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Abstract: Proton nuclear magnetic resonance (1H NMR) metabolomics was employed to investigate
the impact of water deficit, defoliation, and crop thinning on the chemical composition of must and
wines from the cool-climate white grape variety Solaris. The obtained results show that viticultural
practices (defoliation and crop thinning) affected the amino acid and sugar content of Solaris must
and thereby the quality of the final wine—mainly in terms of compounds normally related to fruity
aroma (i.e., isopentanol), non-sugar sweetness (i.e., proline and glycerol), and alcohol content. The
content of tyrosol, a natural phenolic antioxidant with a high bioavailability, was increased in the final
wine by a combination of defoliation and crop thinning. The results of the metabolomics analysis
performed on the must and wine samples from the water stress experiment showed that short-term
water deficit significantly affected the concentration of several flavor-related compounds, including
glutamate, butyrate and propanol, of the organic acids lactate and fumarate, and of the phenolic
compounds caffeic acid and p-coumaric acid. ANOVA simultaneous component analysis showed
that the effect of water deficit accounted for 11% (p < 0.001) and 8% (p < 0.001) of the variability in the
metabolite concentrations in must and wines, respectively, while viticultural practices accounted for
38% (p < 0.001) and 30% (p < 0.001) of the metabolite variability in must and wines, respectively.

Keywords: Vitis vinifera; Solaris; grapevine; water deficit; defoliation; crop thinning; 1H NMR;
metabolomics; FT-IR; WineScan; tyrosol

1. Introduction

Solaris is a relatively new cultivar of Vitis vinifera (L.), and for this reason, the number
of investigations targeting viticultural and oenological aspects related to this white grape
variety is quite limited (Table 1). Solaris is a hardy grapevine that thrives in cold climates,
with a good resistance to downy mildew, and that, from an agronomical point of view, has
a remarkable ability to tolerate and recover from short-term water deficit [1–4].

On the chemistry side, to the best of our knowledge, most research on Solaris wines
has focused on the targeted profiling of volatile metabolites and phenols, sensory analysis,
as well as on the characterization of the bulk oenological properties (Table 1).

In 2015, Liu et al. investigated the volatile and non-volatile composition of Solaris
wines, as well as the sensory attributes [5]. The study concluded that, from a sensory point
of view, Solaris grapes can produce balanced wines characterized by medium acidity, with
floral and fruity notes, which are mainly attributed to acetates and ethyl esters of short-chain
fatty acids. Zhang et al. studied the impact of pre-fermentation treatments on Solaris wines
and showed that cold maceration enhances the apricot and apple flavors, while a short
skin fermentation increases the floral flavors of rose and elderflower [6]. Recent studies
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have shown that, during fermentation, the use of non-Saccharomyces yeasts in combination
with Saccharomyces cerevisiae can improve the sensory attributes and chemical composition
of Solaris wines [9]. Inoculation with three Metschnikowia strains (one M. chrysoperlae
and two M. fructicola) promoted a similar range of volatile compounds when compared to
the wine produced with a single inoculation of S. cerevisiae, and especially M. chrysoperlae
was closely associated with fruity, tropical fruit, and elderflower attributes [9]. In 2020,
Garrido-Bañuelos et al. described the volatile and non-volatile composition of Swedish
Solaris wines compared to other white wines, including Albariño (Spain), Sauvignon Blanc
(France and New Zealand), Chardonnay (France), and Chenin Blanc (South Africa). When
compared to other wines, Swedish Solaris wines had significantly higher amounts of ethyl
propionate, ethyl 2-methylpropanoate, diethyl succinate, ethanol, succinic acid, tartaric
acid, and sucrose, important contributors to wine flavor [15].

Table 1. Studies on Solaris grape and wines per year 2000–2022. Web of Science was used to search
for publications using “Solaris”, “grape”, and “wine” as topic keywords.

Publication title Year Reference

Different susceptibility of European grapevine cultivars for downy
mildew 2008 [1]

Adaptation to climate change: viniculture and tourism at the Baltic
coast 2011 [4]

Instrumental and sensory characterisation of Solaris white wines in
Denmark 2015 [5]

Influence of pre-fermentation treatments on wine volatile and sensory
profile of the new disease tolerant cultivar Solaris 2015 [6]

Sequence analysis of loci Rpv10 and Rpv3 for resistance against
grapevine downy mildew (Plasmopara viticola) 2015 [2]

The Nordic light terroir 2016 [7]

Targeted and untargeted high-resolution mass approach for a putative
profiling of glycosylated simple phenols in hybrid grapes 2017 [8]

Impact of sequential co-culture fermentations on flavour characters of
Solaris wines 2017 [9]

Phenolic compounds and antioxidant activity of twelve grape cultivars
measured by chemical and electrochemical methods 2018 [10]

Shikimic acid concentration in white wines produced with different
processing protocols from fungus-resistant grapes growing in the Alps 2018 [11]

Evaluation of mechanical properties of berries on resistant or tolerant
varieties of grapevine 2019 [12]

Use of the NeoViGen96 chip to understand the defense status of
cultivars and resistant genotypes of Vitis vinifera 2019 [13]

Occurrence of Ehrlich-derived and varietal polyfunctional thiols in
Belgian white wines made from Chardonnay and Solaris grapes 2020 [14]

Exploring the typicality, sensory space, and chemical composition of
Swedish Solaris wines 2020 [15]

Press fractioning of grape juice: a first step to manage potential atypical
aging development during winemaking 2020 [16]

Effects of water stress, defoliation and crop thinning on Vitis vinifera L.
cv. Solaris. Part I: plant responses, fruit development and fruit quality 2022 [3]

Independently of the grape variety, the aroma and flavor profile of wines primarily
stems from the chemical composition of the grapes at harvest, the vinification process,
aging, and storage conditions [17–21]. Moreover, geological characteristics, climate, and
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viticultural practices, including defoliation and crop thinning can “indirectly” affect wine
composition [22–25]. For white wines, numerous scientific papers are available on the effect
of different agronomic practices in vineyards, including biostimulant application, irrigation,
defoliation, training systems, foliar fertilization, and bunch thinning on the concentration
of terpenes, thiols, C13-norisoprenoids, methoxypyrazines, and nonterpenic alcohols—the
most important aroma compounds in white grapes [26]. Moderate increase in cluster
light exposure after leaf removal has been shown to augment the flavonol concentration
in white grapes Grechetto Gentile and Trebbiano berries [27,28]—antioxidant production
being part of defense mechanisms in grape berries, which is induced by UV exposure [29].
Irrigation and crop thinning have been shown to have a positive impact on both berry
weight and berry number per cluster in both red and white grapes [24]. Water is the most
fundamental constituent and carrier of plant metabolism, and together with carbon dioxide,
it is the foundation for plant growth and development. Irrigation is thus essential to wine
production in more arid regions. However, in most cool-climate productions, water is
supplied by rain or snowfall and the portion that is distributed via the soil is available for
the plant to use. The amount of water absorbed is highly dependent on the type of soil and
its water holding capacity, as well as on the climatic conditions of site, which determine
how fast the water evaporates from the ground surface [23]. Water availability may thus
vary considerably and affect plants differently depending on the phenological stage, yield,
and vigor levels.

Over the last decades, chemical analysis by untargeted spectroscopy has become an
essential tool for assessing wine quality, and together with multivariate data analysis meth-
ods, as done in metabolomics, it has become a powerful tool for elucidating several aspects
related to viticulture practices and wine production, origin, and fraud [30]. Metabolomics
is traditionally focused on the analysis of low-molecular weight metabolites (<1.5 KDa)
using advanced analytical techniques, such as nuclear magnetic resonance spectroscopy
(NMR) and hyphenated chromatographic methods (i.e., gas and liquid chromatography
mass spectrometry, GC-MS and LC-MS) [31]. The use of a metabolomics approach in wine
science has opened new opportunities to evaluate the entire grape-growing and winemak-
ing processes from a more holistic perspective, and typically, with an aim to gauge wine
quality for production optimization and ensure traceability for fraud prevention [30]. In this
context, proton (1H) NMR spectroscopy must be emphasized for its inherent advantages:
it is quantitative, it is unbiased and relatively fast, which makes it a powerful tool for
the high-throughput and unbiased analysis of food and beverages, including wine [32].
NMR allows the simultaneous detection and quantification of the individual chemical
components constituting the bulk metabolome of the sample under investigation (i.e., must
or wine), including primary (i.e., sugars, organic acids, and individual amino acids) and
secondary metabolites (i.e., flavonoids and anthocyanins). The higher sensitivity and selec-
tivity give NMR a leading edge over, for instance, FT-IR spectroscopy, which is routinely
used to determine the bulk chemistry of grape must and wine. NMR has successfully been
applied for the overall chemical characterization of wines and grape-derived products [32],
to study the effect of vintage [33], terroir [34], berry shading [35], geographical origin [36],
adulteration/authentication [37], the impact of sulfur dioxide on the wine metabolites [38],
and the alcoholic and malolactic fermentation processes [39,40].

In this study, the impact of water deficit (WD), defoliation (DEF), and crop thinning
(CT) on the metabolic composition of must and wine samples from Solaris grapes is investi-
gated by 1H NMR metabolomics. The aims are to describe (1) the baseline metabolome of
must and wines as a function of different growing conditions, (2) the changes in the bulk
metabolome of must and wine samples obtained from different viticultural treatments,
and (3) the changes in the bulk metabolome of must and wine samples from vines that
underwent water deficit. A graphical overview of the experimental design is given in
Figure 1.
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were stored at −80 °C until 1H NMR measurements. Multivariate analysis was employed to assess 
the impact of different growing conditions (field vs. screenhouse), water deficit, and viticultural 
practices on the chemical composition of must and wine samples. M: must; W: wine; DOE: design 
of experiment. Color-coding for the PCA scores is given in the figure legend. 
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from several organic acids, including succinate, lactate, acetate, citrate, and malate. Alt-
hough at very low concentrations, the typical resonance of ethanol can also be observed 
in the same spectral region (triplet at 1.18 ppm). At mid-field (3.01–5.50 ppm), the signals 
from small sugars, including glucose and fructose, resonate and, as expected, dominate 

Figure 1. Experimental design. The water deficit experiment was carried out in an “open” screen-
house set up (A) where 36 pot-grown vines underwent water stress at three different phenological
stages of berry development, namely pre-veraison (early-stress, ES), veraison (mid-stress, MS), and
ripening (late-stress, LS). The field experiment (B) was performed in a north–south oriented vineyard
where 32 vines underwent different viticultural treatments, namely crop thinning (CT), defoliation
(DEF), and a combination of the above (DCT). Must and wine samples from all treatments were stored
at −80 ◦C until 1H NMR measurements. Multivariate analysis was employed to assess the impact
of different growing conditions (field vs. screenhouse), water deficit, and viticultural practices on
the chemical composition of must and wine samples. M: must; W: wine; DOE: design of experiment.
Color-coding for the PCA scores is given in the figure legend.

2. Results

2.1. Analysis of Must and Wine Samples by 1H NMR

In Figure 2, a representative 1H NMR spectrum of grape must from the vines grown
in the open screenhouse is shown overlaid with a representative 1H NMR spectrum of
grape must from vines grown in the field (vineyard). In the high-field region (Figure 2A;
0.50–3.00 ppm), the signals from non-aromatic amino acids (i.e., alanine, arginine, valine,
isoleucine, leucine, glutamine, and proline) can be found, together with the resonances from
several organic acids, including succinate, lactate, acetate, citrate, and malate. Although at
very low concentrations, the typical resonance of ethanol can also be observed in the same
spectral region (triplet at 1.18 ppm). At mid-field (3.01–5.50 ppm), the signals from small
sugars, including glucose and fructose, resonate and, as expected, dominate the spectral
landscape in all must samples. In the low-field region (Figure 2B; >5.51 ppm), the signature
signals from the aromatic amino acids phenylalanine, tyrosine, and tryptophan can be
found along with the alkaloid trigonelline, and formate. Metabolite assignment (level 2) is
based on the yeast metabolome database (http://www.ymdb.ca/; accessed on 15 April
2022) and is given in the caption to Figure 2.

http://www.ymdb.ca/
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Figure 2. Representative 1H NMR spectra of must samples from the screenhouse and field experi-
ments. (A) Expansion of the aliphatic region (dotted rectangle, 0.5−3.0 ppm). (B) Expansion of the
aromatic region (dotted rectangle, 6.5−9.5 ppm). Keys: 1. isoleucine; 2. leucine; 3. valine; 4. ethanol;
5. lactate; 6. alanine; 7. arginine; 8. proline; 9. glutamine; 10. succinate; 11. malate; 12. citrate; 13.
tartrate; 14. tyrosine; 15. phenylalanine; 16. tryptophan; 17. formate; 18. trigonelline.

Figure 3 shows representative 1H NMR spectra of wine samples from the screenhouse
and field experiments. As expected, the ethanol signals dominate the spectral landscape
followed by the intense resonances from glycerol. In the high-field region, where the methyl
(−CH3) signal from ethanol resonates, the resonances from several organic acids can be
found, including butyrate, lactate, succinate, citrate, malate, and acetate. Furthermore,
the signals from shielded methyl protons from the higher alcohols isobutanol (J = 6.70 Hz,
0.90 ppm) and isopentanol (J = 6.83 Hz, 0.88 ppm) can be observed. At mid-field, the
resonance from tartaric acid is found along with the complex resonances from glycerol, the
methylene (-CH2-) ethanol signal, and residual sugars. Trigonelline, 2-phenylethanol, and
tyrosol are found at low-field together with the signals from the phenolic compounds caffeic
acid and p-coumaric acid, and the nitrogenous bases adenine and cytosine. Metabolite
assignment (level 2) is based on literature data (J-coupling and chemical shift) [34,39,41,42]
and the yeast metabolome database (http://www.ymdb.ca/; accessed on 15 April 2022).

http://www.ymdb.ca/
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Figure 3. Representative 1H NMR spectra of wine samples from the screenhouse and field experi-
ments. Keys: 1. isoamyl alcohol (isopentanol); 2. isobutanol; 3. butyrate; 4. 2,3-butanediol; 5. lactate;
6. glutamate; 7. glutamine; 8. methionine; 9. proline; 10. acetate; 11. succinate; 12. malate; 13. citrate;
14. choline; 15. methanol; 16. tartrate; 17. glucose; 18. caffeic acid; 19. p-coumaric acid; 20. fumarate;
21. tyrosol; 22. phenylethanol; 23. cytosine; 24. unknown; 25. trigonelline; 26. adenine.

2.2. Analysis of Wine Samples by FT-IR Spectroscopy (WineScan)

Must and wine samples were also analyzed by FT-IR spectroscopy. The reader is
referred to Aru et al. (2022) for more details on the FT-IR measurements of must samples [3].
WineScan analysis of the WD wines showed no significant differences for all parameters
except for malic acid, which was significantly lowered by early- and mid-stress (Table S1).
As for the wine samples from the field experiment, significantly higher levels of ethanol
were found in CT and DCT samples, while DEF significantly decreased ethanol compared
to the control (Table S2). Glycerol fluctuations followed the variations in the ethanol content.
DEF led to significantly higher levels of total acidity and tartaric acid, while CT alone led
to the lowest levels. As expected, samples with the highest total acidity had the lowest
pH. Volatile acidity was low in all wines, but a small increase was observed for CT wines.
Concerning malic acid, DCT led to significantly higher values than CT alone. No significant
differences in sugar content were observed.

2.3. The Must and Wine Metabolome as a Function of the Growing Condition

Principal component analysis (PCA) [43] was employed to obtain an overview of the
variability in the metabolome of the must and wine samples. Tartaric acid was excluded
from the data analysis due to inconsistency with the FT-IR measurements (see Section 3.1).
Figure 4A,B show the biplots of PCA performed on the metabolite table of the must
and wine samples, respectively (approximatively 83% and 68% of explained variance,
respectively). Figure 4A reveals a clear metabolic difference between must samples from the
screenhouse and from the field. The must samples from the screenhouse are characterized
by higher levels of amino acids including valine, isoleucine, leucine, glutamine, glutamate,
arginine, proline, phenylalanine, and tyrosine, while must samples from the field trial
display higher levels of organic acids, including succinic acid, malic acid, and citric acid.
As for the wines, Figure 4B reveals that the samples from the screenhouse display higher
levels of 2,3−butanediol, proline, valine, trigonelline, and butyrate, while wine samples
originating from the field display higher levels of higher alcohols, including phenylethanol
and tyrosol, and of the organic acids malate and fumarate. The biplots of must and
wines for both screenhouse and field experiments display a noteworthy spread along PC2,
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which is driven by the sugars content in must samples, and ethanol, glycerol, and acetate
in the wines.
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Figure 4. Biplots of the PCA performed on the metabolite concentrations in must (A) and wine (B)
samples from the field and screenhouse trials. Keys. Ace: acetate; Ara: arabinose; Arg: arginine;
BDO: 2,3−butanediol; But: butyrate; Caf: caffeic acid; Cit: citrate; Cyt: cytosine; EtOH: ethanol; Fum:
fumaric acid; Fru: fructose; Glc: glucose; Gln: glutamine; Glu: glutamate; Glyc: glycerol; IamOH:
isoamyl alcohol (isopentanol); Ile: isoleucine; Leu: leucine; Mal: malate; MeOH: methanol; pCoum:
p−coumaric acid; Phe: phenylalanine; PheOH: phenylethanol; Pro: proline; Tri: trigonelline; Tyr:
tyrosine; TyrOH: tyrosol; Suc: succinate; Val: valine; Xyl: xylose.

2.4. Impact of Water Deficit and Different Viticultural Practices on the Must and Wine Metabolome

PCA was also employed to evaluate the impact of water deficit and different viticul-
tural practices on the metabolome of must and wine samples from the field and screenhouse
experiments separately. Figure 5A,B show the PCA biplots performed on the must (A) and
wine (B) 1H NMR datasets from the field experiment (PC1 and PC2 explain approximatively
67% and 53% of the total metabolite variation in must and wine, respectively). In Figure 5A,
a clear trend is observed along PC1, where must samples from DEF and CT plants cluster
in opposite PC1 quadrants. Control and DCT samples cluster in between, with the control
samples close to the DEF samples, whereas the DCT samples cluster close to the CT samples.
Furthermore, a weak trend is observed along PC2 with DEF and control samples clustering
at positive PC2 values, while CT and DCT samples clustered in the opposite PC2 quadrant.
The sample (scores) distribution along PC1 is driven by sugars and proline, which are
higher in CT samples, while the amino acids glutamine, glutamate, arginine, isoleucine,
leucine, and valine are higher in samples clustering at positive PC2 values. Figure 5B shows
the biplot of the PCA performed on the metabolite table of the wine samples from the
field experiment. The clear separation observed in the PCA biplot of the must samples
(Figure 5A) is largely maintained in the PCA biplot of the wine metabolites. As before, the
CT and DEF samples cluster in opposite PC1 quadrants, with control and DCT samples
clustering in between. The sample distribution along PC1 is driven by proline, glycerol,
methanol, ethanol, isoamyl alcohol, phenylethanol and tyrosol, which are more abundant
in wines from CT treatments.

In Figure 5C,D, the biplots of the PCA performed on the metabolite concentrations
in must and wine samples from the screenhouse (water deficit) experiment are shown,
respectively (PC2 and PC3 explain approximately 20% of the total metabolite variance in
must, while PC1 and PC3 explain approximately 53% of the total variance in wines). In
contrast to the field experiment, the high inter-sample variability is now dominating PC1
(data for must is not shown), and the impact of the water deficit experiment on the must
metabolome can be observed along PC3 (approximately 9% of the metabolite variation
explained, Figure 5C). Control samples cluster at positive PC3 values, while early- and
mid-stressed samples cluster in the opposite PC3 quadrant. Late-stressed samples cluster in
between. Sample distribution along PC3 is driven by citric acid and malic acid, which were
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found to have higher concentrations in control samples, and the amino acids glutamine
and glutamate, highest in early- and mid-stress samples. PC2 is dominated by a high inter-
sample variability, with sample distribution being driven by arginine, alanine, succinate,
and ethanol (positive PC2 values), and sugars and proline (negative PC2 values).
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Figure 5. (A–D) Biplots of the PCA performed on the metabolite concentrations in must and wine
samples from the field experiment ((A,B), respectively) and must and wine samples from the screen-
house experiment ((C,D), respectively). Legend: CT = crop thinning; DCT = defoliation and crop
thinning; DEF = defoliation; ES = early-stress; MS = mid-stress; LS = late-stress; Variables = metabo-
lites. Keys: Ace: acetate; Ala: alanine; Ara: arabinose; Arg: arginine; BDO: 2,3−butanediol; But:
butyrate; Caf: caffeic acid; Chol: choline; Cit: citrate; EtOH: ethanol; Fru: fructose; Glc: glu-
cose; Gln: glutamine; Glu: glutamate; Glyc: glycerol; IamOH: isoamyl alcohol; IbuOH: isobutanol;
Ile: isoleucine; Lac: lactate; Leu: leucine; Mal: malate; MeOH: methanol; pCoum: p-coumaric acid;
PheOH: phenylethanol; Pro: proline; TyrOH: tyrosol; Suc: succinate; Val: valine; Xyl: xylose.

As for the wine samples (Figure 5D), a weak stress-related trend can be observed along
PC3, with control and late-stressed samples clustering at positive PC3 values, while early-
and mid-stressed samples cluster in the opposite quadrant. The samples distribution is
driven by malate, citrate, tyrosol, and phenylethanol, which were found to be at higher
concentrations in control and late-stressed samples, while glutamate, butyrate, and lactate
were higher in early- and mid-stressed wine samples. A noteworthy inter-sample variability
can be observed along PC1, with samples clustering at positive PC1 values being higher in
ethanol, acetate, 2,3-butanediol, isoamyl alcohol and isobutanol.

In order to scrutinize for possible additional sources of variability that potentially can
be related to the observed high inter-sample diversity, PCA scores in Figure 5A–D were
colored according to the pruning type (one vs. two canes for the screenhouse samples, two
vs. three canes for the field samples). The results are shown in Figure S1A–D and evidence
that pruning type is a major contributor to the metabolite variability in both must and wine
samples from both growing conditions (field and screenhouse)—in general, the lower the
number of canes, the higher is the metabolite concentration in the must and wine samples.
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ANOVA simultaneous component analysis (ASCA) [44] was employed to quantify
the effect of the different growing conditions (field vs. screenhouse), treatments − namely
water deficit (early-, mid-, and late-stress) and viticultural practices (DEF, CT, and DCT)—as
well as the pruning type on both growing conditions (one vs. two canes for the screen-
house samples, two vs. three canes for the field samples) (Figure 6A,B). The results
indicate that growing conditions accounted for approximatively 54% (p < 0.001) of the
metabolite variability in must and 44% (p < 0.001) in wines (Figure 6A,B, respectively).
The effect of the different viticultural practices accounted for 38% (p < 0.01) of the total
metabolite variability in must samples and 30% (p < 0.001) in wine samples. In the screen-
house experiment, the experimental effect of WD was quantified as approximatively 11%
(p < 0.001) and 8% (p < 0.001) of the metabolite variations in must and wines, respectively.
Pruning type (not part of the original experiment, Figure S1) had a significant experimental
effect on must and wine samples from both experiments, and in the field experiment, it was
approximatively 6% (p < 0.001) and 4% (p < 0.01) in must and wine samples, respectively. In
the screenhouse experiment, pruning type accounted for approximatively 23% (p < 0.001) of
the metabolite variability in must and 6% (p < 0.001) in wines. Interestingly, the treatment-
and pruning type-related variability (and effect size) is attenuated by the fermentation
process (Figure 6A,B).
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Figure 6. ASCA performed on the NMR metabolite concentrations from must (A) and wine (B)
samples from the field and screenhouse experiments. Each experimental factor is represented with a
slice in the chart. Effect sizes (%) are given next to the slices. All effects are significant (p < 0.001, 1000
permutations). Stress-related classes in the field (DEF/CT) experiment = control, DEF, CT, and DCT;
Stress-related classes in the screenhouse (water stress) experiment = control, early-stress, mid-stress,
and late-stress. Grey areas represent the residual and unknown source of variability.

2.5. In-Depth Assessment of Metabolite Formation during Vinification

The chemical changes (as individual metabolites) occurring during the winemaking
process, from must to wine, were analyzed and are described in the following sections.
Metabolites identified and quantified in must are amino acids, sugars, and organic acids.
Only metabolites whose concentrations significantly changed as result of different treat-
ments are described for wines.
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2.5.1. Field Experiment

The baseline-resolved signals from 11 amino acids (i.e., alanine, arginine, glutamate,
glutamine, isoleucine, leucine, phenylalanine, proline, tyrosine, tryptophan, and valine),
six sugars (i.e., glucose, fructose, sucrose, arabinose, xylose and gentiobiose), and three
important organic aids (i.e., lactate, succinate, and citrate) were quantified in all must
samples. Metabolite fluctuations in must samples from the field experiment are shown in
Figures S2, S4A and S5A as box and whiskers plots. As it can be observed in Figure S2, DEF
alone significantly decreased the amount of most amino acids. Differently, CT treatments
significantly increased the levels of proline and the aromatic amino acids, phenylalanine and
tyrosine. The combined DCT treatment significantly increased the levels of branched-chain
amino acids (BCAA—leucine, isoleucine, and valine) in must samples. In Figure S4A, the
concentration fluctuations of glucose, fructose, sucrose, arabinose, xylose and gentiobiose
are shown. As expected, both CT treatments significantly increased the concentration
of sugars in the must samples, while DEF decreased it. The concentration fluctuations
of citrate, lactate, and succinate in must from the field experiment are shown in Figure
S5A. Overall, DEF decreased the concentration of all organic acids in must samples. DCT
increased citrate, while all treatments decreased succinate in must when compared to the
control samples. As for the wine samples (Figure S6A–C), primary alcohols methanol
and propanol were highest in CT and lowest in DEF samples. Isopentanol was highest in
wines that underwent DCT and lowest in wines from DEF vines. Tyrosol was found to
be highest in DCT wines—no significant differences were observed in DEF and CT plants
when compared to the control. Phenylethanol was lowest in DEF wines and highest in
DCT, with CT and control wines having values in between the former two. 2,3-butanediol
displayed a similar trend. Concerning the amino acid composition, methionine was found
to be highest in CT plants and lowest in DEF plants, with DCT and control wines having
values in between the former two. Proline was highest in both CT treatments and lowest in
DEF wines. Valine was lowest in DEF. Similar to what was observed for amino acids, citrate
and lactate were decreased by DEF and were highest in CT wines. Succinate was highest in
both CT treatments, while butyrate was decreased by both DEF and DCT treatments.

2.5.2. Screenhouse Experiment

In Figure S3, the boxplots showing the amino acid fluctuations in must samples from
the screenhouse experiment are displayed. As it can be observed, early- and mid-stress
significantly increased the amount of glutamine and glutamate in must—the same trend
was observed for alanine and arginine but was not significant. In contrast, the concentration
of phenylalanine and tryptophan was significantly decreased by early- and mid-stress—the
same trend was observed for BCAA but was not significant. Overall, late-stress did not
significantly affect the amino acid composition of must samples when compared to the
control, except for tyrosine, which was found to be lowest in all stressed samples. No sig-
nificant effect could be observed for sugar accumulation in must (Figure S4B). Concerning
the organic acids (Figure S5B), no significant changes in the lactate concentration could be
observed, independently of the treatment. Citrate was decreased by all treatments. Succi-
nate was significantly decreased by water deficit at ripening (late-stress). As for the wines
samples (Figure S7), the phenolic compounds caffeic acid and p-coumaric acid, the organic
acids fumarate and lactate, glutamate, butyrate, and propanol were significantly affected
by different water stress treatments. Amongst them, caffeic acid was highest in control and
early- stressed samples, while it was decreased by mid- and late-stress. P-coumaric acid
exhibited the opposite trend. Fumarate and lactate had opposite trends, with fumarate
being lowest in wines from early- and mid-stressed plants, while it was the highest in wines
from the same treatment lactate. Glutamate was highest in early- and mid-stressed plants.

3. Discussion

In this study, 1H NMR metabolomics was employed to investigate the impact of differ-
ent viticultural practices, including defoliation (DEF), crop thinning (CT), and irrigation



Metabolites 2022, 12, 672 11 of 18

(WD) on the chemical composition of must and wine samples from the cool-climate grape
variety Solaris. The metabolomics investigation presented here complements our previ-
ously published study [3] by describing (1) the baseline metabolome of must and wines as
a function of different growing conditions, (2) the changes in the bulk metabolome of must
and wine samples obtained from different viticultural treatments, and (3) the changes in
the bulk metabolome of must and wine samples from vines that underwent water deficit.

3.1. The Metabolome of Must and Wines as a Function of Different Growing Conditions

An overview of the chemical changes occurring in must and wines from different
growing conditions (field vs. screenhouse) were obtained using PCA, which revealed
substantial metabolic differences between field- and screenhouse-grown samples. Con-
cerning the must samples from field and screenhouse, the main metabolic difference was
that the latter had higher concentrations of amino acids (Figure 4A). This is not surprising
as nitrogen in the form of ammonium and nitrate is an important component of the bulk
nutrients provided to the vines through the irrigation water. Amino acids in winemaking
serve as nutrients for yeast during fermentation, and imbedded in proteins, they influence
wine stability, especially in white wine. The nitrogen content of the fermentation substrate
(must) has previously been linked to the production of higher alcohols, important aroma
compounds formed in wines during fermentation [45]. For instance, BCAA are structurally
similar and important precursors of the higher alcohols isobutanol (valine) and isopentanol
(isoleucine/leucine) and are linked through the Ehrlich pathway. In the same way, the aro-
matic amino acids phenylalanine, tyrosine, and tryptophan are precursors of the aromatic
alcohols phenylethanol, tyrosol, and tryptophol, respectively. The impact of plant nitrogen
status on wine quality is complex and often contradictory depending on the main factors’
influence in a given study [45]. In contrast organic acids, citrate, succinate, and malate
were found to be at higher concentrations in the field samples (Figure 4A). Malate is one
of the prevalent acids in grapes. Unlike tartrate, the content of malic acid and citric acid
is known to decline over the course of the growing season [46], which in this experiment
occurred earlier in the screenhouse vines due to the higher temperatures [3]. Grapes grown
in cool regions often contain higher concentrations of acids, which may result in tart wines.
Malolactic fermentation can help reducing wine acidity through the bacterial conversion of
malate into lactate, a milder acid. Citrate represents about 5% of the total acid content in
grapes and like malate and succinate, it can be easily metabolized by wine microorganisms
to form lactic acid or acetic acid. The concentration of tartaric acid as measured by 1H NMR
showed inconsistent results with FT-IR measurements and thus has been excluded from all
PCA models. The reason for the observed inconsistency can be ascribed to the fact that the
buffer solution used for NMR sample preparation contained potassium phosphate salts,
which may have altered the natural equilibrium between the three main potassium tartrate-
related species present in wines, namely tartaric acid, hydrogen tartrate, and tartrate. Of
these, hydrogen tartrate precipitates with potassium.

As for the wines, valine, glutamate, and proline were identified in all samples and at
higher concentrations in the screenhouse wines (Figure 4B). They are normally associated
with a specific mouthfeel: valine with a bitter taste, proline with a sweet taste, and glutamate
with umami taste. Proline is not part of the yeast assimilable amino acids, but it plays a key
role in the amino acid turnover as well as in the perception of wine taste [47–49]. In fact,
our saliva proteins are rich in proline, which contribute to the astringency mouthfeel [49].

Caffeic acid and p-coumaric acid were tentatively assigned in the 1H NMR spectra of
wines from both the field and screenhouse experiment. It is important to stress that phenols
in wine can exist both in the glycosylated and free form—the latter being formed during
the winemaking process [8]. The two forms are difficult to distinguish by 1D 1H NMR.
Overall, phenolic compounds were found to be slightly higher in the wines from the field
experiment. This may be related to a general higher physiological maturity in the slightly
warmer screenhouse compared to the field, as the phenolic concentration tend to decrease
with increasing maturity [50].
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3.2. Metabolic Fluctuations as a Function of Defoliation and Crop Load Reduction

The amino acid composition of must samples obtained from the field experiment was
significantly affected by the different viticultural practices. Overall, when compared to
the control samples, DEF decreased the amino acid concentration, while CT treatments
significantly increased the concentration of phenylalanine, tyrosine, BCAA, and proline
(Figure S2). The same trend could be observed for the sugars, which were found in
highest concentrations in must from CT and DCT vines (Figure S4A). Similarly to sugar
accumulation, proline accumulation in grapes has often been used as a marker of berry
maturity [51]. In plants, proline covers numerous roles including osmotic adjustment,
detoxification of ROS, and protection of membrane integrity [52]. Proline can control its
own synthesis, and in developing berries, it can be synthesized starting from glutamate
and/or glutamine. It has been demonstrated that ∆1-pyrroline-5-carboxylate synthetase, a
key regulatory enzyme required for the synthesis of proline from glutamate, is present in
grape berries throughout their development [48]. In wines, CT and DCT led to the highest
levels of alcohols including ethanol, methanol, propanol, and isopentanol (Figure S6A).
Monohydroxylic alcohols are formed by yeast and their synthesis depends on the chemical
composition of must, yeast strain, and fermentation conditions [47]. Higher alcohols,
which are normally present in wines at the concentration of 0.3 and 0.5 g/L, influence
the organoleptic characteristics of wine. In particular, isopentanol has a sharp burning
taste and has been associated with banana flavor. As for methanol, CT treatments led to
the highest ethanol and glycerol concentrations (Table S2). While methanol is normally
produced from grape skin pectins by endogenous pectinase enzymes, ethanol and glycerol
are primary products of alcoholic fermentation, both significantly contributing to the final
wine flavor in terms of sweetness (glycerol) and pungent taste (ethanol). Succinate was
also found to be highest in CT plants (Figure S6C). This is in agreement with literature
data where succinate has been shown to follow the time-course evolution of ethanol during
alcoholic fermentation [39]. The combined DCT treatment led to the highest tyrosol content
in field wines. Since all wines were made using the same yeast cultures, the observed
fluctuations in the tyrosol concentration are likely to be ascribed solely to the viticultural
practices. Tyrosol is a phenolic compound present in red and white wines that has been
shown to be able to exert strong antioxidant activity in in-vitro studies [53].

3.3. Metabolic Fluctuations as a Function of Water Deficit

Global warming has led to the development of new viticultural areas in Northern
Europe [54]. Even though water availability is normally not an issue in Northern Euro-
pean countries, unusually warm growing seasons and periodically scarce rainfall have
significantly increased the risk of drought in these regions. This has raised the concern
as to whether even short periods of drought could affect the chemical composition of
wines. The present study has examined for the first time the effect of water deficit on the
chemical composition of the cool-climate grape variety Solaris. PCA performed individ-
ually on the must and wine metabolite concentrations from the screenhouse experiment
revealed that water deficit at pre-veraison and veraison has a higher impact on must and
wines chemistry than water deficit during ripening (Figure 5C,D). In particular, early- and
mid-stress significantly increased the concentration of glutamine and glutamate in must,
which are related to umami/savory taste in wine (Figure S3). On the other hand, early
and mid-stress decreased the amount of phenylalanine and tyrosine, which are precursors
of the secondary aroma compounds phenylethanol and tyrosol in wines (Figure S3). As
for the wines, malic acid was significantly lowered by early- and mid-stress (Table S1),
while glutamate was highest in wines from early- and mid-stressed plants (Figure S7).
Concerning phenolic compounds, caffeic acid and p-coumaric acid displayed opposite
trends, with caffeic acid being highest in control and early-stress wines. Caffeic acid and
p-coumaric acid are derivative of cinnamic acid, which in wines mainly derive from the
stems, seeds, and skins and are extracted during the maceration period of winemaking [55].
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No significant changes were observed for ethanol, glycerol, and acetic acid, primary flavor
compounds in wines (Table S1).

3.4. Concluding Remarks

The present multidisciplinary study aimed at investigating the impact of water deficit,
defoliation, and crop thinning on Solaris’ plant and fruit development (Part 1) as well as on
the bulk metabolic composition of Solaris must and wines as measured by FT-IR and 1H
NMR (Part 2). Overall, our results show that, from an agronomical point of view, Solaris has
a remarkable ability to tolerate and recover from water stress [3]. Nevertheless, short-term
water deficit can significantly affect the concentration of several flavor-related compounds,
including glutamate, butyrate, and propanol, of the organic acids lactate and fumarate, and
of the phenolic compounds caffeic acid and p-coumaric acid. Growing conditions (field vs.
screenhouse) as well as viticultural practices (defoliation and crop thinning) were found to
be the main factors affecting the quality/chemical composition of Solaris must and wines.
While the main chemical differences between the must and wine control samples from the
field and screenhouse are mainly related to the nutrient-enriched irrigation system in the
controlled screenhouse set up, defoliation and crop thinning showed a major impact on the
chemical composition of Solaris wines—mainly in terms of compounds normally related to
fruity aroma (i.e., isopentanol), non-sugar sweetness (i.e., proline and glycerol), and alcohol
content. Tyrosol, which might be attractive as a natural phenolic antioxidant with high
bioavailability, was increased in wines by a combination of defoliation and crop thinning.

In conclusion, our preliminary results show that, although wine preference is sub-
jective, wine quality—in terms of flavor chemistry—can be optimized by fine-tuning
viticultural practices and the winemaking process. It must be stressed that our results,
although promising, are based on a one-year trial (vintage) and further experiments are
required to confirm these findings.

4. Materials and Methods
4.1. Experimental Design

Experiments were carried out in 2018 at the Pometum (Taastrup, Denmark), the
experimental orchard of the University of Copenhagen, and consisted of two independent
trials. Both studies aimed at investigating the chemical changes occurring in must and wine
samples as a result of (1) water deficit (screenhouse experiment) and (2) different viticultural
practices, namely defoliation (DEF) and crop thinning (CT) (field experiment). The water
deficit experiment was carried out in a screenhouse (Figure 1) where 36 pot-grown vines
underwent water deficit at three different phenological stages of berry development, namely
pre-veraison (early-stress), veraison (mid-stress), and ripening (late-stress). The field
experiment was performed in a north-south oriented vineyard where 32 vines underwent
different viticultural treatments, namely crop thinning (CT), defoliation (DEF), and a
combination of the above (DCT). Chemical changes in must and wine samples were
measured by both FT-IR spectroscopy (WineScan) and 1H NMR spectroscopy. A more
detailed description of the experimental design is given in Figure 1 and Part I [3].

4.2. The Winemaking Process

A detailed description of must sample preparation and collection is given in Part I [3].
As for the wines, after pressing, the must was racked into 2 L glass jars, inoculated with
commercial yeast Saccharomyces cerevisiae bayanus (Lalvin DV10TM, Lallemand, Denmark),
and moved to the fermentation room set to 17 ◦C. Fermentation was monitored via density
and temperature control. After fermentation, 5% sulphite solution was added to the wines
(1.5 mL/L equal to 75 mg sulphite/L), which was then transferred to a room set to 3 ◦C
for 1 week of cold settling. Subsequently, samples were analyzed by FT-IR, and a second
aliquot frozen at −80 ◦C for future NMR analysis.
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4.3. FT-IR Analysis

Samples were analyzed by FT-IR spectroscopy using the WineScan instrument (WineS-
can FT 120, FOSS A/S, Hillerød, Denmark). More instrument specifications can be found
in Part I [3]. Oenological parameters monitored in the present study are ethanol content
(%vol), malic acid (g/L), pH, tartaric acid (g/L) total acidity (g/L), glycerol (g/L), volatile
acidity (g/L), fructose (g/L), and reducing sugar (g/L) (see Tables S1 and S2).

4.4. NMR Analysis
4.4.1. Chemicals

Deuterium oxide (D2O, 99.9%), potassium phosphate monobasic (KH2PO4), and
sodium 3-trimethylsilyl-propionate-2,2,3,3-d4 (TSP) were purchased from Sigma-Aldrich
(Darmstadt, Germany).

4.4.2. Sample Preparation

For each sample, a total of 3 mL was centrifuged (Scanspeed 1580 R, Labogene,
Denmark) at 2000 rpm at 4 ◦C for 30 min to precipitate residual solids. Sample preparation
for must and wine analysis by 1H NMR was performed as described by Aru et al. [56].
Briefly, an aliquot of 700 µL of sample was transferred to a 1 mL Eppendorf tube containing
300 µL of 1 M phosphate buffer (pH = 4.5) with D2O (20%) and TSP (5 mM). To ensure
homogeneity while avoiding foaming, each sample was gently vortexed for 1 min. For each
sample, 600 µL were transferred into a 5 mm O.D. NMR SampleJet tube (Bruker BioSpin,
Ettlingen, Germany).

4.4.3. NMR Measurements

NMR spectra were recorded on a Bruker Avance III 600 operating at a proton Larmor’s
frequency of 600.13 MHz and equipped with a 5 mm broadband inverse (BBI) probe (Bruker
BioSpin, Ettlingen, Germany). Data acquisition and processing were carried out using
TOPSPIN3.6. After temperature equilibration (5 min), 1H-NMR spectra were measured at
298 K using the standard pulse sequence for presaturation of the water signal (zgcppr pulse
program, Bruker nomenclature), a sweep width of 12,626 Hz (21 ppm), a 90◦ pulse, and
an acquisition time of 3 s. The relaxation delay was set to 4 s. Spectral data were collected
into 64K data points, after 256 scans. The receiver gain was fixed for all the experiments to
an adequate value estimated through several tests for the juice and wine samples. NMR
spectra were acquired in automation using IconNMR and the SampleJet system (Bruker
BioSpin, Ettlingen, Germany). Phase and baseline correction were performed in TOPSPIN.

4.4.4. Data Pre-Processing and Multivariate Analysis

NMR data for must and wines were imported separately into MATLAB 2020b (Math-
works Inc., Natick, MA, USA) where the 1H NMR spectra were referenced to the TSP
singlet at 0.00 ppm and signals aligned using the icoshift algorithm [57]. A total of
30 resonances were quantified in the must and 49 resonances in wines. Metabolite as-
signments (level 2) are based on literature data (J-coupling and chemical shift) [34,39,41,42]
and the yeast metabolome database (http://www.ymdb.ca/; accessed on 15 April 2022).
Baseline-resolved signals were quantified (relative concentration) by raw sum of spectral
intensities. The datasets of metabolite concentrations were imported into the PLS_Toolbox
(version 7.5.1, Eigenvector Research, Manson, WA, USA) where the metabolites concen-
trations were autoscaled and analyzed by principal component analysis (PCA) [43] and
ANOVA simultaneous component analysis (ASCA) [44] (1000 permutations).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12070672/s1. Table S1: Results from the FT-IR (WineScan)
analysis of the wine samples from the screenhouse trial. Control = no treatment, early-stress = after
flowering, mid-stress = before veraison, late-stress = during ripening. ANOVA was used to assess
the variation between different groups. Different letters stand for statistically significant differ-

http://www.ymdb.ca/
https://www.mdpi.com/article/10.3390/metabo12070672/s1
https://www.mdpi.com/article/10.3390/metabo12070672/s1


Metabolites 2022, 12, 672 15 of 18

ences between the groups (p < 0.05); ns = not significant. (* calculated as tartaric acid equivalents).
Table S2: Results from the WineScan analysis of the wine samples from the field trial. Control = no
treatment; DEF = defoliation; CT = crop thinning; DCT = defoliation and crop thinning. ANOVA
was used to assess the variation between different groups. Different letters stand for statistically
significant differences between the groups (p < 0.05); ns = not significant. (* calculated as tartaric acid
equivalents). Figure S1A–D: Biplots of the PCAs performed on the metabolite concentrations of must
and wine samples from the field experiment (A and B, respectively), and must and wine samples from
the screenhouse experiment (C and D, respectively). Samples are colored based on the pruning type.
Keys: Ace: acetate; Ala: alanine; Ara: arabinose; Arg: arginine; BDO: 2,3-butanediol; But: butyrate;
Caf: caffeic acid; Chol: choline; Cit: citrate; EtOH: ethanol; Fru: fructose; Glc: glucose; Gln: glutamine;
Glu: glutamate; Glyc: glycerol; IamOH: isoamyl alcohol; IbuOH: isobutanol; Ile: isoleucine; Lac: lac-
tate; Leu: leucine; Mal: malate; MeOH: methanol; pCoum: p-coumaric acid; PheOH: phenylethanol;
Pro: proline; TyrOH: tyrosol; Suc: succinate; Val: valine; Xyl: xylose. Figure S2: Box and whiskers
plots showing the amino acid distribution in must samples from the field experiment. Keys: FC=field
control; DEF=defoliation; CT=crop thinning; DEF-CT= defoliation and crop thinning. Vertical lines
indicate the span of the distributions, the middle line represents the median value of the obser-
vations, and the red dot represents the mean value of the observations. Filled circles represent
outliers (values > 1.5 × IQR). ANOVA was performed to assess the statistical significance of the
results. Different letters stand for significant differences between the groups. Figure S3: Box and
whiskers plots showing the amino acid distribution in must samples from the screenhouse experiment.
Keys: HC= screenhouse control; ES= early-stress; MS= mid-stress; LS= late-stress. Vertical lines
indicate the span of the distributions, the middle line represents the median value of the observations,
and the red dot represents the mean value of the observations. Filled circles represent outliers
(values > 1.5 × IQR). ANOVA was performed to assess the statistical significance of the results. Dif-
ferent letters stand for significant differences between the groups. Figure S4: Box and whiskers plots
showing the sugar distribution in must samples from the field (A) and screenhouse (B) experiments.
See captions to Figure S2 (field) and S3 (screenhouse) for legend and keys explanation. Figure S5: Box
and whiskers plots showing the distribution of organic acids in must samples from the field (A)
and screenhouse (B) experiments. See captions to Figure S2 (field) and S3 (screenhouse) for legend
and keys explanation. Figure S6: Box and whiskers plots showing the distribution of alcohols (A),
amino acids (B) and organic acids (C) identified and quantified in wines from the field experiment
whose concentration significantly changed amongst different treatments. See caption to Figure S2
for legend and keys explanation. Figure S7: Box and whiskers plots showing the distribution of
metabolites identified and quantified in wines from the screenhouse experiment whose concentration
significantly changed amongst different water deficit treatments. See caption to Figure S3 for legend
and keys explanation.
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