20 pages, 1326 KiB  
Article
An Update of the Cenchrinae (Poaceae, Panicoideae, Paniceae) and a New Genus for the Subtribe to Clarify the Dubious Position of a Species of Panicum L.
by Carolina Delfini, Sandra S. Aliscioni, Juan M. Acosta, José F. Pensiero and Fernando O. Zuloaga
Plants 2023, 12(4), 749; https://doi.org/10.3390/plants12040749 - 7 Feb 2023
Cited by 1 | Viewed by 1860
Abstract
Subtribe Cenchrinae, so-called as the “bristle clade”, is a monophyletic group of panicoid grasses characterized by having sterile branches or bristles on the inflorescences in most of its species. Within this subtribe is also placed Panicum antidotale Retz., an “incertae sedis” species of [...] Read more.
Subtribe Cenchrinae, so-called as the “bristle clade”, is a monophyletic group of panicoid grasses characterized by having sterile branches or bristles on the inflorescences in most of its species. Within this subtribe is also placed Panicum antidotale Retz., an “incertae sedis” species of Panicum L. which lacks bristles along the inflorescence. In this study, we present an update of the subtribe Cenchrinae based on molecular, morphological, and anatomical evidence to clarify the systematic position of P. antidotale in the Cenchrinae, excluding it from Panicum and establishing it in a new genus (i.e., Janochloa Zuloaga & Delfini); the morphological features distinguishing the new genus from other closely related taxa are properly discussed and an identification key to the 24 genera recognized within Cenchrinae is presented. We also add American Setaria species, not tested before, of subgenera Paurochaetium and Reverchoniae, discussing the position of these taxa in actual phylogeny of the genus as well as defining placements in the tree of Setaria species that were imprecisely located in previous analyses. A comparison with the results from other studies, comments on Stenotaphrum Trin. and a brief discussion on conflicting placements in Cenchrus and related taxa, and of Acritochaete Pilg. are also included. Full article
(This article belongs to the Topic Plant Systematics and Taxonomy)
Show Figures

Graphical abstract

16 pages, 2705 KiB  
Article
First Report on Development of Genome-Wide Microsatellite Markers for Stock (Matthiola incana L.)
by Chen Tan, Haimei Zhang, Haidong Chen, Miaotian Guan, Zhenzhi Zhu, Xueying Cao, Xianhong Ge, Bo Zhu and Daozong Chen
Plants 2023, 12(4), 748; https://doi.org/10.3390/plants12040748 - 7 Feb 2023
Cited by 3 | Viewed by 1274
Abstract
Stock (Matthiola incana (L.) R. Br.) is a famous annual ornamental plant with important ornamental and economic value. The lack of DNA molecular markers has limited genetic analysis, genome evolution, and marker-assisted selective breeding studies of M. incana. Therefore, more DNA [...] Read more.
Stock (Matthiola incana (L.) R. Br.) is a famous annual ornamental plant with important ornamental and economic value. The lack of DNA molecular markers has limited genetic analysis, genome evolution, and marker-assisted selective breeding studies of M. incana. Therefore, more DNA markers are needed to support the further elucidation of the biology and genetics of M. incana. In this study, a high-quality genome of M. incana was initially assembled and a set of effective SSR primers was developed at the whole-genome level using genome data. A total of 45,612 loci of SSRs were identified; the di-nucleotide motifs were the most abundant (77.35%). In total, 43,540 primer pairs were designed, of which 300 were randomly selected for PCR validation, and as the success rate for amplification. In addition, 22 polymorphic SSR markers were used to analyze the genetic diversity of 40 stock varieties. Clustering analysis showed that all varieties could be divided into two clusters with a genetic distance of 0.68, which were highly consistent with their flower shape (potted or cut type). Moreover, we have verified that these SSR markers are effective and transferable within the Brassicaceae family. In this study, potential SSR molecular markers were successfully developed for 40 M. incana varieties using whole genome analysis, providing an important genetic tool for theoretical and applied research on M. incana. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

20 pages, 3498 KiB  
Article
Phytotoxic Effects of Polystyrene and Polymethyl Methacrylate Microplastics on Allium cepa Roots
by Renata Biba, Petra Cvjetko, Mihaela Jakopčić, Bruno Komazec, Mirta Tkalec, Nino Dimitrov, Tajana Begović and Biljana Balen
Plants 2023, 12(4), 747; https://doi.org/10.3390/plants12040747 - 7 Feb 2023
Cited by 6 | Viewed by 2661
Abstract
Plastic contamination has become one of the most pressing environmental issues due to rapidly increasing production of disposable plastic products, their fragmentation into smaller pieces, and long persistence in the environment, which affects all living organisms, including plants. In this study, Allium cepa [...] Read more.
Plastic contamination has become one of the most pressing environmental issues due to rapidly increasing production of disposable plastic products, their fragmentation into smaller pieces, and long persistence in the environment, which affects all living organisms, including plants. In this study, Allium cepa roots were exposed to 0.01, 0.1, and 1 g L−1 of commercial polystyrene (PS-MPs) and polymethyl methacrylate microparticles (PMMA-MPs) for 72 h. Dynamic light scattering (DLS) analyses showed high stability of both types of MPs in ultrapure water used for A. cepa treatment. Morphometric analysis revealed no significant change in root length compared to control. Pyrolysis hyphenated to gas chromatography and mass spectrometry (Py-GC-MS) has proven PS-MPs uptake by onion roots in all treatments, while PMMA-MPs were recorded only upon exposure to the highest concentration. Neither MPs induced any (cyto)toxic effect on root growth and PMMA-MPs even had a stimulating effect on root growth. ROS production as well as lipid and protein oxidation were somewhat higher in PS-MP treatments compared to the corresponding concentrations of PMMA-MP, while neither of the applied MPs induced significant damage to the DNA molecule assayed with a Comet test. Significantly elevated activity of H2O2 scavenging enzymes, catalase, and peroxidases was measured after exposure to both types of MPs. Obtained results suggest that onion roots take up PS-MPs more readily in comparison to PMMA-MPs, while both types of MPs induce a successful activation of antioxidant machinery in root cells that prevented the occurrence of toxic effects. Full article
(This article belongs to the Special Issue Advances in Plant Degradation of Metal and Plastic Pollution)
Show Figures

Figure 1

16 pages, 2248 KiB  
Article
Trends in Phenolic Profiles of Achillea millefolium from Different Geographical Gradients
by Jolita Radušienė, Birutė Karpavičienė, Lina Raudone, Gabriele Vilkickyte, Cüneyt Çırak, Fatih Seyis, Fatih Yayla, Mindaugas Marksa, Laura Rimkienė and Liudas Ivanauskas
Plants 2023, 12(4), 746; https://doi.org/10.3390/plants12040746 - 7 Feb 2023
Cited by 5 | Viewed by 1178
Abstract
The traditional widely used raw material of Achillea millefolium is currently mainly derived from wild populations, leading to diversification and uncertainty in its quality. The aim of the study was to determine the accumulation differences of phenolic compounds between geographically distant populations of [...] Read more.
The traditional widely used raw material of Achillea millefolium is currently mainly derived from wild populations, leading to diversification and uncertainty in its quality. The aim of the study was to determine the accumulation differences of phenolic compounds between geographically distant populations of Achillea millefolium from northern and southern gradients. Plant material was collected from Gaziantep and Nevşehir provinces in Turkey and from wild populations in Lithuania. A complex of nine hydroxycinnamic acids and eleven flavonoids was identified and quantified in the methanolic extracts of inflorescences, leaves, and stems using the HPLC-PDA method. Caffeoylquinic acids predominated in leaves, while inflorescences tended to prevail in flavonoids. The PCA score plot model represented the quantitative distribution pattern of phenolic compounds along a geographical gradient of populations. The content of phenolic compounds in plant materials from northern latitudes was more than twice that of plants from southern latitudes. A significant correlation of individual phenolic compounds with latitude/longitude corresponded to their differences between two countries. Differences in accumulation of caffeoylquinic acids and flavonoids revealed several intraspecific groups within A. millefolium. Our findings suggest that spatial geographical data on the distribution of phenolic compounds in A. millefolium populations could be used as a tool to find potential collection sites for high-quality raw materials. Full article
(This article belongs to the Special Issue Natural Resources of Berry and Medicinal Plants Volume II)
Show Figures

Figure 1

22 pages, 1095 KiB  
Article
Essential Oils from Apiaceae, Asteraceae, Cupressaceae and Lamiaceae Families Grown in Serbia: Comparative Chemical Profiling with In Vitro Antioxidant Activity
by Nevena Gladikostić, Bojana Ikonić, Nemanja Teslić, Zoran Zeković, Danica Božović, Predrag Putnik, Danijela Bursać Kovačević and Branimir Pavlić
Plants 2023, 12(4), 745; https://doi.org/10.3390/plants12040745 - 7 Feb 2023
Cited by 10 | Viewed by 2030
Abstract
The aim of the present study was to investigate the chemical profile and antioxidant activity of essential oils obtained from the most commonly grown plant species in Serbia. Aromatic and medicinal plants from Lamiaceae (Mentha x Piperita, Ocimum basilicum, Origanum [...] Read more.
The aim of the present study was to investigate the chemical profile and antioxidant activity of essential oils obtained from the most commonly grown plant species in Serbia. Aromatic and medicinal plants from Lamiaceae (Mentha x Piperita, Ocimum basilicum, Origanum majorana, Origanum vulgare, Salvia officinalis, Satureja hortensis, Satureja montana and Thymus vulgaris), Asteraceae (Ehinacea purpurea and Matricaria chamomilla), Apiaceae (Anethum graveolens, Carum carvi, Foeniculum vulgare, Petroselinum crispum and Pimpinella anisum) and Cupressaceae (Juniperus comunis) were selected as raw material for essential oils (EOs)’ isolation. Hydrodistillation (HD) was used for the isolation of EOs while they were evaluated in terms of yield and terpenoid profiles by GC-MS. In vitro radical scavenging DPPH and ABTS+ radical activities were carried out for all EOs. Finally, a principal component analysis (PCA) was performed with the experimental results of the composition and antioxidant activity of the EOs, which showed a clear distinction between the selected plant species for the aforementioned responses. This work represents a screening tool for the selection of other EO candidates for further processing by emerging extraction techniques and the use of EOs as natural additives for meat products. Full article
Show Figures

Figure 1

23 pages, 5219 KiB  
Article
Genetic Diversity and Population Structure of Common Bean (Phaseolus vulgaris L.) Landraces in the Lazio Region of Italy
by Giulio Catarcione, Anna Rita Paolacci, Enrica Alicandri, Elena Gramiccia, Paola Taviani, Roberto Rea, Maria Teresa Costanza, Gabriella De Lorenzis, Guglielmo Puccio, Francesco Mercati and Mario Ciaffi
Plants 2023, 12(4), 744; https://doi.org/10.3390/plants12040744 - 7 Feb 2023
Cited by 8 | Viewed by 2146
Abstract
Common bean cultivation has historically been a typical component of rural economies in Italy, particularly in mountainous and hilly zones along the Apennine ridge of the central and southern regions, where the production is focused on local landraces cultivated by small-scale farmers using [...] Read more.
Common bean cultivation has historically been a typical component of rural economies in Italy, particularly in mountainous and hilly zones along the Apennine ridge of the central and southern regions, where the production is focused on local landraces cultivated by small-scale farmers using low-input production systems. Such landraces are at risk of genetic erosion because of the recent socioeconomic changes in rural communities. One hundred fourteen accessions belonging to 66 landraces still being grown in the Lazio region were characterized using a multidisciplinary approach. This approach included morphological (seed traits), biochemical (phaseolin and phytohemagglutinin patterns), and molecular (microsatellite loci) analyses to investigate their genetic variation, structure, and distinctiveness, which will be essential for the implementation of adequate ex situ and in situ conservation strategies. Another objective of this study was to determine the original gene pool (Andean and Mesoamerican) of the investigated landraces and to evaluate the cross-hybridization events between the two ancestral gene pools in the P. vulgaris germplasm in the Lazio region. Molecular analyses on 456 samples (four for each of the 114 accessions) revealed that the P. vulgaris germplasm in the Lazio region exhibited a high level of genetic diversity (He = 0.622) and that the Mesoamerican and Andean gene pools were clearly differentiated, with the Andean gene pool prevailing (77%) and 12% of landraces representing putative hybrids between the two gene pools. A model-based cluster analysis based on the molecular markers highlighted three main groups in agreement with the phaseolin patterns and growth habit of landraces. The combined utilisation of morphological, biochemical, and molecular data allowed for the differentiation of all landraces and the resolution of certain instances of homonymy and synonymy. Furthermore, although a high level of homozygosity was found across all landraces, 32 of the 66 examined (49%) exhibited genetic variability, indicating that the analysis based on a single or few plants per landrace, as usually carried out, may provide incomplete information. Full article
Show Figures

Figure 1

18 pages, 3281 KiB  
Article
‘Garlic-lipo’4Plants: Liposome-Encapsulated Garlic Extract Stimulates ABA Pathway and PR Genes in Wheat (Triticum aestivum)
by Barbara Kutasy, Márta Kiniczky, Kincső Decsi, Nikoletta Kálmán, Géza Hegedűs, Zoltán Péter Alföldi and Eszter Virág
Plants 2023, 12(4), 743; https://doi.org/10.3390/plants12040743 - 7 Feb 2023
Cited by 1 | Viewed by 1734
Abstract
Recently, environmentally friendly crop improvements using next-generation plant biostimulants (PBs) come to the forefront in agriculture, regardless of whether they are used by scientists, farmers, or industries. Various organic and inorganic solutions have been investigated by researchers and producers, focusing on tolerance to [...] Read more.
Recently, environmentally friendly crop improvements using next-generation plant biostimulants (PBs) come to the forefront in agriculture, regardless of whether they are used by scientists, farmers, or industries. Various organic and inorganic solutions have been investigated by researchers and producers, focusing on tolerance to abiotic and biotic stresses, crop quality, or nutritional deficiency. Garlic has been considered a universal remedy ever since antiquity. A supercritical carbon dioxide garlic extract encapsulated in nanoscale liposomes composed of plant-derived lipids was examined as a possible PB agent. The present study focused on the characterization of the genes associated with the pathways involved in defense response triggered by the liposome nanoparticles that were loaded with supercritical garlic extracts. This material was applied to Triticum aestivum in greenhouse experiments using foliar spraying. The effects were examined in a large-scale genome-wide transcriptional profiling experiment by collecting the samples four times (0 min, used as a control, and 15 min, 24 h, and 48 h after spraying). Based on a time-course expression analysis, the dynamics of the cellular response were determined by examining differentially expressed genes and applying a cluster analysis. The results suggested an enhanced expression of abscisic acid (ABA) pathway and pathogenesis-related (PR) genes, of which positive regulation was found for the AP2-, C2H2-, HD-ZIP-, and MYB-related transcription factor families. Full article
(This article belongs to the Special Issue Plant Biostimulation)
Show Figures

Graphical abstract

17 pages, 3083 KiB  
Article
Domestication Potential of Garcinia kola Heckel (Clusiaceae): Searching for Diversity in South Cameroon
by Anna Maňourová, Irikidzai Prosper Chinheya, Marie Kalousová, José Alejandro Ruiz-Chután, Uche Cyprian Okafor, Zac Tchoundjeu, Alain Tsobeng, Patrick Van Damme and Bohdan Lojka
Plants 2023, 12(4), 742; https://doi.org/10.3390/plants12040742 - 7 Feb 2023
Cited by 4 | Viewed by 2283 | Correction
Abstract
Seeds and bark of Garcinia kola Heckel (Clusiaceae) are popular products in West and Central Africa. Despite the tree’s economic and cultural importance, little is known about its phenotypic and genotypic variation. This study characterised the morphological and genetic diversity of G. kola [...] Read more.
Seeds and bark of Garcinia kola Heckel (Clusiaceae) are popular products in West and Central Africa. Despite the tree’s economic and cultural importance, little is known about its phenotypic and genotypic variation. This study characterised the morphological and genetic diversity of G. kola in South Cameroon, searching for traits and populations that might be used for domestication. Morphological assessment and amplified fragment length polymorphism (AFLP) markers were applied to characterise diversity among geographic populations from Central and South regions, and between managed and wild trees. AFLP-SURV and analysis of molecular variance results indicated that a major part of genetic diversity is harboured within populations rather than between them. Bayesian analysis, principal component analysis and t-SNE identified three clusters where Ebolowa emerged as the transition population combining features from both regions. Trees from the South demonstrated a higher incidence of domestication-related traits, showing higher genetic diversity compared to the Central region. This suggests that individuals from the South might be more suitable for selection as “elite trees” in future breeding strategies for the species. No significant differences in phenotype and genotype were revealed between wild and managed populations, suggesting G. kola is still in the early stages of its domestication process. Full article
(This article belongs to the Special Issue Advances in Domestication of Fruit Trees)
Show Figures

Graphical abstract

12 pages, 963 KiB  
Review
The Genetic Mechanism of the Immune Response to the Rice False Smut (RFS) Fungus Ustilaginoidea virens
by Dewei Yang, Niqing He, Fenghuang Huang, Yidan Jin and Shengping Li
Plants 2023, 12(4), 741; https://doi.org/10.3390/plants12040741 - 7 Feb 2023
Cited by 2 | Viewed by 2221
Abstract
Rice false smut (RFS), which is caused by Ustilaginoidea virens (U. virens), has become one of the most devastating diseases in rice-growing regions worldwide. The disease results in a significant yield loss and poses health threats to humans and animals due [...] Read more.
Rice false smut (RFS), which is caused by Ustilaginoidea virens (U. virens), has become one of the most devastating diseases in rice-growing regions worldwide. The disease results in a significant yield loss and poses health threats to humans and animals due to producing mycotoxins. In this review, we update the understanding of the symptoms and resistance genes of RFS, as well as the genomics and effectors in U. virens. We also highlight the genetic mechanism of the immune response to RFS. Finally, we analyse and explore the identification method for RFS, breeding for resistance against the disease, and interactions between the effector proteins and resistance (R) proteins, which would be involved in the development of rice disease resistance materials for breeding programmes. Full article
(This article belongs to the Special Issue Molecular Basis of Disease Resistance in Plants)
Show Figures

Figure 1

10 pages, 3908 KiB  
Communication
A Simple but Effective Combination of pH Indicators for Plant Tissue Culture
by Bryn Funnekotter, Ricardo L. Mancera and Eric Bunn
Plants 2023, 12(4), 740; https://doi.org/10.3390/plants12040740 - 7 Feb 2023
Cited by 4 | Viewed by 3308
Abstract
The use of pH indicators provides a simple, semi-quantitative visual method for quickly assessing pH changes in tissue culture media; however, pH indicators are rarely used in routine plant tissue culture media. In this study, chlorophenol red, bromocresol purple, and bromocresol green were [...] Read more.
The use of pH indicators provides a simple, semi-quantitative visual method for quickly assessing pH changes in tissue culture media; however, pH indicators are rarely used in routine plant tissue culture media. In this study, chlorophenol red, bromocresol purple, and bromocresol green were tested to assess their functionality in the growth medium for plant shoot cultures. In addition, a combination of bromocresol green and bromocresol purple was tested to determine if they would widen the observable colour change to better assess pH changes in the medium. Varying the ratio of bromocresol green to bromocresol purple alters the pH at which the colour changes from blue to green to yellow, with a 1:3 ratio providing a useful pH range of 5–6.5, while a 1:1 ratio provides a useful pH range of 4.5–6. All the pH indicators showed no toxic side effects for the plant species tested in this study and were able to be autoclaved to ensure media sterility. The addition of these pH indicators to quickly assess media pH in large tissue culture collections can aid in routine maintenance. These pH indicators can be used as a ‘traffic light’ system, with blue indicating a high pH, green a normal pH, and yellow a low pH in the media. Full article
(This article belongs to the Special Issue Advances and Applications in Plant Tissue Culture)
Show Figures

Figure 1

7 pages, 844 KiB  
Communication
Nematicidal Activity of a Garlic Extract Formulation against the Grapevine Nematode Xiphinema index
by Trifone D’Addabbo, Edith Ladurner and Alberto Troccoli
Plants 2023, 12(4), 739; https://doi.org/10.3390/plants12040739 - 7 Feb 2023
Cited by 2 | Viewed by 1886
Abstract
The nematicidal activity of garlic extracts is known on root–knot nematodes but never investigated on the grapevine nematode Xiphinema index. In this study, the nematicidal activity of a commercial garlic extract formulate (GEF) was assessed on X. index, both in vitro [...] Read more.
The nematicidal activity of garlic extracts is known on root–knot nematodes but never investigated on the grapevine nematode Xiphinema index. In this study, the nematicidal activity of a commercial garlic extract formulate (GEF) was assessed on X. index, both in vitro and in a pot assay. In the in vitro assays, mixed specimens of X. index were exposed to a 0–4 mL L−1 range of GEF concentrations, checking nematode immotility and mortality after 2, 4 or 8 h. In the experiments on potted grapevines, plants cultivated in soil infested by X. index were irrigated twice at a 15-day interval with 0.05, 0.2 and 0.5 mL L−1 solutions of GEF, including nontreated soil as a control. An almost complete mortality of X. index specimens occurred after a 2 h exposure to a 2 mL L−1 GEF concentration, while an 8 h exposure to even the 0.0312 and 0.0156 mL L−1 solutions resulted in about 50% and 30% mortality, respectively. Soil treatment with a 0.5 mL L−1 GEF solution significantly reduced the population of X. index and increased the grapevine root growth compared to nontreated soil or soil treated with the lower dosages. Results of this study indicated that garlic-based nematicides could be an effective tool for X. index management in organic and integrated vineyards. Full article
(This article belongs to the Special Issue Plant Parasitic Nematodes Control and Host-Response)
Show Figures

Figure 1

15 pages, 2809 KiB  
Article
Morphology and Phylogeny Reveal Three Montagnula Species from China and Thailand
by Ya-Ru Sun, Jing-Yi Zhang, Kevin D. Hyde, Yong Wang and Ruvishika S. Jayawardena
Plants 2023, 12(4), 738; https://doi.org/10.3390/plants12040738 - 7 Feb 2023
Cited by 6 | Viewed by 1363
Abstract
Four stains were isolated from two fresh twigs of Helwingia himalaica and two dead woods during investigations of micro-fungi in China and Thailand. Phylogenetic analyses of four gene regions LSU, ITS, SSU and tef1-α revealed the placement of these species in Montagnula [...] Read more.
Four stains were isolated from two fresh twigs of Helwingia himalaica and two dead woods during investigations of micro-fungi in China and Thailand. Phylogenetic analyses of four gene regions LSU, ITS, SSU and tef1-α revealed the placement of these species in Montagnula. Based on the morphological examination and molecular data, two new species, M. aquatica and M. guiyangensis, and a known species M. donacina are described. Descriptions and illustrations of the new collections and a key to the Montagnula species are provided. Montagnula chromolaenicola, M. puerensis, M. saikhuensis, and M. thailandica are discussed and synonymized under M. donacina. Full article
(This article belongs to the Special Issue The Research of Plant Fungal Disease)
Show Figures

Figure 1

14 pages, 706 KiB  
Review
Exploiting Rye in Wheat Quality Breeding: The Case of Arabinoxylan Content
by Maria Chiara Piro, Hilde Muylle and Geert Haesaert
Plants 2023, 12(4), 737; https://doi.org/10.3390/plants12040737 - 7 Feb 2023
Cited by 1 | Viewed by 1823
Abstract
Rye (Secale cereale subsp. cereale L.) has long been exploited as a valuable alternative genetic resource in wheat (Triticum aestivum L.) breeding. Indeed, the introgression of rye genetic material led to significant breakthroughs in the improvement of disease and pest resistance [...] Read more.
Rye (Secale cereale subsp. cereale L.) has long been exploited as a valuable alternative genetic resource in wheat (Triticum aestivum L.) breeding. Indeed, the introgression of rye genetic material led to significant breakthroughs in the improvement of disease and pest resistance of wheat, as well as a few agronomic traits. While such traits remain a high priority in cereal breeding, nutritional aspects of grain crops are coming under the spotlight as consumers become more conscious about their dietary choices and the food industry strives to offer food options that meet their demands. To address this new challenge, wheat breeding can once again turn to rye to look for additional genetic variation. A nutritional aspect that can potentially greatly benefit from the introgression of rye genetic material is the dietary fibre content of flour. In fact, rye is richer in dietary fibre than wheat, especially in terms of arabinoxylan content. Arabinoxylan is a major dietary fibre component in wheat and rye endosperm flours, and it is associated with a variety of health benefits, including normalisation of glycaemic levels and promotion of the gut microbiota. Thus, it is a valuable addition to the human diet, and it can represent a novel target for wheat–rye introgression breeding. Full article
(This article belongs to the Special Issue Rye Genetics, Genomics and Breeding)
Show Figures

Figure 1

17 pages, 4365 KiB  
Article
Multispecies Bacterial Bio-Input: Tracking and Plant-Growth-Promoting Effect on Lettuce var. sagess
by Santiago A. Vio, María Lina Galar, María Cecilia Gortari, Pedro Balatti, Mariana Garbi, Aníbal Roberto Lodeiro and María Flavia Luna
Plants 2023, 12(4), 736; https://doi.org/10.3390/plants12040736 - 7 Feb 2023
Cited by 2 | Viewed by 1827
Abstract
The use of multispecies bacterial bio-inputs is a promising strategy for sustainable crop production over the use of single-species inoculants. Studies of the use of multispecies bio-inputs in horticultural crops are scarce, not only on the growth-promoting effects of each bacterium within the [...] Read more.
The use of multispecies bacterial bio-inputs is a promising strategy for sustainable crop production over the use of single-species inoculants. Studies of the use of multispecies bio-inputs in horticultural crops are scarce, not only on the growth-promoting effects of each bacterium within the formulation, but also on their compatibility and persistence in the root environment. In this work, we described that a multispecies bacterial bio-input made up of Azospirillum argentinense Az39, Gluconacetobacter diazotrophicus PAL-5, Pseudomonas protegens Pf-5 and Bacillus sp. Dm-B10 improved lettuce plant growth more effectively than when these strains were inoculated as single-species bio-inputs. Bacteria persisted together (were compatible) and also colonized seedling roots of lettuce plants grown in controlled conditions. Interestingly, colonization was highly related to an early and enhanced growth of seedlings grown in the nursery. A similar effect on plant growth was found in lettuce plants in a commercial greenhouse production in the peri-urban area of La Plata City, Buenos Aires, Argentina. To our knowledge, this is the first study demonstrating that a synthetic mixture of bacteria can colonize and persist on lettuce plants, and also showing their synergistic beneficial effect both in the nursery greenhouse as well as the commercial production farm. Full article
Show Figures

Figure 1

9 pages, 2464 KiB  
Article
Effects of Soil Nutrients on Plant Nutrient Traits in Natural Pinus tabuliformis Forests
by Jie Gao, Jiangfeng Wang and Yanhong Li
Plants 2023, 12(4), 735; https://doi.org/10.3390/plants12040735 - 7 Feb 2023
Cited by 1 | Viewed by 1456
Abstract
In light of global warming, the interaction between plant nutrient traits and soil nutrients is still unclear. Plant nutrient traits (e.g., N and P) and their stoichiometric relationships (N/P ratio) are essential for plant growth and reproduction. However, the specific role of soil [...] Read more.
In light of global warming, the interaction between plant nutrient traits and soil nutrients is still unclear. Plant nutrient traits (e.g., N and P) and their stoichiometric relationships (N/P ratio) are essential for plant growth and reproduction. However, the specific role of soil nutrients in driving variation in plant nutrient traits remains poorly understood. Fifty natural Pinus tabuliformis forests were used as the research object to clarify the interaction between plant nutrient traits and soil nutrients. We show that: (1) The Nmass, Pmass and N/P ratios of leaves were significantly higher than those of roots. The N/P ratio of both leaves and roots was less than 14. (2) Leaf nutrient traits showed diverse relationship patterns with root nutrient traits throughout the growing period. Significant changes were found in root nutrient PC2 (the second principal component of root nutrient traits) and leaf nutrient PC1 (the first principal component of leaf traits), and non-significant changes were found in other relationships between leaf and root traits (p > 0.05). Root nutrient traits explained 36.4% of the variance in leaf nutrient traits. (3) With the increase in soil nutrient PC2 (related to N), leaf PC2 (related to N) showed a significant trend of first decreasing and then increasing (p < 0.05). Only the soil Nmass was significantly correlated with the leaf Nmass (p < 0.05), which demonstrated that the growth and survival of Pinus tabuliformis forests were mainly affected by N-limitation. Full article
Show Figures

Figure 1

14 pages, 2251 KiB  
Article
Genome-Wide Association Study of Agronomic and Physiological Traits Related to Drought Tolerance in Potato
by Alba Alvarez-Morezuelas, Leire Barandalla, Enrique Ritter and Jose Ignacio Ruiz de Galarreta
Plants 2023, 12(4), 734; https://doi.org/10.3390/plants12040734 - 7 Feb 2023
Cited by 4 | Viewed by 1692
Abstract
Potato (Solanum tuberosum L.) is often considered a water-sensitive crop and its production can be threatened by drought events, making water stress tolerance a trait of increasing interest. In this study, a panel of 144 tetraploid potato genotypes was evaluated for two [...] Read more.
Potato (Solanum tuberosum L.) is often considered a water-sensitive crop and its production can be threatened by drought events, making water stress tolerance a trait of increasing interest. In this study, a panel of 144 tetraploid potato genotypes was evaluated for two consecutive years (2019 and 2020) to observe the variation of several physiological traits such as chlorophyll content and fluorescence, stomatal conductance, NDVI, and leaf area and circumference. In addition, agronomic parameters such as yield, tuber fresh weight, tuber number, starch content, dry matter and reducing sugars were determined. GGP V3 Potato array was used to genotype the population, obtaining a total of 18,259 high-quality SNP markers. Marker-trait association was performed using GWASpoly package in R software and Q + K linear mixed models were considered. This approach allowed us to identify eighteen SNP markers significantly associated with the studied traits in both treatments and years, which were related to genes with known functions. Markers related to chlorophyll content and number of tubers under control and stress conditions, and related to stomatal conductance, NDVI, yield and reducing sugar content under water stress, were identified. Although these markers were distributed throughout the genome, the SNPs associated with the traits under control conditions were found mainly on chromosome 11, while under stress conditions they were detected on chromosome 4. These results contribute to the knowledge of the mechanisms of potato tolerance to water stress and are useful for future marker-assisted selection programs. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

12 pages, 1277 KiB  
Article
Early Canopy Management Practices Differentially Modulate Fruit Set, Fruit Yield, and Berry Composition at Harvest Depending on the Grapevine Cultivar
by Alessandro Mataffo, Pasquale Scognamiglio, Carlo Molinaro, Giandomenico Corrado and Boris Basile
Plants 2023, 12(4), 733; https://doi.org/10.3390/plants12040733 - 7 Feb 2023
Cited by 4 | Viewed by 1600
Abstract
The size and number of the berries and the rachis length are the main elements that define bunch compactness in grapevine (Vitis vinifera L.). This trait is of scientific and commercial interest because it strongly influences phytosanitary status and quality of the [...] Read more.
The size and number of the berries and the rachis length are the main elements that define bunch compactness in grapevine (Vitis vinifera L.). This trait is of scientific and commercial interest because it strongly influences phytosanitary status and quality of the fruits. In this work, we investigated the effect of different canopy management strategies based on apical shoot and/or leaf removal applied at the early stage (pre-bloom) in altering the key determinants of bunch compactness. Specifically, we compared apical defoliation (removal of the first half of the shoot leaves from the top), basal defoliation (removal of the second half), and shoot trimming (removal of the apical half of the shoot) to untreated controls. The work was carried out in two red varieties (‘Aglianico’ and ‘Casavecchia’) that have contrasting bunch compactness (compact and loose, respectively). We measured relevant morphological traits, photosynthetic rates, fertility, fruit set, bunch architecture, and fruit main compositional parameters. This study demonstrates that the position of the removed shoot leaves along with the shoot trimming differentially modified fruit set, the number of berries per bunch, and berry fresh weight and composition at harvest. Nonetheless, the influence on bunch compactness was limited mainly because of photosynthetic and morphological factors strongly associated with the cultivar. Full article
(This article belongs to the Special Issue Grapevine Responses to Environmental Challenges, Volume II)
Show Figures

Figure 1

19 pages, 5725 KiB  
Article
Comparative Transcriptomic Analysis Reveals the Negative Response Mechanism of Peanut Root Morphology and Nitrate Assimilation to Nitrogen Deficiency
by Lijie Li, Xiangguo Cheng, Xiangjun Kong, Peipei Jia, Xiaohui Wang, Lei Zhang, Xiaotian Zhang, Yi Zhang, Zhiyong Zhang and Baohong Zhang
Plants 2023, 12(4), 732; https://doi.org/10.3390/plants12040732 - 7 Feb 2023
Cited by 1 | Viewed by 1801
Abstract
Root architecture plays a fundamental role in crop yield, which is sensitive to nitrogen fertilizer. Although it is well studied that nitrogen fertilizer significantly promotes peanut (Arachis hypogaea L.) growth and yield, less information was available on how its root development responds [...] Read more.
Root architecture plays a fundamental role in crop yield, which is sensitive to nitrogen fertilizer. Although it is well studied that nitrogen fertilizer significantly promotes peanut (Arachis hypogaea L.) growth and yield, less information was available on how its root development responds to nitrogen deficiency. In this study, the growth and development of roots were inhibited, as indicated by the significantly decreased root dry weight and length and the lateral root number, especially under 10 days of nitrogen deficiency treatment. The activities and the expression of the genes related to nitrogen assimilation enzymes including nitrate reductase, glutamine synthetase, glutamate dehydrogenase, and glutamine oxoglutarate aminotransferase and the genes encoding the nitrate transporters were significantly decreased under 10 days of nitrogen deficiency treatment, which may lead to a decrease in nitrate content, as indicated by the significantly decreased nitrogen balance index. Transcriptome sequencing revealed a total of 293 (119 up- and 174 downregulated) and 2271 (1165 up- and 1106 downregulated) differentially expressed genes (DEGs) identified after five and ten days of nitrogen deficiency treatments, respectively. Bioinformatic analysis showed that these DEGs were mainly involved in nitrate transportation and assimilation, phytohormone signal transduction, and the lignin biosynthesis pathway. Furthermore, a putative schematic diagram of nitrogen deficiency inhibiting root growth was established, which gives us a better understanding of nitrogen metabolism in peanut roots and a theoretical basis for improving nitrogen use efficiency. Full article
(This article belongs to the Section Plant Systems and Synthetic Biology)
Show Figures

Figure 1

14 pages, 2596 KiB  
Article
Growth, Flowering, and Fruit Production of Strawberry ‘Albion’ in Response to Photoperiod and Photosynthetic Photon Flux Density of Sole-Source Lighting
by Yujin Park, Rashmi Sethi and Stephanie Temnyk
Plants 2023, 12(4), 731; https://doi.org/10.3390/plants12040731 - 7 Feb 2023
Cited by 3 | Viewed by 3840
Abstract
Beyond producing leafy greens, there is a growing interest in strawberry production on indoor vertical farms. Considering that sole-source lighting is one of the most important components for successful indoor crop production, we investigated how photosynthetic photon flux density (PPFD) and the photoperiod [...] Read more.
Beyond producing leafy greens, there is a growing interest in strawberry production on indoor vertical farms. Considering that sole-source lighting is one of the most important components for successful indoor crop production, we investigated how photosynthetic photon flux density (PPFD) and the photoperiod of sole-source lighting affected plant growth, flowering, and fruit production in strawberry ‘Albion.’ Bare-rooted strawberry plants were grown in deep water culture hydroponics inside an indoor vertical farm at 21 °C under white + blue + red light-emitting diodes at a PPFD of 200, 300, or 450 µmol∙m−2∙s−1 with a 12-h or 16-h photoperiod. Under both photoperiods, increasing PPFD from 200 to 450 µmol∙m−2∙s−1 linearly increased crown diameter by 18–64%, shoot fresh and dry mass by 38–80%, and root fresh and dry mass by 19–48%. Under a PPFD ≥ 300 µmol∙m−2∙s−1, root fresh and dry biomass increased by 95–108% and 41–44%, respectively, with an increasing photoperiod from 12 to 16 h. In addition, increasing the photoperiod from 12 to 16 h accelerated flowering by 17–21 days under a PPFD ≥ 300 µmol∙m−2∙s−1 and first fruit harvest by 17 days at a PPFD of 450 µmol∙m−2∙s−1. Regardless of PPFD, strawberry fruit production (g·m−2·month−1) increased by 372–989% under a 16-h photoperiod in comparison to under a 12-h photoperiod. In contrast, there was little effect of PPFD on fruit production. Our results suggest that increasing the PPFD or photoperiod can increase strawberry plant growth, but increasing the photoperiod can have a dominant effect on increasing early fruit production in strawberry ‘Albion’. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

14 pages, 631 KiB  
Article
Influence of Plant-Based Biostimulant (BORTAN) on Qualitative and Aromatic Traits of Rocket Salad (Diplotaxis tenuifolia L.)
by Livia Malorni, Rosaria Cozzolino, Anna Magri, Luigi Zampella and Milena Petriccione
Plants 2023, 12(4), 730; https://doi.org/10.3390/plants12040730 - 7 Feb 2023
Cited by 3 | Viewed by 1709
Abstract
In this study, the influence of a new plant-based biostimulant (Bortan) on physiological and aromatic traits of rocket (Diplotaxis tenuifolia L. var. Pamela) was monitored by evaluating physico-chemical parameters (fresh and dry weight, leaf color and chlorophyll content) and biochemical traits (total [...] Read more.
In this study, the influence of a new plant-based biostimulant (Bortan) on physiological and aromatic traits of rocket (Diplotaxis tenuifolia L. var. Pamela) was monitored by evaluating physico-chemical parameters (fresh and dry weight, leaf color and chlorophyll content) and biochemical traits (total phenolic compound (TP), total flavonoids (TF), ascorbic acid (AA) and antioxidant activity (AOX). Volatile profiles were also analyzed by headspace solid-phase microextraction coupled to gas chromatography–mass spectrometry, allowing the detection of 32 volatiles belonging to 5 chemical classes. Compared to the control, Bortan application enhanced leaf pigment content, including chlorophyll a, b and carotenoids (+10%, +16% and +28%, respectively) and increased TP (+34%), TF (+26%), AA (+19%) amonts and AOX value (+16%). Principal component analysis revealed a significant discrimination between the two samples. Specifically, treated samples were mainly associated with ”green-leaf” volatiles, namely hexanal and 2-hexenal, 3-hexenal and 1-penten-3-one, while control rocket was directly correlated with several alcohols and to all isothiocyanates, associated with the sulfur-like odor of rocket. These findings can add further support, both for farmers and the agro-food industry, in choosing PBs as a new and sustainable practice in complementing enhanced yields with premium-quality produce. To confirm these preliminary data, further experiments are needed by enlarging the sample size, testing different concentrations of Bortan and/or using other food crops. Full article
Show Figures

Figure 1

11 pages, 2341 KiB  
Article
Dynamics of Non-Structural Carbohydrates Release in Chinese Fir Topsoil and Canopy Litter at Different Altitudes
by Xiaojian Wu, Yue Cao, Yu Jiang, Mingxu Chen, Huiguang Zhang, Pengfei Wu and Xiangqing Ma
Plants 2023, 12(4), 729; https://doi.org/10.3390/plants12040729 - 7 Feb 2023
Cited by 2 | Viewed by 1162
Abstract
Non-structural carbohydrates (NSCs) are labile components in forest litter that can be released quickly at the early stage of litter decomposition and accelerate the metabolic turnover of soil microorganisms, which is essential for the formation of forest soil organic matter. Therefore, understanding the [...] Read more.
Non-structural carbohydrates (NSCs) are labile components in forest litter that can be released quickly at the early stage of litter decomposition and accelerate the metabolic turnover of soil microorganisms, which is essential for the formation of forest soil organic matter. Therefore, understanding the NSCs response mechanisms to forest litter at different altitudes is critical for understanding nutrient cycling in the forest soil under climate change conditions. In this study, we used the net bag decomposition method to observe the dynamics of NSCs release in Chinese fir topsoil and canopy litter at four altitudes for 360 days based on the climatic zone characteristics distributed vertically along the elevation of Wuyi Mountain. The release of NSCs in Chinese fir litter rise gradually with height increases during the decomposition. The difference of the cumulative release percentage of soluble sugar between different altitudes is more significant than that of starch. The response of the NSC content in different treatment groups at four altitudes are different. The release of NSCs in the leaf canopy litter is higher than that in the leaf topsoil litter. On the contrary, the release of NSCs in the mixture of leaf and twig topsoil litter is higher than that in the mixture of leaf and twig canopy litter. Taken together, this study is of great significance for a comprehensive understanding of the effect of climate change on NSCs during the decomposition of Chinese fir litter. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

18 pages, 2378 KiB  
Article
Effect of Natural Liquid Hydroabsorbents on Ammonia Emission from Liquid Nitrogen Fertilizers and Plant Growth of Maize (Zea Mays L.) under Drought Conditions
by Tomáš Kriška, Petr Škarpa and Jiří Antošovský
Plants 2023, 12(4), 728; https://doi.org/10.3390/plants12040728 - 7 Feb 2023
Viewed by 1753
Abstract
The use of mineral nitrogen (N) fertilizers is associated with significant nitrogen loss through the volatilization. Ammonia (NH3) emissions are common from fertilizers with amide (NH2) and ammonium (NH4) nitrogen forms applied to the soil surface without [...] Read more.
The use of mineral nitrogen (N) fertilizers is associated with significant nitrogen loss through the volatilization. Ammonia (NH3) emissions are common from fertilizers with amide (NH2) and ammonium (NH4) nitrogen forms applied to the soil surface without incorporation. The objective of the laboratory and greenhouse pot experiments was to verify the hypothesis that liquid mineral fertilizers and fertilizer solutions containing N-NH2 and N-NH4 applied to the soil surface in combination with natural hydroabsorbents (NHAs) will reduce the volatilization of nitrogen. The effect of NHAs addition to urea ammonium nitrate (UAN) fertilizer and urea, ammonium nitrate (AN) and ammonium sulphate (AS) solutions was evaluated in a laboratory experiment. The effect of the two types of NHAs (acidic and neutral) was compared with the control (UAN) and its mixture with the commercially used urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT). The proportion of volatilized NH3 of the total N from the examined fertilizers applied to the soil surface was determined by the titration method. Subsequently, the effect of fertilization with UAN and its mixture with NHAs and NBPT on the growth of maize under the drought conditions was verified in a greenhouse pot experiment. While the addition of NBPT resulted in a reduction of NH3 emission for the fertilizers containing NH2 (UAN, urea solution), a decrease in volatilization after the addition of both acidic and neutral NHA was observed especially for UAN. A reduction in ammonia emission was also observed for AS after the addition of acidic NHA. The addition of both NHAs and NBPT to UAN increased the utilization of nitrogen from the applied fertilizer, which was reflected by an increase in chlorophyll content and increased CO2 assimilation by maize plants grown under the drought stress. UAN fertilizer combined with acidic NHA and NBPT significantly increased aboveground biomass production and root system capacity of maize. Significant increases in UAN nitrogen recovery were observed for all examined additives (UI and both types of NHAs). In addition to the known effects of hydroabsorbents, especially their influence on soil physical and biological properties and soil water retention, the effect of NHAs application in combination with UAN and AS solutions on the reduction of gaseous N loss, maize plant growth and fertilizer nitrogen recovery was found. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

12 pages, 1814 KiB  
Article
Mercury Content and Amelioration of Its Toxicity by Nitric Oxide in Lichens
by Jozef Kováčik, Lenka Husáková, Martina Piroutková and Petr Babula
Plants 2023, 12(4), 727; https://doi.org/10.3390/plants12040727 - 7 Feb 2023
Cited by 2 | Viewed by 1441
Abstract
Mercury (Hg) content measured in five epiphytic lichen species collected in Slovakia mountain forests ranged from 30 to 100 ng/g DW and was species-specific, decreasing in the order Hypogymnia > Pseudevernia > Usnea > Xanthoria > Evernia prunastri (but polluted sites had no [...] Read more.
Mercury (Hg) content measured in five epiphytic lichen species collected in Slovakia mountain forests ranged from 30 to 100 ng/g DW and was species-specific, decreasing in the order Hypogymnia > Pseudevernia > Usnea > Xanthoria > Evernia prunastri (but polluted sites had no impact on Hg amount in Xanthoria). Evernia was therefore used to study the impact of short-term exogenous Hg (100 µM, 24 h) and possible amelioration of Hg toxicity by nitric oxide (NO) donor sodium nitroprusside (SNP). NO was efficiently released from SNP as detected by two staining reagents and fluorescence microscopy and reduced Hg-induced ROS signal and absorption of Hg by thalli of Evernia prunastri. At the same time, NO ameliorated Hg-induced depletion of metabolites such as ascorbic acid and non-protein thiols, but not of free amino acids. The amount of metabolites, including soluble phenols, was reduced by excess Hg per se. On the contrary, NO was unable to restore Hg-stimulated depletion of chlorophyll autofluorescence but mitigated the decline of some macronutrients (K and Ca). Data confirm that accumulation of Hg in the epiphytic lichens is species-specific and that NO is a vital molecule in Evernia prunastri that provides protection against Hg-induced toxicity with considerable positive impact on metabolic changes. Full article
Show Figures

Figure 1

14 pages, 1881 KiB  
Article
Canola with Stacked Genes Shows Moderate Resistance and Resilience against a Field Population of Plasmodiophora brassicae (Clubroot) Pathotype X
by Nazmoon Naher Tonu, Rui Wen, Tao Song, Xiaowei Guo, Lee Anne Murphy, Bruce Dean Gossen, Fengqun Yu and Gary Peng
Plants 2023, 12(4), 726; https://doi.org/10.3390/plants12040726 - 6 Feb 2023
Cited by 1 | Viewed by 1507
Abstract
Genetic resistance is a cornerstone for managing clubroot (Plasmodiophora brassicae). However, when used repeatedly, a clubroot resistance (CR) gene can be broken rapidly. In this study, canola inbred/hybrid lines carrying one or two CR genes (Rcr1/CRaM and Crr1rutb [...] Read more.
Genetic resistance is a cornerstone for managing clubroot (Plasmodiophora brassicae). However, when used repeatedly, a clubroot resistance (CR) gene can be broken rapidly. In this study, canola inbred/hybrid lines carrying one or two CR genes (Rcr1/CRaM and Crr1rutb) were assessed against P. brassicae pathotype X by repeated exposure to the same inoculum source under a controlled environment. Lines carrying two CR genes, either Rcr1 + Crr1rutb or CRaM + Crr1rutb, showed partial resistance. Selected lines were inoculated with a field pathotype X population (L-G3) at 5 × 106 resting spores/g soil, and all clubs were returned to the soil they came from six weeks after inoculation. The planting was repeated for five cycles, with diseased roots being returned to the soil after each cycle. The soil inoculum was quantified using qPCR before each planting cycle. All lines with a single CR gene were consistently susceptible, maintaining high soil inoculum levels over time. The lines carrying two CR genes showed much lower clubroot severity, resulting in a 10-fold decline in soil inoculum. These results showed that the CR-gene stacking provided moderate resistance against P. brassicae pathotype X, which may also help reduce the pathogen inoculum buildup in soil. Full article
(This article belongs to the Collection Feature Papers in Plant Protection)
Show Figures

Figure 1

23 pages, 1823 KiB  
Review
A Green Approach Used for Heavy Metals ‘Phytoremediation’ Via Invasive Plant Species to Mitigate Environmental Pollution: A Review
by Irfan Ullah Khan, Shan-Shan Qi, Farrukh Gul, Sehrish Manan, Justice Kipkorir Rono, Misbah Naz, Xin-Ning Shi, Haiyan Zhang, Zhi-Cong Dai and Dao-Lin Du
Plants 2023, 12(4), 725; https://doi.org/10.3390/plants12040725 - 6 Feb 2023
Cited by 22 | Viewed by 7391
Abstract
Heavy metals (HMs) normally occur in nature and are rapidly released into ecosystems by anthropogenic activities, leading to a series of threats to plant productivity as well as human health. Phytoremediation is a clean, eco-friendly, and cost-effective method for reducing soil toxicity, particularly [...] Read more.
Heavy metals (HMs) normally occur in nature and are rapidly released into ecosystems by anthropogenic activities, leading to a series of threats to plant productivity as well as human health. Phytoremediation is a clean, eco-friendly, and cost-effective method for reducing soil toxicity, particularly in weedy plants (invasive plant species (IPS)). This method provides a favorable tool for HM hyperaccumulation using invasive plants. Improving the phytoremediation strategy requires a profound knowledge of HM uptake and translocation as well as the development of resistance or tolerance to HMs. This review describes a comprehensive mechanism of uptake and translocation of HMs and their subsequent detoxification with the IPS via phytoremediation. Additionally, the improvement of phytoremediation through advanced biotechnological strategies, including genetic engineering, nanoparticles, microorganisms, CRISPR-Cas9, and protein basis, is discussed. In summary, this appraisal will provide a new platform for the uptake, translocation, and detoxification of HMs via the phytoremediation process of the IPS. Full article
(This article belongs to the Special Issue Plant Invasion 2022)
Show Figures

Figure 1

11 pages, 839 KiB  
Article
The Amelioration of Grazing through Physiological Integration by a Clonal Dune Plant
by Jonathan P. Evans, Shelby Meckstroth and Julie Garai
Plants 2023, 12(4), 724; https://doi.org/10.3390/plants12040724 - 6 Feb 2023
Cited by 1 | Viewed by 1314
Abstract
Rhizomatous growth and associated physiological integration can allow a clonal dune species to potentially compensate for the selective removal of leaves associated with herbivory. Hydrocotyle bonariensis is a rhizomatous clonal plant species that is abundant in the coastal dune environments of the southeastern [...] Read more.
Rhizomatous growth and associated physiological integration can allow a clonal dune species to potentially compensate for the selective removal of leaves associated with herbivory. Hydrocotyle bonariensis is a rhizomatous clonal plant species that is abundant in the coastal dune environments of the southeastern United States that are inhabited by large feral horse populations. H. bonariensis has been shown to integrate resources among ramets within extensive clones as an adaptation to resource heterogeneity in sandy soils. In this study, we hypothesized that clonal integration is a mechanism that promotes H. bonariensis persistence in these communities, despite high levels of herbivory by feral horses. In a field experiment, we used exclosures to test for herbivory in H. bonariensis over a four-month period. We found that feral horses utilized H. bonariensis as a food species, and that while grazing will suppress clonal biomass, H. bonariensis is able to maintain populations in a high grazing regime with and without competition present. We then conducted an experiment in which portions of H. bonariensis clones were clipped to simulate different levels of grazing. Half of the clones were severed to eliminate the possibility of integration. We found that after 12 weeks, the mean number of leaves and ramets increased as the grazing level increased, for integrated clones. Integrated clones had significantly increased biomass production compared to the severed equivalents. Our research suggests that rhizomatous growth and physiological integration are traits that allow clonal plant species to maintain populations and to tolerate grazing in coastal dune environments. Full article
(This article belongs to the Special Issue Sand Vegetation and Restoration)
Show Figures

Figure 1

16 pages, 2800 KiB  
Article
BrCYP71A15 Negatively Regulates Hg Stress Tolerance by Modulating Cell Wall Biosynthesis in Yeast
by Ali Anwar, Shu Zhang, Lixia Wang, Lilong He and Jianwei Gao
Plants 2023, 12(4), 723; https://doi.org/10.3390/plants12040723 - 6 Feb 2023
Cited by 1 | Viewed by 1236
Abstract
Over the past two decades, heavy metal pollution has been a common problem worldwide, greatly threatening crop production. As one of the metal pollutants, Mercury (Hg) causes damage to plant cells and reduces cellular and biochemical activities. In this study, we identified a [...] Read more.
Over the past two decades, heavy metal pollution has been a common problem worldwide, greatly threatening crop production. As one of the metal pollutants, Mercury (Hg) causes damage to plant cells and reduces cellular and biochemical activities. In this study, we identified a novel cytochrome P450 family gene, BrCYP71A15, which was involved in Hg stress response in yeast. In Chinese cabbage, the BrCYP71A15 gene was located on chromosome A01, which was highly expressed in roots. Additionally, the expression level of BrCYP71A15 was induced by different heavy metal stresses, and the BrCYP71A15 protein exhibited a strong interaction with other proteins. Overexpression of BrCYP71A15 in yeast cells showed no response to a number of heavy metal stresses (Cu, Al, Co, Cd) in yeast but showed high sensitivity to Hg stress; the cells grew slower than those carrying the empty vector (EV). Moreover, upon Hg stress, the growth of the BrCYP71A15-overexpressing cells increased over time, and Hg accumulation in yeast cells was enhanced by two-fold compared with the control. Additionally, BrCYP71A15 was translocated into the nucleus under Hg stress. The expression level of cell wall biosynthesis genes was significantly influenced by Hg stress in the BrCYP71A15-overexpressing cells. These findings suggested that BrCYP71A15 might participate in HG stress tolerance. Our results provide a fundamental basis for further genome editing research and a novel approach to decrease Hg accumulation in vegetable crops and reduce environmental risks to human health through the food chain. Full article
(This article belongs to the Special Issue Molecular Breeding for Environmental Stress Resistance in Vegetables)
Show Figures

Figure 1

13 pages, 921 KiB  
Article
Effects of Spirulina maxima on a Model of Sexual Dysfunction in Streptozotocin-Induced Diabetic Male Rats
by Eduardo Osel Olvera-Roldán, José Melesio Cristóbal-Luna, Yuliana García-Martínez, María Angélica Mojica-Villegas, Ricardo Pérez-Pastén-Borja, Gabriela Gutiérrez-Salmeán, Salud Pérez-Gutiérrez, Rosa Virginia García-Rodríguez, Eduardo Madrigal-Santillán, José A. Morales-González and Germán Chamorro-Cevallos
Plants 2023, 12(4), 722; https://doi.org/10.3390/plants12040722 - 6 Feb 2023
Cited by 2 | Viewed by 2186
Abstract
Arthrospira (Spirulina) maxima (SM) is a cyanobacterium that has a long history of being used as human food. In recent years, several investigations have shown its beneficial biological effects, among which its antioxidant capacity has been highlighted. The purpose of this study was [...] Read more.
Arthrospira (Spirulina) maxima (SM) is a cyanobacterium that has a long history of being used as human food. In recent years, several investigations have shown its beneficial biological effects, among which its antioxidant capacity has been highlighted. The purpose of this study was to evaluate the effects of SM on body weight, glycemia, sexual behavior, sperm quality, testosterone levels, sex organ weights, and the activity of antioxidant enzymes in diabetic male rats (a disease characterized by an increase in reactive oxygen species). The experiment consisted of six groups of sexually expert adult males (n = 6): (1) control (vehicle); (2) streptozotocin (STZ)-65 mg/kg; (3) SM-400 mg/kg; (4) STZ + SM-100 mg/kg; (5) STZ + SM-200 mg/kg; and (6) STZ + SM-400 mg/kg. Sexual behavior tests were performed during the first 3 h of the dark period under dim red illumination. Our results showed that SM significantly improved sexual behavior and sperm quality vs. diabetic animals. Likewise, while the enzymatic activities of SOD and GPx increased, TBARS lipoperoxidation decreased and testosterone levels increased. In view of the findings, it is suggested that SM may potentially be used as a nutraceutical for the treatment of diabetic male sexual dysfunction due to its antioxidant property. Full article
(This article belongs to the Special Issue Phytochemicals Beneficial to Human Health)
Show Figures

Figure 1

20 pages, 1868 KiB  
Article
Characterization of Corn Silk Extract Using HPLC/HRMS/MS Analyses and Bioinformatic Data Processing
by Laëtitia Fougère, Sandrine Zubrzycki, Claire Elfakir and Emilie Destandau
Plants 2023, 12(4), 721; https://doi.org/10.3390/plants12040721 - 6 Feb 2023
Cited by 4 | Viewed by 1849
Abstract
In addition to having different biological activities of interest, corn silks play a role in the defense of plants. While benzoxamines and flavonoids have already been identified as molecules of plant defense and growth mechanisms, knowledge on the phytochemical composition of corn silk [...] Read more.
In addition to having different biological activities of interest, corn silks play a role in the defense of plants. While benzoxamines and flavonoids have already been identified as molecules of plant defense and growth mechanisms, knowledge on the phytochemical composition of corn silk is lacking. Such knowledge would make it possible to better select the most effective varieties to improve resistance or bioactive properties. In this article, an approach was implemented to map a corn silk extract in two complementary ways. The first one involved working with UHPLC/HRMS data and Kendrick and van Krevelen plots to highlight a homologous series of compounds, such as lipids from 17 to 23 carbons, monoglycosylated flavonoids from 21 to 24 carbons, diglycosylated flavonoids of 26 to 28 carbons and organic acids of 14 to 19 carbons. The second way was to analyze the sample in UHPLC/HRMS2 and to plot mass spectral similarity networks with the GNPS platform and Cytoscape software to refine identification. By combining the information obtained, we were able to propose an identification for 104 detected molecules, including 7 nitrogenous, 28 lipidic and 67 phenolic compounds, leading to the first detailed phytochemical analysis of corn silk extract. Full article
Show Figures

Figure 1

18 pages, 2017 KiB  
Article
Quantitative Trait Loci for Genotype and Genotype by Environment Interaction Effects for Seed Yield Plasticity to Terminal Water-Deficit Conditions in Canola (Brassica napus L.)
by Harsh Raman, Nawar Shamaya, Ramethaa Pirathiban, Brett McVittie, Rosy Raman, Brian Cullis and Andrew Easton
Plants 2023, 12(4), 720; https://doi.org/10.3390/plants12040720 - 6 Feb 2023
Cited by 2 | Viewed by 1539
Abstract
Canola plants suffer severe crop yield and oil content reductions when exposed to water-deficit conditions, especially during the reproductive stages of plant development. There is a pressing need to develop canola cultivars that can perform better under increased water-deficit conditions with changing weather [...] Read more.
Canola plants suffer severe crop yield and oil content reductions when exposed to water-deficit conditions, especially during the reproductive stages of plant development. There is a pressing need to develop canola cultivars that can perform better under increased water-deficit conditions with changing weather patterns. In this study, we analysed genetic determinants for the main effects of quantitative trait loci (QTL), (Q), and the interaction effects of QTL and Environment (QE) underlying seed yield and related traits utilising 223 doubled haploid (DH) lines of canola in well-watered and water-deficit conditions under a rainout shelter. Moderate water-deficit at the pre-flowering stage reduced the seed yield to 40.8%. Multi-environmental QTL analysis revealed 23 genomic regions associated with days to flower (DTF), plant height (PH) and seed yield (SY) under well-watered and water-deficit conditions. Three seed yield QTL for main effects were identified on chromosomes A09, C03, and C09, while two were related to QE interactions on A02 and C09. Two QTL regions were co-localised to similar genomic regions for flowering time and seed yield (A09) and the second for plant height and chlorophyll content. The A09 QTL was co-located with a previously mapped QTL for carbon isotope discrimination (Δ13C) that showed a positive relationship with seed yield in the same population. Opposite allelic effects for plasticity in seed yield were identified due to QE interactions in response to water stress on chromosomes A02 and C09. Our results showed that QTL’s allelic effects for DTF, PH, and SY and their correlation with Δ13C are stable across environments (field conditions, previous study) and contrasting water regimes (this study). The QTL and DH lines that showed high yield under well-watered and water-deficit conditions could be used to manipulate water-use efficiency for breeding improved canola cultivars. Full article
(This article belongs to the Special Issue Strategies to Improve Water-Use Efficiency in Plant Production)
Show Figures

Figure 1

14 pages, 1708 KiB  
Article
Effects of Hydrogen Sulfide on Sugar, Organic Acid, Carotenoid, and Polyphenol Level in Tomato Fruit
by Yanqin Zhang, Fahong Yun, Xiaoling Man, Dengjing Huang and Weibiao Liao
Plants 2023, 12(4), 719; https://doi.org/10.3390/plants12040719 - 6 Feb 2023
Cited by 1 | Viewed by 1892
Abstract
Hydrogen sulfide (H2S) is known to have a positive effect on the postharvest storage of vegetables and fruits, but limited results are available on its influence in fruit flavor quality. Here, we presented the effect of H2S on the [...] Read more.
Hydrogen sulfide (H2S) is known to have a positive effect on the postharvest storage of vegetables and fruits, but limited results are available on its influence in fruit flavor quality. Here, we presented the effect of H2S on the flavor quality of tomato fruit during postharvest. H2S decreased the content of fructose, glucose, carotene and lycopene but increased that of soluble protein, organic acid, malic acid and citric acid. These differences were directly associated with the expression of their metabolism-related genes. Moreover, H2S treatment raised the contents of total phenolics, total flavonoids and most phenolic compounds, and up-regulated the expression level of their metabolism-related genes (PAL5, 4CL, CHS1, CHS2, F3H and FLS). However, the effects of the H2S scavenger hypotaurine on the above flavor quality parameters were opposite to that of H2S, thus confirming the role of H2S in tomato flavor quality. Thus, these results provide insight into the significant roles of H2S in tomato fruit quality regulation and implicate the potential application of H2S in reducing the flavor loss of tomato fruit during postharvest. Full article
Show Figures

Figure 1

20 pages, 1851 KiB  
Article
The Rootstock Genotypes Determine Drought Tolerance by Regulating Aquaporin Expression at the Transcript Level and Phytohormone Balance
by David Labarga, Andreu Mairata, Miguel Puelles, Ignacio Martín, Alfonso Albacete, Enrique García-Escudero and Alicia Pou
Plants 2023, 12(4), 718; https://doi.org/10.3390/plants12040718 - 6 Feb 2023
Cited by 3 | Viewed by 1542
Abstract
Grapevine rootstocks may supply water to the scion according to the transpiration demand, thus modulating plant responses to water deficit, but the scion variety can alter these responses, as well. The rootstock genotypes’ effect on the scion physiological response, aquaporin expression, and hormone [...] Read more.
Grapevine rootstocks may supply water to the scion according to the transpiration demand, thus modulating plant responses to water deficit, but the scion variety can alter these responses, as well. The rootstock genotypes’ effect on the scion physiological response, aquaporin expression, and hormone concentrations in the xylem and the leaf was assessed under well watered (WW) and water stress (WS) conditions. Under WW, vines grafted onto 1103P and R110 rootstocks (the more vigorous and drought-tolerant) showed higher photosynthesis (AN), stomatal conductance (gs), and hydraulic conductance (Khplant) compared with the less vigorous and drought-sensitive rootstock (161-49C), while under WS, there were hardly any differences between vines depending on the rootstock grafted. Besides, stomatal traits were affected by drought, which was related to gs, but not by the rootstock. Under WS conditions, all VvPIP and VvTIP aquaporins were up-regulated in the vines grafted onto 1103P and down-regulated in the ones grafted onto 161-49C. The 1103P capability to tolerate drought was enhanced by the up-regulation of all VvPIP and VvTIP aquaporins, lower ABA synthesis, and higher ACC/ABA ratios in leaves during WS compared with 161-49C. It was concluded that, under WW conditions, transpiration and stomatal control were rootstock-dependent. However, under WS conditions, alterations in the molecular components of water transport and hormone concentration of the scion resulted in similar gas exchange values in the studied scions grafted onto different rootstocks. Full article
(This article belongs to the Special Issue Grapevine Response to Abiotic Stress)
Show Figures

Figure 1

16 pages, 4786 KiB  
Article
Effect of Climate Change on the Potentially Suitable Distribution Pattern of Castanopsis hystrix Miq. in China
by Linlin Shen, Haiyan Deng, Ganglong Zhang, Anqi Ma and Xiaoyong Mo
Plants 2023, 12(4), 717; https://doi.org/10.3390/plants12040717 - 6 Feb 2023
Cited by 1 | Viewed by 1128
Abstract
Climate warming poses a great threat to ecosystems worldwide, which significantly affects the geographical distribution and suitable growth area of species. Taking Castanopsis hystrix Miq. as the research object, the potentially suitable cultivation regions under present and future climatic emission scenarios in China [...] Read more.
Climate warming poses a great threat to ecosystems worldwide, which significantly affects the geographical distribution and suitable growth area of species. Taking Castanopsis hystrix Miq. as the research object, the potentially suitable cultivation regions under present and future climatic emission scenarios in China were predicted based on the MaxEnt model with 360 effective individual distributions and eight environmental variables. The min temperature of coldest month (bio6), precipitation of driest month (bio14), and precipitation of warmest quarter (bio18) are three leading factors affecting the geographical distribution area of C. hystrix Miq. The suitable cultivation regions of C. hystrix Miq. range from 18°–34° N, 89°–122° E in central and southern China and cover an area of 261.95 × 104 km2. The spatial pattern of C. hystrix Miq. will migrate to the southern region of low latitudes with a decreasing suitable area when in ssp1-2.6, and to the southwestern region of low latitudes or expand to the northeast region at high latitudes in ssp5-8.5, with an increasing suitable area; no significant change on the spatial pattern in ssp2-2.4. For ssp1-2.6 or ssp2-4.5 climate scenarios, the southern region of high latitudes will be appropriate for introducing and cultivating C. hystrix Miq., and the cultivation area will increase. For ssp5-8.5, its cultivation will increase and expand to the northeast of high-latitude areas slightly. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Graphical abstract

16 pages, 1343 KiB  
Article
Intercropping of Cyphomandra betacea with Different Ploidies of Solanum Sect. Solanum (Solanaceae) Wild Vegetables Increase Their Selenium Uptakes
by Lijin Lin, Xiangting Xu, Jin Wang, Xun Wang, Xiulan Lv, Yi Tang, Honghong Deng, Dong Liang and Hui Xia
Plants 2023, 12(4), 716; https://doi.org/10.3390/plants12040716 - 6 Feb 2023
Cited by 3 | Viewed by 887
Abstract
Selenium (Se) deficiency causes various diseases in humans. Se can be obtained from fruits and vegetables. In this study, the fruit tree Cyphomandra betacea was intercropped with three Solanum sect. Solanum (Solanaceae) wild vegetables [diploid (S. photeinocarpum), tetraploid (colchicine-induced S. photeinocarpum [...] Read more.
Selenium (Se) deficiency causes various diseases in humans. Se can be obtained from fruits and vegetables. In this study, the fruit tree Cyphomandra betacea was intercropped with three Solanum sect. Solanum (Solanaceae) wild vegetables [diploid (S. photeinocarpum), tetraploid (colchicine-induced S. photeinocarpum), and hexaploid (S. nigrum)], respectively, and Se uptakes of these plants were determined by a pot experiment. Intercropping decreased the biomass, photosynthetic pigment content, and superoxide dismutase activity of C. betacea, but increased the peroxidase (POD) activity, catalase (CAT) activity, and soluble protein content of C. betacea. These indicators’ values of sect. Solanum increased after intercropping. The contents of Se increased in C. betacea and sect. Solanum after intercropping. Intercropped with diploid, tetraploid, and hexaploid increased the shoot Se contents in C. betacea by 13.73%, 17.49%, and 26.50%, respectively, relative to that of C. betacea monoculture. Intercropped with C. betacea increased the shoot Se contents in diploid, tetraploid, and hexaploid by 35.22%, 68.86%, and 74.46%, respectively, compared with their respective monoculture. The biomass and Se content of intercropped sect. Solanum showed linear relationships with the biomass and Se content of their monocultures. The biomass and Se content of intercropped C. betacea also exhibited linear relationships with that of sect. Solanum monocultures. Correlation and grey relational analyses revealed that the CAT activity, POD activity, and soluble protein content were the top three indicators closely associated with the C. betacea shoot Se content. The POD activity, soluble protein content, and translocation factor were the top three indicators closely associated with sect. Solanum shoot Se content. Therefore, intercropping can promote the Se uptake in C. betacea and sect. Solanum wild vegetables. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

38 pages, 6866 KiB  
Article
Delineation of Genotype X Environment Interaction for Grain Yield in Spring Barley under Untreated and Fungicide-Treated Environments
by Vishnukiran Thuraga, Ulrika Dyrlund Martinsson, Ramesh R. Vetukuri and Aakash Chawade
Plants 2023, 12(4), 715; https://doi.org/10.3390/plants12040715 - 6 Feb 2023
Cited by 1 | Viewed by 1262
Abstract
Barley (Hordeul vulgare L.) is the fourth most important cereal crop based on production and cultivated area. Biotic stresses, especially fungal diseases in barley, are devastating, incurring high possibilities of absolute yield loss. Identifying superior and stable yielding genotypes is crucial for [...] Read more.
Barley (Hordeul vulgare L.) is the fourth most important cereal crop based on production and cultivated area. Biotic stresses, especially fungal diseases in barley, are devastating, incurring high possibilities of absolute yield loss. Identifying superior and stable yielding genotypes is crucial for accompanying the increasing barley demand. However, the identification and recommendation of superior genotypes is challenging due to the interaction between genotype and environment. Hence, the present investigation was aimed at evaluating the grain yield of different sets of spring barley genotypes when undergoing one of two treatments (no treatment and fungicide treatment) laid out in an alpha lattice design in six to seven locations for five years, through additive main effects and multiplicative interaction (AMMI), GGE biplot (genotype + genotype X environment), and stability analysis. The combined analysis of variance indicated that the environment was the main factor that contributed to the variation in grain yield, followed by genotype X environment interaction (GEI) effects and genotypic effects. Ten mega environments (MEs) with five MEs from each of the treatments harboured well-adapted, stable yielding genotypes. Exploiting the stable yielding genotypes with discreet use of the representative and discriminative environments identified in the present study could aid in breeding for the improvement of grain yield in spring barley genotypes. Full article
(This article belongs to the Special Issue Plant Responses to Future Climate Scenarios)
Show Figures

Figure 1

3 pages, 207 KiB  
Editorial
Interaction of Plants and Endophytic Microorganisms: Molecular Aspects, Biological Functions, Community Composition, and Practical Applications
by Olga A. Aleynova and Konstantin V. Kiselev
Plants 2023, 12(4), 714; https://doi.org/10.3390/plants12040714 - 6 Feb 2023
Cited by 4 | Viewed by 1715
Abstract
Endophytes are microorganisms that live asymptomatically inside plant tissues [...] Full article
15 pages, 3072 KiB  
Article
Nutrient Sufficiency Ranges for Corn at the Early Growth Stage: Implications for Nutrient Management
by Solomon Amissah, Godfred Ankomah, Benjamin K. Agyei, Robert D. Lee, Glendon H. Harris, Miguel Cabrera, Dorcas H. Franklin, Juan C. Diaz-Perez, Mussie Y. Habteselassie and Henry Y. Sintim
Plants 2023, 12(4), 713; https://doi.org/10.3390/plants12040713 - 6 Feb 2023
Cited by 3 | Viewed by 1707
Abstract
Growers rely on nutrient sufficiency ranges (NSRs) after plant tissue analysis to inform timely nutrient management decisions. The NSRs are typically established from survey studies across multiple locations, which could be confounded by several abiotic and biotic factors. We conducted field studies in [...] Read more.
Growers rely on nutrient sufficiency ranges (NSRs) after plant tissue analysis to inform timely nutrient management decisions. The NSRs are typically established from survey studies across multiple locations, which could be confounded by several abiotic and biotic factors. We conducted field studies in 2020, 2021, and 2022 to validate the lower thresholds of the NSRs for corn (Zea mays) at the early growth stage as reported in the Southern Cooperative Series Bulletin #394. We induced various corn nutritional levels by making different nutrient application rates. If the NSRs are valid, samples within the same replication that satisfy the NSRs of all nutrients should have similar biomass accumulation. The results showed that the NSRs were not valid under the conditions tested. In total, 47.6% of the samples satisfied all the lower thresholds of the NSRs, and 25.4% of those samples had relative biomass <50%, with relative biomass even as low as 24.2% observed. Moreover, 9.6% of the total samples had P and Cu levels that failed to meet the lower threshold but still had relative biomass ≥75%. The findings highlight the sensitivity of corn to nutrient imbalance and the need to optimize nutrient diagnostic methods at the early growth stage. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

19 pages, 701 KiB  
Article
The Effect of Extraction Methods on Phytochemicals and Biological Activities of Green Coffee Beans Extracts
by Octavia Gligor, Simona Clichici, Remus Moldovan, Dana Muntean, Ana-Maria Vlase, George Cosmin Nadăș, Ioana Adriana Matei, Gabriela Adriana Filip, Laurian Vlase and Gianina Crișan
Plants 2023, 12(4), 712; https://doi.org/10.3390/plants12040712 - 6 Feb 2023
Cited by 7 | Viewed by 2510
Abstract
The objectives of the present study consisted of identifying the impact of extraction methods and parameters held over the phytochemistry and biological activities of green coffee beans. Extraction processes belonging to two categories were performed: classical methods—maceration, Soxhlet extraction, and such innovative methods [...] Read more.
The objectives of the present study consisted of identifying the impact of extraction methods and parameters held over the phytochemistry and biological activities of green coffee beans. Extraction processes belonging to two categories were performed: classical methods—maceration, Soxhlet extraction, and such innovative methods as turboextraction, ultrasound-assisted extraction, and a combination of the latter two. Total polyphenolic and flavonoid content, as well as in vitro antioxidant activity of the resulted extracts were spectrophotometrically determined. Extracts displaying the highest yields of bioactive compounds were subjected to High Performance Liquid Chromatography-Mass Spectrometry analysis. The extracts with the best phytochemical profiles were selected for biological activity assessment. In vivo, a model of plantar inflammation in Wistar rats was used to determine antioxidant activity, by evaluating the oxidative stress reduction potential, and anti-inflammatory activity. In vitro antimicrobial activity was also determined. The Soxhlet extraction and ultrasound-assisted extraction gave the highest bioactive compound yields. The highest total polyphenolic content was 2.691 mg/mL gallic acid equivalents and total flavonoid content was 0.487 mM quercetin equivalents for the Soxhlet extract subjected to 60 min extraction time. Regarding the antioxidant activity, ultrasound-assisted extraction reached the highest levels, i.e., 9.160 mg/mL Trolox equivalents in the DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) assay and 26.676 mM Trolox equivalents in the FRAP (Ferric Reducing Antioxidant Power) assay, at a 30 min extraction time and 50 °C extraction temperature. The 60 min Soxhlet extract reached the highest level for the ABTS+ (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) assay, 16.136 mM Trolox equivalents, respectively. Chlorogenic acid was present in the highest concentration in the same Soxhlet extract, 1657.179 µg/mL extract, respectively. Sterolic compounds were found in high concentrations throughout all the analyzed extracts. A proportional increase between yields and extraction parameter values was observed. Increased inhibition of Gram-negative bacteria was observed. The finally selected Soxhlet extract, that of 60 min extraction time, presented a significant in vivo antioxidant activity, with a slight anti-inflammatory activity. Antioxidant levels were elevated after 2 h of extract administration. Pro-inflammatory cytokine secretion was not influenced by the administration of the extract. Full article
(This article belongs to the Special Issue Medicinal Plant Extracts)
Show Figures

Figure 1

15 pages, 1592 KiB  
Article
Effect of Soil Composition on Secondary Metabolites of Moroccan Saffron (Crocus sativus L.)
by Soukaina Chaouqi, Natalia Moratalla-López, Gonzalo L. Alonso, Cándida Lorenzo, Abdelmjid Zouahri, Nazha Asserar, El Mehdi Haidar and Taoufiq Guedira
Plants 2023, 12(4), 711; https://doi.org/10.3390/plants12040711 - 6 Feb 2023
Cited by 6 | Viewed by 1559
Abstract
Climate and soil are important factors that affect the quality of saffron. Saffron quality is determined by the marked content of secondary metabolites. The objective of this work was to study the effect of soil physicochemical properties on the secondary metabolites of saffron. [...] Read more.
Climate and soil are important factors that affect the quality of saffron. Saffron quality is determined by the marked content of secondary metabolites. The objective of this work was to study the effect of soil physicochemical properties on the secondary metabolites of saffron. Our study concerned the analysis of saffron samples by high-performance liquid chromatography-detection by diode array (HPLC-DAD). Soil samples were analyzed by physicochemical methods, ED-XRF fluorescence and X-ray diffraction to determine the different types of clays. Saffron samples grown in loam–clay–sand soils contained high values of crocins and kaempferol 3-sophoroside 7-glucoside but low values of safranal. In addition, saffron samples grown in soils rich in organic matter, phosphorus and potassium contained high values of crocins and kaempferol 3-sophoroside 7-glucoside but low values of safranal. This original approach was carried out for the first time in our study, both by ED-XRF fluorescence and by X-ray diffraction, to determine what elements affect the quality of saffron. Thus, we concluded that clays containing low amounts of iron could have a positive effect on the coloring strength of saffron. Full article
Show Figures

Figure A1

13 pages, 2862 KiB  
Article
Elucidating Biological Functions of 9-cis-Epoxycarotenoid Dioxygenase Genes Involved in Seed Dormancy in Paeonia lactiflora
by Riwen Fei, Shixin Guan, Siyang Duan, Jiayuan Ge, Tianyi Sun and Xiaomei Sun
Plants 2023, 12(4), 710; https://doi.org/10.3390/plants12040710 - 6 Feb 2023
Cited by 5 | Viewed by 1405
Abstract
Abscisic acid (ABA) is a major phytohormone affecting seed dormancy and germination in plants. ABA is synthesized mainly through the C40 carotenoid pathway. In the ABA biosynthesis pathway, 9-cis-epoxycarotenoid dioxygenase (NCED) is a key rate-limiting enzyme that regulates the accumulation and [...] Read more.
Abscisic acid (ABA) is a major phytohormone affecting seed dormancy and germination in plants. ABA is synthesized mainly through the C40 carotenoid pathway. In the ABA biosynthesis pathway, 9-cis-epoxycarotenoid dioxygenase (NCED) is a key rate-limiting enzyme that regulates the accumulation and content of ABA. However, the role of the NCED gene in perennial plants with complex seed dormancy remains largely unknown. Here, we cloned two differentially expressed paralogs of herbaceous peony NCED genes, named PlNCED1 and PlNCED2, and further identified their involvement in seed dormancy from perennial herbaceous peony experiencing complex double seed dormancy. The deduced PlNCED amino acid sequences had high sequence homology with NCED sequences from other plants and contained the typical conserved RPE65 domain of the NCED family. Phylogenetic analysis showed that PlNCED1 and PlNCED2 have a close relationship with PoNCED in Paeonia ostii and VvNCED6 in Vitis vinifera, respectively. A subcellular localization assay demonstrated that the PlNCED1 protein resided within the nucleus, while the PlNCED2 protein was located in the cytoplasm, indicating their different roles in the biosynthesis of ABA. Furthermore, the content of endogenous ABA in transgenic calluses showed that PlNCEDs were positively correlated with ABA content. Both PlNCED transgenic Arabidopsis lines and the functional complementation of Arabidopsis NCED mutants found that PlNCEDs promoted seed dormancy and delayed seed germination. These results reveal that PlNCEDs participate in the seed dormancy of herbaceous peony by regulating the accumulation of endogenous ABA. Full article
(This article belongs to the Special Issue Molecular Biology of Ornamental Plants)
Show Figures

Figure 1

16 pages, 586 KiB  
Article
Modulation of Morpho-Physiological and Metabolic Profiles of Lettuce Subjected to Salt Stress and Treated with Two Vegetal-Derived Biostimulants
by Francesco Cristofano, Christophe El-Nakhel, Giuseppe Colla, Mariateresa Cardarelli, Youry Pii, Luigi Lucini and Youssef Rouphael
Plants 2023, 12(4), 709; https://doi.org/10.3390/plants12040709 - 6 Feb 2023
Cited by 4 | Viewed by 1716
Abstract
Salinity in water and soil is a critical issue for food production. Using biostimulants provides an effective strategy to protect crops from salinity-derived yield losses. The research supports the effectiveness of protein hydrolysate (PH) biostimulants based on their source material. A greenhouse experiment [...] Read more.
Salinity in water and soil is a critical issue for food production. Using biostimulants provides an effective strategy to protect crops from salinity-derived yield losses. The research supports the effectiveness of protein hydrolysate (PH) biostimulants based on their source material. A greenhouse experiment was performed on lettuce plants under control (0 mM NaCl) and high salinity conditions (30 mM NaCl) using the Trainer (T) and Vegamin (V) PH biostimulants. The recorded data included yield parameters, mineral contents, auxiliary pigments, and polyphenolics. The plant sample material was further analyzed to uncover the unique metabolomic trace of the two biostimulants. The results showed an increased yield (8.9/4.6%, T/V) and higher photosynthetic performance (14%) compared to control and salinity treatments. Increased yield in salinity condition by T compared to V was deemed significant due to the positive modulation in stress-protecting molecules having an oxidative stress relief effect such as lutein (39.9% 0 × T vs. 30 × V), β-carotene (23.4% vs. V overall), and flavonoids (27.7% vs. V). The effects of PH biostimulants on the physio-chemical and metabolic performance of lettuce plants are formulation dependent. However, they increased plant growth under stress conditions, which can prove profitable. Full article
Show Figures

Figure 1

32 pages, 7489 KiB  
Article
Sustainable Soil Management: Effects of Clinoptilolite and Organic Compost Soil Application on Eco-Physiology, Quercitin, and Hydroxylated, Methoxylated Anthocyanins on Vitis vinifera
by Eleonora Cataldo, Maddalena Fucile, Davide Manzi, Cosimo Maria Masini, Serena Doni and Giovan Battista Mattii
Plants 2023, 12(4), 708; https://doi.org/10.3390/plants12040708 - 5 Feb 2023
Cited by 5 | Viewed by 1686
Abstract
Climate change and compostinS1g methods have an important junction on the phenological and ripening grapevine phases. Moreover, the optimization of these composting methods in closed-loop corporate chains can skillfully address the waste problem (pomace, stalks, and pruning residues) in viticultural areas. Owing to [...] Read more.
Climate change and compostinS1g methods have an important junction on the phenological and ripening grapevine phases. Moreover, the optimization of these composting methods in closed-loop corporate chains can skillfully address the waste problem (pomace, stalks, and pruning residues) in viticultural areas. Owing to the ongoing global warming, in many wine-growing regions, there has been unbalanced ripening, with tricky harvests. Excessive temperatures in fact impoverish the anthocyanin amount of the must while the serious water deficits do not allow a correct development of the berry, stopping its growth processes. This experiment was created to improve the soil management and the quality of the grapes, through the application of a new land conditioner (Zeowine) to the soil, derived from the compost processes of industrial wine, waste, and zeolite. Three treatments on a Sangiovese vineyard were conducted: Zeowine (ZW) (30 tons per ha), Zeolite (Z) (10 tons per ha), and Compost (C) (20 tons per ha). During the two seasons (2021–2022), measurements were made of single-leaf gas exchange and leaf midday water potential, as well as chlorophyll fluorescence. In addition, the parameters of plant yield, yeast assimilable nitrogen, technological maturity, fractionation of anthocyanins (Cyanidin-3-glucoside, Delphinidin-3-glucoside, Malvidin-3-acetylglucoside, Malvidin-3-cumarylglucoside, Malvidin-3-glucoside, Peonidin-3-acetylglucoside, Peonidin-3-cumarylglucoside, Peonidin-3-glucoside, and Petunidin-3-glucoside), Caffeic Acid, Coumaric Acid, Gallic Acid, Ferulic Acid, Kaempferol-3-O-glucoside, Quercetin-3-O-rutinoside, Quercetin-3-O-glucoside, Quercetin-3-O-galactoside, and Quercetin-3-O-glucuronide were analyzed. The Zeowine and zeolite showed less negative water potential, higher photosynthesis, and lower leaf temperature. Furthermore, they showed higher levels of anthocyanin accumulation and a lower level of quercetin. Finally, the interaction of the beneficial results of Zeowine (soil and grapevines) was evidenced by the embellishment of the nutritional and water efficiency, the minimizing of the need for fertilizers, the closure of the production cycle of waste material from the supply chain, and the improvement of the quality of the wines. Full article
(This article belongs to the Special Issue All about Growing Grapes and Wine Making Volume II)
Show Figures

Figure 1

13 pages, 4796 KiB  
Article
Characterization and Therapeutic Applications of Biosynthesized Silver Nanoparticles Using Cassia auriculate Flower Extract
by Nadana Sabapathi, Srinivasan Ramalingam, Kandasamy Nagarajan Aruljothi, Jintae Lee and Selvaraj Barathi
Plants 2023, 12(4), 707; https://doi.org/10.3390/plants12040707 - 5 Feb 2023
Cited by 9 | Viewed by 2184
Abstract
The current study analyzes the biosynthesis of silver nanoparticles using the Cassia auriculate flower extract as the reducing and stabilizing agent. The Cassia auriculate- silver nanoparticles (Ca-AgNPs) obtained are characterized by UV–Vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning [...] Read more.
The current study analyzes the biosynthesis of silver nanoparticles using the Cassia auriculate flower extract as the reducing and stabilizing agent. The Cassia auriculate- silver nanoparticles (Ca-AgNPs) obtained are characterized by UV–Vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analysis. The results of the spectral characterization have revealed that the surface Plasmon resonance band observed at 448 nm confirms the formation of AgNPs. TEM analysis of the Ca-AgNPs was a predominately spherical shape with a size assortment of 30 to 80 nm and an angular size of 50 nm. The well-analyzed Ca-AgNPs were used in various biological assays, including healthcare analysis of antimicrobial, antioxidant (DPPH), and cytotoxic investigations. Ca-AgNPs showed efficient free radical scavenging activity and showed excellent antimicrobial activity against to pathogenic strains. The occurrence of Ca-AgNPs lead to reduced Live/Dead ratio of bacteria (from 36.97 ± 1.35 to 9.43 ± 0.27) but improved the accumulation of bacterial clusters. The cytotoxicity of Ca-AgNPs was carried out by MTT assay against MCF-7 breast cancer cells and a moderate cytotoxic. The approach of flower extract-mediated synthesis is a cost-efficient, eco-friendly, and easy alternative to conventional methods of silver nanoparticle synthesis. Full article
Show Figures

Figure 1

26 pages, 1770 KiB  
Review
Biocontrol Activity of Aromatic and Medicinal Plants and Their Bioactive Components against Soil-Borne Pathogens
by Babett Greff, András Sáhó, Erika Lakatos and László Varga
Plants 2023, 12(4), 706; https://doi.org/10.3390/plants12040706 - 5 Feb 2023
Cited by 17 | Viewed by 4130
Abstract
Soil-borne phytopathogens can have detrimental effects on both cereal and horticultural crops resulting in serious losses worldwide. Due to their high efficiency and easy applicability, synthetic pesticides are still the primary choice in modern plant disease control systems, but stringent regulations and increasing [...] Read more.
Soil-borne phytopathogens can have detrimental effects on both cereal and horticultural crops resulting in serious losses worldwide. Due to their high efficiency and easy applicability, synthetic pesticides are still the primary choice in modern plant disease control systems, but stringent regulations and increasing environmental concerns make the search for sustainable alternatives more pressing than ever. In addition to the incorporation of botanicals into agricultural practices, the diversification of cropping systems with aromatic and medicinal plants is also an effective tool to control plant diseases through providing nutrients and shaping soil microbial communities. However, these techniques are not universally accepted and may negatively affect soil fertility if their application is not thoroughly controlled. Because the biocontrol potential of aromatic and medicinal plants has been extensively examined over the past decades, the present study aims to overview the recent literature concerning the biopesticide effect of secondary metabolites derived from aromatic and medicinal plants on important soil-borne plant pathogens including bacteria, fungi, and nematodes. Most of the investigated herbs belong to the family of Lamiaceae (e.g., Origanum spp., Salvia spp., Thymus spp., Mentha spp., etc.) and have been associated with potent antimicrobial activity, primarily due to their chemical constituents. The most frequently tested organisms include fungi, such as Rhizoctonia spp., Fusarium spp., and Phytophthora spp., which may be highly persistent in soil. Despite the intense research efforts dedicated to the development of plant-based pesticides, only a few species of aromatic herbs are utilized for the production of commercial formulations due to inconsistent efficiency, lack of field verification, costs, and prolonged authorization requirements. However, recycling the wastes from aromatic and medicinal plant-utilizing industries may offer an economically feasible way to improve soil health and reduce environmental burdens at the same time. Overall, this review provides comprehensive knowledge on the efficiency of aromatic herb-based plant protection techniques, and it also highlights the importance of exploiting the residues generated by aromatic plant-utilizing sectors as part of agro-industrial processes. Full article
Show Figures

Figure 1

29 pages, 4881 KiB  
Article
Palliating Salt Stress in Mustard through Plant-Growth-Promoting Rhizobacteria: Regulation of Secondary Metabolites, Osmolytes, Antioxidative Enzymes and Stress Ethylene
by Varisha Khan, Shahid Umar and Noushina Iqbal
Plants 2023, 12(4), 705; https://doi.org/10.3390/plants12040705 - 5 Feb 2023
Cited by 16 | Viewed by 2283
Abstract
The severity of salt stress is alarming for crop growth and production and it threatens food security. Strategies employed for the reduction in stress are not always eco-friendly or sustainable. Plant-growth-promoting rhizobacteria (PGPR) could provide an alternative sustainable stress reduction strategy owning to [...] Read more.
The severity of salt stress is alarming for crop growth and production and it threatens food security. Strategies employed for the reduction in stress are not always eco-friendly or sustainable. Plant-growth-promoting rhizobacteria (PGPR) could provide an alternative sustainable stress reduction strategy owning to its role in various metabolic processes. In this study, we have used two strains of PGPR, Pseudomonas fluorescens (NAIMCC-B-00340) and Azotobacter chroococcum Beijerinck 1901 (MCC 2351), either singly or in combination, and studied their effect in the amelioration of salt toxicity in mustard cultivar Pusa Jagannath via its influence on plants’ antioxidants’ metabolism, photosynthesis and growth. Individually, the impact of Pseudomonas fluorescens was better in reducing stress ethylene, oxidative stress, photosynthesis and growth but maximal alleviation was observed with their combined application. MDA and H2O2 content as indicator of oxidative stress decreased by 27.86% and 45.18% and osmolytes content (proline and glycine-betaine) increased by 38.8% and 26.3%, respectively, while antioxidative enzymes (SOD, CAT, APX and GR) increased by 58.40, 25.65, 81.081 and 55.914%, respectively, over salt-treated plants through the application of Pseudomonas fluorescens. The combined application maximally resulted in more cell viability and less damage to the leaf with lesser superoxide generation due to higher antioxidative enzymes and reduced glutathione formation (GSH). Considering the obtained results, we can supplement the PGPR in combination to plants subjected to salt stress, prevent photosynthetic and growth reduction, and increase the yield of plants. Full article
(This article belongs to the Collection Feature Papers in Plant Protection)
Show Figures

Graphical abstract

29 pages, 6823 KiB  
Article
The Response of Chromosomally Engineered Durum Wheat-Thinopyrum ponticum Recombinant Lines to the Application of Heat and Water-Deficit Stresses: Effects on Physiological, Biochemical and Yield-Related Traits
by Gloria Giovenali, Ljiljana Kuzmanović, Alessandra Capoccioni and Carla Ceoloni
Plants 2023, 12(4), 704; https://doi.org/10.3390/plants12040704 - 5 Feb 2023
Cited by 2 | Viewed by 1225
Abstract
Abiotic stress occurrence and magnitude are alarmingly intensifying worldwide. In the Mediterranean basin, heat waves and precipitation scarcity heavily affect major crops such as durum wheat (DW). In the search for tolerant genotypes, the identification of genes/QTL in wild wheat relatives, naturally adapted [...] Read more.
Abiotic stress occurrence and magnitude are alarmingly intensifying worldwide. In the Mediterranean basin, heat waves and precipitation scarcity heavily affect major crops such as durum wheat (DW). In the search for tolerant genotypes, the identification of genes/QTL in wild wheat relatives, naturally adapted to harsh environments, represents a useful strategy. We tested three DW-Thinopyrum ponticum recombinant lines (R5+, R112+, R23+), their control sibs lacking any alien introgression, and the heat-tolerant cv. Margherita for their physiological, biochemical and yield response to heat stress (HS) application at anthesis, also in combination with water-deficit stress applied from booting until maturity. Under HS, R5+ and R112+ (23%- and 28%-long 7el1L Th. ponticum chromosome segment distally inserted on DW 7AL, respectively) showed remarkable stability of the yield-related traits; in turn, R23+ (40%-long 7el1L segment), despite a decreased grain yield, exhibited a greater spike fertility index and proline content in spike than its control sib. Under water-deficit + HS, R5+ showed the highest increment in water use efficiency and in flag leaf proline content, accompanied by the lowest yield penalty even vs. Margherita. This research confirms the value of harnessing wild gene pools to enhance DW stress tolerance and represents a starting point for elucidating the mechanisms of Thinopyrum spp. contribution to this relevant breeding target. Full article
(This article belongs to the Special Issue Responses of Wheat to Abiotic Stress)
Show Figures

Figure 1

22 pages, 2582 KiB  
Article
Volatile Constituents from Catasetum (Orchidaceae) Species with Occurrence in the Brazilian Amazon
by Franciléia M. de Vasconcelos, Eloisa Helena A. Andrade, Luiz Otávio A. Teixeira, Pablo Luis B. Figueiredo and José Guilherme S. Maia
Plants 2023, 12(4), 703; https://doi.org/10.3390/plants12040703 - 5 Feb 2023
Viewed by 1538
Abstract
Background: Catasetum Rich. ex Kunth is a genus of Neotropical orchids distributed in Central and South American regions. In the Brazilian Amazon, there are more than 60 species of Catasetum. The floral aromas of orchids are little known, particularly of Catasetum species. [...] Read more.
Background: Catasetum Rich. ex Kunth is a genus of Neotropical orchids distributed in Central and South American regions. In the Brazilian Amazon, there are more than 60 species of Catasetum. The floral aromas of orchids are little known, particularly of Catasetum species. This work aimed to analyze the chemical constituents of the volatile concentrates of eight Catasetum specimens from the Amazon: C. alatum (1), C. albovirens (2), C. barbatum (1), C. ciliatum (2), C. galeritum (1), and C. gnomus (1). Methods: Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) analyzed and identified the constituents of the volatile concentrates, and principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used in the multivariate statistical analysis. Results: The Catasetum main constituents in descending order and above 10% were trans-geranylgeraniol, 1,4-dimethoxybenzene, linalool, 2-phenylethyl acetate, geraniol, 7-epi-1,2-dehydro-sesquicineole, 1,8-cineole, benzyl acetate, limonene, methyl salicylate, (E)-β-farnesene, anisyl butyrate, cis-carvone oxide, cadin-4-en-10-ol, indole, α-pinene, and δ-cadinene. Conclusions: Multivariate statistical analysis of Catasetum species showed that C. barbatum, C. albovirens, and C. gnomus are distinct from the other studied species, while C. alatum, C. ciliatum, and C. galeritum presented the same primary classes of compounds. These results contribute to a better understanding of the genus Catasetum chemotaxonomy. Full article
Show Figures

Figure 1

13 pages, 6117 KiB  
Article
Screening of Alfalfa Varieties Resistant to Phytophthora cactorum and Related Resistance Mechanism
by Menghuan Tao, Yao Zhao, Tianxue Hu, Quan Zhang, Hui Feng, Yiwen Lu, Zhenfei Guo and Bo Yang
Plants 2023, 12(4), 702; https://doi.org/10.3390/plants12040702 - 5 Feb 2023
Viewed by 1843
Abstract
Alfalfa is one of the most important legume forages in the world. Root rot caused by soil-borne pathogens severely restricts the production of alfalfa. The knowledge of the interaction between alfalfa and root rot-pathogens is still lacking in China. Phytophthora cactorum was isolated [...] Read more.
Alfalfa is one of the most important legume forages in the world. Root rot caused by soil-borne pathogens severely restricts the production of alfalfa. The knowledge of the interaction between alfalfa and root rot-pathogens is still lacking in China. Phytophthora cactorum was isolated from symptomatic seedlings of an alfalfa field in Nanjing with high levels of damping-off. We observed the different infection stages of P. cactorum on alfalfa, and found that the purified P. cactorum strain was aggressive in causing alfalfa seed and root rot. The infecting hyphae penetrated the epidermal cells and wrapped around the alfalfa roots within 48 h. By evaluating the resistance of 37 alfalfa cultivars from different countries to P. cactorum, we found Weston is a resistant variety, while Longdong is a susceptible variety. We further compared the activities of various enzymes in the plant antioxidant enzyme system between Weston and Longdong during P. cactorum infection, as well as gene expression associated with plant hormone biosynthesis and response pathways. The results showed that the disease-resistant variety Weston has stronger antioxidant enzyme activity and high levels of SA-responsive PR genes, when compared to the susceptible variety Longdong. These findings highlighted the process of interaction between P. cactorum and alfalfa, as well as the mechanism of alfalfa resistance to P. cactorum, which provides an important foundation for breeding resistant alfalfa varieties, as well as managing Phytophthora-caused alfalfa root rot. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

10 pages, 1201 KiB  
Brief Report
Hydrocharis laevigata in Europe
by Pablo Garcia-Murillo
Plants 2023, 12(4), 701; https://doi.org/10.3390/plants12040701 - 4 Feb 2023
Cited by 4 | Viewed by 2237
Abstract
Hydrocharis laevigata (Humb. & Bonpl. ex Willd.) Byng & Christenh. [= Limnobium laevigatum (Humb. & Bonpl. ex Willd.) Heine], Hydrocharitaceae, is a floating-leaf aquatic plant that is native to inland South America. It is an invasive species in several parts of the world. [...] Read more.
Hydrocharis laevigata (Humb. & Bonpl. ex Willd.) Byng & Christenh. [= Limnobium laevigatum (Humb. & Bonpl. ex Willd.) Heine], Hydrocharitaceae, is a floating-leaf aquatic plant that is native to inland South America. It is an invasive species in several parts of the world. Reports of its presence in Europe have been recently published: naturalised populations occur in three locations on the Iberian Peninsula. The literature also contains records of the species in Hungary and Poland. In addition, it has been observed in Sweden, Belgium, and the Netherlands. H. laevigata is highly adaptable and can profoundly transform habitat conditions in its invasive range, causing major issues for ecosystem conservation and human activities. Until recently, H. laevigata was not to be found in natural environments in Europe. Factors explaining its spread include its use as an ornamental plant, the eutrophication of inland waters, and the effects of global warming. With a focus on Europe, this short communication provides information on the species’ distribution, taxonomy, biology, habitat, and negative impacts. Full article
(This article belongs to the Topic Plant Invasion)
Show Figures

Figure 1

15 pages, 4202 KiB  
Review
Abutilon theophrasti’s Resilience against Allelochemical-Based Weed Management in Sustainable Agriculture – Due to Collection of Highly Advantageous Microorganisms?
by Vincenzo Tabaglio, Andrea Fiorini, Tracy M. Sterling and Margot Schulz
Plants 2023, 12(4), 700; https://doi.org/10.3390/plants12040700 - 4 Feb 2023
Cited by 2 | Viewed by 6326
Abstract
Abutilon theophrasti Medik. (velvetleaf) is a problematic annual weed in field crops which has invaded many temperate parts of the world. Since the loss of crop yields can be extensive, approaches to manage the weed include not only conventional methods, but also biological [...] Read more.
Abutilon theophrasti Medik. (velvetleaf) is a problematic annual weed in field crops which has invaded many temperate parts of the world. Since the loss of crop yields can be extensive, approaches to manage the weed include not only conventional methods, but also biological methods, for instance by microorganisms releasing phytotoxins and plant-derived allelochemicals. Additionally, benzoxazinoid-rich rye mulches effective in managing common weeds like Amaranthus retroflexus L. have been tested for this purpose. However, recent methods for biological control are still unreliable in terms of intensity and duration. Rye mulches were also ineffective in managing velvetleaf. In this review, we present the attempts to reduce velvetleaf infestation by biological methods and discuss possible reasons for the failure. The resilience of velvetleaf may be due to the extraordinary capacity of the plant to collect, for its own survival, the most suitable microorganisms from a given farming site, genetic and epigenetic adaptations, and a high stress memory. Such properties may have developed together with other advantageous abilities during selection by humans when the plant was used as a crop. Rewilding could be responsible for improving the microbiomes of A. theophrasti. Full article
Show Figures

Graphical abstract

12 pages, 718 KiB  
Review
Phytosanitary Rules for the Movement of Olive (Olea europaea L.) Propagation Material into the European Union (EU)
by Vito Montilon, Oriana Potere, Leonardo Susca and Giovanna Bottalico
Plants 2023, 12(4), 699; https://doi.org/10.3390/plants12040699 - 4 Feb 2023
Cited by 1 | Viewed by 1996
Abstract
Phytosanitary legislation involves government laws that are essential to minimize the risk of the introduction and diffusion of pests, especially invasive non-native species, as a consequence of the international exchange of plant material, thus allowing us to safeguard agricultural production and biodiversity of [...] Read more.
Phytosanitary legislation involves government laws that are essential to minimize the risk of the introduction and diffusion of pests, especially invasive non-native species, as a consequence of the international exchange of plant material, thus allowing us to safeguard agricultural production and biodiversity of a territory. These measures ensure compliance with adequate requirements relating to the absence of pests, especially of harmful quarantine organisms through inspections and diagnosis tests of the consignments to ascertain the presence of the pests concerned. They also regulate the eradication and containment measures that are implemented in the eventuality of an unintentional introduction of these organisms. In the present contribution, the current plant protection legislation for the exchange of plants or propagation material within the European Union or for export to foreign countries, represented by Regulation (EU) 2016/2031, has been reviewed, with a particular focus on the olive tree (Olea europaea L.). Furthermore, a brief summary of the main olive tree pests transmissible with the propagation material is also reported, indicating their current categorization with respect to the relative quarantine status. Full article
Show Figures

Figure 1

19 pages, 1378 KiB  
Article
Nutritionally Improved Wheat Bread Supplemented with Quinoa Flour of Large, Medium and Small Particle Sizes at Typical Doses
by Ionica Coţovanu, Costel Mironeasa and Silvia Mironeasa
Plants 2023, 12(4), 698; https://doi.org/10.3390/plants12040698 - 4 Feb 2023
Cited by 6 | Viewed by 2026
Abstract
One of the food industry’s challenges is to enhance bread quality from a nutritional point of view without impacting negatively sensorial characteristics and consumer decisions on product choice. This study aimed to assess the baking characteristics of wheat bread supplemented with quinoa flour [...] Read more.
One of the food industry’s challenges is to enhance bread quality from a nutritional point of view without impacting negatively sensorial characteristics and consumer decisions on product choice. This study aimed to assess the baking characteristics of wheat bread supplemented with quinoa flour (QF) of large, medium and small particle sizes at typical doses previously established based on an optimization process, and to evaluate the optimal bread from a physical, textural, nutritional, and sensorial point of view. The results showed a decrease in the Falling number index, water absorption, dough stability, speed of protein weakening, dough extensibility, and creep-recovery compliances for optimal wheat–quinoa composite samples with large and medium particle sizes; meanwhile, for the samples with small particle sizes an opposite trend was recorded, with the exception of dough extensibility. Dough fermentation parameters and bread volume rose for all optimal formulations, while firmness decreased compared to wheat bread. All optimal bread samples presented an improved nutritional profile depending on the particle size. The protein content was up to 19% higher, ash up to 13.8%, and lipids up to fifteen times higher. A noticeable enrichment in minerals (mainly K, Mg, Na, Zn, up to 2.3 times) and essential amino acids (with 13.53%) was also obtained for all optimal breads. From an acceptability point of view, the highest score (8.70) was recorded for the optimal bread with a QF of medium particle size. These findings offer processors new information which will be useful for diversifying bakery products with an enhanced nutritional profile. Full article
(This article belongs to the Special Issue Cereals: Aspects of Quality, Health, Technology, and Innovation)
Show Figures

Figure 1

12 pages, 1715 KiB  
Article
Structure−Activity Relationship (SAR) Study of trans-Cinnamic Acid and Derivatives on the Parasitic Weed Cuscuta campestris
by Antonio Moreno-Robles, Antonio Cala Peralta, Jesús G. Zorrilla, Gabriele Soriano, Marco Masi, Susana Vilariño-Rodríguez, Alessio Cimmino and Mónica Fernández-Aparicio
Plants 2023, 12(4), 697; https://doi.org/10.3390/plants12040697 - 4 Feb 2023
Viewed by 1435
Abstract
Cuscuta campestris Yunck. is a parasitic weed responsible for severe yield losses in crops worldwide. The selective control of this weed is scarce due to the difficult application of methods that kill the parasite without negatively affecting the infected crop. trans-Cinnamic acid [...] Read more.
Cuscuta campestris Yunck. is a parasitic weed responsible for severe yield losses in crops worldwide. The selective control of this weed is scarce due to the difficult application of methods that kill the parasite without negatively affecting the infected crop. trans-Cinnamic acid is secreted by plant roots naturally into the rhizosphere, playing allelopathic roles in plant–plant communities, although its activity in C. campestris has never been investigated. In the search for natural molecules with phytotoxic activity against parasitic weeds, this work hypothesized that trans-cinnamic acid could be active in inhibiting C. campestris growth and that a study of a series of analogs could reveal key structural features for its growth inhibition activity. In the present structure–activity relationship (SAR) study, we determined in vitro the inhibitory activity of trans-cinnamic acid and 24 analogs. The results showed that trans-cinnamic acid’s growth inhibition of C. campestris seedlings is enhanced in eight of its derivatives, namely hydrocinnamic acid, 3-phenylpropionaldehyde, trans-cinnamaldehyde, trans-4-(trifluoromethyl)cinnamic acid, trans-3-chlorocinnamic acid, trans-4-chlorocinnamic acid, trans-4-bromocinnamic acid, and methyl trans-cinnamate. Among the derivatives studied, the methyl ester derivative of trans-cinnamic acid was the most active compound. The findings of this SAR study provide knowledge for the design of herbicidal treatments with enhanced activity against parasitic weeds. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

17 pages, 4296 KiB  
Article
Proteomic Analysis Comparison on the Ecological Adaptability of Quinclorac-Resistant Echinochloa crus-galli
by Lamei Wu, Can Wu, Haona Yang, Jiangshan Yang, Lifeng Wang and Shangfeng Zhou
Plants 2023, 12(4), 696; https://doi.org/10.3390/plants12040696 - 4 Feb 2023
Viewed by 895
Abstract
Barnyardgrass (Echinochloa crus-galli L.) is the most serious weed threatening rice production, and its effects are aggravated by resistance to the quinclorac herbicide in the Chinese rice fields. This study conducted a comparative proteomic characterization of the quinclorac-treated and non-treated resistant and [...] Read more.
Barnyardgrass (Echinochloa crus-galli L.) is the most serious weed threatening rice production, and its effects are aggravated by resistance to the quinclorac herbicide in the Chinese rice fields. This study conducted a comparative proteomic characterization of the quinclorac-treated and non-treated resistant and susceptible E. crus-galli using isobaric tags for relative and absolute quantification (iTRAQ). The results indicated that the quinclorac-resistant E. crus-galli had weaker photosynthesis and a weaker capacity to mitigate abiotic stress, which suggested its lower environmental adaptability. Quinclorac treatment significantly increased the number and expression of the photosynthesis-related proteins in the resistant E. crus-galli and elevated its photosynthetic parameters, indicating a higher photosynthetic rate compared to those of the susceptible E. crus-galli. The improved adaptability of the resistant E. crus-galli to quinclorac stress could be attributed to the observed up-regulated expression of eight herbicide resistance-related proteins and the down-regulation of two proteins associated with abscisic acid biosynthesis. In addition, high photosynthetic parameters and low glutathione thiotransferase (GST) activity were observed in the quinclorac-resistant E. crus-galli compared with the susceptible biotype, which was consistent with the proteomic sequencing results. Overall, this study demonstrated that the resistant E. crus-galli enhanced its adaptability to quinclorac by improving the photosynthetic efficiency and GST activity. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

25 pages, 9512 KiB  
Article
Exploration and Comparison of the Behavior of Some Indigenous and International Varieties (Vitis vinifera L.) Grown in Climatic Conditions of Herzegovina: The Influence of Variety and Vintage on Physico-Chemical Characteristics of Grapes
by Tatjana Jovanović-Cvetković, Milica Sredojević, Maja Natić, Rada Grbić, Milica Fotirić Akšić, Sezai Ercisli and Miljan Cvetković
Plants 2023, 12(4), 695; https://doi.org/10.3390/plants12040695 - 4 Feb 2023
Cited by 5 | Viewed by 1391
Abstract
Viticulture is of great economic importance in the southern part of Bosnia and Herzegovina, thanks to favorable climatic conditions and a long-standing tradition of growing vines. The assortment is dominated by international varieties, as well as some autochthonous and domesticated varieties. The subject [...] Read more.
Viticulture is of great economic importance in the southern part of Bosnia and Herzegovina, thanks to favorable climatic conditions and a long-standing tradition of growing vines. The assortment is dominated by international varieties, as well as some autochthonous and domesticated varieties. The subject of the research is the analysis of the quality of Cabernet Sauvignon, Merlot, Vranac, and Blatina varieties at two localities in Herzegovina during the period 2020–2021. The paper examined the most important economic and technological characteristics, grape quality, and berry phenolic profile. A particularly pronounced variation of the tested characteristics during the research period was observed in the Merlot and Blatina varieties, while the Cabernet Sauvignon and Vranac varieties showed a slightly higher stability of the tested characteristics. Poorer grape quality during the research period was registered with the Blatina variety, which can be considered a varietal characteristic to some extent. The analyzed grape varieties were rich in polyphenols, and the impact of grape variety on the berry phenolic profiles was confirmed. The most abundant polyphenols in the analyzed grape samples were quercetin 3-O-glucoside and catechin gallate, followed by kaempferol 3-O-glucoside. The highest values of polyphenols were found mainly in the samples originating from Trebinje. Indigenous Balkan grape varieties (Vranac and Blatina) stood out with particularly high contents of some phenolics. Research has shown that climatic conditions have a significant influence on the most important characteristics of grapes, which are conditioned by genotypic specificities. The conditions for growing vines in the conditions of Herzegovina enable high quality in the production of grapes, especially the Cabernet Sauvignon and Vranac varieties. The autochthonous variety Blatina shows significant variations in grape quality during the test period, which was confirmed by the results of a larger number of studies in the previous period. Full article
(This article belongs to the Special Issue Improvements/Innovations Related to Fruit Varieties)
Show Figures

Figure 1

34 pages, 2934 KiB  
Review
Xanthones: Biosynthesis and Trafficking in Plants, Fungi and Lichens
by Camilla Badiali, Valerio Petruccelli, Elisa Brasili and Gabriella Pasqua
Plants 2023, 12(4), 694; https://doi.org/10.3390/plants12040694 - 4 Feb 2023
Cited by 6 | Viewed by 2813
Abstract
Xanthones are a class of secondary metabolites produced by plant organisms. They are characterized by a wide structural variety and numerous biological activities that make them valuable metabolites for use in the pharmaceutical field. This review shows the current knowledge of the xanthone [...] Read more.
Xanthones are a class of secondary metabolites produced by plant organisms. They are characterized by a wide structural variety and numerous biological activities that make them valuable metabolites for use in the pharmaceutical field. This review shows the current knowledge of the xanthone biosynthetic pathway with a focus on the precursors and the enzymes involved, as well as on the cellular and organ localization of xanthones in plants. Xanthone biosynthesis in plants involves the shikimate and the acetate pathways which originate in plastids and endoplasmic reticulum, respectively. The pathway continues following three alternative routes, two phenylalanine-dependent and one phenylalanine-independent. All three routes lead to the biosynthesis of 2,3′,4,6-tetrahydroxybenzophenone, which is the central intermediate. Unlike plants, the xanthone core in fungi and lichens is wholly derived from polyketide. Although organs and tissues synthesizing and accumulating xanthones are known in plants, no information is yet available on their subcellular and cellular localization in fungi and lichens. This review highlights the studies published to date on xanthone biosynthesis and trafficking in plant organisms, from which it emerges that the mechanisms underlying their synthesis need to be further investigated in order to exploit them for application purposes. Full article
Show Figures

Figure 1

14 pages, 658 KiB  
Article
Anthocyanin Content and Fusarium Mycotoxins in Pigmented Wheat (Triticum aestivum L. spp. aestivum): An Open Field Evaluation
by Marco Gozzi, Massimo Blandino, Chiara Dall’Asta, Petr Martinek, Renato Bruni and Laura Righetti
Plants 2023, 12(4), 693; https://doi.org/10.3390/plants12040693 - 4 Feb 2023
Cited by 3 | Viewed by 1692
Abstract
Twelve Triticum aestivum L. spp. aestivum varieties with pigmented grain, namely one red, six purple, three blue, and two black, were grown in open fields over two consecutive years and screened to investigate their risk to the accumulation of multiple Fusarium-related mycotoxins. [...] Read more.
Twelve Triticum aestivum L. spp. aestivum varieties with pigmented grain, namely one red, six purple, three blue, and two black, were grown in open fields over two consecutive years and screened to investigate their risk to the accumulation of multiple Fusarium-related mycotoxins. Deoxynivalenol (DON) and its modified forms DON3Glc, 3Ac-DON, 15Ac-DON, and T-2, HT-2, ZEN, and Enniatin B were quantified by means of UHPLC-MS/MS, along with 14 different cyanidin, petunidin, delphinidin, pelargonidin, peonidin, and malvidin glycosides. A significant strong influence effect of the harvesting year (p = 0.0002) was noticed for DON content, which was more than doubled between harvesting years growing seasons (mean of 3746 µg kg−1 vs. 1463 µg kg−1). In addition, a striking influence of varieties with different grain colour on DON content (p < 0.0001) emerged in combination with the harvesting year (year×colour, p = 0.0091), with blue grains being more contaminated (mean of 5352 µg kg−1) and red grain being less contaminated (mean of 715 µg kg−1). The trend was maintained between the two harvesting years despite the highly variable absolute mycotoxin content. Varieties accumulating anthocyanins in the pericarp (purple coloration) had significantly lower DON content compared to those in which aleurone was involved (blue coloration). Full article
(This article belongs to the Special Issue Plant Protection Strategies against Abiotic and Biotic Stresses)
Show Figures

Figure 1

18 pages, 999 KiB  
Review
A Review on Regulation of Irrigation Management on Wheat Physiology, Grain Yield, and Quality
by Zhuanyun Si, Anzhen Qin, Yueping Liang, Aiwang Duan and Yang Gao
Plants 2023, 12(4), 692; https://doi.org/10.3390/plants12040692 - 4 Feb 2023
Cited by 8 | Viewed by 3512
Abstract
Irrigation has been pivotal in sustaining wheat as a major food crop in the world and is increasingly important as an adaptation response to climate change. In the context of agricultural production responding to climate change, improved irrigation management plays a significant role [...] Read more.
Irrigation has been pivotal in sustaining wheat as a major food crop in the world and is increasingly important as an adaptation response to climate change. In the context of agricultural production responding to climate change, improved irrigation management plays a significant role in increasing water productivity (WP) and maintaining the sustainable development of water resources. Considering that wheat is a major crop cultivated in arid and semi-arid regions, which consumes high amounts of irrigation water, developing wheat irrigation management with high efficiency is urgently required. Both irrigation scheduling and irrigation methods intricately influence wheat physiology, affect plant growth and development, and regulate grain yield and quality. In this frame, this review aims to provide a critical analysis of the regulation mechanism of irrigation management on wheat physiology, plant growth and yield formation, and grain quality. Considering the key traits involved in wheat water uptake and utilization efficiency, we suggest a series of future perspectives that could enhance the irrigation efficiency of wheat. Full article
(This article belongs to the Special Issue Strategies to Improve Water-Use Efficiency in Plant Production)
Show Figures

Figure 1

24 pages, 5402 KiB  
Article
Twenty-Seven Year Response of South Carolina Coastal Plain Forests Affected by Hurricane Hugo
by Reid Heaton, Bo Song, Thomas Williams, William Conner, Zachary Baucom and Brian Williams
Plants 2023, 12(4), 691; https://doi.org/10.3390/plants12040691 - 4 Feb 2023
Viewed by 1219
Abstract
In 1989, Hurricane Hugo inflicted catastrophic damage on approximately 1.8 million ha of forested land in South Carolina. The purpose of this study was to monitor species compositional shifts and structural changes in several forest types following the hurricane’s disturbance. The immediate consequences [...] Read more.
In 1989, Hurricane Hugo inflicted catastrophic damage on approximately 1.8 million ha of forested land in South Carolina. The purpose of this study was to monitor species compositional shifts and structural changes in several forest types following the hurricane’s disturbance. The immediate consequences of hurricane damage are well documented, but there are few studies based on the long-term compositional and structural changes that may result from hurricane disturbance, especially in temperate forest ecosystems. Forty-two forested plots were monitored within four study areas that received varying degrees of hurricane damage. Inventories included species, damage class, tree diameter, and regeneration. The objectives of this study were (1) to compare the recovery speed of wetland forests (e.g., bottomland hardwood swamps and cypress-tupelo swamps) to that of upland pine and hardwood forests; (2) to discover how the degree of hurricane damage can affect the timing and the pattern of forest recovery in the coastal plain; and (3) to compare individual species response patterns across different forest types and at different levels of initial damage. Over the 27-year period following the hurricane, successional pathways have been variable among plots of different forest types and intensity of initial disturbance. We have observed an expected increase in basal area (BA) following the disturbance. Sapling populations in many species have increased dramatically, and some of these populations have begun to thin in recent years. In several forest types, loblolly pine (Pinus taeda L.—not a predominant species in these sites prior to the hurricane) responded quickly and overtook some dominant species in BA and tree/sapling abundance. Several other species that were not a major component of the tree strata (wax myrtle [Morella cerifera (L.) Small], green ash [Fraxinus pennsylvanica Marsh.], and the invasive Chinese tallow [Triadica sebifera (L.) Small]) showed a large increase in sapling population. Overall, recovery speed and species resilience were specific to forest types and damage severity. The intensity and frequency of hurricanes may increase in the future as sea surface temperatures rise. Understanding how coastal forests respond to major hurricanes in the short-term and the long-term will aid us in preparing for future hurricanes and for potential changes in disturbance regimes. Full article
Show Figures

Figure 1

18 pages, 4185 KiB  
Article
Seed Priming with Nanoparticles and 24-Epibrassinolide Improved Seed Germination and Enzymatic Performance of Zea mays L. in Salt-Stressed Soil
by Bushra Ahmed Alhammad, Awais Ahmad, Mahmoud F. Seleiman and ElKamil Tola
Plants 2023, 12(4), 690; https://doi.org/10.3390/plants12040690 - 4 Feb 2023
Cited by 24 | Viewed by 2906
Abstract
Saline stress is one of the most critical abiotic stress factors that can lessen crops’ productivity. However, emerging nanotechnology, nano-fertilizers, and developing knowledge of phytochromes can potentially mitigate the negative effects of saline stress on seed germination. Therefore, the aim of this study [...] Read more.
Saline stress is one of the most critical abiotic stress factors that can lessen crops’ productivity. However, emerging nanotechnology, nano-fertilizers, and developing knowledge of phytochromes can potentially mitigate the negative effects of saline stress on seed germination. Therefore, the aim of this study was to investigate the effects of seed priming either with zinc oxide nanoparticles (ZnO-NPs; 50 and 100 mg L−1) or 24-epibrassinolide (EBL; 0.2 and 0.4 μM) and their combinations on maize (Zea mays L.) grains sown in salt-stressed soil (50 and 100 mM NaCl). Saline stress treatments significantly affected all germination traits and chemical analysis of seeds as well as α-amylase activity. Compared to un-primed seeds, seed priming with ZnO-NPs or EBL and their combinations significantly increased the cumulative germination percentage, germination energy, imbibition rate, increase in grain weight, K+ content, and α-amylase activity, and significantly reduced germination time, days to 50% emergence, Na+ uptake, and Na+/K+ ratio of maize sown in salt-stressed-soil (50 or 100 mM NaCl). The combination of 100 mg ZnO-NPs L−1 + 0.2 μM EBL resulted in the highest improvements for most of the studied traits of maize seeds sown in salt-stressed soil in comparison to all other individual and combined treatments. Full article
(This article belongs to the Special Issue Use of Nanomaterials in Agriculture 2.0)
Show Figures

Figure 1