique properties of the<br />

region’s forests.


80<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Lloyd Savory <strong>and</strong> some of his students from<br />

Moruca, <strong>in</strong>clud<strong>in</strong>g his daughter, after assist<strong>in</strong>g<br />

with setup of some mangrove plant<strong>in</strong>g trials <strong>in</strong><br />

burned Avicennia swamp near Almond Beach.<br />

Peter Pritchard, a mar<strong>in</strong>e turtle biologist <strong>and</strong><br />

GMTCS collaborator, exhum<strong>in</strong>g the skeleton of<br />

a Leatherback mar<strong>in</strong>e turtle that had been buried<br />

after wash<strong>in</strong>g ashore on Almond Beach several<br />

months earlier.<br />

Annette Arjoon, a founder of the Guyana Mar<strong>in</strong>e<br />

Turtle Conservation Society, on Almond Beach<br />

<strong>in</strong> May 2000. The Almond Beach GMTCS camp<br />

was used as the base for these mangrove<br />

<strong>in</strong>vestigations.<br />

Students from Moruca return<strong>in</strong>g to Almond<br />

Beach camp from Wa<strong>in</strong>i Po<strong>in</strong>t after a full night<br />

of beach patrol to monitor nest<strong>in</strong>g mar<strong>in</strong>e turtles.


Contributions to the Study of Biological Diversity Vol. 3<br />

CHAPTER 5.<br />

DISPERSAL AND ESTABLISHMENT OF MANGROVE<br />

PROPAGULES FOLLOWING FIRES<br />

INTRODUCTION<br />

In 1998 a mass mortality of trees <strong>in</strong><br />

mangrove <strong>and</strong> freshwater swamps occurred after<br />

fires burned the soils of a large portion of the<br />

Wa<strong>in</strong>i Pen<strong>in</strong>sula, Guyana. The affected<br />

mangrove swamps were primarily pure<br />

Avicennia germ<strong>in</strong>ans (black mangrove) st<strong>and</strong>s.<br />

However, Laguncularia racemosa (white<br />

mangrove) trees were also present <strong>in</strong> the<br />

understory <strong>in</strong> scattered locations prior to the fires<br />

(see Chapter 4), <strong>and</strong> Rhizophora mangle (red<br />

mangrove) was present <strong>in</strong>frequently along the<br />

swamp marg<strong>in</strong>s by the beach ridge. Some<br />

scattered <strong>in</strong>dividuals of those species survived<br />

<strong>in</strong> the burned swamp. The path of early<br />

vegetation regeneration <strong>in</strong> these swamps will<br />

apparently be highly affected by the dispersal<br />

<strong>and</strong> establishment abilities of the surviv<strong>in</strong>g<br />

species <strong>in</strong> the environments after the fires.<br />

This chapter provides an analysis of<br />

mangrove dispersal <strong>and</strong> establishment patterns,<br />

<strong>in</strong> order to establish whether mangrove<br />

dispersal, like terrestrial dispersal, is <strong>in</strong>fluenced<br />

by size of the seed or propagule. Such<br />

<strong>in</strong>formation has not been widely collected <strong>and</strong><br />

analyzed for mangrove species <strong>in</strong> the<br />

Neotropics. A method was developed for<br />

collection of those data. <strong>Plant</strong><strong>in</strong>g trials <strong>in</strong> the<br />

field with regional mangrove species were<br />

undertaken to provide additional <strong>in</strong>formation on<br />

establishment, <strong>in</strong>dependent of dispersal ability,<br />

<strong>in</strong> the environments of burned <strong>and</strong> unburned<br />

Wa<strong>in</strong>i Pen<strong>in</strong>sula mangrove swamps.<br />

Information on the post-fire dispersal <strong>and</strong><br />

establishment of mangrove species should allow<br />

<strong>in</strong>sights <strong>in</strong>to the early recovery process <strong>in</strong> the<br />

Wa<strong>in</strong>i Pen<strong>in</strong>sula swamps.<br />

Seed Dispersal<br />

Early vegetation succession concepts such<br />

as described by Clements (1928) were largely<br />

determ<strong>in</strong>istic, regard<strong>in</strong>g disturbed plant<br />

communities as <strong>in</strong>exorably mov<strong>in</strong>g through a<br />

81<br />

sequence of community stages towards a fixed<br />

climax determ<strong>in</strong>ed primarily by climate, with<br />

vegetation modify<strong>in</strong>g edaphic conditions<br />

through the stages. Such “facilitation” models<br />

gave little consideration to seed availability or<br />

plant life history traits <strong>and</strong> could not expla<strong>in</strong><br />

regeneration patterns observed after fire<br />

disturbances (Bond & van Wilgen 1996).<br />

Gleason (1927) began to <strong>in</strong>corporate the role of<br />

chance <strong>in</strong>to concepts of vegetation change. Later<br />

Egler (1954) made a full dist<strong>in</strong>ction between the<br />

facilitation or “Relay Floristics” of Clementsian<br />

succession <strong>and</strong> an “Initial Floristic<br />

Composition” model <strong>in</strong> which the course of<br />

succession might depend on the species that<br />

survive or disperse to first colonize a disturbed<br />

site. Connell <strong>and</strong> Slatyer (1977) <strong>in</strong>corporated<br />

relay floristics <strong>and</strong> Egler’s <strong>in</strong>itial floristic<br />

composition concept <strong>in</strong>to their set of three<br />

alternative models, which were applied to<br />

situations depend<strong>in</strong>g on organism adaptations,<br />

edaphic variables <strong>and</strong> the level <strong>and</strong> size of<br />

disturbances. Their elaboration of a variety of<br />

succession models reflected a grow<strong>in</strong>g<br />

recognition that plant communities are dynamic<br />

entities to which no s<strong>in</strong>gle successional model<br />

can be applied (Pickett et al. 1989; White &<br />

Pickett 1985), <strong>and</strong> where seed availability is<br />

often a critical component.<br />

Dispersal distribution curves, or seed<br />

shadows, for seeds from <strong>in</strong>dividual trees tend<br />

to follow leptokurtic pattern that peaks a short<br />

distance from the parent, with a long tail (Harper<br />

1977; Willson & Traveset 2000). However, there<br />

is still limited data available for comparison <strong>and</strong><br />

analysis of the dispersal curves for various<br />

modes (Willson & Traveset 2000). The tails of<br />

dispersal curves are difficult to model (Bullock<br />

& Clarke 2000), <strong>and</strong> the longest distance<br />

dispersal events may be the result of unusual<br />

high w<strong>in</strong>ds or turbulence, which can affect<br />

smaller fruits that are not normally thought of<br />

as w<strong>in</strong>d dispersed (Jongejans & Telenius 2001).<br />

Extremely long-distance dispersal is rare, but it


82<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

is probably important for colonization of<br />

suitable habitats after large-scale disturbances.<br />

Dispersal <strong>in</strong> Mangrove Swamps<br />

Coastal mangrove swamp attributes such<br />

as nutrient levels <strong>and</strong> sal<strong>in</strong>ity are strongly<br />

<strong>in</strong>fluenced by geomorphic sett<strong>in</strong>g (however see<br />

McKee 1993), so succession models based on<br />

organism modification of conditions may not<br />

be as applicable as the <strong>in</strong>itial floristic<br />

composition, or <strong>in</strong>hibition model of Connell <strong>and</strong><br />

Slatyer (1977). Therefore <strong>in</strong> the Wa<strong>in</strong>i Pen<strong>in</strong>sula<br />

swamps, dispersal <strong>and</strong> establishment of species<br />

after a disturbance may have a strong <strong>in</strong>fluence<br />

on early recovery. Smaller disturbances such as<br />

tree falls are common <strong>in</strong> all mangrove swamps<br />

but would not have serious effect on species<br />

composition, as the short dispersal distances<br />

allow rapid regeneration (Baldw<strong>in</strong> et al. 2001;<br />

Clarke & Kerrigan 2000; Duke 2001; Sherman<br />

et al. 2000).<br />

Water dispersal is the major mode of<br />

dispersal for mangrove propagules, which are<br />

typically transported by tidal currents. Water<br />

dispersal (hydrochory) is covered only briefly<br />

or not at all <strong>in</strong> dispersal ecology reviews<br />

(Chambers & MacMahon 1994; Harper 1977;<br />

Westoby et al. 1997). Water dispersal is<br />

underst<strong>and</strong>ably l<strong>in</strong>ked to currents for longer<br />

distance movement. Water dispersal has been<br />

observed to be directional <strong>in</strong> <strong>in</strong>l<strong>and</strong> North<br />

American bottoml<strong>and</strong> hardwood swamps,<br />

where dispersal distance was m<strong>in</strong>imal at times<br />

of low water flow (Schneider & Sharitz 1988).<br />

As with a majority of species <strong>in</strong> wet tropical<br />

environments, mangrove establishment is<br />

restricted by the <strong>in</strong>ability of seeds or propagules<br />

to lay dormant <strong>in</strong> a seed bank.<br />

Some of the best known studies of<br />

mangrove dispersal properties were published<br />

by Rab<strong>in</strong>owitz (1978a; 1978b). She suggested<br />

that mangrove zonation may be controlled, <strong>in</strong><br />

part, by variation <strong>in</strong> abilities of mangrove<br />

species to colonize segments of the <strong>in</strong>tertidal<br />

zone, due to <strong>in</strong>fluences of size <strong>and</strong> shape of each<br />

species’ propagules. The result would be<br />

propagule sort<strong>in</strong>g on the seaward edge of<br />

swamps. The propagules of the three pr<strong>in</strong>cipal<br />

mangrove genera <strong>in</strong> the Neotropics <strong>and</strong> the<br />

Wa<strong>in</strong>i Pen<strong>in</strong>sula area, Rhizophora, Avicennia<br />

<strong>and</strong> Laguncularia, are of dist<strong>in</strong>ctly different<br />

sizes. Rab<strong>in</strong>owitz’s (1978a; 1978c)<br />

measurements of Neotropical mangrove<br />

propagule weights <strong>in</strong> Panama gave the mean<br />

weight of Laguncularia propagules as 0.41<br />

grams, Avicennia as 1.1grams, Rhizophora<br />

mangle as 14.0 grams, <strong>and</strong> Rhizophora<br />

racemosa (cited as R. harrisonii) as 32.3 grams.<br />

These sizes are <strong>in</strong> general agreement with the<br />

those of propagules found <strong>in</strong> northern Guyana<br />

(Figure 5.1).<br />

Most mangrove dispersal studies have been<br />

set <strong>in</strong> swamps with tidal currents. Mangrove<br />

dispersal is simplified <strong>in</strong> swamps that are rarely<br />

<strong>in</strong>undated by tides. Published reports of<br />

mangrove dispersal distances vary from only a<br />

Figure 5.1. Propagules of Rhizophora mangle,<br />

Rhizophora racemosa, Laguncularia racemosa, <strong>and</strong><br />

Avicennia germ<strong>in</strong>ans (from upper left, clockwise).<br />

The Avicennia <strong>and</strong> Laguncularia propagules are<br />

<strong>in</strong>dicated <strong>in</strong> the box. For scale, the pencil is<br />

approximately 16 cm long.


Contributions to the Study of Biological Diversity Vol. 3<br />

few meters <strong>in</strong> a swamp <strong>in</strong> northwestern Australia<br />

with little tidal <strong>in</strong>fluence (McGu<strong>in</strong>ness 1997a),<br />

to several or even tens of kilometers for<br />

Avicennia mar<strong>in</strong>a <strong>in</strong> tidal coastal environments<br />

(Clarke 1993). This author has found viable<br />

Rhizophora mangle propagules on beaches near<br />

Cape Hatteras, North Carol<strong>in</strong>a, more than 850<br />

kilometers along the Gulf Stream from the<br />

northernmost Rhizophora st<strong>and</strong>s of Florida<br />

along the Indian River Lagoon.<br />

As po<strong>in</strong>ted out by McGu<strong>in</strong>ness (1997a),<br />

there have been fairly few studies of the role of<br />

dispersal <strong>in</strong> mangrove community patterns.<br />

Rab<strong>in</strong>owitz’s assertion that tidal sort<strong>in</strong>g of<br />

propagules by size played a major role <strong>in</strong><br />

mangrove zonation has been debated up to the<br />

present, with several more recent papers<br />

<strong>in</strong>vestigat<strong>in</strong>g physico-chemical correlates of<br />

zonation (Jiménez & Sauter 1991; López-<br />

Portillo & Ezcurra 1989; McKee 1993, 1995b;<br />

McKee & Faulkner 2000). The dom<strong>in</strong>ance of<br />

Avicennia on the seaward marg<strong>in</strong>s of the<br />

Guianas coast does not conform to the<br />

Rab<strong>in</strong>owitz tidal sort<strong>in</strong>g model, possibly<br />

because of the unusual mudflat environment.<br />

Clarke et al. (2001b) suggest that tidal sort<strong>in</strong>g<br />

may be less important <strong>in</strong> the zonation of<br />

Australian mangroves than establishment<br />

characteristics of species. On the mudflats of<br />

the Guianas, Avicennia may be best adapted to<br />

root quickly dur<strong>in</strong>g extended periods of very low<br />

tides (Figure 5.2). Wells <strong>and</strong> Coleman (1981)<br />

proposed that rapid growth of newly established<br />

Avicennia st<strong>and</strong>s on the mudflats of the Guianas<br />

might raise substrate elevation significantly with<br />

added root biomass, <strong>in</strong>creas<strong>in</strong>g the probability<br />

that new st<strong>and</strong>s would persist.<br />

Dispersal <strong>in</strong> Disturbed Mangrove Swamps<br />

Only a few studies have addressed<br />

mangrove dispersal <strong>in</strong> disturbed sites. Blanchard<br />

<strong>and</strong> Prado (1995) found that establishment of<br />

Rhizophora mangle <strong>in</strong> cleared plots <strong>in</strong> Ecuador<br />

dropped off significantly 5 meters from plot<br />

edges, <strong>and</strong> Lema Vélez (2003) reported similar<br />

patterns <strong>in</strong> a disturbed site <strong>in</strong> Colombia. In<br />

studies of both oil spill <strong>and</strong> hurricane<br />

disturbances <strong>in</strong> Guadeloupe, Rhizophora mangle<br />

propagules were found to disperse very poorly<br />

<strong>in</strong> areas <strong>in</strong>l<strong>and</strong> from coasts or rivers (Imbert et<br />

83<br />

al. 2000). Elster et al. (1999) assumed that <strong>in</strong> a<br />

hydrologically disturbed mangrove swamp with<br />

little tidal <strong>in</strong>fluence, at Ciénaga Gr<strong>and</strong>e de Santa<br />

Marta, Colombia, large open areas rema<strong>in</strong>ed<br />

bare because of dispersal limitations of<br />

mangrove propagules. If mangrove dispersal <strong>in</strong><br />

non-tidal conditions is poor, the <strong>in</strong>itial<br />

composition of a disturbed swamp might have<br />

last<strong>in</strong>g effects, s<strong>in</strong>ce regeneration would be<br />

mostly dependent on very short range dispersal.<br />

In the burned swamps at Almond Beach,<br />

dispersal may have the most significant effect<br />

on which species dom<strong>in</strong>ate after the fires, <strong>and</strong><br />

could <strong>in</strong>fluence how far mangrove trees will<br />

spread <strong>in</strong>to areas where no parent trees survived.<br />

In detailed studies of seed dispersal ecology,<br />

patterns of seed dispersal are separated from<br />

establishment success rates, generally through<br />

the use of seed traps. However, seedl<strong>in</strong>g<br />

establishment patterns have been used as a proxy<br />

for actual seed dispersal, where it is not critical<br />

to separate seed dispersal from establishment<br />

success (Nathan & Muller-L<strong>and</strong>au 2000).<br />

Establishment distance <strong>in</strong>formation can be a<br />

proxy for dispersal distance if the sites where<br />

seeds are deposited have fairly uniform<br />

establishment success rates. That is arguably the<br />

case for mangrove propagules <strong>in</strong> the non-tidal<br />

burned swamp at Almond Beach. Measurements<br />

Figure 5.2. Avicennia germ<strong>in</strong>ans propagules <strong>and</strong> a<br />

germ<strong>in</strong>ated seedl<strong>in</strong>g on the mudflats at Almond<br />

Beach, Wa<strong>in</strong>i Pen<strong>in</strong>sula. This image suggests that<br />

Avicennia may be able to take advantage of cracks<br />

<strong>in</strong> mudflats as a stable site for establishment. The<br />

germ<strong>in</strong>at<strong>in</strong>g propagule is located approximately 2<br />

meters out from the narrow beach ridge near the<br />

unburned Avicennia swamp plots.


84<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

of establishment distances are therefore a<br />

particularly useful <strong>and</strong> convenient method for<br />

predict<strong>in</strong>g the spread of populations.<br />

Sites where mangrove propagules tend to<br />

str<strong>and</strong> may also be favorable for establishment<br />

<strong>in</strong> the burned Almond Beach swamps. This was<br />

evidenced by clusters of seedl<strong>in</strong>gs at the edge<br />

of pools (Figure 5.3) or <strong>in</strong> shallow water along<br />

barriers such as logs, branches or masses of<br />

Figure 5.3. Laguncularia seedl<strong>in</strong>gs concentrated <strong>in</strong><br />

str<strong>and</strong><strong>in</strong>g l<strong>in</strong>es, around the edge of a small pool, the<br />

result of very short distance dispersal. The branches<br />

of the parent tree are visible on the right. Photo taken<br />

October 2001.<br />

float<strong>in</strong>g vegetation such as Lemna <strong>and</strong><br />

Limnobium (Figure 5.4) that have been dense<br />

at times after the fires. In <strong>in</strong>tact Avicennia<br />

swamps pneumatophores are often quite dense<br />

<strong>and</strong> apparently impede dispersal <strong>in</strong> the unburned<br />

swamp, <strong>and</strong> seeds are found among<br />

pneumatophores directly under parent trees<br />

(Figure 5.5). S<strong>in</strong>ce they are dispersed <strong>in</strong> early<br />

stages of germ<strong>in</strong>ation, str<strong>and</strong>ed mangrove<br />

propagules are relatively quick to advance to<br />

seedl<strong>in</strong>g status. In the open environment of the<br />

burned swamp at Almond Beach, established<br />

seedl<strong>in</strong>gs grew rapidly <strong>and</strong> reached reproductive<br />

status quickly, which would <strong>in</strong>crease<br />

colonization rates.<br />

To beg<strong>in</strong> to answer some of the questions<br />

posed above, two experiments were set up.<br />

These were designed to test the dispersal<br />

properties of the three mangrove species <strong>and</strong><br />

their ability to establish successfully <strong>in</strong> the<br />

swamp environments of the Wa<strong>in</strong>i Pen<strong>in</strong>sula.<br />

Figure 5.4. Cluster<strong>in</strong>g of Avicennia seedl<strong>in</strong>gs along<br />

m<strong>in</strong>or barriers, here the branches of trees that were<br />

killed by the soil fires three years before this image<br />

was taken <strong>in</strong> April, 2001. The surviv<strong>in</strong>g parent tree<br />

was directly beh<strong>in</strong>d the photographer, about 2 meters<br />

from this cluster. This image also illustrates the<br />

condition of the soil surface dur<strong>in</strong>g the m<strong>in</strong>or drought<br />

at the time, cracked with salt accumulations on the<br />

surface. The other plants seen are the sedge Cyperus<br />

odoratus.<br />

Figure 5.5. Avicennia propagules collected among<br />

pneumatophores under a parent tree <strong>in</strong> undisturbed<br />

non-tidal swamp beh<strong>in</strong>d a beach ridge, approximately<br />

20 meters from the ocean.<br />

METHODS<br />

Study Site<br />

The study site is located <strong>in</strong> the Almond<br />

Beach vic<strong>in</strong>ity of Guyana’s Wa<strong>in</strong>i Pen<strong>in</strong>sula <strong>in</strong>,<br />

burned <strong>and</strong> unburned sections of Avicennia<br />

mangrove swamp. A detailed site description is<br />

given <strong>in</strong> Chapter 1. For this study, an area of<br />

approximately 0.75 km 2 was exam<strong>in</strong>ed to locate


Contributions to the Study of Biological Diversity Vol. 3<br />

suitable parent trees for the dispersal<br />

<strong>in</strong>vestigation, <strong>and</strong> plant<strong>in</strong>g trials were sited near<br />

the 0.1 ha vegetation monitor<strong>in</strong>g plots <strong>in</strong> burned<br />

<strong>and</strong> unburned Avicennia swamp (see Figure 4.1).<br />

Propagule Dispersal <strong>and</strong> Establishment<br />

Most procedures for track<strong>in</strong>g dispersal of<br />

mangrove propagules have relied upon the<br />

mark<strong>in</strong>g of seeds on the parent tree <strong>and</strong> then<br />

attempt<strong>in</strong>g to f<strong>in</strong>d them <strong>in</strong> the environment<br />

follow<strong>in</strong>g dispersal, or collection of data <strong>in</strong> a<br />

neighbor<strong>in</strong>g environment free from the subject<br />

species. In the case of the burned swamp at<br />

Almond Beach, parent Laguncularia racemosa,<br />

Avicennia germ<strong>in</strong>ans, <strong>and</strong> Rhizophora mangle<br />

trees were scattered to the degree that<br />

established seedl<strong>in</strong>gs encountered while mov<strong>in</strong>g<br />

from a parent <strong>in</strong> the downw<strong>in</strong>d direction for 100<br />

meters were likely derived from that parent.<br />

That, <strong>in</strong> addition to the absence of tidal currents<br />

from the swamps, provided a blank canvas of<br />

sorts, <strong>in</strong> which the supply <strong>and</strong> properties of<br />

propagules could be <strong>in</strong>vestigated.<br />

In the burned Avicennia swamp, surviv<strong>in</strong>g<br />

reproductive trees were located near the Almond<br />

Beach camp. Establishment patterns were<br />

sampled for 16 Avicennia <strong>and</strong> 16 Laguncularia<br />

trees, while only five fertile Rhizophora parent<br />

trees were located. Rhizophora trees were rare<br />

<strong>in</strong> the area, occurr<strong>in</strong>g only along the swamp’s<br />

boundary with the beach ridge, <strong>and</strong> those located<br />

were frequently without fruit. Some po<strong>in</strong>ts<br />

considered as s<strong>in</strong>gle Laguncularia parents were<br />

clusters of several shrubby <strong>in</strong>dividuals. A 5<br />

meter wide transect was started at the edge of<br />

each parent tree’s crown <strong>and</strong> followed for 100<br />

meters <strong>in</strong> the direction of the prevail<strong>in</strong>g w<strong>in</strong>ds,<br />

approximately toward the west-southwest (260<br />

degrees). Transect width was tracked with a<br />

collapsible fiberglass dome tent pole, which<br />

covered the 5 meter wide swath when held<br />

perpendicular to the transect l<strong>in</strong>e <strong>and</strong> allowed<br />

to flex (Figure 5.6). The number of established<br />

seedl<strong>in</strong>gs (from plants with cotyledons exposed<br />

to plants 50 cm high) was recorded for each 0.1<br />

meter of the transect. Significant barriers,<br />

generally logs <strong>and</strong> branches of fallen trees, were<br />

noted.<br />

A simple <strong>in</strong>itial model was formed to<br />

compare potential spread of Laguncularia,<br />

Avicennia, <strong>and</strong> Rhizophora <strong>in</strong> the burned<br />

85<br />

Avicennia swamp at Almond Beach. Spatial<br />

buffer<strong>in</strong>g was performed <strong>in</strong> ArcView 3.3 (ESRI<br />

2002), <strong>in</strong> which polygons of expected<br />

establishment distance are formed at a uniform<br />

distances from the parent trees accord<strong>in</strong>g to<br />

species. Based on observations of the<br />

reproduction of these species <strong>in</strong> the burned<br />

swamp environment, it was assumed that<br />

Laguncularia reached reproductive age after<br />

about three years, Avicennia after about five<br />

years, <strong>and</strong> Rhizophora after about eight years.<br />

Buffers were generated for five generations of<br />

Laguncularia, three generations of Avicennia,<br />

<strong>and</strong> two generations of Rhizophora, or about 15<br />

years (16 for Rhizophora).Mean establishment<br />

distances from the transects for each species<br />

were used as the distance that the range<br />

exp<strong>and</strong>ed from each <strong>in</strong>dividual over one<br />

generation.<br />

Propagule <strong>Plant</strong><strong>in</strong>gs<br />

<strong>Plant</strong><strong>in</strong>gs of propagules of four mangrove<br />

species were performed to assess the potentials<br />

of the common mangrove species <strong>in</strong> the area to<br />

establish <strong>and</strong> grow under a variety of<br />

hydrological conditions. Result<strong>in</strong>g <strong>in</strong>formation<br />

can then be considered <strong>in</strong> terms of different plant<br />

community succession models <strong>and</strong> potential<br />

ecosystem restoration strategies.<br />

Mature propagules for the plant<strong>in</strong>gs were<br />

collected from surviv<strong>in</strong>g trees with<strong>in</strong> or on the<br />

Figure 5.6. Method for count<strong>in</strong>g established<br />

Laguncularia us<strong>in</strong>g a Ahip cha<strong>in</strong>@ measur<strong>in</strong>g device<br />

<strong>and</strong> a pole spann<strong>in</strong>g 5 meters when flexed. The area<br />

pictured was one of the most heavily vegetated with<br />

Laguncularia shrubs.


86<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

marg<strong>in</strong>s of the Almond Beach Swamp for<br />

Avicennia germ<strong>in</strong>ans, Laguncularia racemosa,<br />

<strong>and</strong> Rhizophora mangle, <strong>and</strong> propagules of<br />

Rhizophora racemosa were collected from trees<br />

along the banks of the Mora Passage. Avicennia<br />

propagules were approximately 2-2.5 cm <strong>in</strong><br />

length, Laguncularia propagules 1.5-2 cm <strong>in</strong><br />

length, Rhizophora mangle propagules 15 cm<br />

<strong>in</strong> length, <strong>and</strong> Rhizophora racemosa propagules<br />

35 cm <strong>in</strong> length (Figure 5.1).<br />

<strong>Plant</strong><strong>in</strong>gs were made <strong>in</strong> both burned <strong>and</strong><br />

unburned swamp sites, dur<strong>in</strong>g flooded <strong>and</strong> dry<br />

conditions, <strong>and</strong> at the normal swamp level <strong>and</strong><br />

at a level elevated 15 cm above typical swamp<br />

surface level. Water levels at the time of the<br />

flooded plant<strong>in</strong>gs were well above the soil<br />

surface of the lower level plant<strong>in</strong>gs <strong>and</strong> a few<br />

cm above the soil surface of the elevated<br />

plant<strong>in</strong>gs. No surface water was present at an<br />

level at either site when dry condition plant<strong>in</strong>gs<br />

were made.<br />

In the burned swamp site, plant<strong>in</strong>gs for the<br />

elevated treatment were made by anchor<strong>in</strong>g<br />

alum<strong>in</strong>um flash<strong>in</strong>g r<strong>in</strong>gs that were 20 cm-high<br />

<strong>and</strong> 1 m 2 area. The r<strong>in</strong>gs were anchored <strong>in</strong> place<br />

<strong>and</strong> filled to 15 cm with soil from nearby. In<br />

the unburned swamp site, a slightly elevated<br />

area existed <strong>in</strong> the plant<strong>in</strong>g area <strong>and</strong> was utilized<br />

for the elevated treatments. Water depths dur<strong>in</strong>g<br />

the wet season plant<strong>in</strong>gs were similar between<br />

the treatments for the two sites. Sixteen<br />

propagules were planted for each treatment. The<br />

two Rhizophora species were planted by<br />

<strong>in</strong>sert<strong>in</strong>g propagules upright with po<strong>in</strong>ts<br />

approximately 5 cm <strong>in</strong>to the soil surface, while<br />

the Laguncularia <strong>and</strong> Avicennia propagules<br />

were secured <strong>in</strong> place with U-shaped th<strong>in</strong> wire<br />

clips. For the wet condition plant<strong>in</strong>gs,<br />

measurements were made after 10.5 <strong>and</strong> 17<br />

months. Measurements were made for 1) the<br />

number of nodes on each seedl<strong>in</strong>g, 2) the height<br />

of each seedl<strong>in</strong>g, 3) the number of branches,<br />

<strong>and</strong> 4) the number of prop-roots developed <strong>in</strong><br />

Rhizophora trees. The second, dry condition,<br />

plant<strong>in</strong>g was made of the same species <strong>in</strong> both<br />

burned <strong>and</strong> unburned areas, around the time of<br />

the first data collection for the wet season<br />

plant<strong>in</strong>g, <strong>in</strong> April 2001 dur<strong>in</strong>g a moderate<br />

drought with no st<strong>and</strong><strong>in</strong>g water <strong>in</strong> the swamps.<br />

The seedl<strong>in</strong>gs result<strong>in</strong>g from the dry condition<br />

plant<strong>in</strong>gs were measured after about 6 months,<br />

<strong>in</strong> October 2001.<br />

RESULTS<br />

Propagule Dispersal <strong>and</strong> Establishment<br />

Sixteen Laguncularia <strong>and</strong> 16 Avicennia<br />

parent trees were located <strong>and</strong> sampled. Only five<br />

fertile Rhizophora parent trees were located <strong>in</strong><br />

the vic<strong>in</strong>ity, all grow<strong>in</strong>g along or near the<br />

swamp/beach ridge boundary. In the comb<strong>in</strong>ed<br />

100 meter transects, a total of 598 Laguncularia<br />

seedl<strong>in</strong>gs, 678 Avicennia seedl<strong>in</strong>gs, <strong>and</strong> 74<br />

Rhizophora seedl<strong>in</strong>gs were sampled. Full counts<br />

for each species sampled are summarized <strong>in</strong><br />

Table 5.1, <strong>and</strong> distribution curves based on those<br />

data are presented <strong>in</strong> Figure 5.7 for<br />

Laguncularia, Figure 5.8 for Avicennia <strong>and</strong><br />

Figure 5.7. Dispersal curve for establishment of<br />

Laguncularia seedl<strong>in</strong>gs, for all 100 meter transects<br />

comb<strong>in</strong>ed, with the logarithmic curve that best fitted<br />

those data.<br />

Figure 5.8. Establishment distance curve for<br />

Avicennia seedl<strong>in</strong>gs, comb<strong>in</strong>ed 100 meter transects,<br />

with the logarithmic curve that best fitted those data.


Contributions to the Study of Biological Diversity Vol. 3<br />

Figure 5.9 for Rhizophora. The range of<br />

numbers of seedl<strong>in</strong>gs encountered from an<br />

<strong>in</strong>dividual parent varied from 2 to 155 <strong>in</strong><br />

Laguncularia, 1 to 237 <strong>in</strong> Avicennia, <strong>and</strong> 3 to<br />

39 <strong>in</strong> Rhizophora. The mean establishment<br />

distance was 24.2 meters for Laguncularia, 4.8<br />

meters for Avicennia, <strong>and</strong> 8.9 meters for<br />

Rhizophora. Summary statistics for<br />

establishment distance measurements are given<br />

<strong>in</strong> Table 5.2.<br />

The three result<strong>in</strong>g establishment distance<br />

data sets were tested for significant difference<br />

among themselves with pairs of Wilcoxon ranksum<br />

tests (nonparametric, as distributions were<br />

not normal). In addition, a one-sample<br />

Kolmogorov-Smirnov test for each species was<br />

used to test if established seedl<strong>in</strong>gs distances<br />

were reasonably drawn from an exponential<br />

distribution with the mean for that species. In<br />

all Wilcoxon rank-sum tests of pairs of<br />

comparisons, p-values were less than 0.005. The<br />

maximum establishment distances recorded for<br />

each species were 100 meters for Laguncularia,<br />

92.1 meters for Avicennia, <strong>and</strong> 49 meters for<br />

Rhizophora. All curves were significantly<br />

different from artificial uniform distributions of<br />

values rang<strong>in</strong>g from 0 to the species maximum.<br />

In the case of Laguncularia (p= 0.045, onesample<br />

Kolmogorov-Smirnov test) the<br />

distribution approached a less significant<br />

difference from 7 exponential distributions with<br />

the species’ mean.<br />

For graph<strong>in</strong>g, the seedl<strong>in</strong>g establishment<br />

po<strong>in</strong>ts were condensed <strong>in</strong>to one meter <strong>in</strong>terval<br />

groups. Those displayed degrees of bimodal or<br />

polymodal distributions, most dist<strong>in</strong>ctly <strong>in</strong><br />

Rhizophora <strong>and</strong> Avicennia. Best-fit natural<br />

logarithmic l<strong>in</strong>es were calculated for the<br />

dispersal data grouped <strong>in</strong>to 1 meter <strong>in</strong>crements,<br />

for the three species. The lognormal decay<br />

curves achieved a somewhat better fit to the data<br />

than l<strong>in</strong>ear or b<strong>in</strong>omial curves. For Laguncularia<br />

the formula for the logarithmic curve was y = -<br />

6.2495Ln(x) + 29.183, R 2 = 0.56 (Figure 5.7),<br />

for Avicennia it was y = -20.116Ln(x) + 79.265,<br />

R 2 = 0.487 (Figure 5.8) <strong>and</strong> for Rhizophora it<br />

was y = -1.7536Ln(x) + 7.1354, R 2 = 0.559<br />

(Figure 5.9). All three curves are displayed <strong>in</strong> a<br />

s<strong>in</strong>gle graph <strong>in</strong> Figure 5.10.<br />

For the buffer<strong>in</strong>g model, the mean distances<br />

obta<strong>in</strong>ed from the establishment transects were<br />

87<br />

Figure 5.9. Dispersal curve for establishment of<br />

Rhizophora seedl<strong>in</strong>gs, for all 100 meter transects<br />

comb<strong>in</strong>ed, with the logarithmic curve that best fitted<br />

those data.<br />

used: 24.2 meters for Laguncularia, 4.38 meters<br />

for Avicennia, <strong>and</strong> 8.94 meters for Rhizophora.<br />

The po<strong>in</strong>ts modeled for Rhizophora <strong>and</strong><br />

Laguncularia were those for all parent trees <strong>in</strong><br />

the establishment transects, while 39 additional<br />

mature Avicennia trees were located <strong>in</strong> the area<br />

<strong>and</strong> marked with GPS, for a total of 55 used.<br />

One Rhizophora po<strong>in</strong>t was located to the west<br />

of the boundary that had been drawn for the<br />

Almond Beach burn, <strong>in</strong> an area the had<br />

apparently been impacted by scattered soil fires,<br />

without full mortality of the surround<strong>in</strong>g trees.<br />

The result<strong>in</strong>g buffer areas after the specified<br />

<strong>in</strong>tervals were 57.4 ha for Laguncularia, 2.83<br />

ha for Avicennia, <strong>and</strong> 1.0 ha for Rhizophora; out<br />

of the estimated 5.17 km 2 (517 ha) area of<br />

Avicennia swamp burned at the Almond Beach<br />

site. For Laguncularia, that equated to 11.1%<br />

of the burned area. The buffer<strong>in</strong>g result maps<br />

are shown <strong>in</strong> Figures 5.11, 5.12, <strong>and</strong> 5.13,<br />

respectively.<br />

Propagule <strong>Plant</strong><strong>in</strong>gs<br />

In both burned <strong>and</strong> unburned treatments,<br />

plant<strong>in</strong>gs of the two Rhizophora species were<br />

the only species to survive to the first census,<br />

<strong>and</strong> all plant<strong>in</strong>gs of Laguncularia <strong>and</strong> Avicennia<br />

propagules failed. In the burned swamp,<br />

Rhizophora racemosa treatments grew robustly<br />

(Figure 5.14); however, substrate-level R.<br />

mangle experienced apparent full mortality.<br />

After the first 11 months <strong>in</strong> the burned treatment,<br />

the mean height of the 14 surviv<strong>in</strong>g elevated R.<br />

mangle seedl<strong>in</strong>gs was 71.5 cm, the mean height<br />

of the 16 elevated R. racemosa seedl<strong>in</strong>gs was<br />

128.9 cm, <strong>and</strong> the mean height of the 16


88<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Table 5.1. Number of seedl<strong>in</strong>gs found with<strong>in</strong> one meter <strong>in</strong>tervals away from parent trees, with<strong>in</strong> a 5 meter<br />

wide b<strong>and</strong>, totaled for all replicates with<strong>in</strong> the three species sampled for establishment distance.<br />

Avicennia<br />

m count<br />

0 91<br />

1 170<br />

2 152<br />

3 84<br />

4 32<br />

5 29<br />

6 8<br />

7 6<br />

8 7<br />

9 5<br />

10 28<br />

11 18<br />

12 4<br />

13 11<br />

14 4<br />

15 4<br />

16 1<br />

20 2<br />

22 2<br />

23 2<br />

24 3<br />

26 2<br />

29 1<br />

31 4<br />

51 1<br />

56 1<br />

60 1<br />

63 1<br />

65 1<br />

88 1<br />

92 2<br />

Laguncularia<br />

m count<br />

0 7<br />

1 26<br />

2 35<br />

3 41<br />

4 18<br />

5 14<br />

6 15<br />

7 9<br />

8 10<br />

9 18<br />

10 7<br />

11 26<br />

12 26<br />

13 20<br />

14 16<br />

15 22<br />

16 5<br />

17 20<br />

18 9<br />

19 15<br />

20 7<br />

21 10<br />

22 10<br />

23 10<br />

24 6<br />

25 7<br />

26 3<br />

28 4<br />

29 32<br />

30 4<br />

31 1<br />

32 3<br />

34 7<br />

35 3<br />

36 1<br />

38 3<br />

39 2<br />

40 4<br />

42 1<br />

43 4<br />

45 1<br />

46 2<br />

47 1<br />

48 1<br />

49 7<br />

50 7<br />

51 5<br />

52 1<br />

54 2<br />

55 4<br />

56 5<br />

57 5<br />

58 1<br />

60 5<br />

61 5<br />

62 2<br />

63 1<br />

65 1<br />

66 1<br />

67 1<br />

68 1<br />

69 6<br />

70 10<br />

71 2<br />

72 2<br />

73 2<br />

74 4<br />

78 1<br />

79 3<br />

80 1<br />

83 1<br />

84 1<br />

85 1<br />

86 2<br />

87 5<br />

88 1<br />

89 3<br />

91 1<br />

92 2<br />

93 1<br />

94 3<br />

95 3<br />

96 1<br />

100 2<br />

Rhizophora<br />

m count<br />

0 6<br />

1 13<br />

2 5<br />

3 11<br />

4 6<br />

5 3<br />

6 5<br />

7 5<br />

8 5<br />

9 1<br />

10 2<br />

11 1<br />

19 1<br />

27 1<br />

34 1<br />

40 3<br />

42 1<br />

43 2<br />

49 2


Contributions to the Study of Biological Diversity Vol. 3<br />

Figure 5.10. Comparison of seedl<strong>in</strong>g establishment distributions for Rhizophora, Avicennia, <strong>and</strong> Laguncularia,<br />

comb<strong>in</strong>ed 100 meter transects.<br />

Table 5.2. Summary values for establishment distance measurements.<br />

N<br />

Mean<br />

Mode<br />

M<strong>in</strong>imum<br />

Maximum<br />

Std. Dev.<br />

Variance<br />

Avicennia<br />

675<br />

4.38<br />

2.1<br />

0<br />

92.1<br />

8.86<br />

78.54<br />

Laguncularia<br />

597<br />

24.20<br />

15.3<br />

0<br />

100<br />

24.47<br />

598.63<br />

Rhizophora<br />

74<br />

8.94<br />

3.75<br />

0<br />

49<br />

13.19<br />

173.99<br />

89


90<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Figure 5.11. Graphic results of buffer<strong>in</strong>g of<br />

Laguncularia po<strong>in</strong>ts <strong>in</strong> the Almond Beach swamp,<br />

based on five three-year generations. Total area<br />

covered was 57.4 ha.<br />

substrate-level R. racemosa seedl<strong>in</strong>gs was<br />

103.25 cm . At the second sampl<strong>in</strong>g 17 months<br />

after plant<strong>in</strong>gs there was no additional mortality;<br />

the mean height of the elevated R. mangle<br />

seedl<strong>in</strong>gs was 118.6 cm, the mean height of<br />

elevated R. racemosa seedl<strong>in</strong>gs was 197 cm, <strong>and</strong><br />

the mean height of substrate-level R. racemosa<br />

was 159.4 cm. The mean values for height, node<br />

count, prop root count, <strong>and</strong> for the first<br />

measurement (10.5 months) are graphed <strong>in</strong><br />

Figure 5.12. Graphic results of buffer<strong>in</strong>g of Avicennia<br />

po<strong>in</strong>ts <strong>in</strong> the Almond Beach swamp, based on three<br />

five-year generations. Total area covered was 2.83<br />

ha.<br />

Figure 5.13. Graphic results of buffer<strong>in</strong>g of ten Rhizophora po<strong>in</strong>ts <strong>in</strong> the Almond Beach swamp, based on two<br />

eight-year generations. The total area covered after that <strong>in</strong>terval was 1 ha. The po<strong>in</strong>ts <strong>in</strong>cluded the five fertile<br />

trees used for establishment distance measurements <strong>and</strong> five others that were also located <strong>in</strong> the vic<strong>in</strong>ity. The<br />

approximate location is <strong>in</strong>dicated for the lagoon that sometimes connects the Almond Beach swamp to the<br />

sea.<br />

Figure 5.15, for the second measurement (17<br />

months) <strong>in</strong> Figure 5.16 with the values <strong>and</strong><br />

differences between the two dates listed <strong>in</strong> Table<br />

5.3. It should be kept <strong>in</strong> m<strong>in</strong>d that as planted,<br />

Rhizophora racemosa propagules were<br />

approximately 20 cm longer than Rhizophora<br />

mangle propagules. Height values for both<br />

Rhizophora species <strong>in</strong> the two habitats for both<br />

treatments are shown <strong>in</strong> Figure 5.17. A series of<br />

pairwise t-tests was used to compare the mean


Contributions to the Study of Biological Diversity Vol. 3<br />

Figure 5.14. Rhizophora plant<strong>in</strong>gs <strong>in</strong> April 2001,<br />

approximately 102 months after establishment.<br />

Vegetation <strong>in</strong> the background is primarily<br />

Acrostichum ferns.<br />

91<br />

values for comb<strong>in</strong>ations of plant<strong>in</strong>gs s<strong>in</strong>ce<br />

variances were fairly similar. A matrix of the<br />

result<strong>in</strong>g p-values is given <strong>in</strong> Table 5.4. For the<br />

height measure an analysis of variance<br />

(ANOVA) also showed high significance,<br />

approach<strong>in</strong>g p=0, for all factors, habitat,<br />

elevation <strong>and</strong> species, with either the raw data<br />

or with seedl<strong>in</strong>g heights adjusted for the<br />

difference <strong>in</strong> length of propagules of the two<br />

species.<br />

In the unburned swamp, survival <strong>and</strong><br />

growth of both species of Rhizophora was much<br />

lower than <strong>in</strong> the burned swamp, where no<br />

Laguncularia or Avicennia aga<strong>in</strong> survived <strong>in</strong> any<br />

treatments. Dry season plant<strong>in</strong>gs also result<strong>in</strong>g<br />

<strong>in</strong> survival of only Rhizophora plants, <strong>and</strong><br />

exhibited decreased survival <strong>and</strong> growth of those<br />

species, particularly <strong>in</strong> the unburned swamp.<br />

Values for the dry season plant<strong>in</strong>gs are<br />

summarized <strong>in</strong> Table 5.5 <strong>and</strong> graphed <strong>in</strong> Figure<br />

5.18. Dur<strong>in</strong>g the dry season plant<strong>in</strong>g there was<br />

greater effect on Rhizophora mangle plant<strong>in</strong>gs,<br />

which displayed no survival <strong>in</strong> the elevated<br />

plant<strong>in</strong>gs <strong>and</strong> no survival <strong>in</strong> the unburned<br />

swamp. Accord<strong>in</strong>g to well data from the two<br />

Figure 5.15. Graphs compar<strong>in</strong>g Rhizophora plant<strong>in</strong>g results after 10.5 months, burned site. None of the shorter<br />

Rhizophora mangle propagules were noted as alive at low (substrate) elevation.


92<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Figure 5.16. Graphs compar<strong>in</strong>g Rhizophora plant<strong>in</strong>g<br />

results, burned site after 17 months.<br />

Burned<br />

Unburned<br />

Burned<br />

Unburned<br />

Burned<br />

Unburned<br />

elevated<br />

low<br />

elevated<br />

low<br />

elevated<br />

low<br />

elevated<br />

low<br />

elevated<br />

low<br />

elevated<br />

low<br />

R. mangle<br />

R. racemosa<br />

R. mangle<br />

R. racemosa<br />

R. mangle<br />

R. racemosa<br />

R. mangle<br />

R. racemosa<br />

R. mangle<br />

R. racemosa<br />

R. mangle<br />

R. racemosa<br />

R. mangle<br />

R. racemosa<br />

R. mangle<br />

R. racemosa<br />

R. mangle<br />

R. racemosa<br />

R. mangle<br />

R. racemosa<br />

R. mangle<br />

R. racemosa<br />

R. mangle<br />

R. racemosa<br />

Nodes<br />

9.6<br />

11.25<br />

0<br />

11.75<br />

6.1<br />

6.3<br />

0<br />

0<br />

Nodes<br />

18.1<br />

17.75<br />

0<br />

17.3<br />

8.6<br />

6.8<br />

0<br />

0<br />

Nodes<br />

8.6<br />

6.5<br />

0<br />

5.6<br />

2.5<br />

0.4<br />

0<br />

0<br />

Figure 5.17. Mean seedl<strong>in</strong>g heights for both species<br />

of Rhizophora after 10.5 <strong>and</strong> 17 months, for<br />

surviv<strong>in</strong>g seedl<strong>in</strong>gs <strong>in</strong> elevated plant<strong>in</strong>gs, burned <strong>and</strong><br />

unburned areas.<br />

Table 5.3. Mean values for the variables measured for Rhizophora plant<strong>in</strong>gs made <strong>in</strong> wet conditions <strong>in</strong> May<br />

2000, for the first sampl<strong>in</strong>g (11 mos.), the second sampl<strong>in</strong>g (17 mos.), <strong>and</strong> the difference between the means.<br />

These means are from values are for the surviv<strong>in</strong>g <strong>in</strong>dividuals only out of 16 planted <strong>in</strong> each treatment.<br />

Mean values, first sampl<strong>in</strong>g, survivors only<br />

Height (cm)<br />

71.5<br />

128.9<br />

0<br />

103.25<br />

53.9<br />

62.2<br />

0<br />

0<br />

Height (cm)<br />

118.6<br />

197<br />

0<br />

159.4<br />

59.1<br />

64.8<br />

0<br />

0<br />

Height (cm)<br />

47.1<br />

68.1<br />

0<br />

56.1<br />

5.2<br />

2.6<br />

0<br />

0<br />

Prop roots<br />

0.3<br />

1.6<br />

0<br />

0.6<br />

0<br />

0<br />

0<br />

0<br />

Prop roots<br />

5.3<br />

5.9<br />

0<br />

3.7<br />

0<br />

0.1<br />

0<br />

0<br />

Prop roots<br />

5.0<br />

4.3<br />

0<br />

3.1<br />

0<br />

0.1<br />

0<br />

0<br />

Branches<br />

5.2<br />

8.1<br />

0<br />

6.2<br />

0<br />

0<br />

0<br />

0<br />

Mean values, second sampl<strong>in</strong>g, survivors only<br />

Branches<br />

10<br />

14.9<br />

0<br />

12.1<br />

0.6<br />

0.1<br />

0<br />

0<br />

Difference, first to second sampl<strong>in</strong>g, survivors only<br />

Branches<br />

4.9<br />

6.8<br />

0<br />

5.9<br />

0.6<br />

0.1<br />

0<br />

0<br />

Survivors<br />

14<br />

16<br />

0<br />

16<br />

10<br />

14<br />

0<br />

0<br />

Survivors<br />

14<br />

16<br />

0<br />

16<br />

10<br />

9<br />

0<br />

0<br />

Survivors<br />

0<br />

0<br />

0<br />

0<br />

0<br />

-5<br />

0<br />

0


Contributions to the Study of Biological Diversity Vol. 3<br />

Table 5.4. Summary of P-values for pairwise t-tests between comb<strong>in</strong>ations of Rhizophora mangle (R.m.) <strong>and</strong><br />

Rhizophora racemosa (R.r.) plant<strong>in</strong>g treatments <strong>in</strong> high vs low elevation plant<strong>in</strong>gs <strong>and</strong> burned vs unburned<br />

areas. Values significant at P=0.05 are shown <strong>in</strong> bold face.<br />

R.m. vs R.r. low<br />

R.m. vs R.r. high<br />

R.r. hi vs low<br />

R.m. burn vs unburn<br />

R.r. burn vs unburn<br />

R.m. vs R.r. low<br />

R.m. vs R.r. high<br />

R.r. hi vs low<br />

R.m. burn vs unburn<br />

R.r. burn vs unburn<br />

R.m. vs R.r. low<br />

R.m. vs R.r. high<br />

R.r. hi vs low<br />

R.m. burn vs unburn<br />

R.r. burn vs unburn<br />

First plant<strong>in</strong>g, first census<br />

Nodes<br />

n/a<br />

0.003<br />

0.219<br />

0.0005<br />

0<br />

Nodes<br />

n/a<br />

0.287<br />

0.542<br />

0<br />

0<br />

Nodes<br />

0.186<br />

n/a<br />

0.088<br />

n/a<br />

0.033<br />

Height<br />

n/a<br />

0<br />

0<br />

0.006<br />

0<br />

First plant<strong>in</strong>g, second census<br />

Height<br />

n/a<br />

0<br />

0.001<br />

0<br />

0<br />

Second plant<strong>in</strong>g (dry season)<br />

sites, the groundwater level <strong>in</strong> the unburned<br />

swamp was lower than the burned swamp,<br />

possibly caused by higher evapotranspiration<br />

from trees <strong>in</strong> the liv<strong>in</strong>g forest. Other factors<br />

limit<strong>in</strong>g survival <strong>and</strong> growth <strong>in</strong> the unburned<br />

site likely <strong>in</strong>clude shad<strong>in</strong>g <strong>and</strong> competition for<br />

nutrients <strong>and</strong> water. There were no observations<br />

suggest<strong>in</strong>g that predation played a role <strong>in</strong><br />

Rhizophora mortality <strong>in</strong> either site.<br />

DISCUSSION<br />

Propagule Dispersal <strong>and</strong> Establishment<br />

Establishment patterns <strong>in</strong> the Almond<br />

Height<br />

0.788<br />

n/a<br />

0.072<br />

n/a<br />

0.036<br />

Prop roots<br />

n/a<br />

0.010<br />

0.065<br />

n/a<br />

n/a<br />

Prop roots<br />

n/a<br />

0.228<br />

0.006<br />

n/a<br />

n/a<br />

Prop roots<br />

n/a<br />

n/a<br />

n/a<br />

n/a<br />

n/a<br />

Branches<br />

n/a<br />

0.000<br />

0.012<br />

n/a<br />

n/a<br />

Branches<br />

n/a<br />

0.0002<br />

0.029<br />

n/a<br />

n/a<br />

Branches<br />

0.032<br />

n/a<br />

0.025<br />

n/a<br />

n/a<br />

Table 5.5. Mean values for variables measured for Rhizophora plant<strong>in</strong>gs made <strong>in</strong> drought conditions <strong>in</strong> April<br />

2001.<br />

R. mangle low<br />

R.racemosa low<br />

R.racemosa elev.<br />

R.racemosa elev. unburn<br />

Nodes<br />

5.25<br />

3.69<br />

1.69<br />

0.81<br />

Height<br />

(cm)<br />

34.69<br />

37.44<br />

16.25<br />

8.63<br />

Prop roots<br />

0<br />

0<br />

0<br />

0<br />

Branches<br />

4.69<br />

2.50<br />

0.75<br />

0<br />

% Survival<br />

75<br />

56<br />

25<br />

25<br />

93<br />

Beach swamps were similar to those that might<br />

be expected <strong>in</strong> upl<strong>and</strong> systems. Although <strong>in</strong><br />

terms of Chambers <strong>and</strong> MacMahon’s (1994)<br />

classification of dispersal movement phases, the<br />

water <strong>in</strong> the non-tidal Almond Beach swamp<br />

would qualify as Phase II dispersal, com<strong>in</strong>g after<br />

the propagule first moves from parent to a<br />

surface, the establishment curves derived from<br />

the transects resemble a leptokurtic Phase I<br />

dispersal pattern, with a peak near the parent<br />

<strong>and</strong> a long tail. This is possibly attributable to<br />

the passive nature of the water that lacks<br />

substantial currents. The fits of the logarithmic<br />

curves calculated from the dispersal distance<br />

data were not particularly good for the three


94<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Figure 5.18. Dry season plant<strong>in</strong>g results. R. racemosa<br />

values are not corrected for its larger propagule<br />

length, approximately 20 cm. greater than R. mangle.<br />

species, as all displayed typical irregular Phase<br />

I type distributions with a peak near the parents<br />

<strong>and</strong> with long tails. If there had been substantial<br />

Phase II dispersal it would be attributable to<br />

movement <strong>in</strong> water currents after fall<strong>in</strong>g from<br />

the parent, <strong>and</strong> it would have the effect of<br />

additional extension of tails of the curves. It is<br />

uncerta<strong>in</strong> to what degree the patterns here reflect<br />

any seed movement from the time the fruits<br />

leave the parent tree <strong>and</strong> when they reach the<br />

water surface, such as dur<strong>in</strong>g brief periods of<br />

high w<strong>in</strong>ds.<br />

Propagule dispersal distance <strong>in</strong> the Almond<br />

Beach non-tidal environment was apparently<br />

related, <strong>in</strong> least <strong>in</strong> part, to the size of propagules.<br />

The smaller Laguncularia propagules were<br />

dispersed farther than Avicennia propagules. On<br />

the other h<strong>and</strong>, the mean distance for dispersal<br />

of the much larger Rhizophora propagules was<br />

higher than that of Avicennia (8.9 meters vs 4.4<br />

meters). However, the maximum dispersal<br />

distance recorded for Rhizophora was lower<br />

than for Avicennia (92 meters vs 49 meters),<br />

although that may have been <strong>in</strong>fluenced by the<br />

greater number of Avicennia trees available for<br />

sampl<strong>in</strong>g <strong>and</strong> the much greater number of<br />

seedl<strong>in</strong>gs established from Avicennia parent<br />

trees.<br />

The simplified environment of the burned<br />

mangrove swamp at Almond Beach provided a<br />

reduced number of variables <strong>in</strong> often present <strong>in</strong><br />

natural dispersal experiments. In mangrove<br />

swamps the number of plant species present is<br />

limited, <strong>and</strong> water dispersal tends to deposit<br />

propagules where establishment rates are high<br />

(Middleton 2000). There is no seed bank or<br />

dormant phase for mangrove species, <strong>and</strong> animal<br />

dispersal is not an important factor. <strong>Fire</strong>-related<br />

mortality <strong>in</strong> the burned habitat limited the<br />

number of parent trees that might confuse<br />

dispersal or establishment patterns, which was<br />

reflected <strong>in</strong> these dist<strong>in</strong>ct establishment distance<br />

curves. The effects of predators have probably<br />

been <strong>in</strong>itially reduced by fire disturbance. In the<br />

case of the Almond Beach swamp, beach ridge<br />

barriers block tidal <strong>and</strong> wave <strong>in</strong>fluences, mak<strong>in</strong>g<br />

dispersal distance dependent primarily on water<br />

depth <strong>and</strong> m<strong>in</strong>or currents generated by w<strong>in</strong>ds.<br />

The beach ridges also limit <strong>in</strong>flux of propagules<br />

from outside sources. While the non-tidal sett<strong>in</strong>g<br />

is not typically utilized for dispersal studies <strong>in</strong><br />

mangrove swamps, there are often sizable<br />

portions of mangrove systems that are isolated<br />

from regular tidal <strong>in</strong>undation. In some respects,<br />

the dispersal environments of Almond Beach<br />

mangrove swamps were more complex than that<br />

of the ocean/swamp edge studied by Rab<strong>in</strong>owitz<br />

1978b.<br />

While the results of the buffer<strong>in</strong>g trials<br />

provided an <strong>in</strong>itial visual comparison of abilities<br />

to colonize the burned swamp, there is certa<strong>in</strong>ly<br />

a potential for more advanced propagule<br />

dispersal <strong>and</strong> establishment models to better<br />

predict species spread through consideration of<br />

the density of colonization events for each<br />

species, the probabilities that established<br />

seedl<strong>in</strong>gs might advance to reproductive age,<br />

<strong>and</strong> the potential for higher seed production of<br />

older <strong>in</strong>dividuals (Clark et al. 2001; He &<br />

Mladenoff 1999; Tews et al. 2004). Attention<br />

might also be given to correction for of the<br />

constant width of the transect from the trees,<br />

<strong>and</strong> the <strong>in</strong>fluenced of prevail<strong>in</strong>g w<strong>in</strong>ds, which<br />

would call for a directional bias <strong>in</strong> the creation<br />

of buffers or chances of dispersal events.<br />

It is <strong>in</strong>terest<strong>in</strong>g to note that some<br />

characteristics of “traditional” Neotropical<br />

mangrove zonation are apparent <strong>in</strong> the occluded,<br />

burned swamp once beh<strong>in</strong>d the beach ridges.<br />

Rhizophora is found nearest to the sea, <strong>and</strong><br />

Laguncularia is more common several hundred<br />

meters <strong>in</strong>l<strong>and</strong>, beyond the wettest area of the<br />

swamp. The swamp near the beach ridges is<br />

often a location of deepest water <strong>in</strong> the occluded<br />

swamps, <strong>and</strong> may allow some local movement<br />

of the larger Rhizophora propagules.<br />

While ecological studies on fire-adapted


Contributions to the Study of Biological Diversity Vol. 3<br />

plant communities tend to focus on life history<br />

traits rather than competition, <strong>in</strong> mangrove<br />

swamps it seems that hydrology will play a<br />

significant role <strong>in</strong> the path of recovery, along<br />

with closely l<strong>in</strong>ked factors such as soil sal<strong>in</strong>ity<br />

<strong>and</strong> soil redox potential, which affect nutrient<br />

availability. The importance of these factors is,<br />

however, cont<strong>in</strong>gent on availability of<br />

propagules, <strong>and</strong> the spread of tree species <strong>in</strong>to<br />

burned areas of the Almond Beach swamp<br />

seems to be limited by the availability of<br />

propagules <strong>and</strong> patterns of dispersal <strong>and</strong><br />

establishment success that are l<strong>in</strong>ked to small<br />

elevation differences <strong>and</strong> barriers that offer<br />

suitable establishment sites. Elster et al. (1999)<br />

found that <strong>in</strong> a hydrologically disturbed nontidal<br />

mangrove swamp <strong>in</strong> Colombia, few<br />

propagules reached large areas that were remote<br />

from parent trees.<br />

Difficulty of dispersal of the larger<br />

Rhizophora propagules <strong>in</strong>to <strong>and</strong> with<strong>in</strong> the<br />

Almond Beach swamps offer one explanation<br />

for their absence from the younger Avicennia<br />

swamps. Once <strong>in</strong>troduced, the species<br />

apparently persists, as evidenced by <strong>in</strong>creas<strong>in</strong>g<br />

dom<strong>in</strong>ance of Rhizophora <strong>in</strong> coastal forests<br />

farther to the southeast on the pen<strong>in</strong>sula, where<br />

the swamps beh<strong>in</strong>d beach ridges are arguably<br />

older <strong>and</strong> Rhizophora has had a longer time for<br />

colonization success. The vigorous growth of<br />

Rhizophora plant<strong>in</strong>gs at Almond Beach attest<br />

to its ability to thrive once dispersed to that<br />

location.<br />

In a marked propagule experiment us<strong>in</strong>g<br />

the Asian mangrove Ceriops tagal (Perr.)<br />

C.B.Rob. (Rhizophoraceae), which has<br />

propagules similar <strong>in</strong> shape <strong>and</strong> size to those of<br />

Rhizophora mangle, McGu<strong>in</strong>ness (1997a)<br />

found that 76% of marked propagules were<br />

found with<strong>in</strong> 1 meter of the parent tree <strong>and</strong> 91%<br />

with<strong>in</strong> 3 meters, <strong>and</strong> concluded that patterns of<br />

<strong>in</strong>itial colonization may be reflected <strong>in</strong> zonation<br />

for long periods, <strong>and</strong> that long-term effects of<br />

competition with<strong>in</strong> physico-chemical<br />

environments may be overestimated.<br />

The burned environment at Almond Beach<br />

presented many barriers to dispersal of all<br />

mangrove species, <strong>and</strong> that effect was probably<br />

compounded by the lack of fluctuat<strong>in</strong>g water<br />

levels <strong>and</strong> currents from tides. Barriers of fallen<br />

dead trees have been cited as a probable factor<br />

95<br />

<strong>in</strong> very slow colonization <strong>in</strong> hurricane disturbed<br />

Rhizophora swamps <strong>in</strong> Guadeloupe (Imbert et<br />

al. 2000). Patches of low herbaceous vegetation,<br />

usually Alternanthera or Cyperus, acted as<br />

barriers to dispersal aga<strong>in</strong>st which many<br />

seedl<strong>in</strong>gs were str<strong>and</strong>ed <strong>and</strong> became established.<br />

Similar phenomena were noted by Lema Vélez<br />

(2003) <strong>in</strong> Colombian mangroves, where Batis<br />

maritima L. plants blocked dispersal of<br />

propagules, <strong>and</strong> <strong>in</strong> North American Taxodium<br />

(bald cypress) swamps, where seeds were found<br />

concentrated non-r<strong>and</strong>omly along logs, trees <strong>and</strong><br />

other emergent obstacles (Schneider & Sharitz<br />

1988). Clarke (1993) found that Avicennia<br />

mar<strong>in</strong>a propagules <strong>in</strong> Australia str<strong>and</strong>ed at the<br />

l<strong>in</strong>e of highest water levels <strong>in</strong>side of swamps,<br />

where they shed their pericarps, became nonbuoyant<br />

<strong>and</strong> established. All of those<br />

observations offer some support for application<br />

of the propagule sort<strong>in</strong>g hypothesis proposed by<br />

Rab<strong>in</strong>owitz (1978b) to the physical environment<br />

of the non-tidal mangrove swamps at Almond<br />

Beach. Sort<strong>in</strong>g <strong>in</strong> such swamp <strong>in</strong>teriors is likely<br />

more complicated than along tidal coasts by<br />

barriers that block propagules differentially by<br />

size <strong>and</strong> by irregular patterns of water depth. At<br />

Almond Beach the smaller propagules of<br />

Laguncularia sometimes became established on<br />

top of mats of float<strong>in</strong>g vegetation, extended their<br />

roots through water to the soil, <strong>and</strong> rema<strong>in</strong>ed<br />

elevated on those roots after the water receded<br />

(Figure 5.19). That process provided a<br />

Figure 5.19. Roots of a Laguncularia seedl<strong>in</strong>g that<br />

established on float<strong>in</strong>g vegetation dur<strong>in</strong>g high water.<br />

At lower right a str<strong>in</strong>g used to orig<strong>in</strong>ally mark plots<br />

can be seen emerg<strong>in</strong>g from the roots. Rema<strong>in</strong>s of<br />

pneumatophores of Avicennia trees killed by the soil<br />

fires are also visible.


96<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

constantly moist, but never deeply <strong>in</strong>undated,<br />

surface that might be appropriate for such small<br />

fruits to germ<strong>in</strong>ate <strong>and</strong> establish successfully.<br />

Ellison (2002) found across 44 worldwide<br />

sites from regions with a wide range of<br />

mangrove species richness, that with<strong>in</strong>-site<br />

species richness ma<strong>in</strong>ta<strong>in</strong>ed a l<strong>in</strong>ear relationship<br />

with regional species richness. It was concluded<br />

that mangrove forests may be unsaturated with<br />

available species <strong>and</strong> that a site’s species<br />

composition may be more attributable to<br />

colonization abilities <strong>and</strong> propagule sort<strong>in</strong>g, as<br />

proposed by Rab<strong>in</strong>owitz (1978a), rather than to<br />

differences <strong>in</strong> edaphic or competitive niches. At<br />

Almond Beach it was demonstrated that edaphic<br />

factors were not prevent<strong>in</strong>g establishment <strong>and</strong><br />

growth of Rhizophora <strong>in</strong> regenerat<strong>in</strong>g burned<br />

mangrove swamp. Dur<strong>in</strong>g those studies a s<strong>in</strong>gle<br />

creek dra<strong>in</strong>ed the Almond Beach swamp <strong>in</strong>to a<br />

lagoon that was only periodically open to the<br />

ocean. The northernmost Rhizophora mangle<br />

trees were located at that creek, which was<br />

possibly where propagules entered the occluded<br />

swamp, from which the species was able to<br />

disperse <strong>in</strong> deeper waters along the back of the<br />

beach ridge. The composition <strong>and</strong> patterns of<br />

Wa<strong>in</strong>i Pen<strong>in</strong>sula coastal mangrove species seem<br />

to be <strong>in</strong>fluenced by dispersal, establishment<br />

ability <strong>and</strong> sort<strong>in</strong>g <strong>in</strong> the early history of a<br />

swamp, which only later exhibits patterns<br />

<strong>in</strong>fluenced by edaphic factors <strong>and</strong> competition,<br />

along with the eventual migration of less easily<br />

dispersed species. Such development would<br />

depend on the absence of large-scale<br />

disturbances that would restore propagule<br />

availability <strong>and</strong> dispersal as dom<strong>in</strong>ant factors.<br />

The establishment <strong>and</strong> composition of<br />

mangrove swamps <strong>in</strong> many parts of the world<br />

are apparently also <strong>in</strong>fluenced by propagule<br />

predation, particularly by herbivorous crabs<br />

(Dahdouh-Guebas et al. 1998; Lee 1998;<br />

McGu<strong>in</strong>ness 1997b; Osborne & Smith 1990;<br />

Smith et al. 1989), though this may not<br />

necessarily be a major factor <strong>in</strong> mangrove<br />

swamp zonation (Sousa & Mitchell 1999).<br />

Avicennia propagules are most often cited as a<br />

preferred prey of herbivorous crabs<br />

(McGu<strong>in</strong>ness 1997b; McKee 1995a; Smith<br />

1987). In some populated areas propagule<br />

predation can also be dom<strong>in</strong>ated by<br />

domesticated animals (Lema Vélez et al. 2003).<br />

Zonation of mangrove swamps of Belize was<br />

found to be possibly <strong>in</strong>fluenced by predation of<br />

Avicennia propagules, though not of Rhizophora<br />

or Laguncularia (McKee 1995a). The<br />

herbivorous giant l<strong>and</strong> crab (Cardisoma<br />

guanhumi) Latreille is common <strong>in</strong> the Avicennia<br />

swamps of the Guianas, <strong>in</strong>clud<strong>in</strong>g the unburned<br />

swamps near Almond Beach (Figure 5.20).<br />

However, Cardisoma crabs were absent from<br />

the burned swamp areas. When water levels<br />

were high <strong>in</strong> the burned swamps, Call<strong>in</strong>ectes<br />

Stimpson crabs were observed. These crabs are<br />

carnivorous to omnivorous <strong>and</strong> are not<br />

mentioned <strong>in</strong> the literature as propagule<br />

predators. The potential role of Cardisoma crabs<br />

<strong>in</strong> population dynamics of Avicennia swamps,<br />

<strong>and</strong> therefore <strong>in</strong> eventual changes <strong>in</strong> species<br />

dom<strong>in</strong>ance <strong>in</strong> older Wa<strong>in</strong>i Pen<strong>in</strong>sula swamps is<br />

an ecological <strong>in</strong>teraction worthy of future study.<br />

Figure 5.20. Cardisoma guanhumi <strong>and</strong> Call<strong>in</strong>ectes<br />

crabs at Almond Beach. Cardisoma (above) is a<br />

common burrow<strong>in</strong>g resident of the undisturbed<br />

Avicennia swamps <strong>and</strong> is possibly an Avicennia<br />

propagule predator. The large group of Cardisoma<br />

is assembled near the Atlantic Ocean dur<strong>in</strong>g a full<br />

moon. In the burned Avicennia swamps Call<strong>in</strong>ectes<br />

crabs (below) were often observed dur<strong>in</strong>g periods of<br />

higher water; they are considered to be omnivorous<br />

to detritivorous. The Call<strong>in</strong>ectes shown is on float<strong>in</strong>g<br />

Limnobium plants.


Contributions to the Study of Biological Diversity Vol. 3<br />

Laguncularia has been noted by several<br />

authors for its function as a pioneer species <strong>in</strong><br />

some mangrove swamps (Baldw<strong>in</strong> et al. 2001;<br />

Ball 1980; Delgado et al. 2001; Roth 1992;<br />

Tissot & Marius 1992; Woodroffe 1983), often<br />

becom<strong>in</strong>g the dom<strong>in</strong>ant species early <strong>in</strong><br />

regeneration of disturbed swamps. It produces<br />

a relatively large quantity of smaller propagules<br />

<strong>and</strong> has been described as shade <strong>in</strong>tolerant <strong>and</strong><br />

fast grow<strong>in</strong>g with high mortality rates (Roth<br />

1992). Clarke (2000) felt that there were no gap<br />

specialists among Australia’s mangroves, which<br />

lack a small-fruited genus such as Laguncularia.<br />

While plant species richness <strong>in</strong> burned areas<br />

of the mangrove swamps of the Wa<strong>in</strong>i Pen<strong>in</strong>sula<br />

was higher follow<strong>in</strong>g the fires, many of those<br />

species were disturbance specialists; <strong>in</strong> some<br />

areas these will be temporary while <strong>in</strong> others<br />

they may dom<strong>in</strong>ate <strong>and</strong> prevent colonization by<br />

woody species. Smaller patches of post burn<br />

vegetation could be considered a diversification<br />

of the plant community with few negative effects<br />

(Hackney & de la Cruz 1981). However, at<br />

Almond Beach some large burned sections<br />

became quickly dom<strong>in</strong>ated by Typha <strong>and</strong> v<strong>in</strong>es<br />

<strong>and</strong> will possibly recover very slowly <strong>and</strong> may<br />

be subject to additional fires dur<strong>in</strong>g droughts.<br />

Dispersal <strong>and</strong> establishment of trees may be<br />

<strong>in</strong>hibited <strong>in</strong> these areas, which could rema<strong>in</strong> a<br />

vestige of the fires for many years.<br />

The Almond Beach fires may the beg<strong>in</strong>n<strong>in</strong>g<br />

steps toward a l<strong>and</strong>scape such as described by<br />

Pons <strong>and</strong> Pons (1975) for a section of coastal<br />

Sur<strong>in</strong>am, where broad areas of herbaceous<br />

vegetation are found beh<strong>in</strong>d a coastal Avicennia<br />

belt. These l<strong>and</strong>scapes are described as<br />

ma<strong>in</strong>ta<strong>in</strong>ed by cyclical fire events. However, the<br />

authors offer no record of fires actually observed<br />

<strong>in</strong> areas dom<strong>in</strong>ated by mangrove vegetation. The<br />

recurr<strong>in</strong>g fires <strong>in</strong> Sur<strong>in</strong>am may be analogous to<br />

those that ma<strong>in</strong>ta<strong>in</strong> Mauritia palm <strong>and</strong> sedge<br />

marshes located farther <strong>in</strong>l<strong>and</strong> on the Guyana<br />

coastal pla<strong>in</strong>, most notably at Santa Rosa <strong>in</strong><br />

Guyana’s Northwest District.<br />

Propagule <strong>Plant</strong><strong>in</strong>gs<br />

Although Laguncularia <strong>and</strong> Avicennia often<br />

display high germ<strong>in</strong>ation rates <strong>in</strong> controlled<br />

experimental conditions (Ste<strong>in</strong>ke 1975),<br />

propagules of those species failed to establish<br />

or survive <strong>in</strong> field plant<strong>in</strong>gs. There were no<br />

97<br />

explicit signs of predation at either site, however<br />

the potential propagule Cardisoma crabs were<br />

present <strong>in</strong> some locations near the unburned site.<br />

The failure of plant<strong>in</strong>g of smaller propagules is<br />

<strong>in</strong> agreement with results reported by Elster<br />

(2000) for a disturbed mangrove swamp <strong>in</strong><br />

Colombia, where all propagules died with<strong>in</strong> two<br />

months of plant<strong>in</strong>g <strong>in</strong> dry<strong>in</strong>g soils, with<br />

Avicennia <strong>and</strong> Laguncularia mortalities far<br />

higher than those of Rhizophora <strong>in</strong> most cases.<br />

Propagule mortality was described by Elster<br />

(2000) as be<strong>in</strong>g generally higher <strong>in</strong> open,<br />

disturbed sites <strong>and</strong> higher for smaller<br />

propagules, caused by environmental factors<br />

<strong>in</strong>clud<strong>in</strong>g dessication <strong>and</strong> unstable hydrology.<br />

Rab<strong>in</strong>owitz (1978c) also found far higher<br />

survivorship for Rhizophora seedl<strong>in</strong>gs<br />

compared to Avicennia or Laguncularia<br />

seedl<strong>in</strong>gs. It was demonstrated here that<br />

Avicennia <strong>and</strong> Laguncularia propagule<br />

establishment is sensitive to water level. While<br />

those species did not establish <strong>in</strong> plant<strong>in</strong>g trials,<br />

establishment along narrow str<strong>and</strong> l<strong>in</strong>es was<br />

observed bearby, presumably where water levels<br />

were appropriate. Such sensitivity to hydrology<br />

has been noted for Cypress swamps <strong>in</strong> eastern<br />

North America (Middleton 2000). The<br />

morphology of Rhizophora propagules is<br />

significantly different from Avicennia <strong>and</strong><br />

Laguncularia <strong>and</strong> affects the success of<br />

plant<strong>in</strong>gs. Some Asian mangrove plantations<br />

have been shown to be far more species poor<br />

than natural st<strong>and</strong>s, with many species of natural<br />

st<strong>and</strong>s absent; <strong>in</strong> the Philipp<strong>in</strong>es, Rhizophora is<br />

overwhelm<strong>in</strong>gly preferred for ease of plant<strong>in</strong>g,<br />

high success rates, <strong>and</strong> usefulness/high<br />

economic value (Walters 2000). All of these<br />

f<strong>in</strong>d<strong>in</strong>gs illustrate why the large propagules of<br />

Rhizophora <strong>and</strong> other Rhizophoraceae are often<br />

the major type of mangrove planted <strong>in</strong><br />

restoration efforts (Field 1998a; Field 1996),<br />

even though fairly high field survival rates have<br />

been reported for nursery reared seedl<strong>in</strong>gs of<br />

other mangrove species (Elster 2000;<br />

Rab<strong>in</strong>owitz 1978b). The plant<strong>in</strong>g results from<br />

Almond Beach are <strong>in</strong> general agreement with<br />

the concept that seeds with larger mass are well<br />

adapted for successful establishment <strong>and</strong><br />

seedl<strong>in</strong>g survival (Westoby et al. 1997). In the<br />

case of planted Rhizophora, the advantages of<br />

the large, elongated propagule allow tolerance


98<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

of deeper <strong>in</strong>undation <strong>and</strong> probably tolerance to<br />

lower moisture <strong>and</strong> nutrient availability dur<strong>in</strong>g<br />

droughts. Advantages for establishment ga<strong>in</strong>ed<br />

through larger size come at the expense of<br />

dispersal ability, which is especially apparent<br />

<strong>in</strong> the case of the non-tidal burned mangrove<br />

swamps at Almond Beach. At Almond Beach,<br />

the plant<strong>in</strong>gs of Rhizophora added well adapted<br />

species that were absent dur<strong>in</strong>g early succession<br />

only because of dispersal limitation. Any large<br />

scale plant<strong>in</strong>gs could be viewed as a case of<br />

stepp<strong>in</strong>g ahead to a species composition that<br />

may be similar to one that would be atta<strong>in</strong>ed<br />

naturally over time. Rhizophora is very easy to<br />

plant, <strong>and</strong> plant<strong>in</strong>gs of it are generally very<br />

successful. It is considered useful as timber <strong>and</strong><br />

fuelwood, <strong>and</strong> some plant<strong>in</strong>gs near settlements<br />

could be considered <strong>and</strong> would not be out of<br />

place <strong>in</strong> view of potential long term plant<br />

community succession <strong>in</strong> the burned mangrove<br />

swamps. Rhizophora mangle propagules<br />

survived but grew comparatively poorly <strong>in</strong> dry<br />

season plant<strong>in</strong>gs, possibly because of their<br />

smaller size, <strong>and</strong> did poorly <strong>in</strong> deep water<br />

because of their shorter length. Rhizophora<br />

racemosa propagules had a higher chance of<br />

success through variations <strong>in</strong> hydrological<br />

conditions, probably because of their longer,<br />

more massive propagules. Rhizophora<br />

racemosa propagules are usually easier to<br />

collect due to their frequency along the marg<strong>in</strong>s<br />

of tidal rivers of the region. Because of the<br />

species’ absence, establishment distance of<br />

Rhizophora racemosa was not tested <strong>in</strong> the<br />

Almond Beach swamps, but the longer<br />

propagules would likely disperse poorly <strong>in</strong> the<br />

shallow, non-tidal waters, <strong>and</strong> would potentially<br />

spread very slowly from any areas of plant<strong>in</strong>gs.<br />

Just as Rab<strong>in</strong>owitz’s (1978 a & b) tidal<br />

sort<strong>in</strong>g hypotheses attributed mangrove<br />

zonation to differential establishment dependent<br />

on where each species was able to str<strong>and</strong> at high<br />

water, establishment <strong>in</strong> the burned swamp varied<br />

by water depth <strong>and</strong> the swamp’s<br />

microtopography. The smaller Laguncularia <strong>and</strong><br />

Avicennia propagules were observed to establish<br />

where they str<strong>and</strong>ed, however they were not<br />

successful <strong>in</strong> this study’s r<strong>and</strong>omly placed<br />

plant<strong>in</strong>g sites where hydrological conditions<br />

were likely to be <strong>in</strong>appropriate. In the burned<br />

swamp, the success of naturally established<br />

Laguncularia <strong>in</strong> the very sal<strong>in</strong>e soils of drought<br />

conditions also suggests that zonation of that<br />

species is not necessarily driven by soil sal<strong>in</strong>ity<br />

<strong>in</strong> that area.<br />

For restoration purposes, these results have<br />

<strong>in</strong>dicated that species with smaller propagules<br />

would require a greater effort to establish<br />

successfully, <strong>and</strong> higher cost for grow<strong>in</strong>g <strong>and</strong><br />

transport<strong>in</strong>g seedl<strong>in</strong>gs. In light of the<br />

establishment distance results presented here,<br />

such effort would be unnecessary <strong>in</strong> the cases<br />

of Laguncularia <strong>and</strong> Avicennia, which develop<br />

seed over a period of as little as three years <strong>and</strong><br />

can be expected to disperse <strong>and</strong> establish some<br />

seedl<strong>in</strong>gs over a distance up to 100 meters, even<br />

<strong>in</strong> a non-tidal <strong>in</strong>terior swamp.<br />

Nevertheless, <strong>in</strong> a majority of disturbance<br />

cases, natural regeneration is preferable for<br />

mangrove restoration (Field 1996; Lewis &<br />

Streever 2000), the exceptions generally be<strong>in</strong>g<br />

where large scale alterations to hydrology have<br />

taken place (Bacon 1975; Elster 2000; Elster et<br />

al. 1999; Elster & Polanía 2000; Lewis 1990,<br />

1982). It is possible that plant<strong>in</strong>gs of mangrove<br />

seedl<strong>in</strong>gs might affect the success or course of<br />

natural colonization (Bosire et al. 2003). With<br />

that <strong>in</strong> m<strong>in</strong>d, mangrove restoration <strong>and</strong><br />

management efforts should not be undertaken<br />

without detailed <strong>in</strong>vestigation <strong>in</strong>to potential<br />

ecological, social <strong>and</strong> economic costs <strong>and</strong><br />

consequences (Alongi 2002; Ellison 2000a, b;<br />

Elster 2000; Field 1998a; Field 1996, 1998b;<br />

Hamilton & Snedaker 1984; Humm 2001; Lewis<br />

1982, 2000; Lewis & Streever 2000; Mac<strong>in</strong>tosh<br />

& Ashton 2003).


Contributions to the Study of Biological Diversity Vol. 3<br />

Aldstadt, J., D. Chen, <strong>and</strong> A. Getis 1998. Po<strong>in</strong>t<br />

Pattern Analysis. Version 1.0a. Department<br />

of Geography, San Diego State University,<br />

San Diego.<br />

Allan, C., S. Williams, <strong>and</strong> R. Adrian 2002. The<br />

Socio-Economic Context of the Harvest<strong>in</strong>g<br />

<strong>and</strong> Utilisation of Mangrove Vegetation.<br />

Guyana Forestry Commission,<br />

Georgetown, Guyana.<br />

Allen, J. A. 1998. Mangroves as alien species:<br />

The case of Hawaii. Global Ecology <strong>and</strong><br />

Biogeography Letters 7:61-71.<br />

Alongi, D. M. 2002. Present state <strong>and</strong> future of<br />

the world’s mangrove forests.<br />

Environmental Conservation 29:331-349.<br />

Anonymous 1955. An Illustrated Guide to the<br />

Botanic Gardens, Georgetown. British<br />

Guiana Department of Agriculture,<br />

Georgetown.<br />

Asmussen, C. B., <strong>and</strong> M. W. Chase. 2001.<br />

Cod<strong>in</strong>g <strong>and</strong> noncod<strong>in</strong>g plastid DNA <strong>in</strong> palm<br />

systematics. American Journal of Botany<br />

88:1103-1117.<br />

August<strong>in</strong>us, P. G. E. F. 1995. Geomorphology<br />

<strong>and</strong> sedimentation of mangroves. In G. M.<br />

E. Perillo, editor. Geomorphology <strong>and</strong><br />

Sedimentation of Estuaries. Elsevier,<br />

Amsterdam.<br />

Bacon, P. R. 1975. <strong>Recovery</strong> of a Tr<strong>in</strong>idadian<br />

mangrove swamp from attempted<br />

reclamation. In G. E. Walsh, S. C. Snedaker,<br />

<strong>and</strong> H. J. Teas, editors. Proceed<strong>in</strong>gs of the<br />

International Symposium on Biology <strong>and</strong><br />

Management of Mangroves. Institute of<br />

Food <strong>and</strong> Agricultural Sciences, University<br />

of Florida, Ga<strong>in</strong>esville.<br />

Bacon, P. R. 1990. Ecology <strong>and</strong> management of<br />

swamp forests <strong>in</strong> the Guianas <strong>and</strong><br />

Caribbean region. Pages 193-213 <strong>in</strong> A. E.<br />

Lugo, M. Br<strong>in</strong>son, <strong>and</strong> S. Brown, editors.<br />

Ecosystems of the World 15, Forested<br />

Wetl<strong>and</strong>s. Elsevier, Amsterdam.<br />

Bacon, P. R. 2001. Germ<strong>in</strong>ation of Nypa<br />

fruticans <strong>in</strong> Tr<strong>in</strong>idad. Palms 45:57-61.<br />

Badve, R. M., <strong>and</strong> C. V. Sakurkar. 2003. On the<br />

disappearance of palm genus Nypa from the<br />

REFERENCES<br />

99<br />

west coast with its present status <strong>in</strong> the<br />

Indian subcont<strong>in</strong>ent. Current Science<br />

85:1407-1409.<br />

Baldw<strong>in</strong>, A. H., M. Egnotovich, M. Ford, <strong>and</strong><br />

W. Platt. 2001. Regeneration <strong>in</strong> fr<strong>in</strong>ge<br />

mangrove forests damaged by Hurricane<br />

Andrew. <strong>Plant</strong> Ecology 157:151-164.<br />

Ball, M. C. 1980. Patterns of secondary<br />

succession <strong>in</strong> a mangrove forest of Southern<br />

Florida. Oecologia 44:226-235.<br />

Ball, M. C. 1988. Ecophysiology of mangroves.<br />

Trees 2:129-142.<br />

Barbosa, R. I., <strong>and</strong> P. M. Fearnside. 1999.<br />

Incêndios na Amazônia brasileira:<br />

Estimativa da emissão de gases do efeito<br />

estufa pela queima de diferentes<br />

ecossistemas de Roraima na passagem do<br />

evento “El Niño” (1997/98). Acta<br />

Amazonica 29:513-534.<br />

Barbosa, R. I., M. R. Xaud, G. N. F. Silva, <strong>and</strong><br />

A. C. Cattâneo. 2003. Forest <strong>Fire</strong>s <strong>in</strong><br />

Roraima, Brazilian Amazonia. International<br />

Forest <strong>Fire</strong> News 28:51-56.<br />

BDG 2001. Guyana Regional <strong>Plant</strong> Species Lists<br />

- Draft Version. http://www.mnh.si.edu/<br />

biodiversity/bdg/regionlists/<strong>in</strong>dex.html,<br />

Biological Diversity of the Guianas<br />

Program, Smithsonian Institution,<br />

Wash<strong>in</strong>gton, DC.<br />

Blanchard, J., <strong>and</strong> G. Prado. 1995. Natural<br />

regeneration of Rhizophora mangle <strong>in</strong> strip<br />

clearcuts <strong>in</strong> Northwest Ecuador. Biotropica<br />

27:160-167.<br />

Blasco, F. 1975. Les Mangroves de L’Indie -<br />

The Mangroves of India, Travaux de la<br />

Section Scientifique et Technique Tome<br />

XIV. Institut Français de Pondichéry,<br />

Pondicherry, India.<br />

Boggan, J., V. Funk, C. L. Kelloff, M. Hoff, G.<br />

Cremers, <strong>and</strong> C. Feuillet 1997. Checklist<br />

of the <strong>Plant</strong>s of the Guianas (Guyana,<br />

Sur<strong>in</strong>am, French Guiana), 2nd Edition.<br />

Biological Diversity of the Guianas<br />

Program, Smithsonian Institution,<br />

Wash<strong>in</strong>gton, DC.<br />

Bonadie, W. A. 1998. The ecology of Roystonea


100<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

oleracea palm swamp forest <strong>in</strong> the Nariva<br />

swamp (Tr<strong>in</strong>idad). Wetl<strong>and</strong>s 18:249-255.<br />

Bond, W. J., <strong>and</strong> B. W. van Wilgen 1996. <strong>Fire</strong><br />

<strong>and</strong> <strong>Plant</strong>s. Champman & Hall, London.<br />

Bonhoure, D., E. Rowe, A. J. Mariano, <strong>and</strong> E.<br />

H. Ryan. 2004. The South Equatorial<br />

Current System. http://<br />

oceancurrents.rsmas.miami.edu/atlantic/<br />

south-equatorial.html. Rosenstiel School of<br />

Mar<strong>in</strong>e <strong>and</strong> Atmospheric Science,<br />

University of Miami, Miami, Florida.<br />

Bosire, J. O., F. Dahdouh-Guebas, J. G. Kairo,<br />

<strong>and</strong> N. Koedam. 2003. Colonization of nonplanted<br />

mangrove species <strong>in</strong>to restored<br />

mangrove st<strong>and</strong>s <strong>in</strong> Gazi Bay, Kenya.<br />

Aquatic Botany 76:267-279.<br />

Br<strong>in</strong>kman, R., <strong>and</strong> L. J. Pons 1968. A Pedogeomorphological<br />

Classification <strong>and</strong> Map<br />

of the Holocene Sediments <strong>in</strong> the Coastal<br />

Pla<strong>in</strong> of the Three Guianas. Soil Survey<br />

Institute, Wagen<strong>in</strong>gen, The Netherl<strong>and</strong>s.<br />

Brocklehurst, P., <strong>and</strong> B. Edmeades 2003.<br />

Mangrove Survey of Bynoe Harbour,<br />

Northern Territory. Department of<br />

Infrastructure, Plann<strong>in</strong>g <strong>and</strong> Environment,<br />

Palmerston, Northern Territory.<br />

Brummitt, R. K., <strong>and</strong> C. E. Powell, editors.<br />

1992. Authors of <strong>Plant</strong> Names. Royal<br />

Botanic Gardens, Kew; Richmond, Surrey,<br />

United K<strong>in</strong>gdom.<br />

Brund<strong>in</strong>, L. 1966. Transantarctic Relationships<br />

<strong>and</strong> Their Significanace, as Evidenced by<br />

Chironomid Midges, with a Monograph of<br />

the Subfamilies Podonom<strong>in</strong>ae <strong>and</strong><br />

Aphroteni<strong>in</strong>ae <strong>and</strong> the Austral Heptagyiae.<br />

Almqvist <strong>and</strong> Wiksell, Stockholm.<br />

Bullock, J. M., <strong>and</strong> R. T. Clarke. 2000. Long<br />

distance seed dispersal by w<strong>in</strong>d: measur<strong>in</strong>g<br />

<strong>and</strong> modell<strong>in</strong>g the tail of the curve.<br />

Oecologia 124:506–521.<br />

Bureau of Economic Geology 2002. Geo-<br />

Environmental Characterization of the<br />

Delta del Or<strong>in</strong>oco. University of Texas at<br />

Aust<strong>in</strong>.<br />

Campbell, P., J. Comiskey, A. Alonso, F.<br />

Dallmeier, P. Nuñez, H. Beltran, S.<br />

Baldeon, W. Nauray, R. D. L. Col<strong>in</strong>a, L.<br />

Acurio, <strong>and</strong> S. Udvardy. 2002. Modified<br />

Whittaker Plots as an Assessment <strong>and</strong><br />

Monitor<strong>in</strong>g Tool for Vegetation <strong>in</strong> a<br />

Lowl<strong>and</strong> Tropical Ra<strong>in</strong>forest.<br />

Environmental Monitor<strong>in</strong>g <strong>and</strong> Assessment<br />

76:19-41.<br />

Cardona, P., <strong>and</strong> L. Botero. 1998. Soil<br />

characteristics <strong>and</strong> vegetation structure <strong>in</strong><br />

a heavily deteriorated mangrove forest <strong>in</strong><br />

the Caribbean coast of Colombia.<br />

Biotropica 30:24-34.<br />

Chale, F. M. M. 1996. Litter production studies<br />

<strong>in</strong> an Avicennia germ<strong>in</strong>ans (L.) Stearn forest<br />

<strong>in</strong> Guyana, South America. Hydrobiologia<br />

330:47-53.<br />

Chambers, J. C., <strong>and</strong> J. A. MacMahon. 1994. A<br />

day <strong>in</strong> the life of a seed: Movements <strong>and</strong><br />

fates of seeds <strong>and</strong> their implications for<br />

natural <strong>and</strong> managed systems. Annual<br />

Review of Ecology <strong>and</strong> Systematics<br />

25:263-292.<br />

Chen, D., <strong>and</strong> A. Getis 1998. Po<strong>in</strong>t Pattern<br />

Analysis (PPA). Onl<strong>in</strong>e manuscript.<br />

Department of Geography, San Diego State<br />

University, San Diego.<br />

Chen, R., <strong>and</strong> R. R. Twilley. 1999. Patterns of<br />

mangrove structure <strong>and</strong> soil nutrient<br />

dynamics along the Shark River Estuary,<br />

Florida. Estuaries 22:955-970.<br />

C<strong>in</strong>trón, G., A. E. Lugo, D. J. Pool, <strong>and</strong> G.<br />

Morris. 1978. Mangroves of arid<br />

environments <strong>in</strong> Puerto Rico <strong>and</strong> Adjacent<br />

Isl<strong>and</strong>s. Biotropica 10:110-121.<br />

Clark, J. S., M. Lewis, <strong>and</strong> L. Horvath. 2001.<br />

Invasion by Extremes: Population Spread<br />

with Variation <strong>in</strong> Dispersal <strong>and</strong><br />

Reproduction. American Naturalist<br />

157:537-554.<br />

Clarke, H. D., <strong>and</strong> V. Funk. 2005. Us<strong>in</strong>g<br />

checklists <strong>and</strong> collections data to<br />

<strong>in</strong>vestigate plant diversity: II. An analysis<br />

of five florulas from northeastern South<br />

America. Proceed<strong>in</strong>gs of the Academy of<br />

Natural Sciences of Philadelphia 154:29-<br />

37.<br />

Clarke, H. D., V. Funk, <strong>and</strong> T. Hollowell. 2001a.<br />

Us<strong>in</strong>g checklists <strong>and</strong> collections data to<br />

<strong>in</strong>vestigate plant diversity. I: A comparative<br />

checklist of the plant diversity of the<br />

Iwokrama Forest, Guyana. Sida Botanical<br />

Miscellany 21:1-86.<br />

Clarke, L. D., <strong>and</strong> N. J. Hannon. 1969. The<br />

mangrove swamp <strong>and</strong> salt marsh<br />

community of the Sydney district. II. The<br />

holocoenotic complex with particular


Contributions to the Study of Biological Diversity Vol. 3<br />

reference to physiography. Journal of<br />

Ecology 57:213-234.<br />

Clarke, P. J. 1993. Dispersal of grey mangrove<br />

(Avicennia mar<strong>in</strong>a) propagules <strong>in</strong><br />

southeastern Australia. Aquatic Botany<br />

45:195-204.<br />

Clarke, P. J., <strong>and</strong> R. A. Kerrigan. 2000. Do forest<br />

gaps <strong>in</strong>fluence the population structure <strong>and</strong><br />

species composition of mangrove st<strong>and</strong>s <strong>in</strong><br />

Northern Australia? Biotropica 32:642-652.<br />

Clarke, P. J., R. A. Kerrigan, <strong>and</strong> C. J. Westphal.<br />

2001b. Dispersal potential <strong>and</strong> early growth<br />

<strong>in</strong> 14 tropical mangroves: Do early life<br />

history traits correlate with patterns of adult<br />

distribution? Journal of Ecology 89:648-<br />

659.<br />

Clements, F. E. 1928. <strong>Plant</strong> Succession <strong>and</strong><br />

Indicators: A Def<strong>in</strong>itive Editon of <strong>Plant</strong><br />

Succession <strong>and</strong> <strong>Plant</strong> Indicators. Hafner<br />

Publish<strong>in</strong>g Co, Inc., New York.<br />

Cochrane, M. A. 2002. Spread<strong>in</strong>g Like<br />

Wildfire—Tropical Forest <strong>Fire</strong>s <strong>in</strong> Lat<strong>in</strong><br />

America <strong>and</strong> the Caribbean: Prevention,<br />

Assessment <strong>and</strong> Early Warn<strong>in</strong>g. Page 96.<br />

United Nations Environment Programme<br />

(UNEP), Regional Office for Lat<strong>in</strong> America<br />

<strong>and</strong> the Caribbean, Mexico City.<br />

Cochrane, M. A. 2003. <strong>Fire</strong> science for<br />

ra<strong>in</strong>forests. Nature 421:913-919.<br />

Cochrane, M. A., <strong>and</strong> M. D. Schulze. 1998.<br />

Forest fires <strong>in</strong> the Brazilian Amazon.<br />

Conservation Biology 12:948-950.<br />

Col<strong>in</strong>vaux, P. A. 1987. Amazon diversity <strong>in</strong> light<br />

of the palaoecological record. Quaternary<br />

Science Review 6:93-114.<br />

Comiskey, J., R. Mosher, C. Drysdale, <strong>and</strong> S.<br />

O’Grady 1999. BioMon for W<strong>in</strong>dows Suite:<br />

Version 2. Smithsonian Institution Man <strong>and</strong><br />

Biosphere Program, Wash<strong>in</strong>gton, DC.<br />

Condit, R., N. Pitman, E. G. Leigh Jr., J. Chave,<br />

J. Terborgh, R. B. Foster, P. Nuñez V., S.<br />

Aguilar, R. Valencia, G. Villa, H. C. Muller-<br />

L<strong>and</strong>au, E. Losos, <strong>and</strong> S. P. Hubbell. 2002.<br />

Beta-diversity <strong>in</strong> tropical forest trees.<br />

Science 295:666-669.<br />

Connell, J. H., <strong>and</strong> R. O. Slatyer. 1977.<br />

Mechanisms of succession <strong>in</strong> natural<br />

communities <strong>and</strong> their role <strong>in</strong> community<br />

stability <strong>and</strong> organization. American<br />

Naturalist 111:1119-1144.<br />

Conrado, A., <strong>and</strong> E. Z. y. d. Ayala 1906. Estudio<br />

101<br />

de la <strong>Plant</strong>a Llamada “Nipa” de su Cultivo<br />

y de sus Propiedades. La Concepción,<br />

Manila.<br />

Croizat, L. 1964. Space, Time, Form: The<br />

Biological Synthesis. Published by the<br />

Author, Caracas.<br />

Dahdouh-Guebas, M. V., J. F. Tack, D. Van<br />

Speybroeck, <strong>and</strong> N. Koedam. 1998.<br />

Propagule predators <strong>in</strong> Kenyan mangroves<br />

<strong>and</strong> their possible effect on regeneration.<br />

Mar<strong>in</strong>e <strong>and</strong> Freshwater Research 49:345-<br />

350.<br />

Dallmeier, F., M. Kabel, <strong>and</strong> R. Rice. 1992.<br />

Methods for long-term biodiversity<br />

<strong>in</strong>ventory plots <strong>in</strong> protected tropical forest.<br />

In F. Dallmeier, editor. Long-Term<br />

Monitor<strong>in</strong>g of Biological Diversity <strong>in</strong><br />

Tropical Forest Areas: Methods for<br />

Establishment <strong>and</strong> Inventory of Permanent<br />

Plots. UNESCO, Paris.<br />

Daly, V. T. 1995. A Short History of the<br />

Guyanese People. Macmillan, London.<br />

Davis, J. H. 1940. The ecology <strong>and</strong> geologic role<br />

of mangroves of Florida. Papers of the<br />

Tortugas Laboratory 32:303-341.<br />

Davis, T. A. W., <strong>and</strong> P. W. Richards. 1933. The<br />

vegetation of Moraballi Creek, British<br />

Guiana: An ecological study of a limited<br />

area of tropical ra<strong>in</strong> forest. Part I. Journal<br />

of Ecology 21:350-384.<br />

DeFilipps, R. A. 1992. Ornamental Garden<br />

<strong>Plant</strong>s of the Guianas: An Historical<br />

Perspective of Selected Garden <strong>Plant</strong>s fro<br />

Guyana, Sur<strong>in</strong>am <strong>and</strong> French Guiana.<br />

Department of Botany, Smithsonian<br />

Institution, Wash<strong>in</strong>gton, DC.<br />

DeFilipps, R. A., S. L. Ma<strong>in</strong>a, <strong>and</strong> J. Crep<strong>in</strong><br />

2004. Medic<strong>in</strong>al <strong>Plant</strong>s of the Guianas<br />

(Guyana, Sur<strong>in</strong>am, French Guiana), web<br />

version. Department of Botany,<br />

Smithsonian Institution, Wash<strong>in</strong>gton, DC.<br />

Delgado, P., P. F. Hensel, J. A. Jiménzez, <strong>and</strong> J.<br />

W. Day. 2001. The importance of propagule<br />

establishment <strong>and</strong> physical factors <strong>in</strong><br />

mangrove distributional patterns <strong>in</strong> a Costa<br />

Rican estuary. Aquatic Botany 71:157-178.<br />

Di Croce, J., A. W. Bally, <strong>and</strong> P. Vail. 1999.<br />

Sequence stratigraphy of the Eastern<br />

Venezuelan Bas<strong>in</strong>. Pages 419-476 <strong>in</strong> P.<br />

Mann, editor. Caribbean Bas<strong>in</strong>s. Elsevier,<br />

Amsterdam.


102<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Duke, N. C. 1991. Nypa <strong>in</strong> the Mangroves of<br />

Central America: Introduced or Relict?<br />

Pr<strong>in</strong>cipes 35:127-132.<br />

Duke, N. C. 2001. Gap creation <strong>and</strong> regenerative<br />

processes driv<strong>in</strong>g diversity <strong>and</strong> structure of<br />

mangrove ecosystems. Wetl<strong>and</strong>s Ecology<br />

<strong>and</strong> Management 9:257-269.<br />

Duke, N. C., M. C. Ball, <strong>and</strong> J. Ellison. 1998.<br />

Factors <strong>in</strong>fluenc<strong>in</strong>g biodiversity <strong>and</strong><br />

distributional gradients <strong>in</strong> mangroves.<br />

Global Ecology <strong>and</strong> Biogeography Letters<br />

7:27-47.<br />

Duke, N. C., A. M. Bell, D. K. Pedersen, C. M.<br />

Roelfsema, L. M. Godson, K. N. Zahmel,<br />

J. Mackenzie, <strong>and</strong> S. Bengtson-Nash 2003.<br />

Mackay Mangrove Dieback. Investigations<br />

<strong>in</strong> 2002 with recommendations for further<br />

research, monitor<strong>in</strong>g <strong>and</strong> management.<br />

Report to Queensl<strong>and</strong> Department of<br />

Primary Industries Northern Fisheries<br />

Centre, <strong>and</strong> the <strong>Community</strong> of Mackay. 11<br />

September 2003. Mar<strong>in</strong>e Botany Group,<br />

Centre for Mar<strong>in</strong>e Studies, The University<br />

of Queensl<strong>and</strong>, Brisbane.<br />

Duke, N. C., E. Y. Y. Lo, <strong>and</strong> M. Sun. 2001.<br />

Global distribution <strong>and</strong> genetic<br />

discont<strong>in</strong>uities of mangroves – emerg<strong>in</strong>g<br />

patterns <strong>in</strong> the evolution of Rhizophora.<br />

Trees 16:65-79.<br />

Duke, N. C., Z. S. P<strong>in</strong>zón M., <strong>and</strong> M. C. Prada<br />

T. 1997. Large-scale damage to mangrove<br />

forests follow<strong>in</strong>g two large oil spills <strong>in</strong><br />

Panama. Biotropica 29:2-14.<br />

Egler, F. E. 1954. Vegetation science concepts.<br />

I. Initial floristic composition, a factor <strong>in</strong><br />

old field vegetational development.<br />

Vegetatio 4:412-417.<br />

Ek, R. C. 1990. Index of Guyana <strong>Plant</strong><br />

Collectors. Flora of the Guianas<br />

Supplementary Fascicle 1. Koeltz Scientific<br />

Books, Koenigste<strong>in</strong>.<br />

Ek, R. C. 1997. Botanical Diversity <strong>in</strong> the<br />

Tropical Ra<strong>in</strong> Forest of Guyana. Tropenbos<br />

- Guyana Series 4. Tropenbos-Guyana<br />

Programme, Georgetown, Guyana.<br />

Ellison, A. M. 2000a. Mangrove restoration: Do<br />

we know enough? Restoration Ecology<br />

8:219-229.<br />

Ellison, A. M. 2000b. Restoration of Mangrove<br />

Ecosystems. Restoration Ecology 8:217-<br />

218.<br />

Ellison, A. M. 2002. Macroecology of<br />

mangroves: large-scale patterns <strong>and</strong><br />

processes <strong>in</strong> tropical coastal forests. Trees<br />

16:181-194.<br />

Ellison, A. M., E. J. Farnsworth, <strong>and</strong> R. R.<br />

Merkt. 1999. Orig<strong>in</strong>s of mangrove<br />

ecosystems <strong>and</strong> the mangrove biodiversity<br />

anomaly. Global Ecology <strong>and</strong><br />

Biogeography 8:95-115.<br />

Ellison, J. C. 1993. Mangrove retreat with ris<strong>in</strong>g<br />

sea-level, Bermuda. Estuar<strong>in</strong>e, Coastal, <strong>and</strong><br />

Shelf Science 37:75-87.<br />

Ellison, J. C., <strong>and</strong> D. R. Stoddart. 1991.<br />

Mangrove ecosystem collapse dur<strong>in</strong>g<br />

predicted sea-level rise: Holocene<br />

analogues <strong>and</strong> implications. Journal of<br />

Coastal Research 7:151-165.<br />

Elster, C. 2000. Reasons for reforestation<br />

success <strong>and</strong> failure with three mangrove<br />

species <strong>in</strong> Colombia. Forest Ecology <strong>and</strong><br />

Management 131:201-214.<br />

Elster, C., L. Perdomo, <strong>and</strong> M.-L. Schnetter.<br />

1999. Impact of ecological factors on the<br />

regeneration of mangroves <strong>in</strong> the Cienaga<br />

Gr<strong>and</strong>e de Santa Marta, Colombia.<br />

Hydrobiologia 413:35-46.<br />

Elster, C., <strong>and</strong> J. Polanía. 2000. Regeneration<br />

of mangrove forests <strong>in</strong> the Cienaga Gr<strong>and</strong>e<br />

de Santa Marta (Colombia). Actualidades<br />

Biologicas 22:29-36.<br />

EPA Guyana. 2000. Integrated Coastal Zone<br />

Management Action Plan. Page 31 pp.<br />

Environmental Protection Agency of<br />

Guyana, Georgetown.<br />

EPA Guyana. 2002. Coastal Zone Management.<br />

Government of Guyana, Georgetown. http:<br />

//www.epaguyana.org/ICZM/articles.htm<br />

EPA Guyana. 2004. Proposed National Protected<br />

Areas. Government of Guyana,<br />

Georgetown. http://www.epaguyana.org/<br />

npas/proposed.htm.<br />

ESRI 2002. ArcView GIS 3.3. Environmental<br />

Systems Research Institute, Inc., Redl<strong>and</strong>s,<br />

CA.<br />

Ewel, K. C., R. R. Twilley, <strong>and</strong> J. E. Ong. 1998.<br />

Different k<strong>in</strong>ds of mangrove forests provide<br />

different goods <strong>and</strong> services. Global<br />

Ecology <strong>and</strong> Biogeography Letters 7:83-94.<br />

Fanshawe, D. B. 1954. Riparian vegetation <strong>in</strong><br />

British Guiana. Journal of Ecology 42:289-<br />

295.


Contributions to the Study of Biological Diversity Vol. 3<br />

FAO 1994. Mangrove Management Guidel<strong>in</strong>es.<br />

U.N. Food <strong>and</strong> Agriculture Organization,<br />

Rome.<br />

Ferreira, L. V., <strong>and</strong> G. T. Prance. 1999.<br />

Ecosystem recovery <strong>in</strong> terra firme forests<br />

after cutt<strong>in</strong>g <strong>and</strong> burn<strong>in</strong>g: a comparison on<br />

species richness, floristic composition <strong>and</strong><br />

forest structure <strong>in</strong> the Jaú National Park,<br />

Amazonia. Botanical Journal of the L<strong>in</strong>nean<br />

Society 130:97-110.<br />

Field, C. 1998a. Rationales <strong>and</strong> practices of<br />

mangrove afforestation. Mar<strong>in</strong>e <strong>and</strong><br />

Freshwater Research 49:353-358.<br />

Field, C. B., J. G. Osborn, L. L. Hoffman, J. F.<br />

Polsenberg, D. D. Ackerly, J. A. Berry, O.<br />

Björkman, A. Held, P. Matson, <strong>and</strong> H. A.<br />

Mooney. 1998. Mangrove biodiversity <strong>and</strong><br />

ecosystem function. Global Ecology <strong>and</strong><br />

Biogeography Letters 7:3-14.<br />

Field, C. D. 1995. Impact of expected climate<br />

change on mangroves. Hydrobiologia<br />

295:75-81.<br />

Field, C. D. 1996. Restoration of Mangrove<br />

Ecosystems. International Society for<br />

Mangrove Ecosystems, Ok<strong>in</strong>awa, Japan.<br />

Field, C. D. 1998b. Rehabilitation of mangrove<br />

ecosystems: An overview. Mar<strong>in</strong>e Pollution<br />

Bullet<strong>in</strong> 37:383-392.<br />

F<strong>in</strong>n, M., J. Inglehard, <strong>and</strong> P. Kangas. 1998. A<br />

taxonomy of spatial forms of mangrove<br />

dieoffs <strong>in</strong> southwest Florida. In P. J.<br />

Cannissaro, editor. Proceed<strong>in</strong>gs of the 24th<br />

Annual Conference on Ecosystem<br />

Restoration <strong>and</strong> Creation. Hillsborough<br />

<strong>Community</strong> College, Tampa, FL.<br />

Fong, F. W. 1992. Perspectives for susta<strong>in</strong>able<br />

resource utilization <strong>and</strong> management of<br />

Nipa vegetation. Economic Botany 46:45-<br />

54.<br />

Fosberg, F. R. 1947. Micronesian mangroves.<br />

Journal of the New York Botanical Garden<br />

48:128-138.<br />

Fromard, F., H. Puig, E. Moug<strong>in</strong>, G. Marty, J. L.<br />

Betoulle, <strong>and</strong> L. Cadmuro. 1998. <strong>Structure</strong>,<br />

above-ground biomass <strong>and</strong> dynamics of<br />

mangrove ecosystems: new data from<br />

French Guiana. Oecologia 115:39-53.<br />

Funk, V. A. 2003a. 100 uses for an herbarium:<br />

well at least 72. ASPT Newsletter 17:17-<br />

19.<br />

Funk, V. A. 2003b. The importance of herbaria.<br />

103<br />

<strong>Plant</strong> Science Bullet<strong>in</strong> 49:94-95.<br />

Funk, V. A., <strong>and</strong> K. Richardson. 2002.<br />

Systematic data <strong>in</strong> biodiversity studies: Use<br />

it or lose it. Systematic Biology 51:303-316.<br />

Funk, V. A., K. S. Richardson, <strong>and</strong> S. Ferrier.<br />

2005. Survey-gap analysis <strong>in</strong> expeditionary<br />

research, where do we go from here?<br />

Biological Journal of the L<strong>in</strong>nean<br />

Society:549-567.<br />

Funk, V. A., M. F. Zermoglio, <strong>and</strong> N. Nasir.<br />

1999. Test<strong>in</strong>g the use of specimen collection<br />

data <strong>and</strong> GIS <strong>in</strong> biodiversity exploration <strong>and</strong><br />

conservation decision mak<strong>in</strong>g <strong>in</strong> Guyana.<br />

Biodiversity <strong>and</strong> Conservation 8:727-751.<br />

Gabche, C. E., T. J. Youmbi, <strong>and</strong> C. A. Angwe.<br />

2000. The impacts of sea-level rise on the<br />

coastal fisheries resources <strong>and</strong> aquatic<br />

ecosystems of Cameroon (Central Africa).<br />

In B. W. Flemm<strong>in</strong>g, M. T. Delafonta<strong>in</strong>e, <strong>and</strong><br />

G. Liebezeit, editors. Muddy Coast<br />

Dynamics <strong>and</strong> Resource Management.<br />

Elsevier, Amsterdam.<br />

Gee, C. T. 1989. On the fossil occurrences of<br />

the mangrove palm Nypa. Proceed<strong>in</strong>gs of<br />

the Symposium “Paleofloristic <strong>and</strong><br />

Paleoclimatic Changes <strong>in</strong> the Cretaceous<br />

<strong>and</strong> Tertiary”, Prague.<br />

Gee, C. T. 2001. The mangrove palm Nypa <strong>in</strong><br />

the geologic past of the New World.<br />

Wetl<strong>and</strong>s Ecology <strong>and</strong> Management 9:181-<br />

194.<br />

Gentry, A. H. 1993. A Field Guide to the<br />

Families <strong>and</strong> Genera of Woody <strong>Plant</strong>s of<br />

Northwest South America (Colombia,<br />

Ecuador, Peru), with Supplementary Notes<br />

on Herbaceous Taxa. Conservation<br />

International, Wash<strong>in</strong>gton, DC.<br />

Gibbs, A. K., <strong>and</strong> C. N. Barron 1993. The<br />

Geology of the Guiana Shield. Oxford<br />

University Press, New York.<br />

Gleason, H. A. 1927. Further views on the<br />

succession-concept. Ecology 8:299-326.<br />

Global Ra<strong>in</strong> Forest Mapp<strong>in</strong>g Project 2001. AM1<br />

CDROM, GRFM South America JERS-1<br />

SAR. Jet Propulsion Laboratory, California<br />

Institute of Technology, Pasadena. http://<br />

southport.jpl.nasa.gov/GRFM/.<br />

Godoy, J. A., <strong>and</strong> P. Jordano. 2001. Seed<br />

dispersal by animals: exact identification<br />

of source trees with endocarp DNA<br />

microsatellites. Molecular Ecology


104<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

10:2275-2283.<br />

Golley, F., H. T. Odum, <strong>and</strong> R. F. Wilson. 1962.<br />

The structure <strong>and</strong> metabolism of a Puerto<br />

Rican red mangrove forest <strong>in</strong> May. Ecology<br />

43:9-19.<br />

Görts-van Rijn, A. R. A., editor. 1985 -. Flora<br />

of the Guianas. Royal Botanic Gardens,<br />

Kew; Richmond, Surrey, United K<strong>in</strong>gdom.<br />

Graham, A. 1995. Diversification of Gulf/<br />

Caribbean mangrove communities through<br />

Cenozoic time. Biotropica 27:20-27.<br />

Gray, V. R. 1981. Rhizophora harrisonii<br />

(Rhizophoraceae), un nuevo registro para<br />

las costas de Mexico. Bolet<strong>in</strong> de la<br />

Sociedad Botanica de Mexico 41:163-165.<br />

Green, E. P., P. J. Mumby, A. J. Edwards, C. D.<br />

Clark, <strong>and</strong> A. C. Ellis. 1998. The<br />

assessment of mangrove areas us<strong>in</strong>g high<br />

resolution multispectral airborne imagery.<br />

Journal of Coastal Research 14:433-443.<br />

Grégoire, J. M., B. Glénat, P. Janvier, E. Janodet,<br />

A. Tournier, <strong>and</strong> J. M. N. Silva. 1998. <strong>Fire</strong><br />

activity <strong>in</strong> the Guyana Shield, the Or<strong>in</strong>oco<br />

<strong>and</strong> Amazon Bas<strong>in</strong>s dur<strong>in</strong>g March 1998.<br />

International Forest <strong>Fire</strong> News 19:35-39.<br />

Guiry, M. D., <strong>and</strong> E. Nic Dhonncha 2004.<br />

AlgaeBase version 2.1. World-wide<br />

electronic publication, National University<br />

of Irel<strong>and</strong>. http://www.algaebase.org,<br />

Galway.<br />

Gyory, J., A. J. Mariano, <strong>and</strong> E. H. Ryan. 2003.<br />

The Guiana Current. http://<br />

oceancurrents.rsmas.miami.edu/atlantic/<br />

guiana.html. Rosenstiel School of Mar<strong>in</strong>e<br />

<strong>and</strong> Atmospheric Science, University of<br />

Miami, Miami, Florida.<br />

Hackney, C. T., <strong>and</strong> A. A. de la Cruz. 1981.<br />

Effects of fire on brackish marsh<br />

communities: management implications.<br />

Wetl<strong>and</strong>s 1:75-86.<br />

Halos, S. C. 1981. Nipa for alcogas production:<br />

Tapp<strong>in</strong>g its potentials. Canopy<br />

International 7:15.<br />

Hamilton, L. S., <strong>and</strong> D. H. Murphy. 1988. Use<br />

<strong>and</strong> Management of Nipa Palm (Nypa<br />

fruticans, Arecaceae): a review. Economic<br />

Botany 42:206-213.<br />

Hamilton, L. S., <strong>and</strong> S. C. Snedaker, editors.<br />

1984. H<strong>and</strong>book for Mangrove Area<br />

Management. United Nations Environment<br />

Programme <strong>and</strong> East-West Center,<br />

Environment <strong>and</strong> Policy Institute, Paris.<br />

Hammond, D. S., <strong>and</strong> H. t. Steege. 1998.<br />

Propensity for fires <strong>in</strong> Guianan Ra<strong>in</strong>forests.<br />

Conservation Biology 12:944-947.<br />

Harper, J. L. 1977. Population Biology of <strong>Plant</strong>s.<br />

Academic Press, London.<br />

He, H. S., <strong>and</strong> D. J. Mladenoff. 1999. The effects<br />

of seed dispersal on the simulation of longterm<br />

forest l<strong>and</strong>scape change. Ecosystems<br />

2:308-319.<br />

Henderson, A. 1995. Palms of the Amazon.<br />

Oxford University Press, New York.<br />

Henderson, A., G. Galeano, <strong>and</strong> R. Bernal 1995.<br />

Field Guide to the Palms of the Americas.<br />

Pr<strong>in</strong>ceton University Press, Pr<strong>in</strong>ceton, New<br />

Jersey.<br />

Hierro, J. L., J. L. Maron, <strong>and</strong> R. M. Callaway.<br />

2005. A biogeographical approach to plant<br />

<strong>in</strong>vasions: the importance of study<strong>in</strong>g<br />

exotics <strong>in</strong> their <strong>in</strong>troduced <strong>and</strong> native range.<br />

Journal of Ecology 95:5-15.<br />

Holdridge, L. R., W. C. Grenke, W. H.<br />

Hathaway, T. Liang, <strong>and</strong> J. A. Tosi, Jr. 1971.<br />

Forest Environments <strong>in</strong> Tropical Life Zone:<br />

A Pilot Study. Pergamon Press, Oxford.<br />

Hollowell, T., P. Berry, V. Funk, <strong>and</strong> C. L.<br />

Kelloff 2001. Prelim<strong>in</strong>ary Checklist of the<br />

<strong>Plant</strong>s of the Guiana Shield (Venezuela:<br />

Amazonas, Bolívar, Delta Amacuro;<br />

Guyana; Sur<strong>in</strong>am; French Guiana). Volume<br />

1: Acanthaceae - Lythraceae. Biological<br />

Diversity of the Guianas Program,<br />

Smithsonian Institution, Wash<strong>in</strong>gton, DC.<br />

Howard, R. A. 1976. Flora of the Lesser Antilles:<br />

Leeward <strong>and</strong> W<strong>in</strong>dward Isl<strong>and</strong>s. Arnold<br />

Arboretum, Harvard University, Jamaica<br />

Pla<strong>in</strong>, MA.<br />

Huber, O. 1995a. Geography <strong>and</strong> Physical<br />

Features. Pages 1-61 <strong>in</strong> P. E. Berry, B. K.<br />

Holst, <strong>and</strong> K. Yatskievych, editors. Flora<br />

of the Venezuelan Guayana. Volume 1:<br />

Introduction. Missouri Botanical Garden,<br />

St. Louis.<br />

Huber, O. 1995b. History of Botanical<br />

Exploration. Pages 63-95 <strong>in</strong> P. E. Berry, B.<br />

K. Holst, <strong>and</strong> K. Yatskievych, editors. Flora<br />

of the Venezuelan Guayana. Volume 1:<br />

Introduction. Missouri Botanical Garden,<br />

St. Louis.<br />

Huber, O. 1995c. Vegetation. Pages 97-160 <strong>in</strong><br />

P. E. Berry, B. K. Holst, <strong>and</strong> K. Yatskievych,


Contributions to the Study of Biological Diversity Vol. 3<br />

editors. Flora of the Venezuelan Guayana.<br />

Volume 1: Introduction. Missouri Botanical<br />

Garden, St. Louis.<br />

Huber, O., G. Gharbarran, <strong>and</strong> V. Funk 1995.<br />

Vegetation Map of Guyana (Prelim<strong>in</strong>ary<br />

Version). Centre for the Study of Biological<br />

Diversity, University of Guyana,<br />

Georgetown.<br />

Huh, O. K., N. D. Walker, <strong>and</strong> C. Moeller. 2001.<br />

Sedimentation along the eastern chenier<br />

pla<strong>in</strong> coast: Down drift impact of a delta<br />

complex shift. Journal of Coastal Research<br />

17:72-81.<br />

Humm, N. 2001. A Framework for the<br />

Incorporation of the Indigenous Peoples of<br />

the Proposed Shell Beach Protected Area<br />

for Mar<strong>in</strong>e Turtle Conservation. 75. School<br />

of Animal <strong>and</strong> Microbial Sciences.<br />

University of Read<strong>in</strong>g, Read<strong>in</strong>g, Engl<strong>and</strong>.<br />

Imbert, D., A. Rousteau, <strong>and</strong> P. Scherrer. 2000.<br />

Ecology of mangrove growth <strong>and</strong> recovery<br />

<strong>in</strong> the Lesser Antilles: State of knowledge<br />

<strong>and</strong> basis for restoration projects.<br />

Restoration Ecology 8:230-236.<br />

Insightful Corporation 2001. S-PLUS 6 for<br />

W<strong>in</strong>dows Guide to Statistics, Volume 2.<br />

Insightful Corporation, Seattle, WA.<br />

IPCC 2001. Climate Change 2001: The<br />

Scientific Basis. Contribution of Work<strong>in</strong>g<br />

Group I to the Third Assessment Report of<br />

the Intergovernmental Panel on Climate<br />

Change. Cambridge University Press,<br />

Cambridge.<br />

Janzen, D. H. 1985. Mangroves: Where’s the<br />

understory? Journal of Tropical Ecology<br />

1:89-92.<br />

Jelgersma, S., M. Van der Zijp, <strong>and</strong> R. Br<strong>in</strong>kman.<br />

1993. Sealevel rise <strong>and</strong> the coastal lowl<strong>and</strong>s<br />

<strong>in</strong> the develop<strong>in</strong>g world. Journal of Coastal<br />

Research 9:958-972.<br />

Jiménez, J. A., A. E. Lugo, <strong>and</strong> G. C<strong>in</strong>trón. 1985.<br />

Tree mortality <strong>in</strong> mangrove forests.<br />

Biotropica 17:177-185.<br />

Jiménez, J. A., <strong>and</strong> K. A. Sauter. 1991. <strong>Structure</strong><br />

<strong>and</strong> dynamics of mangrove forests along a<br />

flood<strong>in</strong>g gradient. Estuaries 14:49-56.<br />

Jongejans, E., <strong>and</strong> A. Telenius. 2001. Field<br />

experiments on seed dispersal by w<strong>in</strong>d <strong>in</strong><br />

ten umbelliferous species (Apiaceae). <strong>Plant</strong><br />

Ecology 152:67-78.<br />

Kelloff, C. L. 2002. <strong>Plant</strong> Diversity of Kaieteur<br />

105<br />

National Park, Guyana: Us<strong>in</strong>g <strong>Plant</strong> Data<br />

as a Tool <strong>in</strong> Conservation <strong>and</strong> Development.<br />

Environmental Science <strong>and</strong> Public Policy.<br />

Ph.D. Thesis, George Mason University,<br />

Fairfax, VA.<br />

Kelloff, C. L. 2003. The use of biodiversity data<br />

<strong>in</strong> develop<strong>in</strong>g Kaieteur National Park,<br />

Guyana for ecotourism <strong>and</strong> conservation.<br />

Contributions to the Study of Biological<br />

Diversity (University of Guyana) 1:1-44.<br />

Kelloff, C. L., <strong>and</strong> V. A. Funk. 2004.<br />

Phytogeography of the Kaieteur Falls,<br />

Potaro Plateau, Guyana: floral distributions<br />

<strong>and</strong> aff<strong>in</strong>ities. Journal of Biogeography<br />

31:501-513.<br />

K<strong>in</strong>naird, M. F., <strong>and</strong> T. G. O’Brien. 1998.<br />

Ecological effects of wildfire on lowl<strong>and</strong><br />

ra<strong>in</strong>forest <strong>in</strong> Sumatra. Conservation<br />

Biology 12:954-956.<br />

Kjerfve, B., editor. 1998. CARICOMP –<br />

Caribbean coral reef, seagrass <strong>and</strong><br />

mangrove sites. UNESCO, Paris.<br />

Lacerda, L. D., J. E. Conde, B. Kjerfve, R.<br />

Alvarez-León, C. Alarcón, <strong>and</strong> J. Polanía.<br />

2002. American mangroves. In L. D.<br />

Lacerda, editor. Mangrove Ecosystems:<br />

Function <strong>and</strong> Management. Spr<strong>in</strong>ger,<br />

Berl<strong>in</strong>.<br />

Lakhan, V. C., <strong>and</strong> D. A. Pepper. 1997.<br />

Relationship between concavity <strong>and</strong><br />

convexity of a coast <strong>and</strong> erosion <strong>and</strong><br />

accretion patterns. Journal of Coastal<br />

Research 13:226-232.<br />

Lanjouw, J., editor. 1964-. Flora of Sur<strong>in</strong>ame.<br />

E. J. Brill, Leiden.<br />

Lasser, T., editor. 1964-1992. Flora de<br />

Venezuela. Instituto Botánico, Caracas.<br />

Laurance, W. F. 1998. A crisis <strong>in</strong> the mak<strong>in</strong>g:<br />

responses of Amazonian forests to l<strong>and</strong> use<br />

<strong>and</strong> climate change. Trends <strong>in</strong> Ecology <strong>and</strong><br />

Evolution 13:411-415.<br />

Lee, S. Y. 1998. Ecological role of grapsid crabs<br />

<strong>in</strong> mangrove ecosystems: a review. Mar<strong>in</strong>e<br />

<strong>and</strong> Freshwater Research 49:335-343.<br />

Legg, C. A., <strong>and</strong> Y. Laumonier. 1999. <strong>Fire</strong>s <strong>in</strong><br />

Indonesia, 1997: A remote sens<strong>in</strong>g<br />

perspective. Ambio 28:479-485.<br />

Lema Vélez, L. F., J. Polanía, <strong>and</strong> L. E. Urrego<br />

Giraldo. 2003. Disperción y<br />

establecimiento de las especies de mangle<br />

del río Ranchería en el período de máxima


106<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

frutificación. Rev. Acad. Colomb. Cienc.<br />

27:93-103.<br />

Lewis, C. E., <strong>and</strong> J. J. Doyle. 2001. Phylogenetic<br />

utility of the nuclear gene malate synthase<br />

<strong>in</strong> the palm family (Arecaceae). Molecular<br />

Phylogenetics <strong>and</strong> Evolution 19:409-420.<br />

Lewis, R. R. 1990. Creation <strong>and</strong> restoration of<br />

coastal wetl<strong>and</strong>s <strong>in</strong> Puerto Rico <strong>and</strong> the U.S.<br />

Virg<strong>in</strong> Isl<strong>and</strong>s. Pages 103-123 <strong>in</strong> J. A.<br />

Kusler, <strong>and</strong> M. E. Kentula, editors. Wetl<strong>and</strong><br />

Creation <strong>and</strong> Restoration: The Status of the<br />

Science. Isl<strong>and</strong> Press, Wash<strong>in</strong>gton, DC.<br />

Lewis, R. R., III. 1982. Mangrove forests. In R.<br />

R. Lewis, editor. Creation <strong>and</strong> Restoration<br />

of Coastal <strong>Plant</strong> Communities. CRC Press,<br />

Boca Raton, FL.<br />

Lewis, R. R., III. 2000. Ecologically based goal<br />

sett<strong>in</strong>g <strong>in</strong> mangrove forest <strong>and</strong> tidal marsh<br />

restoration. Ecological Eng<strong>in</strong>eer<strong>in</strong>g 15:191-<br />

198.<br />

Lewis, R. R., III, <strong>and</strong> B. Streever 2000.<br />

Restoration of Mangrove Habitat. WRP<br />

Technical Notes Collection (ERDC TN-<br />

WRP-VN-RS-3.2). www.wes.army.mil/el/<br />

wrp. U.S. Army Eng<strong>in</strong>eer Research <strong>and</strong><br />

Development Center, Vicksburg, MS.<br />

L<strong>in</strong>deman, J. C. 1953. The Vegetation of the<br />

Coastal Region of Sur<strong>in</strong>ame.<br />

Rijksuniversiteit te Utrecht, Utrecht,<br />

Netherl<strong>and</strong>s.<br />

López-Portillo, J., <strong>and</strong> E. Ezcurra. 1989.<br />

Zonation <strong>in</strong> mangrove <strong>and</strong> salt marsh<br />

vegetation at Laguna de Mecoacán,<br />

México. Biotropica 21:107-114.<br />

Lugo, A. E. 1980. Mangrove ecosystems:<br />

successional or steady state? Biotropica<br />

12:65-72.<br />

Lugo, A. E. 1981. Inl<strong>and</strong> mangroves of Inagua.<br />

Journal of Natural History 15:845-852.<br />

Lugo, A. E. 1986. Mangrove understory: an<br />

expensive luxury? Journal of Tropical<br />

Ecology 2:287-288.<br />

Lugo, A. E. 1997. Old growth mangrove forests<br />

<strong>in</strong> the United States. Conservation Biology<br />

11:11-20.<br />

Lugo, A. E. 1998. Mangrove Forests: a tough<br />

system to <strong>in</strong>vade but an easy one to<br />

rehabilitate. Mar<strong>in</strong>e Pollution Bullet<strong>in</strong><br />

37:427-430.<br />

Lugo, A. E., <strong>and</strong> G. C<strong>in</strong>trón. 1975. The<br />

mangroves of Puerto Rico <strong>and</strong> their<br />

management. Pages 825-846 <strong>in</strong> G. E. Walsh,<br />

S. C. Snedaker, <strong>and</strong> H. J. Teas, editors.<br />

Proceed<strong>in</strong>gs of the International<br />

Symposium on Biology <strong>and</strong> Management<br />

of Mangroves. Institute of Food <strong>and</strong><br />

Agricultural Sciences, University of<br />

Florida, Ga<strong>in</strong>esville.<br />

Lugo, A. E., <strong>and</strong> S. C. Snedaker. 1974. The<br />

ecology of mangroves. Annual Review of<br />

Ecology <strong>and</strong> Systematics 5:39-64.<br />

Mac<strong>in</strong>tosh, D. J., <strong>and</strong> E. Ashton 2003. Draft<br />

Code of Conduct for the Susta<strong>in</strong>able<br />

Management of Mangrove Ecosystems.<br />

World Bank, ISME, Center, Aarhus.<br />

Mack, R. N., <strong>and</strong> W. M. Lonsdale. 2001.<br />

Humans as global plant dispersers: Gett<strong>in</strong>g<br />

more than we barga<strong>in</strong>ed for. Bioscience<br />

51:95-102.<br />

Macnae, W. 1963. Mangrove swamps <strong>in</strong> South<br />

Africa. Journal of Ecology 51:1-25.<br />

Manson, F. J., N. R. Loneragan, I. M. McLeod,<br />

<strong>and</strong> R. A. Kenyon. 2001. Assess<strong>in</strong>g<br />

techniques for estimat<strong>in</strong>g the extent of<br />

mangroves: topographic maps, aerial<br />

photographs <strong>and</strong> L<strong>and</strong>sat TM images.<br />

Mar<strong>in</strong>e <strong>and</strong> Freshwater Research 52:787-<br />

792.<br />

McCracken, D. P. 1997. Gardens of Empire:<br />

Botanical Institutions of the Victorian<br />

British Empire. Leicester University Press,<br />

London.<br />

McGu<strong>in</strong>ness, K. A. 1997a. Dispersal,<br />

establishment <strong>and</strong> survival of Ceriops tagal<br />

propagules <strong>in</strong> a north Australian mangrove<br />

forest. Oecologia 109:80-87.<br />

McGu<strong>in</strong>ness, K. A. 1997b. Seed predation <strong>in</strong> a<br />

tropical mangrove forest: a test of the<br />

dom<strong>in</strong>ance-predation model <strong>in</strong> northern<br />

Australia. Journal of Tropical Ecology<br />

13:293-302.<br />

McKee, K. L. 1993. Soil physicochemical<br />

patterns <strong>and</strong> mangrove species distribution<br />

- reciprocal effects? Journal of Ecology<br />

81:447-487.<br />

McKee, K. L. 1995a. Mangrove species<br />

distribution <strong>and</strong> propagule predation <strong>in</strong><br />

Belize: An exception to the dom<strong>in</strong>ancepredation<br />

hypothesis. Biotropica 27:334-<br />

345.<br />

McKee, K. L. 1995b. Seedl<strong>in</strong>g recruitment<br />

patterns <strong>in</strong> a Belizean mangrove forest:


Contributions to the Study of Biological Diversity Vol. 3<br />

effects of establishment ability <strong>and</strong> physicochemical<br />

factors. Oecologia 101:448-460.<br />

McKee, K. L., <strong>and</strong> P. L. Faulkner. 2000.<br />

Restoration of biogeochemical function <strong>in</strong><br />

mangrove forests. Restoration Ecology<br />

8:247-259.<br />

Melana, D. M. 1980. Leaf harvest<strong>in</strong>g <strong>and</strong> juice<br />

extraction techniques of Nipa <strong>in</strong> Alabat<br />

Isl<strong>and</strong>, Quezon Prov<strong>in</strong>ce. Canopy<br />

International 6:6-7.<br />

Mennega, E. A., W. C. M. Tammen - de Rooij,<br />

<strong>and</strong> M. J. Jansen-Jacobs, editors. 1988.<br />

Checklist of Woody <strong>Plant</strong>s of Guyana.<br />

Tropenbos Technical Series 2. The<br />

Tropenbos Foundation, Ede, The<br />

Netherl<strong>and</strong>s.<br />

Miah, M. D., R. Ahmed, <strong>and</strong> S. J. Islam. 2003.<br />

Indigenous management practices of<br />

Golpata (Nypa fruticans) <strong>in</strong> local<br />

plantations <strong>in</strong> southern Bangladesh. Palms<br />

47:185-190.<br />

Middleton, B. 1999. Wetl<strong>and</strong> Restoration, Flood<br />

Puls<strong>in</strong>g <strong>and</strong> <strong>Disturbance</strong> Dynamics. John<br />

Wiley & Sons, Inc., New York.<br />

Middleton, B. 2000. Hydrochory, seed banks,<br />

<strong>and</strong> regeneration dynamics along the<br />

l<strong>and</strong>scape boundaries of a forested wetl<strong>and</strong>.<br />

<strong>Plant</strong> Ecology 146:169-184.<br />

Missouri Botanical Garden 1995-present.<br />

W3TROPICOS. http://mobot.mobot.org/<br />

W3T/Search/vast.html, St. Louis.<br />

Munsell Color 1992. Munsell Soil Color Charts,<br />

1992 Revised Edition. Kollmorgen<br />

Instruments Corp., Newburgh, NY.<br />

Nathan, R., <strong>and</strong> H. C. Muller-L<strong>and</strong>au. 2000.<br />

Spatial patterns of seed dispersal, their<br />

determ<strong>in</strong>ants <strong>and</strong> consequences for<br />

recruitment. Tree 15:278-285.<br />

New York Botanical Garden 1996-present.<br />

Virtual Herbarium of the New York<br />

Botanical Garden. http://www.nybg.org/<br />

bsci/hcol/, New York.<br />

Odum, W. E., C. C. McIvor, <strong>and</strong> T. J. Smith, III.<br />

1982. The Ecology of the Mangroves of<br />

South Florida: A <strong>Community</strong> Profile. U.S.<br />

Fish <strong>and</strong> Wildlife Service, Wash<strong>in</strong>gton, DC.<br />

Osborne, K., <strong>and</strong> T. J. Smith, III. 1990.<br />

Differential predation on mangrove<br />

propagules <strong>in</strong> open <strong>and</strong> closed canopy forest<br />

habitats. Vegetatio 89:1-6.<br />

Päivöke, A., M. R. Adams, <strong>and</strong> D. R. Twiddy.<br />

107<br />

1984. Nipa palm v<strong>in</strong>egar <strong>in</strong> Papua New<br />

Gu<strong>in</strong>ea. Process Biochemistry 19:84-87.<br />

Panapitukkul, N., C. M. Duarte, U. Thampanya,<br />

P. Kheowvongsri, N. Srichai, O. Geertz-<br />

Hansen, J. Terrados, <strong>and</strong> S.<br />

Boromthanarath. 1998. Mangrove<br />

colonization: Mangrove progression over<br />

the grow<strong>in</strong>g Pak Phanang (SE Thail<strong>and</strong>)<br />

mud flat. Estuar<strong>in</strong>e, Coastal, <strong>and</strong> Shelf<br />

Science 47:51-61.<br />

Pannier, F., <strong>and</strong> R. Fra<strong>in</strong>o de Pannier 1989.<br />

Manglares de Venezuela. Cuadernos<br />

LAGOVEN, Caracas.<br />

Park<strong>in</strong>son, R. W., R. D. DeLaune, <strong>and</strong> J. R.<br />

White. 1994. Holocene sea level rise <strong>and</strong><br />

the fate of mangrove forests with<strong>in</strong> the<br />

wider Caribbean region. Journal of Coastal<br />

Research 10:1077-1086.<br />

Pernetta, J. C. 1993. Mangrove Forests, Climate<br />

Change <strong>and</strong> Sea Level Rise: Hydrological<br />

Influences on <strong>Community</strong> <strong>Structure</strong> <strong>and</strong><br />

Survival, with Examples from the Indo-<br />

West Pacific. IUCN, Gl<strong>and</strong>, Switzerl<strong>and</strong>.<br />

Pickett, S. T. A., J. Kolasa, J. J. Armesto, <strong>and</strong> S.<br />

L. Coll<strong>in</strong>s. 1989. The ecological concept of<br />

disturbance <strong>and</strong> its expression at various<br />

hierarchical levels. Oikos 54:129-136.<br />

Pirazzoli, P. A. 1991. World Atlas of Holocene<br />

Sea-level Changes. Elsevier, Amsterdam.<br />

Pitman, N. C. A., J. Terborgh, M. R. Silman,<br />

<strong>and</strong> P. Nuñez V. 1999. Tree species<br />

distributions <strong>in</strong> an upper Amazonian forest.<br />

Ecology 80:2651-2661.<br />

Pitman, N. C. A., J. W. Terborgh, M. R. Silman,<br />

P. Nuñez V., D. A. Neill, C. E. Cerón, W. A.<br />

Palacios, <strong>and</strong> M. Aulestia. 2001.<br />

Dom<strong>in</strong>ance <strong>and</strong> distribution of tree species<br />

<strong>in</strong> upper Amazonian terra firme forests.<br />

Ecology 82:2101-2117.<br />

<strong>Plant</strong> Names Project 1999-present. The<br />

International <strong>Plant</strong> Names Index.<br />

www.ipni.org.<br />

Pons, T. L., <strong>and</strong> L. J. Pons. 1975. Mangrove<br />

vegetation <strong>and</strong> soils along a more or less<br />

stationary part of the coast of Sur<strong>in</strong>am,<br />

South America. Pages 548-560 <strong>in</strong> G. E.<br />

Walsh, S. C. Snedaker, <strong>and</strong> H. J. Teas,<br />

editors. Proceed<strong>in</strong>gs of the International<br />

Symposium on Biology <strong>and</strong> Management<br />

of Mangroves. Institute of Food <strong>and</strong><br />

Agricultural Sciences, University of


108<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Florida, Ga<strong>in</strong>esville.<br />

Pool, D. J., S. C. Snedaker, <strong>and</strong> A. E. Lugo.<br />

1977. <strong>Structure</strong> of mangrove forests <strong>in</strong><br />

Florida, Puerto Rico, México, <strong>and</strong> Costa<br />

Rica. Biotropica 9:195-212.<br />

Pritchard, P. C. H. 1993. Thoughts on<br />

hapaxanthy <strong>in</strong> Guyana. Pr<strong>in</strong>cipes 37:12-18.<br />

Prost, M. T. 1989. Coastal dynamics <strong>and</strong> chenier<br />

s<strong>and</strong>s <strong>in</strong> French Guiana. Mar<strong>in</strong>e Geology<br />

90:259-267.<br />

Prost, M. T. 1997. La mangrove de front de mer<br />

en Guyane: ses transformations sous<br />

l’<strong>in</strong>fluence du systéme de dispersion<br />

amazonien et son suivi par télédetection.<br />

In B. Kjerfve, L. D. d. Lacerda, <strong>and</strong> E. H.<br />

S. Diop, editors. Mangrove Ecosystems<br />

Studies <strong>in</strong> Lat<strong>in</strong> America <strong>and</strong> Africa.<br />

UNESCO, Paris <strong>and</strong> ISME, Tokyo.<br />

Pulle, A. A., editor. 1932-. Flora of Sur<strong>in</strong>ame.<br />

Kon<strong>in</strong>klijke Vereenig<strong>in</strong>g Indisch Instituut,<br />

Amsterdam.<br />

Rab<strong>in</strong>owitz, D. 1978a. Dispersal properties of<br />

mangrove propagules. Biotropica 10:47-57.<br />

Rab<strong>in</strong>owitz, D. 1978b. Early growth of<br />

mangrove seedl<strong>in</strong>gs <strong>in</strong> Panamá, <strong>and</strong> an<br />

hypothesis concern<strong>in</strong>g the relationship of<br />

dispersal <strong>and</strong> zonation. Journal of<br />

Biogeography 5:113-133.<br />

Rab<strong>in</strong>owitz, D. 1978c. Mortality <strong>and</strong> <strong>in</strong>itial<br />

propagule size <strong>in</strong> mangrove seedl<strong>in</strong>gs <strong>in</strong><br />

Panama. Journal of Ecology 66:45-51.<br />

Rafii, Z. A., R. S. Dodd, <strong>and</strong> F. Fromard. 1996.<br />

Biogeographic variation <strong>in</strong> foliar waxes of<br />

mangrove species. Biochemical<br />

Systematics <strong>and</strong> Ecology 24:341-345.<br />

Ramdass, I., J. S<strong>in</strong>gh, M. Tamessar, <strong>and</strong> D.<br />

Gopaul 1997. National Activity on the use<br />

of Biodiversity, Guyana. UNDP, The Office<br />

of the President, <strong>and</strong> The University of<br />

Guyana, Georgetown.<br />

Raven, P. H., <strong>and</strong> D. I. Axelrod. 1975. History<br />

of the flora <strong>and</strong> fauna of Lat<strong>in</strong> America.<br />

American Scientist 63:420-429.<br />

Renner, S. 2004. <strong>Plant</strong> dispersal across the<br />

tropical Atlantic by w<strong>in</strong>d <strong>and</strong> sea currents.<br />

International Journal of <strong>Plant</strong> Science<br />

165:S23-S33.<br />

Ribeiro, J. E. L. d. S., M. J. G. Hopk<strong>in</strong>s, A.<br />

Vicent<strong>in</strong>i, C. A. Sothers, M. A. d. S. Costa,<br />

J. M. de Brito, M. A. D. de Souza, L. H. P.<br />

Mart<strong>in</strong>s, L. G. Lohmann, P. A. C. L.<br />

Assunção, E. d. C. Pereira, C. F. da Silva,<br />

M. R. Mesquita, <strong>and</strong> L. C. Propópio, editors.<br />

1999. Flora da Reserva Ducke: Guia de<br />

Identificação das <strong>Plant</strong>as Vasculares de uma<br />

Floresta de Terra-firme na Amazônia<br />

Central. Instituto Nacional de Pesquisas da<br />

Amazônia, Manaus.<br />

Richardson, B. C. 1987. Men, water, <strong>and</strong><br />

mudflats <strong>in</strong> coastal Guyana. Resource<br />

Management <strong>and</strong> Optimization 5:213-236.<br />

Rohlf, F. J. 1997. NTSYSpc: Numerical<br />

Taxonomy System, ver. 2.1. Exeter<br />

Publish<strong>in</strong>g, Ltd., Setauket, NY.<br />

Ross, M. S., P. L. Ruiz, G. J. Telesnicki, <strong>and</strong> J.<br />

F. Meeder. 2001. Estimat<strong>in</strong>g above-ground<br />

biomass <strong>and</strong> production <strong>in</strong> mangrove<br />

communities of Biscayne National Park,<br />

Florida (U.S.A.). Wetl<strong>and</strong>s Ecology <strong>and</strong><br />

Management 9:27-37.<br />

Roth, L. C. 1992. Hurricanes <strong>and</strong> mangrove<br />

regeneration: effects of Hurricane Joan,<br />

October 1988, on the vegetation of Isla del<br />

Venado, Bluefields, Nicaragua. Biotropica<br />

24:375-385.<br />

Rub<strong>in</strong>, J. A., C. Gordoni, <strong>and</strong> J. K. Amatekpor.<br />

1998. Causes <strong>and</strong> consequences of<br />

mangrove deforestation <strong>in</strong> the Volta estuary,<br />

Ghana: Some recommendations for<br />

ecosystem rehabilitation. Mar<strong>in</strong>e Pollution<br />

Bullet<strong>in</strong> 37:441-449.<br />

Rull, V. 1998. Middle Eocene mangroves <strong>and</strong><br />

vegetation changes <strong>in</strong> the Maracaibo Bas<strong>in</strong>,<br />

Venezuela. Palaios 13:287-296.<br />

Rull, V. 2001. A quantitative palynological<br />

record from the early miocene of western<br />

Venezuela,with emphasis on mangroves.<br />

Palynology 25:109-126.<br />

Saenger, P., E. J. Hegerl, <strong>and</strong> J. D. S. Davie.<br />

1983. Global status of mangrove<br />

ecosystems. The Environmentalist, IUCN,<br />

Gl<strong>and</strong>, Switzerl<strong>and</strong> 3:1-88.<br />

Schneider, R. L., <strong>and</strong> R. R. Sharitz. 1988.<br />

Hydrochory <strong>and</strong> regeneration <strong>in</strong> a bald<br />

cypress-water tupelo swamp forest.<br />

Ecology 69:1055-1063.<br />

Schomburgk, M. R. 1922. Travels <strong>in</strong> British<br />

Guiana Dur<strong>in</strong>g the Years 1840-1844.<br />

Translated by Walter Edmund Roth. Daily<br />

Chronicle, Georgetown, Guyana.<br />

Schomburgk, R. H. 1896. Reports <strong>and</strong> Letters<br />

of Sir Robert Hermann Schomburgk with


Contributions to the Study of Biological Diversity Vol. 3<br />

Reference to his Surveys of the Boundaries<br />

of British Guiana. 1841-1844. Harrison <strong>and</strong><br />

Sons, London.<br />

Sealey, K. S., <strong>and</strong> G. Bustamante 1999. Sett<strong>in</strong>g<br />

Geographic Priorities for Mar<strong>in</strong>e<br />

Conservation <strong>in</strong> Lat<strong>in</strong> America <strong>and</strong> the<br />

Caribbean. The Nature Conservancy,<br />

Arl<strong>in</strong>gton, VA.<br />

Sherman, R. E., T. J. Fahey, <strong>and</strong> J. J. Battles.<br />

2000. Small-scale disturbance <strong>and</strong><br />

regeneration dynamics <strong>in</strong> a neotropical<br />

mangrove forest. Journal of Ecology<br />

88:165-178.<br />

SI/MAB 1998. Vegetation Sampl<strong>in</strong>g Protocols.<br />

Front Royal 1998: Modified Whittaker<br />

Plots. Unpublished manuscript.<br />

S<strong>in</strong>ghroy, V. 1996. Interpretation of SAR images<br />

for coastal zone mapp<strong>in</strong>g <strong>in</strong> Guyana.<br />

Canadian Journal of Remote Sens<strong>in</strong>g<br />

22:317-328.<br />

Smith, T. J., III. 1987. Seed predation <strong>in</strong> relation<br />

to tree dom<strong>in</strong>ance <strong>and</strong> distribution <strong>in</strong><br />

mangrove forests. Ecology 68:266-273.<br />

Smith, T. J., III, H. T. Chan, C. C. McIvor, <strong>and</strong><br />

M. B. Robblee. 1989. Comparisons of seed<br />

predation <strong>in</strong> tropical tidal forests from three<br />

cont<strong>in</strong>ents. Ecology 70:146-151.<br />

Sneath, P. H. A., <strong>and</strong> R. R. Sokal 1973.<br />

Numerical Taxonomy. Freeman, San<br />

Francisco.<br />

Snedaker, S. C. 1986. Traditional uses of South<br />

American mangrove resources <strong>and</strong> the<br />

socio-economic effect of ecosystem<br />

changes. Pages 104-112 <strong>in</strong> P. Kunstader, E.<br />

C. F. Bird, <strong>and</strong> S. Sabhasri, editors. Man <strong>in</strong><br />

the Mangroves: The Socio-economic<br />

Situation of Human Settlements <strong>in</strong><br />

Mangrove Forests. United Nations<br />

University Press, Tokyo.<br />

Snedaker, S. C. 1995. Mangroves <strong>and</strong> climate<br />

change <strong>in</strong> the Florida <strong>and</strong> Caribbean region:<br />

Scenarios <strong>and</strong> hypotheses. Hydrobiologia<br />

295:43-49.<br />

Snedaker, S. C., S. J. Baquer, P. J. Behr, <strong>and</strong> S.<br />

I. Ahmed. 1995. Biomass distribution <strong>in</strong><br />

Avicennia mar<strong>in</strong>a plants <strong>in</strong> the Indus River<br />

delta, Pakistan. Pages 389-395 <strong>in</strong> M. F.<br />

Thompson, <strong>and</strong> N. M. Thompson, editors.<br />

The Arabian Sea: Liv<strong>in</strong>g Mar<strong>in</strong>e Resources<br />

<strong>and</strong> the Environment. Vanguard Books Ltd.,<br />

Lahore, Pakistan.<br />

109<br />

Snedaker, S. C., M. S. Brown, E. J. Lahmann,<br />

<strong>and</strong> R. J. Araujo. 1992. <strong>Recovery</strong> of a<br />

mixed-species mangrove forest <strong>in</strong> South<br />

Florida follow<strong>in</strong>g canopy removal. Journal<br />

of Coastal Research 8:919-925.<br />

Snedaker, S. C., <strong>and</strong> E. J. Lahmann. 1988.<br />

Mangrove understory absence: a<br />

consequence of evolution? Journal of<br />

Tropical Ecology 4:311-314.<br />

Snow, J. W. 1976. Climates of Northern South<br />

America. Pages 295-403 <strong>in</strong> W.<br />

Schwerdtfeger, editor. Climates of Central<br />

<strong>and</strong> South America. Elsevier Scientific<br />

Publish<strong>in</strong>g Company, Amsterdam.<br />

Soil Survey Staff 1998. Keys to Soil Taxonomy.<br />

United States Department of Agriculture,<br />

Natural Resources Conservation Service,<br />

Wash<strong>in</strong>gton, DC.<br />

Sousa, W. P., <strong>and</strong> B. S. Mitchell. 1999. The effect<br />

of seed predators on plant distributions: is<br />

there a general pattern <strong>in</strong> mangroves. Oikos<br />

86:55-66.<br />

Spald<strong>in</strong>g, M., F. Blasco, <strong>and</strong> C. Field 1997.<br />

World Mangrove Atlas. International<br />

Society for Mangrove Ecosystems,<br />

Ok<strong>in</strong>awa, Japan.<br />

Steenis, C. G. G. J. v. 1984. Three more<br />

mangrove trees grow<strong>in</strong>g locally <strong>in</strong> nature<br />

<strong>in</strong> freshwater. Blumea 29:395-397.<br />

Ste<strong>in</strong>ke, T. D. 1975. Some factors affect<strong>in</strong>g<br />

dispersal <strong>and</strong> establishment of propagules<br />

of Avicennia mar<strong>in</strong>a (Forrsk.) Vierh. Pages<br />

402-414 <strong>in</strong> G. E. Walsh, S. C. Snedaker, <strong>and</strong><br />

H. J. Teas, editors. Proceed<strong>in</strong>gs of the<br />

International Symposium on Biology <strong>and</strong><br />

Management of Mangroves. Institute of<br />

Food <strong>and</strong> Agricultural Sciences, University<br />

of Florida, Ga<strong>in</strong>esville.<br />

Steyermark, J. A., P. E. Berry, <strong>and</strong> B. K. Holst,<br />

editors. 1995 - 2005. Flora of the<br />

Venezuelan Guayana. Missouri Botanical<br />

Garden, St. Louis.<br />

Stieglitz, T., <strong>and</strong> P. V. Ridd. 2001. Trapp<strong>in</strong>g of<br />

mangrove propagules due to density-driven<br />

secondary circulation <strong>in</strong> the Normanby<br />

River estuary, NE Australia. Mar<strong>in</strong>e<br />

Ecology Progress Series 211:131-142.<br />

Stoddart, D. R., G. W. Bryan, <strong>and</strong> P. E. Gibbs.<br />

1973. Inl<strong>and</strong> mangroves <strong>and</strong> water<br />

chemistry, Barbuda, West Indes. Journal of<br />

Natural History 7:33-46.


110<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Stohlgren, T. J., M. B. Falkner, <strong>and</strong> L. D. Schell.<br />

1995. A modified-Whittaker nested<br />

vegetation sampl<strong>in</strong>g method. Vegetatio<br />

117:113-121.<br />

Sukhendu, G., D. Sauren, <strong>and</strong> G. Monoranjan.<br />

2002. Biology of Nypa fruticans (Thunb.)<br />

Wurmb.: An endangered mangrove palm<br />

of Sundarbans, India. Advances <strong>in</strong> <strong>Plant</strong><br />

Sciences 15:71-78.<br />

Sunderl<strong>and</strong>, T. C. H., <strong>and</strong> T. Morak<strong>in</strong>yo. 2002.<br />

Nypa fruticans, a weed <strong>in</strong> West Africa.<br />

Palms 46:154-155.<br />

Tews, J., K. Moloney, <strong>and</strong> F. Jeltsch. 2004.<br />

Model<strong>in</strong>g seed dispersal <strong>in</strong> a variable<br />

environment: a case study of the fleshyfruited<br />

savanna shrub Grewia flava.<br />

Ecological Modell<strong>in</strong>g 175:65-76.<br />

Thom, B. G. 1967. Mangrove ecology <strong>and</strong><br />

deltaic geomorphology: Tabasco, Mexico.<br />

Journal of Ecology 55:301-343.<br />

Thom, B. G. 1975. Mangrove ecology from a<br />

geomorphic viewpo<strong>in</strong>t. Pages 469-481 <strong>in</strong><br />

G. E. Walsh, S. C. Snedaker, <strong>and</strong> H. J. Teas,<br />

editors. Proceed<strong>in</strong>gs of the International<br />

Symposium on Biology <strong>and</strong> Management<br />

of Mangroves. Institute of Food <strong>and</strong><br />

Agricultural Sciences, University of<br />

Florida, Ga<strong>in</strong>esville.<br />

Thom, B. G. 1984. Coastal l<strong>and</strong>forms <strong>and</strong><br />

geomorphic processes. Pages 3-17 <strong>in</strong> S. C.<br />

Snedaker, <strong>and</strong> J. G. Snedaker, editors. The<br />

Mangrove Ecosystem: Research Methods.<br />

UNESCO, Paris.<br />

Tissot, C., <strong>and</strong> C. Marius. 1992. Holocene<br />

evolution of the mangrove ecosystem <strong>in</strong><br />

French Guiana: A palynological study. In<br />

K. P. S<strong>in</strong>gh, <strong>and</strong> J. S. S<strong>in</strong>gh, editors.<br />

Tropical Ecosystems: Ecology <strong>and</strong><br />

Management. Wiley Eastern Ltd, New<br />

Delhi.<br />

Toml<strong>in</strong>son, P. B. 1973. The monocotyledons;<br />

their evolution <strong>and</strong> comparative biology.<br />

VII. Branch<strong>in</strong>g <strong>in</strong> monocotyledons. The<br />

Quarterly Review of Biology 48.<br />

Toml<strong>in</strong>son, P. B. 1986. The Botany of<br />

Mangroves. Cambridge University Press.<br />

Tralau, H. 1964. The Genus Nypa van Wurmb.<br />

Kungl. Svenska Vetenskapsademiens<br />

H<strong>and</strong>l<strong>in</strong>gar 10:5-29.<br />

Trenberth, K. E. 1999. The extreme weather<br />

events of 1997 <strong>and</strong> 1998. Consequences<br />

5:3-15.<br />

Uhl, N., <strong>and</strong> J. Dransfield 1987. Genera<br />

Palmarum: A Classification of Palms Based<br />

on the Work of Harold E. Moore, Jr. Allen<br />

Press, Lawrence, Kansas.<br />

Ukpong, I. E. 1995. An ord<strong>in</strong>ation study of<br />

mangrove swamp communities <strong>in</strong> West<br />

Africa. Vegetatio 116:147-159.<br />

USDA, <strong>and</strong> NRCS 2004. The PLANTS<br />

Database, Version 3.5. National <strong>Plant</strong> Data<br />

Center, (http://plants.usda.gov), Baton<br />

Rouge, LA.<br />

van Andel, T. R. 2000a. Non-Timber Forest<br />

Products of the North-West District of<br />

Guyana, Part I. Tropenbos Guyana Series<br />

8A. Tropenbos-Guyana Programme,<br />

Georgetown, Guyana.<br />

van Andel, T. R. 2000b. Non-Timber Forest<br />

Products of the North-West District of<br />

Guyana, Part II: A Field Guide. Tropenbos<br />

Guyana Series 8B. Tropenbos-Guyana<br />

Programme, Georgetown, Guyana.<br />

van Dam, J. A. C. 2002. The Guyanan <strong>Plant</strong><br />

Collections of Robert <strong>and</strong> Richard<br />

Schomburgk. Royal Botanic Gardens, Kew;<br />

Richmond, Surrey, United K<strong>in</strong>gdom.<br />

Vann, J. H. 1959. The Physical Geography of<br />

the Lower Coastal Pla<strong>in</strong> of the Guiana<br />

Coast. Louisiana State University, Baton<br />

Rouge.<br />

Vann, J. H. 1969. L<strong>and</strong>forms, Vegetation, <strong>and</strong><br />

Sea Level Change along the Guiana Coast<br />

of South America. Office of Naval<br />

Research, Wash<strong>in</strong>gton, DC.<br />

Vegas Vilarrúbia, T., <strong>and</strong> V. Rull. 2002. Natural<br />

<strong>and</strong> human disturbance history of the Playa<br />

Med<strong>in</strong>a mangrove community (Eastern<br />

Venezuela). Caribbean Journal of Science<br />

38:66-76.<br />

Viosca, P., Jr. 1931. Spontaneous combustion<br />

<strong>in</strong> the marshes of southern Louisiana.<br />

Ecology 12:439-442.<br />

Wade, D., J. Ewell, <strong>and</strong> R. Hofstetter. 1980. <strong>Fire</strong><br />

<strong>in</strong> South Florida Ecosystems. Page 125.<br />

Southeast For. Exp. Stn., U.S. Department<br />

of Agriculture Forest Service, Asheville,<br />

NC.<br />

Walters, B. B. 2000. Local mangrove plant<strong>in</strong>g<br />

<strong>in</strong> the Philipp<strong>in</strong>es: Are fisherfolk <strong>and</strong><br />

fishpond owners effective restorationists?<br />

Restoration Ecology 8:237-246.


Contributions to the Study of Biological Diversity Vol. 3<br />

Waple, A. M., J. H. Lawrimore, M. S. Halpert,<br />

G. D. Bell, W. Higg<strong>in</strong>s, B. Lyon, M. J.<br />

Menne, K. L. Gleason, R. C. Schnell, J. R.<br />

Christy, W. Thiaw, W. J. Wright, M. J.<br />

Sal<strong>in</strong>ger, L. Alex<strong>and</strong>er, R. S. Stone, <strong>and</strong> S.<br />

J. Camargo. 2002. Climate Assessment for<br />

2001. Bullet<strong>in</strong> of the American<br />

Meteorological Society 83:S1-S62.<br />

Wells, J. T., <strong>and</strong> J. M. Coleman. 1981. Periodic<br />

mudflat progradation, northeastern coast of<br />

South America: A hypothesis. Journal of<br />

Sedimentary Petrology 51:1069-1075.<br />

Wells, M. L., <strong>and</strong> A. Getis. 1999. The spatial<br />

characteristics of st<strong>and</strong> structure <strong>in</strong> P<strong>in</strong>us<br />

torreyana. <strong>Plant</strong> Ecology 143:153-170.<br />

Westoby, M., M. Leishman, <strong>and</strong> J. Lord. 1997.<br />

Comparative ecology of seed size <strong>and</strong><br />

dispersal. Pages 143-162 <strong>in</strong> J. Silvertown,<br />

M. Franco, <strong>and</strong> J. L. Harper, editors. <strong>Plant</strong><br />

Life Histories: Ecology, Phylogeny <strong>and</strong><br />

Evolution. Cambridge University Press.<br />

White, P. S., <strong>and</strong> S. T. A. Pickett. 1985. Natural<br />

disturbance <strong>and</strong> patch dynamics. Pages 3-<br />

13 <strong>in</strong> S. T. A. Pickett, <strong>and</strong> P. S. White,<br />

editors. The Ecology of Natural<br />

<strong>Disturbance</strong> <strong>and</strong> Patch Dynamics.<br />

Academic Press, Orl<strong>and</strong>o.<br />

Whittaker, R. H. 1960. Vegetation of the<br />

Siskiyou Mounta<strong>in</strong>s, Oregon <strong>and</strong><br />

California. Ecological Monographs 30:279-<br />

338.<br />

Whittaker, R. H. 1973. Ord<strong>in</strong>ation <strong>and</strong><br />

Classification of <strong>Plant</strong> Communities. Junk,<br />

The Hague.<br />

Williams, D. 1989. The Archaic of North-<br />

111<br />

Western Guyana. History Gazette no. 7. The<br />

History Society, University of Guyana,<br />

Turkeyen.<br />

Willson, M., <strong>and</strong> A. Traveset. 2000. The ecology<br />

of seed dispersal. Pages 85-110 <strong>in</strong> M.<br />

Fenner, editor. The Ecology of<br />

Regeneration <strong>in</strong> <strong>Plant</strong> Communities, 2nd<br />

Edition. CAB International, Wall<strong>in</strong>gford,<br />

UK.<br />

Wilton, K., <strong>and</strong> N. Sa<strong>in</strong>tilan. 2000. Protocols<br />

for Mangrove <strong>and</strong> Saltmarsh Habitat<br />

Mapp<strong>in</strong>g. Australian Catholic University,<br />

Sydney.<br />

WMO. 1999. The 1997-1998 El Niño Event: A<br />

Scientific <strong>and</strong> Technical Retrospective.<br />

Page 96. World Meteorological<br />

Organization, Geneva.<br />

WOCE Data Products Committee 2002. WOCE<br />

Global Data, Version 3.0. U.S. National<br />

Oceanographic Data Center, Silver Spr<strong>in</strong>g,<br />

MD.<br />

Woodroffe, C. D. 1983. Development of<br />

mangrove swamps beh<strong>in</strong>d beach ridges,<br />

Gr<strong>and</strong> Cayman Isl<strong>and</strong>, West Indies. Bullet<strong>in</strong><br />

of Mar<strong>in</strong>e Science 33:864-880.<br />

Woodroffe, C. D. 1988. Relict mangrove st<strong>and</strong><br />

on Last Interglacial terrace, Christmas<br />

Isl<strong>and</strong>, Indian Ocean. Journal of Tropical<br />

Ecology 4:1-17.<br />

Woodroffe, C. 1992. Mangrove sediments <strong>and</strong><br />

geomorphology. In A. I. Robertson, <strong>and</strong> D.<br />

M. Alongi, editors. Tropical Mangrove<br />

Ecosystems. American Geophysical Union,<br />

Wash<strong>in</strong>gton, DC.<br />

Zona, S. 1996. Flora Neotropica Monograph 71:<br />

Roystonea (Arecaceae: Arecoideae). New<br />

York Botanical Garden, New York.


112<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

APPENDIX 1.<br />

MANGROVE ECOSYSTEMS AND FIRE<br />

IN THE TROPICS AND GUYANA<br />

This appendix is <strong>in</strong>cluded to provide a<br />

literature review of <strong>in</strong>formation on mangrove<br />

ecosystems <strong>and</strong> fires <strong>in</strong> tropical forests to<br />

provide background on the 1997-1998 soil fires<br />

<strong>in</strong> the mangrove <strong>and</strong> freshwater swamps of the<br />

Wa<strong>in</strong>i Pen<strong>in</strong>sula, Guyana.<br />

MANGROVE ECOSYSTEMS<br />

Mangroves are woody plants with<br />

adaptations to coastal conditions <strong>in</strong> the tropics.<br />

The word mangrove can also refer to<br />

communities of those plants. These plant<br />

communities are sometimes referred to as<br />

“mangal” to dist<strong>in</strong>guish them from mangrove<br />

species or <strong>in</strong>dividual mangrove plants<br />

(Toml<strong>in</strong>son 1986). The classification of a<br />

species as a mangrove species is physiological<br />

<strong>and</strong> functional, <strong>and</strong> these species have arisen<br />

from several relatively unrelated plant families.<br />

By the assessment of Duke et al. (1998) there<br />

are 71 true mangrove species <strong>in</strong> the world,<br />

<strong>in</strong>clud<strong>in</strong>g putative hybrids, divided among<br />

twenty families. The global distribution of these<br />

species is decidedly uneven, with 58 mangrove<br />

species occurr<strong>in</strong>g <strong>in</strong> the Indo-West Pacific<br />

region but only 8-13 species found <strong>in</strong> the<br />

America-East Pacific region; the causes for that<br />

disparity are among the primary questions <strong>in</strong> the<br />

study of mangrove biogeography.<br />

True mangroves possess active or passive<br />

adaptations to exclude salt or secrete salt from<br />

leaves, “viviparous” propagules that are<br />

dispersed by water, generally <strong>in</strong> some stage of<br />

germ<strong>in</strong>ation (which allows for rapid<br />

establishment of seedl<strong>in</strong>gs) aerenchymatous<br />

tissues (for deliver<strong>in</strong>g oxygen to <strong>and</strong> with<strong>in</strong> roots<br />

<strong>in</strong> saturated, anoxic soils), <strong>and</strong> roots modified<br />

for anchor<strong>in</strong>g the plant <strong>in</strong> saturated soils (as<br />

exemplified by the prop roots of the red<br />

mangrove Rhizophora <strong>and</strong> the shallow, lateral<br />

“cable” roots of the black mangrove Avicennia)<br />

(Toml<strong>in</strong>son 1986). Some researchers def<strong>in</strong>e<br />

mangrove communities as occurr<strong>in</strong>g only <strong>in</strong> the<br />

<strong>in</strong>tertidal zone, however communities of<br />

mangrove species beyond high tide are generally<br />

accepted as true mangroves, <strong>and</strong> that is<br />

consistent with long-accepted classifications of<br />

<strong>in</strong>l<strong>and</strong> bas<strong>in</strong> <strong>and</strong> “hammock” mangrove<br />

community types (Lugo & C<strong>in</strong>trón 1975; Lugo<br />

& Snedaker 1974).<br />

It has been estimated that about 25% of all<br />

tropical coasts are occupied by mangrove<br />

swamps (Toml<strong>in</strong>son 1986). The communities<br />

are generally found along protected coasts with<br />

low wave energy, between 30ºN <strong>and</strong> 30?S<br />

latitude, with exact limits determ<strong>in</strong>ed by<br />

m<strong>in</strong>imum air temperatures, which <strong>in</strong> turn are<br />

<strong>in</strong>fluenced by ocean currents (Duke et al. 1998).<br />

Mangroves occur <strong>in</strong> geomorphological sett<strong>in</strong>gs<br />

similar to those commonly occupied by<br />

herbaceous salt marshes <strong>in</strong> temperate regions.<br />

The communities can cover a wide range of<br />

structures <strong>and</strong> zonation patterns with relatively<br />

few species, as a result of both morphological<br />

<strong>and</strong> physiological elasticities of mangrove<br />

species that allow them to adapt to varied<br />

environments (Lugo & Snedaker 1974;<br />

Toml<strong>in</strong>son 1986) <strong>and</strong> a lack of competition <strong>in</strong><br />

marg<strong>in</strong>al, sal<strong>in</strong>e habitats. Mangrove ecosystems<br />

are generally regarded as resilient from natural<br />

disturbances (C<strong>in</strong>trón-Molero & Schaeffer-<br />

Novelli 1992), <strong>in</strong>clud<strong>in</strong>g shore erosion -<br />

accretion cycles <strong>and</strong> tropical cyclone damage<br />

(Baldw<strong>in</strong> et al. 2001; Conner et al. 1989; Imbert<br />

et al. 1996; Jiménez et al. 1985). Follow<strong>in</strong>g<br />

severe disturbances, mangroves tend to display<br />

the rapid colonization characteristics of<br />

“pioneer” species, though <strong>in</strong> other aspects they<br />

possess characteristics of “climax” species such<br />

as large seeds <strong>and</strong> shade tolerance. Egler (1948)<br />

was an early researcher to conclude that<br />

mangrove communities generally followed a<br />

cyclic pattern, with rare establishment events<br />

<strong>and</strong> occasional catastrophic setbacks. Some<br />

researchers have suggested that mangrove<br />

community structures can be dependent upon<br />

periodic disturbance, <strong>and</strong> are adapted to persist


Contributions to the Study of Biological Diversity Vol. 3<br />

<strong>in</strong> a cyclical succession pattern (Conner et al.<br />

1989; Lugo 1980, 1997; Odum et al. 1982).<br />

Gaps created by small disturbances may play<br />

an important role <strong>in</strong> determ<strong>in</strong><strong>in</strong>g <strong>and</strong><br />

ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g mangrove forest structure (Duke<br />

2001), particularly <strong>in</strong> lower ra<strong>in</strong>fall<br />

environments (Ewel et al. 1998b).<br />

Mangrove Values<br />

Attitudes towards mangrove ecosystem<br />

values have changed from a regard for swamps<br />

as low value l<strong>and</strong>s best avoided or dra<strong>in</strong>ed <strong>and</strong><br />

converted to upl<strong>and</strong> uses, to an almost universal<br />

acceptance of mangrove’s high ecological <strong>and</strong><br />

economic values. These values certa<strong>in</strong>ly vary<br />

by species <strong>and</strong> community type (Ewel et al.<br />

1998a). High productivity <strong>in</strong> some mangrove<br />

systems may be due <strong>in</strong> part to l<strong>and</strong>scape<br />

positions that allow tidal subsidies, <strong>in</strong>clud<strong>in</strong>g<br />

contributions of mar<strong>in</strong>e <strong>and</strong> terrestrially derived<br />

sediments (Lugo & Snedaker 1974) <strong>and</strong> tidal<br />

flush<strong>in</strong>g of soils. Biogeochemically, mangrove<br />

systems function similarly to other wetl<strong>and</strong>s,<br />

serv<strong>in</strong>g as s<strong>in</strong>ks <strong>and</strong> transformers of nutrients,<br />

build<strong>in</strong>g biomass <strong>in</strong> wood <strong>and</strong> soils, produc<strong>in</strong>g<br />

a steady supply of litter (Lugo & Snedaker 1974;<br />

Odum et al. 1982), <strong>and</strong> provid<strong>in</strong>g appropriate<br />

conditions for the trapp<strong>in</strong>g of sediments<br />

(Wolanski 1995). High productivity <strong>and</strong><br />

complex physical structure often makes<br />

mangrove swamps important fish nursery areas<br />

(Marshall 1994), <strong>and</strong> mangrove loss has been<br />

associated with decl<strong>in</strong>es <strong>in</strong> coastal fisheries<br />

(Baran & Hambrey 1998; Christensen 1983;<br />

Nickerson 1999; Rittibhonbhun et al. 1993).<br />

While the diversity of plant species <strong>in</strong> mangrove<br />

swamps is rather low, some mangrove<br />

communities support a high density, biomass,<br />

<strong>and</strong> diversity of <strong>in</strong>vertebrates as epibionts on<br />

the <strong>in</strong>tertidal portion of roots (Ellison &<br />

Farnsworth 1992; Kathiresan & B<strong>in</strong>gham 2001;<br />

Rützler & Feller 1987; Rützler & Feller 1996).<br />

They can also host a high diversity of<br />

vertebrates utiliz<strong>in</strong>g the ground <strong>and</strong> canopy<br />

levels (Alongi 2002; Christensen 1983).<br />

Mangroves can provide valuable protection<br />

of coastl<strong>in</strong>es aga<strong>in</strong>st erosion <strong>and</strong> storm surges.<br />

While early descriptions <strong>and</strong> works on<br />

mangrove ecology (Davis 1940; Fosberg 1947;<br />

Schomburgk 1922) reflected a common<br />

113<br />

assumption that mangroves actually functioned<br />

as builders of coastal l<strong>and</strong>, that has more recently<br />

been revealed as <strong>in</strong>correct. Mangroves are,<br />

however, often credited with a major role <strong>in</strong><br />

secur<strong>in</strong>g sediments which have accreted through<br />

forceful coastal geomorphic processes<br />

(August<strong>in</strong>us 1995; Thom 1975; Vann 1969;<br />

Woodroffe 1992) <strong>and</strong> <strong>in</strong> the protection of reefs<br />

by captur<strong>in</strong>g terrestrial sediments (Bossi &<br />

C<strong>in</strong>trón 1990; Kathiresan & B<strong>in</strong>gham 2001;<br />

Pernetta 1993).<br />

Mangroves are utilized directly by local<br />

peoples for a wide variety of uses, most<br />

importantly fuelwood <strong>and</strong> charcoal, build<strong>in</strong>g<br />

materials, fibers, <strong>and</strong> tann<strong>in</strong>, as well as some<br />

foods <strong>and</strong> medic<strong>in</strong>es (Alongi 2002; de la Cruz<br />

1983; Dugan 1993; Kovacs 1999; Snedaker<br />

1986; Toml<strong>in</strong>son 1986). In parts of Asia<br />

mangroves are exploited commercially for<br />

lumber <strong>and</strong> wood chips for synthetic fiber<br />

production (Adeel & Pomeroy 2002; FAO<br />

1994). In Guyana, mangroves are primarily<br />

exploited for fuelwood <strong>and</strong> poles for fish<strong>in</strong>g<br />

se<strong>in</strong>es <strong>and</strong> light construction, but some tanbark<br />

is still gathered (Allan et al. 2002). Rhizophora<br />

<strong>and</strong> occasionally Avicennia are also locally cut<br />

<strong>in</strong>to planks for construction, <strong>and</strong> shoots of<br />

Laguncularia (White mangrove, Kayara) are<br />

woven <strong>in</strong>to walls <strong>and</strong> fences (pers. obs.).<br />

Mangrove Losses<br />

Worldwide losses of mangroves have often<br />

been reported as approximately 50% of their<br />

orig<strong>in</strong>al area. Such values have been disputed<br />

as unverified estimates that have simply been<br />

repeated <strong>in</strong> the conservation literature<br />

(Farnsworth & Ellison 1997). It has also been<br />

estimated that over one third of world<br />

mangroves were lost <strong>in</strong> the last 20 years of the<br />

20 th century, with the highest rates <strong>in</strong> the<br />

Americas (Valiela et al. 2001). The rate of loss<br />

of mangroves <strong>in</strong> many develop<strong>in</strong>g countries has<br />

been estimated to be around 1% per year (Ong<br />

1995). More conservative studies based on<br />

known surveys, maps, <strong>and</strong> imagery have<br />

estimated that a total of perhaps one third of<br />

orig<strong>in</strong>al mangrove area has been lost (Alongi<br />

2002; Spald<strong>in</strong>g et al. 1997). All of these studies<br />

are limited by the scarcity of accurate multi-date<br />

<strong>in</strong>formation utiliz<strong>in</strong>g consistent def<strong>in</strong>itions of


114<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

mangrove habitats (Blasco et al. 2001).<br />

Estimates of the extent of mangrove vegetation<br />

at regional scales have been considered highly<br />

variable by Alongi (2002), who noted that many<br />

are not based on reliable field surveys or groundtruthed<br />

imagery <strong>and</strong> that variations could also<br />

be attributed to <strong>in</strong>consistencies <strong>in</strong> classifications<br />

of mangrove forests.<br />

A common cause of mangrove degradation<br />

is alteration of either oceanic or terrestrial<br />

hydrology. Causes of hydrologic change have<br />

<strong>in</strong>cluded dams (Colonnello & Med<strong>in</strong>a 1998;<br />

Lacerda & Mar<strong>in</strong>s 2002; Med<strong>in</strong>a et al. 2001;<br />

Rub<strong>in</strong> et al. 1998), dik<strong>in</strong>g, impoundment,<br />

channelization (Bacon 1975), poorly planned<br />

road construction (Jiménez et al. 1985; Lewis<br />

1990; Lugo 2002), diversion of freshwater from<br />

swamps (Cardona & Botero 1998; Elster et al.<br />

1999; Elster & Polanía 2000), <strong>and</strong> natural<br />

coastal morphology changes (Breen & Hill<br />

1969). Planned conversion of mangroves is also<br />

a threat, particularly near urban areas,<br />

permanently destroy<strong>in</strong>g the resource. In Asia<br />

<strong>and</strong> parts of South <strong>and</strong> Central America, the<br />

establishment of aquaculture ponds, mostly for<br />

shrimp, has been a major problem (Alongi 2002;<br />

DeWalt et al. 1996; Epler 1992; Gujja & F<strong>in</strong>ger-<br />

Stich 1996; Pons & Fislier 1991; Robadue 1995;<br />

Saenger et al. 1983; Twilley 1989; We<strong>in</strong>stock<br />

1994; Wolanski et al. 2000), as have salt<br />

production ponds (Stevenson 1997).<br />

Agricultural conversion of mangrove l<strong>and</strong> has<br />

often failed <strong>in</strong> areas where acid-sulphate soils<br />

form through the oxidation of mar<strong>in</strong>e sediments<br />

(Hamilton & Snedaker 1984; Stevenson 1997).<br />

Urban <strong>and</strong> <strong>in</strong>dustrial conversion also have<br />

substantial permanent impacts, primarily from<br />

coastal zone related activities such as mar<strong>in</strong>a<br />

<strong>and</strong> port construction, l<strong>and</strong>fills, <strong>and</strong> <strong>in</strong>creas<strong>in</strong>g<br />

waterside residential <strong>and</strong> estate construction<br />

(Alongi 2002; Bossi & C<strong>in</strong>trón 1990; Ellison &<br />

Farnsworth 1996; Lugo 2002; Saenger et al.<br />

1983; Valiela et al. 2001).<br />

Sewage <strong>and</strong> chemical pollution can be<br />

substantial problems <strong>in</strong> many urban mangrove<br />

areas, <strong>and</strong> agricultural herbicide runoff has been<br />

implicated <strong>in</strong> some mangrove diebacks (Duke<br />

et al. 2003). Oil spills can have a particularly<br />

serious impact on mangrove ecosystems (Alongi<br />

2002; Saenger et al. 1983). Essential air<br />

exchange, which takes place <strong>in</strong> the adventitious<br />

prop roots or pneumatophores <strong>in</strong> the <strong>in</strong>tertidal<br />

range, is easily impeded by oil (Lewis 1990).<br />

Oil can be extremely persistent <strong>in</strong> the sediments<br />

of mangrove areas (Burns et al. 1994), result<strong>in</strong>g<br />

<strong>in</strong> widespread sublethal damages (Duke et al.<br />

1997) with changes <strong>in</strong> community structure <strong>and</strong><br />

productivity (C<strong>in</strong>trón-Molero & Schaeffer-<br />

Novelli 1992; Garrity et al. 1994), although<br />

seedl<strong>in</strong>g establishment may be relatively<br />

unaffected <strong>in</strong> oil-polluted soils (Imbert et al.<br />

2000).<br />

FIRE IN THE TROPICS,<br />

WETLANDS, AND MANGROVE<br />

SWAMPS<br />

<strong>Fire</strong>s <strong>in</strong> most ecosystems are complex<br />

phenomena that vary appreciably depend<strong>in</strong>g on<br />

many factors, <strong>in</strong>clud<strong>in</strong>g vegetation type,<br />

topography, climate, fuel type, fuel arrangement,<br />

fire history. The <strong>in</strong>fluence of man is certa<strong>in</strong>ly<br />

<strong>in</strong>creas<strong>in</strong>g, <strong>in</strong>clud<strong>in</strong>g an <strong>in</strong>creased risk of<br />

ignition <strong>and</strong> potential <strong>in</strong>terruption of fires <strong>in</strong><br />

dissected l<strong>and</strong>scapes (Whelan 1995). The return<br />

frequency of fires varies among ecosystem<br />

types, from annually <strong>in</strong> some grassl<strong>and</strong>s to over<br />

1,000 years for some evergreen forests, <strong>and</strong> by<br />

some accounts, never for moist tropical forests<br />

(Whelan 1995). The concept of fire regimes<br />

suggests that some plant communities are<br />

adapted to fires, with<strong>in</strong> certa<strong>in</strong> limits. However<br />

the fire regime concept has drawbacks <strong>in</strong> light<br />

of the variable nature of fires, the great number<br />

of factors that must be considered to <strong>in</strong>fer that<br />

regime, <strong>and</strong> the complications of alterations by<br />

human activities (Vogl 1975; Whelan 1995).<br />

Succession concepts can be applied to fire<br />

recovery, but it must be recognized that each<br />

situation is unique accord<strong>in</strong>g to comb<strong>in</strong>ations<br />

of species’ life histories, the nature <strong>and</strong> patterns<br />

of disturbance, <strong>and</strong> the physical <strong>and</strong> chemical<br />

attributes of the disturbed environment (Noble<br />

& Slatyer 1981). Communities of fire-adapted<br />

species do not fit well <strong>in</strong>to classical succession<br />

concepts, as these systems tend to rema<strong>in</strong> <strong>in</strong> or<br />

rapidly return to their pre-fire species<br />

compositions after a fire because of the presence<br />

of persistent adults, roots, <strong>and</strong> seeds. In those<br />

cases, fire is an external factor caus<strong>in</strong>g only a<br />

temporary regression <strong>in</strong> an ongo<strong>in</strong>g process


Contributions to the Study of Biological Diversity Vol. 3<br />

(Noble & Slatyer 1981). Gleason (1927)<br />

described a simple cyclical pattern of succession<br />

<strong>in</strong> fire-adapted plant communities. On the other<br />

h<strong>and</strong>, non fire-adapted communities may be<br />

good illustrations of successional concepts,<br />

s<strong>in</strong>ce mortality is nearly full <strong>and</strong> reestablishment<br />

is mostly dependent on sources outside of the<br />

fire area. A typical species richness pattern for<br />

secondary succession often results, start<strong>in</strong>g with<br />

an <strong>in</strong>itial decrease <strong>in</strong> species followed by a sharp<br />

<strong>in</strong>crease as many species <strong>in</strong>vade, <strong>in</strong>clud<strong>in</strong>g<br />

disturbance specialists. F<strong>in</strong>ally, a slow drop<br />

occurs, level<strong>in</strong>g off to those species best adapted<br />

for long term persistence <strong>in</strong> the develop<strong>in</strong>g<br />

environment (Whelan 1995). Along tropical<br />

coasts with sal<strong>in</strong>e soils, the expected endpo<strong>in</strong>t<br />

of succession would be a return to dom<strong>in</strong>ance<br />

by mangrove species. That outcome would be<br />

<strong>in</strong>fluenced by the dispersal of mangrove<br />

propagules <strong>and</strong> any preced<strong>in</strong>g occupation of<br />

disturbed sites by persistent, disturbanceadapted<br />

herbaceous species such as Typha<br />

(Miao et al. 2001; Newman et al. 1996; Smith<br />

& Newman 2001) or Spart<strong>in</strong>a, <strong>and</strong> unfavorable<br />

changes that disturbances might have had on<br />

hydrology or nutrient availability, prevent<strong>in</strong>g<br />

mangrove dispersal or establishment, <strong>and</strong> thus<br />

sett<strong>in</strong>g the stage for a substantial shift <strong>in</strong><br />

dom<strong>in</strong>ant species.<br />

The most destructive wildfires are<br />

<strong>in</strong>creas<strong>in</strong>gly l<strong>in</strong>ked to human caused<br />

disturbances <strong>and</strong> ignitions. <strong>Fire</strong>s <strong>in</strong> fire-adapted<br />

communities are more likely to be catastrophic<br />

when they occur outside of the usual fire season,<br />

or when the organisms <strong>in</strong> a community are not<br />

at all adapted to fire (Whelan 1995). Among<br />

forests types that may be considered non-fire<br />

adapted are tropical ra<strong>in</strong> forests <strong>and</strong> swamp<br />

forests. Mangrove forests fall <strong>in</strong>to both of those<br />

categories. Some fire adapted species may have<br />

life history traits that are <strong>in</strong>compatible with<br />

particular fire frequencies. For example, viable<br />

seeds may not have adequate time to be<br />

produced between frequent fires, or fire<br />

frequencies could fall to the po<strong>in</strong>t that species<br />

requir<strong>in</strong>g fires for reproduction become locally<br />

ext<strong>in</strong>ct (Noble & Slatyer 1981).<br />

One strategy allow<strong>in</strong>g for tolerance to fire<br />

is through resistance of <strong>in</strong>dividual plants. Those<br />

species have evolved structures to protect<br />

critical liv<strong>in</strong>g cells from the heat of fires, <strong>and</strong><br />

115<br />

thick, corky bark is a common adaptation.<br />

Mesophytic plant cells die at temperatures of<br />

only about 50-55ºC. The trees of tropical wet<br />

forests are typically th<strong>in</strong>-barked, mak<strong>in</strong>g them<br />

vulnerable to fires (Uhl & Kauffman 1990).<br />

Persistent rootstocks of plants that re-sprout<br />

after fires are protected by the <strong>in</strong>sulation of soils.<br />

Mangroves have neither of these adaptations;<br />

<strong>in</strong> addition to th<strong>in</strong> bark, sensitive root systems<br />

are often exposed to air or concentrated at<br />

shallow soil depths. Mortality from surface fires<br />

is higher if upper organic soil horizons burn<br />

rather than simply litter <strong>and</strong> dry herbaceous<br />

vegetation (Wade et al. 1980). In mangrove<br />

systems, saturation may slow soil decomposition<br />

<strong>and</strong> allow a buildup of organic matter.<br />

Mangroves generally have exposed or shallow<br />

roots possess<strong>in</strong>g critical aerenchyma tissue <strong>and</strong><br />

lenticels for gas exchange. With these<br />

conditions, almost any soil fire would be<br />

extremely damag<strong>in</strong>g to mangroves; a large<br />

proportion of their sensitive roots would come<br />

<strong>in</strong>to proximity or direct contact with the fuel.<br />

Not surpris<strong>in</strong>gly, when soil fires burned <strong>in</strong><br />

mangrove swamps of the Wa<strong>in</strong>i Pen<strong>in</strong>sula there<br />

was nearly, full mortality of trees.<br />

Laguncularia trees generally produce no<br />

aerial roots or sparse, small pneumatophores,<br />

which may have contributed to the survival of<br />

the Wa<strong>in</strong>i Pen<strong>in</strong>sula soil fires by scattered small<br />

Laguncularia trees. These small trees may have<br />

also avoided mortality because of the scale of<br />

patch<strong>in</strong>ess of the fires, while few large trees<br />

were unaffected. The patch<strong>in</strong>ess of mortality<br />

together with the <strong>in</strong>vasion rates of potential<br />

colonizers may play a major role <strong>in</strong> the path of<br />

recovery after a fire (Whelan 1995).<br />

Post-fire physical conditions, such as<br />

surface temperatures, w<strong>in</strong>d <strong>and</strong> nutrient levels,<br />

can be as <strong>in</strong>fluential upon the path of post-fire<br />

recovery as the characteristics of a fire itself,<br />

although these factors have been rarely studied<br />

(Whelan 1995). <strong>Fire</strong>s are often used by people<br />

to release nutrients <strong>in</strong> preparation for cultivation<br />

<strong>in</strong> nutrient limited ecosystems; fire also<br />

volatilizes some nutrients, particularly nitrogen,<br />

which are lost to the atmosphere.<br />

Biogeochemical cycl<strong>in</strong>g of nutrients dur<strong>in</strong>g <strong>and</strong><br />

after fires is <strong>in</strong> need of more study, <strong>and</strong> certa<strong>in</strong>ly<br />

seemed to be a factor <strong>in</strong> the post-fire swamps of<br />

the Wa<strong>in</strong>i Pen<strong>in</strong>sula, where released nutrients


116<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

apparently stimulated growth of float<strong>in</strong>g aquatic<br />

plants <strong>and</strong> algae <strong>and</strong> affected water openness<br />

for mangrove dispersal. Whelan (1995) lists<br />

pert<strong>in</strong>ent questions that have been <strong>in</strong>frequently<br />

addressed <strong>in</strong> fire studies, <strong>in</strong>clud<strong>in</strong>g 1) What are<br />

seed dispersal distances <strong>in</strong> relation to the spatial<br />

patterns of fires? <strong>and</strong> 2) What are the responses<br />

of organisms to fires <strong>in</strong> historically fire-free<br />

environments? These questions are approached<br />

here <strong>in</strong> the context of the Wa<strong>in</strong>i Pen<strong>in</strong>sula fires.<br />

<strong>Fire</strong> <strong>in</strong> Tropical Ecosystems<br />

<strong>Fire</strong> is an <strong>in</strong>tegral part of some ecosystems<br />

<strong>in</strong> the seasonal tropics, particularly dry seasonal<br />

forests <strong>and</strong> tropical savannas, where the plant<br />

species often have fire adaptations (Mueller-<br />

Dombois & Goldammer 1990). Because of that,<br />

<strong>in</strong>vestigations of fire dynamics <strong>in</strong> tropical South<br />

America have often focused on the burn<strong>in</strong>g of<br />

savanna ecosystems <strong>and</strong> agricultural uses (Eden<br />

1964; Fearnside 1990; Hillis & R<strong>and</strong>all 1968).<br />

Primary tropical forests are generally unable to<br />

survive fires of even low <strong>in</strong>tensity (Kauffman<br />

& Uhl 1990; Roberts 2000). Earlier writ<strong>in</strong>gs on<br />

fire ecology tended to entirely pass over or<br />

m<strong>in</strong>imally address effects of fire on humid<br />

tropical forests (Kozlowski & Ahlgren 1974),<br />

or focus only on damages from shift<strong>in</strong>g<br />

cultivation <strong>and</strong> cattle ranch<strong>in</strong>g practices<br />

(Kauffman & Uhl 1990; Uhl & Buschbacher<br />

1985). Attention has only recently been focused<br />

on the phenomenon of un<strong>in</strong>tentional wildfires<br />

that can occur <strong>in</strong> wet tropical forests dur<strong>in</strong>g<br />

periodic droughts (Cochrane 2001; Cochrane &<br />

Laurance 2002; Uhl 1998).<br />

The El Niño Southern Oscillation (ENSO)<br />

periodically br<strong>in</strong>gs droughts to northwestern<br />

South America, while at the same time br<strong>in</strong>g<strong>in</strong>g<br />

extreme ra<strong>in</strong>s to the western coast around<br />

Ecuador <strong>and</strong> Peru (WMO 1999). “Mega-Niño”<br />

events have occurred periodically over the last<br />

two millennia, around 400, 700, 1000, <strong>and</strong> 1500<br />

BP, <strong>and</strong> correlate with discont<strong>in</strong>uities <strong>in</strong> cultural<br />

artifacts; they are a possible cause of high<br />

l<strong>in</strong>guistic heterogeneity <strong>in</strong> tropical South<br />

America (Meggers 1994). Evidence has also<br />

been found of charcoal deposits more than 2,000<br />

years old <strong>in</strong> forests of French Guiana, suggest<strong>in</strong>g<br />

that some fires could be non-human <strong>in</strong> orig<strong>in</strong><br />

(Charles-Dom<strong>in</strong>ique et al. 1998), <strong>and</strong> <strong>in</strong> the<br />

upper Rio Negro Bas<strong>in</strong> on the Guiana Shield<br />

charcoal evidence has been found of fires<br />

occurr<strong>in</strong>g over 6000 years BP, nearly twice the<br />

estimated age of the oldest pottery shards from<br />

the region (Saldarriaga & West 1986).<br />

L<strong>in</strong>deman (1953) relays an account, by way<br />

of William Beebe, of extensive fires <strong>in</strong> the<br />

coastal area of Guyana dur<strong>in</strong>g an extreme<br />

drought <strong>in</strong> 1837, listed by Qu<strong>in</strong>n (1992) as a<br />

year of a greater than moderate El Niño<br />

phenomenon. That year fires destroyed the forest<br />

over a vast area <strong>in</strong> the freshwater Mauritia <strong>and</strong><br />

Mora swamps of the Abary River region on the<br />

southeastern coastal pla<strong>in</strong> of Guyana. More<br />

recently, attention was given to the occurrence<br />

of fires <strong>in</strong> relatively small, understory patches<br />

of disturbed evergreen forest on white s<strong>and</strong>s <strong>in</strong><br />

Guyana (Hammond & Steege 1998). These fires<br />

occurred dur<strong>in</strong>g the fairly strong 1997-1998 El<br />

Niño event; they were rarely over 0.5 hectare <strong>in</strong><br />

size.<br />

While ignition through natural causes is<br />

possible, either accidental or <strong>in</strong>tentional ignition<br />

by humans is considered to be the prime source<br />

of fires <strong>in</strong> Guyana <strong>and</strong> beyond (Hammond &<br />

Steege 1998; Kauffman & Uhl 1990; L<strong>in</strong>deman<br />

1953). L<strong>in</strong>deman (1953) notes that cities <strong>and</strong><br />

towns <strong>in</strong> the Guianas are built almost entirely<br />

of wood <strong>and</strong> lack lightn<strong>in</strong>g rods, yet do not<br />

experience structural fires from lightn<strong>in</strong>g strikes.<br />

In the Venezuelan portion of the Guiana Shield,<br />

as <strong>in</strong> Guyana, local people often ignite savanna<br />

fires that burn <strong>in</strong>to adjacent forested areas. In<br />

these cultures fire is viewed positively as<br />

‘cleans<strong>in</strong>g,’ <strong>and</strong> as be<strong>in</strong>g especially useful for<br />

controll<strong>in</strong>g populations of venomous snakes<br />

(Means 1995).<br />

<strong>Fire</strong>s become more likely <strong>in</strong> moist forests<br />

follow<strong>in</strong>g most physical disturbances, which<br />

tend to result <strong>in</strong> higher daily temperature<br />

maxima <strong>and</strong> lower humidity, allow<strong>in</strong>g litter on<br />

the forest floor to dry to the po<strong>in</strong>t where ignition<br />

is possible (Kauffman & Uhl 1990). Many k<strong>in</strong>ds<br />

of disturbances, <strong>in</strong>clud<strong>in</strong>g fires, hurricanes <strong>and</strong><br />

logg<strong>in</strong>g, can lead to an <strong>in</strong>crease <strong>in</strong> the dom<strong>in</strong>ance<br />

of v<strong>in</strong>es <strong>and</strong> other f<strong>in</strong>e vegetation, which<br />

contribute to the fuel load<strong>in</strong>g for future fires<br />

(Mueller-Dombois & Goldammer 1990).<br />

There is a grow<strong>in</strong>g recognition that low<br />

<strong>in</strong>tensity fires <strong>in</strong> the humid tropics can<br />

contribute to a positive feedback process that


Contributions to the Study of Biological Diversity Vol. 3<br />

leads to impacts on ever wider l<strong>and</strong> areas (Uhl<br />

1998). Remote sens<strong>in</strong>g studies <strong>in</strong> Brazil have<br />

<strong>in</strong>dicated that once a forest has been selectively<br />

logged the risk of burn<strong>in</strong>g <strong>in</strong>creases, <strong>and</strong> each<br />

time even a light fire occurs the probability of<br />

<strong>and</strong> severity of subsequent fires <strong>in</strong>crease<br />

(Cochrane 2000). The probability of burn<strong>in</strong>g <strong>in</strong><br />

an El Niño year also <strong>in</strong>creases with selective<br />

logg<strong>in</strong>g (Cochrane 2000), <strong>and</strong> 90% of<br />

un<strong>in</strong>tended forest fires <strong>in</strong> Amazonian Brazil are<br />

estimated to occur dur<strong>in</strong>g El Niño years<br />

(Cochrane 2000). It has also been estimated that<br />

nearly 90% of fires <strong>in</strong> Amazonian Brazil have<br />

some relationship to a forest edge, with the<br />

length of the average fire return time bear<strong>in</strong>g a<br />

positive relationship with distance from forest<br />

edge (Cochrane 2001). As forests become more<br />

fragmented their ratio of edge to area <strong>in</strong>creases,<br />

<strong>and</strong> the <strong>in</strong>creased tendency for fires to be<br />

<strong>in</strong>itiated along forest edges suggests a cycle of<br />

<strong>in</strong>creased frequency <strong>and</strong> impacts. Seem<strong>in</strong>gly<br />

m<strong>in</strong>or, accidental surface fires may cause<br />

significant impacts to tropical plant <strong>and</strong> animal<br />

communities <strong>and</strong> make forests far more<br />

vulnerable to larger fires (Laurance 2003). That<br />

apparently was the case when a severe dry<br />

season <strong>in</strong> 2003 led to fires over 20,000 km 2 or<br />

more <strong>in</strong> Roraima state of northern Brazil. Those<br />

l<strong>and</strong>s were probably primed for additional fire<br />

by earlier fires dur<strong>in</strong>g the El Niño event of 1998<br />

(Barbosa & Fearnside 1999; Barbosa et al.<br />

2003). Cochrane et al. (2002a) found that<br />

<strong>in</strong>clud<strong>in</strong>g the effects of un<strong>in</strong>tended burns<br />

<strong>in</strong>creased estimates of deforestation by 129<br />

percent from 1993-1995 <strong>in</strong> Paragom<strong>in</strong>as <strong>in</strong><br />

Northeastern Brazil. These <strong>in</strong>cremental, positive<br />

feedback augmented fire impacts may merit<br />

attention equal to that given to deforestation by<br />

agricultural clear<strong>in</strong>g. Similar dynamics have<br />

possibly been at work <strong>in</strong> the Western Ghats of<br />

India over longer periods of time, where very<br />

short return <strong>in</strong>tervals for fires <strong>and</strong> severe<br />

changes <strong>in</strong> species compositions of forests have<br />

been documented (Kod<strong>and</strong>apani et al. 2003).<br />

Tropical forest fires are often re-ignited by<br />

smoulder<strong>in</strong>g logs when litter conditions become<br />

dry (Cochrane et al. 2002b). Dur<strong>in</strong>g the early<br />

2001 dry season on the Wa<strong>in</strong>i Pen<strong>in</strong>sula,<br />

recently ignited fires were observed smolder<strong>in</strong>g<br />

<strong>in</strong> fallen logs of trees killed dur<strong>in</strong>g the 1998<br />

fires; these sometimes spread a short distance<br />

117<br />

<strong>in</strong> organic soils <strong>and</strong> dry herbaceous vegetation.<br />

Those re-burned areas generally had very sparse<br />

vegetation cover of scattered Acrostichum ferns<br />

<strong>and</strong> scrub Laguncularia <strong>and</strong> therefore dried<br />

quickly <strong>in</strong> the open sun.<br />

<strong>Fire</strong> <strong>in</strong> Wetl<strong>and</strong>s<br />

While the idea of fire occurrence <strong>in</strong><br />

wetl<strong>and</strong>s may seem unusual, many wetl<strong>and</strong>s<br />

pass through dry hydrologic conditions <strong>and</strong> may<br />

burn occasionally, though forested wetl<strong>and</strong>s are<br />

rarely affected (Lugo 1995). Earlier studies of<br />

fire <strong>in</strong> wetl<strong>and</strong>s have been predom<strong>in</strong>antly<br />

conf<strong>in</strong>ed to seasonally flooded herbaceous<br />

wetl<strong>and</strong>s, tidal marshes <strong>and</strong> peatl<strong>and</strong>s <strong>in</strong> North<br />

America (Kirby et al. 1988), often with a focus<br />

on prescribed burns for wildlife management<br />

(Cerulean & Engstrom 1995; Hackney & de la<br />

Cruz 1981). Many wetl<strong>and</strong> types, <strong>in</strong>clud<strong>in</strong>g<br />

marshes, freshwater swamps, <strong>and</strong> mangrove<br />

swamps, are considered to be fire-<strong>in</strong>dependent<br />

systems, which generally require preparation for<br />

burn<strong>in</strong>g <strong>and</strong> deliberate ignition dur<strong>in</strong>g dry<br />

periods (Vogl 1975). Nonetheless, fires <strong>in</strong> those<br />

types of ecosystems tend to be catastrophic, <strong>and</strong><br />

recovery <strong>in</strong> burned wetl<strong>and</strong>s is likely to <strong>in</strong>clude<br />

wide areas of weedy plants that can quite<br />

persistent. To avoid such results, controlled fires<br />

for management <strong>in</strong> marshes are typically set<br />

when the soil is damp, result<strong>in</strong>g <strong>in</strong> cover burns<br />

affect<strong>in</strong>g only above ground biomass.<br />

Decomposition <strong>in</strong> wetl<strong>and</strong>s often proceeds at a<br />

lower rate than production (Mitsch & Gossel<strong>in</strong>k<br />

1993), so that organic soils accumulate that,<br />

when ignited dur<strong>in</strong>g drought or drawdown,<br />

usually fuel smolder<strong>in</strong>g peat fires that produce<br />

copious smoke, which can pose serious visibility<br />

<strong>and</strong> health problems (Hungerford et al. 1995).<br />

Peat burns can result <strong>in</strong> open water <strong>and</strong> take<br />

many decades to recover; they are never<br />

considered a useful management tool (Nyman<br />

& Chabreck 1995). Some raised bogs <strong>and</strong> tidal<br />

marshes are subject to fires, <strong>and</strong> may possess<br />

some fire adapted species, <strong>in</strong> which case<br />

regeneration of vegetation can be rapid<br />

(Clarkson 1997; Timm<strong>in</strong>s 1992).<br />

Among forested wetl<strong>and</strong>s, Cypress<br />

(Taxodium distichum Rich.) swamps are known<br />

to suffer <strong>in</strong>frequent fires with return frequencies<br />

of hundreds of years; these fires may play a


118<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

limited role <strong>in</strong> stimulat<strong>in</strong>g seed production <strong>and</strong><br />

therefore recruitment of seedl<strong>in</strong>gs (Cook & Ewel<br />

1992; Ewel 1995; Glasser 1985). Although some<br />

varieties of Cypress may be more fire adapted<br />

than others, fires that burn significantly <strong>in</strong>to<br />

organic soils will damage a high percentage of<br />

roots <strong>and</strong> kill most Cypress trees <strong>and</strong> all<br />

seedl<strong>in</strong>gs (Ewel 1995). Atlantic white cedar<br />

(Chamaecyparis thyoides(L.) Britton, Sterns &<br />

Poggenb.) wetl<strong>and</strong>s <strong>in</strong> the Northeastern United<br />

States have been prehistorically disturbed by<br />

crown <strong>and</strong> soil fires, which apparently resulted<br />

<strong>in</strong> substantial decl<strong>in</strong>es <strong>in</strong> cedar populations, <strong>and</strong><br />

which only after long periods were f<strong>in</strong>ally<br />

followed by regeneration (Motzk<strong>in</strong> et al. 1993).<br />

<strong>Fire</strong>s <strong>in</strong> tropical wetl<strong>and</strong>s are a very poorly<br />

studied phenomenon, be<strong>in</strong>g conf<strong>in</strong>ed primarily<br />

to large-scale peat fires <strong>in</strong> Asia, particularly<br />

Indonesia, that have become associated with El<br />

Niño events (Fuller & Fulk 2001; K<strong>in</strong>naird &<br />

O’Brien 1998; Roberts 2000; Trenberth 1999).<br />

<strong>Fire</strong> is a factor <strong>in</strong> the ma<strong>in</strong>tenance <strong>and</strong> spread<br />

of Mauritia palms <strong>in</strong> the Llanos savannas of<br />

Venezuela <strong>and</strong> similar wet savannas of coastal<br />

Guyana (Middleton 1999; Myers 1990). The<br />

species composition of plant communities on<br />

<strong>and</strong> around the tepuis of the Guiana Shield <strong>in</strong><br />

Southern Venezuela are also probably<br />

<strong>in</strong>fluenced by fires (Means 1995).<br />

<strong>Fire</strong> <strong>in</strong> Mangrove Literature<br />

In the term<strong>in</strong>ology of Noble <strong>and</strong> Slatyer’s<br />

(1980) vital attributes classification for<br />

successional pathways follow<strong>in</strong>g disturbance,<br />

mangrove fires should be described as<br />

catastrophic events that do not normally occur<br />

over the life span of the affected species. The<br />

species of such systems have not been selected<br />

for <strong>and</strong> possess few mechanisms for rapid<br />

recovery.<br />

There is limited <strong>in</strong>formation <strong>in</strong> the literature<br />

on the occurrence of fire <strong>in</strong> mangrove<br />

ecosystems. The few cases have been primarily<br />

concerned with small-scale mortality result<strong>in</strong>g<br />

from lightn<strong>in</strong>g strikes (Duke 2001; Sherman et<br />

al. 2000; Smith et al. 1994; Wade et al. 1980)<br />

with affected areas only <strong>in</strong> the range of 10 to<br />

100 square meters. Colonization of these small<br />

lightn<strong>in</strong>g gaps may play a significant role <strong>in</strong><br />

patterns of species distribution <strong>in</strong> some<br />

mangrove forests, particularly those forests that<br />

are not subject to large scale disturbances such<br />

as hurricanes (Duke 2001). Lugo (1980), <strong>in</strong> his<br />

work on mangrove succession <strong>and</strong> disturbance,<br />

mentioned only briefly the sensitivity to fire of<br />

raised “Hammock” mangrove swamps of the<br />

South Florida Everglades. <strong>Fire</strong>s burn<strong>in</strong>g <strong>in</strong><br />

adjacent marsh or upl<strong>and</strong> vegetation have often<br />

been credited with ma<strong>in</strong>tenance of mangrovemarsh<br />

boundaries <strong>in</strong> Florida (Lugo 1997;<br />

Middleton 1999; Odum et al. 1982; Wade et al.<br />

1980).<br />

Vogl (1975) characterized mangrove<br />

swamps as fire <strong>in</strong>dependent systems <strong>in</strong> which<br />

fire leads to catastrophic results. His list of<br />

mangrove swamp properties that contribute to<br />

exclusion of fire <strong>in</strong>cluded high water tables,<br />

rapid decomposition of organic fuel, few<br />

flammable oils, <strong>and</strong> sparse understories. He<br />

noted that fires <strong>in</strong> such systems are usually<br />

<strong>in</strong>itiated by man dur<strong>in</strong>g extreme droughts <strong>and</strong><br />

result <strong>in</strong> high mortality, even from seem<strong>in</strong>gly<br />

mild surface fires, <strong>and</strong> revegetation <strong>in</strong>cludes<br />

many weedy species. Without cit<strong>in</strong>g specific<br />

<strong>in</strong>stances, Wade et al. (1980) also state that very<br />

low <strong>in</strong>tensity, creep<strong>in</strong>g soil fires easily kill<br />

mangroves. These observations are <strong>in</strong> agreement<br />

with the emerg<strong>in</strong>g underst<strong>and</strong><strong>in</strong>g of the effects<br />

of surface fires on wet tropical forests <strong>in</strong> the<br />

Amazon bas<strong>in</strong> (Cochrane 2003; Cochrane &<br />

Laurance 2002). Wade et al. (1980) also<br />

described cases of fires <strong>in</strong> dried dead mangrove<br />

debris left after hurricanes, as well as near the<br />

northern limits of mangrove vegetation <strong>in</strong><br />

Florida frost killed mangroves are susceptible<br />

to fire. In very rare cases frost-killed leaves have<br />

ignited before dropp<strong>in</strong>g, caus<strong>in</strong>g <strong>in</strong>tense<br />

mangrove crown fires.<br />

In the Guianas, there has been m<strong>in</strong>or<br />

documentation <strong>in</strong> the literature of fire <strong>in</strong> or near<br />

mangrove ecosystems. L<strong>in</strong>deman (1953)<br />

mentions fire along parts of the Sur<strong>in</strong>am<br />

shorel<strong>in</strong>e, describ<strong>in</strong>g it as an <strong>in</strong>frequent agent<br />

that accelerates his model of succession <strong>in</strong> which<br />

Avicennia swamp forest gives way to Eleocharis<br />

R.Br. marsh. Pons <strong>and</strong> Pons (1975) also mention<br />

fires <strong>in</strong> Avicennia swamps isolated beh<strong>in</strong>d beach<br />

ridges at Little Orange Creek on the coast of<br />

Sur<strong>in</strong>am, with the disturbance <strong>in</strong>itiat<strong>in</strong>g various<br />

types of herbaceous vegetation. Their model<br />

describes a post-fire succession start<strong>in</strong>g with


Contributions to the Study of Biological Diversity Vol. 3<br />

shallow open water or Eleocharis meadows with<br />

Avicennia slowly coloniz<strong>in</strong>g. That returns to a<br />

“climax” of Avicennia swamp if undisturbed,<br />

or becomes arrested at a Typha marsh or<br />

Cyperus-Montrichardia marsh stage. Details are<br />

not given <strong>in</strong> the Pons <strong>and</strong> Pons paper about the<br />

extent of areas affected by fires, but maps are<br />

<strong>in</strong>cluded <strong>in</strong>dicat<strong>in</strong>g belts of Eleocharis up to 1<br />

kilometer wide <strong>and</strong> patches of Typha on the<br />

<strong>in</strong>l<strong>and</strong> marg<strong>in</strong> of Avicennia swamps, some over<br />

100 hectares <strong>in</strong> size. There, both of these<br />

herbaceous communities are described as<br />

persist<strong>in</strong>g possibly as a result of recurr<strong>in</strong>g fires<br />

or other disturbances, however no specific fires<br />

were documented, <strong>and</strong> the frequency of fires is<br />

apparently low.<br />

Observations at Almond Beach on the<br />

Wa<strong>in</strong>i Pen<strong>in</strong>sula suggest that patterns of<br />

vegetation change on Guyana’s coastl<strong>in</strong>e may<br />

follow pathways similar to those <strong>in</strong> Sur<strong>in</strong>am<br />

(L<strong>in</strong>deman 1953; Pons & Pons 1975), with<br />

shifts <strong>in</strong> the mangrove/marsh boundary<br />

occurr<strong>in</strong>g <strong>in</strong> a punctuated manner, <strong>in</strong>itiated<br />

dur<strong>in</strong>g extreme droughts by catastrophic fires<br />

that def<strong>in</strong>e a new boundary by burn<strong>in</strong>g forested<br />

areas that are no longer tidally <strong>in</strong>undated. The<br />

occluded mangrove swamps are then converted,<br />

at least for a time, to herbaceous, somewhat salttolerant<br />

vegetation.<br />

Status of Mangroves <strong>in</strong> Guyana<br />

Because the soils beyond Guyana’s coastal<br />

pla<strong>in</strong> are generally laterites or white s<strong>and</strong>s with<br />

poor fertility, over 90% of the population lives<br />

on the coastal pla<strong>in</strong> (Merrill 1993), with a sparse<br />

transportation system beyond the coast. That,<br />

<strong>in</strong> comb<strong>in</strong>ation with a timber <strong>in</strong>dustry that has<br />

only recently reached large scales, has left<br />

mangroves as one of the most highly impacted<br />

forest types <strong>in</strong> Guyana (GFC & CIDA 1989).<br />

The coast of the Guianas is credited with<br />

optimal grow<strong>in</strong>g conditions for the black<br />

mangrove Avicennia germ<strong>in</strong>ans, which is<br />

reported to reach heights of up to 100 feet <strong>in</strong><br />

Sur<strong>in</strong>am (L<strong>in</strong>deman 1953; Vann 1959, 1969);<br />

similar heights have been observed <strong>in</strong> the coastal<br />

forests of the Wa<strong>in</strong>i Pen<strong>in</strong>sula, <strong>and</strong> diameters<br />

<strong>in</strong> coastal swamps reach more than 50 cm, with<br />

exceptional diameters of over 2 meters for<br />

scattered mature trees found just <strong>in</strong>l<strong>and</strong> of the<br />

119<br />

Wa<strong>in</strong>i River (see Figure 1.16).<br />

The zonation of species with<strong>in</strong> mangrove<br />

communities <strong>in</strong> the Guianas is quite dist<strong>in</strong>ct<br />

from that typically described for the more often<br />

studied mangroves on calcareous substrates <strong>in</strong><br />

the Caribbean (L<strong>in</strong>deman & Mori 1989; West<br />

1977). The black mangrove, Avicennia<br />

germ<strong>in</strong>ans, forms a moderate to wide b<strong>and</strong><br />

nearest the ocean. The red mangrove,<br />

Rhizophora mangle, the prop-rooted seaward<br />

species <strong>in</strong> most Caribbean communities, is<br />

mixed <strong>in</strong> to vary<strong>in</strong>g degrees beh<strong>in</strong>d the black<br />

mangroves (Granville 1992). Farther <strong>in</strong>l<strong>and</strong>,<br />

forest composition grades <strong>in</strong>to freshwater<br />

swamp (Bacon 1990). Red mangroves are also<br />

found along the banks of the tidal rivers <strong>in</strong><br />

brackish water, usually as the river<strong>in</strong>e species<br />

Rhizophora racemosa G. Mey., a species with a<br />

narrower distribution <strong>in</strong> the Americas than R.<br />

mangle. The white mangrove Laguncularia<br />

racemosa is not a dom<strong>in</strong>ant tree <strong>in</strong> the<br />

mangroves of the Guianas, but is very common<br />

as an understory shrub or treelet.<br />

The early colonization of Guyana by Dutch<br />

planters led to the dik<strong>in</strong>g of long stretches of<br />

coastl<strong>in</strong>e <strong>and</strong> tidal river banks for development<br />

of agricultural from coastal swamps <strong>and</strong><br />

marshes. That affected almost all of the coastl<strong>in</strong>e<br />

southeast of the Pomeroon River, where the<br />

coastal pla<strong>in</strong> is widest (Daly 1995). Daily<br />

operation <strong>and</strong> ma<strong>in</strong>tenance of the dra<strong>in</strong>age <strong>and</strong><br />

sea defense <strong>in</strong>frastructure places a great<br />

economic dem<strong>and</strong> on the Guyanese economy<br />

<strong>and</strong> has at times been a significant focus of<br />

<strong>in</strong>ternational assistance (Richardson 1987).<br />

Before reclamation, much of the coastal pla<strong>in</strong><br />

was covered by marshes <strong>and</strong> swamps, with areas<br />

closest to the sea periodically to frequently<br />

flooded by sal<strong>in</strong>e tides. The dra<strong>in</strong>age of the<br />

coastal wetl<strong>and</strong> soils probably resulted <strong>in</strong><br />

subsidence from de-water<strong>in</strong>g <strong>and</strong> oxidation of<br />

organic matter, leav<strong>in</strong>g the l<strong>and</strong> below mean sea<br />

level <strong>and</strong> mak<strong>in</strong>g any restoration difficult.<br />

No descriptions have been found of the<br />

extent of Guyana’s mangroves prior to dik<strong>in</strong>g,<br />

but it is almost certa<strong>in</strong> that a vast area was<br />

destroyed s<strong>in</strong>ce the beg<strong>in</strong>n<strong>in</strong>g of colonization<br />

(Richardson 1987). On the southeastern Guyana<br />

coast, many mangroves that rema<strong>in</strong>ed outside<br />

of seawalls have disappeared from the effects<br />

of altered hydrology <strong>and</strong> erosion of sediments


120<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

along the shore (S<strong>in</strong>ghroy 1996). In some coastal<br />

areas sediment accretion outside of seawalls<br />

allows substantial colonization by Avicennia,<br />

such as has occurred on the coast between the<br />

Pomeroon <strong>and</strong> Essequibo Rivers (pers. obs.).<br />

These may be ephemeral <strong>and</strong> eventually be lost<br />

to erosion as mudbanks migrate along the coast.<br />

Estimates of the current mangrove area <strong>in</strong><br />

Guyana range from Spald<strong>in</strong>g’s (1997) 71,700<br />

ha (whose methods were positively appraised<br />

by Alongi) to 80,000 ha (Snedaker 1986) with<br />

the highest area of 150,000 ha (Saenger et al.<br />

1983) or slightly more (Huber et al. 1995). After<br />

agricultural conversion, the major threat to<br />

rema<strong>in</strong><strong>in</strong>g mangroves <strong>in</strong> Guyana, both along the<br />

coast <strong>and</strong> <strong>in</strong> estuar<strong>in</strong>e areas, was once fuelwood<br />

collection (GFC & CIDA 1989; Guyana Agency<br />

for Health 1992) which affected Avicennia as<br />

well as Rhizophora. These species are<br />

decreas<strong>in</strong>gly utilized as sources for superior<br />

fuelwood, charcoal <strong>and</strong> tanbark, but are still<br />

harvested for construction <strong>and</strong> fish<strong>in</strong>g poles<br />

(Allan et al. 2002). Mangroves near populated<br />

areas are highly degraded by <strong>in</strong>tense use,<br />

evidenced by very low mean tree diameters <strong>in</strong> a<br />

1 ha plot near Alness Village, where a mean dbh<br />

of 16 cm was recorded (Ramdass et al. 1997).<br />

Where mangrove swamps rema<strong>in</strong> <strong>in</strong> Guyana<br />

they are credited with the stabilization of<br />

accreted sediments <strong>and</strong> erosion prevention (EPA<br />

Guyana 2000; GFC & CIDA 1989).<br />

<strong>Fire</strong> Detection Resources<br />

There are a grow<strong>in</strong>g number of resources<br />

that can alert resource managers <strong>and</strong> policy<br />

makers to wildfires, mak<strong>in</strong>g timely reaction to<br />

events possible. NOAA’s Operational<br />

Significant Event Imagery (http://<br />

www.osei.noaa.gov/Events/<strong>Fire</strong>s/Guyana/),<br />

archives have <strong>in</strong>cluded past events sensed by<br />

AVHRR channel 3 imagery. Only events for<br />

March 30, 1998 were available for Guyana,<br />

<strong>in</strong>dicat<strong>in</strong>g no fire activity on the Wa<strong>in</strong>i<br />

Pen<strong>in</strong>sula. The MODIS satellite has been<br />

operational s<strong>in</strong>ce 2000, <strong>and</strong> provides 1 kilometer<br />

resolution fire <strong>and</strong> thermal anomaly data at a<br />

twice daily frequency that can be downloaded<br />

ready for use <strong>in</strong> GIS systems (http://modisfire.umd.edu/).<br />

The National Geophysical Data<br />

Center’s Satellite <strong>Fire</strong> Detection Viewer (http:/<br />

/map.ngdc.noaa.gov/website/firedetects/<br />

viewer.htm) provides recent possible fire data;<br />

the ABBA GOES-10 layer provides fire<br />

detections that <strong>in</strong>clude Guyana <strong>and</strong> can be<br />

downloaded for use <strong>in</strong> GIS systems. Ideally<br />

these data sources should be regularly monitored<br />

<strong>and</strong> analyzed to <strong>in</strong>crease the likelihood that<br />

managers become aware of fires while they are<br />

<strong>in</strong> progress (Cochrane 2002). Another<br />

development advanc<strong>in</strong>g the detection of <strong>and</strong><br />

communication about wildfires is the recent<br />

foundation of the Regional South America<br />

Wildl<strong>and</strong> <strong>Fire</strong> Network (IFFN 2004), which is<br />

<strong>in</strong>ternationally funded by governmental <strong>and</strong><br />

non-governmental organizations.<br />

CONCLUSION<br />

Like terrestrial forested ecosystems,<br />

mangrove ecosystems can vary widely <strong>in</strong> their<br />

structure <strong>and</strong> function. The mangroves of<br />

Guyana <strong>and</strong> not typical of the low sediment<br />

Caribbean systems most often studied <strong>and</strong><br />

published on <strong>in</strong> the Neotropics, but fall well<br />

with<strong>in</strong> the worldwide varieties of mangrove<br />

systems. As is true of many wetl<strong>and</strong> types, they<br />

are dynamic systems, that change along with the<br />

hydrology <strong>and</strong> geomorphology of the l<strong>and</strong>scape<br />

<strong>in</strong> which they are situated. In places like the<br />

coast of the Guianas, changes are accentuated<br />

by coastal sediment dynamics as well as by<br />

fluctuations of climate over time, possibly<br />

mak<strong>in</strong>g the system <strong>in</strong>creas<strong>in</strong>gly vulnerable to<br />

disturbances such as fires. If understood, such<br />

disturbances can be anticipated <strong>and</strong> managed.<br />

On wild sections of the coast of the Guianas,<br />

that would primarily <strong>in</strong>clude suppression of fire<br />

ignition dur<strong>in</strong>g extreme dry years, <strong>and</strong><br />

connected efforts at education <strong>and</strong> plann<strong>in</strong>g of<br />

settlement <strong>and</strong> l<strong>and</strong> use patterns. Such practices<br />

might have an impact on the frequency of fires,<br />

<strong>and</strong> the conservation of these ecologically <strong>and</strong><br />

culturally valuable mangrove ecosystems.<br />

LIST OF REFERENCES<br />

(for Appendix 1)<br />

Adeel, Z., <strong>and</strong> R. Pomeroy. 2002. Assessment<br />

<strong>and</strong> management of mangrove ecosystems<br />

<strong>in</strong> develop<strong>in</strong>g countries. Trees 16:235-238.


Contributions to the Study of Biological Diversity Vol. 3<br />

Allan, C., S. Williams, <strong>and</strong> R. Adrian 2002. The<br />

Socio-Economic Context of the Harvest<strong>in</strong>g<br />

<strong>and</strong> Utilisation of Mangrove Vegetation.<br />

Guyana Forestry Commission,<br />

Georgetown, Guyana.<br />

Alongi, D. M. 2002. Present state <strong>and</strong> future of<br />

the world’s mangrove forests.<br />

Environmental Conservation 29:331-349.<br />

August<strong>in</strong>us, P. G. E. F. 1995. Geomorphology<br />

<strong>and</strong> sedimentation of mangroves. In G. M.<br />

E. Perillo, editor. Geomorphology <strong>and</strong><br />

Sedimentation of Estuaries. Elsevier,<br />

Amsterdam.<br />

Bacon, P. R. 1975. <strong>Recovery</strong> of a Tr<strong>in</strong>idadian<br />

mangrove swamp from attempted<br />

reclamation. In G. E. Walsh, S. C. Snedaker,<br />

<strong>and</strong> H. J. Teas, editors. Proceed<strong>in</strong>gs of the<br />

International Symposium on Biology <strong>and</strong><br />

Management of Mangroves. Institute of<br />

Food <strong>and</strong> Agricultural Sciences, University<br />

of Florida, Ga<strong>in</strong>esville.<br />

Bacon, P. R. 1990. Ecology <strong>and</strong> management<br />

of swamp forests <strong>in</strong> the Guianas <strong>and</strong><br />

Caribbean region. Pages 193-213 <strong>in</strong> A. E.<br />

Lugo, M. Br<strong>in</strong>son, <strong>and</strong> S. Brown, editors.<br />

Ecosystems of the World 15, Forested<br />

Wetl<strong>and</strong>s. Elsevier, Amsterdam.<br />

Baldw<strong>in</strong>, A. H., M. Egnotovich, M. Ford, <strong>and</strong><br />

W. Platt. 2001. Regeneration <strong>in</strong> fr<strong>in</strong>ge<br />

mangrove forests damaged by Hurricane<br />

Andrew. <strong>Plant</strong> Ecology 157:151-164.<br />

Baran, E., <strong>and</strong> J. Hambrey. 1998. Mangrove<br />

conservation <strong>and</strong> coastal management <strong>in</strong><br />

southeast Asia: What impact on fishery<br />

resources? Mar<strong>in</strong>e Pollution Bullet<strong>in</strong><br />

37:431-440.<br />

Barbosa, R. I., <strong>and</strong> P. M. Fearnside. 1999.<br />

IncL ndios na Amazônia brasileira:<br />

Estimativa da emissno de gases do efeito<br />

estufa pela queima de diferentes<br />

ecossistemas de Roraima na passagem do<br />

evento “El NiZo” (1997/98). Acta<br />

Amazonica 29:513-534.<br />

Barbosa, R. I., M. R. Xaud, G. N. F. Silva, <strong>and</strong><br />

A. C. Cattâneo. 2003. Forest <strong>Fire</strong>s <strong>in</strong><br />

Roraima, Brazilian Amazonia.<br />

International Forest <strong>Fire</strong> News 28:51-56.<br />

Blasco, F., J. L. Carayon, <strong>and</strong> M. Aizpuru. 2001.<br />

World mangrove resources. ISME/<br />

GLOMIS Electronic Journal 1:1-3.<br />

Bossi, R. H., <strong>and</strong> G. C<strong>in</strong>trón 1990. Mangroves<br />

121<br />

of the Wider Caribbean: Toward<br />

Susta<strong>in</strong>able Management. Caribbean<br />

Conservation Association, St. Michael,<br />

Barbados.<br />

Breen, C. M., <strong>and</strong> B. J. Hill. 1969. A mass<br />

mortality of mangroves <strong>in</strong> the Kosi Estuary.<br />

Transactions of the Royal Society of South<br />

Africa 38:285-303.<br />

Burns, K. A., S. D. Garrity, D. Jorissen, J.<br />

MacPherson, <strong>and</strong> M. Stoelt<strong>in</strong>g. 1994. The<br />

Galeta oil spill. II: Unexpected persistence<br />

of oil trapped <strong>in</strong> mangrove sediments.<br />

Estuar<strong>in</strong>e, Coastal, <strong>and</strong> Shelf Science<br />

38:349-364.<br />

Cardona, P., <strong>and</strong> L. Botero. 1998. Soil<br />

characteristics <strong>and</strong> vegetation structure <strong>in</strong><br />

a heavily deteriorated mangrove forest <strong>in</strong><br />

the Caribbean coast of Colombia.<br />

Biotropica 30:24-34.<br />

Cerulean, S. I., <strong>and</strong> R. T. Engstrom, editors.<br />

1995. <strong>Fire</strong> <strong>in</strong> Wetl<strong>and</strong>s: A Management<br />

Perspective. Proceed<strong>in</strong>gs of the Tall<br />

Timbers <strong>Fire</strong> Ecology Conference, No. 19.<br />

Tall Timbers Research Station, Tallahassee,<br />

FL.<br />

Charles-Dom<strong>in</strong>ique, P., P. Blanc, D. Larp<strong>in</strong>, M.-<br />

P. Ledru, B. Riera, C. Sarthou, M. Servant,<br />

<strong>and</strong> C. Tardy. 1998. Forest perturbations<br />

<strong>and</strong> biodiversity dur<strong>in</strong>g the last ten thous<strong>and</strong><br />

years <strong>in</strong> French Guiana. Acta Oecologia<br />

19:295-302.<br />

Christensen, B. 1983. Mangroves - What are<br />

they worth? Unasylva 35:2-15.<br />

C<strong>in</strong>trón-Molero, G., <strong>and</strong> Y. Schaeffer-Novelli.<br />

1992. Ecology <strong>and</strong> management of New<br />

World mangroves. Pages 233-258 <strong>in</strong> U.<br />

Seeliger, editor. Coastal <strong>Plant</strong> Communities<br />

of Lat<strong>in</strong> America. Academic Press.<br />

Clarkson, B. R. 1997. Vegetation recovery<br />

follow<strong>in</strong>g fire <strong>in</strong> two Waikato peatl<strong>and</strong>s at<br />

Whangamar<strong>in</strong>o <strong>and</strong> Moanatuatua, New<br />

Zeal<strong>and</strong>. New Zeal<strong>and</strong> Journal of Botany<br />

35:167-179.<br />

Cochrane, M. A. 2000. Forest fire, deforestation<br />

<strong>and</strong> l<strong>and</strong>cover change <strong>in</strong> the Brazilian<br />

Amazon. Pages 170-176 <strong>in</strong> L. F.<br />

Neuenschw<strong>and</strong>er, K. C. Ryan, G. E.<br />

Gollberg, <strong>and</strong> J. D. Greer, editors.<br />

Proceed<strong>in</strong>gs from, The Jo<strong>in</strong>t <strong>Fire</strong> Science<br />

Conference <strong>and</strong> Workshop, June 15-17,<br />

1999, “Cross<strong>in</strong>g the Millennium:


122<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Integrat<strong>in</strong>g Spatial Technologies <strong>and</strong><br />

Ecological Pr<strong>in</strong>cipals for a New Age <strong>in</strong> <strong>Fire</strong><br />

Management”. University of Idaho <strong>and</strong> the<br />

International Association of Wildl<strong>and</strong> <strong>Fire</strong>,<br />

Moscow, Idaho.<br />

Cochrane, M. A. 2001. Synergistic Interactions<br />

between Habitat Fragmentation <strong>and</strong> <strong>Fire</strong> <strong>in</strong><br />

Evergreen Tropical Forests. Conservation<br />

Biology 15:1515-1521.<br />

Cochrane, M. A. 2002. Spread<strong>in</strong>g Like<br />

Wildfire—Tropical Forest <strong>Fire</strong>s <strong>in</strong> Lat<strong>in</strong><br />

America <strong>and</strong> the Caribbean: Prevention,<br />

Assessment <strong>and</strong> Early Warn<strong>in</strong>g. Page 96.<br />

United Nations Environment Programme<br />

(UNEP), Regional Office for Lat<strong>in</strong> America<br />

<strong>and</strong> the Caribbean, Mexico City.<br />

Cochrane, M. A. 2003. <strong>Fire</strong> science for<br />

ra<strong>in</strong>forests. Nature 421:913-919.<br />

Cochrane, M. A., A. Alencar, M. D. Schulze, C.<br />

M. Souza, Jr., P. Lefebvre, <strong>and</strong> D. Nepstad.<br />

2002a. Investigat<strong>in</strong>g positive feedbacks <strong>in</strong><br />

the fire dynamic of closed canopy tropical<br />

forests. Pages 285-298 <strong>in</strong> C. H. Wood, <strong>and</strong><br />

R. Porro, editors. Deforestation <strong>and</strong><br />

L<strong>and</strong>use <strong>in</strong> the Amazon. University of<br />

Florida Press, Ga<strong>in</strong>esville.<br />

Cochrane, M. A., <strong>and</strong> W. F. Laurance. 2002. <strong>Fire</strong><br />

as a large-scale edge effect <strong>in</strong> Amazonian<br />

forests. Journal of Tropical Ecology 18:311-<br />

325.<br />

Cochrane, M. A., D. L. Skole, E. A. T.<br />

Matricardi, C. Barber, <strong>and</strong> W.<br />

Chomentowski. 2002b. Interaction <strong>and</strong><br />

Synergy between Selective Logg<strong>in</strong>g, Forest<br />

Fragmentation <strong>and</strong> <strong>Fire</strong> <strong>Disturbance</strong> <strong>in</strong><br />

Tropical Forests: Case Study Mato Grosso,<br />

Brazil. Pages 1-20. Michigan State<br />

University, East Lans<strong>in</strong>g, Michigan.<br />

Colonnello, G., <strong>and</strong> E. Med<strong>in</strong>a. 1998. Vegetation<br />

changes <strong>in</strong>duced by dam construction <strong>in</strong> a<br />

tropical estuary: the case of the Mánamo<br />

river, Or<strong>in</strong>oco Delta (Venezuela). <strong>Plant</strong><br />

Ecology 139:145-154.<br />

Conner, W. H., J. W. Day, R. H. Bauman, <strong>and</strong> J.<br />

M. R<strong>and</strong>all. 1989. Influence of hurricanes<br />

on coastal ecosystems along the northern<br />

Gulf of Mexico. Wetl<strong>and</strong>s Ecology <strong>and</strong><br />

Management 1:45-56.<br />

Cook, S., <strong>and</strong> K. C. Ewel. 1992. Regeneration<br />

<strong>in</strong> burned cypress swamps. Florida Scientist<br />

56:62-64.<br />

Daly, V. T. 1995. A Short History of the<br />

Guyanese People. Macmillan, London.<br />

Davis, J. H. 1940. The ecology <strong>and</strong> geologic role<br />

of mangroves of Florida. Papers of the<br />

Tortugas Laboratory 32:303-341.<br />

de la Cruz, A. A. 1983. Traditional practices<br />

applied to the management of mangrove<br />

areas <strong>in</strong> Southeast Asia. International<br />

Journal of Ecology <strong>and</strong> Environmental<br />

Science 9:13-19.<br />

DeFilipps, R. A., S. L. Ma<strong>in</strong>a, <strong>and</strong> J. Crep<strong>in</strong><br />

2004. Medic<strong>in</strong>al <strong>Plant</strong>s of the Guianas<br />

(Guyana, Sur<strong>in</strong>am, French Guiana), web<br />

version. Department of Botany,<br />

Smithsonian Institution, Wash<strong>in</strong>gton, DC.<br />

DeWalt, B. R., P. Vergne, <strong>and</strong> M. Hard<strong>in</strong>. 1996.<br />

Shrimp aquaculture development <strong>and</strong> the<br />

environment: People, mangroves <strong>and</strong><br />

fisheries on the Gulf of Fonseca, Honduras.<br />

World Development 24:1193-1208.<br />

Dugan, P. J. 1993. Distill<strong>in</strong>g lessons from the<br />

case studies. Pages 153-156 <strong>in</strong> T. J. Davis,<br />

editor. Towards the wise use of wetl<strong>and</strong>s:<br />

Report of the Ramsar Convention Wise Use<br />

Project. Ramsar Convention Bureau, Gl<strong>and</strong>,<br />

Switzerl<strong>and</strong>.<br />

Duke, N. C. 2001. Gap creation <strong>and</strong> regenerative<br />

processes driv<strong>in</strong>g diversity <strong>and</strong> structure of<br />

mangrove ecosystems. Wetl<strong>and</strong>s Ecology<br />

<strong>and</strong> Management 9:257-269.<br />

Duke, N. C., M. C. Ball, <strong>and</strong> J. Ellison. 1998.<br />

Factors <strong>in</strong>fluenc<strong>in</strong>g biodiversity <strong>and</strong><br />

distributional gradients <strong>in</strong> mangroves.<br />

Global Ecology <strong>and</strong> Biogeography Letters<br />

7:27-47.<br />

Duke, N. C., A. M. Bell, D. K. Pedersen, C. M.<br />

Roelfsema, L. M. Godson, K. N. Zahmel,<br />

J. Mackenzie, <strong>and</strong> S. Bengtson-Nash 2003.<br />

Mackay Mangrove Dieback. Investigations<br />

<strong>in</strong> 2002 with recommendations for further<br />

research, monitor<strong>in</strong>g <strong>and</strong> management.<br />

Report to Queensl<strong>and</strong> Department of<br />

Primary Industries Northern Fisheries<br />

Centre, <strong>and</strong> the <strong>Community</strong> of Mackay. 11<br />

September 2003. Mar<strong>in</strong>e Botany Group,<br />

Centre for Mar<strong>in</strong>e Studies, The University<br />

of Queensl<strong>and</strong>, Brisbane.<br />

Duke, N. C., Z. S. P<strong>in</strong>zón M., <strong>and</strong> M. C. Prada<br />

T. 1997. Large-scale damage to mangrove<br />

forests follow<strong>in</strong>g two large oil spills <strong>in</strong><br />

Panama. Biotropica 29:2-14.


Contributions to the Study of Biological Diversity Vol. 3<br />

Eden, M. J. 1964. The Savanna Ecosystem -<br />

Northern Rupununi, British Guiana.<br />

Department of Geography, McGill<br />

University, Montreal, Canada.<br />

Egler, F. E. 1948. The dispersal <strong>and</strong><br />

establishment of red mangrove,<br />

Rhizophora, <strong>in</strong> Florida. Caribbean Forester<br />

9:299-310.<br />

Ellison, A. M., <strong>and</strong> E. J. Farnsworth. 1992. The<br />

ecology of Belizean mangrove-root foul<strong>in</strong>g<br />

communities: patterns of epibiont<br />

distribution <strong>and</strong> abundance, <strong>and</strong> effects on<br />

root growth. Hydrobiologia 247:87-98.<br />

Ellison, A. M., <strong>and</strong> E. J. Farnsworth. 1996.<br />

Anthropogenic disturbance of Caribbean<br />

mangrove ecosystems: Past impacts,<br />

present trends, <strong>and</strong> future predictions.<br />

Biotropica 28:549-565.<br />

Elster, C., L. Perdomo, <strong>and</strong> M.-L. Schnetter.<br />

1999. Impact of ecological factors on the<br />

regeneration of mangroves <strong>in</strong> the Cienaga<br />

Gr<strong>and</strong>e de Santa Marta, Colombia.<br />

Hydrobiologia 413:35-46.<br />

Elster, C., <strong>and</strong> J. Polanía. 2000. Regeneration<br />

of mangrove forests <strong>in</strong> the Cienaga Gr<strong>and</strong>e<br />

de Santa Marta (Colombia). Actualidades<br />

Biologicas 22:29-36.<br />

EPA Guyana. 2000. Integrated Coastal Zone<br />

Management Action Plan. Page 31 pp.<br />

Environmental Protection Agency of<br />

Guyana, Georgetown.<br />

Epler, B. 1992. Social ramifications of<br />

mariculture on coastal Ecuadorian<br />

communities. Pages 24-32 <strong>in</strong> R. B. Pollnac,<br />

<strong>and</strong> P. Weeks, editors. Coastal Aquaculture<br />

<strong>in</strong> Develop<strong>in</strong>g Countries: Problems <strong>and</strong><br />

Perspectives. International Center for<br />

Mar<strong>in</strong>e Resource Development (ICMRD)<br />

at the University of Rhode Isl<strong>and</strong>,<br />

Providence.<br />

Ewel, K. C. 1995. <strong>Fire</strong> <strong>in</strong> cypress swamps <strong>in</strong><br />

the southeastern United States. Pages 111-<br />

116 <strong>in</strong> S. I. Cerulean, <strong>and</strong> R. T. Engstrom,<br />

editors. <strong>Fire</strong> <strong>in</strong> Wetl<strong>and</strong>s: A Management<br />

Perspective. Proceed<strong>in</strong>gs of the Tall<br />

Timbers <strong>Fire</strong> Ecology Conference, No. 19.<br />

Tall Timbers Research Station, Tallahassee,<br />

FL.<br />

Ewel, K. C., R. R. Twilley, <strong>and</strong> J. E. Ong. 1998a.<br />

Different k<strong>in</strong>ds of mangrove forests provide<br />

different goods <strong>and</strong> services. Global<br />

123<br />

Ecology <strong>and</strong> Biogeography Letters 7:83-94.<br />

Ewel, K. C., S. Zheng, Z. S. P<strong>in</strong>zón, <strong>and</strong> J. A.<br />

Bourgeois. 1998b. Environmental effects of<br />

canopy gap formation <strong>in</strong> high-ra<strong>in</strong>fall<br />

mangrove forests. Biotropica 30:510-518.<br />

FAO 1994. Mangrove Management Guidel<strong>in</strong>es.<br />

U.N. Food <strong>and</strong> Agriculture Organization,<br />

Rome.<br />

Farnsworth, E. J., <strong>and</strong> A. M. Ellison. 1997. The<br />

global conservation status of mangroves.<br />

Ambio 26:328-334.<br />

Fearnside, P. M. 1990. <strong>Fire</strong> <strong>in</strong> the tropical ra<strong>in</strong><br />

forest of the Amazon bas<strong>in</strong>. Pages 106-116<br />

<strong>in</strong> J. G. Goldammer, editor. <strong>Fire</strong> <strong>in</strong> the<br />

Tropical Biota: Ecosystem Processes <strong>and</strong><br />

Global Challenges. Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong>.<br />

Fosberg, F. R. 1947. Micronesian mangroves.<br />

Journal of the New York Botanical Garden<br />

48:128-138.<br />

Fuller, D. O., <strong>and</strong> M. Fulk. 2001. Burned area<br />

<strong>in</strong> Kalimantan, Indonesia mapped with<br />

NOAA-AVHRR <strong>and</strong> L<strong>and</strong>sat TM imagery.<br />

International Journal of Remote Sens<strong>in</strong>g<br />

22:691-697.<br />

Garrity, S. D., S. D. Lev<strong>in</strong>gs, <strong>and</strong> K. A. Burns.<br />

1994. The Galeta oil spill. I: Long term<br />

effects on the physical structure of the<br />

mangrove fr<strong>in</strong>ge. Estuar<strong>in</strong>e, Coastal, <strong>and</strong><br />

Shelf Science 38:327-348.<br />

Gentry, A. H. 1993. A Field Guide to the<br />

Families <strong>and</strong> Genera of Woody <strong>Plant</strong>s of<br />

Northwest South America (Colombia,<br />

Ecuador, Peru), with Supplementary Notes<br />

on Herbaceous Taxa. Conservation<br />

International, Wash<strong>in</strong>gton, DC.<br />

GFC, <strong>and</strong> CIDA 1989. National Forestry Action<br />

Plan 1990-2000. Guyana Forestry<br />

Commission <strong>and</strong> Canadian International<br />

Development Agency, Georgetown,<br />

Guyana.<br />

Glasser, J. E. 1985. Successional trends on tree<br />

isl<strong>and</strong>s <strong>in</strong> the Okeefenokee Swamp as<br />

determ<strong>in</strong>ed by <strong>in</strong>terspecific association<br />

analysis. American Midl<strong>and</strong> Naturalist<br />

113:287-293.<br />

Gleason, H. A. 1927. Further views on the<br />

succession-concept. Ecology 8:299-326.<br />

Görts-van Rijn, A. R. A., editor. 1985 -. Flora<br />

of the Guianas. Royal Botanic Gardens,<br />

Kew; Richmond, Surrey, United K<strong>in</strong>gdom.<br />

Granville, J.-J. d. 1992. Les formations végétales


124<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

actuelles des zones côtiPre et subcôtiPre des<br />

Guyanes. Pages 231-249 <strong>in</strong> M. T. Proust,<br />

editor. Évolution des Littoraux de Guyane<br />

et de la Zone Caríbe Méridionale Pendant<br />

le Quaternaire. ORSTOM Editions, Paris.<br />

Gujja, B., <strong>and</strong> A. F<strong>in</strong>ger-Stich. 1996. What price<br />

prawn? Shrimp aquaculture’s impact <strong>in</strong><br />

Asia. Environment 38:12-15 & 33-39.<br />

Guyana Agency for Health, Science, Education,<br />

Environment <strong>and</strong> Food Policy. 1992.<br />

Guyana/UNEP Country Study of Biological<br />

Diversity. Coord<strong>in</strong>ated by the Guyana<br />

Agency for Health, Science, Education,<br />

Environment, <strong>and</strong> Food Policy, Lili<strong>and</strong>aal,<br />

Georgetown, Guyana.<br />

Hackney, C. T., <strong>and</strong> A. A. de la Cruz. 1981.<br />

Effects of fire on brackish marsh<br />

communities: management implications.<br />

Wetl<strong>and</strong>s 1:75-86.<br />

Hamilton, L. S., <strong>and</strong> S. C. Snedaker, editors.<br />

1984. H<strong>and</strong>book for Mangrove Area<br />

Management. United Nations Environment<br />

Programme <strong>and</strong> East-West Center,<br />

Environment <strong>and</strong> Policy Institute, Paris.<br />

Hammond, D. S., <strong>and</strong> H. t. Steege. 1998.<br />

Propensity for fires <strong>in</strong> Guianan Ra<strong>in</strong>forests.<br />

Conservation Biology 12:944-947.<br />

Hillis, T. L., <strong>and</strong> R. E. R<strong>and</strong>all, editors. 1968.<br />

The Ecology of the Forest/Savanna<br />

Boundary (Proceed<strong>in</strong>gs of the I.G.U. Humid<br />

Tropics Commission Symposium,<br />

Venezuela, 1964). Department of<br />

Geography, McGill University, Montreal,<br />

Canada.<br />

Huber, O., G. Gharbarran, <strong>and</strong> V. Funk 1995.<br />

Vegetation Map of Guyana (Prelim<strong>in</strong>ary<br />

Version). Centre for the Study of Biological<br />

Diversity, University of Guyana,<br />

Georgetown.<br />

Hungerford, R. D., W. H. Fr<strong>and</strong>sen, <strong>and</strong> K. C.<br />

Ryan. 1995. Ignition <strong>and</strong> burn<strong>in</strong>g<br />

characteristics of organic soils. Pages 78-<br />

91 <strong>in</strong> S. I. Cerulean, <strong>and</strong> R. T. Engstrom,<br />

editors. <strong>Fire</strong> <strong>in</strong> Wetl<strong>and</strong>s: A Management<br />

Perspective. Proceed<strong>in</strong>gs of the Tall<br />

Timbers <strong>Fire</strong> Ecology Conference, No. 19.<br />

Tall Timbers Research Station, Tallahassee,<br />

FL.<br />

IFFN. 2004. Regional South America Wildl<strong>and</strong><br />

<strong>Fire</strong> Network. International Forest <strong>Fire</strong><br />

News 31:38-47.<br />

Imbert, D., P. Labbé, <strong>and</strong> A. Rousteau. 1996.<br />

Hurricane damage <strong>and</strong> forest structure <strong>in</strong><br />

Guadeloupe, French West Indies. Journal<br />

of Tropical Ecology 12:663-680.<br />

Imbert, D., A. Rousteau, <strong>and</strong> P. Scherrer. 2000.<br />

Ecology of mangrove growth <strong>and</strong> recovery<br />

<strong>in</strong> the Lesser Antilles: State of knowledge<br />

<strong>and</strong> basis for restoration projects.<br />

Restoration Ecology 8:230-236.<br />

Jiménez, J. A., A. E. Lugo, <strong>and</strong> G. C<strong>in</strong>trón. 1985.<br />

Tree mortality <strong>in</strong> mangrove forests.<br />

Biotropica 17:177-185.<br />

Kathiresan, K., <strong>and</strong> B. L. B<strong>in</strong>gham. 2001.<br />

Biology of mangroves <strong>and</strong> mangrove<br />

ecosystems. Advances <strong>in</strong> Mar<strong>in</strong>e Biology<br />

40:81-251.<br />

Kauffman, J. B., <strong>and</strong> C. Uhl. 1990. Interactions<br />

of anthropogenic activities, fire, <strong>and</strong> ra<strong>in</strong><br />

forests <strong>in</strong> the Amazon bas<strong>in</strong>. Pages 117-134<br />

<strong>in</strong> J. G. Goldammer, editor. <strong>Fire</strong> <strong>in</strong> the<br />

Tropical Biota: Ecosystem Processes <strong>and</strong><br />

Global Challenges. Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong>.<br />

K<strong>in</strong>naird, M. F., <strong>and</strong> T. G. O’Brien. 1998.<br />

Ecological effects of wildfire on lowl<strong>and</strong><br />

ra<strong>in</strong>forest <strong>in</strong> Sumatra. Conservation<br />

Biology 12:954-956.<br />

Kirby, R. E., S. J. Lewis, <strong>and</strong> T. N. Sexton. 1988.<br />

<strong>Fire</strong> <strong>in</strong> North American wetl<strong>and</strong> ecosystems<br />

<strong>and</strong> fire-wildlife relations: An annotated<br />

bibliography. U.S. Fish <strong>and</strong> Wildlife<br />

Services, Biological Report 88:1-146.<br />

Kod<strong>and</strong>apani, N., M. A. Cochrane, <strong>and</strong> R.<br />

Sukumar. 2003. Conservation threat of<br />

<strong>in</strong>creas<strong>in</strong>g fire frequencies <strong>in</strong> the Western<br />

Ghats, India. Conservation Biology<br />

18:1553-1561.<br />

Kovacs, J. M. 1999. Assess<strong>in</strong>g mangrove use at<br />

the local scale. L<strong>and</strong>scape <strong>and</strong> Urban<br />

Plann<strong>in</strong>g 43.<br />

Kozlowski, T. T., <strong>and</strong> C. E. Ahlgren, editors.<br />

1974. <strong>Fire</strong> <strong>and</strong> Ecosystems. Academic<br />

Press, New York.<br />

Lacerda, L. D., <strong>and</strong> R. V. Mar<strong>in</strong>s. 2002. River<br />

damm<strong>in</strong>g <strong>and</strong> changes <strong>in</strong> mangrove<br />

distribution. ISME/GLOMIS Electronic<br />

Journal 2.<br />

Lanjouw, J., editor. 1964-. Flora of Sur<strong>in</strong>ame.<br />

E. J. Brill, Leiden.<br />

Lasser, T., editor. 1964-1992. Flora de<br />

Venezuela. Instituto Botánico, Caracas.<br />

Laurance, W. F. 2003. Slow burn: the <strong>in</strong>sidious


Contributions to the Study of Biological Diversity Vol. 3<br />

effects of surface fires on tropical forests.<br />

Trends <strong>in</strong> Ecology <strong>and</strong> Evolution 18:209-<br />

212.<br />

Lewis, R. R. 1990. Creation <strong>and</strong> restoration of<br />

coastal wetl<strong>and</strong>s <strong>in</strong> Puerto Rico <strong>and</strong> the<br />

U.S. Virg<strong>in</strong> Isl<strong>and</strong>s. Pages 103-123 <strong>in</strong> J. A.<br />

Kusler, <strong>and</strong> M. E. Kentula, editors. Wetl<strong>and</strong><br />

Creation <strong>and</strong> Restoration: The Status of the<br />

Science. Isl<strong>and</strong> Press, Wash<strong>in</strong>gton, DC.<br />

L<strong>in</strong>deman, J. C. 1953. The Vegetation of the<br />

Coastal Region of Sur<strong>in</strong>ame.<br />

Rijksuniversiteit te Utrecht, Utrecht,<br />

Netherl<strong>and</strong>s.<br />

L<strong>in</strong>deman, J. C., <strong>and</strong> S. A. Mori. 1989. The<br />

Guianas. In D. G. Campbell, editor. Floristic<br />

Inventory of Tropical Countries: <strong>Plant</strong><br />

Systematics, Collections, <strong>and</strong> Vegetation,<br />

plus Recommendations for the Future. New<br />

York Botanical Garden, New York.<br />

Lugo, A. E. 1980. Mangrove ecosystems:<br />

successional or steady state? Biotropica<br />

12:65-72.<br />

Lugo, A. E. 1995. <strong>Fire</strong> <strong>and</strong> wetl<strong>and</strong><br />

management. Pages 1-9 <strong>in</strong> S. I. Cerulean,<br />

<strong>and</strong> R. T. Engstrom, editors. <strong>Fire</strong> <strong>in</strong><br />

Wetl<strong>and</strong>s: A Management Perspective.<br />

Proceed<strong>in</strong>gs of the Tall Timbers <strong>Fire</strong><br />

Ecology Conference, No. 19. Tall Timbers<br />

Research Station, Tallahassee, FL.<br />

Lugo, A. E. 1997. Old growth mangrove forests<br />

<strong>in</strong> the United States. Conservation Biology<br />

11:11-20.<br />

Lugo, A. E. 2002. Conserv<strong>in</strong>g Lat<strong>in</strong> American<br />

<strong>and</strong> Caribbean mangroves: issues <strong>and</strong><br />

challenges. Madera y Bosques Número<br />

especial:5-25.<br />

Lugo, A. E., <strong>and</strong> G. C<strong>in</strong>trón. 1975. The<br />

mangroves of Puerto Rico <strong>and</strong> their<br />

management. Pages 825-846 <strong>in</strong> G. E.<br />

Walsh, S. C. Snedaker, <strong>and</strong> H. J. Teas,<br />

editors. Proceed<strong>in</strong>gs of the International<br />

Symposium on Biology <strong>and</strong> Management<br />

of Mangroves. Institute of Food <strong>and</strong><br />

Agricultural Sciences, University of<br />

Florida, Ga<strong>in</strong>esville.<br />

Lugo, A. E., <strong>and</strong> S. C. Snedaker. 1974. The<br />

ecology of mangroves. Annual Review of<br />

Ecology <strong>and</strong> Systematics 5:39-64.<br />

Marshall, N. 1994. Mangrove conservation <strong>in</strong><br />

relation to overall environmental<br />

considerations. Hydrobiologia 285:303-<br />

125<br />

309.<br />

Means, D. B. 1995. <strong>Fire</strong> ecology of the Guayana<br />

region, Northeastern South America. Pages<br />

61-77 <strong>in</strong> S. I. Cerulean, <strong>and</strong> R. T. Engstrom,<br />

editors. <strong>Fire</strong> <strong>in</strong> Wetl<strong>and</strong>s: A Management<br />

Perspective. Proceed<strong>in</strong>gs of the Tall<br />

Timbers <strong>Fire</strong> Ecology Conference, No. 19.<br />

Tall Timbers Research Station, Tallahassee,<br />

FL.<br />

Med<strong>in</strong>a, E., H. Fonseca, F. Barboza, <strong>and</strong> M.<br />

Francisco. 2001. Natural <strong>and</strong> man-<strong>in</strong>duced<br />

changes <strong>in</strong> a tidal channel mangrove system<br />

under tropical semiarid climate at the<br />

entrance of the Maracaibo lake (Western<br />

Venezuela). Wetl<strong>and</strong>s Ecology <strong>and</strong><br />

Management 9:233-243.<br />

Meggers, B. J. 1994. Archaeological evidence<br />

for the impact of Mega- NiZo events on<br />

Amazonia dur<strong>in</strong>g the past two millenia.<br />

Climatic Change 28:321-338.<br />

Merrill, T. L., editor. 1993. Guyana <strong>and</strong> Belize:<br />

country studies. Federal Research Division,<br />

U.S. Department of Army, Wash<strong>in</strong>gton, DC.<br />

Miao, S. L., P. V. McCormick, S. Newman, <strong>and</strong><br />

S. Rajagopalan. 2001. Interactive effects of<br />

seed availability, water depth, <strong>and</strong><br />

phosphorus enrichment on cattail<br />

colonization <strong>in</strong> an Everglades wetl<strong>and</strong>.<br />

Wetl<strong>and</strong>s Ecology <strong>and</strong> Management 9:39-<br />

47.<br />

Middleton, B. 1999. Wetl<strong>and</strong> Restoration, Flood<br />

Puls<strong>in</strong>g <strong>and</strong> <strong>Disturbance</strong> Dynamics. John<br />

Wiley & Sons, Inc., New York.<br />

Mitsch, W. J., <strong>and</strong> J. G. Gossel<strong>in</strong>k 1993.<br />

Wetl<strong>and</strong>s. Van Nostr<strong>and</strong> Rhe<strong>in</strong>hold, New<br />

York.<br />

Motzk<strong>in</strong>, G., W. A. Patterson, III, <strong>and</strong> N. E. R.<br />

Drake. 1993. <strong>Fire</strong> history <strong>and</strong> vegetation<br />

dynamics of a Chamaecyparis thyoides<br />

wetl<strong>and</strong> on Cape Cod. Journal of Ecology<br />

81:391-402.<br />

Mueller-Dombois, D., <strong>and</strong> J. G. Goldammer.<br />

1990. <strong>Fire</strong> <strong>in</strong> the tropical ecosystems <strong>and</strong><br />

global environmental change: an<br />

<strong>in</strong>troduction. Pages 1-10 <strong>in</strong> J. G.<br />

Goldammer, editor. <strong>Fire</strong> <strong>in</strong> the Tropical<br />

Biota: Ecosystem Processes <strong>and</strong> Global<br />

Challenges. Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong>.<br />

Myers, R. L. 1990. Palm swamps. Pages 267-<br />

286 <strong>in</strong> A. E. Lugo, M. M. Br<strong>in</strong>son, <strong>and</strong> S.<br />

Brown, editors. Ecosystems of the World


126<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

15, Forested Wetl<strong>and</strong>s. Elsevier,<br />

Amsterdam.<br />

Newman, S., J. B. Grace, <strong>and</strong> J. W. Koebel.<br />

1996. Effects of nutrients <strong>and</strong> hydroperiod<br />

on Typha, Cladium, <strong>and</strong> Eleocharis:<br />

Implications for Everglades restoration.<br />

Ecological Applications 6:774-783.<br />

Nickerson, D. J. 1999. Trade-offs of mangrove<br />

area development <strong>in</strong> the Philipp<strong>in</strong>es.<br />

Ecological Economics 28:279-298.<br />

Noble, I. R., <strong>and</strong> R. O. Slatyer. 1980. The use of<br />

vital attributes to predict successional<br />

changes <strong>in</strong> plant communities subject to<br />

recurrent disturbances. Vegetatio 43:5-21.<br />

Noble, I. R., <strong>and</strong> R. O. Slatyer. 1981. Concepts<br />

<strong>and</strong> models of successional <strong>in</strong> vascular plant<br />

communities subject to recurrent fire. Pages<br />

311-335 <strong>in</strong> A. M. Gill, R. H. Groves, <strong>and</strong> I.<br />

R. Noble, editors. <strong>Fire</strong> <strong>and</strong> the Australian<br />

Biota. Australian Academy of Science,<br />

Canberra.<br />

Nyman, J. A., <strong>and</strong> R. H. Chabreck. 1995. <strong>Fire</strong><br />

<strong>in</strong> coastal marshes: history <strong>and</strong> recent<br />

concerns. Pages 134-141 <strong>in</strong> S. I. Cerulean,<br />

<strong>and</strong> R. T. Engstrom, editors. <strong>Fire</strong> <strong>in</strong><br />

Wetl<strong>and</strong>s: A Management Perspective.<br />

Proceed<strong>in</strong>gs of the Tall Timbers <strong>Fire</strong><br />

Ecology Conference, No. 19. Tall Timbers<br />

Research Station, Tallahassee, FL.<br />

Odum, W. E., C. C. McIvor, <strong>and</strong> T. J. Smith, III.<br />

1982. The Ecology of the Mangroves of<br />

South Florida: A <strong>Community</strong> Profile. U.S.<br />

Fish <strong>and</strong> Wildlife Service, Wash<strong>in</strong>gton, DC.<br />

Ong, J.-E. 1995. The ecology of mangrove<br />

conservation & management.<br />

Hydrobiologia 295:343-351.<br />

Pernetta, J. C. 1993. Mangrove Forests, Climate<br />

Change <strong>and</strong> Sea Level Rise: Hydrological<br />

Influences on <strong>Community</strong> <strong>Structure</strong> <strong>and</strong><br />

Survival, with Examples from the Indo-<br />

West Pacific. IUCN, Gl<strong>and</strong>, Switzerl<strong>and</strong>.<br />

Pons, L. J., <strong>and</strong> J. L. Fislier. 1991. Susta<strong>in</strong>able<br />

development of mangroves. L<strong>and</strong>scape <strong>and</strong><br />

Urban Plann<strong>in</strong>g 20:103-109.<br />

Pons, T. L., <strong>and</strong> L. J. Pons. 1975. Mangrove<br />

vegetation <strong>and</strong> soils along a more or less<br />

stationary part of the coast of Sur<strong>in</strong>am,<br />

South America. Pages 548-560 <strong>in</strong> G. E.<br />

Walsh, S. C. Snedaker, <strong>and</strong> H. J. Teas,<br />

editors. Proceed<strong>in</strong>gs of the International<br />

Symposium on Biology <strong>and</strong> Management<br />

of Mangroves. Institute of Food <strong>and</strong><br />

Agricultural Sciences, University of<br />

Florida, Ga<strong>in</strong>esville.<br />

Pulle, A. A., editor. 1932-. Flora of Sur<strong>in</strong>ame.<br />

Kon<strong>in</strong>klijke Vereenig<strong>in</strong>g Indisch Instituut,<br />

Amsterdam.<br />

Qu<strong>in</strong>n, W. H. 1992. A study of Southern<br />

Oscillation-related climatic activity for<br />

A.D. 622-1900 <strong>in</strong>corporat<strong>in</strong>g Nile River<br />

flood data. Pages 119-149 <strong>in</strong> H. F. Diaz,<br />

<strong>and</strong> V. Markgraf, editors. El NiZo Historical<br />

<strong>and</strong> Paleoclimatic Aspects of the Southern<br />

Oscillation. Cambridge University Press,<br />

Cambridge.<br />

Ramdass, I., J. S<strong>in</strong>gh, M. Tamessar, <strong>and</strong> D.<br />

Gopaul 1997. National Activity on the use<br />

of Biodiversity, Guyana. UNDP, The Office<br />

of the President, <strong>and</strong> The University of<br />

Guyana, Georgetown.<br />

Richardson, B. C. 1987. Men, water, <strong>and</strong><br />

mudflats <strong>in</strong> coastal Guyana. Resource<br />

Management <strong>and</strong> Optimization 5:213-236.<br />

Rittibhonbhun, N., P. Chansanoh, S. Tongrak,<br />

<strong>and</strong> R. Suwannatchote. 1993. <strong>Community</strong>based<br />

mangrove rehabilitation <strong>and</strong><br />

management: a case study <strong>in</strong> Sikao district,<br />

Trang Prov<strong>in</strong>ce, Southern Thail<strong>and</strong>.<br />

Regional Development Dialogue 14:111-<br />

122.<br />

Robadue, D., Jr. 1995. Eight Years <strong>in</strong> Ecuador:<br />

The Road to Integrated Coastal<br />

Management. Coastal Resources Center,<br />

University of Rhode Isl<strong>and</strong>.<br />

Roberts, S. J. 2000. Tropical fire ecology.<br />

Progress <strong>in</strong> Physical Geography 24:281-<br />

288.<br />

Rub<strong>in</strong>, J. A., C. Gordoni, <strong>and</strong> J. K. Amatekpor.<br />

1998. Causes <strong>and</strong> consequences of<br />

mangrove deforestation <strong>in</strong> the Volta estuary,<br />

Ghana: Some recommendations for<br />

ecosystem rehabilitation. Mar<strong>in</strong>e Pollution<br />

Bullet<strong>in</strong> 37:441-449.<br />

Rützler, K., <strong>and</strong> C. Feller. 1987. Mangrove<br />

swamp communities. Oceanus 30:16-24.<br />

Rützler, K., <strong>and</strong> I. C. Feller. 1996. Caribbean<br />

mangrove swamps. Scientific American<br />

274:74-79.<br />

Saenger, P., E. J. Hegerl, <strong>and</strong> J. D. S. Davie.<br />

1983. Global status of mangrove<br />

ecosystems. The Environmentalist, IUCN,<br />

Gl<strong>and</strong>, Switzerl<strong>and</strong> 3:1-88.


Contributions to the Study of Biological Diversity Vol. 3<br />

Saldarriaga, J. G., <strong>and</strong> D. C. West. 1986.<br />

Holocene fires <strong>in</strong> the Northern Amazon<br />

Bas<strong>in</strong>. Quaternary Research 26:358-366.<br />

Schomburgk, M. R. 1922. Travels <strong>in</strong> British<br />

Guiana Dur<strong>in</strong>g the Years 1840-1844.<br />

Translated by Walter Edmund Roth. Daily<br />

Chronicle, Georgetown, Guyana.<br />

Sherman, R. E., T. J. Fahey, <strong>and</strong> J. J. Battles.<br />

2000. Small-scale disturbance <strong>and</strong><br />

regeneration dynamics <strong>in</strong> a neotropical<br />

mangrove forest. Journal of Ecology<br />

88:165-178.<br />

S<strong>in</strong>ghroy, V. 1996. Interpretation of SAR images<br />

for coastal zone mapp<strong>in</strong>g <strong>in</strong> Guyana.<br />

Canadian Journal of Remote Sens<strong>in</strong>g<br />

22:317-328.<br />

Smith, N., S. A. Mori, A. Henderson, D. W.<br />

Stevenson, <strong>and</strong> S. V. Heald, editors. 2004.<br />

Flower<strong>in</strong>g <strong>Plant</strong>s of the Neotropics.<br />

Pr<strong>in</strong>ceton University Press, Pr<strong>in</strong>ceton.<br />

Smith, S. M., <strong>and</strong> S. Newman. 2001. Growth of<br />

southern cattail (Typha dom<strong>in</strong>gensis Pers.)<br />

seedl<strong>in</strong>gs <strong>in</strong> response to fire-related soil<br />

transformations <strong>in</strong> the northern Florida<br />

Everglades. Wetl<strong>and</strong>s 21:363-369.<br />

Smith, T. J., III, M. B. Robblee, H. R. Wanless,<br />

<strong>and</strong> T. W. Doyle. 1994. Mangroves,<br />

hurricanes, <strong>and</strong> lightn<strong>in</strong>g strikes:<br />

assessment of Hurricane Andrew suggests<br />

an <strong>in</strong>teraction across two differ<strong>in</strong>g scales.<br />

Bioscience 44:256-262.<br />

Snedaker, S. C. 1986. Traditional uses of South<br />

American mangrove resources <strong>and</strong> the<br />

socio-economic effect of ecosystem<br />

changes. Pages 104-112 <strong>in</strong> P. Kunstader, E.<br />

C. F. Bird, <strong>and</strong> S. Sabhasri, editors. Man <strong>in</strong><br />

the Mangroves: The Socio-economic<br />

Situation of Human Settlements <strong>in</strong><br />

Mangrove Forests. United Nations<br />

University Press, Tokyo.<br />

Spald<strong>in</strong>g, M., F. Blasco, <strong>and</strong> C. Field 1997.<br />

World Mangrove Atlas. International<br />

Society for Mangrove Ecosystems,<br />

Ok<strong>in</strong>awa, Japan.<br />

Stevenson, N. J. 1997. Disused shrimp ponds:<br />

Options for redevelopment of mangrove.<br />

Coastal Management 25:425-435.<br />

Steyermark, J. A., P. E. Berry, <strong>and</strong> B. K. Holst,<br />

editors. 1995 - 2005. Flora of the<br />

Venezuelan Guayana. Missouri Botanical<br />

Garden, St. Louis.<br />

127<br />

Thom, B. G. 1975. Mangrove ecology from a<br />

geomorphic viewpo<strong>in</strong>t. Pages 469-481 <strong>in</strong><br />

G. E. Walsh, S. C. Snedaker, <strong>and</strong> H. J. Teas,<br />

editors. Proceed<strong>in</strong>gs of the International<br />

Symposium on Biology <strong>and</strong> Management<br />

of Mangroves. Institute of Food <strong>and</strong><br />

Agricultural Sciences, University of<br />

Florida, Ga<strong>in</strong>esville.<br />

Timm<strong>in</strong>s, S. M. 1992. Wetl<strong>and</strong> recovery after<br />

fire: Eweburn Bog, Te Anau, New Zeal<strong>and</strong>.<br />

New Zeal<strong>and</strong> Journal of Botany 30:383-<br />

399.<br />

Toml<strong>in</strong>son, P. B. 1986. The Botany of<br />

Mangroves. Cambridge University Press.<br />

Trenberth, K. E. 1999. The extreme weather<br />

events of 1997 <strong>and</strong> 1998. Consequences<br />

5:3-15.<br />

Twilley, R. R. 1989. Impacts of shrimp<br />

mariculture practices on the ecology of<br />

coastal ecosystems <strong>in</strong> Ecuador. Pages 91-<br />

120 <strong>in</strong> S. Olsen, <strong>and</strong> L. Arriaga, editors.<br />

Establish<strong>in</strong>g a Susta<strong>in</strong>able Shrimp<br />

Mariculture Industry <strong>in</strong> Ecuador. 276 pp.<br />

Coastal Resources Center, University of<br />

Rhode Isl<strong>and</strong>, Providence.<br />

Uhl, C. 1998. Perspectives on wildfire <strong>in</strong> the<br />

humid tropics. Conservation Biology<br />

12:942-943.<br />

Uhl, C., <strong>and</strong> R. Buschbacher. 1985. A disturb<strong>in</strong>g<br />

synergism between cattle ranch burn<strong>in</strong>g<br />

practices <strong>and</strong> selective tree harvest<strong>in</strong>g <strong>in</strong> the<br />

Eastern Amazon. Biotropica 17:265-268.<br />

Uhl, C., <strong>and</strong> J. B. Kauffman. 1990.<br />

Deforestation, fire susceptibility, <strong>and</strong><br />

potential tree responses to fire <strong>in</strong> the Eastern<br />

Amazon. Ecology 71:437-449.<br />

Valiela, I., J. L. Bowen, <strong>and</strong> J. K. York. 2001.<br />

Mangrove forests: One of the world’s<br />

threatened major tropical environments.<br />

BioScience 51:807-815.<br />

van Andel, T. R. 2000. Non-Timber Forest<br />

Products of the North-West District of<br />

Guyana, Part II: A Field Guide. Tropenbos<br />

Guyana Series 8B. Tropenbos-Guyana<br />

Programme, Georgetown, Guyana.<br />

Vann, J. H. 1959. The Physical Geography of<br />

the Lower Coastal Pla<strong>in</strong> of the Guiana<br />

Coast. Louisiana State University, Baton<br />

Rouge.<br />

Vann, J. H. 1969. L<strong>and</strong>forms, Vegetation, <strong>and</strong><br />

Sea Level Change along the Guiana Coast


128<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

of South America. Office of Naval<br />

Research, Wash<strong>in</strong>gton, DC.<br />

Vogl, R. J. 1975. <strong>Fire</strong>: A destructive menace or<br />

a natural process? <strong>Recovery</strong> <strong>and</strong><br />

Restoration of Damaged Ecosystems.<br />

Proceed<strong>in</strong>gs of the International<br />

Symposium on the <strong>Recovery</strong> of Damaged<br />

Ecosystems, held at Virg<strong>in</strong>ia Polytechnic<br />

Institute <strong>and</strong> State University, Blacksburg,<br />

Virg<strong>in</strong>ia, on March 23-25, 1975. University<br />

Press of Virg<strong>in</strong>ia, Charlottesville.<br />

Wade, D., J. Ewell, <strong>and</strong> R. Hofstetter. 1980. <strong>Fire</strong><br />

<strong>in</strong> South Florida Ecosystems. Page 125.<br />

Southeast For. Exp. Stn., U.S. Department<br />

of Agriculture Forest Service, Asheville,<br />

NC.<br />

We<strong>in</strong>stock, J. A. 1994. Rhizophora mangrove<br />

agroforestry. Economic Botany 48:210-<br />

213.<br />

West, R. C. 1977. Tidal salt-marsh <strong>and</strong> mangal<br />

formations of Middle <strong>and</strong> South America.<br />

Pages 193-213 <strong>in</strong> V. J. Chapman, editor.<br />

Ecosystems of the World 1, Wet Coastal<br />

Ecosystems. Elsevier, Amsterdam.<br />

Whelan, R. J. 1995. The Ecology of <strong>Fire</strong>.<br />

Cambridge University Press.<br />

WMO. 1999. The 1997-1998 El NiZo Event: A<br />

Scientific <strong>and</strong> Technical Retrospective.<br />

Page 96. World Meteorological<br />

Organization, Geneva.<br />

Wolanski, E. 1995. Transport of sediment <strong>in</strong><br />

mangrove swamps. Hydrobiologia 295:31-<br />

42.<br />

Wolanski, E., S. Spagnol, S. Thomas, K. Moore,<br />

D. M. Alongi, L. Trott, <strong>and</strong> A. Davidson.<br />

2000. Modell<strong>in</strong>g <strong>and</strong> visualiz<strong>in</strong>g the fate of<br />

shrimp pond effluent <strong>in</strong> a mangrove-fr<strong>in</strong>ged<br />

tidal creek. Estuar<strong>in</strong>e, Coastal, <strong>and</strong> Shelf<br />

Science 50:85-97.<br />

Woodroffe, C. 1992. Mangrove sediments <strong>and</strong><br />

geomorphology. In A. I. Robertson, <strong>and</strong> D.<br />

M. Alongi, editors. Tropical Mangrove<br />

Ecosystems. American Geophysical Union,<br />

Wash<strong>in</strong>gton, DC.


Contributions to the Study of Biological Diversity Vol. 3<br />

APPENDIX 2.<br />

PLANT SPECIES LISTED FOR THE WAINI PENINSULA,<br />

WITH SYNONYMY<br />

CHLOROPHYTES (Green Algae)<br />

Cladophoraceae<br />

Rhizoclonium africanum Kütz<strong>in</strong>g<br />

PTERIDOPHYTES<br />

Blechnaceae<br />

Blechnum serrulatum Rich.<br />

Lygodiaceae<br />

Lygodium venustum Sw.<br />

Ole<strong>and</strong>raceae<br />

Nephrolepis biserrata (Sw.) Schott<br />

Nephrolepis rivularis (Vahl) Mett. ex Krug<br />

Parkeriaceae<br />

Ceratopteris thalictroides (L.) Brongn.<br />

Polypodiaceae<br />

Campyloneurum phyllitidis (L.) C. Presl<br />

Pteridaceae<br />

Acrostichum aureum L.<br />

Acrostichum danaeifolium Langsd. & Fisch.<br />

Pteris pungens Willd.<br />

DICOTILEDONEAE<br />

Aizoaceae<br />

Sesuvium portulacastrum (L.) L.<br />

Amaranthaceae<br />

Alternanthera sessilis (L.) R. Br. ex DC.<br />

Amaranthus australis (A. Gray) J.D. Sauer<br />

Amaranthus dubius Mart. ex Thell.<br />

Blutaparon vermiculare (L.) Mears<br />

Anacardiaceae<br />

Spondias momb<strong>in</strong> L.<br />

Annonaceae<br />

Annona glabra L.<br />

Apocynaceae<br />

Allam<strong>and</strong>a cathartica L.<br />

Malouetia tamaquar<strong>in</strong>a (Aubl.) A. DC.<br />

Rhabdadenia biflora (Jacq.) Müll. Arg.<br />

Aristolochiaceae<br />

Aristolochia trilobata L.<br />

Asclepiadaceae<br />

Sarcostemma clausum (Jacq.) Schult.<br />

Asteraceae<br />

Bidens alba (L.) DC.<br />

Cyanthillium c<strong>in</strong>ereum (L.) H. Rob.<br />

Eclipta prostrata (L.) L.<br />

Mikania micrantha Kunth<br />

Pluchea odorata (L.) Cass.<br />

Avicenniaceae<br />

Avicennia germ<strong>in</strong>ans (L.) Stearn<br />

Bignoniaceae<br />

Cydista aequ<strong>in</strong>octialis (L.) Miers<br />

Cactaceae<br />

Epiphyllum phyllanthus (L.) Haw.<br />

Rhipsalis baccifera (J.S. Muell.) Stearn<br />

Caricaceae<br />

Carica papaya L.<br />

Cecropiaceae<br />

Coussapoa asperifolia Trécul<br />

Ceratophyllaceae<br />

Ceratophyllum muricatum Cham.<br />

Clusiaceae<br />

Clusia palmicida Rich. ex Planch. & Triana<br />

Combretaceae<br />

Conocarpus erectus L.<br />

Laguncularia racemosa (L.) C.F. Gaertn.<br />

Term<strong>in</strong>alia catappa L.<br />

Convolvulaceae<br />

Ipomoea pes-caprae (L.) R. Br.<br />

Ipomoea tiliacea (Willd.) Choisy<br />

129


130<br />

Ipomoea violacea L.<br />

Merremia cissoides (Lam.) Hallier f.<br />

Merremia umbellata (L.) Hallier f.<br />

Cucurbitaceae<br />

Melothria pendula L.<br />

Cuscutaceae<br />

Cuscuta umbellata Kunth<br />

Euphorbiaceae<br />

Euphorbia hirta L.<br />

Manihot esculenta Crantz (cultivated)<br />

Fabaceae-Caesal.<br />

Caesalp<strong>in</strong>ia bonduc (L.) Roxb.<br />

Fabaceae-Mimos.<br />

Entada polystachya (L.) DC.<br />

Inga <strong>in</strong>goides (Rich.) Willd.<br />

Zygia latifolia (L.) Fawc. & Rendle<br />

Fabaceae-Papil.<br />

Aeschynomene sensitiva Sw.<br />

Canavalia rosea (Sw.) DC.<br />

Machaerium lunatum (L. f.) Ducke<br />

Pterocarpus offic<strong>in</strong>alis Jacq.<br />

Sesbania sericea (Willd.) DC.<br />

Vigna luteola (Jacq.) Benth.<br />

Hippocrateaceae<br />

Hippocratea volubilis L.<br />

Lauraceae<br />

Cassytha filiformis L.<br />

Malpighiaceae<br />

Stigmaphyllon bannisterioides (L.) C.E.<br />

Anderson<br />

Malvaceae<br />

Hibiscus bifurcatus Cav.<br />

Talipariti tiliaceum (L.) Fryxell<br />

Thespesia populnea (L.) Sol. ex CorrLa<br />

Moraceae<br />

Ficus amazonica (Miq.) Miq.<br />

Ficus eximia Schott<br />

Ficus maxima Mill.<br />

Myrtaceae<br />

Calyptranthes sp.<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Psidium guajava L.<br />

Nyctag<strong>in</strong>aceae<br />

Boerhavia diffusa L.<br />

Onagraceae<br />

Ludwigia aff<strong>in</strong>is (DC.) H. Hara<br />

Ludwigia leptocarpa (Nutt.) H. Hara<br />

Passifloraceae<br />

Passiflora foetida L.<br />

Piperaceae<br />

Peperomia glabella (Sw.) A. Dietr.<br />

Polygalaceae<br />

Securidaca diversifolia (L.) S.F. Blake<br />

Rhizophoraceae<br />

Cassipourea guianensis Aubl.<br />

Rhizophora mangle L.<br />

Rhizophora racemosa G. Mey.<br />

Rubiaceae<br />

Mor<strong>in</strong>da citrifolia L.<br />

Sap<strong>in</strong>daceae<br />

Paull<strong>in</strong>ia p<strong>in</strong>nata L.<br />

Scrophulariaceae<br />

Capraria biflora L.<br />

Solanaceae<br />

Physalis angulata L.<br />

Solanum stramoniifolium Jacq.<br />

Vitaceae<br />

Cissus verticillata (L.) Nicolson & C.E. Jarvis<br />

MONOCOTILEDONEAE<br />

Araceae<br />

Anthurium gracile (Rudge) Schott<br />

Monstera adansonii Schott<br />

Montrichardia l<strong>in</strong>ifera (Arruda) Schott<br />

Philodendron acutatum Schott<br />

Syngonium podophyllum Schott<br />

Arecaceae<br />

Cocos nucifera L. (cultivated)<br />

Desmoncus orthacanthos Mart.


Euterpe oleracea Mart.<br />

Nypa fruticans Wurmb.<br />

Roystonea oleracea (Jacq.) O.F. Cook<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Bromeliaceae<br />

Aechmea nudicaulis (L.) Griseb.<br />

Bromelia plumieri (E. Morren) L.B. Sm.<br />

Guzmania l<strong>in</strong>gulata (L.) Mez<br />

Costaceae<br />

Costus arabicus L.<br />

Cyperaceae<br />

Cyperus ligularis L.<br />

Cyperus odoratus L.<br />

Cyperus polystachyos Rottb.<br />

Eleocharis mutata (L.) Roem. & Schult.<br />

Fimbristylis cymosa R. Br.<br />

Dioscoreaceae<br />

Dioscorea polygonoides Humb. & Bonpl. ex<br />

Willd.<br />

Heliconiaceae<br />

Heliconia psittacorum L.f.<br />

Hydrocharitaceae<br />

Limnobium laevigatum (Humb. & Bonpl. ex<br />

Willd.) He<strong>in</strong>e<br />

Lemnaceae<br />

Lemna aequ<strong>in</strong>octialis Welw.<br />

Liliaceae<br />

Cr<strong>in</strong>um erubescens L. f. ex Sol.<br />

Orchidaceae<br />

Dimer<strong>and</strong>ra elegans ? (H. Focke) Siegerist<br />

Epidendrum ciliare L.<br />

Prosthechea aemula (L<strong>in</strong>dl.) W.E. Higg<strong>in</strong>s<br />

Trichocentrum lanceanum (L<strong>in</strong>dl.) M.W.<br />

Chase & N.H. Williams<br />

Poaceae<br />

Ech<strong>in</strong>ochloa polystachya (Kunth) Hitchc.<br />

Leptochloa scabra Nees<br />

Paspalum distichum L.<br />

Sporobolus virg<strong>in</strong>icus (L.) Kunth<br />

Smilacaceae<br />

Smilax cumanensis Humb. & Bonpl. ex Willd.<br />

Typhaceae<br />

Typha dom<strong>in</strong>gensis Pers.<br />

Z<strong>in</strong>giberaceae<br />

Renealmia alp<strong>in</strong>ia (Rottb.) Maas<br />

SYNONYMY<br />

131<br />

Achyranthes sessilis (L.) Desf. ex Steud. =<br />

Alternanthera sessilis<br />

Acnida australis A. Gray = Amaranthus<br />

australis<br />

Acnida cuspidata Bertero ex Spreng. =<br />

Amaranthus australis<br />

Acrostichum gu<strong>in</strong>eense Gaudich. = Acrostichum<br />

aureum<br />

Acrostichum lomarioides (Jenman) Jenman<br />

[nom. illeg.] = Acrostichum danaeifolium<br />

Acrostichum thalictroides L. = Ceratopteris<br />

thalictroides<br />

Agrostis littoralis Lam. = Sporobolus virg<strong>in</strong>icus<br />

Agrostis virg<strong>in</strong>ica L. = Sporobolus virg<strong>in</strong>icus<br />

Alp<strong>in</strong>ia tubulata Ker Gawl. = Renealmia alp<strong>in</strong>ia<br />

Annona palustris L. = Annona glabra<br />

Anthurium scolopendr<strong>in</strong>um (Ham.) Kunth =<br />

Anthurium gracile<br />

Arum l<strong>in</strong>iferum Arruda = Montrichardia l<strong>in</strong>ifera<br />

Asclepias clausa Jacq. = Sarcostemma clausum<br />

Aspidium biserratum Sw. = Nephrolepis<br />

biserrata<br />

Aulizia ciliaris (L.) Salisb. = Epidendrum ciliare<br />

Avicennia nitida Jacq. = Avicennia germ<strong>in</strong>ans<br />

Avicennia tomentosa Jacq. = Avicennia<br />

germ<strong>in</strong>ans<br />

Banisteria ovata Cav. = Stigmaphyllon<br />

bannisterioides<br />

Bidens pilosa forma radiata Sch. Bip. = Bidens<br />

alba<br />

Bignonia aequ<strong>in</strong>octialis L. = Cydista<br />

aequ<strong>in</strong>octialis<br />

Bignonia picta Kunth = Cydista aequ<strong>in</strong>octialis<br />

Bihai silvestris Gleason = Heliconia psittacorum<br />

Blechnum <strong>in</strong>dicum auct. non Burm. f. =<br />

Blechnum serrulatum<br />

Boerhavia paniculata Rich. = Boerhavia diffusa<br />

Boerhavia sur<strong>in</strong>amensis Miq. = Boerhavia<br />

diffusa<br />

Brachypterys borealis A. Juss. = Stigmaphyllon<br />

bannisterioides<br />

Bromelia karatas L. = Bromelia plumieri


132<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Bryonia guadalupensis Spreng. = Melothria<br />

pendula<br />

Cacalia c<strong>in</strong>erea (L.) Kuntze = Cyanthillium<br />

c<strong>in</strong>ereum<br />

Cactus caripensis Kunth = Rhipsalis baccifera<br />

Cactus phyllanthus L. = Epiphyllum phyllanthus<br />

Calli<strong>and</strong>ra latifolia (L.) Griseb. = Zygia latifolia<br />

Calonyction tuba (Schltdl.) Colla = Ipomoea<br />

violacea<br />

Cameraria tamaquar<strong>in</strong>a Aubl. = Malouetia<br />

tamaquar<strong>in</strong>a<br />

Campyloneurum costatum (Kunze) C. Presl =<br />

Campyloneurum phyllitidis<br />

Canavalia maritima Thouars = Canavalia rosea<br />

Canavalia obtusifolia DC. = Canavalia rosea<br />

Capraria hirsuta Kunth = Capraria biflora<br />

Caraguata l<strong>in</strong>gulata (L.) L<strong>in</strong>dl. = Guzmania<br />

l<strong>in</strong>gulata<br />

Caraguata splendens Planch. = Guzmania<br />

l<strong>in</strong>gulata<br />

Caraxeron vermicularis (L.) Raf. = Blutaparon<br />

vermiculare<br />

Carica sativa Tussac = Carica papaya<br />

Cassia paramariboensis Miq. = Aeschynomene<br />

sensitiva<br />

Cassipourea belizensis Lundell = Cassipourea<br />

guianensis<br />

Cassipourea elliptica (Sw.) Poir. = Cassipourea<br />

guianensis<br />

Cassipourea macrodonta St<strong>and</strong>l. = Cassipourea<br />

guianensis<br />

Cassipourea podantha St<strong>and</strong>l. = Cassipourea<br />

guianensis<br />

Cassytha americana Nees = Cassytha filiformis<br />

Cassytha baccifera Sol. ex J.S. Muell. =<br />

Rhipsalis baccifera<br />

Ceratophyllum demersum L. var. cristatum<br />

(Spruce) K. Schum. = Ceratophyllum<br />

muricatum<br />

Ceratophyllum lleranae Fassett =<br />

Ceratophyllum muricatum<br />

Cereus caripensis (Kunth) DC. = Rhipsalis<br />

baccifera<br />

Chamaesyce hirta (L.) Millsp. = Euphorbia<br />

hirta<br />

Chrysodium aureum (L.) Mett. = Acrostichum<br />

aureum<br />

Chrysodium lomarioides Jenman = Acrostichum<br />

danaeifolium<br />

Cissus cordifolia L. = Cissus verticillata<br />

Cissus sicyoides L. = Cissus verticillata<br />

Conocarpus racemosa L. = Laguncularia<br />

racemosa<br />

Convolvulus caracassanus Roem. & Schult. =<br />

Merremia umbellata<br />

Convolvulus cissoides Lam. = Merremia<br />

cissoides<br />

Convolvulus pes-caprae L. = Ipomoea pescaprae<br />

Convolvulus riparius Kunth = Merremia<br />

cissoides<br />

Convolvulus tiliaceus Willd. = Ipomoea tiliacea<br />

Convolvulus umbellatus L. = Merremia<br />

umbellata<br />

Conyza c<strong>in</strong>erea L. = Cyanthillium c<strong>in</strong>ereum<br />

Conyza cortesii Kunth = Pluchea odorata<br />

Conyza odorata L. = Pluchea odorata<br />

Coreopsis alba L. = Bidens alba<br />

Coronilla sericea Willd. = Sesbania sericea<br />

Costus discolor Roscoe = Costus arabicus<br />

Costus niveus G. Mey. = Costus arabicus<br />

Costus ramosus Woodson = Costus arabicus<br />

Cr<strong>in</strong>um commelyni Jacq. = Cr<strong>in</strong>um erubescens<br />

Cr<strong>in</strong>um guianense M. Roem. = Cr<strong>in</strong>um<br />

erubescens<br />

Cr<strong>in</strong>um lancei Herbert ex Sweet = Cr<strong>in</strong>um<br />

erubescens<br />

Cr<strong>in</strong>um l<strong>in</strong>dleyanum Schult. f. ex Seub. =<br />

Cr<strong>in</strong>um erubescens<br />

Cynanchum clausum (Jacq.) Jacq. =<br />

Sarcostemma clausum<br />

Cyperus eggersii Boeck. = Cyperus odoratus<br />

Cyperus macrocephalus Liebm. = Cyperus<br />

odoratus<br />

Desmoncus apureanus L.H. Bailey =<br />

Desmoncus orthacanthos<br />

Desmoncus horridus Splitg. ex Mart. =<br />

Desmoncus orthacanthos<br />

Desmoncus multijugus Steyerm. = Desmoncus<br />

orthacanthos<br />

Desmoncus palustris Trail = Desmoncus<br />

orthacanthos<br />

Desmoncus velezii L.H. Bailey & H.E. Moore<br />

= Desmoncus orthacanthos<br />

Digitaria disticha (L.) Fiori & Paol. = Paspalum<br />

distichum<br />

Digitaria paspalodes Michx. = Paspalum<br />

distichum<br />

Dimer<strong>and</strong>ra isthmii Schltr. = Dimer<strong>and</strong>ra<br />

elegans ?<br />

Dioscorea kegeliana Griseb. = Dioscorea<br />

polygonoides


Contributions to the Study of Biological Diversity Vol. 3<br />

Diplachne scabra (Nees) Nicora = Leptochloa<br />

scabra<br />

Dolichos luteolus Jacq. = Vigna luteola<br />

Dolichos maritimus Aubl. = Canavalia rosea<br />

Dolichos roseus Sw. = Canavalia rosea<br />

Drepanocarpus lunatus (L. f.) G. Mey. =<br />

Machaerium lunatum<br />

Ech<strong>in</strong>ochloa polystachya var. spectabilis (Nees<br />

ex Tr<strong>in</strong>.) Mart. Crov. = Ech<strong>in</strong>ochloa<br />

polystachya<br />

Ech<strong>in</strong>ochloa spectabilis (Nees ex Tr<strong>in</strong>.) L<strong>in</strong>k =<br />

Ech<strong>in</strong>ochloa polystachya<br />

Echites biflora Jacq. = Rhabdadenia biflora<br />

Eclipta alba (L.) Hassk. = Eclipta prostrata<br />

Elsota diversifolia (L.) S.F. Blake = Securidaca<br />

diversifolia<br />

Encyclia aemula (L<strong>in</strong>dl.) Carnevali & I.<br />

Ramírez = Prosthechea aemula<br />

Encyclia ciliaris (L.) Lemée = Epidendrum<br />

ciliare<br />

Encyclia fragrans (Sw.) Lemée var. aemula<br />

(L<strong>in</strong>dl.) Dressler & G.E. Pollard =<br />

Prosthechea aemula<br />

Entadopsis polystachya (L.) Britton = Entada<br />

polystachya<br />

Epidendrum aemulum L<strong>in</strong>dl. = Prosthechea<br />

aemula<br />

Epidendrum fragans auct. non Sw. 1788 =<br />

Prosthechea aemula<br />

Epidendrum fragans Sw. var. aemulum (L<strong>in</strong>dl.)<br />

Barb. Rodr. = Prosthechea aemula<br />

Epiphyllum hookeri Haw. = Epiphyllum<br />

phyllanthus<br />

Epiphyllum phyllanthus (L.) Haw. var. hookeri<br />

(Haw.) Kimnach = Epiphyllum phyllanthus<br />

Eupatorium denticulatum Vahl = Mikania<br />

micrantha<br />

Euterpe badiocarpa Barb. Rodr. = Euterpe<br />

oleracea<br />

Euterpe beardii Bailey = Euterpe oleracea<br />

Euterpe edulis auct. = Euterpe oleracea<br />

Feuilleea <strong>in</strong>goides (Rich.) Kuntze = Inga<br />

<strong>in</strong>goides<br />

Ficus angustifolia (Miq.) Miq. = Ficus<br />

amazonica<br />

Ficus expansa Pittier = Ficus eximia<br />

Ficus foveata Pittier = Ficus eximia<br />

Ficus foveolata Pittier = Ficus eximia<br />

Ficus gl<strong>and</strong>ulosa Pittier = Ficus eximia<br />

Ficus glaucescens (Liebm.) Miq. = Ficus<br />

maxima<br />

133<br />

Ficus guanarensis Pittier = Ficus eximia<br />

Ficus parkeri Miq. = Ficus maxima<br />

Ficus radula Humb. & Bonpl. ex Willd. = Ficus<br />

maxima<br />

Ficus sur<strong>in</strong>amensis Miq. = Ficus amazonica<br />

Ficus turb<strong>in</strong>ata Pittier = Ficus eximia<br />

Fimbristylis cymosa R. Br. subsp. spathacea<br />

(Roth) T. Koyama = Fimbristylis cymosa<br />

Fimbristylis glomerata (Retz.) Urb. =<br />

Fimbristylis cymosa<br />

Fimbristylis obtusifolia (Vahl) Kunth =<br />

Fimbristylis cymosa<br />

Fimbristylis spathacea Roth = Fimbristylis<br />

cymosa<br />

Funastrum clausum (Jacq.) Schltr. =<br />

Sarcostemma clausum<br />

Gomphrena sessilis L. = Alternanthera sessilis<br />

Gomphrena vermicularis L. = Blutaparon<br />

vermiculare<br />

Guil<strong>and</strong><strong>in</strong>a bonduc L. = Caesalp<strong>in</strong>ia bonduc<br />

Guzmania l<strong>in</strong>gulata (L.) Mez var. m<strong>in</strong>or (Mez)<br />

L.B. Sm. & Pittendr. = Guzmania l<strong>in</strong>gulata<br />

Guzmania m<strong>in</strong>or Mez = Guzmania l<strong>in</strong>gulata<br />

Heliconia ballia Rich. = Heliconia psittacorum<br />

Heliconia cannoidea Rich. = Heliconia<br />

psittacorum<br />

Heliconia humilis (Aubl.) Jacq. = Heliconia<br />

psittacorum<br />

Heliconia schomburgkiana Klotzsch =<br />

Heliconia psittacorum<br />

Heliconia silvestris (Gleason) L.B. Sm. =<br />

Heliconia psittacorum<br />

Hibiscus elatus Sw. = Talipariti tiliaceum<br />

Hibiscus pernambucensis = Talipariti tiliaceum<br />

Hibiscus populneus L. = Thespesia populnea<br />

Hibiscus tiliaceus L. = Talipariti tiliaceum<br />

Hippocratea laevigata Rich. = Hippocratea<br />

volubilis<br />

Hydromystria laevigata (Humb. & Bonpl. ex<br />

Willd.) Díaz-Mir. & Philcox = Limnobium<br />

laevigatum<br />

Hydromystria laevigata (Willd.) Hanzeker =<br />

Limnobium laevigatum<br />

Ilex acum<strong>in</strong>ata Willd. = Ilex guianensis<br />

Ilex celastroides Klotzsch ex Garcke = Ilex<br />

guianensis<br />

Ilex cumanensis Turcz. = Ilex guianensis<br />

Ilex macoucoua Pers. = Ilex guianensis<br />

Inga latifolia (L.) Willd. = Zygia latifolia<br />

Ipomoea cissoides (Lam.) Griseb. fma. viscidula<br />

Meisn. = Merremia cissoides


134<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Ipomoea macrantha Roem. & Schult. = Ipomoea<br />

violacea<br />

Ipomoea mollicoma Miq. = Merremia umbellata<br />

Ipomoea polyanthes Roem. & Schult. =<br />

Merremia umbellata<br />

Ipomoea tuba (Schltdl.) G. Don = Ipomoea<br />

violacea<br />

Ires<strong>in</strong>e vermicularis (L.) Moq. = Blutaparon<br />

vermiculare<br />

Isochilus elegans H. Focke = Dimer<strong>and</strong>ra<br />

elegans ?<br />

Jatropha manihot L. = Manihot esculenta<br />

Jussiaea aff<strong>in</strong>is DC. = Ludwigia aff<strong>in</strong>is<br />

Jussiaea aluligera Miq. = Ludwigia leptocarpa<br />

Jussiaea hexamera Miq. = Ludwigia aff<strong>in</strong>is<br />

Jussiaea leptocarpa Nutt. = Ludwigia<br />

leptocarpa<br />

Jussiaea leptocarpa Nutt. var. aluligera (Miq.)<br />

Jonker = Ludwigia leptocarpa<br />

Jussiaea leptocarpa Nutt. var. genu<strong>in</strong>a Munz =<br />

Ludwigia leptocarpa<br />

Jussiaea leptocarpa Nutt. var. meyeriana<br />

(Kuntze) Munz = Ludwigia leptocarpa<br />

Jussiaea sur<strong>in</strong>amensis Miq. = Ludwigia<br />

leptocarpa<br />

Jussiaea variabilis G. Mey. var. aff<strong>in</strong>is (DC.)<br />

Kuntze = Ludwigia aff<strong>in</strong>is<br />

Jussiaea variabilis G. Mey. var. meyeriana<br />

Kuntze = Ludwigia leptocarpa<br />

Karatas plumieri E. Morren = Bromelia plumieri<br />

Lemna paucicostata Hegelm. = Lemna<br />

aequ<strong>in</strong>octialis<br />

Leptochloa langloisii Vasey = Leptochloa<br />

scabra<br />

Leptochloa liebmannii E. Fourn = Leptochloa<br />

scabra<br />

Limnobium spongia (Bosc) Steud. subsp.<br />

laevigatum (Humb. & Bonpl. ex Willd.)<br />

Lowden = Limnobium laevigatum<br />

Limnobium stoloniferum (G. Mey.) Griseb. =<br />

Limnobium laevigatum<br />

Lophiaris fragrans Raf. = Trichocentrum<br />

lanceanum<br />

Lophiaris lanceana (L<strong>in</strong>dl.) Braem =<br />

Trichocentrum lanceanum<br />

Lygodium mexicanum C. Presl = Lygodium<br />

venustum<br />

Lygodium polymorphum auct. non (Cav.) Kunth<br />

= Lygodium venustum<br />

Macoucoua guianensis Aubl. = Ilex guianensis<br />

Malouetia furfuracea Spruce ex Müll. Arg. =<br />

Malouetia tamaquar<strong>in</strong>a<br />

Malouetia guianensis (Aubl.) Miers = Malouetia<br />

tamaquar<strong>in</strong>a<br />

Malouetia obtusiloba A. DC. = Malouetia<br />

tamaquar<strong>in</strong>a<br />

Malouetia odorata DC. = Malouetia<br />

tamaquar<strong>in</strong>a<br />

Malpighia bannisterioides L. = Stigmaphyllon<br />

bannisterioides<br />

Manihot diffusa Pohl = Manihot esculenta<br />

Manihot dulcis Pax = Manihot esculenta<br />

Manihot utilissima Pohl = Manihot esculenta<br />

Mariscus ligularis (L.) Urb. = Cyperus ligularis<br />

Melothria flum<strong>in</strong>ensis Gardner = Melothria<br />

pendula<br />

Melothria guadalupensis (Spreng.) Cogn. =<br />

Melothria pendula<br />

Mikania denticulata (Vahl) Willd. = Mikania<br />

micrantha<br />

Mikania or<strong>in</strong>ocensis Kunth = Mikania<br />

micrantha<br />

Milium distichum (L.) Muhl. = Paspalum<br />

distichum<br />

Mimosa bip<strong>in</strong>nata Aubl. = Entada polystachya<br />

Mimosa <strong>in</strong>goides Rich. = Inga <strong>in</strong>goides<br />

Mimosa latifolia L. = Zygia latifolia<br />

Mimosa polystachia L. = Entada polystachya<br />

Moutouchi suberosa Aubl. = Pterocarpus<br />

offic<strong>in</strong>alis<br />

Musa humilis Aubl. = Heliconia psittacorum<br />

Oncidium lanceanum L<strong>in</strong>dl. = Trichocentrum<br />

lanceanum<br />

Oplismenus polystachyus Kunth = Ech<strong>in</strong>ochloa<br />

polystachya<br />

Orelia gr<strong>and</strong>iflora Aubl. = Allam<strong>and</strong>a<br />

cathartica<br />

Panicum bonpl<strong>and</strong>ianum Steud. = Ech<strong>in</strong>ochloa<br />

polystachya<br />

Panicum spectabile Nees ex Tr<strong>in</strong>. = Ech<strong>in</strong>ochloa<br />

polystachya<br />

Paull<strong>in</strong>ia hostmannii Steud. = Paull<strong>in</strong>ia p<strong>in</strong>nata<br />

Pharmacosycea guyanensis Miq. = Ficus<br />

maxima<br />

Phaseolus luteolus (Jacq.) Gagnep. = Vigna<br />

luteola<br />

Philodendron cyclops A.D. Hawkes =<br />

Philodendron acutatum<br />

Philoxerus vermicularis (L.) R. Br. = Blutaparon<br />

vermiculare<br />

Phyllocactus phyllanthus (DC.) L<strong>in</strong>k =<br />

Epiphyllum phyllanthus


Contributions to the Study of Biological Diversity Vol. 3<br />

Physalis capsicifolia Dunal = Physalis angulata<br />

Physalis lanceifolia Nees = Physalis angulata<br />

Piper glabellum Sw. = Peperomia glabella<br />

Pithecellobium latifolium (L.) Benth. = Zygia<br />

latifolia<br />

Pluchea cortesii (Kunth) DC. = Pluchea<br />

odorata<br />

Polygala diversifolia L. = Securidaca<br />

diversifolia<br />

Polypodium phyllitidis L. = Campyloneurum<br />

phyllitidis<br />

Polypodium rivulare Vahl = Nephrolepis<br />

rivularis<br />

Portulaca portulacastrum L. = Sesuvium<br />

portulacastrum<br />

Pothos gracilis Rudge = Anthurium gracile<br />

Pothos scolopendr<strong>in</strong>us Ham. = Anthurium<br />

gracile<br />

Pteris biaurita var. pungens (Willd.) H. Christ<br />

= Pteris pungens<br />

Pteris longicauda H. Christ = Pteris pungens<br />

Pterocarpus draco L. = Pterocarpus offic<strong>in</strong>alis<br />

Pterocarpus lunatus L. f. = Machaerium<br />

lunatum<br />

Pterocarpus suberosa (Aubl.) Pers. =<br />

Pterocarpus offic<strong>in</strong>alis<br />

Pycreus polystachyos (Rottb.) P. Beauv. =<br />

Cyperus polystachyos<br />

Renealmia exaltata L. f. = Renealmia alp<strong>in</strong>ia<br />

Rhipsalis cassutha Gaertn. = Rhipsalis<br />

baccifera<br />

Rhipsalis m<strong>in</strong>utiflora K. Schum. = Rhipsalis<br />

baccifera<br />

Rhizophora americana Nutt. = Rhizophora<br />

mangle<br />

Rhizophora mangle var. racemosa (G. Mey.)<br />

Engl. = Rhizophora racemosa<br />

Rhizophora mangle var. samoensis Hochr. =<br />

Rhizophora mangle<br />

Rhizophora samoensis (Hochr.) Salvoza =<br />

Rhizophora mangle<br />

Roystonea venezuelana L.H. Bailey =<br />

Roystonea oleracea<br />

Salv<strong>in</strong>ia laevigata Humb. & Bonpl. ex Willd. =<br />

Limnobium laevigatum<br />

Sarcostemma cumanense Kunth = Sarcostemma<br />

clausum<br />

Sarcostemma pubescens Kunth = Sarcostemma<br />

clausum<br />

135<br />

Scirpus glomeratus Retz. = Fimbristylis cymosa<br />

Scirpus mutatus L. = Eleocharis mutata<br />

Scirpus obtusifolius Vahl = Fimbristylis cymosa<br />

Sesuvium acutifolium Miq. = Sesuvium<br />

portulacastrum<br />

Smilax globifera G. Mey. = Smilax cumanensis<br />

Smilax hostmanniana Kunth = Smilax<br />

cumanensis<br />

Smilax pirarensis Kunth & M.R. Schomb. =<br />

Smilax cumanensis<br />

Smilax sur<strong>in</strong>amensis Miq. = Smilax cumanensis<br />

Solanum demerarense Dunal = Solanum<br />

stramoniifolium<br />

Solanum toxicarium Rich. = Solanum<br />

stramoniifolium<br />

Solanum trichocarpum Miq. = Solanum<br />

stramoniifolium<br />

Spondias lutea L. = Spondias momb<strong>in</strong><br />

Sporobolus littoralis (Lam.) Kunth =<br />

Sporobolus virg<strong>in</strong>icus<br />

Stigmaphyllon ovatum (Cav.) Nied. =<br />

Stigmaphyllon bannisterioides<br />

Till<strong>and</strong>sia l<strong>in</strong>gulata L. = Guzmania l<strong>in</strong>gulata<br />

Torul<strong>in</strong>ium ferax (Rich.) Urb. = Cyperus<br />

odoratus<br />

Torul<strong>in</strong>ium odoratum (L.) S.S. Hooper =<br />

Cyperus odoratus<br />

Typha angustifolia var. dom<strong>in</strong>gensis (Pers.)<br />

Hemsl. = Typha dom<strong>in</strong>gensis<br />

Typha tenuifolia Kunth = Typha dom<strong>in</strong>gensis<br />

Typha truxillensis Kunth = Typha dom<strong>in</strong>gensis<br />

Urostigma amazonicum Miq. = Ficus<br />

amazonica<br />

Urostigma angustifolium Miq. = Ficus<br />

amazonica<br />

Verbes<strong>in</strong>a alba L. = Eclipta prostrata<br />

Verbes<strong>in</strong>a prostrata L. = Eclipta prostrata<br />

Vernonia c<strong>in</strong>erea (L.) Less. = Cyanthillium<br />

c<strong>in</strong>ereum<br />

Vigna repens (L.) Kuntze = Vigna luteola<br />

Vilfa virg<strong>in</strong>ica (L.) P. Beauv. = Sporobolus<br />

virg<strong>in</strong>icus<br />

Vitis sicyoides (L.) Baker = Cissus verticillata<br />

Wedelia psammophila Poepp. = Eclipta<br />

prostrata<br />

Willoughbya micrantha (Kunth) Rusby =<br />

Mikania micrantha<br />

Willoughbya sc<strong>and</strong>ens Kuntze var. or<strong>in</strong>ocensis<br />

(Kunth) Kuntze = Mikania micrantha


136<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

APPENDIX 3.<br />

PRELIMINARY SPECIES LIST OF THE VASCULAR PLANTS<br />

OF THE NORTHWEST DISTRICT OF GUYANA<br />

(* denotes taxon added by collections for this volume.)<br />

LYCOPHYTES<br />

Lycopodiaceae<br />

Lycopodiella cernua (L.) Pic. Serm.<br />

Selag<strong>in</strong>ellaceae<br />

Selag<strong>in</strong>ella epirrhizos Spr<strong>in</strong>g<br />

Selag<strong>in</strong>ella parkeri (Hook. & Grev.) Spr<strong>in</strong>g<br />

Selag<strong>in</strong>ella porelloides (Lam.) Spr<strong>in</strong>g<br />

Selag<strong>in</strong>ella producta Baker<br />

PTERIDOPHYTES<br />

Adiantaceae<br />

Adiantum latifolium Lam.<br />

Adiantum phyllitidis J. Sm.<br />

Pityrogramma calomelanos (L.) L<strong>in</strong>k<br />

Aspleniaceae<br />

Asplenium cristatum Lam. *<br />

Asplenium jugl<strong>and</strong>ifolium Lam.<br />

Asplenium salicifolium L.<br />

Asplenium serratum L.<br />

Blechnaceae<br />

Blechnum serrulatum Rich.<br />

Cyatheaceae<br />

Cnemidaria spectabilis (Kunze) R.M. Tryon<br />

Cyathea cyatheoides (Desv.) K.U. Kramer<br />

Cyathea microdonta (Desv.) Dom<strong>in</strong><br />

Cyathea pungens (Willd.) Dom<strong>in</strong><br />

Cyathea sur<strong>in</strong>amensis (Miq.) Dom<strong>in</strong><br />

Dennstaedtiaceae<br />

L<strong>in</strong>dsaea lancea (L.) Bedd.<br />

L<strong>in</strong>dsaea portoricensis Desv. *<br />

Saccoloma elegans Kaulf.<br />

Dryopteridaceae<br />

Cyclodium meniscioides (Willd.) C. Presl<br />

Didymochlaena truncatula (Sw.) J. Sm.<br />

Polybotrya caudata Kunze<br />

Gleicheniaceae<br />

Dicranopteris pect<strong>in</strong>ata (Willd.) Underw.<br />

[moss]<br />

Grammitidaceae<br />

Cochlidium serrulatum (Sw.) L.E. Bishop<br />

Hymenophyllaceae<br />

Trichomanes diversifrons (Bory) Mett. ex<br />

Sadeb.<br />

Trichomanes martiusii C. Presl<br />

Trichomanes polypodioides L.<br />

Trichomanes radicans Sw.<br />

Lomariopsidaceae<br />

Elaphoglossum flaccidum (Fée) T. Moore<br />

Elaphoglossum glabellum J. Sm.<br />

Lomariopsis japurensis (Mart.) J. Sm.<br />

Lomariopsis latiuscula (Maxon) Holttum<br />

Lygodiaceae<br />

Lygodium venustum Sw. *<br />

Lygodium volubile Sw.<br />

Metaxyaceae<br />

Metaxya rostrata (Kunth) C. Presl<br />

Ole<strong>and</strong>raceae<br />

Nephrolepis biserrata (Sw.) Schott<br />

Nephrolepis rivularis (Vahl) Mett. ex Krug<br />

Parkeriaceae<br />

Ceratopteris thalictroides (L.) Brongn. *<br />

Polypodiaceae<br />

Campyloneurum phyllitidis (L.) C. Presl<br />

Campyloneurum repens (Aubl.) C. Presl<br />

Dicranoglossum desvauxii (Klotzsch) Proctor


Contributions to the Study of Biological Diversity Vol. 3<br />

Microgramma fuscopunctata (Hook.) Vareschi<br />

Microgramma lycopodioides (L.) Copel.<br />

Microgramma persicariifolia (Schrad.) C. Presl<br />

Microgramma reptans (Cav.) A.R. Sm.<br />

Phlebodium aureum (L.) J. Sm. *<br />

Phlebodium pseudoaureum (Cav.) Lell<strong>in</strong>ger<br />

Polypodium adnatum Kunze ex Klotzsch<br />

Polypodium attenuatum Humb. & Bonpl. ex<br />

Willd.<br />

Pteridaceae<br />

Acrostichum aureum L. *<br />

Acrostichum danaeifolium Langsd. & Fisch. *<br />

Pteris altissima Poir.<br />

Pteris pungens Willd. *<br />

Schizaeaceae<br />

Schizaea flum<strong>in</strong>ensis Miers ex J.W. Sturm<br />

Schizaea <strong>in</strong>curvata Schkuhr<br />

Tectariaceae<br />

Tectaria <strong>in</strong>cisa Cav.<br />

Tectaria trifoliata (L.) Cav.<br />

Triplophyllum funestum (Kunze) Holttum<br />

Thelypteridaceae<br />

Thelypteris abrupta (Desv.) Proctor<br />

Thelypteris <strong>in</strong>terrupta (Willd.) K. Iwats.<br />

Thelypteris leprieurii (Hook.) R.M. Tryon<br />

Thelypteris opulenta (Kaulf.) Fosberg<br />

[naturalized]<br />

Thelypteris serrata (Cav.) Alston<br />

Vittariaceae<br />

Anetium citrifolium (L.) Splitg.<br />

Antrophyum cajenense (Desv.) Spreng.<br />

Woodsiaceae<br />

Diplazium celtidifolium Kunze<br />

GYMNOSPERMS<br />

Gnetaceae<br />

Gnetum nodiflorum Brongn.<br />

DICOTILEDONEAE<br />

Acanthaceae<br />

Aphel<strong>and</strong>ra pulcherrima (Jacq.) Kunth<br />

Asystasia gangetica (L.) T. Anderson<br />

[cultivated]<br />

Blechum pyramidatum (Lam.) Urb. *<br />

Justicia calyc<strong>in</strong>a (Nees) V.A.W. Graham<br />

137<br />

Justicia pectoralis Jacq.<br />

Justicia secunda Vahl<br />

Ruellia tuberosa L. [naturalized]<br />

Thunbergia alata Bojer ex Sims [cultivated]<br />

Thunbergia gr<strong>and</strong>iflora (Roxb. ex Rottl.) Roxb.<br />

[cultivated]<br />

Trichanthera gigantea (Bonpl.) Nees<br />

Aizoaceae<br />

Sesuvium portulacastrum (L.) L. *<br />

Amaranthaceae<br />

Alternanthera philoxeroides (Mart.) Griseb. *<br />

Alternanthera sessilis (L.) R. Br. ex DC.<br />

Alternanthera tenella Colla<br />

Amaranthus australis (A. Gray) J.D. Sauer *<br />

Amaranthus blitum L. *<br />

Amaranthus dubius Mart. ex Thell.<br />

Amaranthus viridis L.<br />

Blutaparon vermiculare (L.) Mears *<br />

Celosia argentea L. [cultivated]<br />

Cyathula achyranthoides (Kunth) Moq.<br />

Cyathula prostrata (L.) Blume<br />

Gomphrena globosa L. [cultivated]<br />

Ires<strong>in</strong>e diffusa Humb. & Bonpl. ex Willd.<br />

Anacardiaceae<br />

Anacardium giganteum W. Hancock ex Engl.<br />

Anacardium occidentale L.<br />

Astronium leco<strong>in</strong>tei Ducke<br />

Mangifera <strong>in</strong>dica L. [cultivated]<br />

Spondias dulcis Park<strong>in</strong>son [cultivated]<br />

Spondias momb<strong>in</strong> L.<br />

Tapirira guianensis Aubl.<br />

Tapirira obtusa (Benth.) J.D. Mitch.<br />

Thyrsodium guianense Sagot ex March<strong>and</strong><br />

Annonaceae<br />

Anaxagorea dolichocarpa Sprague & S<strong>and</strong>with<br />

Annona glabra L. *<br />

Annona montana Macfad.<br />

Annona muricata L. [cultivated]<br />

Annona sericea Dunal<br />

Annona symphyocarpa S<strong>and</strong>with<br />

Bocageopsis multiflora (Mart.) R.E. Fr.<br />

Duguetia calyc<strong>in</strong>a Benoist<br />

Duguetia megalophylla R.E. Fr.<br />

Duguetia pauciflora Rusby<br />

Duguetia pycnastera S<strong>and</strong>with<br />

Duguetia yeshidan S<strong>and</strong>with<br />

Fusaea longifolia (Aubl.) Saff.


138<br />

Guatteria flexilis R.E. Fr.<br />

Guatteria schomburgkiana Mart.<br />

Roll<strong>in</strong>ia exsucca (DC. ex Dunal) A. DC.<br />

Roll<strong>in</strong>ia mucosa (Jacq.) Baill.<br />

Unonopsis glaucopetala R.E. Fr.<br />

Xylopia benthamii R.E. Fr.<br />

Xylopia cayennensis Maas<br />

Xylopia sur<strong>in</strong>amensis R.E. Fr.<br />

Apiaceae<br />

Cori<strong>and</strong>rum sativum L. [cultivated]<br />

Eryngium foetidum L.<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Apocynaceae<br />

Allam<strong>and</strong>a cathartica L.<br />

Ambelania acida Aubl.<br />

Aspidosperma cruentum Woodson<br />

Aspidosperma excelsum Benth.<br />

Aspidosperma marcgravianum Woodson<br />

Catharanthus roseus (L.) G. Don [cultivated]<br />

Condylocarpon <strong>in</strong>termedium Müll. Arg.<br />

Forsteronia gracilis (Benth.) Müll. Arg.<br />

Forsteronia guyanensis Müll. Arg.<br />

Himatanthus articulatus (Vahl) Woodson<br />

Himatanthus bracteatus (A. DC.) Woodson<br />

Macoubea guianensis Aubl.<br />

Malouetia flavescens (Willd. ex Roem. &<br />

Schult.) Müll. Arg.<br />

Malouetia tamaquar<strong>in</strong>a (Aubl.) A. DC. *<br />

M<strong>and</strong>evilla hirsuta (Rich.) K. Schum.<br />

M<strong>and</strong>evilla symphitocarpa (G. Mey.) Woodson<br />

Mesechites trifida (Jacq.) Müll. Arg.<br />

Odontadenia gem<strong>in</strong>ata (Hoffmanns. ex Roem.<br />

& Schult.) Müll. Arg.<br />

Odontadenia macrantha (Roem. & Schult.)<br />

Markgr.<br />

Odontadenia puncticulosa (Rich.) Pulle<br />

Odontadenia s<strong>and</strong>withiana Woodson<br />

Plumeria <strong>in</strong>odora Jacq.<br />

Prestonia tomentosa R. Br.<br />

Rhabdadenia biflora (Jacq.) Müll. Arg.<br />

Tabernaemontana disticha A. DC.<br />

Tabernaemontana divaricata (L.) R. Br. ex<br />

Roem. & Schult.<br />

Tabernaemontana heterophylla Vahl<br />

Tabernaemontana lorifera (Miers) Leeuwenb.<br />

Tabernaemontana undulata Vahl<br />

Aquifoliaceae<br />

Ilex guianensis (Aubl.) Kuntze<br />

Ilex mart<strong>in</strong>iana D. Don<br />

Araliaceae<br />

Oreopanax capitatus (Jacq.) Decne. & Planch.<br />

Schefflera decaphylla (Seem.) Harms<br />

Schefflera morototoni (Aubl.) Maguire,<br />

Steyerm. & Frod<strong>in</strong><br />

Aristolochiaceae<br />

Aristolochia daemon<strong>in</strong>oxia Mast.<br />

Aristolochia hians Willd.<br />

Aristolochia rugosa Lam.<br />

Aristolochia trilobata L. *<br />

Asclepiadaceae<br />

Asclepias curassavica L.<br />

Blepharodon nitidus (Vell.) J.F. Macbr.<br />

Matelea badilloi Morillo<br />

Matelea stenopetala S<strong>and</strong>with<br />

Sarcostemma clausum (Jacq.) Schult.<br />

Stenomeria decalepis Turcz.<br />

Tassadia prop<strong>in</strong>qua Decne.<br />

Asteraceae<br />

Ageratum conyzoides L.<br />

Bidens alba (L.) DC. *<br />

Bidens cynapiifolia Kunth<br />

Bidens pilosa L.<br />

Chromolaena odorata (L.) R.M. K<strong>in</strong>g & H. Rob.<br />

Clibadium sur<strong>in</strong>amense L.<br />

Clibadium sylvestre (Aubl.) Baill.<br />

Conyza bonariensis (L.) Cronquist<br />

Cosmos caudatus Kunth [cultivated]<br />

Cosmos sulphureus Cav. [cultivated]<br />

Cyanthillium c<strong>in</strong>ereum (L.) H. Rob.<br />

[naturalized]<br />

Cyrtocymura scorpioides (Lam.) H. Rob.<br />

Eclipta prostrata (L.) L. *<br />

Elephantopus mollis Kunth<br />

Emilia sonchifolia (L.) DC. ex Wight<br />

Erechtites hieracifolia (L.) Raf. ex DC.<br />

Hebecl<strong>in</strong>ium macrophyllum (L.) DC.<br />

Mikania banisteriae DC.<br />

Mikania congesta DC.<br />

Mikania cordifolia (L. f.) Willd.<br />

Mikania guaco Bonpl.<br />

Mikania hookeriana DC.<br />

Mikania micrantha Kunth<br />

Mikania microptera DC.<br />

Mikania parviflora (Aubl.) H. Karst.<br />

Mikania psilostachya DC.<br />

Mikania tr<strong>in</strong>itaria DC.<br />

Pluchea odorata (L.) Cass. *


Contributions to the Study of Biological Diversity Vol. 3<br />

Rol<strong>and</strong>ra fruticosa (L.) Kuntze<br />

Sonchus asper (L.) Hill *<br />

Sphagneticola trilobata (L.) Pruski<br />

Struchium sparganophorum (L.) Kuntze<br />

Synedrella nodiflora (L.) Gaertn.<br />

Tagetes erecta L. [cultivated]<br />

Unxia camphorata L. f.<br />

Wulffia baccata (L.) Kuntze<br />

Z<strong>in</strong>nia elegans Jacq. [cultivated]<br />

Avicenniaceae<br />

Avicennia germ<strong>in</strong>ans (L.) Stearn<br />

Balanophoraceae<br />

Helosis cayennensis (Sw.) Spreng.<br />

Basellaceae<br />

Basella alba L. [cultivated]<br />

Begoniaceae<br />

Begonia humilis Dry<strong>and</strong>.<br />

Bignoniaceae<br />

Anemopaegma chrysoleucum (Kunth) S<strong>and</strong>with<br />

Anemopaegma karstenii Bureau & K. Schum.<br />

Anemopaegma oligoneuron (Sprague &<br />

S<strong>and</strong>with) A.H. Gentry<br />

Arrabidaea c<strong>and</strong>icans (Rich.) DC.<br />

Callichlamys latifolia (Rich.) K. Schum.<br />

Ceratophytum tetragonolobum (Jacq.) Sprague<br />

& S<strong>and</strong>with<br />

Clytostoma b<strong>in</strong>atum (Thunb.) S<strong>and</strong>with<br />

Crescentia amazonica Ducke<br />

Crescentia cujete L. [cultivated]<br />

Cydista aequ<strong>in</strong>octialis (L.) Miers<br />

Distictella elongata (Vahl) Urb.<br />

Jacar<strong>and</strong>a copaia (Aubl.) D. Don<br />

Jacar<strong>and</strong>a obtusifolia Bonpl.<br />

Lundia densiflora DC.<br />

Macfadyena uncata (T.F. Andrews) Sprague &<br />

S<strong>and</strong>with<br />

Macfadyena unguis-cati (L.) A.H. Gentry<br />

Mansoa kerere (Aubl.) A.H. Gentry<br />

Mart<strong>in</strong>ella obovata (Kunth) Bureau & K.<br />

Schum.<br />

Parabignonia steyermarkii S<strong>and</strong>with<br />

Pleonotoma albiflora (Salzm. ex DC.) A.H.<br />

Gentry<br />

Pleonotoma echitidea Sprague & S<strong>and</strong>with<br />

Schlegelia spruceana K. Schum.<br />

Schlegelia violacea (Aubl.) Griseb.<br />

Tabebuia fluviatilis (Aubl.) DC.<br />

Tabebuia <strong>in</strong>signis (Miq.) S<strong>and</strong>with<br />

Tabebuia serratifolia (Vahl) G. Nicholson<br />

Bixaceae<br />

Bixa orellana L.<br />

Bombacaceae<br />

Catostemma commune S<strong>and</strong>with<br />

Catostemma fragrans Benth.<br />

Ceiba pent<strong>and</strong>ra (L.) Gaertn.<br />

Pachira aquatica Aubl.<br />

Pachira <strong>in</strong>signis (Sw.) Sw. ex Savigny<br />

139<br />

Borag<strong>in</strong>aceae<br />

Cordia curassavica (Jacq.) Roem. & Schult.<br />

Cordia exaltata Lam.<br />

Cordia fallax I.M. Johnst.<br />

Cordia nodosa Lam.<br />

Cordia schomburgkii DC.<br />

Cordia sericicalyx DC.<br />

Cordia tetr<strong>and</strong>ra Aubl.<br />

Heliotropium <strong>in</strong>dicum L. [naturalized]<br />

Tournefortia bicolor Sw.<br />

Tournefortia cuspidata Kunth<br />

Burseraceae<br />

Protium dec<strong>and</strong>rum (Aubl.) March<strong>and</strong><br />

Protium guianense (Aubl.) March<strong>and</strong><br />

Protium heptaphyllum (Aubl.) March<strong>and</strong><br />

Protium tenuifolium (Engl.) Engl.<br />

Protium unifoliolatum Spruce ex Engl.<br />

Tetragastris altissima (Aubl.) Swart<br />

Tratt<strong>in</strong>nickia boliviana (Swart) Daly<br />

Tratt<strong>in</strong>nickia burserifolia Mart.<br />

Tratt<strong>in</strong>nickia rhoifolia Willd.<br />

Cabombaceae<br />

Cabomba aquatica Aubl.<br />

Cactaceae<br />

Epiphyllum phyllanthus (L.) Haw.<br />

Opuntia cochenillifera (L.) Mill. [cultivated]<br />

Pereskia aculeata Mill. [naturalized]<br />

Rhipsalis baccifera (J.S. Muell.) Stearn<br />

Caesalp<strong>in</strong>iaceae<br />

Bauh<strong>in</strong>ia guianensis Aubl.<br />

Bauh<strong>in</strong>ia scala-simiae S<strong>and</strong>with<br />

Bauh<strong>in</strong>ia siqueiraei Ducke<br />

Brownea cocc<strong>in</strong>ea Jacq.


140<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Brownea gr<strong>and</strong>iceps Jacq. *<br />

Caesalp<strong>in</strong>ia bonduc (L.) Roxb. *<br />

Caesalp<strong>in</strong>ia pulcherrima (L.) Sw. [cultivated]<br />

Chamaecrista ramosa (Vogel) H.S. Irw<strong>in</strong> &<br />

Barneby<br />

Crudia glaberrima (Steud.) J.F. Macbr.<br />

Dicorynia guianensis Amshoff<br />

Eperua falcata Aubl.<br />

Eperua rubig<strong>in</strong>osa Miq.<br />

Hymenaea courbaril L.<br />

Macrolobium acaciifolium (Benth.) Benth.<br />

Macrolobium angustifolium (Benth.) R.S.<br />

Cowan<br />

Macrolobium bifolium (Aubl.) Pers.<br />

Mora excelsa Benth.<br />

Peltogyne venosa (Vahl) Benth.<br />

Senna alata (L.) Roxb.<br />

Senna bacillaris (L. f.) H.S. Irw<strong>in</strong> & Barneby<br />

Senna multijuga (Rich.) H.S. Irw<strong>in</strong> & Barneby<br />

Senna occidentalis (L.) L<strong>in</strong>k<br />

Senna qu<strong>in</strong>quangulata (Rich.) H.S. Irw<strong>in</strong> &<br />

Barneby<br />

Senna reticulata (Willd.) H.S. Irw<strong>in</strong> & Barneby<br />

Senna s<strong>and</strong>withiana H.S. Irw<strong>in</strong> & Barneby<br />

Tachigali micropetala (Ducke) Zarucchi &<br />

Pipoly<br />

Tachigali paniculata Aubl.<br />

Campanulaceae<br />

Centropogon cornutus (L.) Druce<br />

Capparaceae<br />

Cleome parviflora Kunth<br />

Cleome serrata Jacq.<br />

Cleome speciosa Raf.<br />

Caricaceae<br />

Carica papaya L. [naturalized]<br />

Caryocaraceae<br />

Caryocar microcarpum Ducke<br />

Caryocar nuciferum L.<br />

Casuar<strong>in</strong>aceae<br />

Casuar<strong>in</strong>a equisetifolia J.R. Forst. & G. Forst.<br />

[cultivated]<br />

Cecropiaceae<br />

Cecropia angulata I.W. Bailey<br />

Cecropia obtusa Trécul<br />

Cecropia peltata L.<br />

Cecropia sciadophylla Mart.<br />

Coussapoa asperifolia Trécul *<br />

Coussapoa microcephala Trécul<br />

Pourouma guianensis Aubl.<br />

Celastraceae<br />

Goupia glabra Aubl.<br />

Maytenus guyanensis Klotzsch ex Reissek<br />

Ceratophyllaceae<br />

Ceratophyllum muricatum Cham. *<br />

Chrysobalanaceae<br />

Chrysobalanus icaco L.<br />

Couepia parillo DC.<br />

Hirtella paniculata Sw.<br />

Hirtella racemosa Lam.<br />

Hirtella silicea Griseb.<br />

Hirtella tri<strong>and</strong>ra Sw.<br />

Licania alba (Bernoulli) Cuatrec.<br />

Licania apetala (E. Mey.) Fritsch<br />

Licania boyanii Tut<strong>in</strong><br />

Licania densiflora Kle<strong>in</strong>hoonte<br />

Licania divaricata Benth.<br />

Licania guianensis (Aubl.) Griseb.<br />

Licania heteromorpha Benth.<br />

Licania <strong>in</strong>cana Aubl.<br />

Licania kunthiana Hook. f.<br />

Licania laxiflora Fritsch<br />

Licania majuscula Sagot<br />

Licania membranacea Sagot ex Laness.<br />

Licania micrantha Miq.<br />

Licania oct<strong>and</strong>ra (Hoffmanns. ex Roem. &<br />

Schult.) Kuntze<br />

Licania persaudii Fanshawe & Maguire<br />

Licania rufescens Klotzsch ex Fritsch<br />

Par<strong>in</strong>ari campestris Aubl.<br />

Par<strong>in</strong>ari rodolphii Huber<br />

Clusiaceae<br />

Calophyllum brasiliense Cambess.<br />

Caraipa richardiana Cambess.<br />

Clusia cuneata Benth.<br />

Clusia flavida (Benth.) Pipoly<br />

Clusia gaudichaudii Choisy<br />

Clusia gr<strong>and</strong>iflora Splitg.<br />

Clusia myri<strong>and</strong>ra (Benth.) Planch. & Triana<br />

Clusia nemorosa G. Mey.<br />

Clusia palmicida Rich. ex Planch. & Triana<br />

Clusia panapanari (Aubl.) Choisy<br />

Mammea americana L. [cultivated]


Contributions to the Study of Biological Diversity Vol. 3<br />

Rheedia macrophylla (Mart.) Planch. & Triana<br />

Rheedia virens Planch. & Triana<br />

Symphonia globulifera L. f.<br />

Tovomita brevistam<strong>in</strong>ea Engl.<br />

Tovomita calodictyos S<strong>and</strong>with<br />

Tovomita choisyana Planch. & Triana<br />

Tovomita obscura S<strong>and</strong>with<br />

Tovomita schomburgkii Planch. & Triana<br />

Vismia cayennensis (Jacq.) Pers.<br />

Vismia gracilis Hieron.<br />

Vismia guianensis (Aubl.) Choisy<br />

Vismia japurensis Reichardt<br />

Vismia laxiflora Reichardt<br />

Vismia macrophylla Kunth<br />

Vismia sessilifolia (Aubl.) Choisy<br />

Combretaceae<br />

Buchenavia gr<strong>and</strong>is Ducke<br />

Combretum cacoucia Exell ex S<strong>and</strong>with<br />

Combretum fruticosum (Loefl.) Stuntz<br />

Combretum laxum Jacq.<br />

Conocarpus erectus L. *<br />

Laguncularia racemosa (L.) C.F. Gaertn.<br />

Term<strong>in</strong>alia amazonia (J.F. Gmel.) Exell<br />

Term<strong>in</strong>alia catappa L. [naturalized]<br />

Term<strong>in</strong>alia dichotoma G. Mey.<br />

Connaraceae<br />

Cnestidium guianense (G. Schellenb.) G.<br />

Schellenb.<br />

Connarus coriaceus G. Schellenb.<br />

Pseudoconnarus macrophyllus (Poepp.) Radlk.<br />

Convolvulaceae<br />

Aniseia mart<strong>in</strong>icensis (Jacq.) Choisy<br />

Dicranostyles sp.<br />

Ipomoea asarifolia (Desr.) Roem. & Schult.<br />

Ipomoea batatas (L.) Lam. [cultivated]<br />

Ipomoea carnea Jacq.<br />

Ipomoea <strong>in</strong>dica (Burm.) Merr.<br />

Ipomoea mauritiana Jacq.<br />

Ipomoea pes-caprae (L.) R. Br. *<br />

Ipomoea phillomega (Vell.) House<br />

Ipomoea quamoclit L.<br />

Ipomoea tiliacea (Willd.) Choisy<br />

Ipomoea violacea L. *<br />

Jacquemontia guyanensis (Aubl.) Meisn.<br />

Jacquemontia tamnifolia (L.) Griseb.<br />

Maripa sc<strong>and</strong>ens Aubl.<br />

Merremia cissoides (Lam.) Hallier f. *<br />

Merremia macrocalyx (Ruiz & Pav.) O’Donell<br />

141<br />

Merremia umbellata (L.) Hallier f. *<br />

Crassulaceae<br />

Kalanchoe <strong>in</strong>tegra (Medic.) O. Kuntze<br />

[cultivated]<br />

Kalanchoe p<strong>in</strong>nata (Lam.) Pers. [cultivated]<br />

Cucurbitaceae<br />

Cayaponia jenmanii C. Jeffrey<br />

Cayaponia simplicifolia ? (Naud<strong>in</strong>) Cogn.<br />

Citrullus lanatus (Thunb.) Matsum. & Nakai<br />

[cultivated]<br />

Cucumis melo L. [cultivated]<br />

Cucumis sativus L. [cultivated]<br />

Cucurbita moschata Duchesne [cultivated]<br />

Gurania lobata (L.) Pruski<br />

Gurania subumbellata (Miq.) Cogn.<br />

Helmontia leptantha (Schltdl.) Cogn.<br />

Lagenaria siceraria (Mol<strong>in</strong>a) St<strong>and</strong>l.<br />

[cultivated]<br />

Luffa cyl<strong>in</strong>drica (L.) M. Roem. [cultivated]<br />

Melothria pendula L.<br />

Momordica charantia L. [naturalized]<br />

Posadaea sphaerocarpa Cogn.<br />

Psiguria triphylla (Miq.) C. Jeffrey<br />

Cuscutaceae<br />

Cuscuta umbellata Kunth *<br />

Cyrillaceae<br />

Cyrilla racemiflora L.<br />

Dichapetalaceae<br />

Dichapetalum pedunculatum (DC.) Baill.<br />

Tapura guianensis Aubl.<br />

Dilleniaceae<br />

Davilla kunthii A. St.-Hil.<br />

Davilla nitida (Vahl) Kubitzki *<br />

Doliocarpus dentatus (Aubl.) St<strong>and</strong>l.<br />

P<strong>in</strong>zona coriacea Mart. & Zucc.<br />

Tetracera asperula Miq.<br />

Tetracera tigarea DC.<br />

Tetracera volubilis L.<br />

Droseraceae<br />

Drosera <strong>in</strong>termedia Hayne<br />

Ebenaceae<br />

Diospyros cayennensis A. DC.<br />

Diospyros discolor Willd. [cultivated]<br />

Diospyros guianensis (Aubl.) Gürke


142<br />

Diospyros tetr<strong>and</strong>ra Hiern<br />

Elaeocarpaceae<br />

Sloanea eichleri K. Schum.<br />

Sloanea gr<strong>and</strong>iflora Sm.<br />

Sloanea guianensis (Aubl.) Benth.<br />

Sloanea latifolia (Rich.) K. Schum.<br />

Sloanea obtusifolia (Moric.) K. Schum.<br />

Erythroxylaceae<br />

Erythroxylum citrifolium A. St.-Hil.<br />

Erythroxylum macrophyllum Cav.<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Euphorbiaceae<br />

Acalypha amentacea Roxb. [cultivated] *<br />

Acalypha macrostachya Jacq.<br />

Acalypha sc<strong>and</strong>ens Benth.<br />

Alchornea discolor Poepp.<br />

Alchornea tripl<strong>in</strong>ervia (Spreng.) Müll. Arg.<br />

Alchorneopsis floribunda (Benth.) Müll. Arg.<br />

Amanoa guianensis Aubl.<br />

Chaetocarpus schomburgkianus (Kuntze) Pax<br />

& K. Hoffm.<br />

Codiaeum variegatum (L.) A. Juss. [cultivated]<br />

Conceveiba guianensis Aubl.<br />

Croton cuneatus Klotzsch<br />

Croton tr<strong>in</strong>itatis Millsp.<br />

Dalechampia brownsbergensis G.L. Webster &<br />

Armbr.<br />

Drypetes fanshawei S<strong>and</strong>with<br />

Euphorbia cot<strong>in</strong>ifolia L.<br />

Euphorbia hirta L. *<br />

Euphorbia neriifolia L. [naturalized]<br />

Euphorbia oerstediana (Klotzsch & Garcke)<br />

Boiss.<br />

Euphorbia thymifolia L.<br />

Hevea brasiliensis (Willd. ex A. Juss.) Müll.<br />

Arg. [cultivated]<br />

Hieronyma alchorneoides Allemao<br />

Jatropha curcas L. [cultivated]<br />

Jatropha gossypiifolia L. [cultivated] *<br />

Mabea piriri Aubl.<br />

Manihot esculenta Crantz [cultivated]<br />

Maprounea guianensis Aubl.<br />

Microstachys corniculata (Vahl) Griseb.<br />

Omphalea di<strong>and</strong>ra L.<br />

Paus<strong>and</strong>ra mart<strong>in</strong>ii Baill.<br />

Pedilanthus tithymaloides (L.) Poit.<br />

[cultivated]*<br />

Pera glabrata (Schott) Poepp. ex Baill.<br />

Phyllanthus brasiliensis (Aubl.) Poir.<br />

Phyllanthus caribaeus Urb.<br />

Phyllanthus stipulatus (Raf.) G.L. Webster<br />

Phyllanthus ur<strong>in</strong>aria L. [naturalized]<br />

Plukenetia polyadenia Müll. Arg.<br />

Ric<strong>in</strong>us communis L. [cultivated]<br />

S<strong>and</strong>withia guyanensis Lanj.<br />

Sapium jenmanii Hemsl.<br />

Sapium pauc<strong>in</strong>ervium Hemsl.<br />

Senefeldera sp.<br />

Fabaceae<br />

Aeschynomene sensitiva Sw. *<br />

Alexa confusa Pittier<br />

Alexa imperatricis (R.H. Schomb.) Baill.<br />

Alexa sur<strong>in</strong>amensis Yakovlev<br />

Andira sur<strong>in</strong>amensis (Bondt) Splitg. ex Amshoff<br />

Cajanus cajan (L.) Millsp. [cultivated]<br />

Calopogonium caeruleum (Benth.) C. Wright<br />

Calopogonium mucunoides Desv.<br />

Canavalia rosea (Sw.) DC. *<br />

Centrosema brasilianum (L.) Benth.<br />

Centrosema capitatum (Rich.) Amshoff<br />

Centrosema molle Mart. ex Benth.<br />

Centrosema plumieri (Turp<strong>in</strong> ex Pers.) Benth.<br />

Clathrotropis brachypetala (Tul.) Kle<strong>in</strong>hoonte<br />

Clitoria arborescens R. Br.<br />

Crotalaria <strong>in</strong>cana L.<br />

Crotalaria nitens Kunth<br />

Crotalaria stipularia Desv.<br />

Dalbergia monetaria L. f.<br />

Derris amazonica Killip<br />

Derris pterocarpus (DC.) Killip<br />

Desmodium adscendens (Sw.) DC.<br />

Desmodium axillare (Sw.) DC.<br />

Desmodium barbatum (L.) Benth.<br />

Desmodium <strong>in</strong>canum DC.<br />

Dioclea reflexa Hook. f.<br />

Dioclea scabra (Rich.) R.H. Maxwell<br />

Dioclea wilsonii St<strong>and</strong>l.<br />

Diplotropis purpurea (Rich.) Amshoff<br />

Dipteryx odorata (Aubl.) Willd.<br />

Hymenolobium flavum Kle<strong>in</strong>hoonte<br />

Indigofera suffruticosa Mill. [naturalized]<br />

Lablab purpureus (L.) Sweet [cultivated]<br />

Lonchocarpus chrysophyllus Kle<strong>in</strong>hoonte<br />

Lonchocarpus heptaphyllus (Poir.) DC.<br />

Lonchocarpus martynii A.C. Sm.<br />

Lonchocarpus rufescens Benth.<br />

Lonchocarpus sericeus (Poir.) Kunth ex DC.<br />

Lonchocarpus spruceanus Benth.<br />

Lonchocarpus utilis A.C. Sm.


Contributions to the Study of Biological Diversity Vol. 3<br />

Machaerium floribundum Benth.<br />

Machaerium <strong>in</strong>undatum (Mart. ex Benth.)<br />

Ducke<br />

Machaerium kegelii Meisn.<br />

Machaerium leiophyllum (DC.) Benth.<br />

Machaerium lunatum (L. f.) Ducke *<br />

Machaerium qu<strong>in</strong>atum (Aubl.) S<strong>and</strong>with<br />

Mucuna urens (L.) Medik.<br />

Muellera frutescens (Aubl.) St<strong>and</strong>l.<br />

Ormosia cocc<strong>in</strong>ea (Aubl.) Jacks.<br />

Ormosia cout<strong>in</strong>hoi Ducke<br />

Ormosia nobilis Tul.<br />

Phaseolus lunatus L. [cultivated]<br />

Platymiscium p<strong>in</strong>natum (Jacq.) Dug<strong>and</strong><br />

Pterocarpus offic<strong>in</strong>alis Jacq.<br />

Pterocarpus santal<strong>in</strong>oides L’Hér. ex DC.<br />

Pueraria phaseoloides (Roxb.) Benth.<br />

[cultivated] *<br />

Rhynchosia phaseoloides (Sw.) DC.<br />

Sesbania sericea (Willd.) DC. *<br />

Swartzia conferta Spruce ex Benth.<br />

Swartzia guianensis (Aubl.) Urb.<br />

Swartzia schomburgkii Benth.<br />

Swartzia steyermarkii R.S. Cowan<br />

Tephrosia s<strong>in</strong>apou (Buc’hoz) A. Chev.<br />

Vatairea guianensis Aubl.<br />

Vigna luteola (Jacq.) Benth.<br />

Vigna s<strong>in</strong>ensis (L.) Savi ex Hassk. [cultivated]<br />

Vigna unguiculata (L.) Walp. [cultivated]<br />

Zornia diphylla (L.) Pers.<br />

Flacourtiaceae<br />

Banara guianensis Aubl.<br />

Casearia acum<strong>in</strong>ata DC.<br />

Casearia commersoniana Cambess.<br />

Casearia guianensis (Aubl.) Urb.<br />

Casearia javitensis Kunth<br />

Casearia rusbyana Briq.<br />

Flacourtia jangomas (Lour.) Raeusch.<br />

[cultivated]<br />

Homalium guianense (Aubl.) Oken<br />

Homalium racemosum Jacq.<br />

Laetia procera (Poepp.) Eichler<br />

Ryania speciosa Vahl<br />

Xylosma benthamii (Tul.) Triana & Planch.<br />

Gentianaceae<br />

Chelonanthus alatus (Aubl.) Pulle<br />

Chelonanthus purpurascens (Aubl.) Struwe, S.<br />

Nilsson & V.A.<br />

Coutoubea ramosa Aubl.<br />

143<br />

Voyria aphylla (Jacq.) Pers.<br />

Voyria aurantiaca Splitg.<br />

Voyria pittieri (St<strong>and</strong>l.) L.O. Williams<br />

Gesneriaceae<br />

Besleria flavovirens Nees & Mart.<br />

Chrysothemis pulchella (Donn ex Sims) Decne.<br />

Chrysothemis villosa (Benth.) Leeuwenb.*<br />

Codonanthe calcarata (Miq.) Hanst.<br />

Codonanthe crassifolia (H. Focke) C.V. Morton<br />

Drymonia serrulata (Jacq.) Mart. *<br />

Nautilocalyx cocc<strong>in</strong>eus Feuillet & L.E. Skog<br />

Nautilocalyx cordatus (Gleason) L.E. Skog<br />

Nautilocalyx mimuloides (Benth.) C.V. Morton<br />

Paradrymonia maculata (Hook. f.) Wiehler<br />

Hippocrateaceae<br />

Cheilocl<strong>in</strong>ium cognatum (Miers) A.C. Sm.<br />

Hippocratea volubilis L.<br />

Peritassa pru<strong>in</strong>osa (Seem.) A.C. Sm.<br />

Tontelea glabra A.C. Sm.<br />

Humiriaceae<br />

Humiria balsamifera Aubl.<br />

Humiriastrum obovatum (Benth.) Cuatrec.<br />

Sacoglottis cydonioides Cuatrec.<br />

Hydrophyllaceae<br />

Hydrolea sp<strong>in</strong>osa L.<br />

Icac<strong>in</strong>aceae<br />

Discophora guianensis Miers<br />

Emmotum fagifolium Ham.<br />

Leretia cordata Vell.<br />

Poraqueiba guianensis Aubl.<br />

Lacistemataceae<br />

Lacistema aggregatum (P.J. Bergius) Rusby<br />

Lamiaceae<br />

Coleus ambo<strong>in</strong>icus Lour. [cultivated]<br />

Coleus blumei Benth. [cultivated]<br />

Coleus hybridus Hort. ex Cobeau [cultivated]<br />

Hyptis lanceolata Poir.<br />

Hyptis parkeri Benth.<br />

Hyptis pect<strong>in</strong>ata (L.) Poit.<br />

Leonotis nepetifolia (L.) W.T. Aiton<br />

Ocimum campechianum Mill.<br />

Lauraceae<br />

Aiouea guianensis Aubl.<br />

Aniba guianensis Aubl.


144<br />

Aniba hostmanniana (Nees) Mez<br />

Aniba hypoglauca S<strong>and</strong>with<br />

Aniba jenmanii Mez<br />

Aniba kappleri Mez<br />

Aniba term<strong>in</strong>alis Ducke<br />

Cassytha filiformis L. *<br />

Licaria debilis (Mez) Kosterm.<br />

Licaria oppositifolia (Nees) Kosterm.<br />

Nect<strong>and</strong>ra amazonum Nees<br />

Nect<strong>and</strong>ra canescens Nees<br />

Nect<strong>and</strong>ra cuspidata Nees<br />

Nect<strong>and</strong>ra globosa (Aubl.) Mez<br />

Ocotea cernua (Nees) Mez<br />

Ocotea puberula (Rich.) Nees<br />

Ocotea schomburgkiana (Nees) Mez<br />

Ocotea splendens (Meisn.) Baill.<br />

Ocotea tomentella S<strong>and</strong>with<br />

Persea americana Mill. [cultivated]<br />

Persea nivea Mez<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Lecythidaceae<br />

Couratari guianensis Aubl.<br />

Couratari multiflora (Sm.) Eyma<br />

Eschweilera alata A.C. Sm.<br />

Eschweilera coriacea (DC.) S.A. Mori<br />

Eschweilera decolorans S<strong>and</strong>with<br />

Eschweilera micrantha (O. Berg) Miers<br />

Eschweilera parviflora (Aubl.) Miers<br />

Eschweilera sagotiana Miers<br />

Eschweilera wachenheimii (Benoist) S<strong>and</strong>with<br />

Gustavia augusta L.<br />

Gustavia poeppigiana O. Berg<br />

Lecythis chartacea O. Berg<br />

Lecythis corrugata Poit.<br />

Lecythis zabucajo Aubl.<br />

Lentibulariaceae<br />

Utricularia benjam<strong>in</strong>iana Oliv.<br />

Utricularia foliosa L.<br />

Utricularia myriocista A. St.-Hil. & Girard<br />

Loganiaceae<br />

Strychnos erichsonii M.R. Schomb. ex Progel<br />

Strychnos mitscherlichii M.R. Schomb.<br />

Strychnos toxifera R.H. Schomb. ex Benth.<br />

Loranthaceae<br />

Oryctanthus florulentus (Rich.) Tiegh.<br />

Phthirusa pyrifolia (Kunth) Eichler<br />

Phthirusa stelis (L.) Kuijt<br />

Lythraceae<br />

Cuphea melvilla L<strong>in</strong>dl.<br />

Malpighiaceae<br />

Banisteriopsis caapi (Griseb.) C.V. Morton<br />

Banisteriopsis lucida (Rich.) Small<br />

Banisteriopsis mart<strong>in</strong>iana (A. Juss.) Cuatrec.<br />

Burdachia sphaerocarpa A. Juss.<br />

Byrsonima aerugo Sagot<br />

Byrsonima crassifolia (L.) Kunth<br />

Byrsonima spicata (Cav.) DC.<br />

Byrsonima stipulacea A. Juss.<br />

Diplopterys pauciflora (G. Mey.) Nied.<br />

Heteropterys leona (Cav.) Exell<br />

Heteropterys macrostachya A. Juss.<br />

Hiraea fagifolia (DC.) A. Juss.<br />

Hiraea fag<strong>in</strong>ea (Sw.) Nied.<br />

Lophopterys euryptera S<strong>and</strong>with<br />

Malpighia emarg<strong>in</strong>ata DC.<br />

Mascagnia macrodisca (Triana & Planch.) Nied.<br />

Mezia <strong>in</strong>cludens (Benth.) Cuatrec.<br />

Spachea elegans (G. Mey.) A. Juss.<br />

Stigmaphyllon bannisterioides (L.) C.E.<br />

Anderson<br />

Stigmaphyllon convolvulifolium A. Juss.<br />

Stigmaphyllon puberum (Rich.) A. Juss.<br />

Stigmaphyllon s<strong>in</strong>uatum (DC.) A. Juss.<br />

Tetrapterys discolor (G. Mey.) DC.<br />

Tetrapterys fimbripetala A. Juss.<br />

Malvaceae<br />

Abelmoschus moschatus Medik.<br />

Gossypium barbadense L. [cultivated]<br />

Gossypium hirsutum L. [cultivated]<br />

Hibiscus bifurcatus Cav.<br />

Hibiscus furcellatus Desr.<br />

Hibiscus rosa-s<strong>in</strong>ensis L. [cultivated]<br />

Hibiscus sabdariffa L. [cultivated]<br />

Malachra alceifolia Jacq.<br />

Pavonia fruticosa (Mill.) Fawc. & Rendle<br />

Sida acuta Burm. f.<br />

Sida glomerata Cav.<br />

Sida l<strong>in</strong>ifolia Juss. ex Cav.<br />

Sida rhombifolia L.<br />

Sida setosa Mart. ex Colla<br />

Talipariti tiliaceum (L.) Fryxell<br />

Thespesia populnea (L.) Sol. ex Corr?a *<br />

[naturalized] *<br />

Urena lobata L.


Contributions to the Study of Biological Diversity Vol. 3<br />

Marcgraviaceae<br />

Marcgravia coriacea Vahl<br />

Marcgravia magnibracteata Lanj. & Heerdt<br />

Marcgravia pedunculosa Triana & Planch.<br />

Marcgravia purpurea I.W. Bailey<br />

Norantea guianensis Aubl.<br />

Souroubea guianensis Aubl.<br />

Melastomataceae<br />

Aciotis annua (Mart. ex DC.) Triana<br />

Aciotis <strong>in</strong>decora (Bonpl.) Triana<br />

Aciotis ornata (Miq.) Gleason<br />

Aciotis purpurascens (Aubl.) Triana<br />

Bellucia grossularioides (L.) Triana<br />

Clidemia capitellata (Bonpl.) D. Don<br />

Clidemia conglomerata DC.<br />

Clidemia dentata D. Don<br />

Clidemia hirta (L.) D. Don<br />

Clidemia japurensis DC.<br />

Clidemia microthyrsa R.O. Williams<br />

Clidemia pustulata DC.<br />

Clidemia rubra (Aubl.) Mart.<br />

Clidemia venosa (Gleason) Wurdack<br />

Comolia villosa (Aubl.) Triana<br />

Desmoscelis villosa (Aubl.) Naud<strong>in</strong><br />

Henriettea multiflora Naud<strong>in</strong><br />

Henriettea succosa (Aubl.) DC.<br />

Henriettella caudata Gleason<br />

Le<strong>and</strong>ra divaricata (Naud<strong>in</strong>) Cogn.<br />

Le<strong>and</strong>ra rufescens (DC.) Cogn.<br />

Loreya mespiloides Miq.<br />

Miconia ac<strong>in</strong>odendron (L.) Sweet<br />

Miconia aff<strong>in</strong>is DC.<br />

Miconia bubal<strong>in</strong>a (D. Don) Naud<strong>in</strong><br />

Miconia ceramicarpa (DC.) Cogn.<br />

Miconia chrysophylla (Rich.) Urb.<br />

Miconia ciliata (Rich.) DC.<br />

Miconia egensis Cogn.<br />

Miconia fragilis Naud<strong>in</strong><br />

Miconia gratissima Benth. ex Triana<br />

Miconia hypoleuca (Benth.) Triana<br />

Miconia ibaguensis (Bonpl.) Triana<br />

Miconia lateriflora Cogn.<br />

Miconia lepidota DC.<br />

Miconia matthaei Naud<strong>in</strong><br />

Miconia m<strong>in</strong>utiflora (Bonpl.) DC. *<br />

Miconia mirabilis (Aubl.) L.O. Williams<br />

Miconia myriantha Benth.<br />

Miconia nervosa (Sm.) Triana<br />

Miconia plukenetii Naud<strong>in</strong><br />

Miconia pras<strong>in</strong>a (Sw.) DC.<br />

Miconia pubipetala Miq.<br />

Miconia racemosa (Aubl.) DC.<br />

Miconia rubig<strong>in</strong>osa (Bonpl.) DC.<br />

Miconia ruficalyx Gleason<br />

Miconia serrulata (DC.) Naud<strong>in</strong><br />

Myriaspora egensis DC.<br />

Nepsera aquatica (Aubl.) Naud<strong>in</strong><br />

Pterolepis glomerata (Rottb.) Miq.<br />

Rhynchanthera dichotoma (Desr.) DC.<br />

Tococa aristata Benth.<br />

Meliaceae<br />

Azadirachta <strong>in</strong>dica A. Juss. [cultivated]<br />

Carapa guianensis Aubl.<br />

Cedrela odorata L.<br />

Guarea guidonia (L.) Sleumer<br />

Guarea pubescens (Rich.) A. Juss.<br />

Trichilia rubra C. DC.<br />

Trichilia schomburgkii C. DC.<br />

Mendonciaceae<br />

Mendoncia bivalvis (L. f.) Merr.<br />

Mendoncia glabra (Poepp. & Endl.) Nees<br />

Mendoncia hoffmannseggiana Nees<br />

145<br />

Menispermaceae<br />

Cissampelos <strong>and</strong>romorpha DC.<br />

Curarea c<strong>and</strong>icans (Rich. ex DC.) Barneby &<br />

Krukoff<br />

Orthomene schomburgkii (Miers) Barneby &<br />

Krukoff<br />

Telitoxicum sp.<br />

Menyanthaceae<br />

Nymphoides <strong>in</strong>dica (L.) Kuntze<br />

Mimosaceae<br />

Abarema jupunba (Willd.) Britton & Killip<br />

Abarema laeta (Benth.) Barneby & J.W. Grimes<br />

Abarema mataybifolia (S<strong>and</strong>with) Barneby &<br />

J.W. Grimes<br />

Calli<strong>and</strong>ra sur<strong>in</strong>amensis Benth.<br />

Entada polystachya (L.) DC. *<br />

Hydrochorea corymbosa (Rich.) Barneby &<br />

J.W. Grimes<br />

Hydrochorea gonggrijpii (Kle<strong>in</strong>hoonte)<br />

Barneby & J.W. Grimes<br />

Inga acreana Harms<br />

Inga acrocephala Steud.<br />

Inga alba (Sw.) Willd.<br />

Inga bourgonii (Aubl.) DC.


146<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Inga edulis Mart.<br />

Inga graciliflora Benth.<br />

Inga gracilifolia Ducke<br />

Inga huberi Ducke<br />

Inga <strong>in</strong>goides (Rich.) Willd. *<br />

Inga java Pittier<br />

Inga jenmanii S<strong>and</strong>with<br />

Inga lateriflora Miq.<br />

Inga leiocalyc<strong>in</strong>a Benth.<br />

Inga marg<strong>in</strong>ata Willd.<br />

Inga mel<strong>in</strong>onis Sagot<br />

Inga nobilis Willd.<br />

Inga pezizifera Benth.<br />

Inga pilosula (Rich.) J.F. Macbr.<br />

Inga rubig<strong>in</strong>osa (Rich.) DC.<br />

Inga sarmentosa Glaz. ex Harms<br />

Inga sertulifera DC.<br />

Inga splendens Willd.<br />

Inga thibaudiana DC.<br />

Inga umbellifera (Vahl) Steud. ex DC.<br />

Macrosamanea pubiramea (Steud.) Barneby &<br />

J.W. Grimes<br />

Mimosa polydactyla Humb. & Bonpl. ex Willd.<br />

Mimosa myriadenia (Benth.) Benth. *<br />

Pentaclethra macroloba (Willd.) Kuntze<br />

Pithecellobium longiflorum Benth.<br />

Zygia cataractae (Kunth) L. Rico<br />

Zygia latifolia (L.) Fawc. & Rendle<br />

Moraceae<br />

Artocarpus altilis (Park<strong>in</strong>son) Fosberg<br />

[cultivated]<br />

Bagassa guianensis Aubl.<br />

Brosimum guianense (Aubl.) Huber<br />

Ficus amazonica (Miq.) Miq.<br />

Ficus caball<strong>in</strong>a St<strong>and</strong>l.<br />

Ficus eximia Schott<br />

Ficus gomelleira Kunth & Bouché<br />

Ficus guianensis Desv. ex Ham.<br />

Ficus malacocarpa St<strong>and</strong>l.<br />

Ficus mathewsii (Miq.) Miq.<br />

Ficus maxima Mill.<br />

Ficus nymphaeifolia Mill.<br />

Ficus paludica St<strong>and</strong>l.<br />

Ficus paraensis (Miq.) Miq.<br />

Ficus roraimensis C.C. Berg<br />

Ficus trigona L. f.<br />

Pseudolmedia laevis (Ruiz & Pav.) J.F. Macbr.<br />

Mor<strong>in</strong>gaceae<br />

Mor<strong>in</strong>ga oleifera Lam. [cultivated] *<br />

Myristicaceae<br />

Iryanthera juruensis Warb.<br />

Iryanthera lancifolia Ducke *<br />

Iryanthera macrophylla (Benth.) Warb.<br />

Virola calophylla (Spruce) Warb.<br />

Virola elongata (Benth.) Warb.<br />

Virola sebifera Aubl.<br />

Virola sur<strong>in</strong>amensis (Rol. ex Rottb.) Warb.<br />

Myrs<strong>in</strong>aceae<br />

Ardisia guianensis (Aubl.) Mez<br />

Cybianthus sur<strong>in</strong>amensis (Spreng.) G. Agost<strong>in</strong>i<br />

Stylogyne or<strong>in</strong>ocensis (Kunth) Mez<br />

Myrtaceae<br />

Calycolpus goetheanus (DC.) O. Berg<br />

Calyptranthes sp.<br />

Eugenia cucullata Amshoff<br />

Eugenia florida DC.<br />

Eugenia patrisii Vahl<br />

Eugenia punicifolia (Kunth) DC.<br />

Eugenia uniflora L. [cultivated]<br />

Marlierea montana (Aubl.) Amshoff<br />

Marlierea schomburgkiana O. Berg<br />

Myrcia fallax (Rich.) DC.<br />

Myrcia graciliflora Sagot<br />

Myrcia guianensis (Aubl.) DC.<br />

Myrcia servata McVaugh<br />

Myrcia sylvatica (G. Mey.) DC.<br />

Psidium cattleianum Sab<strong>in</strong>e [cultivated]<br />

Psidium guajava L. [naturalized]<br />

Syzygium cum<strong>in</strong>i (L.) Skeels [cultivated]<br />

Syzygium jambos (L.) Alston [cultivated]<br />

Syzygium malaccense (L.) Merr. & Perry<br />

[cultivated]<br />

Nyctag<strong>in</strong>aceae<br />

Boerhavia diffusa L. *<br />

Guapira eggersiana (Heimerl) Lundell<br />

Guapira salicifolia (Heimerl) Lundell<br />

Neea constricta Spruce ex J.A. Schmidt<br />

Neea floribunda Poepp. & Endl.<br />

Nymphaeaceae<br />

Nymphaea odorata Aiton<br />

Nymphaea pulchella DC.<br />

Nymphaea rudgeana G. Mey.<br />

Ochnaceae<br />

Ouratea c<strong>and</strong>ollei (Planch.) Tiegh.<br />

Ouratea leblondii (Tiegh.) Lemée


Ouratea macrocarpa Sastre<br />

Ouratea rorida Sastre<br />

Sauvagesia elata Benth.<br />

Sauvagesia erecta L.<br />

Sauvagesia sprengelii A. St.-Hil.<br />

Olacaceae<br />

Heisteria maguirei Sleumer<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Onagraceae<br />

Ludwigia aff<strong>in</strong>is (DC.) H. Hara<br />

Ludwigia foliobracteolata (Munz) H. Hara<br />

Ludwigia hyssopifolia (G. Don) Exell<br />

Ludwigia latifolia (Benth.) H. Hara<br />

Ludwigia leptocarpa (Nutt.) H. Hara *<br />

Ludwigia nervosa (Poir.) H. Hara<br />

Ludwigia octovalvis (Jacq.) P.H. Raven<br />

Ludwigia torulosa (Arn.) H. Hara<br />

Oxalidaceae<br />

Averrhoa carambola L. [cultivated]<br />

Oxalis barrelieri L.<br />

Oxalis debilis Kunth<br />

Passifloraceae<br />

Passiflora amicorum Wurdack *<br />

Passiflora auriculata Kunth<br />

Passiflora cirrhiflora Juss.<br />

Passiflora cocc<strong>in</strong>ea Aubl.<br />

Passiflora foetida L.<br />

Passiflora garckei Mast.<br />

Passiflora gl<strong>and</strong>ulosa Cav.<br />

Passiflora laurifolia L.<br />

Passiflora nitida Kunth<br />

Passiflora quadrangularis L. [cultivated]<br />

Passiflora quadrigl<strong>and</strong>ulosa Rodschied<br />

Phytolaccaceae<br />

Microtea debilis Sw.<br />

Petiveria alliacea L.<br />

Phytolacca riv<strong>in</strong>oides Kunth & Bouché<br />

Piperaceae<br />

Peperomia duidana Trel. ex Gleason<br />

Peperomia elongata Kunth<br />

Peperomia glabella (Sw.) A. Dietr.<br />

Peperomia macrostachya (Vahl) A. Dietr.<br />

Peperomia magnoliifolia (Jacq.) A. Dietr.<br />

Peperomia obtusifolia (L.) A. Dietr.<br />

Peperomia pernambucensis Miq.<br />

Peperomia rotundifolia (L.) Kunth<br />

Peperomia serpens (Sw.) Loudon<br />

Piper aduncum L.<br />

Piper aequale Vahl<br />

Piper anonifolium (Kunth) C. DC.<br />

Piper arboreum Aubl.<br />

Piper avellanum (Miq.) C. DC.<br />

Piper coruscans Kunth<br />

Piper dilatatum Rich.<br />

Piper divaricatum G. Mey.<br />

Piper glabrescens (Miq.) C. DC.<br />

Piper hispidum Sw.<br />

Piper hostmannianum (Miq.) C. DC.<br />

Piper nigrispicum C. DC.<br />

Piper peltatum L. *<br />

Piper pseudoglabrescens Trel. & Yunck.<br />

Piper pulleanum Yunck.<br />

Polygalaceae<br />

Bredemeyera densiflora A.W. Benn.<br />

Moutabea guianensis Aubl.<br />

Securidaca diversifolia (L.) S.F. Blake<br />

Securidaca paniculata Rich.<br />

147<br />

Polygonaceae<br />

Antigonon leptopus Hook. & Arn. [cultivated]<br />

*<br />

Coccoloba ascendens Duss ex L<strong>in</strong>dau<br />

Coccoloba densifrons Mart. ex Meisn.<br />

Coccoloba marg<strong>in</strong>ata Benth.<br />

Coccoloba parimensis Benth.<br />

Polygonum punctatum Elliott<br />

Triplaris weigeltiana (Rchb.) Kuntze<br />

Portulacaceae<br />

Portulaca oleracea L.<br />

Portulaca pilosa L.<br />

Portulaca sedifolia N.E. Br.<br />

Qui<strong>in</strong>aceae<br />

Qui<strong>in</strong>a guianensis Aubl.<br />

Qui<strong>in</strong>a <strong>in</strong>digofera S<strong>and</strong>with<br />

Rhamnaceae<br />

Gouania lupuloides (L.) Urb. s.l.<br />

Gouania polygama (Jacq.) Urb.<br />

Rhizophoraceae<br />

Cassipourea guianensis Aubl.<br />

Cassipourea lasiocalyx Alston<br />

Rhizophora x harrisonii Leechm. *?<br />

Rhizophora mangle L.


148<br />

Rhizophora racemosa G. Mey.<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Rubiaceae<br />

Amaioua corymbosa Kunth<br />

Amaioua guianensis Aubl.<br />

Bertiera guianensis Aubl.<br />

Borreria assurgens (Ruiz & Pav.) Griseb.<br />

Borreria capitata (Ruiz & Pav.) DC.<br />

Borreria densiflora DC.<br />

Borreria latifolia (Aubl.) K. Schum.<br />

Borreria prostrata (Aubl.) Miq.<br />

Borreria suaveolens G. Mey.<br />

Borreria verticillata (L.) G. Mey.<br />

Chimarrhis microcarpa St<strong>and</strong>l.<br />

C<strong>in</strong>chona sp. [cultivated]<br />

Coccocypselum guianense (Aubl.) K. Schum.<br />

Coccocypselum tontanea Kunth<br />

Coffea arabica L. [cultivated]<br />

Coffea liberica W. Bull ex Hiern [cultivated]<br />

Cosmibuena gr<strong>and</strong>iflora (Ruiz & Pav.) Rusby<br />

Coussarea leptoloba (Spreng. ex Benth. &<br />

Hook. f.) Müll. Arg.<br />

Coussarea violacea Aubl.<br />

Diodia ocymifolia (Willd. ex Roem. & Schult.)<br />

Bremek.<br />

Diodia sarmentosa Sw.<br />

Duroia eriopila L. f.<br />

Faramea guianensis (Aubl.) Bremek.<br />

Faramea multiflora A. Rich. ex DC.<br />

Genipa americana L.<br />

Genipa spruceana Steyerm.<br />

Geophila repens (L.) I.M. Johnst.<br />

Geophila tenuis (Müll. Arg.) St<strong>and</strong>l.<br />

Gonzalagunia bunchosioides St<strong>and</strong>l.<br />

Gonzalagunia cornifolia (Kunth) St<strong>and</strong>l.<br />

Gonzalagunia dicocca Cham. & Schltdl.<br />

Gonzalagunia spicata (Lamb.) M. Gómez<br />

Hamelia patens Jacq.<br />

Hillia illustris (Vell.) K. Schum.<br />

Ixora cocc<strong>in</strong>ea L. [cultivated]<br />

Ixora schomburgkiana Benth.<br />

Malanea hypoleuca Steyerm.<br />

Malanea macrophylla Bartl. ex Griseb.<br />

Mor<strong>in</strong>da citrifolia L. [naturalized] *<br />

Notopleura ulig<strong>in</strong>osa (Sw.) Bremek.<br />

Oldenl<strong>and</strong>ia lancifolia (Schumach.) DC.<br />

[naturalized]<br />

Palicourea crocea (Sw.) Roem. & Schult.<br />

Palicourea croceoides Ham.<br />

Palicourea guianensis Aubl.<br />

Palicourea triphylla DC.<br />

Posoqueria coriacea M. Martens & Galeotti<br />

Posoqueria longiflora Aubl.<br />

Posoqueria tr<strong>in</strong>itatis DC.<br />

Psychotria acum<strong>in</strong>ata Benth.<br />

Psychotria anceps Kunth<br />

Psychotria apoda Steyerm.<br />

Psychotria bahiensis DC.<br />

Psychotria barbiflora DC.<br />

Psychotria callithrix (Miq.) Steyerm.<br />

Psychotria capitata Ruiz & Pav.<br />

Psychotria cupularis (Müll. Arg.) St<strong>and</strong>l.<br />

Psychotria deflexa DC.<br />

Psychotria erecta (Aubl.) St<strong>and</strong>l. & Steyerm.<br />

Psychotria gracilenta Müll. Arg.<br />

Psychotria hoffmannseggiana (Willd. ex Roem.<br />

& Schult.) Müll.<br />

Psychotria horizontalis Sw.<br />

Psychotria iodotricha Müll. Arg.<br />

Psychotria irw<strong>in</strong>ii Steyerm.<br />

Psychotria mapourioides DC.<br />

Psychotria platypoda DC.<br />

Psychotria poeppigiana Müll. Arg.<br />

Psychotria racemosa Rich.<br />

Psychotria tillettii Steyerm.<br />

Psychotria ulviformis Steyerm.<br />

Psychotria wessels-boeri Steyerm.<br />

R<strong>and</strong>ia armata (Sw.) DC.<br />

Rudgea hostmanniana Benth.<br />

Rudgea st<strong>and</strong>leyana Steyerm.<br />

Rudgea stipulacea (DC.) Steyerm.<br />

Sabicea aspera Aubl.<br />

Sabicea glabrescens Benth.<br />

Sabicea oblongifolia (Miq.) Steyerm.<br />

Sabicea velut<strong>in</strong>a Benth.<br />

Schradera polycephala DC.<br />

Sipanea biflora (L. f.) Cham. & Schltdl.<br />

Sipanea pratensis Aubl.<br />

Uncaria guianensis (Aubl.) J.F. Gmel.<br />

Uncaria tomentosa (Willd. ex Roem. & Schult.)<br />

DC.<br />

Rutaceae<br />

Citrus aurantifolia (Christm.) Sw<strong>in</strong>gle<br />

[cultivated]<br />

Citrus aurantium L. [cultivated]<br />

Citrus deliciosa Terr. [cultivated]<br />

Citrus medica L. [cultivated]<br />

Citrus paradisi Macfad. [cultivated]<br />

Citrus reticulata Blanco [cultivated]<br />

Citrus s<strong>in</strong>ensis (L.) Osbeck [cultivated]<br />

Ertela trifolia (L.) Kuntze


Contributions to the Study of Biological Diversity Vol. 3<br />

Murraya paniculata (L.) Jack [cultivated]<br />

Zanthoxylum rhoifolium Lam.<br />

Sabiaceae<br />

Meliosma herbertii Rolfe [cultivated]<br />

Sap<strong>in</strong>daceae<br />

Allophylus racemosus Sw.<br />

Cardiospermum halicacabum L.<br />

Cupania hirsuta Radlk.<br />

Cupania scrobiculata Rich.<br />

Matayba camptoneura Radlk.<br />

Matayba opaca Radlk.<br />

Paull<strong>in</strong>ia caloptera Radlk.<br />

Paull<strong>in</strong>ia capreolata (Aubl.) Radlk.<br />

Paull<strong>in</strong>ia hitchcockii Gleason<br />

Paull<strong>in</strong>ia p<strong>in</strong>nata L.<br />

Paull<strong>in</strong>ia rufescens Rich. ex Juss.<br />

Paull<strong>in</strong>ia xestophylla Radlk.<br />

Pseudima frutescens (Aubl.) Radlk.<br />

Serjania membranacea Splitg.<br />

Serjania paucidentata DC.<br />

Serjania pyramidata Radlk.<br />

Talisia guianensis Aubl.<br />

Talisia hemidasya Radlk.<br />

Talisia hexaphylla Vahl<br />

Sapotaceae<br />

Chrysophyllum argenteum Jacq.<br />

Chrysophyllum ca<strong>in</strong>ito L. [naturalized]<br />

Chrysophyllum pomiferum (Eyma) T.D. Penn.<br />

Chrysophyllum sangu<strong>in</strong>olentum (Pierre) Baehni<br />

Manilkara bidentata (A. DC.) A. Chev.<br />

Manilkara zapota (L.) P. Royen [cultivated]<br />

Micropholis venulosa (Mart. & Eichler) Pierre<br />

Pouteria ambelaniifolia (S<strong>and</strong>with) T.D. Penn.<br />

Pouteria bilocularis (H. W<strong>in</strong>kl.) Baehni<br />

Pouteria caimito (Ruiz & Pav.) Radlk.<br />

Pouteria coriacea (Pierre) Pierre<br />

Pouteria cuspidata (A. DC.) Baehni<br />

Pouteria durl<strong>and</strong>ii (St<strong>and</strong>l.) Baehni<br />

Pouteria guianensis Aubl.<br />

Pouteria hispida Eyma<br />

Pouteria venosa (Mart.) Baehni<br />

Pradosia schomburgkiana (A. DC.) Cronquist<br />

Scrophulariaceae<br />

Achetaria guianensis Pennell<br />

Angelonia biflora Benth.<br />

Asar<strong>in</strong>a erubescens (D. Don) Pennell<br />

[cultivated]<br />

Bacopa aquatica Aubl.<br />

Capraria biflora L.<br />

L<strong>in</strong>dernia crustacea (L.) F. Muell.<br />

L<strong>in</strong>dernia diffusa (L.) Wettst.<br />

Scoparia dulcis L.<br />

Simaroubaceae<br />

Picramnia guianensis (Aubl.) Jans.-Jac.<br />

Picramnia latifolia Tul.<br />

Quassia amara L. [naturalized]<br />

Simarouba amara Aubl.<br />

Siparunaceae<br />

Siparuna decipiens (Tul.) A. DC.<br />

Siparuna guianensis Aubl.<br />

Solanaceae<br />

Capsicum annuum L. [naturalized]<br />

Cestrum latifolium Lam.<br />

Markea camponoti Ducke<br />

Markea longiflora Miers *<br />

Nicotiana tabacum L. [cultivated]<br />

Physalis angulata L.<br />

Physalis pubescens L.<br />

Solanum adhaerens Roem. & Schult.<br />

Solanum asperum Rich.<br />

Solanum leucocarpon Dunal<br />

Solanum lycopersicum L. [cultivated]<br />

Solanum pensile Sendtn.<br />

Solanum rugosum Dunal<br />

Solanum schlechtendalianum Walp.<br />

Solanum stramoniifolium Jacq.<br />

Solanum sub<strong>in</strong>erme Jacq.<br />

149<br />

Sterculiaceae<br />

Herrania kanukuensis R.E. Schult.<br />

Herrania lemniscata (M.R. Schomb.) R.E.<br />

Schult.<br />

Sterculia pruriens (Aubl.) K. Schum.<br />

Sterculia rugosa R. Br.<br />

Theobroma cacao L. [cultivated]<br />

Waltheria <strong>in</strong>dica L.<br />

Theophrastaceae<br />

Clavija lancifolia Desf.<br />

Tiliaceae<br />

Apeiba petoumo Aubl.<br />

Corchorus aestuans L.<br />

Triumfetta althaeoides Lam.


150<br />

Turneraceae<br />

Turnera scabra Millsp.<br />

Turnera ulmifolia L.<br />

Ulmaceae<br />

Trema micrantha (L.) Blume<br />

Urticaceae<br />

Laportea aestuans (L.) Chew<br />

Pilea pubescens Liebm.<br />

Urera baccifera (L.) Gaudich. ex Wedd.<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Verbenaceae<br />

Aegiphila racemosa Vell.<br />

Citharexylum macrophyllum Poir.<br />

Clerodendrum fragrans (Vent.) Willd.<br />

[naturalized]<br />

Lantana camara L.<br />

Lippia alba (Mill.) N.E. Br.<br />

Lippia micromera Schauer<br />

Petrea volubilis L.<br />

Priva lappulacea (L.) Pers.<br />

Stachytarpheta cayennensis (Rich.) Vahl<br />

Stachytarpheta jamaicensis (L.) Vahl<br />

Vitex compressa Turcz.<br />

Vitex stahelii Moldenke<br />

Vitex triflora Vahl<br />

Violaceae<br />

Amphirrhox longifolia (St.-Hil.) Spreng.<br />

Paypayrola gr<strong>and</strong>iflora Tul.<br />

Paypayrola longifolia Tul.<br />

R<strong>in</strong>orea flavescens (Aubl.) Kuntze<br />

R<strong>in</strong>orea pubiflora (Benth.) Sprague & S<strong>and</strong>with<br />

R<strong>in</strong>orea riana (DC.) Kuntze<br />

Viscaceae<br />

Phoradendron bathyoryctum Eichler<br />

Phoradendron perrottetii (DC.) Eichler<br />

Phoradendron piperoides (Kunth) Trel.<br />

Phoradendron racemosum (Aubl.) Krug & Urb.<br />

Vitaceae<br />

Cissus erosa Rich.<br />

Cissus verticillata (L.) Nicolson & C.E. Jarvis<br />

Vochysiaceae<br />

Vochysia guianensis Aubl.<br />

MONOCOTILEDONEAE<br />

Agavaceae<br />

Agave americana L. [cultivated]<br />

Furcraea foetida (L.) Haw.<br />

Alismataceae<br />

Sagittaria lancifolia L.<br />

Araceae<br />

Anthurium gracile (Rudge) Schott<br />

Anthurium obtusum (Engl.) Grayum<br />

Caladium bicolor (Aiton) Vent.<br />

Caladium humboldtii Schott [cultivated]<br />

Caladium schomburgkii Schott<br />

Colocasia esculenta (L.) Schott [cultivated]<br />

Dieffenbachia humilis Poepp.<br />

Dieffenbachia paludicola N.E. Br. ex Gleason<br />

Heteropsis flexuosa (Kunth) G.S. Bunt<strong>in</strong>g<br />

Monstera adansonii Schott<br />

Monstera obliqua Miq.<br />

Montrichardia arborescens (L.) Schott<br />

Montrichardia l<strong>in</strong>ifera (Arruda) Schott *<br />

Philodendron acutatum Schott *<br />

Philodendron brevispathum Schott<br />

Philodendron deflexum Poepp. ex Schott<br />

Philodendron fragrantissimum (Hook.) G. Don<br />

Philodendron gr<strong>and</strong>ifolium (Jacq.) Schott<br />

Philodendron hederaceum (Jacq.) Schott<br />

Philodendron l<strong>in</strong>naei Kunth<br />

Philodendron mel<strong>in</strong>onii Brongn. ex Regel<br />

Philodendron ornatum Schott<br />

Philodendron pedatum (Hook.) Kunth<br />

Philodendron rudgeanum Schott<br />

Philodendron sc<strong>and</strong>ens K. Koch & Sello<br />

Philodendron sur<strong>in</strong>amense (Miq.) Engl.<br />

Rhodospatha oblongata Poepp.<br />

Spathiphyllum cannifolium (Dry<strong>and</strong>. ex Sims)<br />

Schott<br />

Spathiphyllum cuspidatum Schott<br />

Spathiphyllum maguirei G.S. Bunt<strong>in</strong>g<br />

Stenospermation maguirei A.M.E. Jonker &<br />

Jonker *<br />

Syngonium podophyllum Schott<br />

Urospatha sagittifolia (Rudge) Schott<br />

Xanthosoma belophyllum (Willd.) Schott<br />

[naturalized]<br />

Xanthosoma brasiliense (Desf.) Engl.<br />

[cultivated]<br />

Xanthosoma sagittifolium (L.) Schott<br />

[cultivated]<br />

Xanthosoma undipes (K. Koch & C.D. Bouché)<br />

K. Koch<br />

Arecaceae<br />

Astrocaryum aculeatum G. Mey.


Contributions to the Study of Biological Diversity Vol. 3<br />

Astrocaryum gynacanthum Mart.<br />

Astrocaryum vulgare Mart.<br />

Attalea maripa (Aubl.) Mart.<br />

Bactris acanthocarpa Mart.<br />

Bactris brongniartii Mart.<br />

Bactris campestris Poepp. ex Mart.<br />

Bactris gasipaes Kunth [naturalized]<br />

Bactris major Jacq.<br />

Bactris maraja Mart.<br />

Bactris oligoclada Burret<br />

Bactris simplicifrons Mart.<br />

Cocos nucifera L. [cultivated]<br />

Desmoncus orthacanthos Mart.<br />

Desmoncus polyacanthos Mart.<br />

Elaeis gu<strong>in</strong>eensis Jacq. [cultivated]<br />

Euterpe oleracea Mart.<br />

Euterpe precatoria Mart.<br />

Geonoma baculifera (Poit.) Kunth<br />

Geonoma macrostachys Mart.<br />

Geonoma maxima (Poit.) Kunth<br />

Manicaria saccifera Gaertn.<br />

Mauritia flexuosa L. f.<br />

Nypa fruticans Wurmb. [naturalized] *<br />

Oenocarpus bataua Mart.<br />

Roystonea oleracea (Jacq.) O.F. Cook *<br />

Socratea exorrhiza (Mart.) H. Wendl.<br />

Bromeliaceae<br />

Aechmea angustifolia Poepp. & Endl.<br />

Aechmea bromeliifolia (Rudge) Baker<br />

Aechmea l<strong>in</strong>gulata (L.) Baker<br />

Aechmea mertensii (G. Mey.) Schult. & Schult.<br />

f.<br />

Aechmea nudicaulis (L.) Griseb.<br />

Ananas comosus (L.) Merr. [naturalized]<br />

Araeococcus micranthus Brongn.<br />

Bromelia plumieri (E. Morren) L.B. Sm.<br />

Disteganthus lateralis (L.B. Sm.) Gouda<br />

Guzmania l<strong>in</strong>gulata (L.) Mez<br />

Guzmania monostachia (L.) Rusby ex Mez<br />

Guzmania roezlii (E. Morren) Mez<br />

Mezobromelia pleiosticha (Griseb.) Utley & H.<br />

Luther<br />

Till<strong>and</strong>sia bulbosa Hook.<br />

Till<strong>and</strong>sia monadelpha (E. Morren) Baker<br />

Vriesea heliconioides (Kunth) Hook. ex Walp.<br />

Vriesea procera (Mart. ex Schult. f.) Wittm. *<br />

Werauhia gigantea (Mart. ex Schult. f.) J.R.<br />

Grant *<br />

Burmanniaceae<br />

Burmannia tenella Benth.<br />

Cannaceae<br />

Canna <strong>in</strong>dica L. [cultivated]<br />

Canna x generalis L.H. Bailey [cultivated]<br />

Commel<strong>in</strong>aceae<br />

Commel<strong>in</strong>a diffusa Burm. f.<br />

Commel<strong>in</strong>a erecta L. *<br />

Commel<strong>in</strong>a rufipes Seub.<br />

Dichoris<strong>and</strong>ra hex<strong>and</strong>ra (Aubl.) St<strong>and</strong>l.<br />

Gibasis geniculata (Jacq.) Rohweder<br />

Tripog<strong>and</strong>ra serrulata (Vahl) H<strong>and</strong>los<br />

151<br />

Costaceae<br />

Costus amazonicus (Loes.) J.F. Macbr.<br />

[cultivated]<br />

Costus arabicus L.<br />

Costus congestiflorus Rich. ex Gagnep.<br />

Costus erythrothyrsus Loes.<br />

Costus guanaiensis Rusby<br />

Costus scaber Ruiz & Pav.<br />

Costus spiralis (Jacq.) Roscoe<br />

Cyclanthaceae<br />

Asplundia brachyphylla Harl<strong>in</strong>g<br />

Asplundia gl<strong>and</strong>ulosa (Gleason) Harl<strong>in</strong>g<br />

Asplundia gleasonii Harl<strong>in</strong>g<br />

Asplundia guianensis Harl<strong>in</strong>g<br />

Cyclanthus bipartitus Poit.<br />

Evodianthus funifer (Poit.) L<strong>in</strong>dm.<br />

Thoracocarpus bissectus (Vell.) Harl<strong>in</strong>g<br />

Cyperaceae<br />

Becquerelia cymosa Brongn.<br />

Calyptrocarya bicolor (H. Pfeiff.) T. Koyama<br />

Cyperus aggregatus (Willd.) Endl.<br />

Cyperus articulatus L.<br />

Cyperus comosus Poir.<br />

Cyperus digitatus Roxb.<br />

Cyperus haspan L.<br />

Cyperus laxus Lam.<br />

Cyperus ligularis L.<br />

Cyperus luzulae (L.) Rottb. ex Retz.<br />

Cyperus odoratus L.<br />

Cyperus polystachyos Rottb. *<br />

Cyperus simplex Kunth<br />

Cyperus sphacelatus Rottb.


152<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Cyperus sur<strong>in</strong>amensis Rottb.<br />

Diplasia karatifolia Rich.<br />

Eleocharis <strong>in</strong>terst<strong>in</strong>cta (Vahl) Roem. & Schult.<br />

Eleocharis mitrata (Griseb.) C.B. Clarke<br />

Eleocharis mutata (L.) Roem. & Schult.<br />

Eleocharis plicarhachis (Griseb.) Svenson<br />

Eleocharis subfoliata C.B. Clarke<br />

Fimbristylis cymosa R. Br. *<br />

Fimbristylis dichotoma (L.) Vahl<br />

Fimbristylis ferrug<strong>in</strong>ea (L.) Vahl<br />

Fimbristylis miliacea (L.) Vahl<br />

Fuirena umbellata Rottb.<br />

Hypolytrum longifolium (Rich.) Nees<br />

Kyll<strong>in</strong>ga brevifolia Rottb.<br />

Lagenocarpus guianensis L<strong>in</strong>dl. & Nees ex<br />

Nees<br />

Rhynchospora cephalotes (L.) Vahl<br />

Rhynchospora ciliata (Vahl) Kük.<br />

Rhynchospora corymbosa (L.) Britton<br />

Rhynchospora hassleri C.B. Clarke<br />

Rhynchospora holoschoenoides (Rich.) Herter<br />

Rhynchospora pubera (Vahl) Boeck.<br />

Scleria latifolia Sw.<br />

Scleria macrophylla J. Presl & C. Presl<br />

Scleria melaleuca Rchb. ex Schltdl. & Cham.<br />

Scleria microcarpa Nees ex Kunth<br />

Scleria secans (L.) Urb.<br />

Dioscoreaceae<br />

Dioscorea alata L.<br />

Dioscorea cayenensis Lam.<br />

Dioscorea esculenta (Lour.) Pra<strong>in</strong> [cultivated]<br />

Dioscorea oblonga Gleason<br />

Dioscorea pilosiuscula Bertero ex Spreng.<br />

Dioscorea polygonoides Humb. & Bonpl. ex<br />

Willd.<br />

Dioscorea riparia Kunth & R.H. Schomb.<br />

Dioscorea samydea Griseb.<br />

Dioscorea trichanthera Gleason<br />

Dioscorea trifida L. f.<br />

Eriocaulaceae<br />

Paepalanthus bifidus (Schrad.) Kunth<br />

Syngonanthus longipes Gleason<br />

Syngonanthus umbellatus (Lam.) Ruhl<strong>and</strong><br />

Ton<strong>in</strong>a fluviatilis Aubl.<br />

Haemodoraceae<br />

Xiphidium caeruleum Aubl.<br />

Heliconiaceae<br />

Heliconia acum<strong>in</strong>ata Rich.<br />

Heliconia bihai (L.) L.<br />

Heliconia chartacea Lane ex Barreiros<br />

Heliconia hirsuta L. f.<br />

Heliconia psittacorum L. f.<br />

Heliconia richardiana Miq.<br />

Heliconia spathocirc<strong>in</strong>ata Aristeg.<br />

Musa x paradisiaca L. [cultivated]<br />

Hydrocharitaceae<br />

Limnobium laevigatum (Humb. & Bonpl. ex<br />

Willd.) He<strong>in</strong>e *<br />

Iridaceae<br />

Eleuther<strong>in</strong>e bulbosa (Mill.) Urb.<br />

Lemnaceae<br />

Lemna aequ<strong>in</strong>octialis Welw. *<br />

Liliaceae<br />

Aloe vera (L.) Burm. f. [cultivated]<br />

Cordyl<strong>in</strong>e fructicosa (L.) A. Chev. [cultivated]<br />

Cr<strong>in</strong>um erubescens L. f. ex Sol.<br />

Hippeastrum puniceum (Lam.) Kuntze<br />

Hymenocallis littoralis (Jacq.) Salisb.<br />

[naturalized]<br />

Hymenocallis tubiflora Salisb.<br />

Marantaceae<br />

Calathea cyclophora Baker<br />

Calathea elliptica (Roscoe) K. Schum.<br />

Calathea legrelleana (L<strong>in</strong>den) Regel<br />

Calathea micans (Mathieu) Körn.<br />

Calathea variegata L<strong>in</strong>den ex Körn.<br />

Ischnosiphon arouma (Aubl.) Körn.<br />

Ischnosiphon enigmaticus L. Andersson<br />

Ischnosiphon foliosus Gleason<br />

Ischnosiphon obliquus (Rudge) Körn.<br />

Ischnosiphon puberulus Loes.<br />

Maranta arund<strong>in</strong>acea L.<br />

Monotagma spicatum (Aubl.) J.F. Macbr.<br />

Orchidaceae<br />

Brassia neglecta Rchb. f.<br />

Brassia verrucosa L<strong>in</strong>dl.<br />

Catasetum barbatum (L<strong>in</strong>dl.) L<strong>in</strong>dl.<br />

Cyclopogon olivaceus (Rolfe) Schltr.<br />

Dichaea picta Rchb. f.


Contributions to the Study of Biological Diversity Vol. 3<br />

Dichaea rendlei Gleason<br />

Dimer<strong>and</strong>ra elegans (H. Focke) Siegerist<br />

Encyclia diurna (Jacq.) Schltr.<br />

Encyclia granitica (Bateman ex L<strong>in</strong>dl.) Schltr.<br />

Epidendrum anceps Jacq.<br />

Epidendrum ciliare L. *<br />

Epidendrum flexuosum G. Mey.<br />

Epidendrum ibaguense Kunth<br />

Epidendrum longicolle L<strong>in</strong>dl.<br />

Epidendrum macrocarpum Rich.<br />

Epidendrum nocturnum Jacq.<br />

Epidendrum purpurascens H. Focke<br />

Epidendrum rigidum Jacq.<br />

Epidendrum strobiliferum Rchb. f.<br />

Eryc<strong>in</strong>a pusilla (L.) N.H. Williams & M.W.<br />

Chase<br />

Eulophia alta (L.) Fawc. & Rendle<br />

Habenaria longicauda Hook.<br />

Ionopsis utricularioides (Sw.) L<strong>in</strong>dl.<br />

Jacqu<strong>in</strong>iella sp.<br />

Koellenste<strong>in</strong>ia gram<strong>in</strong>ea (L<strong>in</strong>dl.) Rchb. f.<br />

Lockhartia imbricata (Lam.) Hoehne<br />

Maxillaria camaridii Rchb. f.<br />

Maxillaria parviflora (Poepp. & Endl.) Garay<br />

Maxillaria rufescens L<strong>in</strong>dl.<br />

Maxillaria uncata L<strong>in</strong>dl.<br />

Maxillaria villosa (Barb. Rodr.) Cogn.<br />

Oncidium baueri L<strong>in</strong>dl.<br />

Pleurothallis corniculata L<strong>in</strong>dl.<br />

Pleurothallis exigua Cogn.<br />

Pleurothallis gl<strong>and</strong>ulosa Ames<br />

Pleurothallis lanceana Lodd.<br />

Pleurothallis pru<strong>in</strong>osa L<strong>in</strong>dl.<br />

Pleurothallis sclerophylla L<strong>in</strong>dl.<br />

Pleurothallis yauaperyensis Barb. Rodr.<br />

Polystachya concreta (Jacq.) Garay & H.R.<br />

Sweet<br />

Prosthechea aemula (L<strong>in</strong>dl.) W.E. Higg<strong>in</strong>s<br />

Prosthechea vespa (Vell.) W.E. Higg<strong>in</strong>s<br />

Rodriguezia lanceolata Ruiz & Pav.<br />

Scaphyglottis gram<strong>in</strong>ifolia (Ruiz & Pav.) Poepp.<br />

& Endl.<br />

Scaphyglottis sickii Pabst<br />

Selenipedium palmifolium (L<strong>in</strong>dl.) Rchb. f.<br />

Sobralia sessilis L<strong>in</strong>dl.<br />

Stanhopea gr<strong>and</strong>iflora (Lodd.) L<strong>in</strong>dl.<br />

Stelis argentata L<strong>in</strong>dl.<br />

Trichocentrum lanceanum (L<strong>in</strong>dl.) M.W. Chase<br />

& N.H. Williams *<br />

Trigonidium acum<strong>in</strong>atum Bateman ex L<strong>in</strong>dl.<br />

Vanilla fimbriata Rolfe<br />

Vanilla gr<strong>and</strong>iflora L<strong>in</strong>dl.<br />

Vanilla latisegmenta Ames & C. Schwe<strong>in</strong>f.<br />

Vanilla mexicana Mill.<br />

Wullschlaegelia calcarata Benth.<br />

Zygosepalum labiosum (Rich.) Garay<br />

153<br />

Poaceae<br />

Acroceras zizanioides (Kunth) D<strong>and</strong>y<br />

[naturalized]<br />

Andropogon bicornis L.<br />

Andropogon leucostachyus Kunth<br />

Andropogon virgatus Desv. *<br />

Axonopus compressus (Sw.) P. Beauv.<br />

Bambusa vulgaris Schrad. ex J.C. Wendl.<br />

[cultivated]<br />

Coix lacryma-jobi L. [naturalized]<br />

Cymbopogon citratus (DC.) Stapf [naturalized]<br />

Digitaria horizontalis Willd.<br />

Ech<strong>in</strong>ochloa polystachya (Kunth) Hitchc. *<br />

Eleus<strong>in</strong>e <strong>in</strong>dica (L.) Gaertn. [naturalized]<br />

Eragrostis ciliaris (L.) R. Br. [naturalized]<br />

Eragrostis tephrosanthos Schult.<br />

Eragrostis unioloides (Retz.) Nees [naturalized]<br />

Gynerium saccharoides ? Bonpl.<br />

Gynerium sagittatum (Aubl.) P. Beauv.<br />

Homolepis isocalycia (G. Mey.) Chase<br />

Hymenachne amplexicaulis (Rudge) Nees<br />

Hymenachne donacifolia (Raddi) Chase<br />

Ichnanthus pallens (Sw.) Munro ex Benth.<br />

Ichnanthus panicoides P. Beauv.<br />

Ichnanthus ruprechtii Döll<br />

Imperata contracta (Kunth) Hitchc.<br />

Ischaemum timorense Kunth [naturalized]<br />

Lasiacis ligulata Hitchc. & Chase<br />

Leersia hex<strong>and</strong>ra Sw.<br />

Leptochloa scabra Nees<br />

Leptochloa virgata (L.) P. Beauv.<br />

Olyra latifolia L.<br />

Olyra longifolia Kunth<br />

Orthoclada laxa (Rich.) P. Beauv.<br />

Oryza rufipogon Griff. [naturalized]<br />

Panicum elephantipes Nees ex Tr<strong>in</strong>.<br />

Panicum laxum Sw.<br />

Panicum millegrana Poir.<br />

Panicum parvifolium Lam.<br />

Panicum pilosum Sw.<br />

Panicum polygonatum Schrad.


154<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Panicum rudgei Roem. & Schult.<br />

Panicum stoloniferum Poir.<br />

Panicum trichoides Sw.<br />

Paspalum conjugatum P.J. Bergius<br />

Paspalum distichum L. *<br />

Paspalum melanospermum Desv. ex Poir.<br />

Paspalum millegrana Schrad.<br />

Paspalum repens P.J. Bergius<br />

Pharus latifolius L.<br />

Piresia sympodica (Döll) Swallen<br />

Saccharum offic<strong>in</strong>arum L. [cultivated]<br />

Sacciolepis striata (L.) Nash<br />

Setaria parviflora (Poir.) Kerguélen<br />

Setaria poiretiana (Schult.) Kunth<br />

Sporobolus jacquemontii Kunth<br />

Sporobolus virg<strong>in</strong>icus (L.) Kunth *<br />

Vetiveria zizanioides (L.) Nash [cultivated]<br />

Zea mays L. [cultivated]<br />

Pontederiaceae<br />

Eichhornia azurea (Sw.) Kunth<br />

Eichhornia diversifolia (Vahl) Urb.<br />

Rapateaceae<br />

Rapatea l<strong>in</strong>earis Gleason<br />

Rapatea paludosa Aubl.<br />

Smilacaceae<br />

Smilax cumanensis Humb. & Bonpl. ex Willd.<br />

Smilax latipes Gleason<br />

Smilax schomburgkiana Kunth<br />

Taccaceae<br />

Tacca parkeri Seem.<br />

Triuridaceae<br />

Sciaphila albescens Benth.<br />

Typhaceae<br />

Typha dom<strong>in</strong>gensis Pers. *<br />

Xyridaceae<br />

Xyris jupicai Rich.<br />

Xyris laxifolia Mart.<br />

Z<strong>in</strong>giberaceae<br />

Aframomum melegueta K. Schum. [cultivated]<br />

Curcuma zanthorrhiza Roxb. [cultivated]<br />

Hedychium coronarium J. Koenig [naturalized]<br />

Renealmia alp<strong>in</strong>ia (Rottb.) Maas<br />

Renealmia guianensis Maas<br />

Renealmia or<strong>in</strong>ocensis Rusby<br />

Z<strong>in</strong>giber offic<strong>in</strong>ale Roscoe [cultivated]<br />

Z<strong>in</strong>giber zerumbet (L.) Roscoe ex Sm.<br />

[cultivated]


Contributions to the Study of Biological Diversity Vol. 3<br />

APPENDIX 4.<br />

SPECIES DISPARITIES BETWEEN THE NORTHWEST<br />

DISTRICT,<br />

GUYANA AND DELTA AMACURO, VENEZUELA<br />

A: Taxa Found <strong>in</strong> the Northwest District not Recorded for Delta Amacuro<br />

Includ<strong>in</strong>g all Pteridophytes, <strong>and</strong> Spermatophytes (seed plants)<br />

PTERIDOPHYTES<br />

Lycopodiaceae<br />

Lycopodiella cernua (L.) Pic. Serm.<br />

Selag<strong>in</strong>ellaceae<br />

Selag<strong>in</strong>ella parkeri (Hook. & Grev.) Spr<strong>in</strong>g<br />

Selag<strong>in</strong>ella porelloides (Lam.) Spr<strong>in</strong>g<br />

Selag<strong>in</strong>ella producta Baker<br />

Aspleniaceae<br />

Asplenium jugl<strong>and</strong>ifolium Lam.<br />

Dennstaedtiaceae<br />

L<strong>in</strong>dsaea lancea (L.) Bedd.<br />

L<strong>in</strong>dsaea portoricensis Desv.<br />

Saccoloma elegans Kaulf.<br />

Grammitidaceae<br />

Cochlidium serrulatum (Sw.) L.E. Bishop<br />

Hymenophyllaceae<br />

Trichomanes diversifrons (Bory) Mett. ex<br />

Sadeb.<br />

Trichomanes martiusii C. Presl<br />

Trichomanes polypodioides L.<br />

Trichomanes radicans Sw.<br />

Lomariopsidaceae<br />

Elaphoglossum flaccidum (Fée) T. Moore<br />

Elaphoglossum glabellum J. Sm.<br />

Metaxyaceae<br />

Metaxya rostrata (Kunth) C. Presl<br />

Polypodiaceae<br />

Dicranoglossum desvauxii (Klotzsch) Proctor<br />

Microgramma fuscopunctata (Hook.) Vareschi<br />

Phlebodium pseudoaureum (Cav.) Lell<strong>in</strong>ger<br />

155<br />

Polypodium adnatum Kunze ex Klotzsch<br />

Polypodium attenuatum Humb. & Bonpl. ex<br />

Willd.<br />

Pteridaceae<br />

Pteris altissima Poir.<br />

Schizaeaceae<br />

Schizaea flum<strong>in</strong>ensis Miers ex J.W. Sturm<br />

Schizaea <strong>in</strong>curvata Schkuhr<br />

Tectariaceae<br />

Triplophyllum funestum (Kunze) Holttum<br />

Thelypteridaceae<br />

Thelypteris <strong>in</strong>terrupta (Willd.) K. Iwats.<br />

Thelypteris leprieurii (Hook.) R.M. Tryon<br />

Woodsiaceae<br />

Diplazium celtidifolium Kunze<br />

GYMNOSPERMS<br />

Gnetaceae<br />

Gnetum nodiflorum Brongn.<br />

ANGIOSPERMS<br />

Acanthaceae<br />

Justicia pectoralis Jacq.<br />

Agavaceae<br />

Furcraea foetida (L.) Haw.<br />

Alismataceae<br />

Sagittaria lancifolia L.<br />

Amaranthaceae<br />

Alternanthera tenella Colla


156<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Anacardiaceae<br />

Anacardium giganteum W. Hancock ex Engl.<br />

Anacardium occidentale L.<br />

Astronium leco<strong>in</strong>tei Ducke<br />

Thyrsodium guianense Sagot ex March<strong>and</strong><br />

Annonaceae<br />

Annona sericea Dunal<br />

Annona symphyocarpa S<strong>and</strong>with<br />

Bocageopsis multiflora (Mart.) R.E. Fr.<br />

Duguetia calyc<strong>in</strong>a Benoist<br />

Fusaea longifolia (Aubl.) Saff.<br />

Guatteria schomburgkiana Mart.<br />

Roll<strong>in</strong>ia mucosa (Jacq.) Baill.<br />

Xylopia benthamii R.E. Fr.<br />

Xylopia cayennensis Maas<br />

Xylopia sur<strong>in</strong>amensis R.E. Fr.<br />

Apocynaceae<br />

Ambelania acida Aubl.<br />

Himatanthus bracteatus (A. DC.) Woodson<br />

Macoubea guianensis Aubl.<br />

Odontadenia gem<strong>in</strong>ata (Hoffmanns. ex Roem.<br />

& Schult.) Müll. Arg.<br />

Odontadenia puncticulosa (Rich.) Pulle<br />

Odontadenia s<strong>and</strong>withiana Woodson<br />

Plumeria <strong>in</strong>odora Jacq.<br />

Tabernaemontana disticha A. DC.<br />

Tabernaemontana lorifera (Miers) Leeuwenb.<br />

Araceae<br />

Caladium bicolor (Aiton) Vent.<br />

Caladium schomburgkii Schott<br />

Dieffenbachia humilis Poepp.<br />

Dieffenbachia paludicola N.E. Br. ex Gleason<br />

Heteropsis flexuosa (Kunth) G.S. Bunt<strong>in</strong>g<br />

Philodendron brevispathum Schott<br />

Philodendron fragrantissimum (Hook.) G. Don<br />

Philodendron hederaceum (Jacq.) Schott<br />

Philodendron sur<strong>in</strong>amense (Miq.) Engl.<br />

Rhodospatha oblongata Poepp.<br />

Spathiphyllum cuspidatum Schott<br />

Spathiphyllum maguirei G.S. Bunt<strong>in</strong>g<br />

Stenospermation maguirei A.M.E. Jonker &<br />

Jonker<br />

Araliaceae<br />

Schefflera decaphylla (Seem.) Harms<br />

Arecaceae<br />

Astrocaryum aculeatum G. Mey.<br />

Astrocaryum vulgare Mart.<br />

Bactris acanthocarpa Mart.<br />

Bactris campestris Poepp. ex Mart.<br />

Bactris oligoclada Burret<br />

Bactris simplicifrons Mart.<br />

Geonoma baculifera (Poit.) Kunth<br />

Geonoma macrostachys Mart.<br />

Aristolochiaceae<br />

Aristolochia daemon<strong>in</strong>oxia Mast.<br />

Aristolochia hians Willd.<br />

Asclepiadaceae<br />

Blepharodon nitidus (Vell.) J.F. Macbr.<br />

Matelea badilloi Morillo<br />

Matelea stenopetala S<strong>and</strong>with<br />

Stenomeria decalepis Turcz.<br />

Asteraceae<br />

Clibadium sur<strong>in</strong>amense L.<br />

Clibadium sylvestre (Aubl.) Baill.<br />

Conyza bonariensis (L.) Cronquist<br />

Cyrtocymura scorpioides (Lam.) H. Rob.<br />

Elephantopus mollis Kunth<br />

Erechtites hieracifolia (L.) Raf. ex DC.<br />

Mikania banisteriae DC.<br />

Mikania cordifolia (L. f.) Willd.<br />

Mikania hookeriana DC.<br />

Mikania parviflora (Aubl.) H. Karst.<br />

Mikania psilostachya DC.<br />

Sonchus asper (L.) Hill<br />

Sphagneticola trilobata (L.) Pruski<br />

Unxia camphorata L. f.<br />

Begoniaceae<br />

Begonia humilis Dry<strong>and</strong>.<br />

Bignoniaceae<br />

Anemopaegma oligoneuron (Sprague &<br />

S<strong>and</strong>with) A.H. Gentry<br />

Arrabidaea c<strong>and</strong>icans (Rich.) DC.<br />

Ceratophytum tetragonolobum (Jacq.) Sprague<br />

& S<strong>and</strong>with<br />

Crescentia amazonica Ducke<br />

Distictella elongata (Vahl) Urb.<br />

Lundia densiflora DC.<br />

Mart<strong>in</strong>ella obovata (Kunth) Bureau & K.<br />

Schum.<br />

Pleonotoma echitidea Sprague & S<strong>and</strong>with<br />

Schlegelia spruceana K. Schum.<br />

Tabebuia serratifolia (Vahl) G. Nicholson


Bixaceae<br />

Bixa orellana L.<br />

Bombacaceae<br />

Catostemma fragrans Benth.<br />

Pachira <strong>in</strong>signis (Sw.) Sw. ex Savigny<br />

Borag<strong>in</strong>aceae<br />

Cordia schomburgkii DC.<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Bromeliaceae<br />

Aechmea angustifolia Poepp. & Endl.<br />

Disteganthus lateralis (L.B. Sm.) Gouda<br />

Vriesea heliconioides (Kunth) Hook. ex Walp.<br />

Burmanniaceae<br />

Burmannia tenella Benth.<br />

Burseraceae<br />

Protium unifoliolatum Spruce ex Engl.<br />

Tratt<strong>in</strong>nickia boliviana (Swart) Daly<br />

Tratt<strong>in</strong>nickia burserifolia Mart.<br />

Caesalp<strong>in</strong>iaceae<br />

Brownea gr<strong>and</strong>iceps Jacq.<br />

Chamaecrista ramosa (Vogel) H.S. Irw<strong>in</strong> &<br />

Barneby<br />

Dicorynia guianensis Amshoff<br />

Eperua falcata Aubl.<br />

Eperua rubig<strong>in</strong>osa Miq.<br />

Hymenaea courbaril L.<br />

Macrolobium angustifolium (Benth.) R.S.<br />

Cowan<br />

Peltogyne venosa (Vahl) Benth.<br />

Senna alata (L.) Roxb.<br />

Senna bacillaris (L. f.) H.S. Irw<strong>in</strong> & Barneby<br />

Senna qu<strong>in</strong>quangulata (Rich.) H.S. Irw<strong>in</strong> &<br />

Barneby<br />

Senna reticulata (Willd.) H.S. Irw<strong>in</strong> & Barneby<br />

Senna s<strong>and</strong>withiana H.S. Irw<strong>in</strong> & Barneby<br />

Tachigali micropetala (Ducke) Zarucchi &<br />

Pipoly<br />

Capparaceae<br />

Cleome serrata Jacq.<br />

Cleome speciosa Raf.<br />

Cecropiaceae<br />

Cecropia obtusa Trécul<br />

Coussapoa microcephala Trécul<br />

Chrysobalanaceae<br />

Couepia parillo DC.<br />

Licania boyanii Tut<strong>in</strong><br />

Licania <strong>in</strong>cana Aubl.<br />

Licania kunthiana Hook. f.<br />

Licania laxiflora Fritsch<br />

Licania majuscula Sagot<br />

Licania membranacea Sagot ex Laness.<br />

Licania micrantha Miq.<br />

Licania persaudii Fanshawe & Maguire<br />

157<br />

Clusiaceae<br />

Clusia cuneata Benth.<br />

Clusia gaudichaudii Choisy<br />

Clusia myri<strong>and</strong>ra (Benth.) Planch. & Triana<br />

Rheedia virens Planch. & Triana<br />

Tovomita calodictyos S<strong>and</strong>with<br />

Tovomita choisyana Planch. & Triana<br />

Tovomita obscura S<strong>and</strong>with<br />

Tovomita schomburgkii Planch. & Triana<br />

Vismia gracilis Hieron.<br />

Vismia japurensis Reichardt<br />

Vismia sessilifolia (Aubl.) Choisy<br />

Combretaceae<br />

Buchenavia gr<strong>and</strong>is Ducke<br />

Commel<strong>in</strong>aceae<br />

Commel<strong>in</strong>a erecta L.<br />

Gibasis geniculata (Jacq.) Rohweder<br />

Connaraceae<br />

Connarus coriaceus G. Schellenb.<br />

Pseudoconnarus macrophyllus (Poepp.) Radlk.<br />

Convolvulaceae<br />

Ipomoea asarifolia (Desr.) Roem. & Schult.<br />

Ipomoea quamoclit L.<br />

Costaceae<br />

Costus erythrothyrsus Loes.<br />

Costus guanaiensis Rusby<br />

Costus spiralis (Jacq.) Roscoe<br />

Cucurbitaceae<br />

Cayaponia jenmanii C. Jeffrey<br />

Helmontia leptantha (Schltdl.) Cogn.<br />

Cyclanthaceae<br />

Asplundia brachyphylla Harl<strong>in</strong>g


158<br />

Asplundia gl<strong>and</strong>ulosa (Gleason) Harl<strong>in</strong>g<br />

Asplundia gleasonii Harl<strong>in</strong>g<br />

Asplundia guianensis Harl<strong>in</strong>g<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Cyperaceae<br />

Calyptrocarya bicolor (H. Pfeiff.) T. Koyama<br />

Cyperus comosus Poir.<br />

Cyperus simplex Kunth<br />

Diplasia karatifolia Rich.<br />

Eleocharis <strong>in</strong>terst<strong>in</strong>cta (Vahl) Roem. & Schult.<br />

Eleocharis mitrata (Griseb.) C.B. Clarke<br />

Eleocharis plicarhachis (Griseb.) Svenson<br />

Eleocharis subfoliata C.B. Clarke<br />

Fimbristylis ferrug<strong>in</strong>ea (L.) Vahl<br />

Kyll<strong>in</strong>ga brevifolia Rottb.<br />

Rhynchospora cephalotes (L.) Vahl<br />

Rhynchospora ciliata (Vahl) Kük.<br />

Rhynchospora hassleri C.B. Clarke<br />

Rhynchospora holoschoenoides (Rich.) Herter<br />

Rhynchospora pubera (Vahl) Boeck.<br />

Scleria macrophylla J. Presl & C. Presl<br />

Cyrillaceae<br />

Cyrilla racemiflora L.<br />

Dichapetalaceae<br />

Dichapetalum pedunculatum (DC.) Baill.<br />

Dilleniaceae<br />

Davilla nitida (Vahl) Kubitzki<br />

Tetracera asperula Miq.<br />

Dioscoreaceae<br />

Dioscorea cayenensis Lam.<br />

Dioscorea oblonga Gleason<br />

Dioscorea pilosiuscula Bertero ex Spreng.<br />

Dioscorea riparia Kunth & R.H. Schomb.<br />

Dioscorea samydea Griseb.<br />

Dioscorea trichanthera Gleason<br />

Dioscorea trifida L. f.<br />

Droseraceae<br />

Drosera <strong>in</strong>termedia Hayne<br />

Ebenaceae<br />

Diospyros tetr<strong>and</strong>ra Hiern<br />

Elaeocarpaceae<br />

Sloanea eichleri K. Schum.<br />

Sloanea latifolia (Rich.) K. Schum.<br />

Eriocaulaceae<br />

Paepalanthus bifidus (Schrad.) Kunth<br />

Syngonanthus longipes Gleason<br />

Syngonanthus umbellatus (Lam.) Ruhl<strong>and</strong><br />

Erythroxylaceae<br />

Erythroxylum citrifolium A. St.-Hil.<br />

Erythroxylum macrophyllum Cav.<br />

Euphorbiaceae<br />

Alchornea discolor Poepp.<br />

Alchornea tripl<strong>in</strong>ervia (Spreng.) Müll. Arg.<br />

Alchorneopsis floribunda (Benth.) Müll. Arg.<br />

Croton cuneatus Klotzsch<br />

Euphorbia cot<strong>in</strong>ifolia L.<br />

Euphorbia oerstediana (Klotzsch & Garcke)<br />

Boiss.<br />

Euphorbia thymifolia L.<br />

Microstachys corniculata (Vahl) Griseb.<br />

Phyllanthus brasiliensis (Aubl.) Poir.<br />

Fabaceae<br />

Alexa confusa Pittier<br />

Alexa sur<strong>in</strong>amensis Yakovlev<br />

Centrosema capitatum (Rich.) Amshoff<br />

Crotalaria nitens Kunth<br />

Crotalaria stipularia Desv.<br />

Derris amazonica Killip<br />

Derris pterocarpus (DC.) Killip<br />

Desmodium axillare (Sw.) DC.<br />

Dioclea scabra (Rich.) R.H. Maxwell<br />

Dioclea wilsonii St<strong>and</strong>l.<br />

Hymenolobium flavum Kle<strong>in</strong>hoonte<br />

Lonchocarpus chrysophyllus Kle<strong>in</strong>hoonte<br />

Lonchocarpus martynii A.C. Sm.<br />

Lonchocarpus rufescens Benth.<br />

Lonchocarpus spruceanus Benth.<br />

Machaerium leiophyllum (DC.) Benth.<br />

Machaerium qu<strong>in</strong>atum (Aubl.) S<strong>and</strong>with<br />

Ormosia cocc<strong>in</strong>ea (Aubl.) Jacks.<br />

Ormosia cout<strong>in</strong>hoi Ducke<br />

Ormosia nobilis Tul.<br />

Platymiscium p<strong>in</strong>natum (Jacq.) Dug<strong>and</strong><br />

Swartzia conferta Spruce ex Benth.<br />

Swartzia guianensis (Aubl.) Urb.<br />

Swartzia schomburgkii Benth.<br />

Swartzia steyermarkii R.S. Cowan<br />

Tephrosia s<strong>in</strong>apou (Buc’hoz) A. Chev.<br />

Zornia diphylla (L.) Pers.


Contributions to the Study of Biological Diversity Vol. 3<br />

Flacourtiaceae<br />

Banara guianensis Aubl.<br />

Casearia acum<strong>in</strong>ata DC.<br />

Casearia javitensis Kunth<br />

Ryania speciosa Vahl<br />

Xylosma benthamii (Tul.) Triana & Planch.<br />

Gentianaceae<br />

Chelonanthus purpurascens (Aubl.) Struwe, S.<br />

Nilsson & V.A. Albert<br />

Gesneriaceae<br />

Besleria flavovirens Nees & Mart.<br />

Chrysothemis villosa (Benth.) Leeuwenb.<br />

Codonanthe calcarata (Miq.) Hanst.<br />

Nautilocalyx cocc<strong>in</strong>eus Feuillet & L.E. Skog<br />

Nautilocalyx cordatus (Gleason) L.E. Skog<br />

Nautilocalyx mimuloides (Benth.) C.V. Morton<br />

Paradrymonia maculata (Hook. f.) Wiehler<br />

Heliconiaceae<br />

Heliconia acum<strong>in</strong>ata Rich.<br />

Heliconia chartacea Lane ex Barreiros<br />

Hippocrateaceae<br />

Peritassa pru<strong>in</strong>osa (Seem.) A.C. Sm.<br />

Tontelea glabra A.C. Sm.<br />

Humiriaceae<br />

Humiria balsamifera Aubl.<br />

Humiriastrum obovatum (Benth.) Cuatrec.<br />

Icac<strong>in</strong>aceae<br />

Discophora guianensis Miers<br />

Emmotum fagifolium Ham.<br />

Poraqueiba guianensis Aubl.<br />

Iridaceae<br />

Eleuther<strong>in</strong>e bulbosa (Mill.) Urb.<br />

Lamiaceae<br />

Hyptis parkeri Benth.<br />

Lauraceae<br />

Aiouea guianensis Aubl.<br />

Aniba guianensis Aubl.<br />

Aniba hostmanniana (Nees) Mez<br />

Aniba hypoglauca S<strong>and</strong>with<br />

Aniba jenmanii Mez<br />

Aniba term<strong>in</strong>alis Ducke<br />

Licaria oppositifolia (Nees) Kosterm.<br />

Nect<strong>and</strong>ra amazonum Nees<br />

Ocotea puberula (Rich.) Nees<br />

Ocotea splendens (Meisn.) Baill.<br />

Persea nivea Mez<br />

159<br />

Lecythidaceae<br />

Eschweilera alata A.C. Sm.<br />

Eschweilera micrantha (O. Berg) Miers<br />

Eschweilera sagotiana Miers<br />

Eschweilera wachenheimii (Benoist) S<strong>and</strong>with<br />

Lentibulariaceae<br />

Utricularia benjam<strong>in</strong>iana Oliv.<br />

Utricularia myriocista A. St.-Hil. & Girard<br />

Liliaceae<br />

Hippeastrum puniceum (Lam.) Kuntze<br />

Loganiaceae<br />

Strychnos erichsonii M.R. Schomb. ex Progel<br />

Strychnos mitscherlichii M.R. Schomb.<br />

Malpighiaceae<br />

Banisteriopsis caapi (Griseb.) C.V. Morton<br />

Burdachia sphaerocarpa A. Juss.<br />

Diplopterys pauciflora (G. Mey.) Nied.<br />

Heteropterys macrostachya A. Juss.<br />

Hiraea fagifolia (DC.) A. Juss.<br />

Mascagnia macrodisca (Triana & Planch.) Nied.<br />

Mezia <strong>in</strong>cludens (Benth.) Cuatrec.<br />

Stigmaphyllon convolvulifolium A. Juss.<br />

Tetrapterys fimbripetala A. Juss.<br />

Malvaceae<br />

Sida glomerata Cav.<br />

Urena lobata L.<br />

Marantaceae<br />

Calathea legrelleana (L<strong>in</strong>den) Regel<br />

Calathea variegata L<strong>in</strong>den ex Körn.<br />

Ischnosiphon enigmaticus L. Andersson<br />

Ischnosiphon foliosus Gleason<br />

Maranta arund<strong>in</strong>acea L.<br />

Marcgraviaceae<br />

Marcgravia magnibracteata Lanj. & Heerdt<br />

Marcgravia purpurea I.W. Bailey<br />

Melastomataceae<br />

Aciotis annua (Mart. ex DC.) Triana<br />

Aciotis <strong>in</strong>decora (Bonpl.) Triana


160<br />

Bellucia grossularioides (L.) Triana<br />

Clidemia capitellata (Bonpl.) D. Don<br />

Clidemia dentata D. Don<br />

Clidemia microthyrsa R.O. Williams<br />

Clidemia rubra (Aubl.) Mart.<br />

Clidemia venosa (Gleason) Wurdack<br />

Comolia villosa (Aubl.) Triana<br />

Desmoscelis villosa (Aubl.) Naud<strong>in</strong><br />

Henriettea succosa (Aubl.) DC.<br />

Henriettella caudata Gleason<br />

Loreya mespiloides Miq.<br />

Miconia ac<strong>in</strong>odendron (L.) Sweet<br />

Miconia bubal<strong>in</strong>a (D. Don) Naud<strong>in</strong><br />

Miconia ciliata (Rich.) DC.<br />

Miconia egensis Cogn.<br />

Miconia gratissima Benth. ex Triana<br />

Miconia hypoleuca (Benth.) Triana<br />

Miconia ibaguensis (Bonpl.) Triana<br />

Miconia lepidota DC.<br />

Miconia matthaei Naud<strong>in</strong><br />

Miconia m<strong>in</strong>utiflora (Bonpl.) DC.<br />

Miconia rubig<strong>in</strong>osa (Bonpl.) DC.<br />

Myriaspora egensis DC.<br />

Pterolepis glomerata (Rottb.) Miq.<br />

Tococa aristata Benth.<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Mendonciaceae<br />

Mendoncia bivalvis (L. f.) Merr.<br />

Mendoncia glabra (Poepp. & Endl.) Nees<br />

Menispermaceae<br />

Curarea c<strong>and</strong>icans (Rich. ex DC.) Barneby &<br />

Krukoff<br />

Menyanthaceae<br />

Nymphoides <strong>in</strong>dica (L.) Kuntze<br />

Mimosaceae<br />

Abarema jupunba (Willd.) Britton & Killip<br />

Abarema laeta (Benth.) Barneby & J.W. Grimes<br />

Abarema mataybifolia (S<strong>and</strong>with) Barneby &<br />

J.W. Grimes<br />

Calli<strong>and</strong>ra sur<strong>in</strong>amensis Benth.<br />

Hydrochorea corymbosa (Rich.) Barneby &<br />

J.W. Grimes<br />

Hydrochorea gonggrijpii (Kle<strong>in</strong>hoonte)<br />

Barneby & J.W. Grimes<br />

Inga acreana Harms<br />

Inga acrocephala Steud.<br />

Inga graciliflora Benth.<br />

Inga java Pittier<br />

Inga jenmanii S<strong>and</strong>with<br />

Inga marg<strong>in</strong>ata Willd.<br />

Inga pilosula (Rich.) J.F. Macbr.<br />

Inga sarmentosa Glaz. ex Harms<br />

Inga sertulifera DC.<br />

Inga thibaudiana DC.<br />

Macrosamanea pubiramea (Steud.) Barneby &<br />

J.W. Grimes<br />

Moraceae<br />

Bagassa guianensis Aubl.<br />

Ficus mathewsii (Miq.) Miq.<br />

Ficus roraimensis C.C. Berg<br />

Myristicaceae<br />

Iryanthera juruensis Warb.<br />

Iryanthera macrophylla (Benth.) Warb.<br />

Virola calophylla (Spruce) Warb.<br />

Myrs<strong>in</strong>aceae<br />

Stylogyne or<strong>in</strong>ocensis (Kunth) Mez<br />

Myrtaceae<br />

Eugenia cucullata Amshoff<br />

Eugenia punicifolia (Kunth) DC.<br />

Myrcia graciliflora Sagot<br />

Myrcia sylvatica (G. Mey.) DC.<br />

Nyctag<strong>in</strong>aceae<br />

Guapira salicifolia (Heimerl) Lundell<br />

Neea constricta Spruce ex J.A. Schmidt<br />

Neea floribunda Poepp. & Endl.<br />

Nymphaeaceae<br />

Nymphaea odorata Aiton<br />

Ochnaceae<br />

Ouratea c<strong>and</strong>ollei (Planch.) Tiegh.<br />

Ouratea macrocarpa Sastre<br />

Ouratea rorida Sastre<br />

Sauvagesia sprengelii A. St.-Hil.<br />

Onagraceae<br />

Ludwigia nervosa (Poir.) H. Hara<br />

Orchidaceae<br />

Cyclopogon olivaceus (Rolfe) Schltr.<br />

Dichaea rendlei Gleason<br />

Encyclia diurna (Jacq.) Schltr.<br />

Epidendrum anceps Jacq.<br />

Epidendrum ibaguense Kunth<br />

Epidendrum macrocarpum Rich.


Contributions to the Study of Biological Diversity Vol. 3<br />

Epidendrum purpurascens H. Focke<br />

Maxillaria parviflora (Poepp. & Endl.) Garay<br />

Maxillaria villosa (Barb. Rodr.) Cogn.<br />

Pleurothallis exigua Cogn.<br />

Pleurothallis lanceana Lodd.<br />

Pleurothallis sclerophylla L<strong>in</strong>dl.<br />

Pleurothallis yauaperyensis Barb. Rodr.<br />

Selenipedium palmifolium (L<strong>in</strong>dl.) Rchb. f.<br />

Vanilla fimbriata Rolfe<br />

Vanilla gr<strong>and</strong>iflora L<strong>in</strong>dl.<br />

Vanilla latisegmenta Ames & C. Schwe<strong>in</strong>f.<br />

Wullschlaegelia calcarata Benth.<br />

Oxalidaceae<br />

Oxalis barrelieri L.<br />

Oxalis debilis Kunth<br />

Passifloraceae<br />

Passiflora amicorum Wurdack<br />

Passiflora cirrhiflora Juss.<br />

Passiflora garckei Mast.<br />

Passiflora gl<strong>and</strong>ulosa Cav.<br />

Passiflora nitida Kunth<br />

Piperaceae<br />

Peperomia duidana Trel. ex Gleason<br />

Peperomia pernambucensis Miq.<br />

Peperomia rotundifolia (L.) Kunth<br />

Piper aduncum L.<br />

Piper avellanum (Miq.) C. DC.<br />

Piper glabrescens (Miq.) C. DC.<br />

Piper nigrispicum C. DC.<br />

Piper pulleanum Yunck.<br />

Poaceae<br />

Andropogon leucostachyus Kunth<br />

Eragrostis tephrosanthos Schult.<br />

Gynerium saccharoides ? Bonpl.<br />

Homolepis isocalycia (G. Mey.) Chase<br />

Ichnanthus ruprechtii Döll<br />

Imperata contracta (Kunth) Hitchc.<br />

Panicum laxum Sw.<br />

Panicum millegrana Poir.<br />

Panicum polygonatum Schrad.<br />

Panicum rudgei Roem. & Schult.<br />

Panicum trichoides Sw.<br />

Paspalum distichum L.<br />

Paspalum repens P.J. Bergius<br />

Piresia sympodica (Döll) Swallen<br />

Sporobolus jacquemontii Kunth<br />

Sporobolus virg<strong>in</strong>icus (L.) Kunth<br />

Polygalaceae<br />

Bredemeyera densiflora A.W. Benn.<br />

Moutabea guianensis Aubl.<br />

Polygonaceae<br />

Coccoloba densifrons Mart. ex Meisn.<br />

Coccoloba parimensis Benth.<br />

Rapateaceae<br />

Rapatea l<strong>in</strong>earis Gleason<br />

Rhamnaceae<br />

Gouania lupuloides (L.) Urb. s.l.<br />

Rhizophoraceae<br />

Cassipourea lasiocalyx Alston<br />

161<br />

Rubiaceae<br />

Amaioua corymbosa Kunth<br />

Borreria assurgens (Ruiz & Pav.) Griseb.<br />

Borreria capitata (Ruiz & Pav.) DC.<br />

Borreria densiflora DC.<br />

Coccocypselum tontanea Kunth<br />

Coussarea leptoloba (Spreng. ex Benth. &<br />

Hook. f.) Müll. Arg.<br />

Coussarea violacea Aubl.<br />

Faramea guianensis (Aubl.) Bremek.<br />

Faramea multiflora A. Rich. ex DC.<br />

Genipa spruceana Steyerm.<br />

Geophila tenuis (Müll. Arg.) St<strong>and</strong>l.<br />

Gonzalagunia bunchosioides St<strong>and</strong>l.<br />

Gonzalagunia cornifolia (Kunth) St<strong>and</strong>l.<br />

Gonzalagunia dicocca Cham. & Schltdl.<br />

Gonzalagunia spicata (Lamb.) M. Gómez<br />

Ixora schomburgkiana Benth.<br />

Malanea hypoleuca Steyerm.<br />

Palicourea guianensis Aubl.<br />

Palicourea triphylla DC.<br />

Posoqueria coriacea M. Martens & Galeotti<br />

Posoqueria tr<strong>in</strong>itatis DC.<br />

Psychotria anceps Kunth<br />

Psychotria bahiensis DC.<br />

Psychotria barbiflora DC.<br />

Psychotria callithrix (Miq.) Steyerm.<br />

Psychotria capitata Ruiz & Pav.<br />

Psychotria erecta (Aubl.) St<strong>and</strong>l. & Steyerm.<br />

Psychotria horizontalis Sw.<br />

Psychotria mapourioides DC.<br />

Psychotria platypoda DC.<br />

Psychotria tillettii Steyerm.<br />

Psychotria ulviformis Steyerm.


162<br />

Psychotria wessels-boeri Steyerm.<br />

Rudgea st<strong>and</strong>leyana Steyerm.<br />

Rudgea stipulacea (DC.) Steyerm.<br />

Sabicea aspera Aubl.<br />

Sabicea velut<strong>in</strong>a Benth.<br />

Schradera polycephala DC.<br />

Rutaceae<br />

Ertela trifolia (L.) Kuntze<br />

Zanthoxylum rhoifolium Lam.<br />

Sap<strong>in</strong>daceae<br />

Allophylus racemosus Sw.<br />

Cupania scrobiculata Rich.<br />

Matayba camptoneura Radlk.<br />

Matayba opaca Radlk.<br />

Paull<strong>in</strong>ia caloptera Radlk.<br />

Paull<strong>in</strong>ia hitchcockii Gleason<br />

Paull<strong>in</strong>ia xestophylla Radlk.<br />

Pseudima frutescens (Aubl.) Radlk.<br />

Talisia guianensis Aubl.<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Sapotaceae<br />

Chrysophyllum pomiferum (Eyma) T.D. Penn.<br />

Chrysophyllum sangu<strong>in</strong>olentum (Pierre) Baehni<br />

Pouteria bilocularis (H. W<strong>in</strong>kl.) Baehni<br />

Pouteria coriacea (Pierre) Pierre<br />

Pouteria durl<strong>and</strong>ii (St<strong>and</strong>l.) Baehni<br />

Pouteria guianensis Aubl.<br />

Pradosia schomburgkiana (A. DC.) Cronquist<br />

Scrophulariaceae<br />

Achetaria guianensis Pennell<br />

Angelonia biflora Benth.<br />

L<strong>in</strong>dernia diffusa (L.) Wettst.<br />

Simaroubaceae<br />

Picramnia guianensis (Aubl.) Jans.-Jac.<br />

Smilacaceae<br />

Smilax latipes Gleason<br />

Solanaceae<br />

Markea camponoti Ducke (possibly =M.<br />

longiflora)<br />

Markea longiflora Miers<br />

Solanum leucocarpon Dunal<br />

Solanum rugosum Dunal<br />

Solanum schlechtendalianum Walp.<br />

Sterculiaceae<br />

Herrania kanukuensis R.E. Schult.<br />

Sterculia rugosa R. Br.<br />

Taccaceae<br />

Tacca parkeri Seem.<br />

Theophrastaceae<br />

Clavija lancifolia Desf.<br />

Tiliaceae<br />

Corchorus aestuans L.<br />

Triumfetta althaeoides Lam.<br />

Triuridaceae<br />

Sciaphila albescens Benth.<br />

Turneraceae<br />

Turnera scabra Millsp.<br />

Turnera ulmifolia L.<br />

Urticaceae<br />

Pilea pubescens Liebm.<br />

Urera baccifera (L.) Gaudich. ex Wedd.<br />

Verbenaceae<br />

Aegiphila racemosa Vell.<br />

Vitex compressa Turcz.<br />

Vitex triflora Vahl<br />

Violaceae<br />

Paypayrola gr<strong>and</strong>iflora Tul.<br />

R<strong>in</strong>orea flavescens (Aubl.) Kuntze<br />

Viscaceae<br />

Phoradendron bathyoryctum Eichler<br />

Phoradendron perrottetii (DC.) Eichler<br />

Vochysiaceae<br />

Vochysia guianensis Aubl.


Contributions to the Study of Biological Diversity Vol. 3<br />

B: Taxa Found <strong>in</strong> Delta Amacuro but not Recorded for Guyana<br />

Includ<strong>in</strong>g all Pteridophytes, <strong>and</strong> Spermatophytes (seed plants)<br />

LYCOPHYTES<br />

Selag<strong>in</strong>ellaceae<br />

Selag<strong>in</strong>ella cladorrhizans A. Braun<br />

PTERIDOPHYTES<br />

Adiantaceae<br />

Cheilanthes bonariensis (Willd.) Proctor<br />

Pteridaceae<br />

Pteris tripartita Sw.<br />

Thelypteridaceae<br />

Thelypteris angustifolia (Willd.) Proctor<br />

SPERMATOPHYTES<br />

Acanthaceae<br />

Barleria cristata L.<br />

Barleria lupul<strong>in</strong>a L<strong>in</strong>dl.<br />

Justicia laevil<strong>in</strong>guis (Nees) L<strong>in</strong>dau<br />

Justicia moritziana Wassh.<br />

Sanchezia pennellii Leonard<br />

Thunbergia erecta (Benth.) T. Anderson<br />

Alismataceae<br />

Ech<strong>in</strong>odorus horizontalis Rataj<br />

Sagittaria sprucei Micheli<br />

Amaranthaceae<br />

Celosia virgata Jacq.<br />

Anacardiaceae<br />

Astronium graveolens Jacq.<br />

Aquifoliaceae<br />

Ilex parvifructa Edw<strong>in</strong><br />

Araceae<br />

Anthurium digitatum (Jacq.) G. Don<br />

Philodendron delascioi G.S. Bunt<strong>in</strong>g<br />

Philodendron fendleri K. Krause<br />

Xanthosoma sagittifolium (L.) Schott<br />

Aristolochiaceae<br />

Aristolochia sprucei Mast.<br />

Asclepiadaceae<br />

Cynanchum strictum R.W. Holm<br />

163<br />

Asteraceae<br />

Ambrosia peruviana Willd.<br />

Ayapana tr<strong>in</strong>itensis (Kuntze) R.M. K<strong>in</strong>g & H.<br />

Rob.<br />

Oyedaea alba Pruski<br />

Pseudogynoxys chenopodioides (Kunth)<br />

Cabrera<br />

Spilanthes urens Jacq.<br />

Tessaria <strong>in</strong>tegrifolia Ruiz & Pav.<br />

Bignoniaceae<br />

Arrabidaea chica (Bonpl.) B. Verl.<br />

Memora patula Miers<br />

Borag<strong>in</strong>aceae<br />

Cordia dentata Poir.<br />

Cordia panamensis Riley<br />

Bromeliaceae<br />

Hohenbergia stellata Schult. f.<br />

Till<strong>and</strong>sia balbisiana Schult. f.<br />

Till<strong>and</strong>sia elongata Kunth<br />

Till<strong>and</strong>sia gardneri L<strong>in</strong>dl.<br />

Till<strong>and</strong>sia polystachia (L.) L.<br />

Caesalp<strong>in</strong>iaceae<br />

Campsi<strong>and</strong>ra implexicaulis Stergios<br />

Chamaecrista pilosa (L.) Greene<br />

Crudia aequalis Ducke<br />

Senna spectabilis (DC.) H.S. Irw<strong>in</strong> & Barneby<br />

Senna sp<strong>in</strong>escens (Vogel) H.S. Irw<strong>in</strong> & Barneby<br />

Capparaceae<br />

Capparis osmantha Diels<br />

Caprifoliaceae<br />

Sambucus canadensis L.<br />

Caryophyllaceae<br />

Polycarpon apurense Kunth


164<br />

Celastraceae<br />

Elaeodendron xylocarpum (Vent.) DC.<br />

Z<strong>in</strong>owiewia aymardii Steyerm.<br />

Chrysobalanaceae<br />

Licania latistipula Prance<br />

Licania leucosepala Griseb.<br />

Licania pyrifolia Griseb.<br />

Clusiaceae<br />

Clusia c<strong>and</strong>elabrum Planch. & Triana<br />

Clusia comans (Meisn.) Pipoly<br />

Combretaceae<br />

Combretum sp<strong>in</strong>osum Bonpl.<br />

Connaraceae<br />

Connarus venezuelanus Baill.<br />

Convolvulaceae<br />

Ipomoea fimbriosepala Choisy<br />

Maripa repens Rusby<br />

Cucurbitaceae<br />

Cayaponia metensis Cuatrec.<br />

Fevillea cordifolia L.<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Cyclanthaceae<br />

Asplundia moritziana (Klotzsch) Harl<strong>in</strong>g<br />

Cyperaceae<br />

Bulbostylis svensoniana Steyerm.<br />

Cyperus cornelii-ostenii Kük.<br />

Cyperus felipponei Kük.<br />

Cyperus gardneri Nees<br />

Cyperus meyenianus Kunth<br />

Elaeocarpaceae<br />

Sloanea megacarpa Steyerm. & Marc.-Berti<br />

Sloanea obtusifolia (Moric.) K. Schum.<br />

Sloanea subpsilocarpa Steyerm.<br />

Euphorbiaceae<br />

Alchornea castaneifolia (Willd.) A. Juss.<br />

Alchornea gr<strong>and</strong>iflora Müll. Arg.<br />

Croton bolivarensis Croizat<br />

Dalechampia brownsbergensis G.L. Webster &<br />

Armbr.<br />

Phyllanthus fluitans Benth. ex Müll. Arg.<br />

Piranhea longepedunculata Jabl.<br />

Plukenetia penn<strong>in</strong>ervia Müll. Arg.<br />

Fabaceae<br />

Cymbosema roseum Benth.<br />

Dalbergia hygrophila (Mart. ex Benth.) Hoehne<br />

Dalbergia subcymosa Ducke<br />

Derris negrensis Benth.<br />

Desmodium aff<strong>in</strong>e Schltdl.<br />

Desmodium tortuosum (Sw.) DC.<br />

Lonchocarpus fendleri Benth.<br />

Lonchocarpus imatacensis Poppend.<br />

Lonchocarpus sericeus (Poir.) Kunth ex DC.<br />

Lonchocarpus tubicalyx Pittier ex Poppend.<br />

Mucuna rostrata Benth.<br />

Vatairea paraensis Ducke<br />

Vigna longifolia (Benth.) Verdc.<br />

Flacourtiaceae<br />

Banara nitida Spruce ex Benth.<br />

Banara or<strong>in</strong>ocensis (Cuatrec.) Sleumer<br />

Hippocrateaceae<br />

Pristimera tenuiflora (Mart. ex Peyr.) A.C. Sm.<br />

Lamiaceae<br />

Hyptis brevipes Poit.<br />

Lauraceae<br />

C<strong>in</strong>namomum tripl<strong>in</strong>erve (Ruiz & Pav.)<br />

Kosterm.<br />

Nect<strong>and</strong>ra pichurim (Kunth) Mez<br />

Lemnaceae<br />

Spirodela <strong>in</strong>termedia W. Koch<br />

Loganiaceae<br />

Strychnos mattogrossensis S. Moore<br />

Loranthaceae<br />

Psittacanthus ac<strong>in</strong>arius (Mart.) Mart.<br />

Lythraceae<br />

Cuphea elliptica Koehne<br />

Rotala ramosior (L.) Koehne<br />

Malpighiaceae<br />

Banisteriopsis lyrata B. Gates<br />

Bunchosia armeniaca (Cav.) DC.<br />

Clonodia complicata (Kunth) W.R. Anderson<br />

Malpighia emarg<strong>in</strong>ata DC.<br />

Mascagnia divaricata (Kunth) Nied.<br />

Stigmaphyllon adenodon A. Juss.


Contributions to the Study of Biological Diversity Vol. 3<br />

Malvaceae<br />

Abelmoschus moschatus Medik.<br />

Cienfuegosia heterophylla (Vent.) Garcke<br />

Urena s<strong>in</strong>uata L.<br />

Wissadula hern<strong>and</strong>ioides (L’Hér.) Garcke<br />

Marantaceae<br />

Calathea <strong>in</strong>ocephala (Kuntze) H. Kenn. &<br />

Nicolson<br />

Ctenanthe compressa (A. Dietr.) Eichler<br />

Melastomataceae<br />

Adelobotrys spruceana Cogn.<br />

Clidemia acurensis Wurdack<br />

Miconia borjensis Wurdack<br />

Menispermaceae<br />

Borismene japurensis (Mart.) Barneby<br />

Mimosaceae<br />

Enterolobium bar<strong>in</strong>ense L. Cardenas & H. Rodr.<br />

Inga sap<strong>in</strong>doides Willd.<br />

Macrosamanea spruceana (Benth.) Killip<br />

Mimosa casta L.<br />

Mimosa or<strong>in</strong>ocoënsis Barneby<br />

Moraceae<br />

Clarisia racemosa Ruiz & Pav.<br />

Ficus dendrocida Kunth<br />

Myrtaceae<br />

Calycorectes enormis McVaugh<br />

Eugenia baileyi Britton<br />

Syzygium malaccense (L.) Merr. & Perry<br />

Nyctag<strong>in</strong>aceae<br />

Guapira ferrug<strong>in</strong>ea (Klotsch ex Choisy)<br />

Lundell<br />

Guapira marcano-bertii Steyerm.<br />

Guapira rusbyana (Heimerl ex St<strong>and</strong>l.) Lundell<br />

Neea davidsei Steyerm.<br />

Olacaceae<br />

Heisteria acum<strong>in</strong>ata (Bonpl.) Engl.<br />

Onagraceae<br />

Ludwigia densiflora (Micheli) H. Hara<br />

Orchidaceae<br />

Campylocentrum lansbergii (Rchb. f.) Schltr.<br />

Chelyorchis ampliata (L<strong>in</strong>dl.) Dressler & N.H.<br />

165<br />

Williams<br />

Dichaea panamensis L<strong>in</strong>dl.<br />

Dichaea robusta Schltr.<br />

Epidendrum congestoides Ames & C. Schwe<strong>in</strong>f.<br />

Lockhartia acuta (L<strong>in</strong>dl.) Rchb. f.<br />

Macradenia rubescens Barb. Rodr.<br />

Mormodes carnevaliana Salazar & G.A.<br />

Romero<br />

Stelis santiagoensis Mansf.<br />

Passifloraceae<br />

Dilkea acum<strong>in</strong>ata Mast.<br />

Passiflora adenopoda DC.<br />

Passiflora biflora Lam.<br />

Passiflora cuneata Willd.<br />

Passiflora cyanea Mast.<br />

Passiflora suberosa L.<br />

Passiflora subpeltata Ortega<br />

Passiflora variolata Poepp. & Endl.<br />

Piperaceae<br />

Piper nigrum L.<br />

Piper tenue Kunth<br />

Poaceae<br />

Brachiaria plantag<strong>in</strong>ea (L<strong>in</strong>k) Hitchc.<br />

Guadua venezuelae Munro<br />

Paspalum fasciculatum Willd. ex Flüggé<br />

Polygalaceae<br />

Moutabea sp. A<br />

Securidaca bialata Benth.<br />

Polygonaceae<br />

Coccoloba decl<strong>in</strong>ata (Vell.) Mart.<br />

Coccoloba fallax L<strong>in</strong>dau<br />

Coccoloba spruceana L<strong>in</strong>dau<br />

Polygonum ferrug<strong>in</strong>eum Wedd.<br />

Pontederiaceae<br />

Heteranthera multiflora (Griseb.) C.N. Horn<br />

Portulacaceae<br />

Portulaca pusilla Kunth<br />

Portulaca teretifolia Kunth<br />

Rubiaceae<br />

Chiococca pubescens Humb. & Bonpl. ex<br />

Roem. & Schult.<br />

Diodia multiflora DC.<br />

Psychotria occidentalis Steyerm.


166<br />

Contributions to the Study of Biological Diversity Vol. 3<br />

Rutaceae<br />

Angostura trifoliata (Willd.) T.S. Elias<br />

Conchocarpus longifolius (A. St.-Hil.) Kallunki<br />

& Pirani<br />

Neoraputia paraensis (Ducke) Emmerich<br />

Zanthoxylum amapaense (Albuq.) P.G.<br />

Waterman<br />

Zanthoxylum juniper<strong>in</strong>um Poepp.<br />

Zanthoxylum mart<strong>in</strong>icense (Lam.) DC.<br />

Sap<strong>in</strong>daceae<br />

Houssayanthus macrolophus (Radlk.) Hunz.<br />

Sapotaceae<br />

Diploon cuspidatum (Hoehne) Cronquist<br />

Pouteria reticulata (Engl.) Eyma subsp.<br />

reticulata<br />

Pradosia grisebachii (Pierre) T.D. Penn.<br />

Scrophulariaceae<br />

Bacopa <strong>in</strong>nom<strong>in</strong>ata (M. Gómez) Ala<strong>in</strong><br />

Mecardonia procumbens (Mill.) Small<br />

Simaroubaceae<br />

Simaba sp. A (sensu Steyermark et al.)<br />

Solanaceae<br />

Physalis cordata Mill.<br />

Schwenckia micrantha Benth.<br />

Solanum arboreum Dunal<br />

Solanum lanceifolium Jacq.<br />

Solanum seaforthianum Andrews<br />

Sterculiaceae<br />

Melochia m<strong>and</strong>ucata C. Wright<br />

Melochia villosa (Mill.) Fawc. & Rendle<br />

Sterculia abbreviata E.L. Taylor ex Mondragón<br />

Sterculia apetala (Jacq.) H. Karst<br />

Sterculia kayae P.E. Berry<br />

Urticaceae<br />

Boehmeria cyl<strong>in</strong>drica (L.) Sw.<br />

Phenax sonneratii (Poir.) Wedd.<br />

Pilea fendleri Killip<br />

Pilea <strong>in</strong>volucrata (Sims) Urb.<br />

Verbenaceae<br />

Aegiphila perplexa Moldenke<br />

Citharexylum poeppigii Walp.<br />

Lantana glut<strong>in</strong>osa Poepp.<br />

Viscaceae<br />

Phoradendron berryi Rizz<strong>in</strong>i<br />

Vitaceae<br />

Cissus alata Jacq.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!