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Flower colour and size-signals
vary with altitude and resulting
climate on the tropical-
subtropical islands of Taiwan
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Jair E. Garcia 5, En-Cheng Yang 6, Anke Jentsch 1

and Chun-Neng Wang 2,3*
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Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany, 2Department of Life
Science, National Taiwan University, Taipei, Taiwan, 3Institute of Ecology and Evolutionary Biology,
National Taiwan University, Taipei, Taiwan, 4Department of Physiology, Monash University, Clayton,
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The diversity of flower colours in nature provides quantifiable evidence for how

visitations by colour sensing insect pollinators can drive the evolution of

angiosperm visual signalling. Recent research shows that both biotic and

abiotic factors may influence flower signalling, and that harsher climate

conditions may also promote salient signalling to entice scarcer pollinators to

visit. In parallel, a more sophisticated appreciation of the visual task foragers face

reveals that bees have a complex visual system that uses achromatic vision when

moving fast, whilst colour vision requires slower, more careful inspection of

targets. Spectra of 714 native flowering species across Taiwan from sea level to

mountainous regions 3,300 m above sea level (a.s.l.) were measured. We

modelled how the visual system of key bee pollinators process signals,

including flower size. By using phylogenetically informed analyses, we

observed that at lower altitudes including foothills and submontane

landscapes, there is a significant relationship between colour contrast and

achromatic signals. Overall, the frequency of flowers with high colour contrast

increases with altitude, whilst flower size decreases. The evidence that flower

colour signaling becomes increasingly salient in higher altitude conditions

supports that abiotic factors influence pollinator foraging in a way that directly

influences how flowering plants need to advertise.
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Introduction

Flowering plants form an experimentally accessible way to

investigate how signals may evolve due to biotic influences like

the visual capabilities of important pollinators (Chittka and Menzel,

1992; Dyer et al., 2012; Dyer et al., 2021) that facilitate the efficient

transfer of pollen and/or abiotic factors like environmental climate

or solar radiation (Koski and Galloway, 2018; Peach et al., 2020).

Recent research has considered for the Australian continent the

potential contributions of biotic or abiotic factors on flower colour

and found that whilst both factors do contribute, the pollination by

animal vectors was the main influence (Dalrymple et al., 2020).

Bees of the world are prolific pollinators of flowering plants

(Michener, 2007). Comparative research on a wide variety of bee

species from around the world has established that colour sensing in

all tested bees is phylogenetically conserved, suggesting all known

species probably see colour in a similar way (Briscoe and Chittka,

2001). The honeybee in particular serves as an important model

species for understanding biotic pollination since colour vision has

been extensively studied for over 100 years (von Frisch, 1914; von

Frisch, 1967; von Helversen, 1972; Galizia et al., 2012). Honeybees

have colour vision based on UV-, blue-, and green-sensitive

photoreceptors which enable colour perception via opponent

neural processing in multiple layers of the bee brain (Peitsch et al.,

1992; Dyer et al., 2011). As free flying insects, the visual system of bees

needs to balance several factors to forage including often moving

longer distances, moving quickly between dense foliage, avoiding

collisions (Srinivasan, 2010), detecting potential food sources like

flowers amongst foliage (Bukovac et al., 2016; Dorin et al., 2023), and

then enabling recognition of profitable flowers that are of value to

land on (Garcia et al., 2020). As colour vision involves multiple

photoreceptors and neural processing, this sense is more costly in

terms of processing time. Honeybees thus employ their vision in a

dynamic way. Flying fast and detecting targets at a distance (small

visual angle) is processed by the green-sensitive photoreceptor

channel enabling efficient achromatic vision, whilst colour vision is

used when a bee slows down to inspect a flower at a large visual angle

and this vision involves all three photoreceptor channels.

Experiments on free flying bumblebees shows that both chromatic

and achromatic signals and flower size significantly affect the

efficiency with which either plastic-model (Spaethe et al., 2001) or

real (Dyer et al., 2007) flowers are found. How this complexity of bee

pollinator vision may have affected flower evolution has only been

explored recently (e.g., Garcia et al., 2021), showing that in Nepal

there is a significant positive correlation between flower size and

chromatic colour contrast in the subalpine region, but a negative

correlation at the lower altitudes; whilst at high elevations in Norway,

flower size was positively correlated with achromatic green contrast.

These initial results are suggestive that abiotic factors like climatic

conditions may affect biotic flower colour signalling in complex ways.

To further investigate how abiotic factors may influence biotic

flower colour signalling, island biogeography and the distribution of

flowering plant diversity across the elevational gradients is

important to understand. Taiwan, encompassing our current

study sites, is an island territory close to mainland China and
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evolved approximately 4 to 5 million years ago (Wu, 1978; Biq et al.,

1985). Several high mountains over 3,000 m a.s.l. exist in Taiwan

and have created topographically isolated habitats below and above

the treeline and fast-changing climatic zones (from tropical low

land forest to alpine vegetation) along the elevation changes.

Mountains are high value sites for understanding how abiotic or

biotic factors may influence flower colour signalling (Arnold et al.,

2009). The multiple origins of Taiwan flora (Huang, 2011) and

complex island habitats (Li et al., 2013) thus may have potentially

generated specific floral colour diversity at different elevations. For

example, at different elevations, available resources such as soil

nutrients as well as energy flux potential (Jentsch and White, 2019)

may cause plants to have different flower sizes, which could require

different spectral signalling to optimally capture the attention of bee

pollinators. However, currently very little is known about

Taiwanese or even Asian flower colouration and signal evolution

with respect to animal pollinator colour vision. One recent study in

Taiwan (Tai et al., 2020a) showed that flower signals do show the

same general patterns of conforming to pollination by bees as has

been established in other countries (Chittka and Menzel, 1992; Dyer

et al., 2012; Bischoff et al., 2013; Shrestha et al., 2014). In addition,

honeybees and bumblebees are frequently observed across Taiwan

(Sung et al., 2006; Kudo et al., 2024 preprint). In the current study,

we thus employed the analysis techniques of understanding how bee

colour vision optimally finds flowers depending upon chromatic

and/or achromatic signals, and the respective size of flowers. This

research was conducted within a phylogenetically informed

statistical analyses framework to investigate if there may be

evidence of abiotic factors influencing biotic colour signalling at

several elevational ranges.

Materials and methods

Study area and sample collection

Our study sites include the islands of Taiwan. The main island

of Taiwan lies in East Asia located in between 21.916107° N -

25.086991° N, 120.787456° E - 121.899446° E with a land area of

35,808 square kilometers. The island is surrounded by the South

and East China Seas and at the nearest point is 130 km from any

other major continental land mass (Figure 1, see details in Tai et al.,

2020a). Our sample locations include the Taiwanese main island

and two nearby offshore islands (Green Island and Orchid Island)

(Figure 1). These sampling sites cover the major vegetation zones in

Taiwan. Further, our study sites mostly includes the National Parks

in the different elevational regions, which represents all vegetation

types in the study region. We collected the flowers of native species

(For example, Figure 2) from March 2016 to September 2017,

covering two periods of the peak blooming (Tai, 2018). Our current

study comprised of a total of 714 native flowering species.

Our study site was divided into five sub-categories based on

vegetation zones (Li et al., 2013): i. Foothills (<500m a.s.l.), ii.

Submontane (500-1,499m a.s.l.), iii. Montane (1,500-2,499m a.s.l.),

iv. Upper-montane (2,500- 2,999m a.s.l.), and v. Alpine

(>3,000m a.s.l.).
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A B

FIGURE 1

(A) Overview of location of Taiwan, and (B) Location of sampling sites and elevational range within Taiwan Solid circles, squares and triangle
represents the different sampling sites. Maps are prepared using package Maps in R version 3.4.4.
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FIGURE 2

Example of flowering plants from five different elevational zones in Taiwan. (A) Trachelospermum lanyuense (15mm); (B) Alpinia x ilanensis (16mm);
(C) Trochodendron aralioides (15mm); (D) Anaphalis morrisonicola (7mm); (E) Spiraea hayatana (4.5mm); (F) Ipomoea imperati (37.5mm); (G) Begonia
longifolia (22mm); (H) Adenophora morrisonensis (31.5mm); (I) Veratrum shuehshanarum (12mm); (J) Veronica morrisonicola (11mm); (K) Bretschneidera
sinensis (45mm); (L) Tricyrtis formosana (45mm); (M) Rhododendron formosanum (50mm); (N) Gentiana arisanensis (19.5mm); (O) Viola adenothrix var.
tsugitakaensis (17.5mm). We show mean flower size (diameter, mm) in parenthesis for each species. Image credit: King-Chun Tai.
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Floral colour measurement

Floral colours were measured using an Ocean Optics

spectrophotometer (Ocean Optics Inc., USB-4000+, USA) with a

UV-VIS-NIR light source (Ocean Optics Inc., DH-2000-BAL, USA)

and a quartz fiber-optic probe (Ocean Optics Inc., Lab-grade

Reflection Probes, USA) relative to a 100% white standard and

0% black dark reference. The flower reflectance spectra were

measured from 300 to 700 nm and then processed by the

software OCEAN VIEW (Ocean Optics Inc., USA), and this

range encompasses the visible spectrum of key pollinators. We

sampled 3-5 flowers from each respective species from all of the

sampling sites. All the flower colour data are available in Tai et al.,

2020b (Dryad database).
Hymenopteran colour space modelling

The hexagon colour space was developed for hymenopteran

insects by Chittka (1992) and has recently been shown to accurately

model broad-band flower spectra as perceived by bee pollinators

(Dyer et al., 2007; Garcia et al., 2017). The implementation of the

colour modelling used the photoreceptor data for Apis melifera

since the spectral sensitivity of the photoreceptors and colour

opponency mechanisms for higher order processing are well

characterised (Peitsch et al., 1992; Dyer et al., 2011).
Green contrast and colour contrast

Following the same method as Spaethe et al. (2001), the

biologically relevant factors of the green contrast and/or colour

contrast were modelled to represent the respective achromatic and

chromatic signals of flowers for each species considering bee vision.

Long wavelength green contrast modulated the green receptor

excitation generated by any stimulus relative to the modelled 0.5

signal strength of the adaptation green foliage background in the

hexagon colour space (Chittka, 1992; Spaethe et al., 2001; Garcia

et al., 2021). Thus, the green contrast for each flower was calculated

as an absolute difference value between the green receptor excitation

and 0.5 (e.g., gc= |0.5-E(g)|), where E(g) represents the green

receptor excitation. The colour contrast of each species’ flower

was calculated as Euclidean distance from the respective locus to the

achromatic centre in the bee colour hexagon (for calculation details,

see Method S1).
Phylogenetic tree

The phylogenetic tree constructed in Tai et al. (2020a),

(available in the Dryad Digital Repository) was used to inform the

analyses. We pruned the phylo-tree and prepared a new

phylogenetic tree to exclude some species lacking flower size data.

Some branches were left unresolved as polytomies.

To access the phylogenetic comparative analysis for flower

signals data among five elevational zones, we used the
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phylo.maker function in R package ‘V.PhyloMaker’ (Jin and Qian,

2019). We used options ‘scenario 3’ to reconstruct the phylogeny

and the output tree available is Figure 3.
Response variables: flower size
and elevation

Flower size (i.e., flower diameter, mm) and altitude data were

obtained from various floras, books, and electronic databases

(Supplementary Table S2). We basically used three electronic

databases, including a) Flora of Taiwan, 2021 Second Edition

(h t t p s : / / t a i 2 . n tu . edu . tw ) , b ) F l o r a o f Ch ina , 2021

(www.efloras.org), and c) kplant, 2021 (http://kplant.biodiv.tw), to

obtain the required data. Our data are based on Flora of Taiwan as

we used local flora for the data extraction and used efloras or kplant

when the required data was absent. The study obtained the

minimum and maximum value of the flower diameter. If flower

diameter data were absent, we alternatively obtained the minimum

and maximum size of the most showy floral part, i.e., in most of the

species, the petals, while in some clades, sepals (e.g., Clematis sp.) or

standards (e.g., family Fabaceae). Flower size (Size) was thus

typically measured as the average flower diameter, or 2 × average

petal (or sepal) size of each species. Details of Size calculation for

some atypical flowers are supplied in Supplementary Table S2.

We obtained the species distribution range for respective

species using a similar approach and calculated the mean value

(Supplementary Table S2) which is used in our data analysis. We

categorised the respective species into five different groups based on

the range of distribution for each species (see details above in Study

area and sample collection). Figure 4 provides the flower size across

the different elevation zone.
Data analysis

The graphical summary of the distribution of green contrast,

colour contrast, and size values of flowers present at each location

shows the variability of signals (Figure 5), and the quantitative data

suggest that at the alpine altitude flowers display colour signals of

the highest colour contrast, whilst the frequency of large flowers

decreases (Table 1). This trend for flower size is reflected by the

mean values observed for these parameters at each location

(Figure 6), whilst colour contrast indicates that more complex

processes perhaps influenced by different pollinators may be at

play, and green contrast appears to be the least influenced by

changes in altitude. The data showing that flower colour signals

become increasingly salient at alpine altitudes is perhaps as a

solution to facilitate the detection of smaller flower targets by bee

pollinators. To test this hypothesis, we built linear models

explaining the effect of either colour contrast or size on the

amount of green contrast displayed by flowers sampled at each

location. For each site, we defined green contrast values as the

response variable and tested for any significant effect of either

colour contrast or size on the dependent variable.
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Following the analysis procedure in Garcia et al. (2021), we

tested for the potential effects of colour contrast and size on the

green contrast (to account for the pollinator discrimination

perspective) of the data corresponding to each tested elevation

using linear models. Each model had the general form Y=b0+b1X
Frontiers in Plant Science 05
+E, where Y represents the response variable (green contrast), X is a

matrix containing the independent variable(s), colour contrast or

size, included in the model, b0 is the intercept and b1 is the

coefficient unique to each predictor, and E is an error term. The

formulation of the linear models included reconstructed
FIGURE 3

Left panel: phylogenetic relationship for 714 species. Terminal branches are visually presented as the flower colour of each species for human vision,
which was generated based on the reflectance spectrum using the function ‘spec2rgb’ in R package PAVO. Solid circles at the tip represent the
elevational zone for the respective plant species (dark green: foothills, light green: submontane, gold: montane, orange: upper-montane, beige:
alpine). Right panel: pruned sub-tree from the whole phylogeny (see red square on the left panel) that shows the elevational zone, flower colour,
and flower size for each example plant species. Solid squares at the tip represent the elevational zone. The solid green, solid red, and open white
circles represent the green contrast, colour contrast, and flower size for each species, respectively, while the size of the circles indicates the
magnitude of each variable.
FIGURE 4

Flower size (i.e., flower diameter, mm) at different elevational zones.
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phylogenies for the species present on each site to account for non-

independence between observations due to a shared evolutionary

history (Freckleton et al., 2002). We calculated the regression

coefficients for each elevation using the pgls function in R

package ‘caper’ (Orme et al., 2018) which estimates the

phylogenetic signal Pagel’s l (Pagel, 1999) for each relation along

with the value for the model’s parameters.

Pagel’s l is a scaling parameter, ranging between 1 and 0, and

was used to evaluate the degree to which closely related species

exhibit similar trait values. When l = 0, the trait is assumed to

evolve independently along phylogeny (no signal) while l=1
indicates the trait follows a Brownian motion evolution (strong
Frontiers in Plant Science 06
signal). Some of our species tip label phylogeney are not resolved

and have polytomies; Pagel’s l performs more robustly with the

incompletely resolved phylogeny in multispecies analysis (Molina-

Venegas and Rodrıǵuez, 2017). Thus, Pagel’s l values were

calculated for flower size and green and colour contrast.

Modelling was done using the function phylosig in the package

‘phytools’ for R.

The analyses also tested for potential non-linear relationships

between the independent variables and green contrast for each site.

Potential non-linearity of the relationship between responses and

the predictor variable was modelled by including the quadratic

terms Y = b0+ b1X2 + b2X + E into the models or by applying a

logarithmic transformation to the independent variable Y = b0 +

b1log(X) + E. The model that best described the observations was

selected based on the values of the Aikaike Information Criteria

(AIC) and adjusted R2 value, following standard model selection

procedures (Hurvich and Tsai, 1989; Crawley, 2013).
Results

We found that flower size decreases along the elevation zone

(Figure 4) in our study sites. We further plotted the raw spectral

data and converted them into the bee hexagon model (Figure 7) to

show the how bees see the colour.
A B D E
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FIGURE 5

Distribution of green contrast (panels A-E, solid bars), colour contrast (panels F-J, hatched bars), and size (panels K-O, cross hatched bars) values for
the flowers of 714 species at five elevational zones, n= in the island of Taiwan: Foothills (< 500 m a.s.l., first column, n=183), Submontane (500–
1,499 m a.s.l., second column, n=258), Montane (1,500–2,499 m a.s.l., third column, n=170), Upper-montane (2,500–2,999 m a.s.l., fourth column,
n=67), and Alpine region (>3,000 m a.s.l., last column, n=36).
TABLE 1 Modes indicating to the most frequently observed green
contrast (GC), colour contrast (CC), and size values at each
elevational zone.

Location GC CC Size (mm)

Foothills 0.373 0.168 14.4

Submontane 0.372 0.167 13.0

Montane 0.373 0.214 11.8

Upper-montane 0.368 0.161 11.4

Alpine 0.359 0.277 10.9
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The values and significance of the predictors in the five linear

models are presented in Table 2 along with the phylogenetic signal

calculated for each data set. Colour contrast was found to have a

significant non-linear effect on the green contrast of flowers present

in the Foothills (< 500 m a.s.l.) and Submontane (500–1,499 m a.s.l.)

zones (Figure 8). Flower size did not predict green contrast at any

elevational zones.

The analyses revealed that alpine flowers show no phylogenetic

signal for green and colour contrast, nor for flower size (Table 3).

These results indicate that alpine zone flower colour and size signals

are labile and may experience stronger selection pressure to be

flexible and adapt when compared to some other altitudes. A

phylogenetic signal for colour contrast was only detected for the

montane species, whereas phylogenetic signals for green contrast

were detected at all elevations except the alpine zone (Table 3).

Overall, these results suggest that colour signals may be more

evolutionary labile than the achromatic signals.
Discussion

Recent research has demonstrated that both abiotic and biotic

factors contribute to influencing the colouration of flower signals and

suggested that more salient colours may be the product of harsher

conditions (Dalrymple et al., 2020; Dyer et al., 2021). In parallel to this

finding, evidence that important pollinators like bees use their vision

in complex dynamic ways incorporating both achromatic (principally

for flower detection at a distance) and chromatic (for flower

recognition at close range) contrasts in a way that significantly

affects flower colouration has emerged (Garcia et al., 2021). In a

phylogenetically informed framework, we investigated ifflower colour

may change for a large island community depending upon the

altitude of the flowering plants. This required both a large database

of flowers and an accurate model of how colour signals are perceived

by bee pollinators. Based on 714 flower spectra measured with a

spectrophotometer from 300-700 nm and subsequent modelling in a

hexagon colour space for plant-pollinator interactions (Chittka, 1992;

Shrestha et al., 2019a), we found evidence of significant non-linear

relationship between chromatic colour contrast and achromatic green

contrast of flowers present in the foothills (< 500 m a.s.l.) and
Frontiers in Plant Science 07
submontane (500–1,499 m a.s.l.) zones (Figure 8). Somewhat

surprising given that achromatic green contrast enables the

detection of flowers at a smaller visual angle due to the

fundamental wiring of the visual system of honeybees (Giurfa et al.,

1996; Giurfa et al., 1997; Spaethe et al., 2001; Dyer et al., 2008), our

data analyses showed that flower size did not predict green contrast at

any categorised elevation in Taiwan (Table 3). However, we did

observe that the frequency of flowers with high colour contrast was

highest at the alpine altitude, whilst flower size decreased at higher

elevations (Figure 4). This finding for Taiwan is consistent with

evidence from Australia (Dalrymple et al., 2020) and Norway (Garcia

et al., 2021) that harsher environments such as on mountains

influence flowering plants to advertise with more salient colour

signals to best advertise to pollinators. This observation was

additionally supported by the fact that the alpine flowers in Taiwan

show no phylogenetic signals for neither green and colour contrast

nor size (Table 3), which suggested elevation effects may drive

selection not only of colour signals but also extend to the size signal.

Interestingly, it is worthy to note the colour contrast of the

flowers show less phylogenetic signals compared to green contrast

(Table 3), indicating colour contrast is more labile (Figure 3) and

evolutionarily plastic. A similar pattern was observed within

Australia as the phylogenetic signal was absent for colour contrast

but detected when considering green contrast (Garcia et al., 2021).

This is perhaps because the bees are known to employ green

contrast for long distance detection but use colour contrast for

close inspection for the flowers to visit or even pollinate, which has

real impact on the reproduction success of angiosperms (Giurfa

et al., 1996; Garcia et al., 2021). Therefore, colour contrast

promoting a decision to land on a flower may theoretically

receive stronger selection pressure than green contrast, although

green contrast improves flower detection. It will thus be of value in

future research to consider in other environments the degree to

which the dynamics of bee pollinator vision may have influenced

flower colour evolution in different countries.

The evidence that flower size overall decreased considering

increasing altitudes (Figure 4) is interesting as behavioural studies

over the past decade have shown that bees can use size as an

important cue for making decisions (Avarguès-Weber et al., 2014;

Howard et al., 2017), and interestingly, the capacity to process size is
A B C

FIGURE 6

Mean and 95% confidence intervals for the (A: green contrast, GC), (B, colour contrast, CC), and (C: size) observed at each elevation: Foothills (1),
Submontane (2), Montane (3), Upper-montane (4), and Alpine (5).
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linked to the cognitive abilities of bees to estimate quantities (Bortot

et al., 2020) and potentially forage efficiently. Moreover, similar to

the patterns observed in Taiwan, flower size decreasing along

elevation was reported at both species and community levels in

China, Nepal, and Norway (Zhao and Wang, 2015; Garcia et al.,
Frontiers in Plant Science 08
2021), which may be because of the resource-cost compromise in

harsh alpine environments. Kudo et al. (2024) suggested that the

higher frequency of flies compared to bees that visited flowering

plants in the Mt. Hehuanshan area (Nantou County), 3000m a.s.l.,

in central Taiwan may be due to the harsh environmental
A B

D

E F

G

I

H

J

C

FIGURE 7

Floral reflectance spectra based on elevational zones (first column; A, C, E, G, I), and floral spectra in bee colour hexagon model in Taiwan (second
column; B, D, F, H, J). The colour bar at the x-axis in the first column shows the human colour. The red circles in the hexagons show the
achromatic region where bees do not reliably perceive chromatic signals. Colour solid circles (second column B, D, F, H, J) in bee hexagon
represents the human flower colours that falls at different colour region (UV:Ultraviolet, B: and G: Green) of bee colour space.
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conditions. However, in New Zealand, mountains bees were the

main pollinator despite flies being more frequent flower visitors

(Bischoff et al., 2013). Further, flower size reduction (Figure 4) may

be due to the increasing self-pollination and the abrupt changes in

climate at high elevations (Bliss, 1962; Körner, 2003; Garcıá –

Camacho and Totland, 2009; Körner and Paulsen, 2009).

Currently however, there is dearth of a long-term study about the

later theory increasing selfing (Wirth et al., 2010) and potential

reductions in flower sizes. We also found lower species diversity at
Frontiers in Plant Science 09
higher elevations and our sampling size n =36 represents the overall

species diversity at higher elevations. Nonetheless, several studies

observed counter cases where some plant species present larger

flower sizes at high altitudes (Kudo and Molau, 1999; He et al.,

2017). Recent works in the northern and southern hemispheres

provide comparable evidence that the level of precipitation

contributes more than other factors to the variation of flower size

(Zhao and Wang, 2015; Hendriks, 2019). Thus, complex changing

environmental factors and the requirement to gather optimal

rewards is likely to have been a driver for the complex visual

processing of spatial cues like size that has been observed in bees

(Avarguès-Weber et al., 2014; Howard et al., 2017; Bortot

et al., 2020).

It is also known that flower signaling can be influenced by

different orders or even species of pollinator. For example, whilst

bee pollinators promote a variety of salient flower colours across the

colour space of bees (Figure 7), plants pollinated by flies are most

frequently a dull yellowish green colour and have loci in a different

region of colour space compared to bee pollinated flowers (Garcia

et al., 2022; Dyer et al., 2023). Interestingly, recent evidence suggests

that in some mountain environments, fly visitors may become
TABLE 3 Phylogenetic signals (Pagel’s l) for the green contrast (GC),
colour contrast (CC), and flower size (SIZE) of species among all five
elevational zones in Taiwan.

Elevational
zone

GC CC SIZE

Foothills l=0.288,
p(l=0) =0***

l=0.217,
p(l=0) =0.232

l=0.170,
p(l=0) =0.164

Submontane l=0.168,
p(l=0) =0.013*

l=0.214,
p(l=0) =0.147

l=0.594,
p(l=0) =0***

Montane l=0.754,
p(l=0) =0***

l=0.431,
p(l=0) =0.005**

l=0.956,
p(l=0) =0***

Upper-montane l=0.231,
p(l=0) =0.045*

l=0.166,
p(l=0) =0.267

l=1.012,
p(l=0) =0***

Alpine l=0,
p(l=0) =1

l=0,
p(l=0) =1

l=0.508,
p(l=0) =0.123
We also tested whether each Pagel’s l is significantly deviated from 0 (no phylogenetic signal)
based on the likelihood ratio, and the asterisks indicate the significance level for each test:
*p<0.05, **p<0.01, ***p<0.001.
TABLE 2 Values and statistical significance of the linear coefficients (b)
describing the effect of colour contrast (cc) and flower size (sz) on the
green contrast of flowers present at five different zones on the island
of Taiwan.

Elevational
zones

Parameters Phylogenetic
signal
l (95% CI)

Foothills b Log(cc) = -0.021 (0.010); t =
-2.04; P = 0.043*
b sz = 6.21 x 10-4 (3.39 x 10 -4); t
= 1.83, P = 0.068

0.274
(0.103, 0.502)

Submontane bcc2 = 0.260 (0.094); t = 2.76; P =
0.006**
bcc = - 0.254 (0.093); t = -2.73; P =
0.007**
bsz = 1.61x10-4 (3.77x10-4); t =
-0.426; P = 0.670

0.182
(0.048, 0.380)

Montane bcc = - 2.90x10-2 (5.52x10-2); t =
-0.525; P = 0.601
bsz = 5.95x10-6- (5.60 x 10-4); t =
0.011; P = 0.992

0.838
(0.676, 0.925)

Upper-montane bcc = 0.060 (0.074); t = 0.805; P =
0.424
bsz = -0.002 (0.001); t = -1.71; P
= 0.091

0.239 (0.00, 0.629)

Alpine bcc = -0.036 (0.127); t = 0.287; P =
0.776
bsz = 8.61x10-5 (1.91x10-3); t =
0.045; P = 0.964

0 (0.00, 0.996)
In Submontane zone, bcc2 is b2 and bcc is b1; there are two coefficients for the quadratic
model; bcc is not the coefficient for the linear model here.
The values in parentheses following the coefficients indicate its standard error, and the asterisk
indicates its significance at a = 0.05 (*) or a = 0.01 (**). The third column contains the
phylogenetic signal for each model and its associated 95% confidence intervals.
A B D EC

FIGURE 8

Graphical representation of the linear models describing the relationships between colour contrast, flower size, and green contrast for flowers
present at five different elevations on the island of Taiwan: Foothills (A), Submontane (B), Montane (C), Upper-montane (D), and Alpine (E).
Significance of the relationship is indicated by asterisks: a = 0.05 (*), a = 0.01 (**), and not significant (NS). Markers on each panel indicate the values
for the significant predictor and green contrast for the plant species present at each elevational zones.
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relatively more frequent than bee pollinators due to climatic

conditions (McCabe and Cobb, 2021; Kudo et al., 2024). Even

between bee species colour preference experiments reveal some

evidence of consistent preferences, such as for short wavelength rich

“blue” colours, but also some differences between species that might

influence the frequency with which particular plants are pollinated

(Giurfa et al., 1995; Koethe et al., 2016). A limitation of the current

study is that whilst measuring flowering plant colouration across

Taiwan, it was not possible to simultaneously capture a detailed

survey of the insect species at the respective altitudes as this type of

data in itself requires different methodologies (Shrestha et al., 2019b

and reference within). We did however observe that honeybees,

bumblebees, and several other bee species were frequently present

across Taiwan (Starr, 1992; Sung et al., 2006; Lu and Huang, 2023;

and Kudo et al., 2024); thus, the colorimetric analyses implemented

was relevant at all field sites. Whilst for fly pollinators, new analyses

tools like for colour similarity judgements have emerged (Garcia

et al., 2022), it currently remains an open question how fly

pollinators may use chromatic and/or achromatic contrasts for

flower detection and subsequent recognition. Given the new

colorimetric evidence that flower signalling does change

dependent upon altitude (Figure 4), it will in future research be of

high value to try and dissect flower visitations by insect species at

different altitudes by insect pollinators in Taiwan, and to separately

evaluate the dynamics of their vision using standard methods

(Giurfa et al., 1996; Giurfa et al., 1997; Dyer et al., 2008; Dyer

et al., 2016) and how such biotic-mediated processes can influence

flower colour signalling at a community level (Shrestha et al., 2019c;

Garcia et al., 2021). It is also potentially important to incorporate

hypotheses frameworks that consider the complex signalling that

may evolve when different species are flower visitors in an

environment (Rodrıǵuez-Sambruno et al., 2023).

When considering a large but relatively isolated study site like

the island environments of Taiwan or Australia, it is likely that

abiotic factors will interact with biotically mediated colour selection

forces in a complex and non-trivial way (Verloop et al., 2020). For

example, variations in solar radiation and energy flux potential

(Jentsch and White, 2019) can lead to a modulation of the

production of anthocyanins and flavonols (Falcone Ferreyra et al.,

2012), which could also influence flower appearance. Various

pigments may also have specific functions in protecting flowers

from abiotic stressors like increasing the amount of ultraviolet

absorbing pigments to mask the amount of potentially damaging

ultraviolet light that is reflected to the pollen (Koski and Ashman,

2015; Dyer et al., 2021). Pigments within the petal surface can affect

the resultant colour signals in complex ways due to how and where

within the petal surface the pigments are incorporated relative to

other optical-modulating particles or cell structures (van der Kooi

et al., 2019). The current study demonstrates that flower colour and

its pattern does exhibit evidence of significant variations in

signalling at different elevations across Taiwan as perceived by

biologically important bee pollinators. Therefore, it will be of high

value to conduct more fine-grained research within specific

altitudinal ranges to understand the precise mechanisms that are
Frontiers in Plant Science 10
involved, and how possible alterations in the climate and/or habitat

fragmentation may impact them.
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