Speculative Deforestation

William Sonnex

2. Deforesting rev(xs + [n])

Fix a new $rev_{\#}: [a] \rightarrow a \rightarrow [a]$, s.t.

 $rev_{\#} xs n \triangleq rev (xs \# [n])$

Deforest the definition of rev_2 :

$$rev_{+} xs n = T[rev (xs + [n])]$$

$$=_{\beta} T[rev (xs \{ [] \rightarrow [n] \})]$$

$$= xs \{ (c :: cs) \rightarrow c :: (cs + [n]) \})$$

$$= xs \{ (c :: cs) \rightarrow T[rev (n]] \}$$

$$= xs \{ (c :: cs) \rightarrow T[rev (cs + [n]) + [c]] \}$$

$$= xs \{ (c :: cs) \rightarrow T[rev (cs + [n]) + [c]] \}$$

$$= xs \{ (c :: cs) \rightarrow T[rev (s + [n]) + [c]] \}$$

$$= xs \{ (c :: cs) \rightarrow T[rev (s + [n]) + [c]] \}$$

$$= xs \{ (c :: cs) \rightarrow T[rev (s + [n]) + [c]] \}$$

$$= xs \{ (c :: cs) \rightarrow T[rev (s + [n]) + [c]] \}$$

$$= xs \{ (c :: cs) \rightarrow T[rev (s + [n]) + [c]] \}$$

$$= xs \{ (c :: cs) \rightarrow T[rev (s + [n]) + [c]] \}$$

$$= xs \{ (c :: cs) \rightarrow T[rev (s + [n]) + [c]] \}$$

$$= xs \{ (c :: cs) \rightarrow T[rev (s + [n]) + [c]] \}$$

$$= xs \{ (c :: cs) \rightarrow T[rev (s + [n]) + [c]] \}$$

$$= xs \{ (c :: cs) \rightarrow T[rev (s + [n]) + [c]] \}$$

$$= xs \{ (c :: cs) \rightarrow T[rev (s + [n]) + [c]] \}$$

$$= xs \{ (c :: cs) \rightarrow T[rev (s + [n]) + [c]] \}$$

$$= xs \{ (c :: cs) \rightarrow T[rev (s + [n]) + [c]] \}$$

$$= xs \{ (c :: cs) \rightarrow T[rev (s + [n]) + [c]] \}$$

$$= xs \{ (c :: cs) \rightarrow T[rev (s + [n]) + [c]] \}$$

$$= xs \{ (c :: cs) \rightarrow T[rev (s + [n]) + [c]] \}$$

$$= xs \{ (c :: cs) \rightarrow T[rev (s + [n]) + [c]] \}$$

$$= xs \{ (c :: cs) \rightarrow T[rev (s + [n]) + [c]] \}$$

$$= xs \{ (c :: cs) \rightarrow T[rev (s + [n]) + [c]] \}$$

$$= xs \{ (c :: cs) \rightarrow T[rev (s + [n]) + [c]] \}$$

$$= xs \{ (c :: cs) \rightarrow T[rev (s + [n]) + [c]] \}$$

$$= xs \{ (c :: cs) \rightarrow T[rev (s + [n]) + [c]] \}$$

$$= xs \{ (c :: cs) \rightarrow T[rev (s + [n]) + [c]] \}$$

3. Factoring $rev_{\#} xs n$ into n :: (rev xs)

Deforestation found $rev (xs + [n]) \rightarrow rev_+ xs n$ Constant context factoring finds $rev_+ xs n \rightarrow n :: (rev xs)$

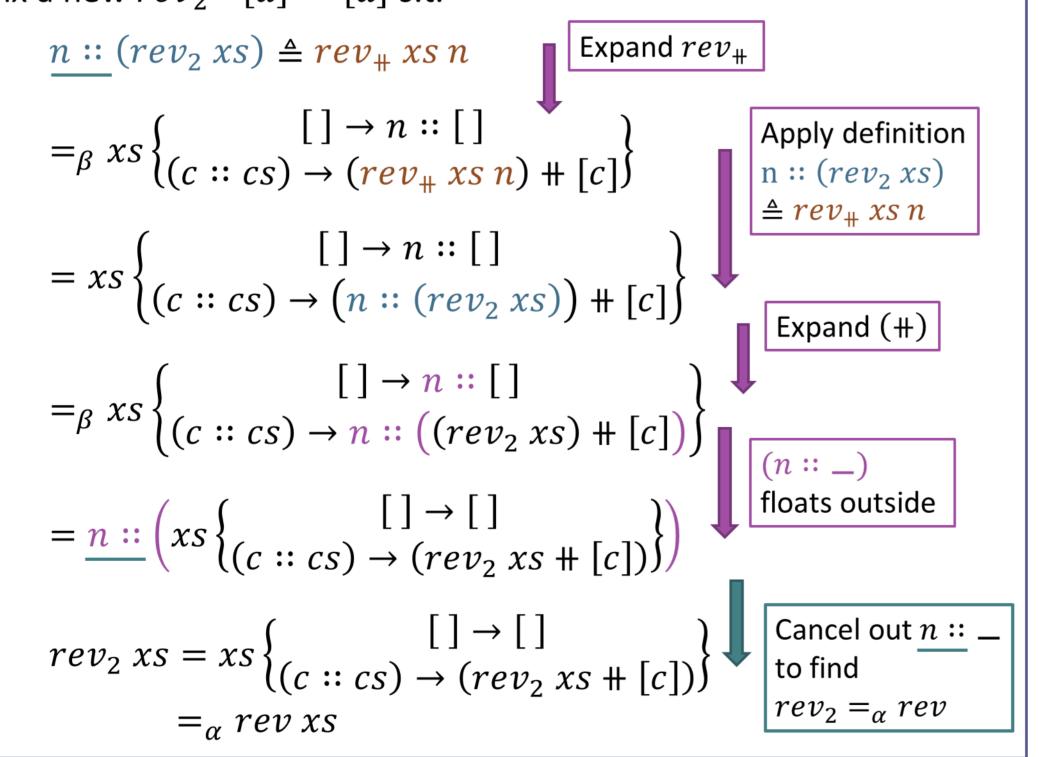
First, speculate the constant context C using a dynamic approach, enumerate inputs to $rev_{\#} xs n$:

$$(rev_{+} xs n)[xs \mapsto []] =_{\beta} [n]$$

$$(rev_{+} xs n)[xs \mapsto [a]] =_{\beta} [n, a]$$

$$(rev_{+} xs n)[xs \mapsto [a, b]] =_{\beta} [n, b, a]$$
All are $n :: _$
so $C = n :: _$

Fix a new $rev_2:[a] \rightarrow [a]$ s.t.



Function definitions

(List append)
$$as + bs = as \begin{cases} [] \rightarrow bs \\ (c :: cs) \rightarrow c :: (cs + bs) \end{cases}$$

(List reversal)
$$rev ds = ds \begin{cases} [] \rightarrow [] \\ (e :: es) \rightarrow (rev es) + [e] \end{cases}$$

(Natural number addition)
$$x + y = x \begin{cases} 0 \to y \\ s(z) \to s(z+y) \end{cases}$$

1. Introduction

- Deforestation is a function simplification technique invented by Philip Wadler
- It optimises functional programs by removing intermediary results e.g. $map\ g\ (map\ f\ xs) \rightarrow map\ (g\circ f)\ xs$
- We have developed extensions to yield simpler results, not for runtime, but for program verification and ATP
- These extensions we have collectively named "factoring", as they factor out a context from a recursive function, i.e. $\mu h \rightarrow f(\mu g)$, factoring f out of μh to yield μg
- In this poster we present only "constant context" factoring

4. Deforesting rev(rev xs)

With factoring we can now calculate: $rev (rev xs) \rightarrow xs$ Fix a new $id_r : [a] \rightarrow a \rightarrow [a]$, s.t.

$$\begin{array}{l} \text{ta new } id_r : [a] \to a \to [a], \text{ s.t.} \\ id_r \ xs \triangleq rev \ (rev \ xs) \\ = T \llbracket rev \ (rev \ xs) \rrbracket \\ =_{\beta} T \llbracket rev \ (xs \Big\{ (e :: es) \to (rev \ es) + [e] \Big\} \Big) \rrbracket \\ = xs \Big\{ (e :: es) \to T \llbracket rev \ ([]] \rrbracket \\ = xs \Big\{ (e :: es) \to T \llbracket rev \ ([]] \rrbracket \\ = xs \Big\{ (e :: es) \to T \llbracket rev \ ([]] \rrbracket \\ = \alpha \ xs \Big\{ (e :: es) \to T \llbracket ev \ ([]] \rrbracket \\ = xs \Big\{ (e :: es) \to T \llbracket e :: (rev \ (rev \ es)) \rrbracket \Big\} \\ = xs \Big\{ (e :: es) \to T \llbracket e :: (id_r \ es) \rrbracket \Big\} \\ = xs \Big\{ (e :: es) \to T \llbracket e :: (id_r \ es) \rrbracket \Big\} \\ = xs \Big\{ (e :: es) \to T \llbracket e :: (id_r \ es) \rrbracket \Big\} \\ = xs \Big\{ (e :: es) \to e :: (id_r \ es) \Big\}$$

5. Deforesting x + x

= xs

Factoring can also remove variable repetition, as in x + xFix a new *double* x s.t.

(a new double
$$x$$
 s.t. $double \ x \triangleq x + x$ | Expand (+)
$$= x \begin{cases} 0 \to x \\ s(z) \to s(z+x) \end{cases}$$
 | Substitute pattern matched values for x

$$= x \begin{cases} 0 \to 0 \\ s(z) \to s(z+s(z)) \end{cases}$$
 | Factoring finds $z + s(z) \longrightarrow s(z+z)$

$$= x \begin{cases} 0 \to 0 \\ s(z) \to s(s(z+z)) \end{cases}$$
 | Apply definition $z = x \end{cases}$ | Apply definition $z = x$ | Apply defi

6. Results

 $length (rev xs) \rightarrow length xs$ $length (xs \# xs) \rightarrow double (length xs)$

Other results of just constant context factoring

elem $n (xs + [m]) \rightarrow n = m \lor elem n xs$ count $n (insertsort xs) \rightarrow count n xs$ take (length xs) (rev xs) $\rightarrow rev xs$ treesort xs $\rightarrow insertsort xs$

Results of our full method