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ABSTRACT 

 Blackcurrants (Ribes nigrum) (BC) have remained relatively unknown to the US 

market because they were prohibited from being grown in the US from the early 20th century 

until the 1980s. This was due to significant losses by the lumber industry, which discovered 

that some native and non-native species of the Ribes genus could act as vectors for the 

fungus Cronartium ribicola. Currently, some US farmers have a renewed interest in this 

high-value crop because BC and BC products are trending worldwide. BC are known to 

possess higher concentrations of anthocyanins (ANC) than other similarly colored berries, 

such as blueberries and blackberries. BC are also a rich source of phytochemicals which are 

potent antioxidants, antimicrobials and have anti-inflammatory properties; all of which add 

to the attractiveness of BC and their use in functional foods.  

The objective was to characterize the whole fruit, and its component parts, of four 

varieties of BC and their effect on the activities of α-amylase, α-glucosidase, DPPIV, as 

biochemical markers of diabetes. In addition, the antioxidant capacity was measured using 

2,2- diphenyl-1-picrylhydrazyl (DPPH·), after water-based ultrasound assisted extraction, 

treatment with pectinase and fermentation.  

BC varieties (Titania, D16-6-54, Consort, and D16-8-14) were dissected into parts 

(juice, seeds, skins) freeze dried, ground and kept at -20 ºC. Parts and whole berries were 

evaluated to determine total anthocyanins (TA), total polyphenols (TP), total condensed 

tannins (TT), and HPLC quantification after 2, 4, 6 h sonication extraction. For LC-ESI-MS 

analyses, BC samples were extracted with methanol-HCl, sonicated for 1 h, kept overnight 

at 4 ºC; aliquots were filtered and analyzed.  
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The highest concentrations of TA were found in the skins of Titania, Consort, and 

D16-8-14 with no statistical difference among them (19.0 ± 2.0, 19.7 ± 2.7, and 20.3 ± 3.5 

mg eq C3G/g dry weight (DW), respectively) (p > 0.05). The largest concentrations of TP 

were seen in the seeds of Titania and D16-8-14 with no statistical difference among them 

(34.4 ± 1.3 and 34.6 ± 0.5 mg eq GA/g DW, respectively) (p > 0.05). Condensed tannins 

were found to have the largest concentrations in the skins of all BC (Titania, 391.8 ± 0.0; 

D16-6-54, 438.2 ± 0.1; Consort, 472.4 ± 0.0; and D16-8-14, 521.0 ± 0.5 mg eq catechin/g, 

DW). A total of four anthocyanins (delphinidin 3-O-rutinoside, delphinidin 3-O-glucoside, 

cyanidin 3-O-rutinoside, cyanidin 3-O-glucoside) were identified across all samples. All 

four varieties of BC showed that the dominant compounds are the rutinoside forms of both 

delphinidin and cyanidin. Titania skins demonstrated the greatest α -amylase inhibition at 

94.8% inhibition. The seeds of Titania, D16-6-54 and Consort all had the highest % 

inhibition of α -glucosidase with no significant differences among them (97.9 ± 0.0, 97.9 ± 

0.2, and 97.9 ± 0.0, respectively). Enzymatic treatment doses and heating times (52 °C) 

were evaluated for their effect on the concentration of ANC and it was determined that a 

dose of 400 mL/ton held for 150 min at 52 °C yielded the highest concentration of ANC. 

Positive correlations were noted between the total time (min) of heating (52 °C) and TT and 

TP (r = 0.725 and r = 0.731, respectively at α = 0.05). Positive correlations were also noted 

for the fermentation temperatures (23 °C and 15 °C) for TA, TT, and TP (r = 0.608, r = 

0.569, and r = 0.546, respectively at α = 0.05). Juices and skins from all four cultivars had 

the lowest IC50 values (most potent) for α-amylase inhibition, while the fermented products 

had the lowest IC50 values for α-glucosidase inhibition. IC50 values for the inhibition of 
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DPPIV were similar for all four cultivars. All four varieties differed in concentrations of 

specified phenolic compounds and showed potential for biological activity.  
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CHAPTER 1: INTRODUCTION 

1.1 Overview 

Blackcurrants (Ribes nigrum) are small dark purple fruit that comes from medium-sized 

woody shrubs (Figure 1.1) (Corrigan, Hedderley, Langford, & Zou, 2014; Törrönen et al., 2012). 

These shrubs are native to colder climate areas such as northern Europe, northern Asia, and central 

Asia, with Poland being the primary exporter (80% - 90% of global exports) of fresh and processed 

blackcurrant (Michalska, Wojdyło, Łysiak, Lech, & Figiel, 2017). Production of blackcurrants 

(BC) depends on the genetics of each cultivar and the temperature of the growing environment. 

BC are well known in European markets but not in the United States (US). BC have remained 

relatively unknown to the US market because they were prohibited from being grown in the US 

from the early 20th century until the 1980s. This was due to significant losses by the lumber 

industry, which discovered that some native and non-native species of the Ribes genus could act 

as vectors for the fungus Cronartium ribicola. Since then, new cultivars have been created which 

do not act as vectors for the fungus, in addition to the already resistant BC cultivar ‘Consort.’ 

Currently, some US farmers have a renewed interest in this high-value crop because BC and BC 

products are trending worldwide.  It was reported in 2017 that 3,100 new BC products appeared 

globally, 199 of which were from the US alone (FONA International, 2017). Figure 1.2 highlights 

some commercially available BC products which can be found in the US. BC, which are known 

for their characteristic deep shades of purple, also have a characteristic bitter and astringent flavor.  

This is why it is quite common to find BC products with significant amounts of sugar added. BC 

are also known to have a high concentration of flavonoids, specifically anthocyanins, which 

provide the fruits with their purple color  (Archaina, Leiva, Salvatori, & Schebor, 2017). BC are a 
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rich source of phytochemicals which are potent antioxidants, antimicrobials and have anti-

inflammatory properties (Nour, Stampar, Veberic, & Jakopic, 2013). Part of the objectives were 

to summarize and offer an up-to-date information of the available literature regarding BC, as well 

as their chemical, sensorial, processing, and potential biological properties.  

Our project goals were to better understand the differences among 4 cultivars of BC, fill a 

gap in knowledge regarding extraction methods for BC, while exploring methods using water only. 

Also, to understand how enzymes and the fermentation process affect concentrations of bioactive 

compounds. To our knowledge, this is the first report detailing the quantification of ANC in BC 

and BC fermented products using a strictly water-based ultrasound extraction. 

The first aim of this research was to characterize 4 different cultivars of BC berries (Titania, 

D16-6-54, Consort, and D16-8-14) and their parts (juice, seeds, and skins) to compare ANC, 

condensed tannins, and polyphenol contents of the BC. Additionally, we also sought to understand 

if these phytochemicals are concentrated in any particular part of the berries. As consumers 

demand more and more healthful products that are made using green technology, there is an 

increased need to discover ways in which extractions of pigments and bioactive compounds can 

be done using water alone. The second aim of this research was to determine the time needed for 

water-based ultrasound-assisted extraction to obtain ANC, and other phenolic compounds, from 

BC. We did determine that a 2 h water-based UAE was sufficient to extract >50% of ANC from 

BC. Consort and D16-8-14 whole berries had the highest concentration of ANC (14.5 ± 2.8 and 

14.8 ± 2.8 mg eq. C3G/g, DW) after a 2 h UAE. Consort also had the highest concentration of TP 

present overall. The third aim of this research was to determine the effect of a pectinase treatment 

on the extraction of ANC, total condensed tannins (TT), or total polyphenols (TP). The fourth, and 

final, aim of this research was to determine the effect of fermentation of BC mash on the 
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concentrations of ANC, TT, and TP. It was determined that the fermentation process did increase 

the ANC concentration 5 times and the pectinase treatment increased TP concentrations. All solid 

material remaining after the fermentation were also analyzed to determine their potential related 

to the inhibition of enzymes related to type-2 diabetes. All BC pomaces proved to be powerful 

antioxidants with lower IC50 values compared to the fresh whole berries. Figure 1.3 shows a 

graphical summary of this research. 
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1.2 Figures  

   
                

      

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Blackcurrant shrubs growing in Champaign, IL 
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Figure 1.2. Examples of blackcurrant products 
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Figure 1.3. Summary of research 
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CHAPTER 2: LITERATURE REVIEW - BLACKCURRANTS (Ribes nigrum): A 

REVIEW ON CHEMISTRY, PROCESSING AND HEALTH BENEFITS 

2.1 Abstract 

 Blackcurrants (Ribes nigrum) are relatively new to the United States market; however, they 

are well known and popular in Europe and Asia. The use of blackcurrants has been trending 

worldwide, particularly in the US. We believe that demand for blackcurrants will grow as 

consumers become aware of the several potential health benefits these berries offer. The objectives 

of this review were to present an up-to-date summary of information on blackcurrants based on 

articles published within the last decade. Furthermore, to provide the food industry insights into 

possibilities for the utilization of blackcurrants. The chemistry, processing methods, and health 

benefits have been highlighted in addition to how the environment and variety impact the chemical 

constituents of blackcurrants. A search for journal publications on blackcurrants was conducted 

which included keywords such as chemical characterization, health benefits, processing, 

technologies, anthocyanins, and proanthocyanidins. This review provides the most up-to-date 

information available on the subject. In conclusion, blackcurrants and their products have 

industrial uses from which extractions can be made to produce natural pigments to be used as food 

additives. BC contain flavonoids, specifically anthocyanins, which provide the fruits with their 

purple color. BC are a rich source of phytochemicals with potent antioxidants, antimicrobials, and 

anti-inflammatory properties. Also, blackcurrants have the potential to improve overall human 

health particularly with diseases associated with inflammation and regulation of blood glucose.  

This chapter is part of the scientific review submitted for publication: Cortez, R., Gonzalez-
de Mejia, E. (2019). Blackcurrants (Ribes nigrum): A Review on Chemistry, Processing and 
Health Benefits. Journal of Food Science 2019-0424.  
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2.2 Introduction 

 Blackcurrants (Ribes nigrum) are small dark purple fruit that comes from medium-sized 

woody shrubs (Corrigan, Hedderley, Langford, & Zou, 2014; Törrönen et al., 2012). These shrubs 

are native to colder climate areas such as northern Europe, northern Asia, and central Asia, with 

Poland being the primary exporter (80% - 90% of global exports) of fresh and processed 

blackcurrant (Michalska, Wojdyło, Łysiak, Lech, & Figiel, 2017). Production of blackcurrants 

(BC) depends on the genetics of each cultivar and the temperature of the growing environment. 

BC are well known in European markets but not in the United States (US). BC have remained 

relatively unknown to the US market because they were prohibited from being grown in the US 

from the early 20th century until the 1980s. This was due to significant losses by the lumber 

industry, which discovered that some native and non-native species of the Ribes genus could act 

as vectors for the fungus Cronartium ribicola. This is the cause of the white pine blister rust, 

disease in pine trees, that leads to mortality of native five-needle pines, important for the US 

lumber industry (Tanguay, Cox, Munck, Weimer, & Villani, 2015). Since then, new cultivars have 

been created which do not act as vectors for the fungus, in addition to the already resistant BC 

cultivar ‘Consort.’ Currently, some US farmers have a renewed interest in this high-value crop 

because BC and BC products are trending worldwide.  It was reported in 2017 that 3,100 new BC 

products appeared globally, 199 of which were from the US alone (FONA International, 2017). 

BC, which are known for their characteristic deep shades of purple, also have a characteristic bitter 

and astringent flavor.  This is why it is quite common to find BC products with significant amounts 

of sugar added. BC are also known to have a high concentration of flavonoids, specifically 

anthocyanins, which provide the fruits with their purple color  (Archaina, Leiva, Salvatori, & 

Schebor, 2017). These winter hardy berries are a rich source of phytochemicals which are potent 
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antioxidants, antimicrobials and have anti-inflammatory properties (Nour, Stampar, Veberic, & 

Jakopic, 2013). The objective of this review was to summarize and offer an up-to-date information 

of the available literature regarding BC, their chemical, sensorial, processing, and potential 

biological properties. 

2.3 Chemistry and Sensory Properties of Blackcurrants 

2.3.1 Chemical characterization 

 Blackcurrants (Ribes nigrum) are widely recognized for containing high levels of 

polyphenols, specifically anthocyanins (ANC, Figure 2.1) and proanthocyanidins (PAC, Figure 

2.2), when compared with other berries (Lee et al., 2015). Both blackberries and blueberries have 

lower total anthocyanin concentrations compared to BC (949.4 ± 4.0, 1562.2 ± 52.4, and 1741 ± 

48.8 mg/100 g, dry weight (DW), respectively) (Lee et al., 2015). Interestingly, a large degree of 

variability of anthocyanin concentrations was demonstrated among three BC cultivars (‘Record,’ 

‘Blackdown,’ and ‘Ronix’) with a range from  80 to 476 mg/100 mg fresh weight (FW) (Nour et 

al., 2013). This variance among cultivars suggests that more research is needed to determine which 

cultivars contain the highest concentrations of these beneficial bioactive compounds. According 

to Nour et al. (2013), who performed a maceration of the berries in food grade ethanol (40%, 60%, 

or 96%), the compounds found in BC were delphinidin 3-O-glucoside (D3G), delphinidin 3-O-

rutinoside (D3R), cyanidin 3-O-glucoside (C3G), cyanidin 3-O-rutinoside (C3R), petunidin 3- O-

rutinoside, pelargonidin 3-O-rutinoside, peonidin 3- O-rutinoside, petunidin 3-(6-coumaroyl) 

glucoside, and cyanidin 3-(6-coumaroyl) glucoside (Table 2.1). Of the three different extractions 

(40%, 60%, and 96%), 60% ethanol was able to extract the highest concentrations of the four major 

ANC from all three cultivars, except for D3R (Nour et al., 2013). After performing ANC extraction 

with an 80% (v/v) aqueous methanol solution with 0.1% HCl, Lee et al. (2015) reported that the 
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content of ANC in blackcurrants was delpinidin-3-O-rutinoside (55.2%), cyanidin-3-O-rutinoside 

(23.2%), and delphinidin-3-O-glucoside (18.8%). This suggested that ethanol was more effective 

than acidified methanol for extraction of more diverse forms of ANC from BC (Table 2.1). Figure 

2.3 presents an HPLC profile at 520 nm for the characterization of ANC showing the presence of 

delphinidin 3-O-glucoside, delphinidin 3-O-rutinoside, cyanidin 3-O-glucoside, cyanidin 3-O-

rutinoside (Buchert et al., 2005). According to the study by Nour et al., (2013), the concentration 

of total phenolics in BC ranged between 1261 to 1694 mg eq of gallic acid/L with the lesser values 

being from the 40% ethanol extraction and the higher values from the 96% ethanol extraction. 

Proanthocyanidins (PAC) present in BC, are polymers which can be divided into two categories, 

procyanidins (PC) and prodelphinidins (PD, Figure 2.2) (Laaksonen, Salminen, Mäkilä, Kallio, & 

Yang, 2015). PC are polymers made up of catechins (+) and epicatechins (-) and PD are also 

polymers  made up of gallocatechins (+) and epigallocatechins (-) (Figure 2.2) (Laaksonen et al., 

2015). ANC, are naturally hydrophilic and therefore have limited application potential in both 

foods and cosmetics which contain fats or oils (Cruz et al., 2018).  However, there has been 

research done to try to improve the performance, stability, formulation properties and color of 

ANC from BC. One particular study sought to increase the stability of ANC from BC without a 

loss in bioactivity (Cruz et al., 2018). This study used the enzyme Candida antarctica lipase B and 

octanoic acid to lyophilize and esterify ANC from BC. BC extracts from skins were obtained 

(Table 2.1) and purified to only contain the four major monomeric ANC (delphinidin-3-O-

rutinoside (43.3%), cyanidin-3-O-rutinoside (34.0%), cyanidin-3-O-glucoside (7.0%) and 

delphinidin-3-O-glucoside (15.7%) (Cruz et al., 2018). This work concluded that only the 

glucoside forms of cyanidin and delphinidin were acylated by the enzymes and not the rutinoside 

forms. A different study found that by using lauric acid, each of the four major ANC were 
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monoacylated successfully without an adverse effect on relative proportions (Yang, Kortesniemi, 

Ma, Zheng, & Yang, 2019). Each of the acylations was noted at the 6” -OH position and at the 4” 

-OH position of the glucosides and rutinosides, respectively (Yang et al., 2019). This process 

succeeded in enhancing the lipophilicity of the compounds, which makes them more compatible 

for use in lipid-based foods and cosmetics. While one group of researchers were able to alter the 

hydrophilicity of ANC from BC, results still suggest that more research is needed to address the 

hydrophilicity of ANC from BC so that the food and cosmetics industries may better utilize them.  

2.3.2 Sensory attributes 

BC are bitter and astringent; because of this, large amounts of sugar are often added to BC 

products to offset the bitterness and astringency. This can be problematic for companies seeking 

to appeal to health-conscious consumers. Pectinolytic enzymatic treatments, which increase juice 

yields, also increase the perception of bitterness and astringency because the enzymes increase the 

mean degree of polymerization of PAC (Laaksonen et al., 2015). Additionally, astringency is 

related to the mean degree of polymerization (mDP) of PAC, which are oligomeric and polymeric 

tannins with different flavan-3-ol units (Laaksonen et al., 2015). The mDP is an indicator of the 

average number of flavan-3-ol monomers that make up the condensed tannins (Laaksonen et al., 

2015). Epicatechins, which are subunits of PC are thought to be more bitter and astringent than 

catechins at equal concentrations. The reason for the perception of these bitter and astringent 

flavors is still not fully understood (Laaksonen et al., 2015). It has historically been hypothesized, 

and generally accepted, that this phenomenon is due to polymeric tannins binding and precipitating 

salivary proteins, which in turn are perceived as a rough and drying sensation in the mucous 

membranes (Laaksonen et al., 2015). It is believed that proline clusters, and possibly nearby 

residues, are the probable sites for the PC interactions with salivary proteins (Soares et al., 2018). 
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After analyses of  five different cultivars, Mortti, Mikael, Marski, Ola, and Breed15, it was 

discovered that samples that had undergone an enzymatic treatment prior to processing showed 

not only a significantly higher mDP but also demonstrated higher concentrations of PAC (both PC 

and PD) (Laaksonen et al., 2015). BC juices that contain higher concentrations of PAC, could be 

viewed as undesirable due to their flavor, despite their benefits (Laaksonen et al., 2015). This does, 

however, offer unique opportunities for extractions since the diversity of ANC in BC is not 

complex. Sensory evaluations of other aspects of BC have also been conducted to explore the use 

of BC pomace as a source of dietary fiber. In one study, consumers were blindly tested for 

acceptance of a 50% wheat flour, 30% buckwheat flour, and 20% corn flour crackers versus 

crackers made up of the same ingredients with the addition of blackcurrant pomace (10%, 20%, 

and 30%) (Schmidt, Geweke, Struck, Zahn, & Rohm, 2018). The 20% pomace cracker scored a 

4.17 on an acceptance scale of 1 to 7, while the reference scored a 4.37 on the same scale (Schmidt 

et al., 2018). However, the 30% pomace crackers produced a stiffer dough, which led to a lower 

hardness trait due to high water absorption; thus, the pomace restricted the ability of a strong 

protein network to form. The poor formation of a protein network also resulted in at least a 57% 

decreased volume of the 20% and 30% pomace crackers versus the 10% pomace and reference 

crackers (Schmidt et al., 2018). Changes to the color of the cracker were also noted as the 

blackcurrant pomace changed the color of the crackers from the traditional light tan color to a deep 

shade of red. There were only slight differences between the structures and appearances of the 

20% and 30% pomace crackers versus the reference with no pomace and 10% pomace crackers 

(Schmidt et al., 2018). Despite this, there was virtually no difference between consumer 

preferences of crackers, which shows blackcurrant pomace is a viable option to replace a 

significant amount of wheat flour in baked goods (Schmidt et al., 2018). The ANC in BC berries 
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and juices provide rich colors to commercial products, some of which are recorded in Table 2.2. 

The color parameters of some commercially available BC beverages were measured in our 

laboratory using the CIELAB color scale. Both hue angle and chroma were calculated using the 

L*a*b* values and the following formulas: Chroma   C* =  �(a ∗)2 + (b ∗)2  and Hue angle  

hab = tan−1 �b∗
a∗
�. Results are presented in Table 2.2 

Chroma is the saturation or richness of a color and hue angle referrers to the color perceived based 

on the wavelength (Cortez, Luna-Vital, Margulis, & Gonzalez de Mejia, 2017). 

2.4 Environmental and Variety Impact on Chemical Composition 

 While it is clear that there are several benefits to be gained by using BC in food products, 

both the environment and genetics play critical roles in the production, chemistry, and nutritional 

quality of the BC fruits. A study, which investigated the environmental effects on blackcurrants, 

was conducted in Denmark (55° 18′ N 10° 26′ E) from October 2014 to April 2015.  It was 

demonstrated in this study that there was a significant decrease in the number of flowers when the 

experimental plots were warmed to an average temperature of 1.3 °C  than the control plot (ambient 

temperature)  (Andersen et al., 2017). The temperature of the control plots did not vary the height 

of the plants; however,  air temperature of warmed plots led to lower height of  50 cm and 80 cm 

(on average by 0.4 °C and 0.7 °C, respectively).   Both cultivars (Narve Viking and Zusha)  grown 

in ambient temperatures produced more flowers per plant (451 and 491, respectively) and had 

higher berry yields, total berries per plant, and produced berries with greater individual weights 

(Andersen et al., 2017). When comparing each of these two cultivars, warmer temperatures did 

not physically damaged them. This ultimately led to the conclusion that the environment does not 

lead to a direct correlation between the crop and production, but rather, has an effect on the genes 
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of growth and development. This, consequently, leads to changes such as fewer flowers and less 

beneficial health properties, for instance, a decrease in flavanol and anthocyanin content (Andersen 

et al., 2017). Not only does temperature affect decreasing the aforementioned bioactive 

compounds, but there was a clear correlation between higher concentrations of gallic acid and the 

colder temperatures in the control plots (Andersen et al., 2017). Production of blackcurrant berries 

depends on the genetics of each cultivar and the temperature of the growing environment. High 

temperatures during the growing season are also associated with the inhibition of various 

biochemical processes during blackcurrant development, which in turn decreases the amount of 

ascorbic acid produced (Woznicki et al., 2017). High temperatures (12 – 24 °C) have been shown 

to reduce the amount of ascorbic acid and the overall sugar content by 27% in blackcurrants 

(Woznicki et al., 2017). Although, higher temperatures lessen not all properties of the 

blackcurrants; citric acid has been shown to increase (Woznicki et al., 2017). It can be concluded 

from these studies that growing BC plants in colder climates produce berries, which have higher 

concentrations of beneficial bioactive compounds such as phenolics, which add value to an already 

high-value fruit. Another recent study also examined the effects of growing temperature and day 

length from a metabolomics approach (Xu et al., 2019). The recorded data from this work 

confirmed earlier observations by Woznicki et al. (2017) by concluding that growing temperature 

significantly affected a total of 365 metabolites constituting a wide variety of chemical classes. A 

comparison between ambient conditions and controlled conditions (planted in pots outdoors with 

ambient summer conditions, 59°40’N) demonstrated that ripening BC berries had accumulated a 

total of 34 additional metabolites under ambient conditions, the majority of which were ANC and 

flavonoids (Xu et al., 2019). Additionally, a significant up-regulation of 100 metabolites (linear 

increase) was noted with increased cultivation temperatures, and 42 metabolites experienced a 



 16 

linear decrease. It is particularly interesting to note that phenylalanine was one of the up-regulated 

metabolites (with increased cultivation temperatures) and it is also the main precursor for the 

synthesis of flavonoids. However, it is not the limiting factor for synthesis efficiency (Xu et al., 

2019). While this information does provide great insight into ideal BC growing conditions for the 

maximization of various polyphenolic compounds, it also offers producers an opportunity to adjust 

growing methods as temperatures become extreme with the changing global climate.  

2.5 Technological Methods for Blackcurrant Processing 

2.5.1 Enzymatic treatments 

 Generally, the reasons for berry fruit processing are to maximize juice yields, inactivate 

microorganisms, inactivate enzymes, and to maintain the sensory qualities of the finished product 

(Mäkilä, Laaksonen, Kallio, & Yang, 2017). The use of enzymatic treatments in juice production 

is quite common, especially in the processing of berry juices because it can increase juice yields 

up to approximately 91% (Laaksonen et al., 2014) (Table  2.3). These treatments improve the juice 

yield, decrease the viscosity of the juice, and also significantly increase the extraction of bioactive 

compounds such as phenolics (Bender, Killermann, Rehmann, & Weidlich, 2017; Laaksonen et 

al., 2014). The contents of procyanidins (PC) and prodelphinidins (PD) are significantly higher 

with enzymatic maceration than without (Laaksonen et al., 2015). A possible explanation for this 

phenomenon is that bioactive compounds, which are trapped in the networks of the pectins, are 

liberated with the effects of the enzymes. Employment of the enzymatic process increases the 

nutritional value of BC juices because of the increase in what is an already high concentration of 

bioactive compounds. A Finnish research group demonstrated a 151 mg/100 mL increase in total 

PAC and a 121 mg/100 mL increase of total PD with the utilization of an enzymatic process for 

BC juice production (Laaksonen et al., 2015). In 2017, a different study demonstrated that the total 
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ANC concentration of BC juice could be increased by 584 mg/100 g before pasteurization and 524 

mg/100 g after pasteurization with the use of enzymatic pectinases (Mäkilä et al., 2017). Enzymatic 

treatments achieve these higher extraction rates as a result of the enzymes demolishing cell wall 

structures, which happens by cleaving pectins and causing the degeneration of soluble pectins 

(Bender et al., 2017). Berries are known to have higher viscosities during processing for juice 

making, than other fruits. After the berries have been crushed the higher viscosity complicates the 

pressing process and causes a great deal of inefficiency, which is why it is necessary to use 

enzymatic treatments in the production of berry juices (Bender et al., 2017). 

2.5.2 Processing methods 

 BC are relatively expensive fruits containing concentrated amounts of compounds in the 

skins and seeds that are beneficial to health, which are typically discarded. Included in these 

compounds are not only polyphenols, but also polyunsaturated fatty acids (PUFA), tocopherols, 

phytosterols, polycosanols, and I (Basegmez et al., 2017). One way of maximizing the many 

benefits of BC is to find ways in which the BC pomace can be processed and repurposed for use. 

Pomace is the material that remains after the BC have been processed for juice, which consists 

mainly of skins and seeds. At present, much of the pomace, which is acidic, is discarded as waste 

and has the potential to become an environmental hazard when it is disposed of in landfills 

(Basegmez et al., 2017). In addition, it is quite wasteful to discard such an enriched material. 

Basegmez et al. (2017) discovered a remedy for these issues that has many advantages. This is the 

use of supercritical fluid extraction with carbon dioxide (SFE-CO2) along with response surface 

methodology (RSM) and central composite design (CCD) (Basegmez et al., 2017) (Table 2.1). 

This is a green technology method for the recovery of high-value fractions. This process is rapid, 

automatable, selective, non-flammable, involves no toxic solvents, does not allow exposure to light 
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or oxygen during extraction, and produces solvent-free extracts and residues (Basegmez et al., 

2017). As the name implies, SFE-CO2 involves the use of carbon dioxide, which is of low toxicity 

and generally recognized as safe (GRAS) by the Food and Drug Administration (Basegmez et al., 

2017). Another study utilized performed ultrasound-assisted extractions (UAE) of BC pomace by 

using water acidified with citric acid (Archaina et al., 2017). In this work, it was documented that 

UAE is a viable method for the extraction of bioactive compounds from BC pomace. Furthermore, 

in this same study, the investigators used a maltodextrin carrier matrix to spray dry the extracts.  It 

was concluded in this research that the obtained powder maintained high levels of total ANC and 

total phenolic contents (63.01 ± 1 mg eq C3G/100 g dry material and 116.87 ± 5 mg eq gallic 

acid/100 g dry material, respectively) (Archaina et al., 2017). Conventional drying methods, such 

as convective drying, freeze-drying, and microwave vacuum drying, offer less expensive 

alternatives to SFE- CO2 for the recovery and use of BC pomace, however, they do have some 

limitations. It was discovered that the dehydration of BC pomace by freeze-drying reduced the 

total phenolics by 76% and with convective drying (90°C) by 90% compared to fresh pomace 

(Michalska et al., 2017). Interestingly, samples that were dried using convection exhibited the most 

significant  decrease in total flavonols when dried between 50°C and 60°C (Michalska et al., 2017). 

The use of BC pomace (BCP) as a means of adding I to processed foods offers an attractive 

incentive for BC producers and processors alike. A recent characterization study on BCP sourced 

from two different countries (Lucozade-Ribena-Suntory, UK and GreenField Natural Ingredients, 

Warsaw, Poland) reported that 25-30% of BCP is soluble dietary I (SDF) (e.g., pectin and some 

hemicelluloses), while approximately 47% is insoluble dietary I (IDF) (e.g., cellulose or lignin) 

(Alba et al., 2018). Pure IDF was measured as being approximately 61%. Ratios for IDF/SDF were 

calculated for the BC from the UK and the BC from Poland as 1.9 and 1.6, respectively (Alba et 
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al., 2018). The main cell wall component noted in this research was Klason lignin, which was the 

major insoluble I in both BCP (Alba et al., 2018). This characterization of BCP was preceded by 

fractions of constituent soluble and insoluble fractions followed by extractions of pectins (acid-

soluble and calcium-soluble), alkali-soluble lignin, alkali-soluble hemicelluloses, and cellulose 

(Table 2.1) (Alba et al., 2018). This study confirmed that downstream waste from BC processing 

could be fractioned, used as food ingredients for added benefits, and potentially increasing the 

ability to make health claims.  Another study was able to demonstrate how BC pomace (skins and 

other solid material that remain after juice processing) can be used to create hair dyes that are an 

intense blue color by employing entirely sustainable technology (Rose et al., 2018). It should also 

be noted that the resulting colorant was entirely biodegradable, which is attractive for consumers 

(Rose et al., 2018). A similar study found an environmentally friendly way to extract ANC  from 

BC waste to be used as colorants (Farooque, Rose, Benohoud, Blackburn, & Rayner, 2018). 

2.6 Health Benefits of Bioactive Compounds from Blackcurrant 

 Xu et al. (2018) characterized the effects of ultrasound irradiation on the bioactivities of 

BC polysaccharides. During this characterization process, three different BC polysaccharide 

solutions were assessed for the effects from ultrasound treatments and its impact on antioxidant 

activity, free radical scavenging activities, inhibition of lipid peroxidation, protection from DNA 

damage and the inhibition of α-amylase and α-glucosidase activities. It was concluded that the 

higher wattage of ultrasound power produced a higher reducing sugar content along with improved 

thermal stability. While there was an increase in reducing sugar content, six species of 

monosaccharides (galacturonic acid, galactose, mannose, glucose, arabinose, and rhamnose) were 

found in the treated sample. The same six monosaccharides were also found in the control 

suggesting that the ultrasound treatments did not produce any significant structural changes. 
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However, the study concluded that ultrasound irradiation improves the antioxidant capacity, and 

the percent inhibitions of both α-amylase and α-glucosidase, likely because there was a 

degradation of polysaccharides present. The degraded polysaccharide U-600 W (Mw = 1.32 x 104 

kDa) ultrasound treated sample exhibited the best results for all assays performed when compared 

to the polysaccharide which received a lower wattage treatment.   

Ashigai et al. (2018) demonstrated the effectiveness of oral intake of BC cassis polysaccharide on 

reducing skin dehydration caused by ultraviolet light in mice. They also reported decreases on 

markers of inflammation, such as those of interleukin-6 and matrix metalloprotein transcription 

levels in the skin of hairless mice. 

 BC are high in ascorbic acid (50-280 mg / 100 g or 300 mg/100 mL of juice), this together 

with a high flavonoid content bolsters the antioxidant capacity of the berries and increases their 

potential to promote health benefits (Bladé et al., 2016; Castro-Acosta et al., 2016; Lee et al., 2015; 

Nour et al., 2013; Woznicki et al., 2017). By comparison, BC have a much higher concentration 

of ascorbic acid than both raspberries and blueberries (Bender et al., 2017). According to Nour et 

al. (2013), ascorbic acid concentration can be found in a range from 50 to 280 mg/100 g FW, 

adding to the attractiveness of BC for the food and beverage industries. Not only is ascorbic acid 

an antioxidant, but it also facilitates the biosynthesis of collagen, and aids in the production of 

some peptide hormones (Woznicki et al., 2017). The antioxidant properties of BC are attributed to 

the polyphenols (which include ANC and PAC) present in the flesh and skin of the berries. 

Polyphenols are known to be responsible for the scavenging, or trapping, of free radicals, which 

are responsible for oxidative stress. Results from the study by Nour et al. (2013) indicated that 

there was a high correlation (r = 0.85) between antioxidant activity and the total concentration of 

ANC (Table 2.4). Generally speaking, ANC are supposed to increase the antioxidant capacity; 
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however, BC exhibit a lesser antioxidant capacity than both blackberries and blueberries (Lee et 

al., 2015). This reduced antioxidant capacity in BC can likely be attributed to the presence of other 

polyphenols that are not ANC such as phenolic acids, PAC, tannins, and flavonoids (Lee et al., 

2015). Additionally, the lower antioxidant capacity of BC could be attributed to the specific 

structures of the ANC present and perhaps steric hindrance by glycones attached to the B-ring (Lee 

et al., 2015). A different study found that the antioxidant capacity can be increased by first 

completing a mash enzymatic maceration of the berries (Bender et al., 2017). It has recently been 

reported that BC extracts were able to produce hypocholesterolemic effects in mice with diet-

induced obesity (Benn et al., 2014; Kim et al., 2018) (Table 2.4).  A separate study was conducted 

to evaluate the effects of BC extracts on mRNA and protein expression of genes of Caco-2 cells, 

which are human epithelial colorectal adenocarcinoma cells (Kim et al., 2018). This study 

demonstrated that BC extracts increased low-density lipoprotein receptors (LDLR) without any 

changes to the cell mRNA. Overall, the data suggested that BC extracts increased the transport of 

cholesterol via the enterocytes, which suggests that the BC extracts play a part in the 

hypocholesterolemic effects (Kim et al., 2018). The exact mechanism of action was not determined 

in this study, which means that further in vivo studies are needed to characterize the mechanisms. 

A significant decrease in mean arterial pressure and total peripheral resistance in 15 endurance-

trained male cyclists that received 600 and 900 mg BC extract supplement per day during 2 h of 

prolonged exercise (Cook, Myers, Gault, Edwards, & Willems, 2017) (Table 2.4). In a separate 

study, the mean fat oxidation in endurance-trained females increased by 27% during 120 min of 

moderate-intensity cycling when ingested 600 mg/day of blackcurrant extract in comparison to 

placebo ( Strauss, Willems, & Shepherd, 2018).  
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 In addition to being able to affect cholesterol levels positively, BC have been reported to 

lower blood glucose levels and ameliorate glucose tolerance in both mice and rats, and also to 

decrease postprandial blood glucose concentrations in humans (Iizuka et al., 2018). A recent study 

reported that dietary forms of blackcurrant extracts (BCE), which are heavily concentrated with 

delphinidin 3-rutinoside (D3R), can significantly reduce blood glucose levels and improve glucose 

tolerance in type 2 diabetic mice (Iizuka et al., 2018). The mechanistic changes that produced these 

effects were due to an increased secretion of glucagon-like peptide-1 (GLP-1) in plasma. Also, it 

was due to the upregulation of intestinal prohormone convertase 1/3 (PC1/3) expression and the 

activation of adenosine monophosphate-activated protein kinase (AMPK) mediated translocation 

of the insulin-regulated glucose transporter (Glut4) in the skeletal muscle of type 2 diabetic mice 

(Iizuka et al., 2018).  

 It was reported by Nanashima et al. (2018) that treatments with BCE increased collagen, 

elastin and hyaluronic acid in human skin fibroblasts and ovariectomized rats. This study used 

normal human female skin fibroblast cells (TIG113), OVX female Sprague-Dawley rats (12 weeks 

old) which had their ovaries removed to simulate menopausal women, and sham surgery rats 

(Nanashima et al., 2018). The TIG113 cells were treated with blackcurrant extracts (BCE) with 

1.0 µg/mL for microarray gene expression profiling and either 1.0 µg/mL or 10.0 µg/mL for 

reverse phase polymerase chain reaction (RT-qPCR) assays. The rats were fed AIN-93M diets, 

with and without 3% BCE (Nanashima et al., 2018). Results from this study indicated that TIG113 

cells that were exposed to BCE had similar effects to TIG113 cells that have been exposed to 

estradiol. The results from the OVX rat study indicated that the thickness of the collagen was 

significantly greater in those treated with 3% BCE (1156 ± 36 µm) and in sham rats (845 ± 36 µm) 

(Nanashima et al., 2018). Therefore, it was made evident that BCE, particularly the four major 
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compounds (D3G, D3R, C3G, and C3R) in BCE, produce phytoestrogen effects, which are 

favorable for the skin (Table 2.4).  

2.7 Summary and Perspectives 

 There is an increased interest in blackcurrants in the US because of their unique flavor and 

biological characteristics (Table 2.5). Various reports have concluded that there are four major 

anthocyanins present in blackcurrants (rutinoside and glucoside forms of delphinidin and cyanidin) 

while other anthocyanins may be present in much smaller concentrations. Further evaluations are 

needed to examine and document the differences in bioactive compounds in all known cultivars 

and varieties of blackcurrants.  The characteristic bitter and astringent flavors in blackcurrants can 

be attributed to proanthocyanidins with the intensity of the taste being determined by the mean 

degree of polymerization of the compounds. While proanthocyanidins are known to promote 

health (up to a certain molecular size) more research is needed to understand how to overcome the 

challenges that astringency and bitterness present for the formulation of desirable food products 

without the addition of sugar. Furthermore, it is equally important that the solution to this issue 

does not negate the health benefits of these complex compounds. It is not only the berries that have 

industrial uses, but also the pomace from which extractions can be made to produce natural 

pigments to be used as food additives. These products are in demand by consumers and can also 

minimize environmental impacts. Extractions of anthocyanins and other bioactive compounds 

yield significant concentrations depending on the method, and there is a need to develop additional 

green and food safe methods for blackcurrants. Drying methods, particularly freeze-drying and 

convection drying, significantly reduce the concentration of phenolics in blackcurrants. This also 

presents a gap in knowledge which needs to be addressed to preserve the beneficial aspects of 

these healthful fruits. Current research has demonstrated that blackcurrants have great potential to 
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improve overall health particularly with diseases associated with inflammation and regulation of 

blood glucose. The use of blackcurrants in the cosmetics industry is also attractive due to their 

ability to activate estradiol pathways and decrease the appearance of wrinkles on the skin. 

Concentrations of anthocyanins and other bioactive compounds are dependent on the genetics and 

growing conditions of the berries. However, BC exhibited much higher levels of phenolic 

compounds when grown in cooler climates. More research is needed to fully understand the 

breadth of health benefits to be gained from blackcurrants and how these berries can be 

incorporated into foods. 
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2.8 Tables and figures 

Table 2.1. Extraction methods, solvents, and compounds to obtain phenolics from blackcurrants 

Extraction Methods and 
Starting Materials 

Solvents Compounds Extracted References 

Whole fresh blackcurrant 
berries were macerated. 

Phenomenex Gemini C18 (150 
x 4.60 mm, 3 µm) column, 
protected with Phenomenex 

security guard column 

Food grade ethanol (40%, 
60%, or 96%), 1% formic 

acid with 5% acetonitrile in 
water, 100% acetonitrile 

Delphinidin 3-glucoside, delphinidin 3-
rutinoside, cyanidin 3-glucoside, cyanidin 3-

rutinoside, petunidin 3-rutinoside, 
pelargonidin 3- rutinoside, peonidin 3-
rutinoside, petunidin 3-(6-coumaroyl) 

glucoside, and cyanindin 3-(6-coumaroyl) 
glucoside 

Nour et al., 
2013 

Whole freeze-dried 
blackcurrant berries. Sep.-Pak 
C18 Plus Short SPE cartridge 

(Waters, Milford, MA) 

80% (v/v) aqueous methanol 
solution with 0.1% HCl & 

rinses of water, ethyl acetate, 
and acidic MeOH 

Delphinidin-3-O-rutinoside (55.2%), cyanidin-
3-O-rutinoside (23.2%), and delphinidin-3-O-

glucoside (18.8%) 

Lee et al., 
2015 

 

Blackcurrant Juice Acidified MeOH, ethyl 
acetate 

Delphinidin glycosides, cyanidin glucosides, 
glucosides of anthocyanins, rutinosides of 

anthocyanins, anthocyanin degradation 
products, flavonol glycosides, flavonol 

aglycones, myricetin glycosides, quercetin 
glycosides, kaempferol glycosides, 

isorhamnetin glycosides, glucosides of 
flavonols, rutinosides of flavonols, and various 

hydroxycinnamic acids 

Mäkilä et 
al., 2017 

Blackcurrant Pomace. SFE-
CO2; Helix 1 SFE system with 
a 50 mL stainless cylindrical 
extractor vessel (id = 14 mm, 
length = 320 mm) filled with 

15g BC pomace, Soxhlet 

SFE-CO2, hexane, acetone, 
ethanol:water, pressurized 
ethanol, pressurized water 

Fatty acids (myristic, palmitic, palmitic, 
palmitoleic, heptadecanoic, stearic, oleic, 

linolelaidic, linoleic, arachidic, γ-linolenic, 
cis-11, 14-eicosenoic, linolenic, cis-11, 14-

eicosadienoic, behenic, cis-11, 14,17-
eicosatrienoic, lignoceric) 

Basegmez 
et al., 2017 
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Table 2.1 (cont.)    

Extraction Methods and 
Starting Materials 

Solvents Compounds Extracted References 

Blackcurrant Pomace. 
Separation by centrifugation 

HCl/KCl buffer (ph 2.0, 
0.1M), 95% ethanol, 

isopropanol, deionized water 

Acid-soluble pectins Alba et al., 
2018 

Blackcurrant Pomace. 
Separation by centrifugation 

0.25% w/v ammonium 
oxalate (pH 4.6) (solid to 

liquid ratio 1:40) 

Calcium-bound pectins Alba et al., 
2018 

Blackcurrant Pomace. 
Separation by centrifugation 

6% v/v H2O2 (60 pH 11.5) 
and 3 g L-1 of NaBH4 (solid 

to liquid ratio 1:20) 

Alkali-soluble lignin, alkali-soluble 
hemicelluloses, cellulose 

Alba et al., 
2018 

Solid-phase extraction 
(Amberlite XAD-7HP (120 g) 

column, rotary evaporator, 
high vacuum 

Acidified water (0.01% v/v 
HCl), acidified ethanol 

(0.01% v/v HCl) 

Blackcurrant skins yielded a blackcurrant 
extract (amorphous violet solid or purified 

blackcurrant extract) 

Cruz et al., 
2018 

Blackcurrant Pomace. Solid-
phase extraction (Amberlite 

XAD-7HP, 60g). 

Water acidified with 0.01% 
v/v HCl 

Dark violet amorphous solid Rose et al., 
2018 

Blackcurrant Pomace. Fruit to 
solvent ratio = 1:3. 

Ultrasound-assisted extraction 
with an amplitude range 

between 0 and 100% 
(UP100H, Teltow, Germany), 

0.50, 5.25, and 10 min. 

Water, 50:50 water with 
ethanol (96%), (85:15) water 
with citric acid (1 M, 2 M, 

1.5 M, 3.0 M), (85:15) 
ethanol and HCl (1.5 M) 

Sonicated extract Archaina et 
al., 2017 

Blackcurrant Skins. Separation 
with Buchner funnel loaded 
with RP-C18 silica gel and 

lyophilization 

Dissolved in 100 mL 
acidified water (2% HCl), 

extracted with ethyl acetate 
(3 x 100 mL), elution solvent 
( water/methanol 70:30 (v/v) 

and acidified (2% HCl) 

Purified blackcurrant extract (amorphous 
violet solid) yielded a dark red solid 

Cruz et al., 
2018 
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Table 2.2. Color Parameter Measurements of Commercially Available Blackcurrant Beverages. 
* Black Box Cabernet Sauvignon red wine added for a comparison between blackcurrant products and a red wine. Ribena was diluted 1:4 with water. 

Beverage Manufacturer and Origin Ingredients L* a* b* Hue Angle Chroma Color Square 

Mathilde Cassis Ars-sur-Formans, France Noir de Bourgogne, Blackdown 16 38 20 28 ± 0.1 43 ± 0.01 
 

Briottet Crème de 
Cassis Dijon, France Blackcurrants, sugar, alcohol 11 32 13 22 ± 0.01 34 ± 0.0  

Cassis Lambic Vlezenbeek, Belgium 
Barley, unmalted wheat, 
blackcurrant juice, aged hops, 
wild airborne yeast. 

47 36 47 53 ± 0.02 60 ± 0.04 
 

Pomona Kir Pamona, IL Blackcurrants, Southern Illinois 
apples 60 31 53 60 ± 0.02 61 ± 0.04  

Cider Kir Nelson, New Zealand 

Carbonated cider, 84% apple 
juice, 10% blackcurrant (Upper 
Moutere) juice, 5% water, 1% 
cane sugar, ascorbic acid 

39 47 46 44 ± 0.02 66 ± 0.01 

 

Wasosz Beer Konopiska, Poland Water, pilsner malt, caramel malt, 
hops, yeast, currant juice 60 24 42 60 ± 0.04 49 ± 0.0  

Black Mead White Winter Winery, Iron 
River, WI 

Honey, blackcurrant, natural 
flavors 29 40 42 47 ± 0.02 58 ± 0.01  

Ribena 
Stockley Park, Uxbridge 
(England) 
 

Water, sugar, blackcurrant juice 
from concentrate (23%), citric 
acid, vitamin C, preservatives 
(potassium sorbate, sodium 
bisulphite), color (anthocyanins) 

69 35 17 26 ± 0.01 39 ± 0.0 

 

Fortuna Czarna 
Porzeczka Nektar 

Warsaw, 
Poland 

Water, blackcurrant juice from 
concentrate, sugar, natural 
blackcurrant flavor 

27 44 38 40 ± 0.01 58 ± 0.0 
 

Black Box 
Cabernet 
Sauvignon* 

Madera, CA Red wine from grapes 13 35 15 23 ± 0.01 38 ± 0.01 
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Table 2.3. Examples of processing methods, treatments, and changes in composition of 
blackcurrant juice. 

Processing methods Treatments Changes in 
composition References 

Enzymatic maceration Pectinase 714L, 
Biocatalysts Ltd., 

Cardiff, UK (dosage= 
57 mg of enzyme/380 

g of berry mash 

Increase in mDP 
(increases astringency 

and bitterness) 

Mäkilä et al., 
2017 

Heat and enzymatic 
treatments 

50°C, 85°C, Pectinex® 
Ultra Color 

Heat treatment had no 
effect on juice yield, 
enzymatic treatment 
reduced turbidity and 

viscosity 

Bender et al., 
2017 

Enzymatic maceration Pectinase 714L, 
Biocatalysts Ltd., 

Cardiff, UK (dosage= 
57 mg of enzyme/380 

g of berry mash 

Increase in 
procyanidins and 
prodelphinidins 

(dimers and trimers) 

Laaksonen et al., 
2015 

* All enzymatic treatments increased overall juice yields. Mean degree of polymerization (mDP) 
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Table 2.4. Examples of health benefits and associated compounds found in blackcurrant products 

Each sample description may also represent an extract from that particular source material. 

 

 

Sample 
description 

Compounds Properties Beneficial to Health References 

Whole berry 
and juice Phenolic compounds (Cyanidin 3-

glucoside, cyanidin 3-rutinoside, 
delphinidin 3-glucoside, 

delphinidin 3-rutinoside) and 
ascorbic acid 

1. Antioxidant (reduction in oxidative 
stress by scavenging of free radicals) 
(biochemical),           
2. anti-inflammatory (in vitro),     
3. hypocholesterolemic (mice & rats), 
4. increase in cellular LDL uptake, 
decrease postprandial blood glucose 
5. phytoestrogenic (in vitro), ameliorate 
glucose tolerance (mice & rats), (humans), 
6,7. increases fat oxidation (humans),                      
8. biosynthesis of collagen and production 
of some peptide hormones  

1. Bender et al., 2017; 
2. Benn et al., 2014; 
3. Cook et al., 2017; 
4. Kim et al., 2018; 
5. Nanashima et al., 2018;            
6. Nour et al., 2013; 
7. Strauss et al., 2018; 
8. Woznicki et al., 2017 

Seeds Gamma linoleic acid Antioxidant (reduction in oxidative stress 
by scavenging of free radicals) 

(biochemical), potential attenuation of 
inflammatory responses 

Nour et al., 2013; Sergeant, 
Rahbar, & Chilton, 2016 

Leaves Phenolic compounds (gallic, 
chlorogenic, caffeic, p-coumaric, 

feulic, sinapic, salicylic) and 
flavonoids (rutin, myricetin, 

quercetin) 

Diaphoretic, diuretic, anti-inflammatory 
(biochemical) 

Nour et al., 2013 
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Table 2.5. Examples of blackcurrant products. 

*All prices listed were obtained in 2017 

 

Name Type of 
Product Origin Ingredients Health Claims Price in 

US Dollars 

Monin blackcurrant 
syrup 

Premium 
gourmet 

syrup 

Clearwater, 
FL  

Pure cane sugar, water, 
natural blackcurrant 

flavor 

None $9.95  for 
750 mL 

glass bottle 
St. Dalfour 

blackcurrant all 
natural fruit spread 

Fruit spread Chambord, 
France 

Blackcurrants, 
concentrated grape juice, 

fruit pectin 

None $9.89 for 
283.5 g 

Pepsi Co 1893 
blackcurrant cola 

Soda/soft 
drink 

Purchase, 
NY USA 

Carbonated water, sugar, 
caramel color, natural 

flavor, phosphoric acid, 
sodium citrate, potassium 

sorbate, caffeine, gum 
Arabic, kola nut extract 

None $1.79 for 
355 mL 

Gabriel Boudier 
crème de casis 

Liqueur Dijon, 
France 

Blackcurrants, ethanol, 
sugar 

None $32.99 for 
375 mL 

Ribena blackcurrant 
concentrate and 
ready to drink 

beverages 

Drink Uxbridge, 
England 

Water, sugar, 
blackcurrant juice from 

concentrate (6%), vitamin 
C, citric acid, color 

(anthocyanins) 

Daily dose of 
vitamin C 

$1.66 for 1 
L 

Harney and Sons 
Fine Teas 

blackcurrant tea 

Tea New York, 
USA 

Black tea, currants, 
blackcurrant flavor, 

contains natural flavors 

None $5.99 for 40 
g 

Standard Process 
blackcurrant seed 
oil supplements 

 
*Not FDA 
approved 

Nutritional 
supplements 

Wisconsin, 
USA 

Blackcurrant seed oil, 
gamma-linolenic acid, 
gelatin, glycerin, water 

Encourages 
proper eicosanoid 

synthesis, 
supports the 

body’s normal 
tissue repair 

process, supports 
normal blood 
flow, supports 

healthy immune 
system function 

$16.50 for 
60 perles 
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Cyanidin 3-O-glucoside                        Delphinidin 3-O-glucoside 

 

                         

                 

Cyanidin 3-O-rutinoside      Delphinidin 3- O-rutinoside 

 

Figure 2.1. The four main anthocyanins found in blackcurrants.  
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Figure 2.2. Chemical structures of proanthocyanidins and their constituents. 
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Figure 2.3. Reported HPLC characterization of blackcurrants before and after pectinase 

treatment. Buchert et al., 2005   

HPLC chromatograms (520 nm) 
of anthocyanins in black currant 
juices: (a) reference juice (no 
enzyme treatment); (b) enzyme-
treated (Pectinex BE-3L) juice. 
Peak identification:  
1. Delphinidin 3-O-glucoside,  
2. Delphinidin 3-O-rutinoside,  
3. Cyanidin 3-O-glucoside,  
4. Cyanidin 3-O-rutinoside. 
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CHAPTER 3: HYPOTHESIS AND OBJECTIVES 

3.1 Long-term goal 

 To provide information about the differences between blackcurrant cultivars and potential 

uses, particularly as natural pigments with the value-added benefit of having beneficial bioactive 

compounds. 

3.2 Central hypothesis 

 Bioactive compounds present in blackcurrants can be extracted using a 2 h, water-based 

ultrasound-assisted method, and that anthocyanins and other phenolic compounds from both fresh 

berries and fermented berries can inhibit enzymes related to type-2 diabetes. 

3.3 Overall objective 

 To characterize the components of four varieties of BC and their effect on the activities of 

α-amylase, α-glucosidase, dipeptidyl peptidase IV (DPPIV), and their 2, 2-diphenyl-1-

picrylhydrazyl (DPPH·) radical scavenging capacity after water-based ultrasound-assisted 

extraction, treatment with pectinase, and fermentation. 

3.4 Specific aims 

 Aim 1: To determine the effect of a water-based ultrasound-assisted extraction method on 

concentration of anthocyanins, and other phenolic compounds, from blackcurrants (Figure 3.1a). 

 Aim 2: To characterize four different cultivars of BC berries (Titania, D16-6-54, Consort, 

and D16-8-14) and their parts (juice, seeds, and skins) and compare anthocyanins, condensed 

tannins, and polyphenol concentration of the BC. In addition, their effect on the activities of α-

amylase, α-glucosidase, dipeptidyl peptidase IV (DPPIV), and their 2, 2-diphenyl-1-
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picrylhydrazyl (DPPH·) radical scavenging capacity after water-based ultrasound-assisted 

extraction (Figure 3.1b). 

 Aim 3: To determine the effect of a pectinase treatment and the fermentation of BC mash 

on concentrations of anthocyanins, total condensed tannins, or total polyphenols. In addition, their 

effect on the activities of α-amylase, α-glucosidase, dipeptidyl peptidase IV (DPPIV), and their 2, 

2-diphenyl-1-picrylhydrazyl (DPPH·) radical scavenging capacity after water-based ultrasound-

assisted extraction.  
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3.5 Figures  

Figure 3.1a. Aim 1 and Aim 2 Experimental Design      

 
 

 

Figure 3.1b. Aim 3 Experimental Design 
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 CHAPTER 4: CHARACTERIZATION OF BLACKCURRANT BERRIES (Ribes nigrum) 

AND THE EVALUATION OF THEIR BIOACTIVE COMPOUNDS AFTER 

ULTRASOUND-ASSISTED WATER EXTRACTIONS, ENZYMATIC TREATMENT, 

AND FERMENTATION 

4.1 Abstract  

 The aim was to characterize the chemical composition of four varieties of blackcurrants 

(BC), and the whole berries in comparison to the parts, after a water-based ultrasound-assisted 

extraction. Their α-amylase, α-glucosidase, and dipeptidyl peptidase IV (DPPIV) inhibitory 

potentials were also evaluated. BC varieties (Titania, D16-6-54, Consort, and D16-8-14) were 

dissected into parts (juice, seeds, skins), treated with pectinase, and fermented. The highest 

concentration of total anthocyanins (ANC) were found in the skins of Titania, Consort, and D16-

8-14 (19.0 ± 2.0, 19.7 ± 2.7, and 20.3 ± 3.5 mg eq C3G/g dry weight, DW, respectively). The 

largest concentration of total polyphenols (TP) was in the seeds of Titania and D16-8-14 (34.4 ± 

1.3, and 34.6 ± 0.5 mg eq GA/g DW, respectively). Condensed tannins had the largest 

concentration in the skins of all BC. LC-ESI-MS analysis detected three anthocyanins in all four 

cultivars and parts (delphinidin 3-O-rutinoside, delphinidin 3-O-glucoside, and cyanidin 3-O-

rutinoside). In general, juice, whole, and skins, had the lowest IC50 (mg/g of whole dry fruit or 

DW) of all cultivars for α-amylase. Dealcoholized wine-mix- 15 °C had the lowest IC50 for α-

glucosidase across all cultivars, parts, and fermented products. During pectinase treatment, 

positive correlations were found between heating time (min) at 52 °C and total tannins (TT) and 

TP (r=0.725 and r=0.731, respectively, p=0.05).  

This chapter, with modifications, will be submitted for publication: Cortez, R., Berhow, M., 
& de Mejia, E.G. (2019). Food Research International. 
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Fermentation increased ANC approximately 5 times. UAE is a viable method for the extraction of 

ANC from BC and offers the food industry a value-added alternative to synthetic food colorants. 

The present research also offers valuable information on the chemical differences among four 

cultivars of blackcurrants, their parts, and their potential biological activities. 

4.2 Introduction 

 Blackcurrants (BC) (Ribes nigrum) are berry fruits which are known to have properties 

beneficial to human health. BC species are woody shrubs that thrive in temperate climates and 

produce dark purple berries. They are native to northern Europe, northern Asia, and  widely 

cultivated in New Zealand (Corrigan, Hedderley, Langford, & Zou, 2014; Törrönen et al., 2012). 

Over the past decade, BC have grown  in popularity, particularly in the United States (US), because 

of their unique flavor, appearance and  potential health benefits (Millar, 2014; Mortimer, 2014).   

BC contain bioactive compounds (polysaccharides, unsaturated fatty acids, flavanols, 

anthocyanins and vitamins) that have  potential health  benefits such as reducing  the incidence  of 

non-communicable diseases such as type 2 diabetes (Shaw, Nyanhanda, McGhie, Harper, & Hurst, 

2017). Anthocyanins (ANC), the compounds that give BC their color, are water-soluble glycosides 

and acylglycosides of anthocyanidins in the form of polyhydroxylated and polymethoxylated 

heterosides derived from flavylium or 2-phenylbenzopyrilium ions (de Mejia et al., 2015). The 

colors of anthocyanins are dependent on the acylation, substitutions in the B-ring of the aglycon; 

ANC are red at an acidic pH, colorless at pH ~4, and blue in neutral pH ranges (Cortez, Luna-

Vital, Margulis, & Gonzalez de Mejia, 2017). Delphinidin 3-O-rutinoside, one of the main ANC 

present in BC, has been reported to improve glucose tolerance (Tani, Nishikawa, Kato, & Tsuda, 

2017). This is because berries, which contain a  high concentration of phenolic compounds, can  

inhibit  starch degrading enzymes such as α-amylase and α-glucosidase making them an option for 
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the management of type 2 diabetes by reducing glucose absorption (Castro-Acosta et al., 2017; 

Fan, Johnson, Lila, Yousef, & De Mejia, 2013). Similarly, dipeptidyl peptidase IV (DPPIV) has 

been considered a pharmaceutical target for the treatment of type 2 diabetes due to  its incretin 

hormone regulatory effects (Fan et al., 2013). Previous studies have established that phenolic 

compounds, specifically ANC, from different berry species have the ability to inhibit the 

proteolytic cleavage activities of the DPPIV enzyme (Fan et al., 2013).  

The antioxidant capabilities of ANC from berries are often evaluated by analyzing their DPPH· 

(2, 2-diphenyl-1-picrylhydrazyl) radical scavenging activity. It is important to examine how BC 

are capable of scavenging free radicals and thus understand their potential to relieve oxidative 

stress as an added health benefit.  

While BC commercial products, especially beverages, are quite common in Europe and other 

parts of the world, they are not in the US. A challenge, and probably an opportunity, to the food 

industry is that BC tend to be much bitterer than other berries such as blackberries, blueberries and 

strawberries. The mean degree of polymerization of proanthocyanidins (condensed tannins), or the 

average number of flavan-3-ol monomeric units present, dictates the level of perceived bitterness 

and astringency in BC (Laaksonen, Salminen, Mäkilä, Kallio, & Yang, 2015).  

Nine individual ANC (delphinidin 3-O-glucoside, delphinidin 3- O-rutinoside, cyanidin 3- O-

glucodside, cyanidin 3- O-rutinoside, petunidin 3- O-rutinoside, pelargonidin 3- O-rutinoside, 

peonidin 3- O-rutinoside, petunidin 3-(6-coumaroyl)-glucoside and cyanidin 3-(6-coumaroyl)-

glucoside) have been  detected in BC through the use of ethanolic extracts (Nour, Stampar, 

Veberic, & Jakopic, 2013). Of the reported studies of BC, organic solvents have been used to 

obtain the extracts. To our knowledge, the present research is the first determination of ANC from 

BC using a strictly water-based ultrasound-assisted extraction (UAE). The current knowledge 
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about BC is limited, therefore research is needed to fully understand BC and unlock their biological 

potential. The objective was to characterize the whole fruit, and its component parts, of four 

varieties of BC and their effect on the activities of α-amylase, α-glucosidase, DPPIV, as 

biochemical markers of diabetes. In addition, the antioxidant capacity was measured using 2,2- 

diphenyl-1-picrylhydrazyl (DPPH·), after water-based ultrasound assisted extraction, treatment 

with pectinase and fermentation.  

4.3 Materials and methods 

4.3.1 Chemicals 

 Standards for HPLC analysis were purchased from Alkemist Laboratories (Garden Grove, 

CA).  Their purities were as follows: tulipanin chloride (delphinidin 3-O-rutinoside, D3R) ≥

95%, myrtillin chloride (delphinidin 3-O-glucoside, D3G) ≥ 95%,  keracyanin chloride (cyanidin 

3-O-rutinoside, C3R) ≥ 96%, and kuromanin chloride (cyanidin 3-O-glucoside, C3G) ≥ 96% . 

Pectinex® Ultra Color (EC 3.2.1.67 – galacturan 1,4-alpha-galacturonidase) was purchased from 

Novozymes North America (Franklinton, NC). Lavlin 71B (Saccharomyces cerevisiae, I.N.R.A -

Narbonne), Go-Ferm Protect Evolution TM , and Fermaid K were purchased at www.amazon.com. 

DPPIV assay kits were purchased from Promega (Madison, WI). All other chemicals and reagents 

were purchased from Sigma Aldrich (Saint Louis, MO) unless otherwise stated. 

4.3.2 Blackcurrant berries 

 Titania, D16-8-14 and D16-6-54 BC cultivars were purchased from Highland Valley Farm, 

(Bayfield, WI, http://www.bayfieldblues.com/), located at latitude 46.832891 and longitude -

90.67736. The Consort variety was grown at the South Farms of the University of Illinois at 

Urbana-Champaign and kindly provided to us by the Department of Crop Sciences. The BC 
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growing season begins in autumn and the harvest is usually early to midsummer. According to US 

climate data, the average temperature in Bayfield, WI during the growing season ranged from 

average lows at 2.3 ℃ in October (2016), to -16.0 ℃ in January (2017), to 13.1 ℃ in July (2017). 

The average high temperatures ranged from 12.5 ℃ in October (2016), to -6.2 ℃ in January 

(2017), to 25.0 ℃ in July (2017). The average annual rainfall for the year was 851 mm. Weather 

conditions in Champaign, IL were warmer with average lows at 5.1 ℃ in October (2016), to -8.9 

℃ in January (2017), to 17.1 ℃ in July (2017). Average high temperatures in Champaign, IL were 

18.4 ℃ in October (2016), to 0.4 ℃ in January (2017), to 28.9 ℃ in July (2017) and the average 

annual rainfall was 1008 mm. All BC were received, frozen, and stored at -20 ℃ until use.  

4.3.3 Sample preparation  

 Samples were prepared by thawing 100 g of each variety of BC at 4 °C. The skins were 

manually separated from the berries and stored at -20 °C. The pulp was pressed through a 500 µm 

sieve and the juice collected and stored at -20 °C. Seeds that remained on top of the sieve were 

rinsed and sonicated with distilled and deionized water (DDI) for 45 min (water bath with ice) 

using a Branson 2510 Ultrasonic Cleaner (142 Watts, 40 kHz frequency transduction). The seeds 

were also stored at -20 °C. After all samples were thoroughly frozen and freeze-dried, they were 

then ground using a coffee grinder, mortar and pestle, and finally, passed through a 500 µm sieve 

(Figures 4.1, 4.2, 4.3, and 4.4).  

4.3.4. Pectinase treatment 

 Preliminary enzyme treatment studies were performed with equal parts of each cultivar 

(Titania, D16-6-54, Consort, and D16-8-14) mixed together in each of 12 bags (Figures 4.5 and 

4.6). The BC were then thawed at 4 ℃, then mashed by hand and preheated to 52 ℃. Pectinex® 
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Ultra Color was added at various doses (0, 400, 600, 800 mL/ton) to catalyze the hydrolysis of α 

(1→4)-linked D-galacturonic bonds. Samples of each enzyme dose were held at 52 ℃ for different 

periods of time 90, 120, and 150 min. The contents of each bag were poured into fine mesh nylon 

bags, which were then pressed. Each of the juices collected was then frozen at -20 ℃ and 

lyophilized. The remaining solid material was ground and 25.0 mg of each sample was dispersed 

into 10 mL of ultra-pure water. A water-based ultrasound-assisted extraction of anthocyanins was 

then conducted in an ice bath using a Branson 2510 Ultrasonic Cleaner (142 Watts, 40 kHz 

frequency transduction) for 2 h.  

4.3.5 Fermentation process 

 The frozen BC berries were first divided into 2 groups by separating the Consort (labeled 

as C) cultivar from the Titania, D16-6-54, and D16-8-14 cultivars (mixed batch, labeled as M). 

The Titania, D16-6-54, and D16-8-14 were all combined together for a total weight of 23.8 kg, 

and the total Consort weight was 9.0 kg. Both batches were divided into smaller portions in 

preparation for the enzymatic pre-treatment (Figure 4.7). The batch M was split into 15 bags, each 

with a mass of 1.6 kg. The C batch was split into 6 bags, each with a mass of 1.5 kg. All of the 

bags of BC were held at 4 °C to allow the berries to thaw. Next, all of the BC were mashed by 

hand while remaining in their bags. All of the bags of mashed BC were then heated to 52 °C using 

a water bath. After each of the bags of mash reached 52 °C, pectinase (Pectinex® Ultra Color) was 

added to each of the bags (600 mL/ton). The bags were removed from the water bath after 120 min 

and briefly held at 4 °C to allow the mash to cool. The cooled batches of BC mash were added to 

Cambro containers which were lined with fine mesh Eagle Brewing bags (BAG26, 29” x 29”). 

Go-Ferm Protect EvolutionTM (30 g/100 L) was added to 500 mL of ultra-pure water at 42 ºC to 

provide a combination of protective and nutritive benefits for optimal fermentation. Lavlin 71B 
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yeast (25 g/100 L) was added to the Go-Ferm Protect EvolutionTM solution when it cooled to 37 

ºC and was gently stirred. Fermaid K was added on the second day of fermentation according to 

the manufacturer’s instructions. Total º Brix of each batch was adjusted after the addition of water, 

with yeast and nutrients, by adding 1.8 – 13.5 g of white sugar to the mash.  No other sugar or 

water was added for the fermentation. Each of the batches (M and C) were fermented at both 15 

°C and 23 °C. The duration for all fermentations ranged between 14 and 21 days. All batches were 

mixed (“punched down”) twice a day during fermentation. After the fermentations stopped, juices 

were pressed out using the fine mesh bags and all of the pomaces were collected and also analyzed. 

All fermented juices were placed in glass carboys and airlocked for an additional 14 days and SO2 

(50 ppm) was added to prevent spoilage. All fermented juices were bottled and stored at 23 °C. 

BC enzyme treated samples (BCE), finished as is wine (AW), blackcurrant pomace (BCP), and 

dealcoholized wine (DA) were all lyophilized and kept at -20 °C until analysis (Figure 4.7). The 

remaining solid material was ground and 25.0 mg of each sample was dispersed into 10 mL of 

ultra-pure water. A water-based ultrasound-assisted extraction of anthocyanins was then conducted 

in an ice bath (0 °C) using a Branson 2510 Ultrasonic Cleaner (142 Watts, 40 kHz frequency 

transduction) for 2 h.  

4.3.6 Water-based ultrasound-assisted extraction 

 UAE is an ideal method for the extraction of ANC from BC because it is a green technology 

that requires less time, does not involve toxic solvents, requires less energy, and most importantly, 

is safer for human consumption (Galván D’Alessandro, Dimitrov, Vauchel, & Nikov, 2014; He et 

al., 2016). This extraction method is also faster and more efficient because the ultrasonic waves 

produce a cavitation effect in the solvent (water), which produces accelerated particle movement, 

and allows the solvent to better penetrate the material (He et al., 2016) (Figure 4.3). All freeze-
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dried samples were extracted by mixing 25.0 mg of dry material with 10 mL of ultra-pure water. 

This mixture was sonicated (142 Watts, 40 kHz frequency transduction) in an ice water bath for 

cycles of 2 h, centrifuged at 1853 g for 30 min, refrigerated and allowed to settle for approximately 

12 h. Aliquots of the resulting clear liquid were removed from the tubes and used as the 2 h BC 

extracts. Additional ultra-pure water was added to each of the pellets that remained in the sample 

tubes to a total volume of 10 mL.  They were then sonicated in an ice water bath for an additional 

2 h, centrifuged for 30 min at 1853 g and left to settle for approximately 12 h. Aliquots of the 

resulting clear liquid were removed from the tubes and used as the 4 h BC extracts. Ultra-pure 

water was added again to each of the remaining pellets from the previous extraction that remained 

in the sample tubes to a total volume of 10 mL. They were then sonicated in an ice water bath for 

an additional 2 h and centrifuged for 30 min at 1853 g and left to settle for approximately 12 h. 

Aliquots of resulting clear liquid were removed from the tubes and were used as the 6 h BC 

extracts.  UAE extracts were then stored at -20 ℃ and were analyzed within one week. The efficacy 

of water-based UAE of ANC was determined by extracting the same samples in 3 cycles of 2 h (6 

h total), until virtually no color was present (Figure 4.4).  

4.3.7 Colorimetric measurements 

 All colorimetric measurements were made using the CIELab L* a* b* color system as 

previously reported (Haggard et al., 2018). The CIELab L* a* b* color system is the most 

commonly used method to measure colors in foods because of the uniform distribution of colors 

and because it is the color space which is closest to the way in which humans perceive color (D. 

Wu & Sun, 2013). CIELab is also an established international standard for color measurements 

(D. Wu & Sun, 2013). This method has also been previously used to understand the colorimetric 
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properties of beverages, such as wines and others that use ANC extracts as natural pigments 

(Gordillo et al., 2014; Haggard et al., 2018).  

4.3.8 Quantification of total anthocyanins, total condensed tannins, and total polyphenols  

 The objective for the evaluation of total anthocyanins (ANC), total condensed tannins (TT), 

and total polyphenols (TP) was solely to quantify compounds after a water-based UAE based on 

the methods used, not the optimization of extraction of ANC, TP, or TT. The concentration of 

ANC was determined in triplicate using  an AOAC Official Method as described by a previous 

study (Lee et al., 2015). Absorbance was read at 520 and 700 nm using a Synergy 2 multi well 

plate reader (BioTek, Winooski, VT). ANC results were expressed as mg equivalents of cyanidin-

3-glucoside (C3G) per g of freeze-dried material (DW). Concentrations of total condensed tannins 

(TT), were obtained using the vanillin assay (Chen, Somavat, Singh, & Gonzalez de Mejia, 2017; 

Schofield, Mbugua, & Pell, 2001). All BC extracts were evaluated in triplicate. The absorbance 

values were then read at 500 nm, with a filter from 492 – 520 nm in a Synergy 2 multi well plate 

reader (BioTek, Winooski, VT). Catechin was used as the standard and results were reported as 

mg equivalents of catechin per g of freeze-dried material (DW). An equation (y = 0.302x – 0.03) 

for a standard curve with a range of catechin concentrations from 0.1 mg/mL to 0.8 mg/mL, was 

used to calculate the TT of each BC extract (r2 = 0.99). The concentration of TP was determined 

by the Folin-Ciocalteu method (Johnson, Lucius, Meyer, & Gonzalez De Mejia, 2011). 

Absorbance was read at 690 nm using a Synergy 2 multi well plate reader (BioTek, Winooski, 

VT). Results were expressed as mg equivalents of gallic acid per g of freeze-dried material (DW).  

Concentrations of TP were calculated using a standard curve of y = 0.018x + 0.044 (r2 = 0.99). 
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4.3.9 LC-ESI-MS analysis 

 BC extracts for LC-ESI-MS analysis were prepared by first dissolving 123.6 mg of 

lyophilized BC parts and whole (powders) in 4 mL of 0.1% HCl in methanol. The samples were 

then sonicated for approximately 1 h and then stored at 4 °C overnight. All samples were filtered 

using 0.45 µm, PVFD syringe filters before analysis. All BC extracts were evaluated using a 

Thermo Electron LTQ Orbitrap Discovery Mass Spectrometer (linear ion trap, LTQ XL) MS, 

coupled to a high precision electrostatic ion trap (Orbitrap) MS with a higher energy C-trap 

dissociation (HCD) cell attached, with an Ion Max electrospray ionization (ESI) source; a Thermo 

Scientific ACCELA series HPLC system (ACCELA 1250 UHPLC pump; ACCELA1 HTC cool 

stack autoinjector; and a ACCELA 80 Hz PDA detector); all running under Thermo Scientific 

Xcalibur 2.1.0.1140 LC-MS software. For the HPLC conditions, the column was a 3 mm x 150 

mm Inertsil reverse phase C-18, ODS 3, 3 µm column (Metachem, Torrance, CA). The 

anthocyanin analysis protocol used 10% methanol as the initial solvent water with 0.1% formic 

acid at a flow rate of 0.25 mL per min. After injecting 1 µL or less, the column was held at the 

initial conditions for 2 min, then developed with a linear gradient to 100% methanol and 0.1% 

formic acid over an additional 50 min. The column effluent was monitored at 520 nm with the 

PDA detector. Mass spectrometry was run with the ESI probe in the positive mode. The source 

inlet temperature was set to 300 ºC and the sheath gas rate was set at 50 arbitrary units while the 

auxiliary gas rate was set at 5 arbitrary units and the sweep gas rate at 2 arbitrary units. The 

maximal mass resolution was 30,000 and the spray voltage 3.0 kV, while the tube lens was 100 V. 

The MS was calibrated on a weekly basis, with a standard calibration mixture recommended by 

Thermo Scientific. Signal detection was optimized by running the auto tune software feature as 

needed. Other parameters were determined and set by the calibration and tuning process. The 
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software package was set to collect mass data between 100-2000 AMU and the most significant 

sample ions generated under these conditions were [M]+. 

4.3.10 HPLC analysis 

 All HPLC analysis of BC extracts were performed in triplicate using a Hitachi HPLC 

System (Hitachi High Technologies America, Inc. Schaumburg, IL) with a L-7100 pump and 

multi-wavelength detector according to a slightly modified protocol .7 The analysis was conducted  

using  an injection volume of 20 µL and a flow rate of 1 mL/min with helium bubbled mobile 

phases. A gradient from A. 2% formic acid in water and B. 0% acetonitrile to 40% acetonitrile in 

a linear fashion using a Hichrom Prevail 5 µL, 250 x 4.6 mm, C18-Select column for 35 min. ANC 

concentrations were determined with 7-point calibration curves from 0.005 mg/mL to 0.06 mg/mL 

for delphinidin 3-O-glucoside (D3G), delphinidin 3-O-rutinoside (D3R), cyanidin 3-O-glucoside 

(C3G), and cyanidin 3-O-rutinoside (C3R). Points were plotted as the area under the curve versus 

the concentration of standard for both C3G and D3G (r2 = 1.00 and r2 = 0.99, respectively).  Peaks 

from BC extracts and their corresponding compounds were verified by comparisons with current 

literature and the evaluation of pure standard compounds. Peaks were identified at 520 nm based 

on retention times for standards.(De Mejia et al., 2015) HPLC analysis of BC extracts were also 

performed at 280 nm for comparison and verification of phenolics. 

4.3.11 α-Amylase inhibition 

 Evaluation of α-amylase inhibition was conducted according to the following slightly 

modified method.24 Briefly, a negative extract control to account for any potential interference 

(500 µL BC extract + 1% starch solution + 96 mM 3,5-dinitrosalicylic acid solution, no enzyme 

added) was prepared. A positive extract control (no BC extract, 1% starch solution, α-amylase, 96 
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mM 3,5-dinitrosalicylic acid and phosphate buffer). A 500 µL BC extract or 1 mM acarbose (for 

comparison), a commonly used drug for management of type 2 diabetes,  were  added to each  test 

tube followed by 500 µL of α-amylase solution (0.02 M sodium phosphate buffer with 0.006 M 

sodium chloride and 13 U/mL of  α-amylase) and incubated at 25 °C for 3 min (Johnson et al., 

2013) A 1% soluble starch solution (500 µL) in 0.02 sodium phosphate buffer, pH 6.9 with sodium 

chloride was then added to each tube and incubated for an additional 3 min at 25 °C. The reaction 

was then stopped with 1.0 mL of dinitrosalicylic acid color reagent and then placed in a 100 °C 

water bath for 10 min. Each of the mixtures in the tubes was diluted 1:10 ratio with ultra-pure 

water. The absorbance was then measured at 540 nm using a Synergy 2 multi well plate reader 

(BioTek, Winooski, VT). An additional blank consisting only of ultra-pure water was also 

measured to aid in the calculation of results. The calculations for α-amylase results were adjusted 

taking into consideration any interference that may have been present and to provide a more 

accurate result. The calculation was as follows: 

% Inhibition = �AbsPositive Extract Control -
(AbsBC Extracts-AbsNegative Extract Control)

AbsPositive Extract Control 
�  × 100 

4.3.12 α- Glucosidase inhibition 

 BC extracts were analyzed for percent inhibition of α-glucosidase according to a slightly 

modified procedure.24 Briefly, 50 µL of BC extract, a blank (0.1 M phosphate buffer, pH 6.9), or 

1 mM acarbose (for comparison) was added to each well of  a 96 well plate, followed by 100 µL 

of α-glucosidase solution (1.0 U/mL in 0.1 M phosphate buffer, pH 6.9), then incubated at 25 °C 

for 10 min. Next, 50 µL of 5 mM p-nitrophenyl- α-D-glucopyranoside in 0.1 M phosphate buffer 

(pH 6.9) was added to each well and incubated for 5 min at 25 °C. The absorbance was read at 405 

nm using a Synergy 2 multi well plate reader (BioTek, Winooski, VT). The calculation for percent 

inhibition was as follows: 
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% inhibition = �Absorbance BC Extract - Absorbance BC Extract No Enzyme

Absorbance BC Extract
�  × 100 

4.3.13 Dipeptidyl peptidase IV (DPPIV) inhibition 

 Dipeptidyl peptidase IV (DPPIV) is a proteolytic enzyme that when inhibited, it reduces  

glucose levels.25 The DPPIV-GloTM protease assay (G8351, Promega, Madison, WI) was used to 

measure DPPIV activity inhibition following the manufacturer's protocol. Briefly, 50 µL of 

DPPIV-GloTM reagent was added to each well of a white walled 96-well plate containing 50 µL 

of blank (DPPIV-GloTM reagent + vehicle control for enzyme treatment agent or inhibitor), 

positive control (DPPIV-GloTM  reagent + vehicle control + purified DPPIV enzyme), or BC 

extracts (DPPIV-GloTM  reagent + BC extracts + purified DPPIV enzyme). Luminescence was 

recorded 30 min after the addition of the DPPIV-GloTM reagent with a Synergy 2 multi well plate 

reader (BioTek, Winooski, VT).  

4.3.14 Radical scavenging activity determination by 2,2- diphenyl-1-picrylhydrazyl (DPPH·) 

 All BC extracts ( 0.31 mg/mL, 0.63 mg/mL, 1.25 mg/mL, and 2.50 mg/mL) were analyzed 

using a Synergy 2 multi well plate reader (BioTek, Winooski, VT) to determine their radical 

scavenging activity using a modified DPPH· assay (Kedare & Singh, 2011; Mishra, Ojha, & 

Chaudhury, 2012). A 152.16 µM DPPH· solution made with 80% MeOH was used (Fukumoto & 

Mazza, 2000). A gallic acid (GA) standard curve with five concentrations ranging from 50 to 600 

µM was used to quantify BC extracts antioxidant activity. GA was chosen as the standard 

antioxidant because it was determined that it is approximately six times more efficient as an 

antioxidant than sesamol and  has greater antiradical properties than both ascorbic acid and 

butylated hydroxytoluene (BHT) (Mishra et al., 2012). The standard curve’s regression equation 

(r2 = 0.99) at 515 nm was as follows: y = 0.0007x + 0.0038; where: y is the absorbance read at 515 
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nm and x is the concentration of GA (µM) in 100% MeOH. This equation was used to calculate 

the µM eq GA/mg DW of the extracts. Briefly, 20 µL of GA (GA + DPPH·) for the standard curve, 

BC extracts (BC extracts + DPPH·), positive control (80% MeOH + DPPH·) and negative control 

(BC extracts + ultra-pure water) were added to each well of a 96-well plate as previously described 

(Fukumoto & Mazza, 2000). Next, 200 µL of 152.16 µM DPPH· solution were added to the 96-

well plate, while taking measures to protect the reaction from vaporization and light (parafilm and 

aluminum foil). The 96-well plate was then incubated at room temperature for 30 min.  Absorbance 

was then read at 515 nm (Mishra et al., 2012).    

4.3.15 Statistical analysis 

 Data are expressed as the mean ± standard deviation of at least three independent 

measurements. A one-way ANOVA analysis was conducted to compare data between groups, 

UAE times, pectinase treatments, and fermentation products using JMP version 13.0. The Tukey-

Kramer test was conducted to determine statistical differences among means, which were 

considered significant at p < 0.05. Enzymatic inhibition essays were analyzed using Graph Pad 

Prism 8. Graph Pad was used for the interpolation of the IC50 values and also for the Pearson 

correlations. 

4.4 Results and discussion 

4.4.1 Berry sizes  

 Consort and D16-6-54 were the smallest of the four cultivars with an average diameter of 

0.97 ± 0.1 cm and 1.04 ± 0.1 cm, respectively. The diameters of the other cultivars were D16-8-

14 (1.23 ± 0.2 cm) and Titania (1.37 ± 0.1 cm). Consort and D16-6-54 had the highest degree of 
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soluble solids, (20.6 ± 0.6 and 19.0 ± 0.3 °Bx, respectively). The other Brix° measurements were 

Titania (15.0 ± 0.2 °Bx), and D16-8-14 (18.3 ± 0.5 °Bx) (Figure 4.8).  

 A study has  reported  diameters of fruits from fifteen blueberry cultivars  ranging  from 

12.8 mm to 18.7 mm (Johnson et al., 2011). Whole berries from all 4 cultivars, which were mashed, 

showed that their average pH was 2.9, with an average °Brix of 18.2 ºBx, which is consistent with 

the findings of others (Kikas et al., 2017; Kozák, Békássy-Molnár, & Vatai, 2009). A different 

study, which compared organic versus conventional BC, reported that their Titania berries had a 

°Brix range from 14.3 to19.3 with the lower values coming from organic fruits (Kikas et al., 2017). 

It has also been noted that  BC  cultivated at higher latitudes (66° 34’ N) contain higher amounts 

of volatiles (Marsol-Vall, Kortesniemi, Karhu, Kallio, & Yang, 2018). 

4.4.2 Component yields 

 The yields of each of the individual BC components (juice, seeds and skins) varied 

depending on the cultivar. Titania had the cleanest separation of skin from the berry and as a result 

had the largest percent mass of skins (31.3%) in comparison with the average of the four cultivars 

(19.6%). D16-8-14 presented the highest percent mass of juice (48.5%) in comparison with the 

average of the four cultivars (31.3%), and the Consort cultivar had skins that are thinner and 

weaker. A different study, which analyzed six different cultivars of BC, reported  an average juice 

yield of 58.1% (Landbo & Meyer, 2004). Enzymatic treatments, such as the use of pectinases, are 

effective means to increase juice yields and reduce turbidity. It has also been indicated  that  the 

use of pectinases, cloned from Aspergillus niger and Aspergillus aculeatus, can produce BC juice 

yields as high as 78.9% (Landbo & Meyer, 2004). 
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4.4.3 Colorimetric measurements 

 BC extracts, with an average pH = 2.9, appeared to be a reddish color to the naked eye. The 

hue angles increased in value as sonication time of the remaining solids from the previous 

extraction increased, indicating a significant shift and overall loss in color to an almost clear 

appearance (Table 4.1). After three consecutive extractions of the remaining solid material, most 

of the color compounds were extracted. The same comparison of chroma, which indicates the 

intensity or richness of color, showed a sharp decrease as sonication times increased (Table 4.1). 

An increase in the L* value was observed across all samples, except for the seeds. The overall loss 

of color indicates a successful extraction of color compounds. There was a 215% difference in hue 

angles between the color averages of whole berries after 2 h and 4 h extractions and a 640% 

difference between 2 h and 6 h. The difference in chroma between 2 h and 4 h was 80% and a 

comparison of color parameters after the 2 h, 4 h, and 6 h water-based UAE extractions. The color 

fading with extraction time indicated an efficient extraction of colored pigments. Titania, D16-6-

54, Consort and D16-8-14 whole berries had ΔE values of 22.9, 19.6, 19.4 and 22.3, respectively 

which were the color differences between the 2 h UAE and 6 h UAE. Color differences (ΔE) 

between the 2 h UAE and 4 h UAE for whole berries were calculated as being 20.6 (Titania), 14.0 

(D16-6-54), 15.4 (Consort) and 16.0 (D16-8-14).  Interestingly, recent research has demonstrated 

that ANC rich extractions from BC skin waste can be used as  alternative to synthetic hair dyes, 

which speaks to the power of BC pigments (Rose et al., 2018).   

4.4.4 Total anthocyanins, condensed tannins, and polyphenols concentrations 

 BC extracts were evaluated to determine differences in ANC between 2, 4, and 6 h of UAE 

extraction. ANC represent the majority of bioactive compounds (approximately 55%) found in BC 

and are water soluble, making a water-based UAE a reasonable option for extraction (Farooque, 
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Rose, Benohoud, Blackburn, & Rayner, 2018). It was determined that > 50% of ANC can be 

extracted from BC when using a 2 h UAE extraction process (Table 4.2). After 2 h UAE, Consort 

and D16-8-14 whole berries had the highest concentration of ANC (14.5 ± 2.8 and 14.8 ± 2.8 mg 

eq. C3G/g, DW). It was also discovered that there was no statistical difference in ANC among 

Titania, Consort, and D16-8-14 skins (19.0 ± 2.0, 19.7 ± 2.7, and 20.3 ± 3.5 mg eq. C3G/g, DW, 

respectively) (p > 0.05) after a 2 h UAE extraction. The Consort whole and juice had the highest 

ANC concentration after 4 h UAE (whole 7.5 ± 0.6 and juice 7.1 ± 0.0 mg eq. C3G/g, DW) (p < 

0.05). Results from 6 h UAE showed no statistical differences among samples, except for D16-8-

14 whole and seeds, both of which had lesser ANC concentrations. A previous study first extracted 

ANC from BC using sulfured water (SO2 concentrations in the range of 28 to 1372 ppm) and then 

quantified ANC (Cacace & Mazza, 2002). The average result of 15.3 mg eq C3G/100 g (dry basis) 

in this study, did not differ significantly from the juice in our study that used 2 h water-based UAE 

extraction. Another research examined two different BC cultivars (Öjebyn and Titan) and reported 

a ANC range of 756 ± 12 mg eq C3G/100 g to 1064 ± 8 mg eq C3G/100 g after BC extraction  

using 70% acetone as  solvent (Nour et al., 2013). These results are similar to the findings in the 

present research, which was done without the use of organic solvents. Pectinase treatments, 

regardless of dose used, increased the concentration of ANC in comparison to the juice for cultivars 

Titania and D-16-8-14 (Figure 4.9). Pearson correlations revealed that there was no correlation 

between ANC and pectinase treatment. After comparing the selected Pectinex® dosage and heating 

time with the AW fermentation products it was concluded that fermentation increased ANC by 5 

times.  

 TT concentrations after 2 h UAE extraction were evaluated (Table 4.3). Consort, D16-6-

54, and D16-8-14 whole berries had the highest concentrations of TT and were not statistically 
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different (p > 0.05). There was no statistical difference in TT among the seeds of all cultivars (p > 

0.05). A comparison of the average of the whole fruit for all cultivars, with enzymatic treatment 

and fermentation products, TT did not increase which is consistent with Laaksonen et al. (2015) 

(Figure 4.9). However, Pearson correlations showed that the heating of the BC mash for the 

pectinase treatment did increase TT concentrations (r2 = 0.535), while the fermentation process 

reduced TT by half. BC are rich in condensed polymeric tannins (proanthocyanidins), which are 

comprised  of less than 10 subunits if they have not undergone enzymatic treatment (Laaksonen et 

al., 2015). Any extraction methods for the quantification of proanthocyanidins should not involve 

the use of acetone because ANC may react with the acetone to produce proanthocyanidins, which 

would give a false result (X. Wu, Gu, Prior, & McKay, 2004a). Proanthocyanidins are what impart 

the astringency in the characteristic flavor and taste of BC. This perception of astringency occurs 

because of the interaction of proanthocyanidins (2 to 8 units interacting with proteins) (Fennema 

O. R., 1993). While there is not much known about the exact mechanism that produces these 

sensations, there is speculation that the perception of astringency and bitterness is due to the 

binding of proanthocyanidins to salivary proteins which precipitate (Laaksonen et al., 2015). A 

recent study concluded that this phenomenon is produced by the interaction of proanthocyanidins 

with proline clusters and nearby residues (Soares et al., 2018). These compounds are generally 

categorized as monomers, dimer, trimers, tetramers, oligomers and polymers, depending on their 

degree of polymerization (Chen et al., 2017). It is thought that compounds with a degree of 

polymerization larger than 4 have very low to no bioavailability because of their large structures 

(Chen et al., 2017). While these compounds may not be absorbed, they eventually reach the colon 

where they are transformed into metabolites by the microbiota present, which may explain their 

positive health effects (Chen et al., 2017).  
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 TP from BC extracts were evaluated after 2 h UAE extraction (Table 4.3). The Consort 

cultivar had the highest concentration of TP, except for their seeds (whole 22.0 ± 0.5, juice 23.1 ± 

1.0, and skins 24.0 ± 0.6 μg eq. GA/mg DW). Consort was by far the dominant cultivar in TP 

concentration for the whole fruit and the juice. No statistical difference was noted between juice 

samples from Titania, D16-6-54 and D16-8-14 (p > 0.05). However, it has been reported that BC 

leaves have 37% more TP than berries (Teleszko & Wojdyło, 2015). An average of 1480.5 mg eq 

GA/L for a 60% ethanolic (1 L) extraction, performed by the maceration of 600 g of BC berries 

over a three-week period,  has been  reported  in a separate  investigation (Nour et al., 2013). In 

comparison, the water-based UAE method was only able to extract ~1.5% of TP (Nour et al., 

2013). A much different result was achieved by Lee et al. (2015) when extracting BC using 160 

mL of 80% (v/v) aqueous methanol with 0.1% HCl to remove compounds from 8 g of freeze-dried 

BC.  They prepared an ANC fraction using Sep-Pak C18 Plus Short SPE cartridge and then 

quantified TP. Their results (2382.4 ± 60.8 mg eq GA/100 g, DW), are roughly equivalent to the 

concentration of TP quantified in our study for Consort juice after water-based UAE. It is possible 

to bypass the use of organic solvents and still achieve high results by the water-based UAE method 

(Lee et al., 2015). A comparison of the average of the whole fruit for all cultivars with pectinase 

treated BC mash increased the TP concentrations (Figure 4.9). These results were confirmed with 

Pearson correlations (r2 = 0.521). The fermentation procedure increased the TP.  

4.4.5 LC-ESI-MS analysis 

 The LC-ESI-MS analysis of BC confirmed that four major ANC (delphinidin 3-O-

glucoside, delphinidin 3-O-rutinoside, cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside) are 

present in  BC extracts, as previously reported by other investigators (Farooque et al., 2018; 

Schofield et al., 2001) (Figure 4.10). A study from 2003 reported that BC contain delphinidin 3-
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O-rutinoside (MS- 611 (303+162+146) (m/z)) and delphinidin 3-O-glucoside (MS 462 (303+162) 

(m/z)) with 979 and 538 mg/kg, by fresh weight, respectively, which made up the majority of ANC 

present (Määttä, Kamal-Eldin, & Riitta Törrönen, 2003). This study reported cyanidin 3-O-

rutinoside (MS- 595 (287+162+146, m/z) and cyanidin 3-O-glucoside (MS- 449 (287+162,m/z) 

as being 1163 and 331 mg/kg, by fresh weight, respectively (Määttä et al., 2003). It was also noted 

that no other ANC were recorded, all flavonol glycosides were reported as 102 mg/kg, by fresh 

weight, and all hydroxycinnamic acid derivatives as  84 mg/kg, by fresh weight (Määttä et al., 

2003). Our research revealed that Titania was the only cultivar in which peonidin 3-O-rutinoside 

was  detected;  a finding  consistent with previous studies (X. Wu, Gu, Prior, & McKay, 2004b). 

A number of other phenolic peaks with absorbances at wavelengths 280 nm and 340 nm were seen 

in the extracts, but at relatively low concentrations. Proanthocyanins were also  present in these 

extracts (Fan et al., 2013; Kähkönen et al., 2001; Mikulic-Petkovsek, Slatnar, Stampar, & Veberic, 

2012; Wu et al., 2004b).  

 One previous BC characterization study was able to identify a total of 14 compounds, 

again, with the glucoside and rutinoside forms of delphinidin and cyanidin being the four major 

compounds present (X. Wu et al., 2004b). Other phenolic compounds were reported present in BC, 

regardless of their relative abundance, in black, green, red and white currant juices (Kikas et al., 

2017; Mishra et al., 2012; Teleszko & Wojdyło, 2015). While these results suggest that BC might 

not have the most diverse ANC species, this would be advantageous to anyone seeking to extract 

and isolate pure compounds. 

4.4.6 HPLC analyses 

 HPLC analyses determined that D16-8-14 had the highest concentrations of D3G, D3R, 

and C3G in skins of all 4 cultivars (65.2 ± 0.4, 247.6 ± 2.8, and 180.9 ± 3.6 mg/g, DW, 
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respectively) (Table 4.4). Analysis showed that the Pectinex dose of 400 mL/ton held for 150 min 

at 52 °C provided some of the highest overall concentration of D3R (153.5 ± 1.3 mg/g, DW). 

Results revealed that there was no statistical difference between 400 mL/ton held for 150 min and 

600 mL/ton held for 120 min for D3G concentration values. The same is true for C3R 

concentrations between 400 mL/ton held for 150 min and 800 mL/ton held for 150 min. The as is 

wine- Consort- 23 °C had the highest concentrations of D3G, D3R, and C3R of all of the fermented 

products and byproducts. A previously reported HPLC analysis confirmed the existence of four 

major compounds (delphinidin 3-glucoside, delphinidin 3-rutinoside, cyanidin 3-glucoside and 

cyanidin 3-rutinoside) in  six different BC cultivars (Ben Alder, Ben Nevis, Ben Lomond, Ben 

Tirran, Titania and Ukraine) (X. Wu et al., 2004b). These results differ from the present work in 

that C3G did not resolve, which could possibly be explained by the tendency for ionization of 

compounds by ultrasound. However, MeOH/H2O/AcAc were used for the extraction of phenolics 

from BC by Wu et al. (2004), which could account for any differences in the concentrations and 

the presence of ANC (Cacace & Mazza, 2002). 

4.5 Diabetes Related Enzymes 

4.5.1 IC50 α-Amylase 

 Table 4.5 presents the half maximal inhibitory concentration of α-amylase (IC50) for BC 

extracts and BC fermentation products. Juices and skins from all cultivars had the lowest 

IC50values, (). These results suggest that fresh frozen BC are more potent inhibitors of α-amylase 

activity than fermented products. A study, which evaluated the ability  of blackberry/blueberry 

wine to inhibit α-amylase activity, demonstrated that neither ANC nor proanthocyanidins 

significantly contributed to the inhibition of the enzyme (Fan et al., 2013). 
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4.5.2 IC50 α-Glucosidase   

 BC fermented products demonstrated to be more potent inhibitors of α-glucosidase activity 

than that of α-amylase.  As “is wine” and dealcoholized wine had the lowest IC50 regardless of 

fermentation temperature (Table 4.5). A previous publication found that α-glucosidase inhibition 

was greater when the concentration of TP was higher which is consistent with our findings. A 

positive correlation was seen between TP and α-glucosidase (r2= 0.426). A similar study reported 

that ANC and proanthocyanidins can  inhibit  α-glucosidase activity (Fan et al., 2013). 

4.5.3 IC50 Dipeptidyl peptidase IV inhibition 

 Although some statistical differences were detected, DPP-IV values were very consistent 

among all samples (Table 4.5). The inhibition of DPPIV limits proteolytic cleavage and therefore 

increases the concentration of endogenous incretins, like peptide-1 (GLP-1), in a similar fashion 

as  (Vinayagam, Jayachandran, & Xu, 2016). After food is ingested, GLP-1 is secreted by intestinal 

L-cells as a thirty-amino-acid hormone (GlaxoSmithKline, 2006). This hormone gets cleaved by 

DPPIV and becomes inactive, but it is the active form that helps to regulate postprandial blood 

glucose levels by stimulating the secretion of insulin (GlaxoSmithKline, 2006). Therefore, food 

interventions that inhibit DPPIV activity are desirable.  

4.6 Antioxidant Activity 

4.6.1 IC50 DPPH· assay and radical scavenging 

 The IC50 of DPPH· free radical scavenging capacity of BC extracts and fermented products 

is presented in Table 4.5. There was no statistical difference among D16-6-54 seeds (0.01 ± 0.02 

mg/g, DW), BC Pomace- Consort- 15 °C (0.01 ± 0.01 mg/g, DW), and BC Pomace- Mix- 15 °C 

(0.01 ± 0.02 mg/g, DW). BC pomace (0.31 mg/ml) gave a DPPH inhibition of 83% in comparison 
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with gallic acid (0.10 mg/ml) that gave 100% inhibition; therefore, pomace is a promising inhibitor 

of DPPH· activity. It has been confirmed that polysaccharides present in BC are good for 

scavenging free radicals, such as DPPH·, in vitro (Xu et al., 2016). A positive correlation was 

noted between TP and DPPH· (r2= 0.279). IC50 results from the study on BC polysaccharides were 

fairly consistent with the results in the present research (Xu et al., 2016). A different study 

evaluated the difference in radical scavenging activities between D3R, C3R, and their acylated 

products and it was concluded that their acylated products was significantly higher (p < 0.05) 

(Yang, Kortesniemi, Ma, Zheng, & Yang, 2019).  
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4.7 Conclusions 

 In summary, to our knowledge, this is the first report detailing the quantification of ANC 

in BC and BC fermented products using a strictly water-based ultrasound extraction. BC fruits 

have potential to offer many solutions for current issues facing the food industry such as consumer 

demand for more healthful colored processed foods. ANC and other bioactive compounds from 

BC can successfully be extracted by waster-based UAE which could be used as safe and natural 

pigments with the potential health value-added benefit. As demand for BC and BC products 

increases, we believe the present research provides industry with insight into how BC products 

and byproducts might better be utilized to produce higher quality food products that contain health 

promoting bioactive compounds. 
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4.8 Tables and figures 

Table 4.1. Measurement of color parameters of four cultivars of blackcurrants after 2, 4, 6 h water-based UAE. 

All values are mean ± standard deviation of the mean. Different letters in each column indicate significant differences among groups for each variety (p < 0.05). 

 

2 h  UAE  Extraction 4 h  UAE  Extraction 6 h  UAE  Extraction 

L* a* b* Hue Angle Chroma Color 
Square L* a* b* Hue Angle Chroma Color 

Square L* a* b* Hue Angle Chroma Color 
Square 

Titania 
Whole 87 17 2 8 ± 0.0 b 18  ± 0.0 d   94 1 1 45 ± 0.3 a 2 ± 0.0 d   98 1 2 67 ± 0.1 d 2 ± 0.0 d   
Juice 86 20 2 6  ± 0.0 d 20 ± 0.1 d   93 7 1 6 ± 0.0 d 7 ± 0.1 c   100 0 0 47 ± 1.0 d 0.3 ± 0.0 c   
Seeds 89 9 3 19 ± 0.1 d 10 ± 0.7 a   89 1 6 82 ± 0.1 b 6 ± 0.0 b   94 1 6 84 ± 0.0 b 6 ± 0.0 c   
Skins 70 45 12 15 ± 0.7 a 47± 0.0 a   86 9 3 18 ± 0.0 c 10 ± 0.3 b   95 1 3 70 ± 0.0 a 3 ± 0.0 d   

D16-6-54 
Whole 83 20 4 10 ± 0.9 a 21  ± 0.1 c   84 7 5 35 ± 0.1 b 8 ± 0.0 a   89 2 7 77 ± 0.0 a 7 ± 0.0 b   
Juice 75 36 8 13 ± 0.1 a 36 ± 0.1 b   83 5 5 41 ± 0.0 b 7 ± 0.0 b   98 0 1 85 ± 0.0 a 1.2 ± 0.0 a   
Seeds 88 8 5 32 ± 0.1 b 9 ± 0.0 b   78 3 13 78 ± 0.0 d 13 ± 0.1 a   75 3 15 81 ± 0.0 c 16 ± 0.0 a   
Skins 77 34 6 11 ± 0.0 c 34 ± 0.9 d   74 4 2 34 ± 0.1 a 4 ± 0.1 d   95 2 4 61 ± 0.2 b 4 ± 0.0 c   

Consort 
Whole 78 29 6 11 ± 0.0 a 29  ± 0.1 b   90 6 2 24 ± 0.1 c 6 ± 0.0 b   85 2 9 76 ± 0.0 b 10 ± 0.0 a   
Juice 73 41 8 11 ± 0.1 b 42 ± 0.0 a   91 7 1 11 ± 0.0 c 7 ± 0.1 a   99 0 0 64 ± 1.7 b 0.3 ± 0.0 b   
Seeds 91 6 2 23 ± 0.0 c 9 ± 0.0 b   90 1 5 81 ± 0.1 c 13 ± 0.1 a   93 1 6 79 ± 0.1 d 16 ± 0.0 a   
Skins 70 44 11 14 ± 0.3 b 45 ± 0.0 b   91 6 2 16 ± 0.1 d 6 ± 0.1 c   93 4 4 46 ± 0.1 d 5 ± 0.0 a   

D16-8-14 
Whole 78 33 6 11 ± 0.0 a 34 ± 0.0 a   89 5 2 21 ± 0.0 d 5 ± 0.1 c   96 1 2 73 ± 0.1 c 2 ± 0.0 c   
Juice 82 27 4 8 ± 0.0 c 27 ± 0.3 c   92 1 1 52 ± 0.1 a 1 ± 0.0 d   100 0 0 58 ± 0.8 c 0.1 ± 0.0 d   
Seeds 90 4 4 43 ± 0.3 a 5 ± 0.1 d   87 1 5 84 ± 0.0 a 5 ± 0.1 d   91 1 8 85 ± 0.0 a 8 ± 0.0 b   
Skins 72 43 10 13 ± 0.1 b 44 ± 0.0 c   83 9 4 23 ± 0.1 b 10 ± 0.0 a   93 3 4 52 ± 0.22 c 5 ± 0.0 b   
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Table 4.2. Total anthocyanin (ANC) concentration in blackcurrant cultivars after  
2, 4, 6 h UAE. 

All values are mean ± standard deviation of the mean. Different uncapitalized letters in each column indicate 
significant differences among parts of different cultivars (p < 0.05).  Different capitalized letters in each row 
indicate significant differences among parts of the same cultivar (p < 0.05).  All results were quantified by dry 
weight (concentration of BC extracts = 2.5 mg/mL). Total anthocyanin (ANC) concentrations are expressed as µg 
equivalents of cyanidin-3-glucoside (C3G) per gram of dry weight material (DW). Absorbance was read at 520 
nm and 700 nm. 

2 h   ANC Average (mg eq C3G/g DW) 
Cultivar Whole Juice Seeds Skins 
Titania 5.3  ± 1.9 c,C 7.4  ± 0.6 c,B 3.8  ± 1.5 c,C 19.0  ± 2.0 a,A 

D16-6-54 9.5  ± 1.1 b,B 17.7  ± 1.3 a,A 6.1  ± 0.2 a,C 16.1  ± 2.7 b,A 
Consort 14.5  ± 2.8 a,B 15.5  ± 3.2 a,B 4.7  ± 0.4 b,C 19.7  ± 2.7 a,A 

D16-8-14 14.8  ± 2.2 a,B 11.0  ± 3.5 b,C 3.5  ± 0.6 c,D 20.3  ± 3.5 a,A 

4 h   ANC Average (mg eq C3G /g DW ) 
Cultivar Whole Juice Seeds Skins 
Titania 1.6 ± 0.0 d,C 3.3  ± 1.0 c,B 0.6  ± 0.4 c,D 5.9  ± 1.3 b,A 

D16-6-54 4.8 ± 0.8 b,B 5.4  ± 0.9 b,B 2.4  ± 0.0 a,C 7.0  ± 2.3 b,A 
Consort  7.5 ± 0.6 a,AB 7.1  ± 0.0 a,B 1.9  ± 0.2 b,C 7.8  ± 0.6 a,A 

D16-8-14 4.2  ± 0.2 c,B 1.4  ± 2.1 d,C 2.0  ± 0.2 b,C 8.1  ± 1.5 a,A 

6 h   ANC Average (mg eq C3G /g DW) 
Cultivar Whole Juice Seeds Skins 
Titania 2.7  ± 0.0 a,A 0.9  ± 0.6 a,C 1.3  ± 0.4 a,B 0.2  ± 0.2 b,D 

D16-6-54 3.1  ± 0.8 a,A 2.0  ± 0.2 a,B 1.4  ± 0.0 a,C 0.9  ± 0.4 a,D 
Consort 3.0  ± 0.7 a,A 1.8  ± 0.2 a,B 1.2  ± 0.4 a,C 0.7  ± 0.4 a,D 

D16-8-14 2.0  ± 2.0 b,A 1.4  ± 0.2 a,AB 0.4  ± 0.2 b,B 0.6  ± 0.9 a,B 
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Table 4.3. Concentration of condensed tannins (TT) and polyphenols (TP) in blackcurrant cultivars  
after 2 h UAE. 

All values are mean ± standard deviation of the mean. Different uncapitalized letters in each column indicate significant differences among cultivars (p < 
0.05).  Different capitalized letters in each column indicate significant differences among parts of the same cultivar (p < 0.05).  All results were quantified by 
dry weight (concentration of BC extracts = 2.5 mg/mL). Total polyphenols and total condensed tannins concentrations are expressed as µg equivalents of 
gallic acid (GA) per gram of freeze-dried material and mg equivalents of catechin per gram of dry weight material (DW), respectively. Absorbance was read 
at 500 nm, with a filter from 492-520 nm for total condensed tannins, and at 690 nm for total polyphenols. 
 

Total Condensed Tannins Average (mg eq Catechin/g DW) 
Cultivar Whole Juice Seeds Skins 
Titania 173.3 ± 0.0 b,C 240.6 ± 0.0 c,B 153.4 ± 0.0 a,D 391.8 ± 0.0 d,A 

D16-6-54 348.8 ± 0.1 ab,C 367.6 ± 0.1 b,B 283.7 ± 0.0 a,D 438.2 ± 0.1 c,A 
Consort 461.4 ± 0.0 a,A 438.2 ± 0.0 a,B 238.4 ± 0.0 a,C 472.4 ± 0.0 b,A 

D16-8-14 306.8 ± 0.0 ab,B 192.1 ± 0.0  d,D 232.9 ± 0.0 a,C 521.0 ± 0.5 a,A 
Total Polyphenols Average (mg eq GA/g DW) 

Cultivar Whole Juice Seeds Skins 
Titania 12.4 ± 0.5 c,D 15.3  ± 3.5 b,C 34.4 ± 1.3 a,A 19.3 ± 0.6 c,B 

D16-6-54 13.0 ± 0.8 c,C 13.4  ± 0.6 b,C 23.0 ± 0.6 b,A 17.9 ± 0.6 c,B 
Consort 22.0 ± 0.5 a,A 23.1 ± 1.0 a.A 18.6 ± 0.9 b,B 24.0 ± 3.6 a,A 

D16-8-14 15.7 ± 0.9 b,BC 13.4 ± 1.7 b,C 34.6 ± 0.5 a,A 21.3 ± 0.6 b,B 
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Table 4.4. Concentration of delphinidin 3-O-glucoside (D3G), delphinidin 3-O-rutinoside 
(D3R), and cyanidin 3-O-rutinoside (C3R), in blackcurrant extracts and blackcurrant 
fermentation products from HPLC after a 2 h water-based UAE. 

Materials Cultivars/parts  D3G (mg/g, DW) D3R (mg/g, DW) C3R (mg/g, DW) 

BC Cultivars 

Titania 

Whole 13.4 ± 4.8 nop 130.0 ± 1.6 jklm 48.8 ± 16.0 no 
Juice 19.9 ± 4.6 lm 125.4 ± 1.0 jklm 61.2 ± 7.7 klmn 
Seeds 30.4 ± 0.5 efghi 165.8 ± 2.4 bcd 87.8 ± 1.8 ef 
Skins 12.4 ± 0.3 nop 84.6 ± 1.7 mno 58.7 ± 1.0 lmn 

D16-6-54 

Whole 13.7 ± 0.1 no 95.8 ± 1.7 lmn 65.2 ± 0.6 jklm 
Juice 5.8 ± 0.4 qrst 30.5 ± 1.2 rstu 19.8 ± 0.4 rst 
Seeds 21.6 ± 0.1 klm 148.4 ± 0.4 defg 104.0 ± 1.2 cd 
Skins 25.4 ± 0.1 ijkl 115.3 ± 1.8 ijkl 70.4 ± 1.2 ijkl 

Consort 

Whole 36.3 ± 0.3 cd 174.9 ± 1.9 bc 140.8 ± 2.2 cd 
Juice 4.8 ± 0.4 rst 22.5 ± 0.7 tu 13.5 ± 0.3 st 
Seeds 33.8 ± 0.4 cdef 182.5 ± 0.7 b 116.0 ± 2.5 c 
Skins 10.0 ± 0.4 opqr 62.8 ± 0.9 opq 53.0 ± 1.5 mno 

D16-8-14 

Whole 17.9 ± 0.1 mn 107.7 ± 0.3 klm 87.0 ± 0.7 ef 
Juice 8.1 ± 0.4 pqrs 41.1 ± 3.0 qrst 34.1 ± 1.9 pq 
Seeds 21.6 ± 0.1 hijk 164.3 ± 0.7 bcde 133.6 ± 1.2 b 
Skins 65.2 ± 0.4 a 247.6 ± 2.8 a 180.9 ± 3.6 a 

Enzyme 
Treatments at 

52 ºC 
(mL/ton)/min 

No heat/No enzyme 23.2 ± 0.8 jklm 121.3 ± 0.5 hijk 73.7 ± 0.3 ghijk 
0 (mL/t)/90 (min) 30.2 ± 0.8 efghi  133.1 ± 0.8 fghij 81.2 ± 1.1 efghi 

0 (mL/t) /120 (min) 32.2 ± 1.9 cdefg 142.6 ± 2.4 defgh 84.0 ± 1.4 efgh 
0 (mL/t) /150 (min) 26.3 ± 2.4 hijk 129.6 ± 0.7 fghijk 77.8 ± 0.7 fghij 
400 (mL/t) /90 (min) 32.4 ± 1.9 cdefg 139.1 ± 0.9 efghi 82.2 ± 0.5 efghi 
400 (mL/t) /120 (min) 32.6 ± 0.6 cdefg 131.5 ± 0.9 fghijk 78.0 ± 0.8 fghij 
400 (mL/t) /150 (min) 37.4 ± 1.7 c 153.5 ± 1.3 cdef 91.8 ± 1.8 de 
600 (mL/t) /90 (min) 27.2 ± 1.9 ghij 125.1 ± 8.4 ghijk 73.0 ± 5.3 hijk 

600 (mL/t) /120 (min) 34.1 ± 0.7 cde 141.0 ± 2.2 defgh 78.6 ± 1.4 fghi 
600 (mL/t) /150 (min) 25.9 ± 1.1 hijk 120.4 ± 1.5 hijkl 70.4 ± 0.9 ijkl  
800 (mL/t) /90 (min) 28.0 ± 2.0 fghij 124.8 ± 1.2 ghijk 73.4 ± 0.9 hijk 
800 (mL/t) /120 (min) 29.1 ± 1.3 efghi 128.0 ± 1.3 ghijk  75.5 ± 1.5 fghij 
800 (mL/t) /150 (min) 31.4 ± 1.5 defgh 144.4 ± 1.6 defgh 86.2 ± 1.2 efg 

Fermentation 
Products 

As is Wine- Consort- 23 °C 43.4 ± 0.6 b 132.0 ± 2.2 fghi 140.2 ± 1.5 b 
As is Wine- Consort- 15 °C 1.1 ± 0.3 t 18.1 ± 1.4 tu 8.3 ± 0.5 t 

As is Wine- Mix- 23 °C 4.9 ± 1.2 rst 48.0 ± 0.5 qrs 26.9 ± 0.3 qr 
As is Wine- Mix- 15 °C 4.2 ± 0.6 st 49.6 ± 0.8 pqr  27.9 ± 1.1 qr 

 
Dealcoholized 
Fermentation 

Products 

Dealcoholized Wine- Consort- 23 °C 2.1 ± 0.2 t 24.6 ± 0.9 rstu 9.9 ± 0.7 t 
Dealcoholized Wine- Consort- 15 °C 1.4 ± 0.6 t 24.2 ± 0.4 stu 12.5 ± 0.1 st 

Dealcoholized Wine- Mix- 23 °C 11.1 ± 3.9 opq 84.3 ± 0.7 mno 51.2 ± 0.7 no 
Dealcoholized Wine- Mix- 15 °C 11.0 ± 1.1 opq 73.5 ± 0.9 nop 44.9 ± 1.2 op 

Fermentation 
Byproducts 

BC Pomace- Consort- 23 °C 8.3 ± 0.5 opqrs 36.7 ± 1.5 rst 18.0 ± 0.6 rst 
BC Pomace- Consort- 15 °C 6.2 ± 1.6 qrst 25.1 ± 1.2 rstu 9.7 ± 0.5 t 

BC Pomace- Mix- 23 °C 4.9 ± 0.5 rst 42.0 ± 1.2 qrst 24.8 ± 0.6 qrs 
BC Pomace- Mix- 15 °C 0.7 ± 0.2 t 10.7 ± 0.2 u 8.2 ± 0.1 t 

All values are mean ± standard deviation of the mean. All results were quantified by dry weight (concentration of BC extracts = 
2.5 mg/mL). Different uncapitalized letters in each column indicate significant differences (p < 0.05).  
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Table 4.5. IC50 of Blackcurrant extracts and fermentation products on α-amylase, α-glucosidase, DPPIV, and DPPH· 

All values are mean ± standard deviation of the mean. Different uncapitalized letters in each column indicate significant differences among blackcurrant extracts 
and blackcurrant fermentation products (p < 0.05). ND = not determined.

Materials Cultivar/parts 
α-amylase 

IC50 
(mg DW/g whole fruit) 

α-glucosidase 
IC50 

(mg DW/g 
whole fruit ) 

DPPIV 
IC50 

(mg DW/g 
whole fruit ) 

DPPH· 
IC50 

(mg DW/g whole 
fruit) 

BC Cultivars 

Titania Whole 2.26 ± 0.01 g 0.75 ± 0.00 bcd 1.21 ± 0.38 p 0.10 ± 0.01 j 
 Juice 0.64 ± 0.02 lm 0.75 ± 0.00 bcd 1.33 ± 0.26 fghi 0.05 ± 0.08 lm 
 Seeds 2.39 ± 0.02 h 0.78 ± 0.00 abc 1.12 ± 0.52 q 0.50 ± 0.01 a 
 Skins 0.59 ± 0.04 lmn 0.77 ± 0.00 bcd 1.30 ± 0.59 jkl 0.17 ± 0.01 gh 

D16-6-54 Whole 0.76 ± 0.01 l 0.78 ± 0.00 abc 1.30 ± 0.69 jkl 0.08 ± 0.02 jk 
 Juice 0.54 ± 0.02 mn 0.77 ± 0.00 bcd 1.35 ± 0.64 efg 0.14 ± 0.02 i 
 Seeds ND 0.83 ± 0.00 a 1.44 ± 0.30 a 0.01 ± 0.02 n 
 Skins 0.66 ± 0.08 lm 0.80 ± 0.00 ab 1.31 ± 0.95 ij 0.16 ± 0.02 gh 

Consort Whole 0.54 ± 0.01 mn 0.73 ± 0.00 cd 1.32 ± 0.69 hi 0.24 ± 0.02 de 
 Juice 0.44 ± 0.03 n 0.73 ± 0.00 cd 1.35 ± 0.69 de 0.17 ± 0.03 gh 
 Seeds 62.32 ± 0.03 b 0.77 ± 0.00 abcd 1.31 ± 0.63 ijk 0.38 ± 0.01 bc 
 Skins 0.61 ± 0.03 lmn 0.75 ± 0.00 bcd 1.33 ± 0.41ghi 0.25 ± 0.01 d 

D16-8-14 Whole 0.70 ± 0.04 lm 0.75 ± 0.00 bcd 1.27 ± 0.98 m 0.05 ± 0.02 l 
 Juice 0.55 ± 0.06 mn 0.75 ± 0.00 bcd 1.30 ± 0.37 jkl 0.07 ± 0.02 k 
 Seeds 23.47 ± 0.02 d 0.78 ± 0.00 abc 1.23 ± 0.45 op 0.40 ± 0.01 b 
 Skins 0.68 ± 0.00 lm 0.75 ± 0.00 bcd 1.27 ± 1.08 mn 0.17 ± 0.01 g 

Fermentation 
Products 

As is Wine- Consort- 23 °C 1.67± 0.02 i 0.65 ± 0.00 ef 1.30 ± 0.28 jkl 0.23 ± 0.00 e 
As is Wine- Consort- 15 °C 1.03 ± 0.02 k 0.63 ± 0.00 f 1.37 ± 0.15 bcd 0.21 ± 0.00 f 

As is Wine- Mix- 23 °C 1.48 ± 0.02 j 0.65 ± 0.00 ef 1.35 ± 0.50 def 0.15 ± 0.01 hi 
As is Wine- Mix- 15 °C 1.52 ± 0.04 ij 0.71 ± 0.00 de 1.34 ± 0.12 efgh 0.14 ± 0.01 i 

Dealcoholized 
Fermentation 

Products 

Dealcoholized Wine- Consort- 23 °C 1.19 ± 0.06 k 0.60 ± 0.00 f 1.28 ± 0.23 lm 0.39 ± 0.02 b 
Dealcoholized Wine- Consort- 15 °C 1.01 ± 0.00 k 0.64 ± 0.00 f 1.32 ± 0.28 hij 0.37 ± 0.01 c 

Dealcoholized Wine- Mix- 23 °C 1.03 ± 0.02 k 0.63 ± 0.01 f 1.36 ± 0.07 c 0.26 ± 0.01 d 
Dealcoholized Wine- Mix- 15 °C 1.07 ± 0.01k 0.53 ± 0.00 g 1.29 ± 0.07 klm 0.20 ± 0.01 f 

Fermentation 
Byproducts 

BC Pomace- Consort- 23 °C 1.44 ± 0.01 j 0.73 ± 0.00 cd 1.25 ± 2.06 no 0.08 ± 0.02 jk 
BC Pomace- Consort- 15 °C 4.14 ± 0.01 f 0.76 ± 0.00 bcd 1.33 ± 1.41 fghi 0.01 ± 0.01 n 

BC Pomace- Mix- 23 °C 12.26 ± 0.01 e 0.75 ± 0.01 bcd 1.38 ± 1.36 bc 0.03 ± 0.00 m 
BC Pomace- Mix- 15 °C 24.27 ± 0.01 c 0.77 ± 0.00 bcd 1.39 ± 1.36 b 0.01 ± 0.02 n 
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Figure 4.1.  Flow diagram of sample preparation

Whole 
berries  

Skins 
removed 

 

Seeds rinsed, sonicated 
for 45 min in DDI 
water, rinsed again 

 
 

Juice Collected (after 
pressing pulp and 

seeds through 500-
μm sieve) 

All samples kept at -20 °C until fully frozen 
 
 

All samples freeze-dried and ground with a pestle and mortar 
 
 

DDI water (10 mL of filtered) added to 25 mg of freeze-dried material 
and sonicated 2 h 

 

Aliquots removed and used as 2 h BC extract 
 
 

DDI filtered water added to remaining pellet (10 mL total 
volume) sonicated an additional 2 h and centrifuged (30 min) 

 

Aliquots removed and used as 4 h BC extract 
 
 

Aliquots removed and used as 6 h BC extract 
 
 

DDI filtered water added to remaining pellet (10 mL total 
volume) sonicated an additional 2 h and centrifuged (30 min) 

 

~100 g Whole Berries  
(Titania 100.56 g, D16-6-54 100.99 g, Consort 100.87 g, D16-8-14 100.25 g) 

 
 



71 
 

     

 
 
Figure 4.2. Aim 1 and 2 sample preparation 
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Figure 4.3. Water-based ultrasound-assisted extractions for characterization. 
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Figure 4.4. Blackcurrant extracts after 2, 4, and 6 h water-based ultrasound-assisted extractions. 
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Figure 4.5.  Flow diagram of pectinase treatment process.  

 
                                 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Water Bath Preheated to 52 ̊C 

12 Bags (equal amounts of 
mashed Titania, D16-6-54, 
Consort, and D16-8-14 Berries) 
were preheated to 52 ̊C 

Pectinase (0, 400, 600, or 800 
mL/ton) mixed into BC mash 

Enzymes and BC mash held at 52 ̊C 
(0, 90, 120, 150 min) 

Bags removed at respective time 
intervals and held at 4 ̊C until 
cooled 
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Figure 4.6. Pectinase (EC 3.2.1.67 – Galacturan 1,4-alpha-galacturonidase) mechanism of action. Pectinase catalyzes the hydrolysis 
of O-glycosyl bonds between 1,4-alpha linkages. 
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Mixed                                     
(Titania, D14-6-54, D16-8-14) 

  Press through fine nylon mesh into 1-gallon glass 
carboys, airlock & add 50 ppm SO2 

 

Cool Mash 23°C & 15°C 
 

Fermentation (mix 2 times a day) & add nutrients on 
day 2 
                                

Consort 

Start Yeast (Lavlin 71 B) at 40°C 
(cool mash to respective temperature and mix in yeast) 

 

Thaw, Mash, Heat (52°C) & Add 
Enzyme (600 (mL/t), 120 min) 

 

Clean (sodium percarbonate) & Sanitize 
(quaternary ammonia) Equipment 

Thaw, Mash, Heat (52°C) & Add 
Enzyme (600 (mL/t), 120 min) 

 

Fermentation (mix 2 times a day)  & add nutrients on 
day 2 
                                     

Start Yeast (Lavlin 71 B) at 40°C 
(cool mash to respective temperature and mix in yeast) 

 

  Press through fine nylon mesh into 1-gallon glass 
carboys, airlock & add 50 ppm SO2 

 

Frozen Whole BC Berries 
 

Cool Mash 23°C & 15°C 
 

Figure 4.7.  Flow diagram of fermentation. 
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Variety Average Berry Size (Diameter, cm) Brix° 

Titania 1.37 ± 0.1 a 15.0 ± 0.2 c 
D16-6-54 1.04 ± 0.1 b 19.0 ± 0.3 ab 
Consort 0.97 ± 0.1 b 20.6 ± 0.6 a 
D16-8-14 1.23 ± 0.2 a 18.3 ± 0.5 b 

 
 
Figure 4.8. Representative pictures and size of the four different blackcurrant cultivars. 
Different letters in each column indicate significant differences among cultivars (p < 0.05).  Representative pictures 
of fresh berries of the different cultivars (a) Titania (b) D16-6-54 (c) Consort (d) D16-8-14.
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Figure 4.9. Comparison of concentrations of total anthocyanins, total polyphenols, and total condensed tannins from four different cultivars of blackcurrants and 
their parts (whole berries, juice, seeds, and skins), blackcurrant mash after enzymatic treatment, and fermented blackcurrant products and byproducts after a 2 h 
water-based ultrasound-assisted extraction. Different uncapitalized letters above each bar indicate significant differences (p < 0.05). 
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Figure 4.10. Representative HPLC and LC-ESI-MS profiles of consort and Titania whole berries. 
HPLC, MS, MS-MS profiles of Consort and Titania whole berries. HPLC representative 
chromatograms: (a) Consort whole berry at 520 nm (peak 1 = delphinidin 3-O-glucoside, peak 2 
= delphinidin 3-O-rutinoside, and peak 3 = cyanidin 3-O-rutinoside), (b) Consort whole berry at 
280 nm (peak 1 = delphinidin 3-O-glucosids, peak 2 = delphinidin 3-O-rutinoside, and peak 3 = 

cyanidin 3-O-rutinoside). Delphinidin 3-O-glucoside and Cyanidin 3-O-glucoside MS 
representative spectra: (c) D3R identified in Titania whole berry MS RT 10.31 and (d) C3R 
identified in Titania whole berry MS RT 11.47. Titania whole berry MS fractions: (e) D3R 
fractions (delphinidin + glucose + rhamnose) and (f) C3R fractions (cyanidin + glucose + 
rhamnose). 
 

 

 

Anthocyanin 
 

1st Ion 
(M/Z) 

Tr 
(min) Anthocyanin 2nd Ion 

(M/Z) 
Tr 

(min) 

Delphinidin 3-O-
rutinoside 611.5 [M]+ 10.31 Delphinidin 3-O-

glucoside 
465.4 
[M]+ 

 
10.35 

 

Cyanidin 3-O-
rutinoside 595.5 [M]+ 11.47 Cyanidin  3-O-

glucoside 
449.4 
[M]+ 

 
11.51 

 

+

+ +

+

fe

c d
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CHAPTER 5: CONCLUSIONS  

 
• A water-based 2 h UAE was able to extract >50% of ANC from BC. Reported concentrations 

of ANC in the present research are comparable to concentrations reported by others that have 

used organic solvents for their extractions. This is evidence that there is no need for the use of 

organic solvents when performing extractions of BC for the purposes of human consumption. 

• A comparison among Titania, D16-6-54, Consort, and D16-8-14 BC cultivars and their parts 

revealed that D16-8-14 and Consort whole berries had the largest concentration of ANC. 

Consort and D16-8-14 whole berries had the greatest concentrations of TT. Consort had the 

highest concentrations of TP, except in their seeds. 

• Heating during pectinase treatments did increase the concentrations of both TT and TP, with a 

contribution of heating of the BC mash and the pectinase to function.  

• LC-ESI-MS analysis confirmed the presence of four major ANC (D3G, D3R, C3G, and C3R) 

in all BC cultivars analyzed.  Titania was the only cultivar in which peonidin 3-O-rutinoside 

was detected. 

• HPLC analysis revealed that D16-8-14 skins have the highest concentrations of D3G, D3R, 

and C3R. 

• Juices and skins from all four cultivars had the lowest IC50 values (most potent) for α-amylase 

inhibition, while the fermented products had the lowest IC50 values for α-glucosidase 

inhibition. IC50 values for the inhibition of DPPIV were similar for all four cultivars. 

• Fermentation byproducts (BC pomace) proved to be a potent antioxidant when compared to 

600 µM gallic acid (100% inhibition), it was still able to achieve a DPPH· free radical 

scavenging capacity of 83% (at 2 mg/ml). These results provide strong evidence that BC 

byproducts have great potential for reutilization by the food and beverage industries. 
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CHAPTER 6: INTEGRATION AND FUTURE WORK 

 
 Blackcurrants are emerging as a trendy new flavor and ingredient with many potential 

health benefits. Consumers are increasingly demanding healthful foods that are not just calories, 

but also provide maximum nutritional benefit. There is also the additional demand that any 

additives in processed foods have dual functionality in that they meet whatever physical function 

required and also serve as a means of adding bioactive benefit. The goal of this research has been 

to understand how BC might be utilized to provide some solutions to meet these demands. We 

believe that it is possible to meet these goals, particularly in the case of natural pigments. Our 

hypothesis that bioactive compounds present in BC can be extracted using a 2 h, water-based UAE, 

and that ANC and other phenolic compounds from both fresh berries and fermented berries can 

inhibit markers of inflammation and type-2 diabetes was supported by our results. Extracting ANC 

from BC, using green technologies like water-based UAE, is a viable alternative for synthetic food 

colorants that also offers the value-added benefit of being a potent antioxidant and inhibitor of 

enzymes related to type-2 diabetes.  

 One of the challenges that BC present is that they are extremely bitter and astringent 

because they are heavily concentrated with condensed tannins. It is often the case that 

manufacturers of BC products add large amounts of sugar to offset the bitterness of the fruits, 

thereby reducing their health benefits. For this reason, we believe BC extracts are attractive for 

food product manufacturers wishing to use natural pigments coupled with the fact that BC do not 

have a great diversity of ANC species. There are only 4 major ANC found in BC, which are 

delphinidin 3-O-glucoside, delphinidin 3-O-rutinoside, cyanidin 3-O-glucoside, and cyanidin 3-

O-rutinoside. It could also be argued that there are actually only 3 major ANC in BC because 
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 cyanidin 3-O-glucoside is present in very low amounts compared to the other 3 compounds.  

Given that there are only 4 major ANC in BC, we believe that makes BC the ideal candidate for 

ANC extraction because the isolation methods would require minimum complexity.   

 The objective of this research was to characterize the components of four varieties of BC 

and their effect on the activities of α-amylase, α-glucosidase, DPPIV, and their DPPH· radical 

scavenging capacity after water-based UAE, treatment with pectinase, and fermentation. To 

achieve this goal, this research was divided into three aims in which BC would be characterized 

and evaluated. The first aim was to determine if a strictly water-based ultrasound-assisted 

extraction method is sufficient to extract ANC, and other phenolic compounds, from BC. As a 

result of this aim, it was discovered that a 2 h, water-based ultrasound-assisted extraction was 

capable of extracting > 50% of ANC from BC, which is comparable to ANC concentrations 

reported using organic solvents. Our second aim was to characterize four different cultivars of BC 

berries (Titania, D16-6-54, Consort, and D16-8-14) and their parts (juice, seeds, and skins) to 

compare ANC, condensed tannins, and polyphenol contents of the BC. The outcomes of this aim 

were that Consort and D16-6-54 had the smallest berry sizes with an average diameter of 0.97 ± 

0.1 cm and 1.04 ± 0.1 cm, respectively. The average pH of the four cultivars was 2.9 and it was 

Consort and D16-8-14 whole berries that had the highest concentrations of ANC (14.5 ± 2.8 and 

14.8 ± 2.8 mg eq. C3G/g, DW). Consort and D16-8-14 whole berries that had the highest 

concentrations of total condensed tannins, while Consort had the greatest amount of total 

polyphenols for all parts except seeds. It was confirmed that all four BC cultivars contain the four 

major ANC (D3G, D3R, and C3R) and that Titania was the only cultivar in which peonidin 3-O-

rutinoside was detected. All other phenolic compounds detected in the four BC cultivars were seen 

at very low concentrations. According to our HPLC analysis, D16-8-14 skins had the highest 
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amounts of delphinidin 3-O-glucoside, delphinidin 3-O-rutinoside, and delphinidin 3-O-glucoside. 

The third aim was to determine what, if any, effect a pectinase treatment and the fermentation of 

BC mash would have on the concentrations of anthocyanins, total condensed tannins, and total 

polyphenols. When comparing Titania and D16-8-14 juices, it is evident that there was an increase 

in ANC regardless of the pectinase dose used. However, a Pearson correlation showed that there 

was no correlation between ANC and the pectinase treatment. The fermentation of the BC mash 

produced an increase of ANC by five times. There was no increase in condensed tannins because 

of the pectinase treatment, but a Pearson correlation revealed that there was a positive correlation 

(r2 = 0.535) with the heating that is needed  for the enzyme treatment and the fermentation process 

reduced  condensed tannins by half.   When comparing the whole fruit from all cultivars, it is 

evident that the pectinase treatment did increase the polyphenol content, which was confirmed by 

a Pearson correlation analysis (r2 = 0.521). Fermentation of BC mash also increased the 

polyphenolic content. 

 Future directions of this research should be to first evaluate how these bioactive compounds 

from BC are metabolized and determine their bioavailability. Next, work should be done to find 

effective encapsulation methods which would maximize the functionality of BC extracts as food 

additives and also increase the bioavailability of bioactive compounds. Following encapsulation, 

research is needed to better understand the effects of these bioactive compounds in vitro and in 

vivo, starting with cell culture and moving to animal models and eventually to human studies. 

There is a great deal of potential for blackcurrants and as their popularity increases in the US, we 

believe much more research is needed to maximize the health benefits to be gained from them.  
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