

1. INTRODUCTION

Physics is one of the important branches of basic sciences in which revolutionary developments are frequent. It is one of the important fields of human pursuit since it is very fundamental and critical for both intellectual and material development of the mankind. In broad terms, breakthroughs in physics have been corner stones of quantum jumps in human knowledge about the nature of the whole world in general and the revolutionary leaps in technology. Of the various fields in physics, an important one is neutrino physics, in which Indian scientists are pioneers, and were the first to detect neutrinos produced by cosmic ray interactions in the earth's atmosphere.

Neutrinos are tiny, neutral, elementary particles which interact with matter via the weak force. The weakness of this force gives neutrinos the property that matter is almost transparent to them. The Sun, and all other stars, produces neutrinos copiously due to nuclear fusion and decay processes within their core. Since they rarely interact, these neutrinos pass through the Sun, and even the Earth, unhindered. There are many other natural sources of neutrinos including exploding stars (supernovae), relic neutrinos (from the birth of the universe), natural radioactivity, and cosmic ray interactions in the atmosphere of the Earth. For example, the Sun produces over two hundred trillion trillion trillion neutrinos every second, and a supernova blast can unleash 1000 times more neutrinos than our Sun will produce in its 10-billion year lifetime. Billions of neutrinos stream through human body every second, yet only one or two of the higher energy neutrinos will scatter from an individual lifetime.

From recent experiments it is known that the mass of the neutrino is non-vanishing, but researchers are unsure how large the masses of the three individual neutrino types are because of the difficulty in detecting neutrinos. This is important because neutrinos are by far the most numerous of all the particles in the universe (other than photons) and so even a tiny mass for the neutrinos can enable them to have an effect on the evolution of the Universe through their gravitational effects. There are other recent astrophysical measurements that provide information on the evolution of the Universe and it is crucial to seek complementary information by direct determinations of the masses of neutrinos

and their other properties. In a sense, neutrinos hold the key to several important and fundamental questions on the origin of the Universe and the energy production in stars. Researchers are confident that non-zero neutrino masses have profound implications on various fields such as nuclear physics, geophysics, astrophysics and cosmology apart from being of fundamental interest to particle physics.

Neutrinos, elusive oscillating particles of very small mass that are most numerous of all the other particles excluding photons, are of very wide energy spectra, depending on their sources thus, making them very challenging to be detected. Neutrinos are notoriously difficult to detect in a laboratory because of their extremely weak interaction with matter. The background from cosmic rays (which interact much more readily than neutrinos) and natural radioactivity will make it almost impossible to detect them on the surface of the Earth. Hence, most neutrino observatories are located deep inside the Earth's surface. The overburden provided by the Earth matter is transparent to neutrinos, whereas most background from cosmic rays is substantially reduced depending on the depth at which the detector is located.

As noted above detection of neutrinos is quite challenging and demands highly sophisticated laboratory set-up. Perhaps, filtering-off the cosmic rays and background radioactivity can make detection of the neutrinos possible, and may help answering many a question that challenge scientists. One of the earliest laboratories created to detect neutrinos underground in the world was located more than 2000 m deep at the Kolar Gold Field (KGF) mines in India. The first atmospheric neutrinos were detected at this laboratory in 1965. This laboratory has been closed due to the closure of the mines. Most underground laboratories around the world are located at a depth of a kilometer or more. There are two types of underground laboratories around the world: in Sudbury in Canada, in Kamioka in Japan, under the Gran Sasso Mountains in Italy and in Soudanmines in the USA. Several others are planned including INO as an attempt to recapture the pioneering studies on neutrinos at KGF.

Due to closure of the KGF by the Bharat Goldmines and Ministry of Mines, the study had to be terminated in 1992. Realizing the significance of such study in a global framework and knowledge generating potential of such studies, the possibility of establishing a neutrino observatory was being explored since 1989 itself. Later after a series of meetings and discussions at Institute of Mathematical Sciences (IMSc), Chennai, Tata Institute of Fundamental Research (TIFR), and at the instance of Department of Atomic Energy (DAE), a Neutrino Collaboration Group (NCG) was formed to study the possibility of building an India-based Neutrino Observatory (INO). "Creation of an underground neutrino laboratory with the long term goal of conducting decisive experiments in neutrino physics" and "also other experiments which require such a unique underground facility" was the purpose of the NCG. Open multi-institutional neutrino collaboration was also formed to create the INO. Consequently, two potential sites were identified to establish the INO and to construct an underground laboratory in India. It is stated that "an underground laboratory for doing neutrino physics at an internationally competitive level requires a depth in excess of 1000 meters {3000 meters water equivalent (mwe)}" (Anonymous, 2005).

The proposed INO site is at Singara, Masinagudi, Nilgiris district in Tamil Nadu. With respect to the proposed establishment to establish the world class laboratory, the Institute of Mathematical Sciences (IMSc), Chennai, requested Sálim Ali Centre for Ornithology and Natural History (SACON) to undertake a rapid environmental assessment with emphasize on ecological components.

1.1. THE INDIA-BASED NEUTRINO OBSERVATORY (INO)

1.1.1 Creation of the INO

As noted earlier world over currently four major laboratories are working. These laboratories are located either in mines or in road tunnels, for the express need of having thick overburden to curtail background radiations. India being one of the pioneer countries researching neutrino physics, the idea of establishing a neutrino observatory in the country was actively pursued since 1989. The Workshop on High Energy Physics

Phenomenology (WHEPP-6) held at Chennai during early 2000, the "Neutrino 2001" meeting at IMSc, Chennai and several other meetings elsewhere to bring in and interactions with experimentalists and theorists in the field of neutrino physics was one of the important deliberations further in this line. The proposal to establish an India-based Neutrino Observatory (INO) was presented by the Neutrino Physicists before the Department of Atomic Energy (DAE), Government of India, which followed the formation of a Neutrino Collaboration Group (NCG) for studying the feasibility of creating the INO. Nearly 20 scientific and academic institutions are involved in this endeavour. A Site Selection Committee (SSC) was authorised to identify an area where the observatory can be established.

1.1.2 The Site

The SSC studied the site survey reports on two locations; one in Tamil Nadu and the other in West Bengal. The criteria set for the suitability of the sites are given in Appendix 1. The site (Latitude = 27.4° N, Longitude = 88.1° E) in the Eastern Himalayas is located adjacent to the Rammam Hydel project in the district of Darjeeling. The proposed portals of access tunnel and adit are located adjacent to the metalled road leading to the powerhouses of the hydel projects. The SSC after carefully studying aspects such as stability, safety, access and minimal damage to the environment, recommended the site at Singara, Nilgiri district, Tamil Nadu for locating INO (details of the proposed site is furnished in Appendix 2). The site in Tamil Nadu is located at Singara, Masinagudi, Nilgiris district (Figure 1) adjacent to the Pykara Ultimate Stage Hydro Electric Project (PUSHEP; Latitude = 11.5° N, Longitude = 76.6° E). An engineering task force is entrusted to prepare the Detailed Project Report (DPR) for the site.

ATTER .

Figure 1. Location of the project site INO-Masinagudi

A

1.1.3 The project

The INO site at Singara is close to the PUSHEP tunnels and generator cavern (Figure 2). The tunnel portal of the proposed INO is to be located near the south portal of the PUSHEP access tunnel. It is about 50 m from the PUSHEP main gate located nearby Singara Coffee Estate in the Pykara camp of the Tamil Nadu Electricity Board (TNEB). The observatory will be located deep underground at about 1300 m below the 2207 m peak in the Nilgiris. The tunnel to the laboratory cavern will be nearly 2370 m long and 7.5 m wide in diameter (Table 1). To detect the neutrinos and to get the neutrinos scattering pattern, which otherwise are difficult to locate, an Iron Calorimeter (ICAL) of about 50000 tonnes will be located in the cavern.

1.1.4 Components of the project

The proposed Observatory comprises of two caverns with about 132 x 26 x 28.5 m and 55 x 12.5 x 8.5 m in dimensions (Figure 3) for the control and utility equipment and four inter-connecting adits for accessibility and safety. The observatory will house the neutrino experimental set-up. The set-up for the detection of neutrinos (Appendix 3) will have Resistive Plate Chamber (RPC) detectors sandwiched between stacks of magnetised steel plates. The detector will have a coating of metal with thin glass chamber, filled with Argon, Freon (R 134a) and nearly 8% Isobutane. The detector can hold 1000 cubic meter of the gas. The magnets will be water cooled. The gas and the water cooling system will be in a closed cycle. It is also suggested that the gas will be diluted with fresh air before release of the same into the atmosphere, if required. Nearly 3000 kVA of power will be required for the project, which would be availed from the nearby TNEB substation.

Table 1. INO Main access tunnel alignment and cavern details			
Location Adjacent to PUSHEP			
Access Tunnel (200			
Length	2370 m		
Gradient	1 in 13.5		
Inlet sill level	+863.67		
Sill level at Cavern	+852.67		
Cavern Height 29.5 ms			

Cavern crown level	+881.17
Vertical cover from Sill level	1340 m
Sill level of INO access tunnel at PUSHEP TRT	+958.4 m
crossing	
Crown RL of PUSHEP TRT at crossing	929.93 m
Cover between INO access and TRT	28.52 mtrs. PUSHEP
(Source: INO)	

The main components of the experiments facility at Singara are given in Table 2.

Table 2. Facilities proposed for INO at Singara					
No	Facilities		Location	Dimensions	
1	Laboratory Hall 1		Underground	132m x 26m x 29.5m	
	Hall 2			40m x 12.5m x 8.5 m	
2	Access tunnel		Underground	2370m long x 7.5m	
				diameter	
3	Utility building (substation,		Surface (Over ground) in	42m x 22m x 5m	
	chilling plant, etc.)		the TNEB land at		
			Masinagudi.		

Apart from the above items several residential, offices and administrative facilities (Table 3) are also proposed in the INO project.

Table 3. Surface Facilities (Over ground) proposed for INO at Masinagudi		
Items	Dimensions	
Surface laboratory	250 m^2	
Administrative building	400 m^2	
Assembly shop	500 m^2	
Workshop	50 m^2	
Substation for power distribution	240 m^2	
Residence for 20 families		
Hostel / guest house for 40 members		
Source: Sreenivasan (2007), First four items will be in one building		

1.1.5 Land and other resources requirement

Most of the project components are placed underground in tunnel and caverns. Therefore, no forest land is required for the project. The tunnel portal is located in the TNEB land nearby. The labour camp, staff quarters and administrative buildings will be located in

the TNEB land opposite to the PUSHEP guest house in Masinagudi.

The total land area required for the project is around 15.1 Ha including notional land required of about 5 Ha for fully underground facilities. The other major resource required is about 101 KT of various grades. The power requirement will be about 1MW during construction stages and about 3MW during operational phase. The demand on other resources like water etc. is minimal. (Appendix 4 for details of land and other resources requirements).

1.1.6 Construction technology and execution

The following are the important construction activities of the INO project

- Excavation of the access tunnel, adits and the cavern for laboratory
- Concrete lining of the tunnel and caverns
- Mobilizing materials and equipments for the laboratory
- Establishment of underground laboratory and related facilities
- Formation of residential quarters and administrative facilities

All the above project components except the last one are to be established underground. The construction activities for the access tunnel are proposed by forming portal at the entry. Once the portal is formed, the tunnelling will be carried out by core drilling and blasting. All other associated shafts and underground caverns will be excavated in proper sequence one after another through access tunnel. Concreting works in the tunnel will be carried out when excavation is completed.

According to the project proponent, tunnel would be excavated by conventional drilling technology. Blasting pattern requiring minimum charge and yielding maximum pull will be designed based on the nature and quality of rock mass and size of excavation. All the tunnels, except construction adits, will be excavated first followed by benching. The sequence of tunnelling operation is as given below

- Surveying and marking of the area to be excavated
- Drilling of holes as per blasting pattern design
- Loading of explosives
- Blasting
- Defuming
- Scaling
- Row supporting (Shotcreting, Rock bolting, etc.)
- Drilling drainage holes wherever seepage of water encountered, and
- Concrete lining and Grouting

In all, 110 men (contractor workers and departmental staff will be working at the site on daily basis during construction of the laboratory facilities (Table 4) (Sreenivasan, 2007). The personnels expected to be involved in operation phase are given in Table 5. It is expected that the construction would be completed in four years. The installation of the ICAL experimental set up will take another one (1) year (Sreenivasan, 2007).

Table 4. Personnel involved in INO project and resident population during Construction								
Phase								
Year	Contract	Labour		Departmenta	Departmental Staff			
	Skilled	Semi	Unskilled	Engineers Scientists Total family Total				
		Skilled				members	residents	
1	20	20	50	10	10	220	330	
2	20	20	50	10	10	220	330	
3	15	15	40	10	10	180	260	
4	20	10	-	5	10	60	105	
5	20	05	-	5	10	50	90	
Source: INO								

Table 5. Resident population during Operation phase.	
Scientist	6
Auxilary staff	14
Family members	60
Total	80
Source: INO	

A few of the various construction equipments proposed to be used are listed below.

- Drill jumbos
- Air compressors
- Mobile cranes
- Tippers
- Tip trucks
- Jack hammers
- Road rollers
- Gas welding units
- Dewatering pumps with motors
- Lorries
- Hand winches
- Rock bolters
- Raise climbers and
- Excavators/ Loaders

2. THE PRESENT STUDY

Study of the ecological community would be useful in assessing the influence of varying operational and environmental conditions on the ecosystem. The recent thrust on biodiversity conservation necessitates documentation of flora and fauna and identification of threats to the local biodiversity. Establishing the INO at the PUSHEP site may have impact on its surroundings, both in short and long-term time scale. In broad terms, the present study is undertaken to examine and document the impacts, if any, due to the construction and operation of the project. The duration of study was three months from December 2006.

2.1. <u>SCOPE AND OBJECTIVES</u>

The broad scope of the present study is to conduct a rapid survey and examine the impacts of the proposed INO project on the biological and ecological environment. The major objectives of the study are

- i) Assessment of the flora in the project location and its environs,
- ii) Assessment of the fauna in the project location and its environs,
- iii) Identification of probable impacts arising from the execution of the project on the biological and ecological environs,
- iv) Propose mitigation for minimal impacts, if any

Figure 2. INO main access tunnel alignment

Vertical overburden above cavern complex : > 1300 M

Figure 3. The proposed model of tunnel

2.2. STUDY AREA

The study primarily concentrates on the project location, namely i) the proposed Singara portal of the INO, near the PUSHEP, and ii) its environs. The area within 5-10 km radial distance from the site of proposed project (referred to hereafter as the environs of the project) was also examined. The total study period was three months: December 2006 to February 2007. However, information from secondary sources and published and unpublished reports were consulted to satisfactorily document the environmental scenario of the project area and its environs.

2.3. <u>METHODOLOGY</u>

Detailed scientific information on the ecological makeup of a natural system, specifically with respect to flora and fauna is a prerequisite for its long term and strategic management, and also to weigh any possible impacts of activities proposed to be undertaken in the area. This is also essential to develop a general perception about the project and its impacts. In the present study, the first exercise was focussed on collecting and collating this basic information. To collect data and information on specific components of the ecological system and pertinent issues widely used standard scientific methods were adopted. Generally, the guidelines of the Ministry of Environment and Forests, Government of India (Anonymous, 1985; World Bank, 1991a & b) were followed with respect to the scope and objectives.

The present investigation focussed on the project area and its environs. Area falling within 5-10 km radial distance from the INO location was included for the field study. Taking note of the ecological and special proximity of the project site to Protected Areas (PAs) and the Mudumalai Wildlife Sanctuary, which is well known for its wildlife heritage, attempt was made to incorporate available information about these protected areas and their ecological significance. The Mudumalai Wildlife Sanctuary is one of the most popular and oldest wildlife sanctuaries in India. The project was examined keeping in view of the long-term survival of the wildlife habitats and the increasing threats to it arising from the drastic anthropogenic activities and commercial activities in the Masinagudi area and the natural resources around.

2.3.1 Methodology for the study of flora

The flora of the project areas, in Singara, Masinagudi, which lies in continuity with the Mudumalai Wildlife Sanctuary (Figure 4), was examined following standard methods (Greig-Smith, 1983; Caustan, 1988). Similarly, the flora in the environs of the project location was also documented. Species encountered during the surveys were recorded. As

noted earlier, information was drawn extensively from previous works. Taxonomic identification of the species encountered in the field was done consulting the flora of Hooker (1872-97), Gamble (1957) and Jain and Rao (1983). Sources referred for the preparation of plant list include Sharma *et a l.* (1977), Sukumar *et al.* (1992), Azeez *et al.* (1997a, b and 2006) and Suresh *et al.* (2006).

Figure 4. Mudumalai Wildlife Sanctuary, proposed INO location and immediate surroundings

2.3.2 Methodology for the study of fauna

The survey for the study of fauna of the environs of the proposed project site was

conducted following methods given in Table 6. Visual encounter survey was conducted for listing amphibians and reptiles, whereas opportunistic observations and random walk was used for birds. For the survey of mammals, tracks and signs, and visual encounter survey was followed. The species were also identified with indirect evidences such as pug marks, calls, signs and scats (Bang *et al.*, 1972; Heyer *et al.*, 1994). The reports by Azeez *et al.* (1997a, 1997b and 2006) were referred for the preparation of the check list as this study was a rapid one lasting only three months.

Table 6. Techniques used for sampling fauna			
Taxa	Sampling Methods		
Amphibians	Visual encounter survey (search)		
Reptiles	Visual encounter survey (search)		
Birds	Random walk, opportunistic observations		
Mammals	Tracks and signs, and visual encounter survey		

3. OBSERVATIONS

The present observations are made based on field work specifically conducted for the study on INO project, as well as studies conducted earlier in the area. Extensive use of research conducted in the area by various agencies, including the Tamil Nadu Forest Department (TNFD), Indian Institute of Sciences (IISc), Bangalore, Bombay Natural History Society (BNHS), Mumbai, Wildlife Institute of India (WII), Dehra Dun and others were included. The project site is located just outside the Mudumalai Wildlife Sanctuary. An important portion of the area lying within 10 km radial distance from the project site is within the sanctuary boundaries, while the rest comes under Reserve Forests, revenue lands and private lands. Revenue land contiguous with the Sigur Revenue Forest lies towards the east. Since, the Mudumalai Wildlife Sanctuary is an important wildlife habitat of India lying close to the INO project site, the information available on the flora and vegetation of the sanctuary elsewhere is described in detail in the report.

3.1. <u>TOPOGRAPHY</u>

The Nilgiris, extending to about 56 km in length and 32 km in width in the Western Ghats, show considerable variation in vegetation types that can be attributed to the varied topographic, climatic and physiographic features. The proposed INO project's laboratory component is situated at Singara, about 6.5 km from the Masinagudi village, which is expanding fast in view of its tourism potentials and closeness to the Mudumalai Wildlife Sanctuary. The administrative and over ground facilities are to be located close to the PUSHEP guest house owned by TNEB on the Masinagudi – Moyar road.

The terrain of the general area is undulating with hillocks, plains and deep gorges. The average altitude of the study area is around 1000 m above sea level varying from 450 m at the Moyar gorge / valley to 2500 m. The most remarkable geo-morphological feature of the area is the 450 m deep and 20 km long Moyar gorge / valley known in the past as "Mysore ditch" that runs towards the east. The river Moyar meanders through the gorge

for about 20 km and joins the river Bhavani at Bhavanisagar reservoir. Several smaller rivers and rivulets also traverse the area of which the major one is river Sigur. The Moyar and Sigur rivers make a natural boundary of the Mudumalai sanctuary on the north and east respectively. The major stream traversing the immediate environs of the project, nearby Masinagudi is Avari halla, joining the Maravakandy reservoir at Masinagudi. Further to the Maravakandy dam the Avari halla carries only the trickling water from the reservoir or the overflow from it. The sanctuary is drained by Benne halla, Bider halla, Doddagatti halla and Kakkan halla. However, the flow in almost all the streams gets considerably decimated during summer. The major sources of water in the area during the dry season are the Maravakandy reservoir, the flume channels and the Moyar fore-bay maintained by the Tamil Nadu Electricity Board.

The rock type in the area is peninsular gneiss with black sandy loam and red heavy loam soil types (Suresh *et al.*, 1996). The basic rock formation of the Nilgiri - Wynad plateau differ sharply from the Nilgiri plateau being typical Archean biotite and hornblendic gneiss with intensive bunts of charnokite and much younger biotite-granite pegmatite and basic doleric dykes. Two kinds of soils may be recognized in the area; black sandy loam, which contains over 50% sand and gravel, and the red heavy loam (Jeyadev, 1957). The red soil is generally confined to the southern part of the range where the rainfall is higher. Black soil is seen in environs such as Manradiar Avenue in the Mudumalai Wildlife Sanctuary.

3.2. <u>CLIMATE</u>

The area experiences three distinct seasons; summer starting from (February / March - May), monsoon (mid May – October) and winter (November – February). The temperature in the environs of the project location varies from place to place due to varied rainfall and vegetation. Temperature is comparatively lower in the project location than in the Masinagudi area. Temperature decreases with the onset of south-west monsoon in June. The hottest months are April-May and the coldest December-January (Figure 5).

Figure 5. Mean monthly average temperature -Masinagudi Area (1993-96)

The study area receives rain from both the southwest (June – September) and the northeast (October- November) monsoons. The rainfall in the environs of the study area varies widely. In general, June and October months receive high rainfall (Figure 6). The rainfall ranges from 400 mm to 2500 mm in the eastern and western parts of the study area respectively. The average annual rainfall during 1992-1996 at Maravakandy and Moyar, which are not far away from each other, was 532.3 mm and 652.5 mm respectively (Azeez *et al.*, 1999).

Figure 6. Mean monthly rainfall-Masinagudi Area (1993-96)

3.3. <u>BIODIVERSITY</u>

Prioritisation of the conservation issues, in terms of flora and fauna, in addition to other base-line parameters is necessary for inferring the impact of a proposed project. The survey on the flora and fauna in and around the project site was made both directly by conducting field surveys and by collating from other sources as mentioned earlier. Western Ghats, one of the two biodiversity hot-spots in India, is unique in holding various endemic and endangered species. The area around the Masinagudi apparently is significant for it falling adjacent to the Mudumalai Wildlife Sanctuary practically skirting two wildlife corridors (Singara - Mavanhalla and Moyar - Avarihalla Corridors). In the following section an attempt is made to elaborate vegetation, and floral and faunal biodiversity in various locations in the study area.

3.3.1 Vegetation in Bokkapuram

The area in Bokkapuram is highly degraded and in a rapid state of change compared to situation reported in previous studies (Azeez *et al.*, 1997a). Several tourist resorts have come up in the area and most of them just border the reserve forests and practically are the only entry points to the reserve forest flanking the hillock. The stretch of forest patch between the privately owned lands, resorts and the steep hills are increasingly with high gradients, limiting the movements of larger mammals to the adjacent forest patches. Of the 32 tourist resorts in Masinagudi and its surroundings, almost 50% falls in Bokkapuram, which indicates the severity of the situation.

The common species of trees seen at Bokkapuram are *Acacia pennata, Buchanania lanzan* and *Pterocarpus marsupium*. Common shrub species of the area includes *Argyreia cuneata, Gmelina asiatica* and *Toddalia asiatica*. The exotic weeds such as *Lantana camara, Chromolaena odorata* and *Opuntia dilleni* have extensively invaded the area, causing hindrance to the movement of wild animals. It seems the local villagers largely depend on the forests for fuel-wood.

3.3.2 Vegetation in Mavana halla and Masinagudi

Common tree species found in this area are Acacia leucophloea, Cassia fistula and Ziziphus mauritiana etc. The common herbs and shrubs are Acalypha fruticosa, Achyranthes aspera, Argemone mexicana, Argyreia cuneata, Boerhavia diffusa, Croton bonplandianum, Lantana camara, Malvastrum coromandelianum, Sida acuta and Tephrosia purpurea. The plantations in the Masinagudi and Mavana halla are dominated by Eucalyptus globulus, an exotic species. The major herb and shrub species recorded in the area are Acanthospermum hispidum, Argyreia cuneata, Barleria mysorensis, Flacourtia indica, Gmelina asiatica, Solanum indicum, Tephrosia purpurea and Toddalia asiatica.

3.3.3 Vegetation towards south of Moyar village

The vegetation type in this region is scrub forest dominated by species such as *Albizia* odoratissima, Diospyros montana and Elaeodendron glaucum. The ground cover comprised of Aristida adscencionis, Bothriochloa pertusa, Cassia mimosoides, Chrysopogon fulvus, Lantana camara, Opuntia dillenii, Oxalis corniculata and Sida cordata.

3.3.4 Vegetation of Mudumalai Wildlife Sanctuary

The Mudumalai Wildlife Sanctuary (11° 32' - 11° 43' N and 76° 22' - 76° 45 E) located in the Nilgiri District extends over an area of about 321 km² and forms a part of the Nilgiri Biosphere Reserve (Suresh *et al.*, 1996). The sanctuary is bounded by Wynad Wildlife Sanctuary of Kerala in west, Bandipur Tiger Reserve of Karnataka in north and by private lands with coffee and tea plantations of Tamil Nadu in south and east (Azeez *et al.*, 1997a). Mudumalai Wildlife Sanctuary is endowed with various vegetation types and holds a rich biodiversity which purely depends on the rainfall gradient (Sharma *et al.*, 1977). Four major vegetation types, based on the classification by Champion and Seth (1968), are found in the sanctuary and are described below.

3.3.4.1 Tropical semi-evergreen forests

Tropical semi-evergreen forests are seen in western parts of the sanctuary with a rainfall of nearly 1800 mm per annum. The dominant tree species were *Acronychia pedunculata*, *Ficus hispida*, *Glochidion velutinum*, *Mangifera indica*, *Meliosma simplicifolia*, *Michelia* sp., *Olea dioica*, *Toona ciliata*, *Vernonia arborea* and *Viburnum punctatum*. Herbaceaous vegetation is predominated by *Ardisia solanacea*, *Cyathula prostrata*, *Justicia wynaadensis* and *Rungia parviflora*.

3.3.4.2 Tropical Moist Deciduous Forests

Tropical moist deciduous forests are seen in the western parts of the Mudumalai block as well as Benne block. This forest type receives rainfall of 1500 mm per annum. Tree species seen here includes *Bambusa arundinacea*, *Careya arborea*, *Dalbergia latifolia*, *Elaeocarpus tuberculatus*, *Glochidion velutinum*, *Lagerstroemia microcarpa Launea coromandelica*, *Syzygium cumini*, *Tectona grandis*, *Terminalia bellirica*, *T. crenulata*, and *Trema orientalis*. The undergrowth comprises of *Abutilon indicum*, *Cippadessa bacciferra*, *Leea asiatica*, *Oxalis corniculata*, *Triumfetta annua* and *Urena lobata*. The dominant grasses are *Cymbopogon flexuosus*, *Imperata cylindrica*, *Themeda cymbaria* and *Setaria intermedia*.

3.3.4.3 Tropical Dry Deciduous Forests

Major portion of the sanctuary receiving an intermediate rainfall of 900-1500 mm per annum falls in the category of Tropical dry deciduous forest. The dominant tree species are Anogeissus latifolia, Butea monosperma, Diospyros montana, Gmelina arborea, Grewia tiliifolia, Kydia calycina, Tectona grandis, Terminalia crenulata, Schleichera oleosa and Ziziphus xylopyrus. Species such as Antidesma diandrum, Cassia sp., Hibiscus sp., Lantana indica, Physalis minima, Sida acuta, Vernonia cinerea, Waltheria indica, Zornia diphylla and Tarenna asiatica are dominant among the herbs and shrubs.

3.3.4.4 Tropical thorn Forests

Tropical dry thorn forest is seen in the eastern part of the sanctuary along the border with the Sigur plateau lying in the rain shadow of the Nilgiri massif. The area experiences an annual rainfall of 600-900 mm and is dominated by xerophytic tree species such as *Acacia chundra*, *A. leucocephloea*, *A. polyantha*, *A. ferruginea*, *Capparis sepiaria*, *Dalbergia lanceolaria*, *Opuntia dillenii*, *Premna tomentosa*, *Sapindus emarginatus* and *Ziziphus* sp. The common herbs and shrubs include *Acalypha indica*, *Blumea mollis*, *Indigofera* sp., *Lantana wightiana*, *Tribulus terrestris* and *Trichodesma indicum*.

3.3.5 Flora at the INO entry portal and nearby areas

The vegetation at the proposed entry portal tunnel and on the surface locations of the underground INO tunnel and laboratory were surveyed. Species recorded were *Artocarpus* sp., *Bothriochloa pertusa*, *Centella asiatica*, *Conyza* sp., *Desmodium* sp., *Eragrostis* sp., *Ficus racemosa*, *F.religiosa*, *Ipomoea sepiaria*, *Leucas aspera*, *Mangifera indica*, *Oxalis corniculata*, *Panicum* sp., *Rhynchosia* sp., *Rubia cordifolia*, *Setaria* sp., *Sida* sp., *Solanum* sp., *Syzygium cumini*, *Anogeissus latifolia*, *Aristida* sp., *Arundinella* sp., *Bambusa arundinacea*, *Blumea* sp., *Butea monosperma*, *Calotropis gigantea*, *Cardiospermum* sp., *Cassia fistula*, *Chloris* sp., *Commelina benghalensis*, *C.ensifolia*, *Cyperus* sp., *Dalbergia* sp., *Dactyloctenium aegyptium*, *Dolichos* sp., *Erythrina indica*, *Euphorbia geniculata*, *E.hirta*, *Ficus tsjakela*, *F. virens*, *Gnaphalium* sp., *Heteropogon contortus*, *Indigofera* sp., *Kydia calycina* and *Themeda triandra*.

Species recorded in the vicinity also included many exotic elements; *Lantana camara*, *Trema orientalis*, *Parthenium hysterophorous*, *Vinca rosea*, *Eupatorium repandum*, *Cassia siamea*, *C. tora* and *Grevillea robusta*. The exotic species would have been brought here by the TNEB staff that had stayed here for operating the power plant in the area for several decades.

3.3.6 Floral enumeration

The project site is covered mainly with dry deciduous vegetation. A total of 676 plant species belonging to 100 families are occurring in the study area, covering major part of the Mudumalai Wildlife Sanctuary. Among the 676 species, 189 species are trees (Appendix 5), 197 are shrubs (Appendix 6), 222 are herbs (Appendix 7) and 68 are grasses (Appendix 8). Of the 100 families reported from the study area, Fabaceae is the dominant family with 78 species.

3.3.7 Endemic plants

A total of 62 endemic plant species (marked in Appendices 2, 3, 4, 5, 6) are occurring in the study area. Among the 62 endemic species 13 are trees, 16 are shrubs, 26 herbs and seven are grasses. These species are endemic to the peninsular Indian region.

3.4. FAUNALANALYSIS

In all, 173 species of vertebrates were recorded in and around the proposed site. As the study was rapid, information on the faunal elements was largely collated from published literatures and reports. Twelve species of amphibians (Table 7), 46 reptiles (Table 8), 87 avian (Appendix 9) and 28 mammalian (Table 9) species were reported to occur in the vicinity of the project area. In the area near the entry portal only a few species could be recorded during the survey, due to the existing disturbance and short survey period. Species number and abundance was higher in locations away from the project site, especially in the Mudumalai Wildlife Sanctuary and thorn forests of Moyar.

3.4.1 Amphibians

Twelve species of amphibians could be observed in and around the project site. Of the 12 amphibian species, three taxa are endemic to Western Ghats.

3.4.2 Reptiles

Forty six species of reptiles were recorded around the project site. Five species of reptiles are endemic to the Western Ghats (Table 8) and five are aquatic fauna.

3.4.3 Birds

Eighty six bird species were recorded in the study site. Of these, nine are aquatic and the remaining terrestrial in habit (Appendix 9). Records of a fewer of water dependent species (11 out of 86) could be mainly due to dry nature of the area and lack of larger water bodies in the environs.

Table 7. Amphibians observed in the vicinity of INO project area				
No	Common Name Scientific Name			
1	Common Indian Toad	Bufo melanostictus		
2	Ornate Microhylid	Microhyla ornata		
3	Leaping Frog	<i>Indirana</i> sp.*		
4	Skittering Frog	Euphlyctis cyanophlyctis		
5	Indian Pond Frog	Euphlyctis hexadactylus		
6	Indian Burrowing Frog	Sphaerotheca breviceps		
7	Indian Cricket frog	Limnonectes limnocharis		
8	Indian Bull frog	Hoplobatrachus tigerinus		
9	Jerdon's Bull Frog	Hoplobatrachus crassus		
10	Wrinkled Frog	Nyctibatrachus sp.*		
11	Common Tree Frog	Polypedates maculates		
12	Bush Frog	Philautus spp.*		
* Endemic to the Western Ghats. Nomenclature followed, Dutta (1992)				

Table 8. Reptiles recorded in the vicnity of INO project location			
No	Common Name	Scientific Name	
1	Mugger#	Crocodylus palustris	
2	Indian Flapshell Turtle#	Lissemys punctata	
3	Indian Black Turtle#	Melanochelys trijuga	
4	Leith's Softshell Turtle#	Aspideretes leithii	
5	Indian Star Tortoise	Geochelone elegans	
6	Brook's Gecko	Hemidactylus brookii	
7	Bark Gecko	Hemidactylus leschenaultia	
8	Termite Hill Gecko	Hemidactylus triedrus	

9	House Gecko	Hemidactylus frenatus
10	Indian Day gecko*	Cnemaspis sp.
11	Elliot's Forest Lizard*	Calotes ellioti
12	Large Scaled Forest Lizard*	Calotes grandisquamis
13	Garden Lizard	Calotes versicolor
14	Nilgiri Forest Calotes*	Calotes nemoricola
15	Green Forest Calotes	Calotes calotes
16	Roux's Forest Calotes	Calotes rouxii
17	Western Ghats Flying Lizard	Draco dussumeiri
18	South Indian Rock Agama	Psammophilus dorsalis
19	Fan Throated Lizard	Sitana ponticeriana
20	Spotted Supple Skink	Lygosoma punctata
21	Keeled Grass Skink	Mabuya carinata
22	Indian Chamaeleon	Chaemaeleo zeylanicus
23	Common Monitor	Varanus bengalensis
24	Blind Snake	Ramphotyphlops braminus
25	Common Sand Boa	Eryx conicus
26	Red Sand Boa	Eryx johnii
27	Indian Rock Python	Python molurus
28	Common Rat Snake	Ptyas mucosa
29	Banded Kukri Snake	Oligodon arnensis
30	Indian Cat Snake	Boiga trigonata
31	Wolf Snake	Lycodon aulicus
32	Green Whip Snake	Ahaetulla nasuta
33	Brown Vine Snake	Ahaetulla pulverulenta
34	Ornate Flying Snake	Chrysopelea ornate
35	Bronzbacked Tree Snake	Dendrelaphis tristis
36	Striped Keelback	Amphiesma stolatum
37	Green Keelback	Macropisthodon plumbicolor
38	Checkered Keelback#	Xenochrophis piscator
39	Indian Cobra	Naja naja
40	King Cobra	Ophiophagus hannah
41	Indian Krait	Bungarus caeruleus
42	Bamboo Pit Viper	Trimeresurus gramineus
43	Malabar Pit Viper*	Trimeresurus malabaricus
44	Russell's Viper	Daboia russelii
45	Saw Scaled Viper	Echis carinatus
46	Hump-nosed Pit Viper	Hypnale hypnale
*spec	cies endemic to the Western Ghats, , #A	quatic, Nomenclature following Das (2003)

3.4.4 Mammals

Twenty eight mammalian species (Table 9) is reported from in and around the proposed site and its environs.

Table 9. Mammals observed in the study area			
No	Common Name	Scientific Name	
1	Bonnet Macaque	Macaca radiata	
2	Common Langur	Presbytis entellus	
3	Nilgiri Langur.	Presbytis sp.	
4	Leopard	Panthera pardus	
5	Tiger	Panthera tigris	
6	Jungle Cat	Felis chaus	
7	Civets	Viverricula sp.	
8	Common Palm Civet	Paradoxurus hermaphroditus	
9	Mongoose	Herpestes sp.	
10	Striped Hyena	Hyaena hyaena	
11	Jackal	Canis aureus	
12	Wild Dog	Cuon alpinus	
13	Sloth Bear	Melursus ursinus	
14	Otter	Lutra sp.	
15	Indian Flying Fox	Pteropus giganteus	
16	Giant Squirrel	Ratufa indica	
17	Fivestriped Palm Squirrel	Funambulus palmaram	
18	Porcupine	Hystrix indica	
19	Indian Hare	Lepus nigricollis	
20	Elephant	Elephas maximus	
21	Gaur	Bos gaurus	
22	Black Buck	Antilope cervicapra	
23	Four-horned Antelope	Tetracerus quadricornis	
24	Sambar	Cervus unicolor	
25	Chital	Axis axis	
26	Mouse Deer	Muntiacus muntjak	
27	Wild Pig	Sus scrofa	
28	Pangolin	Manis crassicaudatus	
Nomenclature after Prater 1993			

The Mudmalai Wildlife Sanctuary and its environs provide habitats to a large number of wild species such as elephants. The area also offers shelter to a huge population of domestic cattle, competing with the wild species for the limited natural resources. The sanctuary has a wild mammalian biomass of about 364 kg/km² which comprises of Chital

(*Axis axis*), Sambar (*Cervus unicolor*), Elephant (*Elephas maximus*) and Gaur (*Bos gaurus*) (Varman and Sukumar, 1993; Suresh *et al.*, 1996). The Mudumalai Wildlife Sanctuary harbours large number of Elephants, which seasonally migrate from Wayanad, Bandipur and Nagarahole through this sanctuary and Nilgiri North division before reaching Thalamalai Reserve Forest of Sathyamangalam Forest Division, Eastern Ghats. Studies conducted by Desai and Baskaran (1996), Sivaganesan (1991) and Silori and Mishra (2001) highlight the importance of such corridors for the long term sustenance of the wild species.

3.4.5 Threatened Species

Species listed in Schedule I and II of the Indian Wildlife Protection Act 1972 and those proposed by the Zoological Survey of India (Gosh, 1994) are considered as threatened species.

Table 10. Endangered mammals occurring in the environs of the proposed project				
No	Species	WPA Schedule	Red data book [@]	
1	Tiger	Ι	Vulnerable	
2	Panther	Ι	Vulnerable	
3	Jungle Cat	II	No mention	
4	Dhole or Indian Wild Dog	II	No mention	
5	Jackal	II	No mention	
6	Civet	II	No mention	
7	Otter	II	No mention	
8	Indian Elephant	Ι	Vulnerable	
9	Gaur	Ι	Vulnerable	
10	Four-horned antelope	Ι	Vulnerable	
11	Mouse Deer	Ι	Vulnerable	
12	Sloth Bear	II	No mention	
13	Pangolin	Ι	Vulnerable	
14	Giant Squirrel	Ι	No mention	
15	15 Bonnet Macaque II No mention			
Note: Based on sightings and literature (Daniel and Datye, 1995; Sivaganesan, 1991;				
WPA=	WPA= Wildlife Protection Act, 1972 and [@] Gosh, 1994			

Table 11. Endangered birds occurring in the environs of the proposed project					
No	Species	WPA Schedule	Red data book [@]		
1	Indian Shikra	Ι	No mention		
2	Spoonbill	Ι	Endangered		
3	Peafowl	Ι	Vulnerable		
Note: Based on sightings and literature, WPA= Wildlife Protection Act (1972), [@] Gosh					
(1994).					

Table 12.Endangered reptiles occurring in the environs of the proposed project					
No	Species	WPA Schedule	Red data book [@]		
1	Python	Ι	Endangered		
2	Indian Flapshell turtle	Ι	Vulnerable		
3	Chameleon	Ι	No mention		
4	Bengal Lizard	II	Endangered		
5	Checkered-keelback Water Snake	II	No mention		
6	Rat Snake	II	No mention		
7	Russell's Viper	II	No mention		
8	Indian Cobra	II	No mention		
9	Mugger	Ι	No mention		
Note: Based on sightings and literature, Bhupathy and Kannan, 1997; WPA= Wildlife					
Protection Act (1972) and [@] Gosh, 1994					

3.5. PROTECTED AREAS AND WILDLIFE CORRIDORS

Even though the project (both laboratory and other) facilities are to be located in the TNEB land, the Mudumalai Wildlife Sanctuary, Bokkapuram Reserve Forest and Singara-Mavanhalla Corridor are located bordering the project site. There are at least two wildlife corridors present nearby the project site. They are Singara-Mavanhalla and Moyar-Avarihalla Corridor (Figure 7) (Menon *et al.*, 2005). Both these corridors play a vital role in movement of wildlife and exchange of genetic materials as they connect Mudumalai Wildlife Sanctuary with Sigur Plateau and Eastern Ghats, which are vital for the long-term conservation of these species (Figure 8). These corridors are already highly threatened by various anthropogenic activities in the area.

The Singara-Mavanhala corridor is adjacent to the proposed project site. Animals

intensively use this corridor for movement from the Mudumalai Sanctuary to Sigur Plateau and vice-versa on seasonal basis. High density of cattle and increasing hotel/tourist industry affect these corridors as resources of the area are over exploited.

Figure 7. Forest corridors in the environs of the project; Arrow marks indicate direction of elephant movement (Source: Desai and Bhaskaran, 1996)

Figure 8. Elephant and cattle dung density in elephant migratory route (Source: Arumugam and Ramkumar, Undated)

4. POTENTIAL ENVIRONMENTAL THREATS AND PERTURBATIONS

Changes in the natural environment are likely to affect functioning of the natural system in various ways either temporarily or permanently. The effect may lead to destruction or changes in the biodiversity of the area affected. It may also affect the long-term survival of wildlife species. In the present case, the INO project was examined regarding the potential environmental threats and perturbations arising from the execution of the project (both construction and operation phases).

4.1. <u>KEY CONCERNS</u>

The key environmental concerns emphasising the biological environment were identified. The impacts of such a project with extensive construction activities call for examination from the perspective of the phases of the project, namely:

- construction phase, and
- operation phase

These two phases have distinctively dissimilar impacts on the environment. As noted earlier the major construction activity in the case of the present project happens under ground. The range in depth of the various activities reaches around 1300 m below ground level. The overlying geological strata over the caverns and tunnels are reportedly stable. Hence, the major zones of direct affect lies nearby the roads, opening of the access tunnel the muck dumping locations and the quarries or crusher locations.

4.2. IMPACTS DURING CONSTRUCTION PHASE

The major facilities associated with the INO are the underground laboratory, access tunnels and residences for the personnel staffing the observatory (Table 2 and Table 3). The construction phase in general involves activities such as clearing of the vegetation,

excavation, transportation, labourer activities, etc. During the construction phase various activities may affect the environment which can be broadly categorised into the following heads

- Erecting structures required for the project,
- Sourcing of materials,
- Vehicular and labourer movement,
- Vibrations, smoke, noise during the operation,
- Blasting during excavation and clearing routes,
- Temporary human inhabitation during the construction phase,
- Transport and disposal of excavated overburden, debris and muck, and
- Disposal spills of wastes such as fuels and lubricants.

4.2.1 Impacts due to erecting structures required for the project

The construction of various temporary or permanent structures required for carrying out project works are likely to affect the movement pattern of the wild species, if placed along the route of their movement; close by to the Singara estate. However, it is expected that since the INO entry portal is close to the PUSHEP portal, no separate structures for water and electric supply are required. This area is frequently visited by the wild animals and hence, their likelihood of getting affected is high. Major part of the construction activity will be carried out under ground in the tunnel and cavern. Only minor construction activities may be carried on the surface. However, a large quantity of muck (approximately 2.25 lakh m³, including the tunnels and caverns – Sreenivasan 2007) need to be transported to its storage and disposal site. As the disposal site is opposite to the entry portal location it is expected that the pressure on the road connecting Masinagudi to Singara will be low. The disposal of the massive quantity of muck involves several issues, some of which are listed below

- The muck storage occupies a large area,
- It leads to high suspended load in the run off during monsoon,

- If exposed to sun and wind or other activities muck adds on to the suspended particulate matter (SPM) in the ambient atmosphere,
- The dumping yards are aesthetically unpleasant in the overall environmental set up of the area, and
- It leads to increase in vehicle movement to transport the muck from the point of generation to that of disposal or storage

It is planned that INO is proposing to store the muck in a PUSHEP dumping yard site. It appears that PUSHEP could successfully utilise a major portion of the muck, although a significant quantity in the form of a mount is still remaining in the site. Proper schedule of transport has to be sorted out to avoid undue pressure on the roads and disturbance to the wild animals crossing the roads. If approximately 50% of the debris is used for construction activities such as lining of the tunnel and laying roads, the transport and other activities related to the use involve labour and vehicle movement. To make the debris uniform of size utilisable for proposed use, crushers need to be installed.

Crushers are likely to add further noise and dust to the Singara area, if located there. This is not advisable. Measures should be taken to limit the possible environmental effect of labour forces and vehicle movement in and around the dumping yards.

4.2.2 Impacts arising from the sourcing of materials

Various types of materials will be required during the construction phase such as stones, steel, cement, etc. The transport of these materials is expected to be small in the case of INO project, since they propose to utilise the quantity excavated for own construction activities. The debris generated from the blasting can be utilized for the construction of tunnel, laying roads and other structures. This will reduce the amount of material required during construction leading to reduction in the project cost as well as pressure on the environment.

4.2.3 Impacts arising from the vehicular and labourer movement

Large number of vehicule movement such as that of bull dozers, dumpers, loaders, excavators (Table 13) will be required during the construction.

Table 13. List and number of machinery				
No	Machinery	Quantity		
1	Bull dozer/tipper	4		
2	Jack Hammer	20		
3	Road Rollers	02		
4	Jeeps/trucks/vans	15		

The loading and unloading of the material, the removal of debris and muck all these activities require a high number of workmen/labourer. The involvement of skilled, semi-skilled workers will be persistent during the construction phase and during transportation of the materials. The total number of workers proposed to be engaged is skilled 20, semiskilled 20 and unskilled 50 during the first year (Table 4). The number will remain more or less the same during the other years of construction. Large number of the vehicles as well as the men power will interfere with the routine movement of the wild animals across the Masinagudi - Singara road. At the portal site, as per seen the visit of the wild animals is low. But the unfamiliar sounds such as that during transportation and construction activities are likely to add pressure to the wildlife.

4.2.4 Blasting to excavate and clear routes of the tunnels and caverns

The experimental caverns, audits, and major part of the main access tunnel are to be constructed in hard rock area. Blasting hard rock produces tremendous sound, flash and vibrations. Many species living in dens are seen to desert the dens and even infants / cubs due to vibrations from blasting. The sound and vibrations from the blast may cause mild disruption to the normal activities, such as routine local movements, of wildlife frequenting the area. Blasting is also known to cause vibrations and serious damage to close by landscape and may have impact on the geological make-up / formation in the surroundings, an issue not under the scope of the present report. Nevertheless, avoiding or minimizing blasting by resorting to other methods, may be better to reduce the

impacts. It is stated by the project proponent that delayed detonation will be adopted during blasting.

Presently blastings are expected to be conducted deep inside the tunnel with delayed detonation, the thick overburden of hard charnokites (hard rocks) and soil above the blasting sites considerably dampen the sound and the vibrations. The sound will be loud at the mouth of the tunnel, but appears largely muffled to that of rifle shots at a distance outside the tunnel. Briefly perceptible vibrations or disturbances are not to be experienced in the surroundings out side the tunnel at surface level during the blasting operation conducted inside the tunnels.

4.2.5 Ground vibration

All the major components of the project are located underground, 1300 m deep the earth surface. Blasting to be carried out for excavation of caverns and associated components, deep underground is likely to cause low vibrations. The ground vibration levels are commonly assessed using the following square root scaling formula

$$V = k \times \left[\frac{D}{\sqrt{Q}}\right]^b$$

Where,

V = Ground vibration as Peak particle velocity (mm/s),

D = Distance from blast (m),

Q = Maximum charge per delay (Kg),

K= Site constant,

b =Site exponent.

Based on the blast vibration study carried out recently for an underground Hydro Electric Project located nearby the proposed INO, the above expression has reduced to

estimate vibration level from INO

shows

the

blasting

following. The excavation of experimental caverns is proposed to be carried out with the following assumptions

project

Distance from blast	=	1000 (alround rock cover)	
		(Vertical rock cover is 1300 Mts)	
Size of exaction per cycle	=	3.0 x 2.5 m	
Pull likely to be obtained	=	1.5m	
Maximum charge per delay	=	2.25 kg (PF: 1 Kg/m3)	

Substituting these values, the peak particle velocity

$$V = 1361.87 \times \left[\frac{1000}{\sqrt{2.25}}\right]^{-1.17}$$

The estimated maximum ground vibration level may be in the order of 0.68 mm/s. It is proposed to carry out ground vibration monitoring study during actual execution of the project along with other rock mechanics and instrumentation studies as done in similar underground project already commissioned nearby. The ground vibration will be measured continuously during blasting operations for all the major components of the project. Appropriate blasting pattern and modern blasting techniques based on the actual site geology, will be adopted such that the blasting causes vibration to the minimum possible. All efforts will be taken to restrict the ground vibration in such a way that it does not endanger the wild animals, micro habitants and the existing eco-system.

In addition, wherever the earth cover is less than 300 m; the blasting will be restricted to daytime and will not be carried out during night (dusk to dawn) and the periods when the animals are active, mostly dawn, dusk and afternoon hours.

The INO project during the construction may cause a variety of impacts on the local environmental set up that are briefed in the Table 14. The Impacts could be distinguished into i) impacts on ambient abiotic environmental characteristics, ii) impacts on biological environment and iii) impacts on human social and economic environment.

Table 14. Key concerns and perturbations from the INO			
No	Activities	Effects	Extend
1	Clearing of the sites	Damage to the flora and fauna	Small
2	Excavation	Noise, dust	High
3	Movement of men and materials	Noise, dust	High
4	Blasting	Noise, dust	High
5	Operation of earthmoving	Noise, dust	High
	machinery		
6	Transport of muck	Noise, dust, disturbance to elephant	High
		corridor	
7	Storage and dumping of the	Noise, dust, downstream siltation	High
	muck		

Several workers, including engineers, technicians, skilled labour, semi-skilled and unskilled labour will be involved in the construction work. About 25 numbers of earthmovers, dumpers, trucks, road rollers, jeeps and other vehicles will be required for the job. These all are likely to produce notable changes in the ambient noise levels and ambient atmospheric suspended matter level.

Explosives used in rock excavation are another major source of dust, noise and vibrations. The noise in such situations can be grouped as i) continuous wide band noise, ii) continuous narrow band noise, iii) impact noise, iv) repetitive impact noise and v) intermittent noise each having wide ranging impacts on animals and environment. It may be possible to reduce the noise levels in many in-house activities such as in workshops related with the project execution. Nevertheless, it is less practical to reduce noise levels in the construction and excavation sites.

High level of noise can cause disturbance to birds and other animals frequenting the sites. Animals can perceive frequencies that are out of range for human auditory system. They are known to be highly sensitive to certain frequency ranges. They undergo stress, metabolic and behavioural changes. Many of them leave the site of high noise level. They are also seen to discard nests, eggs and even fledglings in response to certain noise levels. The sound and vibrations may cause disruption to the normal activities such as local and seasonal migration. Since the major part of the construction involved in the INO is underground tunnel, the entry portal is the location of intensive activities. Intensive activity at the portal can also cause in fragmentation of natural habitats / areas frequently used by elephants and other mammals. As the entry portal is located in TNEB residential area, the impact of construction activity on the natural habitat is expected to be low.

4.2.6 Impacts due to the vibrations, smoke, noise during the construction

The transportation of materials during the construction phase involves men and earthmoving machinery. The smoke from the automobiles is an important source of air pollutants including particulates. They are also the source of fugitive emissions mainly of Suspended Particulate Matter (SPM), SO^2 , NO_x , CO and partially burnt hydrocarbons. Thus, the change in the ambient air quality is likely in the area, but depending on the vehicle activities.

The activities of large earth-moving machinery may increase the ambient noise level. The machinery will produce sound, vibrations, noise which will be a cacophony for the wild species. Many of the wild species are sensitive to the unfamiliar sounds and are much affected due to them. The shy birds may also leave their nesting site and even discard their fledglings in response to increase in noise levels. Many of the species such as bats and elephants can hear sounds, which are not audible to human ears. This may affect their local and seasonal migration. However, the reduction in noise level is quite impractical in sites such as that of construction and excavation but the usage of well maintained machinery may help in the reduction of the same to a great extent. After the tunnel work

has progressed considerably the noise reaching outside the tunnel is likely to be considerably muffled. Further, as the tunnel work progresses the vibration effective at the surface will also be reduced considerably reaching to a more or less negligible level of 0.68 mm/s, because of the large overburden (>1000 m) lying over the work site (see section 4.2.5).

4.2.7 Impacts due to blasting during excavation and clearing routes

The proposed work deals with the construction of tunnel underground. During this process blasting activity has to be carried out which is likely to cause considerable sound and vibrations. The blasting may also cause damage to the landscape and has impact on the geological make-up of the environment. There are many wild species that live or calf in sub-surface den and are likely to be affected due to the blasting and sounds and vibrations travelling through the sub-strata. Some of the species are very sensitive and can not survive in habitats with mild changes. The blasting is likely to meddle with their movement in and out of their dens. However, as the work progresses the vibrations are less perceptible because of hard rock layers interspersed with soft ones, the overburden of charnokites and soil above the blasting sites, dampen the sound and the vibrations produced during the blasting (4.2.5). Mudumalai Wildlife Sanctuary is a well known corridor for large mammals such as elephants. Exposed blasting may have an adverse affect on the behavioural and movement pattern as they are prone to changes in the noise level.

All the major components of the project are located underground. The Laboratory complex, a major component of this project is located at more than 1250 m below the earth surface. Blasting to be carried out for excavation of the cavern and associated components, underground is likely to cause low vibrations.

4.2.8 Impacts due to the workmen inhabitation during the construction phase

The construction work for the project involves a workforce of about 100 labourers (Table

4). The labourers are likely to depend on trees for fuel-wood and if left uncontrolled will cause tremendous damage to the ecosystem. Though temporary residents they are likely to bring livestock and poultry thus, causing more pressure on the environment.

4.2.9 Impacts due to the over burden, debris and muck during their disposal

The waste produced during the processes of excavation will be in the form of muck, boulders and other debris, about 2.25 lakh m³ the disposal of which will require a large area. Carelessly disposed debris is likely to add on to siltation downstream along with the run off in the monsoon. The debris may directly affect the local environment if it is carried down as silt load and may cause loss to the aquatic life. The silt may also lead to the release of trace metals to the environment gradually. Measures should be taken in order to utilise maximum quantity of debris for construction at the earliest.

4.2.10 Impacts due to the spills of wastes such as fuels and lubricants

The possibility of spilling fuel, oils and lubricants from the field machinery during operation and maintenance cannot be neglected. The oily effluents are mostly expected from workshop and during breakdown of the machinery during their operation. Oil spillage though in minor levels will affect the aquatic species especially birds and fishes. Reduction in oxygen exchange between air and water due to oil film will lead to the deficiency of dissolved oxygen (DO). Oil film may also directly affect fish gills and can hamper respiration and other physiological activities. The oil spillage will also make exposed birds incapable of flying and affect their behaviour and thermoregulation.

4.3. IMPACTS DURING THE OPERATION PHASE

During the operation phase the impacts of the underground laboratory is limited, except in the case of release of gas, although the gas used in the laboratory, on its own, is not very toxic for short-term exposures. The major issues during the operational phase are those related to transport and residences. The increased human activity along the Masinagudi - Singara and Masinagudi - Ooty roads is likely to hamper animal

movements. The impact of INO during the operation phase can be categorised into movement of i) staff involved in the day-to-day operation of the facility, ii) waste generated during operation and maintenance of the facility and iii) scholars and researchers visiting the facility in single, small or large numbers.

The project would have less impact during operation compared to the construction phase as its operation is mostly in underground set-up. The underground process will not cause much noise, perceptible from the outside of the plant. Comparatively negligible quantity of waste would be generated from the maintenance of the equipments. The technical personnel are not likely to cause notable ecological impacts, as their work will be confined to the underground caverns.

Taking note of the various aspects during the construction and operation phase, an attempt was made to develop an impact evaluation matrix (Appendix 10 & Appendix 11) in the case of the proposed project. The evaluation matrix is more or less a subjective guesstimate based on the observations and experiences of the investigators and could not be construed as a quantitative measurement. However, it provides a broad graded view suggestive of the gravity of the impacts. According to the pattern of grading the least impact is given a score 0. The grades increase with the seriousness of the impact up to 10, which indicates very severe impact. Although in developing the matrices worst-case scenarios were assumed, the exercise shows that during construction the possible impacts are high (Appendix 10 & Appendix 11) while during the operation phase the impacts can be limited. However, appropriate means have to be adopted to reduce the impacts.

5. MITIGATION MEASURES AND ENVIRONMENTAL MANAGEMENT PLAN

A varity of ecological impacts is probable from the proposed INO project. It is hoped that the following measures would help reducing the impact on the ecological set-up and the environs. Mitigation measures with respect to major aspects are given below.

Noise control

- Care should be taken to reduce noise generated during construction. Use of well
 maintained machinery and vehicles could considerably help in this matter.
 Workshops and such other facilities, which are also source of noise, may be located
 away from Masinagudi–Singara road.
- Blasting may be limited to the bare minimum, especially at the exposed areas such as entry portal and should be avoided if possible. Resorting to other methods may help avoiding the disturbances likely from blasting. Blasting work close to the surface may affect den dwelling species and cause stress to them. However, blasting deep inside the tunnel with delayed detonation and overburden of charnokites and soil above is expected to considerably dampen the sound and the vibrations. Our study on PUSHEP blasting did not show any instance of deserting dens, because of the blasting deep underneath, by common denning of species of animals seen in the area (Azeez *et al.*, 1996). However, the number of blasts should be minimised and temporally spaced out to reduce the reverberations. Also, sophisticated drilling and blasting techniques may be adopted which would save time, resources and protect environment as well. Blasting and such activities may be avoided near by the open area during dawn, dusk and night. Well planned faster execution of construction phase would reduce the impact on environment very much.

Vibrations

 Blasting to be carried out for excavation of the cavern and associated components, underground is likely to cause low vibrations. However, it is likely to be much low

because of the overburden of hard rocks and soils, except in the case of the initial sections of the tunnels. Nevertheless, INO may undertake ground vibration monitoring study during actual execution of the project along with other rock mechanics and instrumentation studies as done in similar underground project already commissioned nearby. The ground vibration may be measured continuously during blasting operations for all the major components of the project. Appropriate blasting pattern and modern blasting techniques based on the actual site geology, may be adopted such that vibration due to the blasting is the minimum.

INO may ensure that the protocol of tunnel and cavern making to be fine-tuned to restrict the ground vibration in such a way that it do not endanger the wild animals, micro habitats and the existing eco-system. In addition, the blasting may be restricted to daytime and not at all during night (dusk to dawn) and the periods when the animals are active, mostly dawn, dusk and afternoon hours.

Muck disposal

- Disposal of the muck and other debris is a serious challenge in the case of INO construction. The debris should be taken care of and should be used to the maximum in construction purpose such as for lining the tunnel and laying the road. This will reduce the movement of transport vehicles along the wildlife corridor as well. The balance quantity of the muck and debris should be properly stored so that it does not become an eyesore and do not pose threat to the downstream areas causing siltation and high suspended particulate matter in the air and water. The storage should be with proper retention wall preventing the fine particulate matter from getting washed down during monsoon.
- In house utilisation of the muck and debris need to be strongly promoted to avoid various issues, including transportation and vehicular traffic density.

Sourcing materials

• Stone crushers would result in air and noise pollution, which will be highly

disturbing to the wildlife. It is suggested that the stone crushers should erected away from forest.

Wastes

- Recycling and proper disposal of waste generated will help reducing the impact on environment to a large extent. The workers and staff members involved in construction and operation needs to be well aware of environmental problems and related issues.
- Non decomposable wastes such as plastic, rubber, metal, lubricants and oils should be either reused or managed appropriately.

Transportation

- As noted earlier another major impact of the INO is the disturbance to the very critical wildlife corridor across the Masinagudi–Singara road. The disturbance is likely to be serious in view of the large number of transport vehicles that are likely to ply over the stretch. It is expected that with the execution of such a project the vehicle movement will increase many multiples of the present traffic density. This should be avoided and it is an issue the managers executing the INO project need to seriously ponder over. However, the construction machinery movement like earthmovers, dumpers etc., will be between the tunnel and the nearby dumpyard only, and not along the sensitive road. The vehicle movement along the road have to be limited, properly scheduled and should be avoided during the period of the day when animal movement is likely to be high, namely morning, evening and night hours.
- Posting wildlife watchers along the road to warn about the animal movement also may help further in reducing encounters with the moving animals.
- Currently, check-posts are operated by the TNEB at the entry point of their installation at Singara. Additional check-posts near the INO portal as required by the project proponent may be erected. However, check-post at the entry point of

Masinagudi-Singara road (closer to Masinagudi) may help to record and monitor the people and vehicle movement.

• The INO also needs to ensure that no parallel fencing is made on the side of the Singara road connecting to Masinagudi, as that will seriously hamper the wild animal movements and increased man-animal conflicts.

Work force

- Number of labourers involved for the construction may be limited to the minimum. They should be made sensitive to the ecological importance of their area of work, nature conservation and be aware of the conservation strategies to avoid untoward effects. Movement of the workforce should be under strict control of the management responsible for environmental protection. Travel and transport should be curtailed strictly during the hours of the days when animal movements are high; morning, evening and night hours. Watchers to warn about animal movement along the corridor will help in accidental confrontation with the animals.
- Strict measures should be taken to avoid use of wood, collected locally. The labourers should be provided with LPG instead of fuel wood. Proper facilities for their temporary residences should be given. They should be educated about nature conservation.
- It is likely to happen that the workforce involved in construction would settle in the area, and may refuse to vacate even after completion of the work. Sufficient provisions should be made to evade this problem. Enough provisions should be given in the contracts with executing companies, regarding this aspect.
- The staff members involved in construction and during the operation phase needs to be well aware of environmental and wildlife problems and related issues. They should be educated about nature conservation.

Residential and infrastructure facilities

• Regarding the residential and other infra-structural facilities it is stated that "the

TNEB campus has residential houses as well as offices with recreational facilities like sports complex, children's park, and three well equipped Inspection Bungalows (IB) at different locations. The housing accommodation is in surplus in the area and may be used to accommodate people from other projects. Therefore, further new constructions are limited so that no natural vegetation loss is made. Placing the residences and other infrastructural facilities away from the INO laboratories reduce the pressure on the wildlife corridor along the Masinagudi-Singara road. The INO management may plant local plant species around the infrastructure facilities such as residences.

Disaster and fire management

INO staff should be equipped/ trained to face any accidents such as fire or leakage of gases in the underground laboratory or elsewhere in their work area and or its environs. Sufficient provisions should be made to acquire fire fighting, communication equipments. Importance may be given to develop hospital facilities in the residential area. Suitable training for the staff with frequent refresher programmes should be arranged for them to remain well equipped both mentally and equipment wise to handle disasters such as fires.

Felling of Trees and plantation

- As mentioned earlier, the proposed project is not expected to fell trees. Felling of trees and clearing vegetation would lead to loss of feeding and breeding habitats to several species inhabiting the environs of the project and should be avoided. The large trees adjacent to the portal entry, in the TNEB quarters area, can be saved by realigning the approach road.
- No forest land is required to be diverted for executing this project; hence no Compensatory Afforestation Programme is mandatory. However, as a commitment for nature conservation and environmental protection, the INO may arrange plantation programme near the portal, along the Singara-Masinagudi road and

residential complex in Masinagudi. The Tamil Nadu Forest Department may be consulted in this regard and native vegetations/flora should be considered for planting. Budgetary provisions should be made for such conservation measures.

 Some species suggested for planting are given below (Table 15). These species are native to the Nilgiris, commonly seen and grows faster. Saplings of these species are easily procurable from the local nurseries.

Table 15. Some of the tree species suggested for planting			
No	Name of the tree species	Family	
1	Ailanthes excelsa	Simaroubaceae	
2	Alstonia scholaris	Apocynaceae	
3	Anacardium occidentale	Anacardiaceae	
4	Artocarpus heterophyllus	Moraceae	
5	Azadirachta indica	Meliaceae	
6	Bischofia javanica	Euphorbiaceae	
7	Bombax malabaricum	Bombacaceae	
8	Butea monosperma	Fabaceae	
9	Cassine glauca	Celastraceae	
10	Cinnamomum malabatrum	Lauraceae	
11	Elaeocarpus tuberculatus	Elaeocarpaceae	
12	Feronia elephantum	Rutaceae	
13	Ficus benghalensis	Moraceae	
14	Filicium decipiens	Moraceae	
15	Gyrocarpus americanus	Hernandiaceae	
16	Phyllanthus emblica	Euphorbiaceae	
17	Sapindus emarginatus	Sapindaceae	
18	Syzygium cumini	Myrtaceae	
19	Terminalia bellirica	Combretaceae	
20	Terminalia chebula	Combretaceae	

Environmental monitoring

 The INO should organise a 'Local Ecological Monitoring Group' that can monitor the construction phase closely to safeguard the environment in general and forest and wildlife in particular. Such a body can help rationalizing the INO's environmental management strategy properly. The Local Ecological Monitoring Group needs to include experts in the field along with officials responsible for wildlife protection.

- An 'Environmental Monitoring Cell' overseen by an 'Environmental Monitoring Panel' may be also constituted.
- The Environment Monitoring Panel may be constituted drawing members from agencies such as the Tamil Nadu Forest Department, Pollution Control Board, Academic / Research institutions and TNEB. The broad mandate of this panel may be to oversee the environmental monitoring cell and advise INO management on environment related matter as and when required.
- The Environmental Monitoring Cell may over see and ensure that the measures to be taken under the Environmental Management Plan is implemented strictly and to ensure the pollution parameters are within the prescribed limits. For the purpose, a monitoring group and a pollution control equipment maintenance group will be placed in the Environmental Management Cell. The EM cell should be started in the initial stage of construction itself and its service should continue during the operation phase.
 - a. The EM Cell will be responsible for proper maintenance and operation of the programme and it will over see the following aspects:
 - b. Conduct environmental awareness program to the workers, supervisory staff and contract labourers during the construction period.
 - c. Organize Environmental Audits and report to TNPCB or any such authorities.
 - d. Regularly monitor the environmental parameters and prepare reports as required by the TNPCB and other statutory authorities.
 - e. Recommend necessary measures to improve Environmental conditions.
 - f. Advise on any negligence or derelictions on the part of concerned staff or workers in observing EMP or Environmental code of conduct and to advice on the necessary steps to be adopted.

- g. Conduct safety programmes to create safety awareness among workers/staff.
- h. Train the staff and other workers on safety measures and conduct safety drills to educate them.

Looking at the need for science and technology development of the country, the proposed project assumes global importance. Nevertheless, the project construction and operation is likely to have notable impact in the area, especially on wildlife. However, it may be possible to lower the impact on the environment, with proper planning and implementing appropriate measures.

6. SUMMARY AND CONCLUSIONS

- A rapid Environmental Impact Assessment (REIA) of the proposed India-based Neutrinos Observatory (INO) project at Singara, Nilgiris district on the biological environment was done by Sálim Ali Centre for Ornithology and Natural History (SACON). The study was undertaken on request from the Institute of Mathematical Sciences (IMSc), Chennai.
- In all, 676 species of plants and 173 species of vertebrates (12 species of amphibians, 46 reptiles, 87 birds and 28 mammals) were recorded in the study area. Several endemic and endangered flora and fauna are found to occur in the area.
- The proposed project location falls near the Mudumalai Wildlife Sanctuary which is rich in wild biodiversity. Immense care is needed during the construction as well as operation phase as the area is a corridor for the movement of large mammals such as Elephants. Unplanned human activities would affect their activity adversely.
- Most of the construction work of the proposed project work will be carried out deep inside the earth surface. However, the construction activities are likely to have impacts on the local environment especially wildlife. Proper work plan, debris and waste disposal, blasting activities to the bare minimum, controlled vehicular activity and limiting the number of workers may help to reduce the impacts. A number of probable impacts and mitigation methods of the same are suggested.
- Looking at the need for technology development of the country, the proposed project assumes global importance. Nevertheless, the project construction and operation is likely to have notable impact in the area, especially on wildlife. It may be possible to lower the impact on the environment, with proper planning and implementing appropriate measures.

7. ACKNOWLEDGEMENT

The information provided in this report is based on rapid surveys and reports collected extensively from several published and unpublished reports, articles, books and other documents, which are listed under the reference section. We profusely thank the authors of those reports and those who shared valuable information. In case any document, from which information were drawn but inadvertently missed out to quote, we express our apologies. We also express our gratitude to the persons, listed below in alphabetical order, for helps and suggestions that were very valuable for successful completion of the project.

- Mr. Arumugam R, CES, Indian Institute of Science, Bangalore
- Ms. Dhanya R, EIA, SACON, Coimbtaore
- Dr. Krishnamani, Project Officer, Ooty, WWF India
- Mr. Mohanraj, Project Officer, Ooty, WWF India
- Mr. Mohd Iqbal Basha, IFS, Divisional Forest Officer, Nilgiri North, Ooty.
- Mr. Mukherjee D, EIA Division, SACON, Coimbatore
- Mr. Prusty Anjan Kumar, EIA, SACON, Coimbatore
- Mr Rajamamannan, SACON, COimbatore
- Ms. Ranjini J, EIA, SACON, Coimbtaore
- Mr. Rakesh Kr Dogra IFS, Wildlife Warden, Mudumalai Wildlife Sanctuary
- Mr. Raslin Rose, Assistant Executive Engineer, TNEB
- Mr. Selva Kumar, EIA, SACON, Coimbatore
- Ms. Shanti, Avian Ecology Division, SACON, Coimbatore
- Mr. Srinivas G, EIA Division, SACON, Coimbatore
- Mr. Sreenivas NS, Project Leader (WG), INO, C/o IMSc, Chennai
- Dr. Sukumar R, CES, Indian Institute of Science, Bangalore
- Mr. Tyagi PC, IFS, Conservator of Forests, Coimbatore.

8. REFERENCES

- Ali S and Ripley SD (1983). The Book of India Birds (compact edition), Oxford University Press, Bombay.
- Anonymous (1985). Guidelines for environmental Impact Assessment of river valley projects. Ministry of Environment & Forest, Government of India.
- Anonymous (2005). India-Based Neutrino Observatory (I N O) Bench Mark and Terms of Reference for the preparation of Detailed Project Report. Pp 46.
- Arumugam R and Ramkumar K (undated). Evaluation of the status, land use pattern and habitat utilization of elephants in corridors between Western and Eastern Ghats through Mudumalai Wildlife Sanctuary and Nilgiris north division, Nilgiris, Tamilnadu. Unpublished report, Indian Institute of Sciences, Bangalore, Pp. 44.
- Azeez PA, Sivaganesan N and Sivakumar R (1996). Impact of Pykara Ultimate Stage Hydro-Electric Project (PUSHEP), Tamil Nadu, on the wildlife.
- Azeez PA, Bhupathy S, Sivakumar R, Sivaganesan N, Stephen D, Kannan P, Mohanraj R and Ramakrishnan B (1997a). Rapid Environmental Assessment of the Moyar Ultimate Stage Hydro-Electric Project, Tamil Nadu Electricity Board.
- Azeez PA, Sivakumar R, Bhupathy S, Stephen D, Kannan P aand Mohanraj R (1997b). Environmental impact assessment of human rabies vaccine project, Human Biological Institute (National Dairy Development Board), Ooty. National Dairy Development Board, Bangalore.
- Azeez PA, Bhupathy S, Rajasekaran A, Arun PR, Stephen D and Kannan P (1999). Comprehensive Environmental Impact Assessment (Baotanical and Zoological aspects) of the proposed Puyankutty Hydroelectric Project, Kerala.
- Azeez PA, Bhupathy S and Balasubramanian P (2006). Environmental Assessment of the Pumped Storage hydro Electric Project, The Nilgiris, Tamil Nadu.
- Bang P, Dhalstrom P and Vevers G (1972). Collins guide to animal tracks and signs. Collins, London.

- Bhupathy S and Kannan P (1997). Status of Agamid lizards in the Western Ghats of Tamil Nadu. SACON Technical Report 5.Salim Ali Centre for Ornithology and Natural History, Coimbatore. pp 28.
- Caustan DR (1988). An introduction to vegetation analysis. Unwin Hyman, Boston.
- Champion HG and Seth SK (1968). A revised survey of the forest types of India. Government of Idia, New Delhi.
- Daniel JC and Datye H (1995). A week with elephants. Proceedings of the International Seminar on Asian Elephants. Bombay Natural History Society, Oxford University Press pp 535.
- Das I (2003). Growth of knowledge on the reptiles of India, with an introduction to systematics, taxonomy and nomenclature. Journal of Bombay Natural History Society. 100: 446-501.
- Desai AA and Baskaran N (1996). Impact of human activities on the ranging behaviour of elephants in the Nilgiri Biosphere Reserve, South India. Journal of Bombay Natural History Society. 93: 559-568.
- Dutta SK (1992). Amphibians of India: Updated species list with distribution record. Hamadryad. 7: 1-13.
- Gamble JS (1957). Flora of the presidency of Madras, Vol. I, II and III. Bishan Singh Mahendrapal Singh, Dehradun.
- Gosh AK(Ed) (1994). The red data book on Indian animals, Part I: Vertebrata (Mammalia, Aves, Reptilia and Amphibia). Zoological Survey of India, Culcutta.
- Greig-Smith (1983). Quantitative plant ecology, Studies in ecology. Vol 9. Blackwell Scientific Pub., Oxford.
- Heyer WR, Donnelly MA, McDiarmid RW, Hayek LC and Foster MS (1994). Measuring and monitoring biological diversity: standard methods for Amphibians. Smithsonian Institution Press, Washington, DC, 364 pp.

Hooker JD (1872-97). The Flora of British India. Volume 1-7. London.

INO (2006). INO/2006/01: India-Based Neutrino Observatory, Project report Vol 1.

- Jain SK and Rao RR (1983). An assessment of threatened plants of India. Botanical Survey of India, Calcutta.
- Jeyadev T (1957). Working plan for Nilgiri forest division, Madras (1954-1964). Govt. Press, Madras.
- Menon V, Tiwari SK, Esa PS and Sukumar R (2005). Right of Passage. Elephant corridors of India. Wildlife Trust of India.
- Prater SH (1993). The book of Indian animals. Oxford University Press, Bombay.
- Sharma BD, Shetty BV, Vivekananthan K and Rathakrishnan NC (1977). Flora of Mudumalai Wildlife Sanctuary. Tamil Nadu. Journal of Bombay Natural History Society. 75: 13-42.
- Silori CS and Mishra BK (2001). Assessment of livestock grazing pressure in and around the elephant corridors in Mudumalai Wildlife Sanctuary, South India. Biodiversity and Conservation 10: 2181-2195.
- Sivaganesan N (1991). Ecology and conservation of Asian Elephant, *Elephus maximus* with special reference to habitat utilization in Mudumalai Wildlife Sanctuary, Tamil Nadu, South India. Unpublished PhD thesis Bharathidasan University, Trichy, Tamil Nadu, India.
- Sreenivasan NS (2007). Communication Ref: IMSc/INO/NSS/12/07 dated 29 February 2007.
- Sukumar R, Dattaraja HS, Suresh HS, Radhakrishnan J, Vasudeva R, Nirmala S and Joshi NV (1992). Long term monitoring of vegetation in a tropical deciduous forest in Mudumalai, Southern India. Current Science. 62: 608-616.
- Suresh HS, Dattaraja HS and Sukumar R (1996). Tree flora of Mudumalai Sanctuary, Tamil Nadu, Southern India. Indian Forester 507-519.
- Suresh HS, Bhat HR, Dattaraja HS and Sukumar R (2006). Revised flora of Mudumalai Wildlife Sanctuary, Tamil Nadu, India. Journal of Economic and Taxonomic Botany. Vol 30(1): 97-156.

Varman KS and Sukumar S (1993). Ecology of Sambar in Mudumalai Sanctuary,

Southern India. N. Ohtaishi and H-I Sheng (Eds) *Deer of China*. Elsevier Science Publishers.

- World Bank (1991a). Environmental Assessment Source Book, Vol I, Policies, proceduresand cross-sectoral issues. World bank technical paper number 139. The World Bank, Washington DC.
- World Bank (1991b). Environmental Assessment Source Book, Vol I, Policies, proceduresand cross-sectoral issues. World bank technical paper number 154. The World Bank, Washington DC.
- WPA (1972). Wildlife Protection Act. In The Wildlife (Protection) Act, 1972.Profeesional Book Publishers, Wildlife Protection Society of India pp 106.

APPENDICES

Appendix 1. The recomm	ended site evaluation criteria for INO
History of the site	This mainly translates to the issue of availability of the site
	on a long-term basis. It should be noted that the underground
	facility will be used for decades in future to conduct many
	experiments in physics and other sciences.
Cost factors	This includes both construction costs and operating costs.
	Existing underground projects like hydro-electric plants are
	better since many of the facilities such as access roads and
	housing would already be present and save costs.
Risk Factors and Safety i	ssues
Rock conditions risk	This risk factor includes multiple considerations relative to
	the risk of capital and operating cost overruns due to
	unexpected rock conditions. Forecasting based on known
	stress conditions may help in anticipating such a risk.
Environmental Risk	The time and expense required at various sites to determine
	what is safe and environmentally sound.
Seismic Risk	Although engineering can control seismic risk, there is an
	additional cost involved in installing detectors in a
	seismically active region. In addition, there is a risk of a
	more intense than expected earthquake or an engineering or
	installation mistake that leads to failure in an earthquake of
	expected magnitude.
Mechanical Systems	Sites with heavy equipment, hoisting or other machinery
Risk	have an operating cost risk due to the possibility of failure of
	significant mechanical systems.
Depth	Apart from a reasonable overburden in all directions, a
-	complete 3D topo map of the region must be prepared for
	evaluating backgrounds. Rock density, suitability for low
	radioactivity experiments, is other considerations.
Neutrino Beam	Though this is still some way into the future, distances to
	various neutrino factories and any particular advantage that
	may be there due to physics reasons is an important factor.
Time to Install First	This is perhaps the most important factor for ICAL to be
Detectors	competitive.
Accessibility	Access to the laboratory by air/train/road throughout the year
-	is an important factor. The perceived ease of personnel
	access to the laboratory is important both as a substantive
	factor and as a quality-of-life factor. Ideally, the laboratory
	should be available 24 hours a day, seven days a week.

Appendix 2. Salient features of Proposed INO site			
Location	11.5° N and 76.6° E		
Cavern orientation	46° N and 6° E		
Accessibility	Three airports		
Site History	Singara project operating since 1930s; PUSHEP built to last 100 yrs		
Geo-technical Data:			
Rock type:	Charnockite (Monolith)		
Specific gravity:	• 2.62-2.9		
• Q-factor of tunnel Medium:	• 4-45: Good to very good		
 Horizontal/vertical stress ratio: 	• Approximately 1.6 (1-2 is desirable)		
Seepage:	• Moist to Dry		
Geological adversities:	• No known adversities.		
Geological mapping:	 Shears, dykes, joints are mapped from both surface 		
	projections and underground tunnels		
• Stand up time:	• 90 days to infinity		
Support measures:	PCC lining, shotcreting, rock bolting		
Rock radio-activity:	• Low : Appendix 12		
Neutrino beam base-line:	7,100 km		
CERN (Magic base line):	6,600 km		
JHF Fermi Lab	11,300 km		
	(with 3,700 km of core)		
 Laboratory Location: 	Below 2207 m peak at \approx 900 m above MSL		
 Laboratory Access: 	Horizontal two way heavy equipment transport		
Tunnel details:	AccessTunnel Length (m); Vertical Cover above		
	caverns (m); All-round cover (m)		
	2370, 1300, ≥ 1000		
Risk Factors:	Zone-2		
Seismic Risk:	No discernible faults		
Environmental Risk:	Reserve Forest		
Civil Unrest/Terrorism:	Portals are inside		
	TNEB/private land None so far		
Cost Saving Factors:	Housing, guest-house, access road, security guest-		
Facilities already available:	house at Ooty		
Academic Institutions:	Bangalore, Mysore, Coimbatore, Calicut		
Educational Inst:	Bangalore, Mysore, Coimbatore, Ooty (TIFR		
	RAC/CRL)		
Nearest Rail Heads	Coimbatore (south) 121 km		
	Mysore (North) 111 km		
	Calicut (West) 120 km		

Nearest Airports	Coimbatore (Domestic) 121 km
	Calicut (Domestic) 120 km
	Bangalore (international) 270 km
Road distances from	
i) Masinagudi	6 km
ii) Ooty	35 km
iii) Mysore	111 km
iv) Coimbatore	121 km
v) Calicut	120 km
vi) Bangalore	250 km
Environmental Factors	
Weather:	Moderate (12-25° C)
Rainfall/year:	Low (100-150 cm)
Access:	24 hrs/365 days from Ooty or Mysore (through
	Mudumalai Wildlife sanctuary)

Appendix 3. ICAL detector – Brief description – Source INO

Charged particles produced in neutrino interactions can be detected by means of an iron calorimeter (ICAL) detector which will be constructed in layers at INO. These layers will be sandwiched with the detector material that will trigger whenever a charged particle passes through it.

The direction and the energy of the original incoming neutrino that caused the interaction can be determined from the tracks in the detector. By winding copper coils around the iron plates, and passing current through them, a uniform magnetic field can be created inside the detector. The charged particles bend in this magnetic field, with oppositely charged particles bending in opposite directions. This will not only allow an identification of the charge of the emitted particle, but also provides a separate measurement of its momentum and hence energy.

Basic parameters: The proposed detector will have a modular structure of total lateral size 48 m × 16 m and will consist of a stack of 140 horizontal layers of ~ 6 cm thick magnetised iron plates interleaved with 2.5 cm gaps to house the active detector layers. The ICAL detector will be subdivided into three modules of size 16 m × 16 m. This modular structure will allow early operation with the completed modules while constructing others. The height of the detector will be 12 m. Considering the overall size of the apparatus and the large active detector area of ~ 108,000 m^2 , it is desirable that such a detector should be of low cost, modular in construction.

Figure 1: Schematic view of the 50 kton iron calorimeter detector consisting of 3 modules each having 140 layers of iron plates.

The active detector elements are reactive plate chambers or RPC's. The Resistive Plate Chamber is a type of spark chamber with resistive electrodes. Since such a detector has

very good timing ($\sigma \sim 1$ ns) and spatial resolution, it is well suited for a fast calorimeter. A considerable portion of the feasibility study was in the construction RPC's and a study of their characteristics, especially timing and efficiency of d Proof-of-principle of RPC design and construction has already been achieved by the which is now concentrating on improving the efficiency and stability of the RPC's. V RPC can be constructed using Bakelite or glass we have at present chosen glass ma to availability and cost. Fig. 1 shows the overall layout of the detector. Table 1 sur the specifications of the ICAL detector and the RPC elements.

The iron structure for this detector will be self supporting with the layer abov on the layer immediately below using iron spacers located every 2 m along the X-d The details are shown in Fig. 2. This will create 2 m wide roads along the Y-dire the insertion of RPC trays. There will be a total of 8 roads per module in a layer. plates will be magnetised with a field of about ~ 1.3 Tesla. The total mass of the will be around 50 kton. The whole detector, as described above, will be surrou

Figure 2: Structural detail of mounting active detector elements.

an external layer of scintillation or gas proportional counters. This will act as a v and will be used to identify muons entering the detector from outside as well as to partially confined events with the vertex inside the detector.

ICAL			
No. of modules	3		
Module dimension	16 m \times 16 m \times 12 m		
Detector dimension	$48~\mathrm{m} \times 16~\mathrm{m} \times 12~\mathrm{m}$		
No. of layers	140		
Iron plate thickness	$\sim 6~{ m cm}$		
Gap for RPC trays	$2.5~\mathrm{cm}$		
Magnetic field	1.3 Tesla		
RPC			
RPC unit dimension	$2 \text{ m} \times 2 \text{ m}$		
Readout strip width	$3 \mathrm{~cm}$		
No. of RPC units/Road/Layer	8		
No. of Roads/Layer/Module	8		
No. of RPC units/Layer	192		
Total no. of RPC units	~ 27000		
No. of electronic readout channels	$3.6 imes 10^6$		

Table 1: Specifications of the ICAL detector

J. Sucon

Appendix 4. Land & other resources required

Land		
Over ground facilities at Singara and Masinagud i(including	[*] 10.1 Ha	
Housing)		
Underground facilities in Forest land (including 5 m extra	4.71 Ha	
cover on all sides)		
Underground facilities in private land (including 5m extra	0.29 Ha	
cover on all sides)		
Total Land required	15.10 Ha	
*Includes land proposed to be procured for future growth and land required for labour		
quarters during construction phase (which will be dismantled after completion of the		
project).		
	Land Over ground facilities at Singara and Masinagud i(including Housing) Underground facilities in Forest land (including 5 m extra cover on all sides) Underground facilities in private land (including 5m extra cover on all sides) Total Land required Eludes land proposed to be procured for future growth and land ters during construction phase (which will be dismantled after ect).	

			Construction Phase	Operation Phase
2.		Electrical Power:1MW	3MW	
3.		Water	5000 l/day	30000 l/day
4.		Materials		
	a)	Steel	52000 T (phase 1)	
			50000 T (phase 2)	
	b)	Cement	7500 T	
	c)	Aluminium/Copper	110/60 T	
	d)	Refrigerant gas	1700 kg	
	e)	Nitrogen	5000 l/ day	200 l/day
	f).	Helium	1000 m^3	$100 \text{ m}^3/\text{year}$
	g)	Fuel (Petrol/Diesel/LPG gas)	45 T	5kg/day
	h)	PVC	40 T	
	i)	Blasting Geletine	450 T	
	j)	Detonator	360000 Nos	

Appendix 5. Tree species occurring in the study area		
No	Name of the species	Family
1	Acacia auriculiformis	Mimosaceae
2	A. chundra	Mimosaceae
3	A. ferruginea	Mimosaceae
4	A. intsia	Mimosaceae
5	A. leucophloea	Mimosaceae
6	A. polyantha	Mimosaceae
7	Acacia sundra	Mimosaceae
8	Actinodaphne angustifolia*	Lauraceae
9	Aglaia elaeagnoidea	Meliaceae
10	Ailanthus excelsa	Simaroubaceae
11	Albizia amara	Mimosaceae
12	A. lebbeck	Mimosaceae
13	A. odoratissima	Mimosaceae
14	Allophylus serratus*	Sapindaceae
15	Alstonia scholaris	Apocynaceae
16	Anacardium occidentale	Anacardiaceae
17	Anogeissus latifolia	Combretaceae
18	Anthocephalus chinensis	Rubiaceae
19	Antidesma acidum	Euphorbiaceae
20	A. diandrum	Euphorbiaceae
21	A. menasu	Euphorbiaceae
22	A. Montana	Euphorbiaceae
23	Aphanamixis polystachya	Meliaceae
24	Ardisia solanacea	Myrsinaceae
25	Artocarpus gomezianus	Moraceae
26	A. heterophyllus	Moraceae
27	Atlantia monophylla	Rutaceae
28	Atlantia racemosa	Rutaceae
29	Azadirachta indica	Meliaceae
30	Bauhinia malabarica	Fabaceae
31	Bauhinia racemosa	Fabaceae
32	Bischofia javanica	Euphorbiaceae
33	Bombax malabaricum	Bombacaceae
34	Boswellia serrata	Burseraceae
35	Bridelia retusa*	Euphorbiaceae
36	Buchanania lanzan	Anacardiaceae
37	Butea monosperma	Fabaceae
38	Callicarpa tomentosa	Verbenaceae
39	Canthium dicoccum	Rubiaceae
40	Careya arborea	Lecythidaceae
41	Casearia esculenta	Flacourtiaceae

42	Cassia fistula	Fabaceae
43	C. siamea	Fabaceae
44	Cassine glauca	Celastraceae
45	C. paniculata	Celastraceae
46	Casuarina equisetifolia	Casuarinaceae
47	C. litorea	Casuarinaceae
48	Catunaregam candolleana	Rubiaceae
49	C. spinosa	Rubiaceae
50	Ceiba pentandra	Bombacaceae
51	Celtis tetrandra	Ulmaceae
52	C. timorensis	Ulmaceae
53	Chionanthus mala-elengi*	Oleaceae
54	Chloroxylon swietenia	Rutaceae
55	Chonemorpha fragrans	Apocynaceae
56	Chukrasia tabularis	Meliaceae
57	Cinnamomum malabatrum	Lauraceae
58	Clausena indica	Rutaceae
59	Commiphora berryi	Burseraceae
60	C. caudate	Burseraceae
61	Cordia oblique	Boraginaceae
62	C. wallichii	Boraginaceae
63	Croton oblongifolius	Euphorbiaceae
64	Dalbergia lanceolaria	Fabaceae
65	D. latifolia	Fabaceae
66	D. laxiflorum	Fabaceae
67	D. paniculata	Fabaceae
68	Delonix regia	Fabaceae
69	Dichrostachys cinerea	Mimosaceae
70	Diospyros assimilis	Ebenaceae
71	D. ebenum	Ebenaceae
72	D. malabarica*	Ebenaceae
73	D. Montana	Ebenaceae
74	D. peregrine	Ebenaceae
75	Dolichandrone falcate	Bignoniaceae
76	Drypetes roxburghii	Euphorbiaceae
77	Elaeocarpus tuberculatus	Elaeocarpaceae
78	Eriolaena quinquelocularis	Sterculiaceae
79	Erythrina indica	Fabaceae
80	E. suberosa	Fabaceae
81	E. variegate	Fabaceae
82	Erythroxylum monogynum	Erythroxylaceae
83	Eucalyptus globules	Myrtaceae
84	Euphorbia nivulia	Euphorbiaceae
85	Euodia lunu-ankenda	Rutacaeae
86	Feronia elephantum	Rutacaeae

87	Ficus benghalensis	Moraceae
88	F. drupacea	Moraceae
89	F. hispida	Moraceae
90	F. microcarpa	Moraceae
91	F. mollis	Moraceae
92	F. racemosa	Moraceae
93	F. religiosa	Moraceae
94	F. tsjakela	Moraceae
95	F. virens	Moraceae
96	Filicium decipiens	Sapindaceae
97	Flacourtia indica	Flacourtiaceae
98	Garcinia gummi-gutta	Clusiaceae
99	Gardenia gummifera	Rubiaceae
100	Garuga pinnata	Burseraceae
101	Givotia rottleriformis	Euphorbiaceae
102	Glochidion velutinum*	Euphorbiaceae
103	G. zeylanicum	Euphorbiaceae
104	Gmelina arborea	Verbenaceae
105	Grevillea robusta	Proteaceae
106	Grewia orbiculata	Tiliaceae
107	G. tiliifolia	Tiliaceae
108	Gyrocarpus americanus	Hernandiaceae
109	Hedyotis corymbosa	Rubiaceae
110	Holoptelea integrifolia	Ulmaceae
111	Hymenodictyon orixense*	Rubiaceae
112	Ilex malabarica*	Aquifoliaceae
113	Ixora arborea	Rubiaceae
114	Jacaranda mimosifolia	Bignoniaceae
115	Kydia calycina	Malvaceae
116	Lagerstroemia microcarpa	Lythraceae
117	L. parviflora	Lythraceae
118	Launea coromandelica	Anacardiaceae
119	Ligustrum perrottetii*	Oleaceae
120	Litsea deccanensis	Lauraceae
121	L. mysorensis	Lauraceae
122	Madhuca longifolia	Sapotaceae
123	Mallotus intermedius*	Euphorbiaceae
124	M. philippensis	Euphorbiaceae
125	M. tetracoccus	Euphorbiaceae
126	Mangifera indica	Anacardiaceae
127	Manilkara roxburghiana	Sapotaceae
128	Marsdenia brunoniana*	Asclepiadaceae
129	Maytenus heyneana	Celastraceae
130	Melia dubia	Meliaceae
131	Meliosma simplicifolia	Sabiaceae

132	Memecylon umbellatum	Melastomataceae
133	Mimusops elengi	Sapotaceae
134	Mitragyna parvifolia	Rubiaceae
135	Morinda coreia	Rubiaceae
136	Moringa concanensis	Moringaceae
137	M.oleifera	Moringaceae
138	Naringi crenulata	Rutacaeae
139	Nerium indicum	Apocynaceae
140	Olea dioica	Oleaceae
141	O. glandulifera	Oleaceae
142	Ougeinia oojeinensis	Fabaceae
143	Persea macrantha	Lauraceae
144	Phyllanthus emblica	Euphorbiaceae
145	Pittosporum floribundum	Pittosporaceae
146	Pleurostylia opposita*	Celastraceae
147	Plumeria alba	Apocynaceae
148	P. rubra	Apocynaceae
149	Pongamia pinnata	Fabaceae
150	Premna tomentosa	Verbenaceae
151	Psidium guajava	Myrtaceae
152	Pterocarpus marsupium	Fabaceae
153	Radermachera xylocarpa	Bignoniaceae
154	Randia malabarica	Rubiaceae
155	Ricinus communis	Euphorbiaceae
156	Salix tetrasperma	Salicaceae
157	Santalum album	Santalaceae
158	Sapindus emarginatus	Sapindaceae
159	Sapindus laurifolius	Sapindaceae
160	Schleichera oleosa	Sapindaceae
161	Schrebera swietenioides	Oleaceae
162	Scolopia crenata	Flacourtiaceae
163	Shorea roxburghii*	Dipterocarpaceae
164	Soymida febrifuga	Meliaceae
165	Spathodea campanulata	Bignoniaceae
166	Sterculia urens	Sterculiaceae
167	S. villosa	Sterculiaceae
168	Stereospermum angustifolium	Bignoniaceae
169	S. colais	Bignoniaceae
170	Strychnos potatorum	Loganiaceae
171	Syzygium cumini	Myrtaceae
172	Tamarindus indica	Fabaceae
173	Tecoma stans	Bignoniaceae
174	Tectona grandis	Verbenaceae
175	Terminalia arjuna	Combretaceae
176	T. bellirica	Combretaceae

177	T. chebula	Combretaceae
178	T. crenulata	Combretaceae
179	Thevetia peruviana	Apocynaceae
180	Toona ciliate	Meliaceae
181	Trema orientalis	Ulmaceae
182	Trewia nudiflora	Euphorbiaceae
183	Viburnum punctatum	Caprifoliaceae
184	Vitex altissima	Verbenaceae
185	V. leucoxylon	Verbenaceae
186	V. peduncularis	Verbenaceae
187	Wrightia tinctoria	Apocynaceae
188	Ziziphus mauritiana	Rhamnaceae
189	Z. xylopyrus	Rhamnaceae
*Endemic to the study area		

Appendix 6. Shrub species occurring in the study area		
No	Name of the plant species	Family
1	Abutilon crispum	Malvaceae
2	Acacia pennata	Mimosaceae
3	Acalypha fruticosa	Euphorbiaceae
4	A. indica	Euphorbiaceae
5	A. paniculata	Euphorbiaceae
6	Allophylus cobbe*	Sapindaceae
7	Ampelocissus araneosa*	Vitaceae
8	Anisomeles indica	Lamiaceae
9	Argyreia cuneata	Convolvulaceae
10	A. elliptica	Convolvulaceae
11	A. pomacea	Convolvulaceae
12	A. strigosa	Convolvulaceae
13	Artanema longifolia	Scrophulariaceae
14	Artemisia vulgaris	Asteraceae
15	Asparagus racemosus	Liliaceae
16	Asystasia chelonoides var. quinquangularis	Acanthaceae
17	Barleria buxifolia	Acanthaceae
18	B. infundibuliformis	Acanthaceae
19	B. mysorensis*	Acanthaceae
20	B. prionitis	Acanthaceae
21	Caesalpinia mimosoides	Fabaceae
22	Cansjera rheedii	Opiliaceae
23	Canthium parviflorum	Rubiaceae
24	Capparis grandiflora*	Capparaceae
25	C. sepiaria	Capparaceae
26	C. zeylanica	Capparaceae
27	Carissa carandas	Apocynaceae
28	Celastrus paniculatus	Celastraceae
29	Chromolaena odorata	Asteraceae
30	Cipadessa baccifera	Meliaceae
31	Cissus discolour	Vitaceae
32	C. gigantean	Vitaceae
33	C. glauca	Vitaceae
34	C. pallida	Vitaceae
35	C. quadrangularis	Vitaceae
36	Clerodendrum serratum	Verbenaceae
37	C. viscosum	Verbenaceae
38	Coccinia grandis	Cucurbitaceae
39	Combretum albidum	Combretaceae
40	Costus speciosus	Costaceae
41	Crossandra infundibuliformis	Acanthaceae

42	Crotalaria verrucosa	Fabaceae
43	C. walkeri*	Fabaceae
44	C. willdenowiana	Fabaceae
45	Croton bonplandianum	Euphorbiaceae
46	Cryptolepis buchananii	Periplocaceae
47	Datura metel	Solanaceae
48	D. stramonium	Solanaceae
49	Decaschistia crotonifolia*	Malvaceae
50	Dendrophthoe falcate	Loranthaceae
51	D. trigona	Loranthaceae
52	Desmodium ferrugineum	Fabaceae
53	D. heterocarpon	Fabaceae
54	D. laxiflorum	Fabaceae
55	D. pulchellum	Fabaceae
56	D. triangulare	Fabaceae
57	D. velutinum	Fabaceae
58	Dioscorea bulbifera	Dioscoreaceae
59	D. oppositifolia	Dioscoreaceae
60	D. pentaphylla	Dioscoreaceae
61	D. tomentosa	Dioscoreaceae
62	Dracaena terniflora	Liliaceae
63	Ehretia ovalifolia	Boraginaceae
64	Embelia tsjeriam-cottam	Myrsinaceae
65	Flemingia macrophylla	Fabaceae
66	F. strobilifera	Fabaceae
67	Fluggea leucopyrus	Euphorbiaceae
68	Furcracea foetida	Agavaceae
69	Gardenia resinifera	Rubiaceae
70	Gliricidia sepium	Fabaceae
71	Gloriosa superba	Liliaceae
72	Gmelina asiatica	Verbenaceae
73	Gomphostemma heyneanum	Lamiaceae
74	Grewia abutilifolia	Tiliaceae
75	Grewia hirsute	Tiliaceae
76	G. rhamnifolia	Tiliaceae
77	G. villosa	Tiliaceae
78	Gymnema sylvestre	Asclepiadaceae
79	Gynura nitida*	Asteraceae
80	Helicteres isora	Sterculiaceae
81	Hemidesmus indicus	Periplocaceae
82	Hibiscus lobatus	Malvaceae
83	Hiptage benghalensis	Malpighiaceae
84	Holostemma ada-kodien	Asclepiadaceae
85	Homonoia riparia	Euphorbiaceae
86	Indigofera cassioides	Fabaceae

87	I. mysorensis	Fabaceae
88	I. parviflora	Fabaceae
89	I. trita	Fabaceae
90	Ipomoea alba	Convolvulaceae
91	I. carnea	Convolvulaceae
92	I. hederifolia	Convolvulaceae
93	I. sepiaria	Convolvulaceae
94	I. staphylina	Convolvulaceae
95	I. turbinate	Convolvulaceae
96	Ixora nigricans*	Rubiaceae
97	Jasminum auriculatum	Oleaceae
98	J. cuspidatum	Oleaceae
99	J. malabaricum*	Oleaceae
100	Jasminum ritchiei	Oleaceae
101	Jatropha heynei	Euphorbiaceae
102	Justicia betonica	Acanthaceae
103	Kirganelia reticulate	Euphorbiaceae
104	Kyllinga melanosperma	Cyperaceae
105	Lantana camara	Verbenaceae
106	L. indica	Verbenaceae
107	L. wightiana	Verbenaceae
108	Leea asiatica	Leeaceae
109	Leucas aspera	Lamiaceae
110	L. hirta	Lamiaceae
111	L. martinicensis	Lamiaceae
112	Lobelia nicotianifolia	Lobeliaceae
113	Ludwigia hyssopifolia	Onagraceae
114	L. peruviana	Onagraceae
115	Macrosolen capitellatus	Loranthaceae
116	M. parasiticus	Loranthaceae
117	Malvastrum coromandelianum	Malvaceae
118	Maytenus emarginatus	Celastraceae
119	Memecylon gracile*	Melastomataceae
120	Naravelia zeylanica	Ranunculaceae
121	Nerium oleander	Apocynaceae
122	Nilgirianthus heyneanus*	Acanthaceae
123	Nilgirianthus perrottetianus*	Acanthaceae
124	Ocimum gratissimum	Lamiaceae
125	Olax scandens	Olacaceae
126	Ophiorrhiza mungos	Rubiaceae
127	Opilia amentacea	Opiliaceaa
128	Opuntia dillenii	Cactaceae
129	Orthosiphon thymiflorus	Lamiaceae
130	O. wynaadensis*	Melastomataceae
131	Parthenium hysterophorus	Asteraceae

132	Passiflora subpeltata	Passifloraceae
133	Pavetta indica	Rubiaceae
134	Pavonia zeylanica	Malvaceae
135	Pergularia daemia	Asclepiadaceae
136	Phyllanthus pinnatus	Euphorbiaceae
137	Plumbago zeylanica	Plumbaginaceae
138	Pogostemon paniculatus	Lamiaceae
139	Polygonum chinense	Polygonaceae
140	Pouzolzia auriculata	Urticaceae
141	Pterolobium hexapetalum	Fabaceae
142	Pupalia lappacea	Amaranthaceae
143	Rauvolfia serpentine	Apocynaceae
144	Rhus mysorensis	Anacardiaceae
145	Rhynchosia hirta	Fabaceae
146	Rivea hypocrateriformis	Convolvulaceae
147	Rubia cordifolia	Rubiaceae
148	Rungia plicata	Acanthaceae
149	Salvia coccinea	Lamiaceae
150	Sarcostemma brunonianum*	Asclepiadaceae
151	Scirpus sp.	Cyperaceae
152	Scurrula cordifolia	Loranthaceae
153	S. parasitica	Loranthaceae
154	Scutia myrtina	Rhamnaceae
155	Secamone emetica	Asclepiadaceae
156	Senecio zeylanicus	Asteraceae
157	Senna auriculata	Caesalpiniaceae
158	Sida acuta	Malvaceae
159	Sida cordifolia	Malvaceae
160	S. glutinosa	Malvaceae
161	S. rhombifolia	Malvaceae
162	Smilax perfoliata	Smilacaceae
163	Solanum erianthum	Solanaceae
164	S. giganteum	Solanaceae
165	S. indicum	Solanaceae
166	S. melongena	Solanaceae
167	Solanum torvum	Solanaceae
168	S. viarum	Solanaceae
169	S. violaceum	Solanaceae
170	Sophora glauca	Fabaceae
171	Tarenna asiatica	Rubiaceae
172	Taxillus cuneatus*	Loranthaceae
173	T. tomentosus	Loranthaceae
174	Tephrosia purpurea	Fabaceae
175	T. tinctoria	Fabaceae
176	Thespesia lampas	Malvaceae

J. Sucon

177	Thunbergia alata	Acanthaceae
178	T. fragrans	Acanthaceae
179	Tinospora cordifolia	Menispermaceae
180	Toddalia asiatica	Rutacaeae
181	Tragia involucrate	Euphorbiaceae
182	Trichosanthes tricuspidata	Cucurbitaceae
183	Triumfetta rhomboidea	Tiliaceae
184	Tylophora indica	Asclepiadaceae
185	T. pauciflora*	Asclepiadaceae
186	Uraria rufescens	Fabaceae
187	Urena lobata	Malvaceae
188	Vernonia cinerea	Asteraceae
189	Vernonia divergens	Asteraceae
191	Viscum angulatum	Viscaceae
192	V. articulatum	Viscaceae
193	V. capitellatum	Viscaceae
194	V. trilobatum	Viscaceae
195	Waltheria indica	Sterculiaceae
196	Wattakaka volubilis	Asclepiadaceae
197	Ziziphus oenoplia	Rhamnaceae
198	Z. rugosa	Rhamnaceae
*Ende	mic to the study area	

Appe	Appendix 7. Herbs occurring in the study area				
No	Name of the plant species	Family			
1	Abelmoschus angulosus	Malvaceae			
2	Abutilon indicum	Malvaceae			
3	Acalypha malabarica*	Euphorbiaceae			
4	Acalypha racemosa	Euphorbiaceae			
5	Acanthospermum hispidium	Asteraceae			
6	Achyranthes aspera	Amaranthaceae			
7	Achyranthes bidentata	Amaranthaceae			
8	Acrocephalus hispidus	Lamiaceae			
9	Aerva lanata	Amaranthaceae			
10	Ageratum conyzoides	Asteraceae			
11	Allmania nodiflora	Amaranthaceae			
12	Alternanthera sessilis	Amaranthaceae			
13	Amaranthus viridis	Amaranthaceae			
14	Alysicarpus bupleurifolius	Fabaceae			
15	A. monilifer	Fabaceae			
16	Anaphalis aristata*	Asteraceae			
17	Andrographis serpyllifolia*	Acanthaceae			
18	Argemone mexicana	Papaveraceae			
19	Arisaema tortuosum	Araceae			
20	Asclepias curassavica	Asclepiadaceae			
21	Barleria cristata	Acanthaceae			
22	Bidens biternata	Asteraceae			
23	B. pilosa	Asteraceae			
24	Biophytum sensitivum	Oxalidaceae			
25	Blainvillea acmella	Asteraceae			
26	Blepharis boerhavifolia	Acanthaceae			
27	Blepharispermum subsessile	Asteraceae			
28	Blumea lacera	Asteraceae			
29	B. mollis	Asteraceae			
30	B. rhomboidea	Asteraceae			
31	B. virens	Asteraceae			
32	Boerhavia diffusa	Nyctaginaceae			
33	B. verticellata	Nyctaginaceae			
34	Borreria articularis	Rubiaceae			
35	B. ocymoides	Rubiaceae			
36	B. pusilla	Rubiaceae			
37	Byttneria herbacea	Sterculiaceae			

38	Calotropis gigantean	Asclepiadaceae
39	Canscora diffusa	Gentianaceae
40	Caralluma adscendens	Asclepiadaceae
41	C. umbellate	Asclepiadaceae
42	Cardiospermum canescens	Sapindaceae
43	C. halicacabum	Sapindaceae
44	Cassia mimosoides	Fabaceae
45	C. tora	Fabaceae
46	Centella asiatica	Apiaceae
47	Centratherum anthelminticum	Asteraceae
48	Ceropegia hirsuta*	Asclepiadaceae
49	Chlorophytum tuberosum	Liliaceae
50	Cissampelos pareira	Menispermaceae
51	Cleome feline	Capparidaceae
52	C. monophylla	Capparidaceae
53	Coldenia procumbens	Boraginaceae
54	Colocasia esculenta	Araceae
55	Commelina benghalensis	Commelinaceae
56	C. ensifolia	Commelinaceae
57	Conyza leucantha	Asteraceae
58	Corchorus aestuans	Tiliaceae
59	Cosmos sulphurous	Asteraceae
60	Crotalaria calycina	Fabaceae
61	C. dubia	Fabaceae
62	C. evolvuloides	Fabaceae
63	C. juncea	Fabaceae
64	C. medicaginea	Fabaceae
65	C. mysorensis	Fabaceae
66	C. pallida	Fabaceae
67	C. prostate	Fabaceae
68	C. retusa	Fabaceae
69	C. spectabilis*	Fabaceae
70	Cucumis melo	Cucurbitaceae
71	Curculigo orchioides	Hypoxidaceae
72	Curcuma longa	Zingiberaceae
73	Cyanotis cristata	Commelinaceae
74	C. fasciculate	Commelinaceae
75	Cyathula prostrate	Amaranthaceae
76	Cyclea peltata	Menispermaceae
77	Cynoglossum zeylanicum	Boraginaceae
78	Cyperus distans	Cyperaceae

79	C. iria	Cyperaceae	
80	Desmodium alysicarpoides	Fabaceae	
81	D. motorium	Fabaceae	
82	D. triflorum	Fabaceae	
83	D. triquetrum	Fabaceae	
84	Dichrocephala integrifolia	Asteraceae	
85	Dicliptera cuneata*	Acanthaceae	
86	Dioscorea hispida	Dioscoreaceae	
87	Diplocyclos palmatus	Cucurbitaceae	
88	Dunbaria ferruginea*	Fabaceae	
89	Echinops echinatus	Asteraceae	
90	Ehretia canarensis	Boraginaceae	
91	Elephantopus scaber	Asteraceae	
92	Emilia scabra	Asteraceae	
93	E. sonchifolia	Asteraceae	
94	Erigeron karvinskianus	Asteraceae	
95	Eriocaulon quinquangulare	Eriocaulaceae	
96	Eupatorium repandum	Asteraceae	
97	Euphorbia cristata	Euphorbiaceae	
98	E. geniculata	Euphorbiaceae	
99	E. hirta	Euphorbiaceae	
100	E. indica	Euphorbiaceae	
101	Evolvulus alsinoides	Convolvulaceae	
102	Exacum tetragonum*	Gentianaceae	
103	Fimbristylis dichotoma	Cyperaceae	
104	F. woodrowii*	Cyperaceae	
105	Floscopa scadens	Commelinaceae	
106	Glycine wightii	Fabaceae	
107	Gnaphalium sp.	Asteraceae	
108	Habenaria planteginea	Orchidaceae	
109	H. viridiflora*	Orchidaceae	
110	Hedychium coronarium	Zingiberaceae	
111	Hedyotis affinis	Rubiaceae	
112	H. auricularia	Rubiaceae	
113	H. nitida	Rubiaceae	
114	H. puberula	Rubiaceae	
115	H. pumila	Rubiaceae	
116	Hibiscus lunariifolius	Malvaceae	
117	H. ovalifolius	Malvaceae	
118	H. solandra	Malvaceae	
119	Hybanthus enneaspermus	Violaceae	

120	Hydrocotyle javanica	Apiaceae
121	Hygrophila salicifolia	Acanthaceae
122	Hyptis suaveolens	Lamiaceae
123	Impatiens chinensis	Balasaminaceae
124	Indigofera cordifolia	Fabaceae
125	I. linnaei	Fabaceae
126	I. spicata	Fabaceae
127	Indocourtoisia cyperoides	Cyperaceae
128	Justicia simplex	Acanthaceae
129	Knoxia sumatrensis	Rubiaceae
130	Lagascea mollis	Asteraceae
131	Laggera alata	Asteraceae
132	Laportea interrupta	Urticaceae
133	Lepidagathis incurve	Acanthaceae
134	Leucas lavandulaefolia*	Lamiaceae
135	L. marrubioides	Lamiaceae
136	L. nutans	Lamiaceae
137	L. vestita*	Lamiaceae
138	Lindernia antipoda	Scrophulariaceae
139	Liparis prazeri*	Orchidaceae
140	Lipocarpha sphacelata	Cyperaceae
141	Lobelia heyneana	Lobeliaceae
142	Ludwigia perennis	Onagraceae
143	Melhania cannabina	Tiliaceae
144	Merremia hastate	Convolvulaceae
145	Mimosa pudica	Mimosaceae
146	Mollugo pentaphylla	Molluginaceae
147	Monochoria vaginalis	Pontederiaceae
148	Murdannia japonica	Commelinaceae
149	M. spirata	Commelinaceae
150	M. zeylanica	Commelinaceae
151	Neanotis indica*	Rubiaceae
152	N. wightii*	Rubiaceae
153	Notonia grandiflora	Asteraceae
154	Ocimum americanum	Lamiaceae
155	Orthosiphon rubicundus	Lamiaceae
156	O. viscosus	Lamiaceae
157	Oxalis corniculata	Oxalidaceae
158	Peperomia dindigulensis*	Piperaceae
159	Peristrophe bicalyculata	Acanthaceae
160	Peristylus goodyeroides*	Orchidaceae

161	Phyllanthus amarus	Euphorbiaceae	
162	P. maderaspatensis	Euphorbiaceae	
163	P. rheedii	Euphorbiaceae	
164	P. virgatus	Euphorbiaceae	
165	Pimpinella heyneana*	Apiaceae	
166	P. wallichiana*	Apiaceae	
167	Piper longum	Piperaceae	
168	Plectranthus barbatus	Lamiaceae	
169	P. mollis	Lamiaceae	
170	P. wightii*	Lamiaceae	
171	Pogostemon auricularius	Lamiaceae	
172	Polycarpaea corymbosa	Caryophyllaceae	
173	Polygala elongate	Polygalaceae	
174	Polygonum barbatum	Polygonaceae	
175	P. glabrum	Polygonaceae	
176	P. hydropiper	Polygonaceae	
177	Polystachya flavescens*	Orchidaceae	
178	Priva cordifolia	Verbenaceae	
179	Rhinacanthus nasutus	Acanthaceae	
180	Rhynchosia minima	Fabaceae	
181	R. rufescens	Fabaceae	
182	Rostellularia diffusa	Acanthaceae	
183	Rotala indica	Lythraceae	
184	Rothia indica	Fabaceae	
185	Scilla hyacinthine	Liliaceae	
186	Scleria levis	Cyperaceae	
187	Scoparia dulcis	Scrophulariaceae	
188	Semecarpus anacardium	Anacardiaceae	
189	Senna hirsute	Fabaceae	
190	Sida cordata	Malvaceae	
191	Sigesbeckia orientalis	Asteraceae	
192	Smithia conferta*	Fabaceae	
193	Solanum nigrum	Solanaceae	
194	Sonerila tenera*	Melastomataceae	
195	Sophubia delphinifolia	Scrophulariaceae	
196	Spatholobus parviflorus	Fabaceae	
197	Spermacoce hispida	Rubiaceae	
198	Spilanthus acmella	Asteraceae	
199	S. paniculata	Asteraceae	
200	Stachytarpheta indica	Verbenaceae	
201	Striga angustifolia	Scrophulariaceae	

J. Sucon

202	S. asiatica	Scrophulariaceae
203	Strobilanthes consanguineus*	Acanthaceae
204	Swertia angustifolia*	Gentianaceae
205	Synedrella nodiflora	Asteraceae
206	Tephrosia pumila	Fabaceae
207	Thesium wightianum*	Santalaceae
208	Tribulus terrestris	Zygophyllaceae
209	Trichodesma indicum	Boraginaceae
210	T. sedgwickianum	Boraginaceae
211	Tridax procumbens	Asteraceae
212	Triumfetta pilosa	Tiliaceae
213	Uraria lagopodioides	Fabaceae
214	Vanda testacea	Orchidaceae
215	Vernonia albicans	Asteraceae
216	Vigna adenantha	Fabaceae
217	V. radiate	Fabaceae
218	V. trifoliate	Fabaceae
219	V. trilobata	Fabaceae
220	Xanthium strumarium	Asteraceae
221	Zingiber officinale	Zingiberaceae
222	Zornia diphylla	Fabaceae
223	Zornia diphylla	Fabaceae
*Ende	mic to the study area	

Appendix 8. Grasses occurring in the study area				
No	Species	Family		
1	Alloteropsis cimicina	Poaceae		
2	Apluda mutica	Poaceae		
3	Aristida adscensionis	Poaceae		
4	A. setacea	Poaceae		
5	Arthraxon depressus*	Poaceae		
6	Arundinella purpurea*	Poaceae		
7	Axonopus compressus	Poaceae		
8	Bambusa arundinacea	Poaceae		
9	Bothriochloa pertusa	Poaceae		
10	Brachiaria distachya	Poaceae		
11	B. eruciformis	Poaceae		
12	B. ramose	Poaceae		
13	B. semiundulata*	Poaceae		
14	Cenchrus biflorus	Poaceae		
15	Centotheca lappacea	Poaceae		
16	Chloris barbata	Poaceae		
17	C. dolichostachya	Poaceae		
18	Chrysopogon aciculatus	Poaceae		
19	C. fulvus	Poaceae		
20	Cymbopogon coloratus	Poaceae		
21	C. flexuosus	Poaceae		
22	C. nardus	Poaceae		
23	Cynodon dactylon	Poaceae		
24	Cyrtococcum oxyphyllum	Poaceae		
25	Dactyloctenium aegyptium	Poaceae		
26	Digitaria abludens	Poaceae		
27	D. bicornis	Poaceae		
28	D. ciliaris	Poaceae		
29	Eleusine indica	Poaceae		
30	Eragrostis artrovirens	Poaceae		
31	E. bifaria	Poaceae		
32	E. ciliaris	Poaceae		
33	E. minor	Poaceae		
34	E. tenuifolia	Poaceae		
35	E. unioloides	Poaceae		
36	Hackelochloa granularis	Poaceae		
37	Heteropogon contortus	Poaceae		
38	Imperata cylindrical	Poaceae		
39	Isachne globosa	Poaceae		
40	I. lisboa*	Poaceae		
41	Ischaemum indicum	Poaceae		

J. Sucon

42	Oplismenus compositus	Poaceae
43	Panicum notatum	Poaceae
44	Paspalidium flavidum	Poaceae
45	Paspalum canarae*	Poaceae
47	P. scrobiculatum	Poaceae
48	Pennisetum hohenackeri	Poaceae
49	P. polystachyon	Poaceae
50	Perotis indica	Poaceae
51	Pogonatherum paniceum	Poaceae
52	Pseudanthistiria hispida	Poaceae
53	Rottboellia cochinchinensis	Poaceae
54	Sacciolepis indica	Poaceae
55	Setaria intermedia	Poaceae
56	S. italica	Poaceae
57	S. palmifolia	Poaceae
58	S. pumila	Poaceae
59	S. verticillata	Poaceae
60	Sorghum halepense	Poaceae
61	Sporobolus indicus	Poaceae
62	S. wallichii	Poaceae
63	Themeda cymbaria	Poaceae
64	T. quadrivalvis*	Poaceae
65	T. tremula	Poaceae
66	T. triandra	Poaceae
67	Triopogon bromoides*	Poaceae
68	Urochloa panicoides	Poaceae
*Ende	mic to the study area	

Appe	Appendix 9. Birds observed in the study area			
No	Common Name	Scientific Name		
1	Little Grebe	Podiceps ruficollis #		
2	Little Cormorant	Phalacrocorax niger #		
3	Indian Pond Heron	Ardeola grayii #		
4	Cattle Egret	Bubulcus ibis #		
5	Night Heron	Nycticorax nycticorax#		
6	Crested Honey Buzzard	Pernis ptilorhynchus		
7	Pariah kite	Milvus migrans		
8	Brahminy Kite	Haliastur indus #		
9	Indian Shikra	Accipiter badius		
10	Indian Crested-Hawk Eagle	Spizaetus cirrhatus		
11	Indian Whitebacked Vulture	Gyps bengalensis		
12	Short-toed Eagle	Circaetus gallicus		
13	Crested Serpent Eagle	Spilornis cheela		
14	Grey Patridge	Francolinus pondicerianus		
15	Jungle Bush Quail	Perdicula asiatica		
16	Grey Jungle Fowl	Gallus sonneratii		
17	Indian Peafowl	Pavo cristatus		
18	Whitebreasted Waterhen	Amaurornis phoenicurus #		
19	Yellow-wattled Lapwing	Vanellus malabaricus#		
20	Marsh Sandpiper	Tringa stagnatilis #		
21	Yellow-footed Green Pigeon	Treron phoenicoptera		
22	Indian Blue Rock Pigeon	Columba livia		
23	Indian Ring Dove	Streptopelia decaocto		
24	Spotted Dove	Streptopelia chinensis		
25	Roseringed Parakeet	Psittacula krameri		
26	Southern Blossomheaded Parakeet	Psittacula cyanocephala		
27	Indian Lorikeet	Loriculus venalis		
28	Pied Crested Cuckoo	Clamator jacobinus		
29	Common Hawk-Cuckoo	Cuculus varius		
30	Cuckoo	Cuculus canorus		
31	Indian Koel	Eudynamys scolopacea		
32	Common Crow-Pheasant	Centropus sinensis		
33	Collard Scops-Owl	Otus bakkamoena		
34	Spotted Owlet	Athene brama		
35	House Swift	Apus affinis		
36	Lesser Pied Kingfisher	Ceryle rudis		
37	Small Blue Kingfisher	Alcedo atthis #		

38	Whitebreasted Kingfisher	Halcyon smyrnensis#
39	Small Green Bee-eater	Merops orientalis
40	Indian Roller	Coracias benghalensis
41	Ноорое	Upupa epops
42	Large Green Barbet	Megalaima zeylanica
43	Crimsonbreasted Barbet	Megalaima haemacephala
44	Lesser Golden-backed Woodpecker	Dinopium benghalense
45	Pigmy Woodpecker	Picoides nanus
46	Ashycrowned Finch lark	Eremopterix grisea
47	Wiretailed Swallow	Hirundo smithii
48	Baybacked Shrike	Lanius vittatus
49	Rufousbacked Shrike	Lanius schach
50	Golden Oriole	Oriolus oriolus
51	Black Drongo	Dicrurus adsimilis
52	White-bellied Drongo	Dicrurus caerulescens
53	Blackheaded Myna	Sturnus pagodarum
54	Common Myna	Acridotheres tristis
55	Jungle Myna	Acridotheres fuscus
56	Indian Tree Pie	Dendrocitta vagabunda
57	House Crow	Corvus splendens
58	Indian Jungle Crow	Corvus macrorhynchos
59	Scarlet Minivet	Pericrocotus flammeus
60	Common Wood Shirke	Tephrodornis pondicerianus
61	Common Iora	Aegithina tiphia
62	Redwhiskered Bulbul	Pycnonotus jocosus
63	Whitecheeked Bulbul	Pycnonotus leucogenys
64	Redvented Bulbul	Pycnonotus cafer
65	Yelloweyed Babbler	Chrysomma sinense
66	Common Babbler	Turdoides caudatus
67	Jungle Babbler	Turdoides striatus
68	Whiteheaded Babbler	Turdoides affinis
69	Whitebrowed Fantail Flycatcher	Rhipidura aureola
70	Paradise Flycatcher	Terpsiphone paradise
71	Ashy Wren-Warbler	Prinia socialis
72	Tailor Bird	Orthotomus sutorius
73	Indian Great Reed Warbler	Acrocephalus stentoreus
74	Lesser Whitethroat	Sylvia curruca
75	Magpie-Robin	Copsychus saularis
76	Pied Bush Chat	Saxicola caprata
77	Indian Robin	Saxicoloides fulicata
78	Grey Tit	Parus major

79	Grey Wagtail	Motacilla cinerea	
80	White Wagtail	Motacilla alba	
81	Purplerumped Sunbird	Nectarinia zeylonica	
82	Purple Sunbird	Nectarinia asiatica	
83	Oriental White-eye	Zosterops palpebrosa	
84	House Sparrow	Passer domesticus	
85	Yellowthroated Sparrow	Petronia xanthocollis	
86	Whitethroated Munia	Lonchura malabarica	
87	Whitebacked Munia	Lonchura striata	
# Aquatic species, Nomenclature following Ali and Riply 1983			

Appendix 10. Environmental Impact evaluation matrix (Construction phase)						
Aspects	Impact on					
-		Flora		Fauna		
		Trees	Others	Mammals	Birds	Herpetofauna
Laboratories	Clearing the land	3	3	4	2	4
	at the entry portal					
	Machinery and	2	2	6	5	4
	materials					
	mobilization					
	Construction of	2	2	4	3	3
	Tunnel and					
	caverns					
	Transport of	1	1	5	3	4
	muck					
	Storage and	1	4	4	3	3
	dumping of the					
	muck					
Residences	Site clearance and	4	2	3	3	4
	leveling					
	Construction and	2	2	2	3	4
	erection					
Workforce	Transportation	1	2	4	3	3
demands	Communication	0	0	0	0	0
	Power / Fuel	3	3	1	1	1
	Supportive	4	2	3	2	4
	infrastructure and					
	other facilities					
	such as medical					
	and educational					
Note: Graded from 0-10 based on the severity of the impact: 0 denotes no impact and 10						

Note: Graded from 0-10 based on the severity of the impact; 0 denotes no impact and 10 very severe impact. Maximum possible score is given in the brackets

Appendix 11	. Environmental Impact	evaluation	matrix (Operation p	phase)	
Aspects		Impact on				
-		Flora		Fauna		
		Trees	Others	Mammals	Birds	Herpetofaun
						a
Laboratories	Transport of materials	0	0	4	3	3
	Transport of men	1	1	4	4	4
	Storage and dumping	1	1	3	1	1
	of the waste					
Residences	Travel	2	2	1	2	2
Workforce	Transportation	0	0	0	0	0
demands	Communication	0	0	0	0	0
	Power / Fuel	0	0	0	0	0
	Supportive	4	2	0	0	3
	infrastructure and other					
	facilities such as					
	medical and					
	educational					
Note: Graded from 0-10 based on the severity of the impact; 0 denotes no impact and 10						

very severe impact. Maximum possible score is given in the brackets

Appendix 12.Background measurements at PUSHEP 24th Feb 2007

Portable HpGe detector (45mm dia, 25mm long)

Summary:

- 1. Background was measured at TIFR (LINAC counting room), TIFR guest house at Ooty and PUSHEP tunnel. Inside the tunnel, background was also measured with ~ 45mm thick lead shield.
- 2. Overall background seems higher at Ooty (see Fig.1).
- 3. No new lines seen in the spectrum inside the tunnel. However yield of 1460 (40K) gamma ray is significantly higher (see Fig.2).
- 4. The yield of U-Th decay products, with detector at the centre of tunnel and detector close to wall on the ground shows significant differences, latter being larger (see Fig.3).

Background radiation measured at PUSHEP tunnel with overall rock cover of around 500 M in given at Fig: 4. The measurements will be repeated in the INO caverns (with a vertical rock of 1300 M, when built before moving the detectors). Based on the findings necessary safety measures will be adopted.

Fig: 1 Enhanced background at low energy (~500-1250 keV) inside the tunnel is due to higher yield of 40K (1460 keV).

Fig. 2

+THU

Bgd/KeV/hr				
Energy Range	Ooty	TIFR	Tunnel	Tunnel
			(No shield)	(With Shield)
2250-2330 KeV	3.72(0.15)	1.54(0.07)	0.6(0.07)	0.07(0.02)
2268-2308 keV	3.88(0.22)	1.39 (0.09)	0.7(0.1)	0.08(0.03)

A

Contents

1. Introduct	ion	1
1.1. The	India-based Neutrino Observatory (INO)	3
1.1.1	Creation of the INO	3
1.1.2	The Site	4
1.1.3	The project	6
1.1.4	Components of the project	6
1.1.5	Land and other resources requirement	7
1.1.6	Construction technology and execution	8
2. The prese	ent study	11
2.1. Sco	pe and objectives	11
2.2. Stuc	ly area	13
2.3. Met	hodology	14
2.3.1	Methodology for the study of flora	14
2.3.2	Methodology for the study of fauna	15
3. Observat	ions	17
3.1. Top	ography	17
3.2. Clin	nate	18
3.3. Biod	liversity	20
3.3.1	Vegetation in Bokkapuram	20
3.3.2	Vegetation in Mavana halla and Masinagudi	21
3.3.3	Vegetation towards south of Moyar village	21
3.3.4	Vegetation of Mudumalai Wildlife Sanctuary	21
3.3.5	Flora at the INO entry portal and nearby areas	23
3.3.6	Floral enumeration	24
3.3.7	Endemic plants	24
3.4. Fau	nal Analysis	24
3.4.1	Amphibians	24
3.4.2	Reptiles	25
3.4.3	Birds	25
3.4.4	Mammals	27
3.4.5	Threatened Species	28
3.5. Prot	ected Areas and Wildlife Corridors	29
4. Potential	environmental threats and perturbations	32
4.1. Kev	concerns	32
4.2. Imp	acts during construction phase	32
4.2.1	Impacts due to erecting structures required for the project	33
4.2.2	Impacts arising from the sourcing of materials	34
4.2.3	Impacts arising from the vehicular and labourer movement	35
4.2.4	Blasting to excavate and clear routes of the tunnels and caverns	35
4.2.5	Ground vibration	36
4.2.6	Impacts due to the vibrations, smoke, noise during the construction	39
4.2.7	Impacts due to blasting during excavation and clearing routes	40
4.2.8	Impacts due to the workmen inhabitation during the construction	40

4.2.9 Impacts due to the over burden, debris and muck during dispo	sal 41
4.2.10 Impacts due to the spills of wastes such as fuels and lubricants	s 41
4.3. Impacts during the Operation Phase	
5. Mitigation measures and environmental management plan	
6. Summary and Conclusions	
7. Acknowledgement	
8. References	53
Appendices	57

Figures

Figure 1. Location of the project site INO-Masinagudi	5
Figure 2. INO main access tunnel alignment	12
Figure 3. The proposed model of tunnel	13
Figure 4. Mudumalai Wildlife Sanctuary, and immediate surroundings	15
Figure 5. Mean monthly average temperature -Masinagudi Area	19
Figure 6. Mean monthly rainfall-Masinagudi Area	19
Figure 7. Forest corridors in the environs of the project	30
Figure 8. Elephant and cattle dung density in elephant migratory route	31

<u>Tables</u>

Table 1. INO Main access tunnel alignment and cavern details	6
Table 2. Facilities proposed for INO at Singara	7
Table 3. Surface Facilities (Over ground) proposed for INO at Masinagudi	7
Table 4. Personnel involved in INO projectduring Construction Phase	9
Table 5. Resident population during Operation phase	9
Table 6. Techniques used for sampling fauna	16
Table 7. Amphibians observed in the vicinity of INO project area	25
Table 8. Reptiles recorded in the vicnity of INO project location	25
Table 9. Mammals observed in the study area	27
Table 10. Endangered mammals occurring in the environs of the proposed project	28
Table 11. Endangered birds occurring in the environs of the proposed project	29
Table 12.Endangered reptiles occurring in the environs of the proposed project	29
Table 13. List and number of machinery	35
Table 14. Key concerns and perturbations from the INO	38
Table 15. Some of the tree species suggested for planting	48

Appendices

Appendix 1. The recommended site evaluation criteria for INO	. 57
Appendix 2. Salient features of Proposed INO site	. 58
Appendix 3. ICAL detector – Brief description – Source INO	. 60
Appendix 4. Land & other resources required	. 62

Appendix 5. Tree species occurring in the study area	63
Appendix 6. Shrub species occurring in the study area	68
Appendix 7. Herbs occurring in the study area	73
Appendix 8. Grasses occurring in the study area	79
Appendix 9. Birds observed in the study area	81
Appendix 10. Environmental Impact evaluation matrix (Construction phase)	84
Appendix 11. Environmental Impact evaluation matrix (Operation phase)	85
Appendix 12.Background measurements at PUSHEP	86

RAPID ENVIRONMENTAL IMPACT ASSESSMENT OF THE INDIA-BASED NEUTRINO OBSERVATORY PROJECT, SINGARA, NILGIRIS, TAMIL NADU

Report submitted to INSTITUTE OF MATHEMATICAL SCIENCES, CHENNAI

PA Azeez, S Bhupathy, P Balasubramanian, Rachna Chandra and PP Nikhilraj

Sálim Ali Centre for Ornithology & Natural History Coimbatore, Tamil Nadu

March 2007