

The BBC microcomputer

in science teaching

The BBC microcomputer

in science teaching

R. A. Sparkes

Hutchinson

London Melbourne Sydney Auckland Johannesburg

The programs listed in this book have been checked carefully. In the hands of a competent

user, all programs listed should perform their intended function satisfactorily. But no

program can ever be entirely free from error, even copied exactly from an accurate print-

out. Therefore the publishers do not guarantee the programs and take no responsibility for

any errors in or omissions from them. No liability is assumed for any damage, either

physical or psychological, that ensues from the use of any information contained in this

book. Neither is there is any guarantee that the equipment described in this book will not

change, thus rendering all programs unworkable.

COPYRIGHT 1983 R.A.SPARKES

World rights reserved.

No part of this publication may be copied, transmitted or reproduced in any way, without

prior written approval from the publishers, with the following exception. The programs in

this book may be entered into a computer, executed and stored on magnetic tape or disk for

use by the reader personally but such programs may not subsequently be sold, exchanged or

made available to others.

Hutchinson & Co. (Publishers) Ltd

An imprint of the Hutchinson Publishing Group

17-21 Conway Street, London WIP 6JD

Hutchinson Group (Australia) Pty Ltd

3032 Cremorne Street, Richmond South, Victoria 3121

PO Box 151, Broadway, New South Wales

Hutchinson Group (NZ) Ltd

32-34 View Road, PO Box 40-086, Glenfield, Auckland 10

Hutchinson Group (SA)(Pty) Ltd PO Box 337, Bergvlei 2012, South Africa

First published 1984

© R.A.Sparkes 1984

Printed and bound in Great Britain by

Anchor Brendon Ltd, Tiptree, Essex

British Library Cataloguing in Publication Data

Sparkes, R. A.

The BBC microcomputer in science teaching

1. Science - Computer assisted instruction

2. Science - Study and teaching

3. BBC microcomputer

I. Title

507'.8 Q181.A2

ISBN 0 09 154571 4

For Margaret

Acknowledgements

The BBC microcomputer, on which the programs in this book were written, belongs to my

wife and I am grateful for the use of it (not to mention the television set too). Once again I

thank Miss A. Hynes for producing the art work and I also acknowledge the support given

by the publishers, especially Bob Osborne. My ideas changed radically (and often), yet they

were always patient and able to supply advice and encouragement. I am especially grateful

to teachers who attended in-service courses at St Andrew's College and were willing to try

out my ideas and offer further suggestions.

 However, none of these can share any blame for the errors and omissions that occur in

this book, and I take full responsibility for them. I look forward to receiving comments from

readers on how this book and the use of the BBC microcomputer in the areas I have

discussed might be improved.

 Once again most thanks are due to my wife, Margaret, for her encouragements and

criticisms and for her patience and understanding. The development of this book and the

ideas in it has been at the expense of both Margaret and the children. I can only hope that

their sacrifice is found to be worthwhile.

The University of

Stirling.

7

Contents

 Introduction 11

1 The new resource 13

2 Programming techniques 27

3 Computation and mathematical modelling 60

4 Microcomputer timing and control 93

5 Analogue interfacing 153

6 The 6502 microprocessor 174

7 Assembly language programming 222

8 Interfacing in machine code 263

9 Dedicated systems 277

 Suppliers 285

 Electronic components 288

 Bibliography 289

 Program listings 291

 Index 391

8

Listed programs

The programs listed in the Appendix are given below. To allow them to be stored on disk

each has also been given a shortened name to fulfil disk-name requirements.

Program 1 LOGIC GATES (LGCGATE) These three programs teach (or test

practically) the principles of Boolean

logic and show the use of a

microcomputer in solving logic

problems. They require a logic board

connected to the user port, details of

which are given in the text.

Program 1A LOGIC TEST (LGCTEST)

Program 2 LOGIC TUTOR (LGCTUT)

Program 3 LOGIC MAKER (LGCMKR)

Program 4 6502 SIMULATION

(MICSIM)

teaches the instruction set and

mnemonic codes of the 6502

microprocessor.

Program 5 STOPCLOCK (STPCLK) measures time intervals with a visual

display of the elapsed time in large

digits

Program 6 REACTION TIMER (REACT) measures reaction times

The next four programs require a digital input connected to bits 0 or 1 of the user port.

Program 7 FAST TIMER (FASTTMR) measures time intervals in ten

microsecond units.

Program 8 TSA METER (TSA) measures time, speed and

acceleration.

Program 9 CONSERVATION OF

MOMENTUM

(CONSMOM)

measures speeds of two colliding

trolleys, simultaneously if necessary.

Program 10 SPEED-TIME PLOTTER

(SPTPLOT)

plots a speed-time or distance-time

graph.

The next two programs demonstrate the use of separate gates to control timing.

Program 11 PULSE TIMER (PLSTMR) measures the length of a square pulse.

Program 12 FREQUENCY METER

(FREQMTR)

measures pulse frequency.

9

Program 13 PROGRAMMABLE

OSCILLATOR (PROGOSC)

provides alternating voltages with

changeable waveforms and

frequencies. This program needs a

digital to analogue converter

connected to the user port.

Program 14 CAPACITOR DISCHARGE

(CAPDIS)

measures the voltage across a large

capacitor as it discharges.

Program 15 FAST ADC (FASTADC) takes rapid readings of input

voltages using a special converter.

Program 16 DIGITAL MULTIMETER

(DIGMULT)

displays voltage, current, power and

resistance.

Program 17 CURRENT-VOLTAGE

PLOTTER (IVPLOT)

automatically plots I-V

characteristics.

Program 18 FOUR-CHANNEL CHART

RECORDER (CHRTREC)

displays four channels of voltage

input and scrolls horizontally.

The remaining programs do not need interfaces. Their use is described in Chapter 1 and

they are referred to throughout the text as examples.

Program 19 MECHANICS DRILL (MECHDRL)

Program 20 INTEGRATED SCIENCE TEST (INSCTST)

Program 21 RADIOACTIVE DECAY (RANDECY)

Program 22 SUM OF TWO DICE (SUMDICE)

Program 23 STANDING WAVES (STWAVES)

Program 24 WAVE SUPERPOSITION (WAVESUP)

Program 25 WAVE REFLECTION (WAVREFL)

Program 26 MOLECULAR MOTION (MOLMOT)

Program 27 BROWNIAN MOTION (BRWNMOT)

Program 28 GRAVITY (GRAVITY)

Program 29 RESONANCE (RSNANCE)

Program 30 PROJECTILES (PROJECT)

Program 31 NEWTON (NEWTON)

Program 32 RUTHERFORD (RUTHFRD)

Program 33 MASTERMIND (MSTRMND)

Program 34 ELEMENTS (ELMENTS)

10

Program 35 PILES (PILES)

Program 36 FAST SCREEN TRANSFER (YESNO)

Program 37 DISASSEMBLER (DISASSM)

11

Introduction

This book is a BBC microcomputer version of my previous book Microcomputers in Science

Teaching, which was written mainly for PET and Apple users. The differences between

these machines and the BBC microcomputer are such that a major rewrite has been

necessary. That previous book was also not helpful to those who wished to develop their

own interfaces for using the microcomputer in the laboratory, so 1 have tried to remedy this.

These chapters assume some knowledge of basic electronics such as that found in

Microelectronics (Hutchinson, 1984). To allow this book to be self-contained, some of the

relevant ideas in Microelectronics have been repeated here.

 To some extent this book is also a sequel to Microelectronics. That book concluded that

the most sensible way to introduce students to microelectronics is through programming a

microcomputer to control the environment. Accordingly a large part of this book considers

the use of the BBC microcomputer in analogue and digital measurement and control.

 To reduce the overall amount of material, I have tried to exclude things that are described

in the BBC microcomputer user guide and I assume that readers are well acquainted with

that manual. Throughout that book the author has drawn attention to areas where 'Space

simply does not permit an adequate explanation...'. While not claiming that my explanations

are adequate, I have attempted to fill in the gaps in the user guide to allow BBC

microcomputer owners to get even more out of their machines.

 I have concentrated mostly on those applications of the BBC microcomputer that are

particularly relevant to science teachers. I have interpreted this term pretty widely and there

is a great deal to interest teachers of engineering science, CDT and mathematics too. Most

examples are taken from physics, but the principles they demonstrate apply to all subjects.

This area is one of very rapid development and new ways of doing things are constantly

being found. For this reason I have emphasized the principles involved as well as providing

specific examples. Thirty-eight programs are listed in the Appendix and these are referred

to in the text as examples of the points being made. In addition many other listings are

included in the text to illustrate particular ideas. Note that these examples (which are also

available on disk for readers who wish to save time) are not 'idiot-proof', that is they have

not been tested and protected against pressing the wrong keys or entering the wrong

information etc.

 My programs are mainly intended to help BBC microcomputer users to write their own

programs. The listings are utilities that can be developed by teachers for their own purposes.

There are those who decry this attitude saying that we can't expect teachers to become

program writers. Unfortunately, there is never enough money in education to pay for the

programs that teachers want, which results in teachers having to write their own (or steal

them from someone else). In any case program writing is well within the capabilities of the

average science teacher (like learning to drive a car).

12

I often use the analogy of the motor car in this context. If you occasionally need travel from

one part of the country to another in reasonable comfort, you may take taxi. This will be

very expensive. Alternatively, you may learn to drive the car yourself. This will take time

initially and is only worthwhile if you expect to do a lot of travelling. Likewise, if you only

expect to use the microcomputer on a few rare occasions, or if you want pupils to use it

without supervision, then, by all means, pay the extra and get crash-proof programs. But if

you intend to make considerable use of the microcomputer, it is better to learn programming

for yourself. Then you will be able to take control. You will not be afraid if a program

crashes because you will know how to recover it, you will be able to adapt an unsatisfactory

program to your own specification and you will pay very much less for programs.

 The effort in writing programs is less in getting them to work than in making them

absolutely idiot-proof. I appreciate that programs designed for use by novices must have

this protection built into them. If this is an important criterion for you, then you will be quite

happy to pay for someone to create the program for you. But if you have the ability to write

your own programs and therefore the ability to recover from a crash, you will not be so

happy at having to pay extra for someone else's lack of competence. Also, you will want the

ability to stop programs, list them and alter them to your own requirements and commercial

programs generally prevent this. One way of overcoming this 'protection' racket is by writing

your own programs and making them available to others.

 In support of this precept my programs are presented so that you will be able to modify

them for your own applications. If they were locked up on a no-copy disk, the benefit that

they could give would be more limited. I hope that anyone else making use of these

programs will have the same attitude and will acknowledge authorship in the traditional

way.

13

1 The new resource

'Where shall I begin, please your Majesty?'

(Lewis Carroll, Alice's Adventures in Wonderland)

One of the unfortunate results of the history of computing is that most people still regard it

as a branch of mathematics. A common response to the call to learn programming is, 'I'm

no good at maths'. This is a mistake since there is no longer much relationship between

mathematics and computing. For science teachers, the microcomputer is much more a new

piece of educational technology than a super calculating machine. Its use is not confined to

the mathematics department nor to a computing department. This chapter explores the

possible applications of the microcomputer in science teaching.

 To emphasize the difference between the traditional computer and its modern counterpart

the new phrase 'information technology' has been invented. The modern microcomputer is

mainly concerned with collecting, processing and presenting information. The machine

should therefore appeal instantly to the teacher, whose task it is to disseminate information

in its widest sense.

 There are several aspects of such 'presentation'. First of all, the microcomputer can be

used to display a page of text on its television screen (or VDU). The information could also

include a set of figures or a list of names in columns. Alternatively, the information could

be presented graphically (i.e. as a diagram or picture or graph) or by an animation or moving

picture. This is where the video screen has an immediate advantage over the blackboard or

OHP , since animation is not available on the latter. The microcomputer is thus a textbook,

blackboard, slide projector and film loop all together in one instrument. It is not restricted

to use by individuals, there are several ways in which it can be used with quite large groups.

In this case the display is unlikely to be just text, because this cannot be read from a distance

(although there are ways of displaying a few words at a time in large letters). More likely it

is a picture or an animation that is being presented for all to see, but with the added advantage

of interaction. At any stage during a demonstration the students can be asked to suggest how

the parameters should be changed. A discussion can then take place as to the likely effects

of this change upon the phenomenon being investigated. The changes may then be made to

check on the predictions. The general name for this application is electronic blackboard,

where the microcomputer is used by the teacher in front of the whole class.

 The microcomputer is also a powerful tool for helping small groups of pupils. Until class

sets of microcomputers become available, it is envisaged that this application will be

confined to use by students in a station's laboratory (where there are a number of

workstations and the students move from one to the other). The microcomputer can thus be

used by small groups for short periods of time within a lesson. Alternatively, students

The BBC microcomputer in science teaching

14

might use the computer in a library or resource centre. I use the generic term computer

assisted learning or CAL for this application.

 At the other end of this spectrum the microcomputer can be used by one individual pupil

working alone. The program being used might be simple drill and practice or a tutorial or

the microcomputer might be controlling a complete programme of work, adjusting the level

of presentation to the particular abilities of each individual pupil.

One reason why microcomputers have suddenly become important is because they make the

dream of individualized learning a reality. The difficulties of managing the workcards and

the tests etc. that are needed in the self-paced learning situation are overcome if they are

presented by the microcomputer. New material can be written on the screen for the student

to read and answer questions about. If the student is correct, then some other material can

be presented, but a wrong answer causes the microcomputer to behave differently, either by

presenting the question again or by branching to a remedial teaching loop. It is this ability

to react differently to different situations that makes the microcomputer more powerful than

any other resource we have had before. The interaction between the user and the

microcomputer creates possibilities for monitoring the teaching process much more

efficiently than hitherto. The process of instruction can be halted frequently to check that

the student is still following. This is something that every teacher tries to do but cannot

achieve in the conventional way for each individual student. Given these facilities, the

microcomputer's role in programmed learning is obvious.

 Scientists have an application of microcomputers that is peculiar to their discipline - its

use as a powerful laboratory instrument. We have already reached the stage, where no

physics laboratory is complete without a microcomputer, and I think that this situation will

soon apply in other areas. With suitable transducers and interfaces the computer is fast

becoming the only equipment in some industrial laboratories. I do not think that this will

happen in schools, but they do need to mirror the real world to some extent. The BBC

microcomputer may be used to measure almost any physical quantity desired. At a rough

estimate its use in this way can save up to a thousand pounds worth of alternative apparatus,

as well as enabling some hitherto unmeasurable quantities (like acceleration) to be

displayed. This is my own favourite use of the microcomputer and much of this book is

devoted to it.

 Inside every microcomputer is an incredibly powerful device called a microprocessor.

By talking to this device, new horizons can be opened up, especially for animated diagrams

and for using the microcomputer as a laboratory instrument. Because this is a new idea for

most teachers it is presented in Chapter 6 as a microcomputer simulation and tutorial,

providing a step by step approach to the principles of assembly language programming. This

is intended not only to explain microprocessor instructions, but also to demonstrate the

advantages of a computer simulation. Readers who follow this through might care to reflect

on how this way of visually presenting a new topic could be transferred to teaching in other

areas, for example, the operation of a nuclear power station or the electrics of a motor car.

Outside the classroom the microcomputer could take over the role of keeping records, in the

same way that bigger computers have been doing in commerce for some time. As

The new resource

15

might be expected, a great deal of research and development has already been done in this

area, and there is little point in any individual teacher doing it all again. There are several

projects under way on the development of administration packages for schools and, before

very long, these will become generally available. These will not only include student

records, timetabling, equipment records, library loans, etc. but also there will be complete

packages for marks processing and assessment. Even if no other part of the school is affected

by microcomputers, the school office certainly will be.

 Under this heading too I consider the use of a microcomputer as a word processor or text

editor to be very exciting. Readers of my previous book Microcomputers in Science

Teaching will note how parts of it have been used in this book too. It was a simple matter to

call up the text of that book onto the screen, to select the parts required, alter them and save

them once more on disk. There are several such word processors available for the BBC

microcomputer and their use more than repays their cost. Teachers who prepare their own

worksheets will find that their productivity increases by a factor of three or four at least.

There is an even bigger saving of time for one-fingered typists like me.

 Let us now explore some of these ideas in more detail with particular examples to

illustrate the principles discussed. Note that these examples (which are listed in the

Appendix and are also available on disk for readers who wish to save time) are not

thoroughly tested programmes, guaranteed to work with even the most stupid of users. They

are examples only of the sort of things that can be done with microcomputers. Nevertheless,

they have been tried and they do work and provided the user has a moderate understanding

of programming, they will produce no problems.

Specific examples

Testing

A common use of microcomputers in schools is testing. This means not so much the end-

of-term examination as the routine question-and-answer sessions, with which teachers

attempt to reinforce learning. Because time does not permit the conventional method to be

used on an individual basis, not all children benefit from it. Indeed, the public nature of the

responses often causes pupils to adopt strategies for avoiding an answer. If a child remains

dumb for long enough, most teachers will direct the question elsewhere. The microcomputer

can be viewed as a resource for handling question-and-answer sessions.

 At the simplest level are numerical tests; the microcomputer is perfectly capable of setting

its own arithmetic questions and working out the answers for itself. MECHANICS DRILL

(program 19) illustrates this application. It would be relatively easy to adjust the number

range and the difficulty of programs like this to suit the user. For practical purposes this

program needs to be improved in several ways. Where is the power of the microcomputer

being used? There are no diagrams or pictures or animations. INTEGRATED SCIENCE

TEST (20) shows what can be done in this area. In this program the number of correct and

wrong answers may be counted, so that a final score can be given. It is also useful to note

which questions the student gets wrong in case this reveals the source of the ignorance. A

properly structured test would be written for

The BBC microcomputer in science teaching

16

Plate 1 Integrated science test

Plate 2 Remedial response for a wrong answer

The new resource

17

this purpose anyway. A way of doing this can be seen in the score routines of

INTEGRATED SCIENCE TEST.

 A particularly powerful use of the microcomputer is to allow the student to ask for help,

if the offered problem proves too difficult. This could be automatically given after, say, three

attempts, or it could be available upon pressing key H. After the first few questions, it is a

little wearisome to a student to be given exactly the same 'Well done!' response each time.

No teacher would do this, so why should we accept a lower standard from the

microcomputer? It is not difficult to create a whole range of responses in an array, and to

pick one out at random. Also, thought should be given to more dramatic ways of responding.

Arcade invaders leap about with delight, when they score a hit on the defenders, why can't

the same graphics be used in education? As a suggestion FAST SCREEN TRANSFER

(program 36) illustrates how this might be done by flashing words onto the screen in rapid

succession. This could be incorporated into a test program to indicate whether the student

has got the right or wrong answer. The most exciting thing about test examples presented

via the microcomputer is that children tend to treat them more as a game. They aim to 'beat

the computer' or to 'do better than last time'.

 INTEGRATED SCIENCE TEST illustrates several of the basic principles of using

multiple choice items. This program can be used as the framework for any other multiple-

choice test. The items are kept separate from the main program, which handles all keyboard

inputs and scores etc. The question numbers, clues and correct responses are passed to

procedures as parameters. Scoring is a separate procedure and the final

Plate 3 Reinforcement of correct response

The BBC microcomputer in science teaching

18

presentation of the results is also self-contained. Note the way that graphics have been

included with each item. These are not essential in all cases, but they do increase motivation.

The longer test, from which these items were taken, was the one that made me realize the

power of the microcomputer. Some children ran the test again and again to see if they could

get full marks. I have never noticed this in a traditional school test. This area is also known

as drill-and-practice. The microcomputer is programmed to ask the questions and to monitor

the responses. To do this there has to be some way for the user and the microcomputer to

interact with the user, an aspect which is covered in the next chapter.

Simulations

Almost any phenomenon, model or experiment can be imitated or simulated by the

computer. Some programs of this type give tables of numbers as results, while others give

graphs or animations. GRAVITY (program 28) is an example of the former and the

remaining simulations show the use of graphics.

 Computer simulations are most useful where the real experiment is impossible (negative

gravity?) or very difficult to perform satisfactorily (Millikan's experiment?) or not

accessible (behaviour of an atomic pile?). I do not think that students should carry out

computer simulations of experiments, where the practical experiment itself could be

performed. A microcomputer could be used to demonstrate, for example, how to titrate an

acid against an alkali. One could press keys to allow the acid to drip in and, with high-

resolution colour graphics, could produce a superb effect of the indicator changing colour.

A meter could be displayed also to indicate the current pH as the acid is added. As an

introduction only, this could be very useful for showing the student what steps were

involved. The only objection to this would be if it replaced the actual experiment.

 There is also another danger in simulation experiments, of implying that one is actually

observing nature. Students may come to think that the characters moving around the screen

are behaving just like molecules in a real gas. This cannot be true, because we have no notion

of what the molecules of a real gas are actually doing. We can make observations and draw

conclusions about their behaviour and then produce simulations that appear to produce the

same behaviour. But that does not mean that the gas molecules are like the particles on the

screen. The students are really being encouraged to 'discover' our model of the behaviour of

the molecules, which is the reason why the simulation experiments must be integrated with

experiments on the real world, so that our theories about its behaviour can be tested.

 Programs 21 to 32 are straightforward simulations of physical events, some of which

make use of machine code graphics to achieve the necessary speed. The calculations needed

to keep 256 particles continuously moving at once are quite beyond the capabilities of

BASIC. RADIOACTIVE DECAY (21) is a simulation of the decay of radioactive particles

using the RND function of the BBC microcomputer. A graph of the number of nuclei

remaining after each time interval is displayed. Each nucleus that decays emits a click, thus

giving an audible record of the rate of decay at any instant. The aim of the simulation might

be for students to discover about half-life from a series of runs, but a teacher might wish to

use it for a different purpose instead. For example, it

The new resource

19

could be used in comparison with CAPACITOR DISCHARGE (14) and students asked why

the results are so similar from such different physical starting points. Alternatively, it could

be incorporated into a CAL package and the student instructed to make certain observations.

 SUM OF TWO DICE (22) is another example of the use of the random number generator

to simulate the shaking of two dice. The program adds the dice together and displays the

number produced each time. This program illustrates the graphics capabilities of the BBC

microcomputer in displaying a bar chart, while at the same time continuously updating it.

 The next programs are simulations designed to get across ideas of the behaviour of waves.

STANDING WAVES (23) shows what happens when two waves travelling in opposite

directions interfere to produce standing waves. WAVE SUPERPOSITION (24) is designed

to explain the relationships between speed, frequency, wavelength and also to demonstrate

the nature of a transverse wave. The amplitude, frequency and relative phase between two

waves may be altered and the production of beats between two waves of different frequency

demonstrated. Classical interference between two waves that only differ in phase may also

be shown.

 The way that the microcomputer is used to obtain these effects is discussed in detail in

Chapter 7. Basically, they use machine code plotting or scrolling routines. Another

application of the same technique is to keep a record of the positions of dots on the screen

and so to move them around under the control of certain laws. In WAVE REFLECTION

(25) this method is used to simulate the behaviour of water waves in a ripple tank, where

the water waves are themselves imitating the behaviour of light waves as they meet a

reflecting barrier.

 The next program also uses this directed motion technique. Graphics characters are

directed across the screen in straight lines, and they bounce off the walls simulating the

behaviour of molecules. MOLECULAR MOTION (26) demonstrates what happens to gas

molecules at different temperatures. Here a sound routine is used to demonstrate how the

number of collisions with the walls of the container is dependent both upon the number of

molecules and the temperature of the gas.

 Similar routines in a high-resolution mode enable the behaviour of smoke particles to be

simulated. Pupils look at a Whitley Bay smoke cell through a microscope but have no idea

what they are supposed to see. BROWNIAN MOTION (27) directs their attention to the

essentials so that they may then observe properly. No one is suggesting that the simulation

should replace the practical experiment, it is only another weapon in the teacher's armoury.

Computer assisted learning

This area has many names depending upon whether it is emphasizing what the program is

doing (instruction) or what the student is supposed to be doing (learning). I shall ignore the

fine distinctions involved, while still using the general term or CAL, for short. The above

discussion of drill-and-practice inevitably leads onto the use of the microcomputer for CAL.

INTEGRATED SCIENCE TEST moves some way towards it, since that program replies to

each response with a statement about why the chosen answer is correct

The BBC microcomputer in science teaching

20

or wrong. It is clearly possible to integrate such testing with the teaching of new material in

the same way. The idea is to present the topic and then ask questions to establish whether

the student understands. Then, if it becomes clear that the student does not understand,

remedial action can be undertaken.

 A program that does this is termed a tutorial and there are many in circulation. The most

common are self-instructional tutorials in BASIC programming. Most students, particularly

of those subjects which lend themselves to linear progression, such as mathematics and

computing, find such tutorials useful. They may even prefer them to traditional classroom

methods, because of the immediacy of the feedback and the fact that they can learn at their

own pace. Programs like this are not difficult to write, but they should use the full range of

interaction, reinforcement and, of course, graphics that is available. Several author

languages, like PILOT, exist to aid writers of CAL programs, but these can be too restrictive.

They were not developed with microcomputers in mind and may need special adaptation to

allow an author to incorporate graphics or other special techniques.

 There is, though, a great deal more to CAL than is implied above. To begin with, there is

a clear distinction between teaching and telling. Too many of the self-teaching packages that

have been published so far, fall into the latter category. What is involved in producing a

good CAL package?

 There are two broad categories of CAL programs, one of which favours a structured

approach to learning and the other a more open-ended approach. The former is based on

programmed learning theory, which may be summarized as follows:

1 The main objectives of the topics to be learned are specified, in terms of observable

outcomes, as precisely as possible. Not the 'student should understand something

about molecular weight', but specifics, like 'given a list of chemical compounds

and a table of the atomic masses of the elements, the student should be able to

calculate the corresponding, molecular masses for at least seven out of ten of

them'.

2 The objectives should then be listed in hierarchical order, in the sense that each

objective earlier in the list should not be dependent upon objectives that come

later. For example, the following objective should be attained before the one stated

above: 'given a list of chemical compounds, the student should be able to write out

the corresponding chemical formulae for at least eight out of ten of them'.

3 The next step is to arrange the objectives into a learning sequence. Teachers tend

to do this automatically, so they usually find no difficulty here. The difference

with programmed learning is the attempt to ensure mastery of the earlier objectives

before the later ones are tackled. One of the difficulties of traditional classroom

teaching has been the insistence that all pupils should progress at the same rate.

Thus pupils who had a particular learning difficulty, might never acquire later

objectives, not because they were unable to, but because they never quite mastered

the earlier ones. This is why the objectives above are criterion referenced. Students

do not just have to get higher marks than average, they actually have to attain the

external standard set by the objectives.

4 The learning sequence is then turned into a series of lessons, using appropriate

The new resource

21

teaching strategies for each objective. At certain stages throughout the sequence,

tests have to be devised to see whether a student is ready to proceed to the next

objective. These diagnostic tests are not stored up for the students' end-of-term

grades, their purpose is to inform the student of his or her mastery of each

particular objective.

5 Finally the package needs to be tested on a sample of students similar to those who

will ultimately use it. Any or all of the preceding stages may have to be modified

in the light of this experience.

 A CAL package is thus not just something that any knowledgeable person can write

down in an evening. Estimates vary as to the length of time needed, but a good average

figure is that 100 hours of development time must be devoted to produce material to keep

a student occupied for one hour. So, an expert programmer could put a year's full-time

work into a CAL package to keep a class occupied for one week! The failure of

programmed learning in the past has not necessarily been that it doesn't work, but that

there were not enough people around to write the packages. This position has not changed

with the introduction of microcomputers. It requires a massive effort to produce good

software.

 Even then there are hardware problems to be overcome. With graphics and

animations, a complete teaching package which could adapt its teaching to the individual

needs of its students could not be run with a cassette system for program loading. A disk

system is essential.

 Should teachers, therefore, give up the whole idea of CAL? I do not think so, because it

can never come unless there is a substantial number of teachers who have experience of it.

But I think that this is a task for a properly funded team of writers, not individuals.

Unfortunately, the ease with which software can be copied is likely to deter commercial

organizations from being interested.

 Teachers, or better still a group of teachers, could begin by taking some topic that is

particularly suited to a programmed learning approach; one that is linear in structure, will

fit into the video text method of presentation and where it is easy to write the objectives.

The commonest fault is to attempt too much, so that insufficient time is spent in ensuring

the mastery of each component part. After writing it, several trial runs with students (and

not just the school' s computer addicts) should be made with the teacher in attendance.

They should be challenged to 'crash the program' if they can. All problems discovered by

them should be noted and rectified. Only then should it be placed on the market; it should

not be the end users who have to debug the programs!

 There is one powerful reason for not spending a great deal of effort at the moment on

CAL (apart from the fact that few schools possess a class-full of microcomputers) and that

is the technology is changing fast. Within a few years the video disk will be used to

present the graphics, text, tests and other items that currently have to be put into a CAL

program. In future the microcomputer will become much more of a manager, calling up

from the disk the current lesson and also having previous lessons available for remedial

review. With a single video disk holding the equivalent of several hundred floppy disks of

information, CAL will no longer be a dream.

The BBC microcomputer in science teaching

22

Discovery learning

The other way of using the microcomputer to teach is, in my opinion, much more exciting

than CAL anyway. It is also less likely to be superseded when the video disk arrives. This

is its use in open-ended investigation. Instead of the computer asking the student, student

interrogates the computer. Already several data-base programs exist (e.g. MICROQUERY)

to allow students to obtain information by typing certain keyword into the computer. In

biology this promises to be very useful since a student can then carry out a search without

being forced into a particular direction by a CAL program. At a simpler level many programs

can be developed that allow the student to determine what he or she would like to know.

 Imagine that you wanted to teach a student about the properties of waves using a Nuffield-

type ripple tank. This could be done by direct instruction, with the teacher pointing out the

essential details. Or it could be left to the student to discover the principles for himself or

herself. My experience is, however, that pupils cannot see the waves because they do not

know what to look at. WAVE REFLECTION (25) strips away the inessentials and allows

the pupil to concentrate on the features that are important. The student may alter the angle

at which the waves strike the barrier and then see if the same results occur with the real

waves. This approach does not teach directly, but it does point the student along a particular

path. There is no guarantee that learning will take place. But all our experience indicates

that if it does, then the student will not just have

Plate 4 Plane wave reflection from a barrier

The new resource

23

learned the facts, he or she will also have gained an insight that could transfer to other

properties of waves too.

 Most of the simulation programs listed were originally devised for this purpose. They

illustrate the principles of discovery learning quite clearly, but their use is not restricted to

it. The versatility of the microcomputer ensures that a program can be used for many

different purposes, only a few minutes of adaptation being required.

Number-crunching

A glance at a list of available software reveals programs on Fourier transforms, least squares

fit, linear circuit analysis, linear programming, numerical methods, integration by Simpson's

rule and so on. The microcomputer is being used as a programmable calculator, with all the

advantages of screen display and editing, error detection and program storage.

 There are occasions in teaching when an equation needs to be solved many times and

where the result is more important than the solution itself. One example is typing

experimental data into a microcomputer to obtain an automatic straight-line plot. In this case

the important aspect is the interpretation of the data, not the long process of plotting it out

by hand. GRAVITY (28) gives another instance, calculating the height of a ball thrown

vertically against gravity. it is the nature of the motion that is being investigated, not the

solution of algebraic equations. Even here though a graph of the results would be even more

meaningful.

Modelling

The equation of motion used in GRAVITY (28) is a mathematical model of the behaviour

of a real stone falling. It is inaccurate because it ignores certain features such as friction, but

it does give some insight into the nature of the motion. In Chapter 3 we shall discuss ways

of making the model more real by using iterative methods. Physics and chemistry abound

with such models and most students can understand an equation much better if they can see

what happens to it when different parameters are changed. For example RESONANCE (29)

uses a simple technique to plot the resonance curve for an LCR circuit. The student may

observe the effect of altering the capacitance or the resistance of the circuit.

 Usually in science we eliminate some of the variables in order to make the mathematical

analysis of the phenomenon easier. The microcomputer allows some of these other variables

to be considered. GRAVITY ignores the effects of friction, but this is not too difficult to

incorporate provided the traditional technique of analysis is abandoned in favour of the

iterative method. PROJECTILES (30) uses this technique to provide a more accurate picture

of the motion of real stones being thrown through the air. The iterative method, which is

discussed in detail in Chapter 3, is particularly powerful when dealing with central forces

since the motion of satellites is obtained without recourse to integral calculus (a solution

that Newton would himself have liked). In addition, the motion is not confined to the circular

case, elliptical motion is no more

The BBC microcomputer in science teaching

24

difficult for the microcomputer than is the imaginary circular case. NEWTON (31) is a

mathematical simulation of Newton's thought experiment on why the moon doesn't (or

rather does) fall towards the earth. RUTHERFORD (32) is a variation of this program, that

replaces the attractive force with a repulsive one to simulate the scattering of alpha particles

by gold nuclei.

Games

If the recent fury that has developed over video games does not obscure the issue, there may

be very little distinction between this section and discovery learning. It may be possible to

distinguish between educational and recreational games, but I doubt if even that could be

maintained. There are reports of slow learners who have been very greatly helped by 'space

invaders', which, it is claimed, has increased their span of attention at other, more academic

activities. Nevertheless, I do think that some games exercise the intellect more than others,

and it is in these that I am interested.

 A standard favourite amongst beginners to computing is learning to program

MASTERMIND (33) or one of its forerunners like Bulls-and-Cows, which is easier uses

numbers. This game requires a strategy for getting the answer and I should like to improve

on it by encouraging the user to develop the correct strategy. I have seen even older children

adopting a trial-and-error method rather than using the information in previous guesses as a

basis for the next. If strategy training could be done here, would a

Plate 5 Guessing game - elements

The new resource

25

similar system be possible to teach students a strategy for, say, solving equations? It is

clearly an important potential development.

 Guessing games are among the most popular and I have included my own quiz

ELEMENTS (34). I am not sure that I agree with the traditional version of this game

(HANGMAN) on educational grounds. Doesn't learning theory require us to reward success

rather than punish failure? I have included my version to illustrate the technical ways of

handling guessed inputs. The game is easily adaptable to other topics by changing the nature

of the words (this one is based upon the elements) - this is easily done because they are all

contained in data statements at the end. The program chooses the next word at random and,

to avoid repetition, contains a routine to pick each word once only. Therefore, if you intend

to adapt it to your own use, you will need to alter the maximum number of words available

(103 in this case) wherever it appears in the program.

 My favourite guessing game is called ANIMALS and several versions are available for

the BBC microcomputer. The computer 'learns' the names of different animals and guesses

the one that you are thinking about, by asking a series of yes/no questions.

Does your animal live in the sea?
Does your animal fly?
Does your animal have horns?

When the computer gets to the end of its branching search without success, it gives up and

asks the user to say what the animal is and to suggest a suitable question for distinguishing

it from the previously named animal. Thus the computer 'learns' anew animal. The form of

the game usually given needs alteration, since it asks whether the animal in question has

long ears before even discovering whether it is insect, bird, fish or mammal. As a strategy

for guessing, it is therefore very poor. In the hands of a competent biologist the program

could be invaluable for teaching about classification. In chemistry too, it could be used to

develop an understanding of the periodic table.

 Finally, I add another game that is designed solely to promote thinking; PILES (35).

The user is provided with five piles each of four blocks, which may be yellow or blue. The

aim is to build four piles of five blocks with the colours in any one pile being the same.

Bricks are moved from the top of one pile to another by hitting the keys 1,2,3,4 or 5 only.

The number of attempts is recorded and revealed to the user as the game progresses. The

program also illustrates the use of sound to reinforce the user's responses. The program

was developed for use in primary schools from a version written by A. Wiltshire; find it

very good as a means of encouraging logical thinking in secondary schools too.

The new curriculum

I suppose it is inevitable that teachers first use microcomputers to enhance the current

curriculum. At the drill-and-practice level it is even reinforcing current syllabuses. The

discussion under Discovery learning above, though, does imply that the microcomputer will

eventually alter both how and what we teach. The way forward has been shown by Papert

and the LOGO language. With this, pupils can explore the world of space, shape,

The BBC microcomputer in science teaching

26

size and angle and discover the properties of language at the same time. Would it be possible

in the same way to use a microcomputer as a context-free method of developing process

skills in science?

 It might be possible to invent different worlds with particular properties to be

investigated. Gamow's Mr Tompkins in Wonderland describes worlds where the speed of

light is reduced to ten m.p.h. and where Planck 's constant is unity. The purpose of this is

not just to provide entertaining science fiction, it is rather to explain the real world by

exploring the properties of an imaginary one. I should like to see this done with a

microcomputer. At a simple level GRAVITY and some of the simulation programs in

Chapter 3 allow the acceleration due to gravity to be altered from its normal value of 9.81.

Could this be extended to exploring situations where an inverse cube law of force existed?

What would be the properties of visible light if our eyes could see into the X-ray or

microwave regions? This exploratory use of microcomputers cuts across traditional

boundaries, so that science, mathematics and art become united.

 At the moment few schools possess teletext facilities allowing them access to the vast

databanks of information that exist. When these do arrive, they will raise important

questions regarding the content of school syllabuses. In particular we shall have to question

the current emphasis upon knowledge. The 'Brain of Britain 1983' is the one who can

remember the most information. What will be the value of this skill when we each have

access to any desired information via a home computer terminal? A good memory will be

as outmoded as the ability to extract square roots by pencil and paper (which I was taught).

The skills we shall come to prize will be the processes of handling information. 'Brain of

Britain 1999' will be the one who can solve problems.

 Despite a generation or more of protagonists for process skills, most school science (and

nearly all university physics) is still heavily content based. Students have little chance to

apply their minds to new situations, they are too busy learning about old ones. Given the

opportunity the microcomputer could be used to put us back on the right track. This is why

I call this section 'The new curriculum'. I believe that the introduction of microcomputers

will be far more revolutionary than any of us expect.

27

2 Programming techniques

 'I'm afraid I don't quite understand,' said Alice.

 'It gets easier farther on,' Humpty Dumpty replied.

 (Lewis Carroll, Through the Looking Glass)

This chapter is not an introduction to BASIC programming, I assume you can do that

already. Instead, it attempts to explain some of the things that the BBC microcomputer user

guide omits (because they are of specialist interest). It also looks at ways of improving

tutorial programs with the use of graphics, proper display of text and methods of collecting

and processing responses from the keyboard. Finally, it looks at the whole process of

developing an educational program.

Programming

Introduction

The heart (or perhaps it should be brain) of any computer is its central processing unit

(CPU). A microcomputer like the BBC microcomputer is no exception, its CPU is the

Rockwell 6502 microprocessor. Note that this word 'microprocessor' refers only to the CPU.

People who use it in place of the word 'microcomputer' are fundamentally incorrect. The

microprocessor is only one of many chips inside the microcomputer, even if it is the one

which does all the work. Figure 2.1 shows a simple picture of the way that a microcomputer

works.

 For most purposes the INPUT to the microcomputer is via its keyboard. The OUTPUT

is via the television screen or monitor (in computer jargon this is a VDU or visual display

unit). One purpose of this book is to show you how to make use of other forms of INPUT

and OUTPUT.

 The microprocessor is a programmable device. There are two kinds of program that

control the microprocessor, the resident program and the user program. The same 6502

microprocessor is used in the Apple, the PET, the VIC and the Atom as well as in the BBC

microcomputer. These machines all behave in different ways because they have different

operating systems which tell the microprocessor how to read the keyboard, where to print

characters on the screen and so forth.

 A programmer can write different application programs for the microcomputer to execute.

For example, one program can be written to draw pictures on the video screen, another can

search through a list of numbers for the smallest value. This user program will not remain

in the machine after it has been switched off (it is said to be volatile). Every time that the

microcomputer is switched on, a new user program must be placed in its program memory.

This can, of course, be entered from the keyboard or loaded from disk

The BBC microcomputer in science teaching

28

or cassette tape. To allow the microcomputer to store different programs, the memory for

user programs is alterable. It is called RAM (which stands for random access memory).

To make it easier to produce such programs, they are often written in the language called

BASIC. The microprocessor does not understand BASIC, it is a digital device and only

'understands' digital signals.

 Information can only be sent to the microprocessor as a set of HIGH and LOW voltage

levels. The 6502 microprocessor has eight lines for this information and it reads all eight

lines at once. From our point of view these eight lines can be considered to be a binary

number. (Note, however, that the microprocessor does not understand binary any more than

it understands BASIC.) With eight lines there are 256 possible binary numbers (in the range

0000 0000 to 1111 1111) and any information received by the microprocessor must be one

of these numbers. Each digit of this binary number (called a bit) is either a 0 or a 1. To make

it easier for us, we usually convert these binary numbers into decimals using the following

values for each bit position:

Binary Decimal
0000 0000 0
0000 0001 1
0000 0010 2
0000 0100 4
0000 1000 8
0001 0000 16
0010 0000 32
0100 0000 64
1000 0000 128

The binary number 0110 0011 is equivalent to

RAM

6502

microprocessor

program memory

input output

Figure 2.1 The

microcomputer

as a system

Programming techniques

29

0 + 64 + 32 + 0 + 0 + 0 + 2 + 1, or 99 in decimal

 The whole set of eight bits is called a byte. One measure of the power of a computer is

the number of bytes of information that it can store. The BBC microcomputer model A can

store about 16 000 bytes and the model B about 32 000. It might seem that having only eight

bits to a byte is very limiting if we can only give the microprocessor 256 different pieces of

information. However, there are only seventy keys on a typewriter keyboard, yet how many

different books can be written? It is clearly the sequence of the instructions given to the

microprocessor that is important.

Machine language

One way of programming the microprocessor would be to give it sequences of binary

numbers via eight switches. A separate switch could be used to tell the microprocessor when

the next coded instruction was ready. This is obviously very slow and many mistakes might

be made. (It was the way that the early computers were programmed.)

 A better way would be to write all the binary numbers into the memory beforehand. The

microprocessor could then fetch each one in turn and execute it. It would be better still if we

could type in these numbers from the keyboard. This is the purpose of a machine language

monitor. (The word 'monitor' here has no connection with the television monitor.) The BBC

microcomputer does not possess a machine language monitor, since it has an even better

method of entering instructions. Older microcomputers, like the PET and the Apple have

machine language monitors as part of their resident program.

Assembly language

Using a machine language monitor is still slow, laborious and very prone to mistakes. The

BBC microcomputer allows the programmer to type in instructions for the microprocessor

in a special assembly language. For example, the instruction to the microprocessor to return

from a subroutine is 0110 0000 in binary and RTS in assembly language. The latter is

obviously easier to remember. The BBC microcomputer' s resident program contains an

assembler which takes each line of an assembly language program and turns it into the

correct binary number for the microprocessor to execute. It is a very powerful tool for a

programmer especially when the BBC microcomputer is being used for measurement or

control. Assembly language programming is the subject of Chapter 7 of this book.

BASIC

Even assembly language is not simple, so high-level languages have been developed.

BASIC is one of these. The BASIC instruction to return from a subroutine is RETURN,

which is even easier to remember. The microcomputer needs a special program, called the

BASIC interpreter, to turn BASIC statements into the binary numbers needed by the

microprocessor. This interpreter also contains error checking, so that errors in programming

give the message 'mistake' to the programmer. BASIC is so very easy

(by comparison with the other methods) that only a fanatic would use assembly language

unnecessarily. BASIC programs are used wherever possible throughout this book. For

The BBC microcomputer in science teaching

30

certain purposes, however, like rapid measurements, assembly language programs are

necessary and Chapter 8 of this book is devoted to this topic.

The resident program

The operating system, the assembler and the BASIC interpreter are all part of the resident

program in the BBC microcomputer. Since this must always be there when the machine is

switched on, it is non-volatile, and is written in ROM (read-only memory). ROM cannot be

changed, but it has the advantage of not disappearing when the machine is switched off.

Because it has to do so much, there is quite a lot of it in the BBC microcomputer, over 30

000 bytes. Some of this is useful to us even when we are not using BASIC. Also, as we shall

see later, it is quite possible to write machine language programs to make the BBC

microcomputer behave in different ways. You could even write your own operating system

(and make the BBC microcomputer behave like a PET!). The advantage of machine

language is the extra power it gives to the user.

Hexadecimal notation

In BASIC most users are unaware of binary, but when we start to talk to the microprocessor

it is not possible to avoid it altogether. But what are we to make of binary number like 1110

0110 1010 0111 ? Even copying it down might produce errors We use a shorthand system

called hexadecimal coding. Each set of four bits (half a byte is called a nybble) is represented

by a code according to the following table:

Decimal Binary Hexadecimal
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

The sixteen-bit number 1111 1100 0000 0001 is thus written as FC01. To show that it is a

hexadecimal number, BBC BASIC uses the & sign, so the number becomes &FC01. The

addresses used in the BBC microcomputer have sixteen bits giving a total of 65 536

Programming techniques

31

different locations (from &0000 to &FFFF). The contents or data in any location are eight-

bit bytes with 256 possible different values (from &00 to &FF). Converting such numbers

to and from decimal is easily accomplished.

PRINT &FC01 produces the decimal number 64513
PRINT 32768 produces the hexadecimal number 8000

Talking directly to the memory

BASIC allows the user to be unaware of how the microcomputer works. This is usually

advantageous, but occasionally better results are obtained if the peculiar characteristics of

the machine are exploited to the full. Usually this prevents a program from being

transportable to a different microcomputer, but this is not in itself a sufficient excuse for

avoiding it. After all, each new microcomputer soon has its own specific version of

'Invaders' written for it and these are totally machine specific. Graphics are a particular

example of the advantages of machine dependent programming, so a little time will be

devoted to looking at BBC graphics from the microcomputer's viewpoint.

 The BBC microcomputer memory contains 65 536 locations each with its own address.

The contents of any address (for example 65535) can be seen with the BASIC statement

PRINT ?65535. The same can be done by writing the address in hexadecimal PRINT

?&FFFF

 New data can be sent to a particular memory location with the statement:

LET ?65535 = 0 (or ?65535 = 0, since 'LET' is optional).

In hexadecimal notation this becomes LET ?&FFFF = 0.

 With this particular address there will be no effect, &FFFF is in ROM and its contents

cannot be changed like this. Only RAM can be altered in this way. However, if you start

changing RAM indiscriminately, you may upset the operating system of the microcomputer.

Certain parts of RAM are reserved by the machine for its own use. If you change these the

BBC microcomputer may get lost inside itself. The screen may ' freeze' or go blank and the

microcomputer may refuse to respond to the keyboard. Even the BREAK key may produce

the situation where everything appears normal, but unexplained error messages appear. On

listing your program, you find that it is now a 'bad program' or that someone has written

rubbish over parts of it.

 None of this causes any permanent damage to the microcomputer. In computer jargon

you have caused a crash. The remedy is very simple. Switch off the microcomputer, wait

a few seconds and then switch on again. The proper operating system will be restored and

all will be well. The only casualty will be that your program has disappeared. This is your

own fault for not obeying the maxim:

ALWAYS SAVE A PROGRAM BEFORE YOU RUN IT

This is particularly sound advice when running machine code programs, when writing

directly to the memory or when external devices are connected to the microcomputer.

 One very useful place to write is the screen memory. Certain parts of the memory hold

The BBC microcomputer in science teaching

32

the information that is displayed on the screen. This RAM can be read and written to without

any fear of disaster. It also has the advantage that you can see what happens to the location.

Let us try this now.

 This investigation is designed for MODE 4, hence type MODE 4 and press RETURN.

The screen will go blank. Each dot on the screen is now the visible representation of a

particular bit in the screen memory and can be turned on or off directly. For example, type

LET ?30000=1

A single dot should appear approximately in the middle of the screen, because bit 0 of

memory location 30000 has been turned on. Try

LET ?30000=16

to get a different dot. A good investigation now is to discover the positions of the dots

corresponding to each bit. Try this program:

10 FOR i = 0 TO 255
20 LET ?30000 = i
30 FOR t = 1 TO 1000:NEXT t
40 NEXT i

Line 30 is a delay to slow everything down. You should observe that combinations of the

numbers 1, 2, 4, 8, 16, 32, 64 and 128 give different combinations of dots. In particular 255

switches on all the bits and produces a line.

 Now try different addresses, such as

LET ?30001=255 or
LET ?30010=255

To find out where the different memory addresses are located on the screen, run this

program:

10 FOR i = 32767 TO 22528 STEP -1
20 LET ?i=255
30 FOR T=1 TO 50:NEXT T
40 NEXT i

You will soon discover one fact: the screen positions are not contiguous. That is, the end of

one line is not followed immediately by the start of the next. Each block of eight contiguous

bytes is stacked vertically and is next to the following set of eight bytes. This makes it more

difficult to address the screen directly, but still far easier than with the APPLE or most other

microcomputers.

BBC health warning!

The BBC microcomputer user guide is full of dire warnings about the evil effects of writing

directly to the memory. There is good reason for this. The BBC machine is expandable - a

number second processors and other accessories is to be made available in the future. The

manufacturers clearly wish to preserve this expandability and

Programming techniques

33

programs that write directly to the memory do not allow this to happen. The user guide

explains quite clearly (to those with the background knowledge) how programs should be

written, using the special OS calls that are provided. Some use of these is made in Chapter

7.

 I have only one objection to this advice; when written in this way my programs do not

work! Using the OS calls slows down machine code graphics by a factor of a hundred and

makes fast data acquisition impossible. In the future when all the extras for the BBC

microcomputer are available, I may be able to revise this view (and re-write this book) but

for the moment there is still no other way to do many of the things I describe. The

consequences of this position are that some programs will need to be re-written in the future.

I regard this as a small price to pay for having access to these programs now. In any case I

do not think that much re-writing will be necessary. I believe it will be quite feasible to place

a machine code routing in the memory of the main processor, which can be called by a

program in the second processor, and which can pass parameters back to that program using

the proper OS calls. In this way we shall get the best of both worlds.

 It is gratifying to know that I am not alone in this view. The games programs published

by Acornsoft rely heavily upon direct addressing for their sophisticated graphics. If theirs is

the standard that science programs have to compete against for pupils' attention, then we

had all better learn machine code programming!

BBC microcomputer graphics
There are two different ways of producing pictures on the video screen, which are

exemplified by MODE 4 and MODE 7 (the teletext mode). MODE 4 has a high-resolution

screen, meaning that any of its 81 920 dots (called pixels) can be individually switched on

or off. We saw above how this can be done. The method is identical to that which will be

used in Chapter 4 to switch LEDs on and off. You can imagine the TV screen as a matrix of

pixels each connected to a different memory location. Each bit at each address controls a

single pixel. Any combination of dots can be produced anywhere on the screen by turning

on the appropriate bits. You could theoretically paint a complete picture by specifying each

individual dot but in practice this is time consuming and impracticable.

 The normal graphics commands of BBC BASIC are sufficiently fast for most purposes;

indeed they are its most valuable asset for creating pictures and animations. Although

graphics characters are not available, they can be created by the programmer. It is possible

to define any desired shape by specifying which pixels of an eight-by-eight matrix should

be on and which should be off. For example, a diamond shape could be defined as follows:

VDU23,250,24,60,126,255,255,126,60,24

It is given an identifying number (250 in this example) so that diamonds can be placed on

the screen at the point (x,y) with the statement PRINT TAB(x,y);CHR$250. By varying the

x and y values the character can be made to move around the screen at will. By creating two

or three different versions of the same character, for example a man in

The BBC microcomputer in science teaching

34

different walking positions, very lifelike animations are possible. The techniques of drawing

pictures with user-defined graphics are well described in the user guide and INTEGRATED

SCIENCE TEST has been specifically designed to illustrate the different methods that can

be used. Briefly, these are as follows. Once a graphics character has been defined (or is

already defined in MODE 7) it can be placed with PRINT CHR$250 or whatever. If the

picture to be drawn is at all large though, this technique consumes far too much memory

(four bytes per character since CHR$ is stored as a single token). Some saving can be made

by defining string variables thus, LET A$=CHR$240 or LET fly$ = CHR$250 + CHR$8 +

CHRS240. For large pictures it may be easier to store all the picture codes in a set of DATA

statements, calling up each one in turn and placing it on the screen. This usually involves

putting blank characters in too wherever they are needed, so there is rarely any saving of

memory with this technique. All these methods are illustrated in INTEGRATED SCIENCE

TEST.

 Another technique is to redefine certain rarely used symbols like 'q ' and '+'. Once done,

this allows a picture to be drawn with the actual graphics characters themselves so that it is

easier to see which ones to use and where to put them. Listing the program on a printer

produces the original symbol rather than the new graphics character and this makes it easier

for someone reading the program to type it into his or her machine. Inspect the listings for

LOGIC TUTOR (3) or 6502 SIMULATION (4) to see how this done in practice. In MODE

7 the following technique is recommended. Each numeric code normally represents an

alphanumeric symbol, for example CHR$170 is the *-character. If this is preceded by a

graphics conversion code, say CHR$151, then CHR$170 becomes a particular graphics

character instead. So, a whole picture can be drawn with the 'normal' symbol, which

becomes the corresponding graphics character when the program is run. Look at the way

that the V, I and W symbols are made in DIGITAL MULTIMETER (16) to see this

technique in operation.

 Another use of the high-resolution screen is for drawing graphs with the MOVE, DRAW

and PLOT functions. This is described in detail in the next chapter. These commands are

sufficiently fast for most purposes, except for making waves. For this it is necessary to create

a machine code routine (as described in Chapter 7), but this is complicated and not easy to

understand.

Teletext graphics

The other method of producing pictures (called chunky graphics) is used in the teletext

mode. Some of the possible characters that can be printed on the screen are shapes, called

the graphics characters. A picture can be made up from different combinations of these

shapes. The simplest way to use these is to treat them like letters in the PRINT statement,

so building pictures rather than words. Chapter 28 of the user guide describes the process

very well.

 Another possible way of using chunky graphics characters is to write them individually

to the screen by number. The teletext screen is memory mapped as follows:

 column no. 0…………39
Row 0 address 31744 31783
Row 24 address 32704 32743

Programming techniques

35

which is 1000 positions on a 40 by 25 grid. Note that this is only true immediately after a

CLS or MODE 7 has been executed. After the screen has 'scrolled' the memory locations

are in different places on the screen.

 Each position occupies 64 pixels arranged in an eight-by-eight block. The character

displayed at any position is defined by the contents of a single byte that controls each

position. This is why the teletext screen needs only an eighth of the memory requirements

of MODE 4. Since each byte can have any of 256 values, there ought to be 256 different

characters that can be displayed at any one position (one of which is the 'blank' character,

number 32). In practice some of the codes are repeated for the same character and some are

control codes to change the colour or format of the succeeding characters. Reference should

be made to the user guide for details of what each code does. What the guide does not say,

is that these codes can be written directly onto the screen. There is no advantage of this in

BASIC, but in machine code this technique produces very good animations. To try this, type

MODE 7
?32000 = 42

which, will place the *-character somewhere near the middle of the screen. Investigate this

by writing other characters to different parts of the screen.

 The teletext method is good for animations, because it is then quite easy to remove the *

-character by overprinting it with a blank (232000 = 32) and to place it in the adjacent

position (?32001 = 42). Carried out at speed, this gives the appearance of continuous motion

and is of great use for simulating objects in motion. Unfortunately, if there are more than

just a few objects, BASIC cannot perform this process fast enough and machine language

becomes essential.

Motion

To make the * -character move across the top of the screen, it must be written into each

successive memory location in turn, and then erased again after a short delay to give it time

to be observed. The * -character has the value 42 and the blank has the value 32.

 5 MODE 7
10 FOR X = 31744 TO 3178
20 ?X=42:REM PLACE * ON SCREEN
30 FORT = 1 TO 100:NEXT:REM DELAY
40 ?X=32:REM ERASE *
50 NEXT X

To move the character vertically 40 must be added to or subtracted from the current position.

 5 MODE 7
10 FOR X = 31744 TO 32704 STEP 40
20 ?X=42:REM PLACE * ON SCREEN
30 FORT = TO 100:NEXT:REM DELAY
40 ?X=32:REM ERASE *

The BBC microcomputer in science teaching

36

 50 NEXT X
 60 FOR X = 32704 TO 31744 STEP -40
 70 ?X=42:REM PLACE * ON SCREEN
 80 FORT = 1 TO 100:NEXT:REM DELAY
 90 ?X=32:REM ERASE *
100 NEXT X

General motion is achieved with the following numbers.

Value Direction
 1 east
 41 south-east
 40 south
 39 south-west
 -1 west
 -41 north-west
 -40 north
 -39 north-east

 5 MODE 7
 10 FOR X = 31744 TO 32728 STEP 41
 20 ?X=42:REM PLACE * ON SCREEN
 30 FORT = 1 TO 100:NEXT:REM DELAY
 40 ?X=32:REM ERASE *
 50 NEXT X
 60 FOR X = 32728 TO 31744 STEP -41
 70 ?X=42:REM PLACE* ON SCREEN
 80 FORT = 1 TO 100:NEXT:REM DELAY
 90 ?X=32:REM ERASE *
100 NEXT X

More usually it is small pictures that are moved around the screen in this way (for example

the piston in the cylinder of a motor car). Low resolution pictures can be moved about in the

same way as defined characters on the high-resolution screen. The direct method of screen

addressing can also be used, although it has no advantages in BASIC. The technique is to

use two tables, one to hold the character and the other to hold the relative Place for that

character. This will be illustrated with a moving engine. This program also shows how the

teletext screen achieves its graphics characters with a set of CHR$(151) characters down the

left of the screen. The real advantage of this technique will become apparent later.

Engine

 10 MODE7
 20 REM SET UP SCREEN FOR GRAPHICS
 30 CLS
 40 FOR i=31744 TO 32703 STEP 40

Programming techniques

37

 50 ?i=151
 60 NEXT i
 90 REM MOVE ENGINE
100 FOR offset = &7CC9 TO &7CE9
110 RESTORE
120 FOR i = 1 TO 35
130 READ position
150 READ character
160 ?(position + offset) = character
170 NEXT i
180 NEXT offset
190 END
200 DATA 0,32,1,252,2,252,3,32,4,32,5,32,6,32
210 DATA 40,32,41,234,42,255,43,240,44,240,45,240,46,244
220 DATA 80,32,81,234,82,255,83,255,84,255,85,255,86,255
230 DATA 120,32,121,250,122,255,123,255,124,255,125,255,126,255
240 DATA 160,32,161,32,162,79,163,32,164,32,165,79,166,32

The position of each character is specified relative to its top left corner. This top left corner

is moved across the screen with the variable offset. To avoid leaving parts of the engine

behind, its trailing edge is filled with blank characters (32). The picture can be moved in

any direction, for example upwards, by adding -40 to the next offset each time, although in

this case it might be necessary to surround the whole picture with blanks. The result is most

unsatisfactory in BASIC. The point of doing it at all is to demonstrate the principle. When

we return to do the same thing in machine code, we shall obtain a much more pleasing result.

Interaction
The most usual means of communication from the microcomputer to the user is the display.

In this there are numerous pitfalls for those writing their own programs, which will now be

described.

The display of text

The statement PRINT 'PARIS IS THE CAPITAL OF FRANCE', is probably the most easily

understood of all BASIC statements. The sentence is just written out on the video screen of

the microcomputer. It is so easy to use, that some programmers fail to give any attention to

the result.

 The use of capitals (upper case) makes for difficult reading at the best of times, and if

the programmer does not use double-spacing either, it is doubly difficult to read. With

lower case letters and the use of double-spacing the result is more pleasant. The amount of

text presented also needs to be adjusted to the level of the user: secondary pupils

particularly merely scan the text without reading it properly. Later they complain that they

'don't know what to do!'.

The BBC microcomputer in science teaching

38

Plate 6 Motion against gravity showing tabulation

 An automatic linefeed occurs when there are forty characters in a line. The forty-first

character appears on the next line and the crime of wrap-around is committed. There is

no excuse for this, it simply requires the programmer to read what the program prints with

a critical eye and not accept inferior presentation. If the same things were done on paper,

they would be glaringly obvious. BBC BASIC has the ability to display figures in neat

columns, so there is no excuse for not doing so (Plate 6). This is described in the user guide.

 In the days of tele-typewriter output there was no way to prevent text from scrolling up

from the bottom. Part-sentences remained at the top of the screen, and these were most

distracting. There is no need to continue with this practice today. The programmer

should clear the screen before each new page of text. Also, less text should be displayed at

one time, in which case the student will need to indicate when a new page of text is to be

displayed. This is described later.

Input from the keyboard

Some published programs limit interaction to 'press SPACE' at the foot of each page of

video text. This is a misuse of a powerful machine, especially if the opportunity to return a

previous page is denied. The microcomputer is more than an electronic page-turner and its

facility for interaction should be fully utilized. At the highest level an interactive

program could determine the level of understanding attained by its users and adjust the

Programming techniques

39

presentation to suit. At the lower levels the interaction will probably be confined to

responding to questions.

 There are several ways of managing the response situation. The simplest is via the INPUT

statement. This needs careful handling since the pupil can easily enter the wrong information

by pressing the wrong keys or sit in vain while the microcomputer waits for the RETURN

key to be pressed. Full instructions need to be given, especially to first time users. The first

INPUT in a program might be to get the student to enter his or her own name, so that the

microcomputer can appear more personal. Some instructions such as the following need to

be displayed, not only on the screen itself, but also on any accompanying documentation.

Hello!
I want to learn your name.
Please type your first name on the keyboard.
If you make a mistake, you can rub it out with the DELETE key.
This key is near the bottom-right corner of the keyboard.

When you have typed in your name correctly, press the key marked
RETURN.
Then I will know you have finished.

Begin typing now

Note the double-spacing between paragraphs, the use of lower case text and the use of

capitals for emphasis. Also as mentioned above, the text should be preceded by CLS (screen

clear).

 The BASIC program to PRINT this text would be followed by the INPUT statement.

Since a string response is required, this must be INPUT A$. The student, who presses

RETURN before entering anything, returns the empty string, which could be detected if it

is important. (Often experienced users will be too impatient to type their name and wish

merely to press RETURN anyway; they should be allowed to do so.)

 A$=GET$ retrieves a single key entry, which may be any character on the keyboard.

Whole words can be entered with GET$, one letter at a time, and the word can be

assembled from these letters. This avoids the problems of having to use the RETURN key,

but the possibility of erasing an error is then removed also. This facility can be restored

with yet more lines of programming and MASTERMIND illustrates the technique for

doing this.

 A$=GET$ causes the program to halt until something on the keyboard is pressed.

Keyboard entries are, however, stored in a buffer and there may be entries in this buffer

from previous keypresses. Novice users particularly, press keys very firmly and the BBC

microcomputer then uses its auto-repeat facility. Spurious responses get stored and produce

peculiar results later. There are ways round this problem. First, the buffer can be cleared

immediately before the A$=GET$ statement with *FX15,1. Secondly, the auto-repeat

facility can be turned off completely with *FX11,0. It is recommended that both of these

techniques be adopted. A$=GET$ is most useful for accepting single letter inputs, such as

A, B, C or D in response to a multiple-choice item, or the inevitable 'press SPACE' at the

end of a page.

The BBC microcomputer in science teaching

40

L$ = INKEY$(800)

produces a delay of several seconds and may be used to pause to give a user time to read the

text. While this is adequate for single words or sentences, readers differ so markedly in their

speed that no common time can be fixed for them all. The alternative technique requests the

student to 'Hit a key' or better to 'Press SPACE to continue'. The SPACE can be detected

with the BASIC statements

100 IF INKEY$(0)<>" " THEN 100
or

100 REPEAT UNTIL GET$=" "

This has the advantage that pressing a different key has no effect. Consecutive pages of text

can be turned by alternating between 'Press SPACE' and 'Press RETURN', this latter being

detected by

100 REPEAT UNTIL GET$=CHR$(13)

There is then no danger that a ham-fisted pupil will rest a finger on a key for so long that

pages flash on and off the screen in rapid succession. A conscious action is required every

time.

 A common use of A$=GET$ is to select from a menu. The user is offered several

alternatives and invited to choose one. A typical menu in a tutorial might look like this:

You are correct, the shutter speed must be as fast as possible, i.e.
1/1000th of a second.

What would you like to do now?

1 Try another problem on shutter speeds?
2 Try a problem on apertures?
3 Go on to study film speeds?
4 Finish the lesson for now?

Press one of these numbers to make your choice.

2540 LET A$=GET$

waits for a keypress and returns with its key 'face value'. The desired response can then be

inspected with

2550 IF A$="1" THEN 5000:REM Next problem
2560 IF A$="2" THEN 6000:REM New problem set
2570 IF A$="3" THEN 8000:REM Next lesson
2580 IF A$="4" THEN 9000:REM Finish
2590 GOTO 2540:REM Incorrect response

If the user has accidently pressed SHIFT-LOCK, then pressing keys 1 to 4 apparently has

no effect, since A$ will return with the shifted character. It may be necessary then to

convert the characters to ASCII code (X=ASC(A$)) or use X=GET and manipulate the

result.

Programming techniques

41

2545 IF ASC(A$)<48 THEN A$=CHR$(ASC(A$)+16)

converts the shifted symbols of the top row to their corresponding numeric character.

 Similar problems occur if the CAPS-LOCK or SHIFT-LOCK conditions are (or are

not) in operation and the program expects an alphabetic key:

100 REPEAT
110 A$=GET$
120 UNTIL INSTR("ABCD abcd",A$)<>0

Possible upper case entries can also be converted to lower case with

IF ASC(A$)<97 THEN A$=CHR$(ASC(A$)+32)

It may sometimes be necessary to impose a time limit on a pupil. If the pupil has failed to

answer within say thirty seconds, the program could jump to a remedial loop.

A$=INKEY$(n) will wait for n centiseconds (maximum 327 seconds) before continuing

automatically if no key is pressed.

Other techniques

Novices take ages to find a particular key on the keyboard. One way to overcome this is to

use alternative methods of INPUT. These also remove the need for disabling keys and all

the other problems encountered above. The best of these devices is a light pen which can be

pointed at a particular part of the screen. These are available commercially and plug directly

into the analogue port at the back of the microcomputer.

 For some responses switches can be connected to the user port and detected with fairly

simple routines. One scheme is described in Chapter 4 to allow up to eight pupils to respond

independently. The first one to respond is recorded and the others are locked out after the

first response. This is ideal for competitive quiz programs.

 An alternative for the future is the soft or concept keyboard, which plugs into the

microcomputer, and where the number and function of the keys can be changed by the

program itself. The keys can thus become letters, numbers, pictures or special symbolic

characters as in BLISS. This is a far better way of communication with younger pupils,

avoiding all the above pitfalls and giving more freedom to the programmer. The discussion

of how to connect one of these to the BBC microcomputer is taken up in Chapter 4.

Crash protection

Ideally it should be impossible for a novice user to crash a program by indiscriminately

pressing the wrong keys. This can be such an effort (as the above discussion shows) that it

may take too much time. The best way is to put key entry checks into a separate

PROCEDURE, which already contains the protection (see INTEGRATED SCIENCE

TEST). This can then be called whenever it is needed. Even then a determined pupil can

crash by pressing the ESCAPE or BREAK keys.

 ESCAPE is relatively easy to handle. Begin each program with

ON ERROR GOTO 9000 (or wherever)

The BBC microcomputer in science teaching

42

and at line 9000 put a routine to deal with the situation of the pupil having pressed the

ESCAPE key.

 BREAK is dealt with by redefining that key so that the program restarts (page 143 of the

user guide). This is far from ideal, since it re-runs the program from the start, not from the

place where the BREAK key was pressed. Neither of these suggestions thus solves the

problem by returning the pupil to his last exit point. My solution is to teach pupils to be

careful and not to press all the keys in sight. The display should tell them exactly which keys

to press and if they press others, then they can jolly well find out how to recover from the

crash themselves. (Actually, it is quite amazing how quickly even young children can learn

to use the machines properly; there is such a thing as over-protection.)

Processing the response

Once the response of the student has been collected, the microcomputer has to process it.

If the entry is the student's name, presumably this is so that a personal touch can be added

to requests:

'Now, Bob,
can you tell me

This is achieved by printing out the string variable that was used for the original input. That

variable name must not be used again, or the microcomputer will later change the student's

name to PHOTOSYNTHESIS or whatever. Note also the need to leave a long space after

the student's name. If this is not done, you will find the computer responding to a long name

with:

'Now, Stephanovanovitci, can you te
Il me….’

Wrap-around is unforgiveable in video text.

 The response PHOTOSYNTHESIS might be the answer to a question set by the

microcomputer. Once this response has been collected, the program has to decide if

PHOTOSYNTHESIS is the correct answer. A sequential list of questions can retain the

correct response in a DATA statement, which is then collected by READ. If responses have

to be accessed at random, then a better way is to keep the correct responses in a string array,

thus:

100 R$(1)="PHOTOSYNTHESIS"
110 R$(2)="RESPIRATION"
120 R$(3)=…etc.
500 PRINT "What name is given to ….
510 INPUTA$
520 IFA$ = R$(1) THEN PRINT "CORRECT"
530 etc.

 The unfortunate thing about checking responses by the method shown in line 520 above,

is that misspelled inputs or even things like PHOTO-SYNTHESIS are considered

Programming techniques

43

incorrect. The program could contain a selection of possible responses and check each one

separately, but the range of possible correct responses could be enormous.

 One solution is to use the LEFT$, RIGHT$ and MID$ functions to check that the majority

of a word is correct, but every word tends to behave differently and about the best that can

be achieved is to disregard leading spaces and hyphens. The problem mentioned above,

about the use of upper- and lower-case letters, can be overcome by the use of the ASC and

CHR$ functions.

 One desirable feature of tutorials is to give clues if the student has no idea. In the case

above, after the first wrong response, the microcomputer could prompt with

CLUE: PHOTO---------

LEFT$(word$(1),5) is used to extract the initial letters, and this can be printed out on top

of

FOR I = 1 TO LEN(word$(1)):PRINT"-";:NEXT I

ELEMENTS (34) demonstrates the way that this is achieved in practice.

 Techniques like these are learned by studying the user guide, the programs of others and

books specifically about BASIC and the BBC microcomputer. A list of such books is given

in the Appendix.

Writing a program

This topic is a subject in its own right and at least one book has been entirely devoted to it.

Thus, it is not possible to do more than indicate the overall principles. The whole process

can be subdivided into three parts:

Design
Coding
Debugging

Of these the most important, and the one most often neglected, is the design stage. There is

always a great urge to begin coding, that is to write BASIC statements into the

microcomputer. This should be resisted as long as possible, because the faster one begins

coding, the poorer the program will be.

 An example of this is MICSIM (4) which was never planned at all. This program began

on the PET as a diagram to illustrate the various registers in the 6502 microprocessor.

While it was being written, the thought occurred to me that it would be useful to load

different numbers into the registers and see their effect. First the mnemonic instructions

LDA, LDX and LDY were added and then STA, STX and STY. Then it was decided to

include the main 6502 instructions too and illustrate the different addressing modes. At

this point it was discovered that some addressing modes could not be implemented; the

program was beginning to creak.

After a great deal of effort, it finally worked to my satisfaction, but it was becoming

difficult to deal with new problems as they arose during the evaluation. At one stage a

The BBC microcomputer in science teaching

44

RENUMBER was implemented to create more space and this destroyed any vestige of

sensible numbering that had originally been incorporated. When the program was

transferred to the BBC microcomputer, it was merely translated into BBC BASIC, although

some of the advantages of the latter were utilized. Further patches removed a few more

problems and at this point I decided to make the simulation a dynamic one. As well as just

illustrating the instructions, I made it execute sequences of instructions too. This addition

showed serious faults in the original idea and ad hoc solutions were introduced to solve each

problem as it arose. I finally abandoned the whole project and decided to leave the program

as it now is. It is full of errors, it is impossible even for me to interpret, it is probably

incapable of improvement, but it works after a fashion and gives a satisfactory introduction

to machine code programming.

 The purpose of this tale is to warn of what can happen if the planning stage is neglected.

What I have just described is called bottom-up programming - starting from a simple idea

and adding refinements to it. A computer scientist would argue that I should have designed

the whole program from the start and anticipated the problems that might arise. This is called

top-down programming and is what the rest of this chapter is about. I do however, want

to give a note of caution.

 It often happens that programs are developed by chance. For example, my first (PET)

programs on wave motion were the result of an accident. I had spent some time trying to

make waves that moved across the screen, but BASIC was much too slow. Then working

on a routine to paint a picture on the screen in machine code, I assumed that the end of the

screen was in position 40 (in fact it runs from 0 to 39). The routine painted the picture quite

happily but then scrolled it across the screen. I realized that a sine curve would become a

travelling wave and the solution to one of my problems had been overcome. I was able to

use this accidental discovery to write several wave programs for the PET.

 The point of this story is that planning by itself does not always provide a solution. There

nearly always has to be interaction between experimentation and program development. In

the commercial world program designers must specify accurately what they want to do.

Poorly constructed programs cost money, so top-down programming is an economic

necessity. The educational world is not quite the same as this. Teachers are almost certainly

writing programs in their own time, which is never costed. Also, they do not have all the

necessary programming skills at their fingertips beforehand. For them strict top-down

programming is not possible until they become more expert.

 I shall therefore describe a technique that can be used by non-experts. To aid the

discussion we shall look closely at one particular program RESONANCE INA TUBE,

which is listed at the end of this chapter. This is not a program merely developed to illustrate

the principles, it is a genuine one. Thus, it gives a better insight into the whole process of

program development than any artificial example can provide. It also utilizes animated

graphics and sound and illustrates most of the techniques so far discussed in this chapter.

 I wanted a program to simulate the resonance tube experiment. In this experiment a tuning

fork is held over the mouth of a long tube, whose other end is closed by a movable piston.

As the piston is moved, so the tube reaches its optimum length for the frequency

Programming techniques

45

of the tuning fork and a loud sound results. This is called resonance and the length of the

tube is a quarter of a wavelength at this point. From a knowledge of this length and the

frequency of the tuning fork it is then possible to determine the speed of sound in the tube.

The experiment itself is difficult to perform since students do not know what to look for.

The purpose of the simulation is to isolate the principles from the mass of conflicting details.

Once students know what they are expected to do, they can carry out the real experiment for

themselves. I cannot emphasize too strongly that this simulation was never intended to

replace the actual experiment, although I realize that some misuse it in that way. It will be a

sad day if computers take over from laboratory work - they simulate mathematics, not

science.

Design

There must be a diagram of a tube and a tuning fork with a movable piston that can be moved

in and out with the left and right cursor movement keys. These are the best keys to use since

their arrow heads point in the correct directions. As the piston is moved, so the loudness of

the sound changes, becoming a maximum at resonance. Then the user measures the length

of the tube and plots the graph. This specification immediately threw up problems.

 Should the user measure the length of the tube with a real ruler? Considering the different

sizes of screen that might be encountered, this idea might be difficult to implement. The

values obtained would be unlike the real situation, since 300mm tube lengths are used in

practice. The program would need to use fairly high frequencies to fit the limited width of

some screens and the frequencies chosen would be different in each case too. It was decided

therefore, to use an artificial ruler measuring up to 330 mm, which allows tuning forks in

the range 256 Hz to 512 Hz to be selected.

 Should it be possible to obtain the higher harmonics? This was considered to be one of

the distracting details that I was trying to eliminate. By restricting the tube length and

choosing the frequency range as I did above, these harmonics do not exist.

 Should the user plot real values or those chosen by the computer? The latter would make

graph-plotting much easier but might hide the purpose of the simulation. I knew how to do

the graph anyway so I was not afraid of this. I decided to allow pupils to enter their own

results, which could be wrong (within limits), but which could be altered later if necessary.

One of the purposes of the simulation was the development of good experimental technique.

I therefore decided to plot the graph as soon as two readings had been taken. The plotting of

subsequent points then shows if any of them are in error. I always tell students to 'plot the

graph as you go along'; hopefully this simulation encourages the habit.

 Should longitudinal waves be shown moving down the tube? They would indicate clearly

how resonance is produced. However, this is not the purpose of the experiment and its

inclusion in the simulation would be a distraction. It is the same trap that teachers are always

falling into, trying to make experimental work verify theory instead of existing in its own

right.

 Now that we have decided what we want to achieve, it is time to start top-down

programming. We do not go straight to the computer and start programming, that state

The BBC microcomputer in science teaching

46

is still some way off. We begin by writing the program on paper in pseudo code -

meaningful statements that can later be turned into BASIC statements (or indeed any other

language). For this code we recognize three distinct processes:

Sequence
Repetition
Choice

 A sequence is a set of instructions that follow one another in strict order. TRAFFIC

LIGHTS in Chapter 4 is a good example of this.

Turn on red traffic light
Long delay
Turn on red and amber traffic lights
Short delay
Turn on green traffic light
Long delay
Turn on amber traffic light
Short delay

Choice is achieved by lF..THEN..ELSE and readers will be very familiar with it (after all it

is standard scientific jargon). The sequence branches into two or more separate routes

depending upon the conditions encountered initially.

 Repetition is similarly obvious, but here there are different kinds. The traffic lights

sequence may need to be repeated forever. This can be achieved by a GOTO back to the

beginning. A pelican crossing has the green traffic light on until a pedestrian requests the

traffic to stop. This can be achieved by a WHILE. .DO structure:

WHILE the pedestrian is not requesting traffic to stop,
DO keep the green traffic light on.

 A pedestrian crossing at crossroads may be incorporated into the traffic lights sequence

itself, but this is wasteful since it makes traffic wait when there are no pedestrians. It is better

if the pedestrian request switch interrupts the normal sequence to make it behave differently.

The normal sequence is repeated until an event occurs to change it; the REPEAT..UNTIL

structure. Finally, it may be necessary to repeat some sequence a given number of times.

This uses the well-known FOR.. NEXT structure.

 In none of these processes are we concerned with BASIC - exactly how we implement

this pseudo code is irrelevant. BBC BASIC recognizes all of them except 'WHILE condition

DO loop', which is carried out by 'IF condition THEN GOTO start of loop'. Similarly, Apple

BASIC does not have REPEAT..UNTIL but all pseudo codes can be Implemented in some

way on all machines. For example FOR..NEXT can be carried out by incrementing a counter

(IF count = maxcount THEN finish ELSE carry on counting). For our purposes at the

moment, it is the process that is important, not how it is later turned into BASIC.

 One way of designing a program (long taught in schools) is flowcharting. This has

sequences (rectangular boxes), choices (diamond boxes) and repetitions (returning lines

Programming techniques

47

and junction boxes). To introduce the ideas of design flowcharting is a good method, but it

is not popular with serious programmers. Programs of any size spill over onto several sheets

of paper and are difficult to follow. Also, it is very difficult to plan a flowchart until all its

limbs are known. This results in the same chart being endlessly redrawn to accommodate

extra requirements. Most programmers draw the flowchart after the program has been

written!

 Top-down programming allows the program to be developed from the general plan right

down to the level of coding in BASIC by a process known as stepwise refinement. This

cuts out a great deal of the redrawing (or rewriting in this case) of those elements that are

already known. It also allows each step to be checked for error before it is turned into code.

In this way any bugs in the final program will only require simple patches, not wholesale

rewriting. Now that we have an overall strategy for our program, let us begin this process.

RESONANCE IN A TUBE
A Initialize mode, variables etc.
B Give instructions
C Draw tuning fork, tube, piston and ruler
D REPEAT
D1 Select tuning fork frequency
D2 REPEAT Compute sound intensity
D3 REPEAT Make sound
D4 UNTIL piston is moved
D5 UNTIL tube length has been measured
D6 Process the measured length
UNTIL ESC key is pressed.

 The structure of the program is becoming obvious. A, B and C are sequential and are

executed once each time the program is run. D is executed repetitively until the program is

halted by pressing the ESC key. This is not very elegant and for younger users would be

wrong but, considering our target users, this is acceptable. Within this REPEAT..UNTIL

loop are other nested loops, each of which is terminated by a different condition. Thus the

sound is maintained until a cursor key is pressed to move the piston. The sound is switched

off when the new length has been measured. Then the graph-plotting routine (D6) runs

sequentially after which control returns to D1 .To make the pattern more obvious each of

the nested loops is indented to show where it begins and ends.

 The question raised now is where to go next. As a rule one should stick to the order of

execution unless there are some processes that are not yet clearly defined. These should be

tackled first, because they may throw up problems that cause the original design to be

modified. The earlier such modification takes place, the better. In our case we have to ask

about D4, D5 and D6.

 D4 tests whether the user wants to move the piston. As stated above this is to be done

with the left and right cursor movement keys. It should be possible to detect these with

INKEY$(0). But alternatively, the user might want to enter the measured length of the

The BBC microcomputer in science teaching

48

the tube (D5) and this requires INPUT. The two can be combined by using INKEY$(0) for

both types of information. The RETURN key could be used to confirm the entered

measurement, or the DEL key could be used to delete some or all of it. So D4 and D5 are

further refined thus:

 Note which key pressed
 D4 IF key is cursor shift left
 THEN move piston left
 IF key is cursor shift right
 THEN move piston right
 D5 IF key is numeric
 THEN keep it as a number
 IF key is DEL
 THEN remove last numeral entered
 IF key is RETURN
 D6 THEN process the result

 We must still ask what is meant by 'keep it as a number'. If the user wishes to enter the

number 345, say, the first numeral entered will be 3. This needs to be printed on the screen

to let the user see it. Then the user presses 4, so the first numeral must be multiplied by ten

and added to the second. Finally, the numeral 5 is added and the process is repeated. We

want to stop the user entering numbers greater than, say, 329 and numbers equal to 0, since

these are clearly wrong. Shall we tell the user they are wrong or just ignore them? Bearing

in mind our target users, I adopted the latter strategy. When RETURN is pressed the number

entered is accepted as the measured length and D6 begins. If DEL is pressed the last numeral

entered is deleted by removing the last digit from the assembled number. Each of the simple

choices in D4/5 is mutually exclusive, since a single key can only be one character. If this

had not been the case, a series of nested IF..THEN..ELSE processes would have been used.

Simple IF..THEN processes are always to be preferred for readability. This produces the

further refinement:

 Set measurement to zero
 Note which key pressed
 D5 IF key is numeric
 THEN measurement = 10*measurement + numeral
 IF key is DEL
 THEN measurement = measurement DIV 10
 PRINT measurement

The whole structure can be searched and refined further until it all ends up as simple

statements, each of which can be converted into code without problems. If there are

that not known, (and non-experts will find plenty of these) then the top-down technique

has to be modified as I shall show shortly.

 Before coding begins it is necessary to check that all the likely problems have been

foreseen and allowed for. The programmer should make a dry run through the program

with imaginary data to see what happens (as we did with 345 above). In this dry run we

Programming techniques

49

should notice that 345 should not be acceptable since it exceeds 329. However, if a user

enters 34 we cannot tell if another numeral is intended to follow, so we have to accept this.

We can, however, reject any further numerals if the existing value of measurement

exceeds 32. Dry runs of this type usually lead to modifications in the program.

 The user knows when too large a number has been entered, because it is printed on the

screen. Do we want to print the initial value of zero? Clearly this is a distraction and, in any

case, we do not accept zero as a measurement. So, unless the measurement is zero, we print

it. If the user has entered 34 and meant to enter 240, he or she delete back to zero and start

again. How will the program know whether the user has deleted back to zero or has not yet

started? If the latter, the program prints nothing, if the former, the program must delete what

was there previously. So 'nothing' will have to be a blank to delete any previously printed

value. Likewise, when a measurement is reduced from three digits to two, or two digits to

one, the previous end digit must be erased. This can be done by following the printed

'measurement' with a blank character. What do we do if the user presses non-numeric keys?

I decided to ignore these, without telling the user why; programs for younger users might

include such messages. There are also other pitfalls, like pressing RETURN or DEL when

there is no measurement. We shall have to allow for all these.

 Such a dry run through the program reveals several problems to be overcome. Having

discovered them, we build their solutions into the program at the planning stage.

 Set measurement to zero

 Note which key is pressed

 D5 IF key is numeric AND measurement <

 THEN measurement = measurement + numeral

 IF key is DEL AND measurement <> 0

 THEN measurement = measurement DIV 10

 IF measurement <> 0

 THEN PRINT measurement + blank

 ELSE PRINT blank

 IF key is RETURN AND 0

 THEN process the measurement

To determine when the RETURN key has been legitimately pressed, we set a flag, which is

initially FALSE, but is set to TRUE at the right point. The flag is called 'measured'. In this

way almost the whole program can be written and tested in pseudo code before going near

the computer itself.

 This is the theory! In practice the strict pattern of top-down programming breaks down

whenever a problem is encountered for which the programmer can see no solution. For

example, I need to know how to move the piston under of the control of the cursor keys.

This is where the advice of computer scientists has to be ignored - no amount of stepwise

refinement will tell me how to do this, only experimentation, that is bottom-up

programming. I used to feel guilty at ignoring the advice of expert computer scientists, until

I realized that they are dealing with different problems. They already know how to handle

their machines, so they do not need to break off to find out. I have not yet reached

The BBC microcomputer in science teaching

50

this stage and I am sure that few other science teachers have either. The problem with

bottom-up programming is the restrictions it might impose on later top-down refinements.

It is advisable to discard any code created during the experiment, its retention might force

the programmer into a predetermined mould and lead to later problems.

 It is difficult to follow this advice because of lack of time. Having developed some code

that works we tend to want to keep it. If it is a procedure then that is fairly easily incorporated

at a later stage, but if it is part of the main program, it may be necessary to RENUMBER it

and merge it with the rest of the program later. For example, I knew that the piston would

have to be moved inside the tube, so the graphics for the latter had to be constructed too. I

developed lines 3020 to 3480 to draw the tuning fork, tube, piston and ruler. Originally this

was done in MODE 2, giving four colours. Logical colour 3 was made into flashing black

and white and the repetition rate was speeded up to make it appear to vibrate. Later it was

found that the program had exceeded the memory available in this mode, so the program

was changed to MODE 4. The reason for choosing a high-resolution mode was to make use

of the VDU5 statement to move the piston smoothly in and out in the manner described

earlier in this chapter. The routine to move the piston was developed as the procedure

PROCpiston(position) with the position of the piston in the tube passed as the parameter

'position'. This is converted into an x coordinate and drawn as a line. Prior to this the

previous line is erased by drawing over it in black ink (GCOL0,0).

Coding

Having refined each process until I was sure how to do it, I was then in a position to begin

turning it into a BASIC program. I did this linearly from the beginning. With the

fundamental structure developed this was quite an easy job. Some problems were

encountered and needed ad hoc solutions (see later), but the structure remained intact

throughout. Even so, a structure alone does not necessarily lead to a readable program.

There are some ground rules for structured programming that should be borne in mind.

 One oft-quoted is 'avoid GOTO and GOSUB'. I agree with this up to a point. Some

programs are such a mass of convoluted GOSUBs and GOTOs that it is impossible to see

what different conditions are doing. MICSIM is a particularly notorious example. But this

advice can be carried to ridiculous extremes. Where a routine is only called once (for

example in setting up arrays or graphics characters) then a GOSUB is no less meaningful

than a procedure. Which of these conveys the most sense?

 GOSUB 20000:REM define graphics characters

or

PROCgraphics

Given that it is much easier to find line 20000 in the listing than to find a procedure

definition, GOSUB is clearly better. Similarly, to repeat a process indefinitely (as in D of

our program), which of these is more meaningful?

Programming techniques

51

 3000 REM Start of main program

 etc……..

 etc……..

 etc……..

 9000 GOTO 3000: REM Restart main program

or

 3000 REM Start of main program

 3010 finished = FALSE

 3020 REPEAT

 etc……..

 etc……..

 etc……..

 9000 UNTIL finished:REM Restart main program

 Whether a program uses procedures or subroutines, these should be located in high line

numbers at the end of the program (unless speed is at a premium, in which case GOSUBs

are faster and the closer they are to the current line the better). In RESONANCE IN A

TUBE, I kept procedures in lines 30000 upwards and subroutines in 20000 upwards. Apart

from moving the piston, speed of execution was not important in this program. I was

therefore able to be very liberal with REM statements, using them to mark off the different

sections and to explain what each was doing. Another help in this respect is the facility for

using long variable names. Where these were used for holding integers, then integer

variables were used to increase speed. A further aid to readability was to declare constants

at the beginning of the program, rather than just use numbers. For example,

 IF INKEY(-26) THEN ……

is less meaningful than

 IF INKEY(cursor left) THEN ……

Debugging

As mentioned above, correcting any errors in the program is not something that can be left

until last. Each step should be checked with dummy data to ensure that nothing has been

overlooked. Even so there will be errors in the program once it has been coded. Simplest to

eliminate are syntax errors (or mistakes) since BASIC contains error detection routines and

obligingly tells the programmer where the error has occurred. More difficult to determine

are errors in the logic. Hopefully these should not exist, but that is a counsel of perfection.

In my case several such problems arose, which were detected with dummy data as soon as

the code had been written.

 For example, I wanted to move the piston with the cursor movement keys and, during the

design phase, I assumed that these could be detected with INKEY$(0). I thus carried on with

stepwise refinement in the proper way. When checking the coding stage found that the

method I had chosen did not work, INKEY$(0) returned the null value whichever cursor

key was pressed. I then tried GET$, GET and INKEY(0) in vain and even resorted

The BBC microcomputer in science teaching

52

to reading the keyboard directly from memory (see Chapter 7). The latter was rejected as

breaking the rules; I wanted to make the final program usable with the second processor

added. In the end I used a combination of INKEY$(0) for RETURN, DEL and the numeric

keys and INKEY(-26) or INKEY(-22) for the cursor keys. This is inelegant and I am still

hoping for a better solution. By the time I had discovered this I had gone too far to change

the structure (I could have separated off the piston movement with separate statements to

INPUT the measured length). Bottom-up programming at this point would have saved

trouble later. The fault lay in not being an expert in BBC BASIC beforehand.

 The problem with producing the sound was how to keep it playing indefinitely until the

piston was moved. Again, no difficulty was anticipated until the relevant part of the program

was tested. Eventually the solution was found in the user guide with a technique for turning

off the previous sound when a new one is reached (SOUND &11 instead of SOUND 1).

 The graph plotting routines were also developed by trial and error. I used the

VDU5:MOVEx,y:PRINT"+" method to plot crosses on the screen, but found that the centre

of the cross did not coincide with the point x,y. Some adjustment of the x and y was

necessary to overcome this. Drawing the line was a linear regression technique already

known to me. But after writing this section (line 5000 onwards) I spent some time entering

dummy data to see its effect. I hope this will be rewarded by having no crashes in future.

One problem was that the linear regression routine can only work with at least two points,

so I had to develop a method of counting how many points the user had measured so far,

and to distinguish this from one point measured twice. The variable 'numreadings' was used

for this and the ensuing code is clumsy. All measurements of the tube length for each tuning

fork are set to zero initially. Each time a new measurement is entered, all thirteen

measurements are checked and only the non-zero ones are counted. This produces an

undesirable GOTO in line 5490. I have yet to find a more elegant way of tackling this.

 After the program had been debugged by me, I gave it to teachers for evaluation. Almost

immediately one had caused a crash. As stated before in this chapter, the auto-repeat facility

is a nuisance and is one reason for avoiding the INPUT statement. The only INPUT left in

the program is to determine which tuning fork is to be used. One user entered F blank and

found that this was not acceptable. She could not see why, since all she could see on the

screen was 'F'. Lines 12092 and 12094 were thus added to eliminate leading and trailing

blanks from the input string.

 The full listing of the program now follows. Doubtless there are further bugs, but in the

time-honoured method of all lecturers, I leave them as an exercise for the student.

Programming techniques

53

RESONANCE IN A TUBE - PROGRAMMING EXAMPLE
LIST
 1 REM RESONANCE IN A TUBE
 2 REM BY R.A.SPARKES
 3
 4 REM 30/3/83
 5
 1000 MODE 4
 1010 LET cursorleft=-26
 1011 LET cursorright=-122
 1012 LET returnkey$=CHR$13
 1013 LET deletekey$=CHR$127
 1014 LET space$=CHR$32
 1030 LET endcorrection=20
 1040 LET top=860:bottom=704:REM top and bottom walls of tube
 1050 LET place=1000:REM x-coordinate of piston
 1060 LET length=280:REM INITIAL LENGTH OF TUBE
 1070 LET forever=255:REM LENGTH OF NOTE
 1080 GOSUB 21000:REM SET UP ARRAYS FOR TUNING FORK
 1090 GOSUB 20000:REM DEFINE GRAPHICS
 1200
 1500 REM***************************
 1510 REM
 1520 REM INSTRUCTIONS
 1530 REM
 1540 REM***************************
 2000 CLS:PRINT TAB(8,0);"RESONANCE IN A TUBE"
 2010 PRINT TAB(0,5);"This program simulates the resonance"
 2020 PRINT TAB(0,7);"tube experiment."
 2030 PRINT TAB(0,9);"A tuning fork held at the mouth of"
 2040 PRINT TAB(0,11);"the tube causes the air to vibrate."
 2050 PRINT TAB(0,13);"The sound produced is loudest when the"
 2060 PRINT TAB(0,15);"length of the tube is closest to the"
 2070 PRINT TAB(0,17);"resonant length."
 2080 PRINT TAB(0,20);"First choose your tuning fork."
 2090 PRINT :PRINT"Enter one of the following values:-"
 2100
 2500 REM***************************
 2510 REM
 2520 REM REPEAT UNTIL ESC KEY
 2530 REM
 2540 REM***************************
 2550
 2560 PROCchoose
 2600 LET measurement%=0
 2700 REM***************************
 2800 REM
 3000 REM DRAW PICTURES
 3005 REM
 3006 REM***************************
 3010 CLS
 3020 PRINT TAB(8,0);"RESONANCE IN A TUBE"
 3024 REM***************************
 3025 REM
 3026 REM DRAW TUNING FORK
 3027 REM
 3028 REM***************************
 3040 PRINT TAB(0,5) CHR$243;SPC(2);CHR$248
 3050 PRINT TAB(0,6) CHR$243;SPC(2);CHR$248
 3060 PRINT TAB(0,7) CHR$243;SPC(2);CHR$248

The BBC microcomputer in science teaching

54

 3070 PRINT TAB(0,8) CHR$243;SPC(2);CHR$248
 3090 PRINT TAB(0,9) CHR$244;CHR$245;CHR$246;CHR$247
 3100 PRINT TAB(1,10) CHR$249;CHR$250
 3110 PRINT TAB(1,11) CHR$249;CHR$250
 3120 PRINT TAB(1,12) CHR$249;CHR$250
 3130 PRINT TAB(1,13) CHR$249;CHR$250
 3140 PRINT TAB(1,3);tone$(tuningfork%)
 3150
 3200 REM***************************
 3210 REM
 3220 REM DRAW TUBE
 3230 REM
 3240 REM***************************
 3250 FOR X=5 TO 39:PRINT TAB(X,4) CHR$240:NEXT X
 3260 FOR X=5 TO 39:PRINT TAB(X,10) CHR$242:NEXT X
 3270 REM***************************
 3280 REM
 3290 REM DRAW PISTON
 3300 REM
 3310 REM***************************
 3315 PROCpiston(length)
 3320 REM***************************
 3330 REM
 3340 REM DRAW RULER
 3350 REM
 3360 REM***************************
 3370 MOVE 130,684
 3380 DRAW 1279,684
 3390 DRAW 1279,620
 3400 DRAW 130,620
 3410 DRAW 130,684
 3420 VDU5
 3430 FOR value= 0 TO 33
 3440 LET x=129+value*32:MOVE x,684
 3450 IF value MOD 5<>0 THEN PRINT CHR$251
 3460 IF value MOD 5=0 THEN PRINT CHR$252
 3470 IF value MOD 5=0 THEN MOVE x+4,660:PRINT;value*10
 3480 NEXT value
 3490 VDU4
 3500 PRINT TAB(0,15)"Use the left-right cursor keys"
 3510 PRINT TAB(0,17)"to move the piston in and out."
 3520 PRINT TAB(0,19)"When you have found the resonance"
 3530 PRINT TAB(0,21)"position, measure the length of the"
 3540 PRINT TAB(0,23)"tube up to the piston in millimetres."
 3550 PRINT TAB(0,25)"Enter this length as a whole number and"
 3560 PRINT TAB(0,27)"confirm this value with RETURN"
 3570 PRINT TAB(0,29)"(the DELETE key works normally)."
 3580 PRINT TAB(0,31)"Press ESCAPE to finish.";
 3590
 3600 REPEAT
 3605 VDU 23,1,0;0;0;0;:REM TURN CURSOR OFF
 3610 REM************************
 3620 REM
 3630 REM MAKE SOUND
 3640 REM
 3650 REM************************
 3660 LET resonantlength%=80000 DIV freq%(tuningfork%)
 3670 LET comparison%=ABS(resonantlength%-length-endcorrection) DIV 3
 3680 LET loudness=-2
 3690 IF comparison%<12 THEN LET loudness=comparison%-15

Programming techniques

55

 3700 SOUND &11,loudness,note%(tuningfork%),forever
 3710
 4000 REM*********************
 4010 REM
 4020 REM GET KEY FROM KEYBOARD
 4030 REM
 4040 REM*********************
 4050
 4060 measured = FALSE
 4070 REPEAT:LET key$=INKEY$(0)
 4080 UNTIL key$<>"" OR INKEY(cursorleft) OR INKEY(cursorright)
 4090 IF INKEY(cursorleft) THEN PROCmoveleft
 4100 IF INKEY(cursorright) THEN PROCmoveright
 4105 IF key$=deletekey$ AND measurement%<>0 THEN measurement%=measurement% DIV 10
 4110 IF key$=returnkey$ AND measurement%<>0 THEN measured =TRUE
 4120 IF key$<="9" AND key$>="0" AND measurement%<33 THEN LET
measurement%=10*measurement%+VAL(key$)
 4130 IF measurement%<>0 THEN PRINT TAB(31,31);measurement%;space$;
 4140 IF measurement%=0 THEN PRINT TAB(31,31);space$;
 4150 UNTIL measured
 4160 REM*************************
 4170 REM
 4180 REM PROCESS MEASUREMENT
 4190 REM
 4200 REM*************************
 4240 REM
 4250 LET measurement%(tuningfork%)=measurement%
 4260 SOUND&11,0,0,0:REM TURN OFF SOUND
 4500 VDU 23,1,1;0;0;0;:REM TURN CORSOR BACK ON
 4800
 4900
 5000 REM***************************
 5010 REM
 5020 REM PLOT GRAPH
 5030 REM
 5040 REM***************************
 5050 CLS
 5060 MOVE 128,256:DRAW 128,960
 5070 MOVE 96,256:DRAW 1279,256
 5080 PRINT TAB(12,0)"RESONANCE IN A TUBE"
 5090 PRINT TAB(0,1)"length/mm"
 5100 VDU5
 5110 FOR y=0 TO 3.5 STEP 0.5
 5120 MOVE 0,(268+192*y):PRINT;100*y
 5130 MOVE 116,(268+192*y):PRINT;"-"
 5140 NEXT y
 5150 MOVE 100,256
 5160 PRINT CHR$251;SPC(3);CHR$251;SPC(3);CHR$251;SPC(3);CHR$251;SPC(3);
CHR$251;SPC(3);CHR$251;SPC(3);CHR$251;SPC(3);CHR$251;SPC(3);CHR$251
 5170 MOVE 112,230
 5180 PRINT"0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0"
 5190 MOVE 300,192
 5200 PRINT TAB(10,26)"1/frequency /ms"
 5210
 5220 REM**********************
 5230 REM
 5240 REM LINEAR REGRESSION
 5250 REM
 5260 REM**********************
 5270 LET xtotal=0

The BBC microcomputer in science teaching

56

 5280 LET ytotal=0
 5290 LET sumxsquares=0
 5300 LET numreadings=0
 5310 LET sumxyproduct=0
 5320 FOR tuningfork%=0 TO 12
 5330 LET x%=111+1024*256/freq%(tuningfork%)
 5340 LET y%=268+1.92*measurement%(tuningfork%)
 5350 IF measurement%(tuningfork%)=0 THEN 5420:REM next tuningfork%
 5360 LET xtotal=xtotal + x%
 5370 LET ytotal=ytotal + y%
 5380 LET sumxsquares=sumxsquares + x%^2
 5390 LET sumxyproduct=sumxyproduct + x% * y%
 5400 MOVE x%,y%:PRINT;"+"
 5410 LET numreadings=numreadings + 1
 5420 NEXT tuningfork%
 5430 REM***************************
 5440 REM
 5450 REM CALCULATE SLOPE AND INTERCEPT
 5460 REM
 5470 REM***************************
 5480 REM
 5490 IF numreadings<2 THEN 9000:REM IGNORE PLOT ROUTINE FOR A SINGLE READING
 5500 LET slope=(numreadings * sumxyproduct - xtotal * ytotal) / (numreadings * sumxsquares -
xtotal^2)
 5510 LET intercept = (ytotal - slope * xtotal) / numreadings
 5520 REM***************************
 5530 REM
 5540 REM PLOT LINE
 5550 REM
 5560 REM***************************
 5570 REM
 5580 REM plot minimum x-value
 5590 LET x%=111:y%=intercept + slope*x%
 5600 MOVE x%+12,y%-12
 5610 REM plot maximum x-value
 5620 LET x%=1135:y%=intercept + slope*x%
 5630 DRAW x%+12,y%-12
 5640 VDU4
 5650 REM***************************
 5660 REM
 5670 REM DISPLAY SPEED OF SOUND
 5680 REM
 5690 REM***************************
 5700 LET speed = slope*1024*256*4/1000/1.92
 5710 @%=&20105:REM ONE DECIMAL PLACE
 5720 PRINT TAB(6,3);"Speed of sound = ";speed;" m/s"
 5730 @%=&A0A:REM NORMAL PRINT FORMAT
 5750
 9000 VDU4:PRINT TAB(0,26):REM RESTORE TEXT MODE
 9010 GOTO 2500:REM REPEAT FOREVER
 9999
10000 REM***************************
10010 REM
10020 REM PROCEDURES
10030 REM
10040 REM***************************
10050 REM
10060 DEF PROCmoveleft
10070 IF length>0 THEN length=length-2
10080 PROCpiston(length)

Programming techniques

57

10090 ENDPROC
10100 DEF PROCmoveright
10110 IF length<330 THEN length=length+2
10120 PROCpiston(length)
10130 ENDPROC
10140 DEF PROCpiston(position)
10150 REM This procedure draws the pistion in the place specified by 'position'
10160 REM Delete old piston
10170 GCOL0,0:MOVE place,bottom:MOVE place+16,bottom:PLOT85,place,top:PLOT85,place+16,top
10180 LET place=159+position*3.2
10190 REM Put piston in new position
10200 GCOL0,1:MOVE place,bottom:MOVE place+16,bottom:PLOT85,place,top:PLOT85,place+16,top
10210 ENDPROC
12000 DEF PROCchoose
12010 REM****************************
12020 REM
12030 REM CHOOSE TUNING FORK
12040 REM
12050 REM****************************
12060 PRINT:PRINT"C C# D D# E F F# G G# A A# B"
12070 PRINT:PRINT"or UC (which means upper C) ";
12080 REPEAT:tuningfork%=13
12090 INPUT tuningfork$
12092 IF LEFT$(tuningfork$,1)=CHR$32 THEN LET tuningfork$=RIGHT$(tuningfork$,LEN(tuningfork$)-
1):GOTO 12092
12094 IF RIGHT$(tuningfork$,1)=CHR$32 THEN LET tuningfork$=LEFT$(tuningfork$,LEN(tuningfork$)-
1):GOTO 12094
12100 IF tuningfork$="C" THEN tuningfork%=0
12110 IF tuningfork$="C#" THEN tuningfork%=1
12120 IF tuningfork$="D" THEN tuningfork%=2
12130 IF tuningfork$="D#" THEN tuningfork%=3
12140 IF tuningfork$="E" THEN tuningfork%=4
12150 IF tuningfork$="F" THEN tuningfork%=5
12160 IF tuningfork$="F#" THEN tuningfork%=6
12170 IF tuningfork$="G" THEN tuningfork%=7
12180 IF tuningfork$="G#" THEN tuningfork%=8
12190 IF tuningfork$="A" THEN tuningfork%=9
12200 IF tuningfork$="A#" THEN tuningfork%=10
12210 IF tuningfork$="B" THEN tuningfork%=11
12220 IF tuningfork$="UC" THEN tuningfork%=12
12230 IF tuningfork%=13 THEN PRINT:PRINT"This value is not listed. Try again."
12240 UNTIL tuningfork%<>13
12250 ENDPROC
20000 REM DEFINE GRAPHICS CHARACTERS
20010 VDU23,240,0,0,0,0,0,255,255,255
20020 VDU23,242,255,255,255,0,0,0,0,0
20030 VDU23,243,7,7,7,7,7,7,7,7
20040 VDU23,244,7,7,3,1,0,0,0,0
20050 VDU23,245,0,128,192,240,124,63,15,3
20060 VDU23,246,0,1,3,15,62,252,240,192
20070 VDU23,247,224,224,192,128,0,0,0,0
20080 VDU23,248,224,224,224,224,224,224,224,224
20090 VDU23,249,3,3,3,3,3,3,3,3
20100 VDU23,250,192,192,192,192,192,192,192,192
20110 VDU23,251,1,1,1,1,0,0,0,0
20120 VDU23,252,1,1,1,1,1,1,1,0
20200 RETURN
20300
21000 REM SET UP FREQUENCIES FOR TUNING FORKS
21004 DIM measurement%(12)

The BBC microcomputer in science teaching

58

21005 DIM tone$(12)
21010 DIM freq%(12)
21020 DIM note%(12)
21030 FOR tuningfork% = 0 TO 12
21040 READ tonsolfa$, frequency%, soundvalue%
21045 LET tone$(tuningfork%)=tonsolfa$
21050 LET freq%(tuningfork%)=frequency%
21060 LET note%(tuningfork%)=soundvalue%
21065 LET measurement%(tuningfork%)=0
21070 NEXT tuningfork%
21080 RETURN
21100 DATA C,256,53
21110 DATA C#,271,57
21120 DATA D,288,61
21130 DATA D#,304,65
21140 DATA E,320,69
21150 DATA F,341,73
21160 DATA F#,362,77
21170 DATA G,384,81
21180 DATA G#,406,85
21190 DATA A,427,89
21200 DATA A#,456,93
21210 DATA B,480,97
21220 DATA UC,512,101

60

3 Computation and mathematical modelling

 'She can't do sums a bit!' the Queens said

 together, with great emphasis.

 (Lewis Carroll, Through the Looking Glass)

This chapter explores the uses of the BBC microcomputer as a mathematical tool, including

calculations, graphical display of functions, plotting experimental data, simulations using

the random number generator and problem solving by iterative methods.

The super calculator

Calculation is the traditional domain of the computer (as its name implies). There are many

books that deal exhaustively with this aspect of computing, with many illustrative examples.

In fact, there may even be too many! Why do so many books of programs include one on

the solution of quadratic equations? It is not because there are many problems that require

its solution, in fact, hardly anyone uses it after leaving school. I suspect the real reason is

that it has become a standard example upon which mathematical programmers cut their teeth

(while physicists do radioactive decay and the rest write programs on sorting). The real value

of writing such programs is the insight they give the programmer into the nature of the

problem. Try writing your own quadratic equations program and you will see what I mean.

How do you interpret 'too big' or 'syntax error'? Perhaps you forgot about equal or imaginary

roots. If this is true, then one way to teach students about LCR circuits might be to get them

to write their own LCR circuit analysis program.

 There is no point in just using a computer to carry out the often meaningless exercises set

in school physics and chemistry examinations. For example, we would not want a student

to enter a set of data into some previously prepared program on, say, Newton's rings, that

then automatically calculates the wavelength of sodium light. In this case the process is more

important than the product - we are trying to get the student to appreciate the properties of

the equations being used.

 The microcomputer can aid this understanding of equations and concepts in two ways.

One of these, the iterative method, is left till last. The other is the sledge-hammer technique

of getting the computer to solve an equation many times over while varying one of the

parameters. As an example, consider the motion of a stone being thrown vertically against

gravity (GRAVITY, program 28). By entering different starting speeds a pupil should be

able to discover the relation between the vertical height reached and the initial speed. This

technique may be used with almost any other standard equation in science. It would be much

better though if the graphics capabilities of the microcomputer were used as well.

Computation and mathematical modelling

61

 Producing a table of results used to be a nightmare but the excellent tabulation facilities

of the BBC microcomputer have changed that (Plate 6). Practice changing the parameters

of the @% variable until you appreciate how it works and you will have no more problems

(page 70 of the BBC Microcomputer System User Guide).

Graph plotting

The high-resolution screen is particularly useful for sketching functions. MOVE and DRAW

are easily used and some very sophisticated graphs can be drawn. The process is a little slow

for complex functions, but this is not necessarily a disadvantage. One can ask the students

to predict 'What will happen next? '. For those whose coordinate geometry is a little rusty,

the following discussion may be of assistance.

 The most useful screen of the BBC Model B microcomputer is MODE 1. This gives a

normal 40 columns of text, sufficiently high-resolution for most purposes and three colours

at any one time (plus a background colour). This mode is similar to MODE 4, which is the

alternative for Model A users. VDU19 and GCOLO should be used to select the different

colours of the lines and the background as described in the guide. If you do not have access

to a colour monitor, then use MODE 4 to get the extra memory.

 The statement to plot a single dot is

 PLOT69,0,512

You may just be able to see the small dot on the left of the screen and half-way up, which is

the point you have just plotted. Now type

 PLOT69,10,512

which gives a point nearer to the right, but at the same height as the other point. The first

number in the PLOT69 command tells how far the point is from the left edge. Type

 PLOT69,10,200

to get a point below the ones plotted before. This shows that the second number in the

PLOT69 command gives the vertical position of the point. The smaller the number, the

nearer it is to the bottom. The largest value for the horizontal position is 1279 (extreme right)

and the smallest is 0 (extreme left). The largest value for the vertical position is 1023 (top)

and the smallest is 0 (bottom). Any attempt to plot points outside these limits will be ignored.

 Clear the screen with CLS and prove for yourself the positions of the extreme corners of

the screen as follows:

 TOP-LEFT : PLOT69,0,1023
 TOP-RIGHT : PLOT69,1279,1023
 BOTTOM-LEFT : PLOT69,0,0
 BOTTOM-RIGHT: PLOT69,1279,0

Occasionally it is necessary to visit a point without plotting a dot; the MOVE statement

The BBC microcomputer in science teaching

62

can be used for this purpose. MOVEx,y refers to the same point as except that the dot is not

plotted.

Lines

We get lines by drawing a set of dots close together using the DRAW statement. This a line

from the previous point visited (PLOT69 or MOVE or a previous DRAW) to the new point

specified in the DRAW statement. For example:

 MOVE0,0
 DRAW1000,512
 DRAW0,1023
 DRAW0,0

The points on the screen have the coordinates x,y (as in coordinate geometry). To plot graphs

there must be some relationship between x and y, which must be included in the program.

Here is a simple example:

 100 MODE 1
 110 GCOL0,3
 120 FOR x = 0 TO 1279
 130 LET y = x/2
 140 PLOT69,x,y
 150 NEXT x

Note how the program plots the equation given in line 130. Any equation connecting x and

y can be used, provided the equation is of the form y = function of x only. Try this for

yourself, with different equations in line 130. For example:

 130 y = 800-x/2
 130 y = x*x/1000
 130 y = 500 - x + x*x/1000

You will see that only values of y within the range 0 to 1023 are plotted. To fill in any gaps

between the different points the DRAW statement may be used instead of PLOT69.

Unfortunately, this causes problems because the program also draws a line from the origin

to the first point plotted. Ideally, we want to PLOT the first point and only DRAW thereafter.

This can be done by noting that PLOT4 is exactly equivalent to MOVE and PLOTS is

exactly equivalent to DRAW. The program thus becomes

 100 MODE 1
 110 GCOL0,3
 115 LET n=4
 120 FOR x=0 T0 1280
 130 LET y = 800-x/2
 140 PLOTn,x,y
 145 LET n=5
 150 NEXT x

The first time that the PLOTn statement is reached, n has the value of 4, so it is the

Computation and mathematical modelling

63

equivalent of MOVE. Subsequently n is 5, so all the remaining PLOTn statements are

equivalent to DRAW.

Different origins

The methods used so far only allow us to plot graphs in one quadrant, for positive values of

x and y. Some graphs, particularly sines and cosines produce negative values too. To plot

these requires us to move the axes with the VDU29 command. To keep the origin of the x

axis at the left of the screen (x = 0) and put the y axis in the middle (y = 512) we write

 VDU29,0;512; (Note the semi-colons!)

The graph will now show points in the range 0 to 1279 (x coordinate) as before, but -512 to

+ 511 (y coordinate). For some purposes it is better not to redefine the screen in this way,

but to add the required displacement to the x or the y value with statements like

 PLOT69,x,(y+512)

The range of plottable values for y will now be from -512 to + 511 as above. In both methods

axes are drawn with MOVE and DRAW statements.

 Another problem with sine and cosine graphs is that they are functions of angles in

radians. To get at least two cycles on the screen, the range for the angle must be from 0 to

4*PI radians (0 to 12.566). The range for x is 0 to 1279, so a conversion factor has to be

included to make 1279 equivalent to 12.566. It is better to define a conversion factor

(confac) to carry out this operation at the start of the program and to do this in such a way

that it is obvious what is happening.

 LET cycles = 2
 LET confac = 2* PI * cycles / 1280

The value of any sine function goes from -1 to + 1, so it must be multiplied by an amplitude

(maximum of 511 to get the full range on the vertical axis). Here is the program for the sine

function (Plate 7):

 100 MODE 1
 110 VDU29,0;512;
 120 GCOL0,3
 130 MOVE 0,0
 140 DRAW 1279,0
 150 MOVE 0, -512
 160 DRAW 0,511
 200 LET cycles = 2
 210 LET confac = 2 * PI * cycles / 1280
 220 LET amplitude = 300
 230 LET n = 4
 240 FOR x = 0 TO 1280
 250 LET y = amplitude * SIN(x * confac)
 260 PLOTn,x,y
 270 LET n = 5
 280 NEXT x

The BBC microcomputer in science teaching

64

Plate 7 Sine curve

The speed of plotting can be dramatically increased by plotting every tenth point thus:

 240 FOR x = 0 TO 120 STEP 10

This makes little difference to the appearance of the final graph. Note that this can only be

done with the DRAW statement.

 A program to plot the cosine function involves changing line 250 to

 250 y = amplitude * COS(x*confac)

A program to plot two functions at the same time requires two FOR-NEXT loops. Let us

plot three cycles of the sine function and two of the cosine functions at the same time. The

use of DRAW now becomes awkward and it is better to revert to PLOT69 again. This allows

the two graphs to be drawn in different colours.

 100 MODE 1
 110 VDU29,0;512;
 120 GCOL0,3
 130 MOVE 0,0
 140 DRAW 1279,0
 150 MOVE 0,-512
 160 DRAW 0,511

Computation and mathematical modelling

65

Plate 8 Sum of two waves

200 LET sincolour = 1
210 LET coscolour = 2
220 LET sincycles = 3
230 LET coscycles = 2
240 LET sinconfac = 2 * PI * sincycles / 1280
250 LET cosconfac = 2 * PI * coscycles / 1280
260 LET sinamplitude = 300
270 LET cosamplitude = 400
280 FOR x = 0 TO 1280
290 LET siny = sinamplitude * SIN(x * sinconfac)
300 GCOL0,sincolour
310 PLOT69,x,siny
320 LET cosy = cosamplitude * COS(x * cosconfac)
330 GCOL0,coscolour
340 PLOT69,x,cosy
380 NEXT x

 With other trigonometrical functions although it does not cause an error message if the

plotted point is not within the range of the screen, it is useful to ensure that the graph can be

seen. The function plotted should be checked for its maximum and minimum values

The BBC microcomputer in science teaching

66

and the amplitude adjusted. An example is the function 300sin(3A) + 400cos(2A), which

can have a value of 700, so the amplitude should be reduced accordingly. To plot this

function as well as the functions that go to produce it, add these lines to the previous

program:

 350 GCOL0,3
 360 LET sumy = (siny + cosy)/2
 370 PLOT69,x,sumy

Sometimes, however, the use of a range check is unavoidable. For example, the function

tan(A) goes to infinity when A is ninety degrees producing an error. ON ERROR GOTO

will detect this condition and avoid crashing the program. This program plots tan(A) for two

cycles and to get as much of the function as possible on the screen the amplitude is made

quite low (Plate 9).

 100 MODE 1
 110 VDU29,0;512;
 120 GCOL0,3
 130 MOVE0,0
 140 DRAW 1279,0
 150 MOVE0,-512
 160 DRAW0,511
 200 GCOL0,3
 210 LET cycles = 2
 220 LET confac = 2 * PI * cycles/ 1280
 230 LET amplitude = 10
 240 LET n=4
 250 FORx=0 TO 1280
 260 ON ERROR LET x=x+1:GOTO 270
 270 LETy = amplitude * TAN(x * confac)
 275 IF y>1000 OR y<-500 THEN LET n = 4
 280 PLOTn,x,y
 290 LET n=5
 300 NEXTx

This use of ON ERROR prevents the normal function of the ESCAPE key to exit the

program. To do this, perform a BREAK (followed by OLD <RETURN> to recover the

program). Line 275 is a 'bug-fix' to prevent + infinity being joined up to -infinity. Try

removing it to see its effect.

 Some functions still cause problems. Consider the equation of the circle

 x2 + Y2 = radius2

 where the maximum value for the radius is 511. BASIC cannot handle the equation

as it is, it must be transformed to get a single value of y (or x) on the left of the equation.

 y = SQR(radius*radius - x*x)

Computation and mathematical modelling

67

Plate 9 Tangent curve

Care must now be taken to prevent the absolute value of x from exceeding the radius,

otherwise y becomes imaginary. Also the square root is automatically positive, so we shall

only get the whole circle by separately including the negative value.

 100 MODE 1
 110 VDU29,640;512;
 120 LET radius = 400
 130 FOR x = -radius TO radius
 140 y = SQR(radius*radius - x*x)
 150 PLOT69,x,y
 160 PLOT69,x,-y
 170 NEXT x

This gives uneven spacing between the plotted points and a more satisfactory way, which

makes use of a separate parameter is preferred. For circular functions angle is the most useful

parameter.

100 MODE 1
110 VDU29,640;512;
120 LET amplitude = 300
200 FOR angle = 0 TO 360
210 LET x = 1.1 * amplitude * COS(RAD(angle))

 220 LET y = amplitude * SIN (RAD(angle))

The BBC microcomputer in science teaching

68

 230 PLOT69,x,y
 240 NEXT angle

Here the x amplitude is made larger than the y amplitude to make the circle more circular in

the display. The factor 1.1 in line 210 will need to be changed for different monitors.

 The parametric method is widely applicable to most conic sections. The ellipse is given

by

 100 MODE 1
 110 VDU29,640;512;
 120 LET xamplitude = 400
 130 LET yamplitude = 200
 200 FOR angle = 0 TO 360
 210 LET x = xamplitude * COS (RAD(angle))
 220 LET y = yamplitude * SIN (RAD(angle))
 230 PLOT69,x,y
 240 NEXT angle

The parabola is given by

 x = 2*a*t
 y = a*t*t

For example,

 100 MODE 1
 110 VDU29,640;512;
 200 FOR t = -500 TO 500
 210 LET x = 20 * t*t
 220 LET y = t * t
 230 PLOT69,x,y
 240 NEXT t

The hyperbola has an awkward parametric equation

 x = a/COS(RAD(angle))
 y = b*TAN(RAD(angle))

This can produce infinite values, so the ON ERROR technique is used here too.

 100 MODE 1
 110 VDU29,640;512;
 120 GCOL0,3
 130 ON ERROR LET angle=angle + 1:GOTO210
 200 FOR angle = 0 TO 360
 210 x = 100/COS(RAD(angle))
 220 y = 200*TAN(RAD(angle))
 230 PLOT69,x,y
 240 NEXT angle

Computation and mathematical modelling

69

Plate 10 Lissajous figures

 Particularly pleasing to the physics teacher is the production of Lissajous figures using

sine equations with different frequencies and phase angles (Plate 10).

 100 MODE 1
 110 VDU29,640;512;
 120 GCOL0,3
 130 INPUT "Phase Angle = "phase
 140 INPUT "Frequency Ratio = " freqratio
 150 LET amplitude = 300
 160 LET n = 4
 200 FOR angle = 0 TO 100000
 210 LET x = amplitude * SIN(RAD(angle*freqratio + phase))
 220 LET y = amplitude * SIN(RAD(angle))
 230 PLOTn,x,y
 240 LET n = 5
 250 NEXT angle

If non-integral values of the frequency ratio are desired, it can be many cycles before the

pattern repeats itself, hence the need for the large number of cycles in line 200.

The BBC microcomputer in science teaching

70

EVAL

The BBC BASIC function EVAL allows equations to be entered from the keyboard instead

of the user having to stop the program to try out a different function. In some cases this is

useful and you can see one application of it in PROGRAMMABLE OSCILLATOR (13).

Usually, however, the necessity to enter the function with BASIC syntax means that the user

has to have some familiarity with programming anyway. In this case it is no more difficult

to halt the program and alter the line numbers. Program 3 (LOGIC MAKER) uses this

technique since a particular Boolean function may spread over several lines of

programming.

Applications

These ideas can be turned to practical classroom use in a number of ways. Once the

principles are appreciated, a few hours at the keyboard will tell students more about the

behaviour of functions than a whole series of lectures.

Simple functions

If a phenomenon can be described by a simple equation, then it can be plotted in the ways

just described. For example, the distance-time graph of a body that falls from rest can be

plotted with the equation

 s = g * t * t / 2

This translates into a program as follows:

 100 MODE 1
 110 VDU29,0;900;
 120 GCOL0,3
 150 PRINT TAB(0,0);"Enter the acceleration due to gravity"
 160 INPUT g
 170 LET acc = -g
 180 LET n=4
 200 FOR t = 0 TO 1280
 210 LET s = acc * t * t / 2
 220 PLOTn,t,s/1000
 230 LET n = 5
 240 NEXT t
 250 GOTO 150

Different values for gravity may be entered and their effects noted. In this program values

between 0 and 10 give the best results.

 Wherever there are more than two variables, the others can be held constant during

each scan of the screen and altered later by entering new values in precisely the same way

as this. This process fits most equations experienced in O-level physics and chemistry.

Computation and mathematical modelling

71

Plate 11 Damped oscillations - via mathematics

Typical examples are as follows:

 V = I * R
 W = I * i * R
 P * V = const 0.
 1/v + 1/u = 1/f
 F = k * m * M / (r * r)

 Trigonometrical functions allow some of the properties of vibrations and waves to be

investigated. The superposition of two waves to give interference, beats and modulated

waves was demonstrated above. Here is another example: a program for an object executing

damped oscillations. This includes a plot of the wave envelope too, so that the student can

appreciate which part of the equation causes the different shapes of the graph (Plate 11).

This program is actually an oversimplification, since no account has been taken of the effect

of damping on the frequency of the oscillations. A much better way of doing the whole thing

is discussed later in this chapter.

 10 REM DAMPED OSCILLATIONS
 100 MODE 1
 110 VDU29,0;512;
 120 GCOL0,3
 130 MOVE 0,0

The BBC microcomputer in science teaching

72

 140 DRAW 1279,0
150 MOVE 0, -512
160 DRAW 0,511
190 INPUT TAB(0,0) "Coefficient of friction (0 to 0.1) " friction
200 LET cycles = 4
210 LET confac = 2 * PI * cycles/1280
220 LET amplitude = 300
230 MOVE 0,amplitude
240 FOR t = 0 TO 1280 STEP 5
250 LET angle = t * confac
260 LET displacement = amplitude * EXP(-t * friction) * COS(angle)
270 GCOL0,3
300 DRAW t,displacement
310 NEXT t
320 REM DRAW PEAK ENVELOPE
350 MOVE 0,amplitude
360 GCOL0,1
370 FOR t = 0 TO 1280 STEP 5
380 LET envelope = amplitude * EXP(-t * friction)
390 DRAW t,envelope
400 NEXT t
410 GOTO 190

A particularly satisfactory demonstration of the Fourier synthesis of a square wave is

obtained with the following program:

10 REM FOURIER SYNTHESIS
100 MODE 1
110 VDU29,0;512;
120 GCOL0,3
130 MOVE 0,0
140 DRAW 1279,0
150 MOVE 0,-512
160 DRAW 0,511
200 LET cycles = 2
210 LET confac = 2 * PI * cycles / 1280
220 LET amplitude = 300
230 LET n = 4
240 FOR x = 0 TO 1280
250 LET angle = x * confac
260 LET y1 = amplitude * SIN(angle)
270 LET y2 = amplitude / 3 * SIN(3 * angle)
280 LET y3 = amplitude / 5 * SIN(5 * angle)
290 LET y4 = amplitude / 7 * SIN(7 * angle)
300 LET y5 = amplitude / 9 * SIN(9 * angle)

Computation and mathematical modelling

73

310 LET y = y1+y2+y3+y4+y5
320 PLOTn,x,y
330 LET n = 5
340 NEXT x

Provided you are prepared to wait this process may be continued for as many harmonics as

you wish.

Complicated functions

Many functions cannot easily be rearranged to make one variable into the subject of the

equation. There is usually no necessity for this in any case as the microcomputer is quite

capable of carrying out the calculation in parts. A good example of this is the voltage across

a capacitor in an LCR circuit (Figure 3.1). If this is plotted against frequency a resonance

curve is produced. The input voltage is assumed to be constant (E) and this produces a

current in the circuit (I).

Figure 3.1 LCR circuit

 I is given by E/Z, where Z is the impedance of the circuit at the given frequency (f). The

voltage across the capacitor (C) is thus 1/2 π fC. The value for Z is obtained from the formula

 Z2 = R2 + (2 π fL - 1/2 π fC)2

RESONANCE (29) plots the desired curve (Plate 12). The values of L and C should be

chosen to make the resonant frequency come near the middle of the screen (frequency =

500). Assuming inductances in millihenries and capacitors in microfarads, this gives L =

100 mH and C = 250 BF. (Strictly, this frequency is the angular frequency, but this is not

apparent in the final plot, so it is ignored here. If required it is simple enough to allow for

it.) Here is the essential part of the program.

 INPUT "Inductance = " L
 INPUT "Capacitance = " C
 INPUT "Resistance = " R

The BBC microcomputer in science teaching

74

Plate 12 LCR resonance curves

LET E = 50:REM APPLIED VOLTAGE
FOR frequency = 1 TO 1280
LET XL = frequency * L
LET XC = 1/(frequency * C)
LET X = XL - XC
LET Z = SQR(R*R + X*X)
LET I = E/Z
LET VC = I * XC
PLOT frequency,VC
NEXT frequency

It can be seen how the final capacitor voltage is obtained after several separate calculations,

each of which should be familiar to the student. By showing each step of the calculation like

this, it is easier to keep sight of the physics. The value of this kind of program is that students

can vary one parameter at a time and observe the effects. PROJECTILES (30) also shows

this technique.

Graph plotting with experimental data

Probably the most useful application of graphs in science is the plotting of experimental

data. This is usually carried out to obtain the slope or intercept of a straight-line graph,

Computation and mathematical modelling

75

where the best line is obtained from the data by guesswork. The computer can be a great

help in teaching students to do this, since the 'best' line can then be obtained by the method

of least squares. The technique was used in Chapter 2 to draw the best line for

RESONANCE IN A TUBE. This program also demonstrates one method of plotting

crosses, by printing them in the position of the graphics cursor.

 VDU5
 MOVE x-12,y+12
 PRINT"+"

This plots a cross at the point x,y. It is necessary to reduce the x coordinate and increase the

y coordinate as shown in order to get the centre of the cross as near to the point x,y as

possible. The + sign is far from ideal for this purpose, since its vertical part is actually two

lines wide. A better way is to use a user-defined cross as follows:

 VDU23,255,16,16,16,254,16,16,16,0
 VDU5
 MOVE x-12,y+12
 PRINT CHR$255

Better still is a procedure (PROCplot(x,y)) that draws a cross exactly at the point x,y without

the hassle of changing these values first. The procedure is defined by:

 DEF PROCplot(x,y)
 MOVE x-16,y
 DRAW x+16,y
 MOVE x,y-16
 DRAW x,Y+16
 ENDPROC

A complete program to accept students' data and to process it is not easy if the data can have

all possible values. The following program works within limits and may easily be adapted

to suit any particular application. RESONANCE IN A TUBE demonstrated one such

adaptation.

 LEAST SQUARES FIT
 100 MODE4
 200 @% = &A0A: REM Restore normal format
 300 VDU23,250,8,8,8,8,8,8,0,0
 1000 REM*************************
 1010 REM
 1020 REM COLLECT DATA
 1030 REM
 1040 REM*************************
 1050 CLS
 1060 PRINT:PRINT"Enter the number of data pairs."
 1070 PRINT:INPUT numreadings

The BBC microcomputer in science teaching

76

1080 DIM x(numreadings),y(numreadings)
1090 PRINT:PRINT "Enter each pair of readings"
1100 PRINT:PRINT "in the order x-coord.,y-coord."
1110 PRINT:PRINT "for example 56.3,89.75"
1120 FOR n = 1 TO numreadings
1130 PRINT
1140 INPUT x(n),y(n)
1150 PRINT x(n),y(n)
1160 NEXTn
1170 CLS:PROClist
1180 PRINT:PRINT "Do you wish to change any readings?"
1190 PRINT:PRINT "Answer Y or N."
1200 PRINT:INPUT answer$
1210 IF answer$<>"Y" AND answer$<>"N" THEN 1180
1220 IF answer$="N" THEN 2000
1230 PRINT:PRINT "Enter the reference number for the"
1240 PRINT:PRINT "data pair you wish to change."
1250 PRINT:INPUT m%
1260 IF m%>numreadings THEN PRINT:PRINT"You did not enter this
reading.":GOTO 1170
1270 PRINT:PRINT"Enter the new pair of readings"
1280 PRINT:INPUT x(m),y(m)
1290 PRINT
1300 PROClist
1310 GOTO 1170
1320
2000 REM******************************
2010 REM
2020 REM DETERMINE AXES
2030 REM
2040 REM******************************
2050 CLS
2060 PRINT:PRINT"Enter the maximum x-coordinate"
2070 PRINT:INPUT xmax
2080 PRINT:PRINT"Enter the maximum y-coordinate"
2090 PRINT:INPUT ymax
2100 LET xscale=xmax/1000
2110 LET yscale = ymax/ 1000
2120
5000 REM**********************
5010 REM
5020 REM DRAW AXES
5030 REM
5040 REM**********************

Computation and mathematical modelling

77

5050 CLS
5060 REM Move origin
5070 VDU29,128;64;
5080 MOVE 0, -32:DRAW 0, 1000
5090 MOVE -32,0:DRAW 1200,0
5095 @% = &202: REM short format
5100 VDU5
5110 FOR y = 0 TO 10
5120 MOVE -128,12+100*y:PRINT;100*y*yscale
5130 MOVE -28,12+100*y:PRINT;"-"
5140 NEXT y
5150
5160 FOR x=0 TO 10
5170 MOVE -16+100*x,0:PRINT CHR$250
5180 MOVE -48+100*x,-32:PRINT;100*x*xscale
5190 NEXT x
5200
5210 REM************************
5220 REM
5230 REM LINEAR REGRESSION
5240 REM
5250 REM************************
5260
5270 LET xtotal = 0
5280 LET ytotal = 0
5290 LET sumxsquares = 0
5300 LET sumxyproduct = 0
5320 FOR n = 1 TO numreadings
5330 LET x = x(n)/xscale
5340 LET y = y(n)/yscale
5360 LET xtotal = xtotal + x
5370 LET ytotal = ytotal + y
5380 LET sumxsquares=sumxsquares + x*x
5390 LET sumxyproduct=sumxyproduct + x*y
5400 PROCplot(x,y)
5410 NEXT n
5420
5430 REM************************
5440 REM
5450 REM CALCULATE SLOPE AND INTERCEPT
5460 REM
5470 REM************************
5480
5490

The BBC microcomputer in science teaching

78

5500 LET slope = (numreadings * sumxyproduct - xtotal *
ytotal)/(numreadings * sumxsquares - xtotal * xtotal)
5510 LET intercept = (ytotal - slope * xtotal) / numreadings
5520 REM*********************
5530 REM
5540 REM PLOT LINE
5550 REM
5560 REM*********************
5570
5580 REM Plot minimum x-value
5590 LET x% = 0:y% = intercept + slope * x%
5600 MOVE x%,y%
5610 REM Plot maximum x-value
5620 LET x% = 1200:y% = intercept + slope * x%
5630 DRAW x%,y%
5640 VDU4
5650 END
5660
10000 DEF PROClist
10010 PRINT TAB(19,2);"x , y"
10020 PRINT
10030 FOR n = 1 TO numreadings
10040 PRINT n,x(n),y(n)
10050 NEXT n
10060 ENDPROC
10070
11000 DEF PROCplot(X,Y)
11010 MOVE X-16,Y
11020 DRAW X+16,Y
11030 MOVE X,Y-16
11040 DRAW X,Y+16
11050 ENDPROC

 For statistical data a bar chart is preferred. In this case the x coordinate is probably

discontinuous, but whether it increases in steps of one, two or five, etc. is a matter of

choice in each case. Hence again a single program will not suffice for all occasions and

one like the following will need to be adapted for each particular case. The procedure to

plot a bar of length y at the position x is:

DEF PROCvbar(x,y)
MOVE x,0
MOVE x+48,0
PLOT85,x,y
PLOT85,x+48,y
ENDPROC

Computation and mathematical modelling

79

One program to handle the data input for bar charts is as follows:

BAR CHART
 100 MODE 4
 200 @% = &A0A:REM Restore normal format
 300 VDU23,250,8,8,8,8,8,8,0,0
1000 REM************************
1010 REM
1020 REM COLLECT DATA
1030 REM
1040 REM************************
1050 CLS
1060 PRINT:PRINT "Enter the number of data readings."
1070 PRINT:INPUT numreadings
1080 DIM y(numreadings)
1090 PRINT:PRINT "Enter each reading in ascending order"
1100 PRINT:PRINT "of the x-coordinate."
1120 FOR n = 1 TO numreadings
1130 PRINT TAB(5);n;" ";:INPUT y(n)
1160 NEXT n
1170 CLS:PROClist
1180 PRINT:PRINT "Do you wish to change any readings?"
1190 PRINT:PRINT "Answer Y or N."
1200 PRINT:INPUT answer$
1210 IF answer$<>"Y" AND answer$<>"N" THEN 1180
1220 IF answer$="N" THEN 2000
1230 PRINT:PRINT "Enter the reference number for the"
1240 PRINT:PRINT "data you wish to change."
1250 PRINT:INPUT m%
1260 IF m%>numreadings THEN PRINT:PRINT"You did not enter this
reading.":GOTO 1170
1270 PRINT:PRINT" Enter the data."
1280 PRINT:INPUT y(m%)
1290 PRINT
1300 PROClist
1310 GOTO 1170
1320
2000 REM************************
2010 REM
2020 REM DETERMINE AXES
2030 REM
2040 REM************************
2050 CLS
2080 PRINT:PRINT"Enter the maximum y-coordinate"

The BBC microcomputer in science teaching

80

 2090 PRINT: INPUT ymax
 2100 LET xscale = numreadings/1000
 2110 LET yscale = ymax/1000
 2120
 5000 REM**************************
 5010 REM
 5020 REM DRAW AXES
 5030 REM
 5040 REM**************************
 5050 CLS
 5060 REM Move origin
 5070 VDU29,128;64;
 5080 MOVE 0,-32:DRAW0,1000
 5090 MOVE-32,0:DRAW 1200,0
 5095 @%=&202:REM short format
 5100 VDU5
 5110 FOR y=0 TO 10
 5120 MOVE -128,12+100*y:PRINT;100*y*yscale
 5130 MOVE -28,12+100*y:PRINT;"-"
 5140 NEXT y
 5150
 5160 FOR x=0 TO 10
 5170 MOVE -16+100*x,0:PRINT CHR$250
 5180 MOVE -48+100*x,-32:PRINT;100*x*xscale
 5190 NEXT x
 5200
 5210 REM**************************
 5220 REM
 5230 REM BAR CHART
 5240 REM
 5250 REM**************************
 5260
 5320 FOR n = 1 TO numreadings
 5360 LET x=n/xscale
 5340 LET y=y(n)/yscale
 5400 PROCvbar(x,y)
 5410 NEXT n
 5500
 5640 VDU4
 5650 END
 5660
10000 DEF PROClist
10010 PRINT TAB(9,2);"x,y"
10020 PRINT

Computation and mathematical modelling

81

10030 FOR n = 1 TO numreadings
10040 PRINT n,y(n)
10050 NEXT n
10060 ENDPROC
10070
11000 DEF PROCvbar(X,Y)
11010 MOVE X,0
11020 MOVE X+48,0
11030 PLOT85,X,Y
11040 PLOT85,X+48,Y
11050 ENDPROC

Another example of the plotting of bar charts is given in SUM OF TWO DICE (22).

 Horizontal bar charts are just as easy to achieve thus:

11000 DEF PROChbar(X,Y)
11010 MOVE 0,Y
11020 MOVE 0,Y+48
11030 PLOT85,X,Y
11040 PLOT85,X,Y+48
11050 ENDPROC
11000 DEF PROCvbar(X,Y)
11010 MOVE X,0
11020 MOVE X+48,0
11030 PLOT85,X,Y
11040 PLOT85,X+48,Y
11050 ENDPROC

Pie charts are obtained with the circle drawing technique already shown. The filled circle

uses the triangle-filling PLOT85 instruction too. To ensure that the pie is closed each amount

is converted to its nearest whole number of degrees (line 1320). Each sector is added onto

the previous one and hopefully the total angle reaches exactly 30 degrees. MODE 2 allows

the seven colours to be used (line 1370), but if there are exactly eight sectors this will need

to be modified or two adjacent colours will be the same.

 PIE CHART

 100 MODE 7
 200 DIM amount(100)
1000 REM************************
1010 REM
1020 REM COLLECT DATA
1030 REM
1040 REM************************
1050 CLS
1060 PRINT:PRINT"Enter the amounts for each sector"
1070 PRINT:PRINT "of the pie chart."

The BBC microcomputer in science teaching

82

1080 PRINT:PRINT "Enter 0 to obtain the pie chart."
1090 LET n = 0:total = 0
1100 REPEAT
1110 LET n = n + 1
1120 PRINT:INPUT amount(n)
1130 LET total = total + amount(n)
1140 UNTIL amount(n) = 0
1150 LET numreadings = n-1
1160
1200 REM**************************
1210 REM
1220 REM DETERMINE AXES
1230 REM
1240 REM**************************
1250
1260 MODE2
1270 REM Move origin
1280 VDU29,600;500;
1290 LET totalangle% = 1
1300 MOVE 400,0
1310 FOR n = 1 TO numreadings
1320 LET angle% = 360 * amount(n)/total + 0.5
1330 FOR totalangle% = (totalangle%-1) TO (totalangle% + angle%)
1340 LET X = 400*COS(RAD(totalangle%))
1350 LET Y = 400*SIN(RAD(totalangle%))
1360 MOVE 0,0
1370 GCOL 0,(n MOD 7) + 1
1380 PLOT85,X,Y
1390 NEXT totalangle%
1400 NEXT n

Computation and mathematical modelling

83

The use of RND
The random number function of BASIC is not provided only for computer games! It is

invaluable for carrying out statistical experiments, particularly where the results can be

displayed graphically. RADIOACTIVE DECAY (21) illustrates the use of this function to

decide which nucleus should decay next. Since the position of this next nucleus is decided

at random, the chance of choosing a position with an undecayed nucleus depends upon the

number of such nuclei remaining. This therefore simulates radioactive decay quite well

(Plate 13). The use of SOUND to simulate a Geiger counter is an idea suggested by W.

Jeffries at a conference in Jordanhill College of Education in June 1982.

Plate 13 Radioactive decay

 If one of the variables is discontinuous, then the bar chart is an obvious means of display

as SUM OF TWO DICE (22) illustrates. This is a standard experiment, but few students

could do it more than a few times as a practical exercise, so the microcomputer can help to

make the pattern more obvious. In the space of a few minutes the experiment is performed

hundreds of times (Plate 14).

 The use of RND is particularly valuable in biology for simulating genetic linkage and

there are very many programs available for this. It is also used in the simulation of Geiger

and Marsden's experiment discussed later (RUTHERFORD, 32).

The BBC microcomputer in science teaching

84

Plate 14 Probability distribution - the sum of two dice

Iterative Methods

The Nuffield Advanced Physics originators were far-sighted in noting probable trends

towards more and cheaper calculators. They describe several experiments which run very

nicely on a microcomputer. Basically, they suggest that as well as the traditional algebraic

(usually integral calculus) analysis of physical phenomena, teachers should explore

numerical solutions. A good example is the discharge of a capacitor through a resistor. This

can be solved algebraically by noting that the current flowing through the resistor is the

differential of the charge on and hence the voltage across the capacitor. Since this current is

directly proportional to voltage, all that has to be done is integrate a reciprocal and end up

with an exponential logarithm. The mathematics so obscures the physics that it is better to

seek a step-by-step solution to the problem.

 The voltage (V) across the capacitor is related to the charge (Q) in the capacitor by

 Q = V * C (Eq.1)

Computation and mathematical modelling

85

This voltage causes a current (I) to flow through the resistor according to the well-known

formula

 V = I * R (Eq.2)

If a current of one ampere flows for one second, the capacitor will lose one coulomb of

charge, so in one millisecond, say, it will lose one millicoulomb of charge. Thus the

remaining voltage on the capacitor after one millisecond is a bit less than it was before, and

we can use Eq.1 to calculate exactly how much less. This gives us a new value for V, with

which to begin the next millisecond. By hand it could take some time to see how the

capacitor voltage is falling, but the microcomputer makes very short work of the

calculations. The exponential curve is obtained with only the three fundamental equations.

The actual program is listed below, but any student, particularly one able to comprehend the

calculus approach, could write such a program.

 The main difficulty is ensuring that the chosen values give results that fit the screen. The

time axis (x axis) goes from 50 to 1279 units. If these are seconds, then a time constant of

about 300 seconds is needed for the R-C circuit. This is somewhat unrealistic, so we pretend

that our time scale is in microseconds instead. The value for R can thus be a few thousand

ohms and the value for C between 1 and 10 microfarads. The increment of time between

each successive calculation (timeinc) is fixed at 5 units in this program. It can be changed

to give a finer line (which is slower) or a more chunky line which is faster. Since

Plate 15 Capacitor discharge by formula

The BBC microcomputer in science teaching

86

different values for R and C can be entered, students can be asked to discover how the rate

of decay depends upon R and C (Plate 15), In so doing, they learn a great deal about the

decay curve, which should transfer to their understanding of, say, radioactive decay too.

 100 MODE1
 110 GCOL0,3
 120 MOVE 0,50:DRAW 1279,50
 130 MOVE 50,0:DRAW 50,1023
 140 PRINT TAB(0,0);" "
 150 PRINT TAB(0,2);" "
 160 PRINT TAB(0,0);"Capacitance (microfarad) ";:INPUT capacitance
 165 PRINT TAB(0,2);"Resistance (ohms) ";:INPUT resistance
 170 PRINT TAB(0,14);"V"
 180 PRINT TAB(20,31);"time";
 185 IF resistance=0 THEN resistance=0.001
 190 REM INITIAL VALUES
 200 LET E=800:REM INITIAL VOLTAGE
 210 MOVE 50,E
 220 time = 50
 230 LET charge= E * capacitance:REM microcoulomb
 240 LET voltage=E
 250 LET timeinc=5
 260
 300 REPEAT
 310 LET current=voltage/resistance
 320 LET charge=charge-current*timeinc
 330 LET voltage=charge/capacitance
 340 LET time=time+timeinc
 350 DRAW time,voltage+50
 360 UNTIL time>1279 OR voltage<5
 370 GOTO 140

This approach to the analysis of phenomena is called the iterative method. It is applicable

in very many areas (and not just physics). Programs 30 to 32 show how it may also be

applied to motion. Plate 16 shows the sort of results obtained with PROJECTILES (30), The

basic algorithm is as follows:

1 Assume initial position, velocity and acceleration.

2 Assume a small increment of time,

3 Determine the new velocity after this time interval.

4 Determine the distance travelled at this velocity during this time interval,

5 Calculate the new position,

6 Return to step 1, with new values of velocity and acceleration.

Computation and mathematical modelling

87

This gives a delightful way of tackling simple (and damped) harmonic motion, without

recourse to differential equations.

 10 REM DAMPED OSCILLATIONS
 20 REM BY THE ITERATIVE METHOD
 100 MODE 1
 110 VDU29,0;512;
 120 GCOL0,3
 125 MOVE 0,0
 130 DRAW 1279,0
 140 MOVE 0,-512
 150 DRAW 0,512
 160 INPUT TAB(0,0) "Coefficient of friction (0 to 0.1) " friction
 170 INPUT "Spring constant (0 to 10) " springconstant
 180 INPUT "Mass of body (0 to 10) " mass
 190 LET amplitude=300
 200 LET displacement=amplitude
 210 LET speed=0:REM INITIAL SPEED
 220 MOVE 0,displacement
 230 LET time=0
 240 LET timeinc=5
 250 REPEAT
 260 LET restoringforce=-springconstant*displacement/10000
 270 LET frictionalforce=-friction*speed
 280 LET totalforce=restoringforce+frictionalforce
 290 LET acceleration=totalforce/mass
 300 LET speed=speed+acceleration*timeinc
 310 LET displacement=displacement+speed*timeinc
 320 LET time=time+timeinc
 330 DRAW time,displacement
 340 UNTIL time>1279

On each run different values can be entered to discover the role that each variable plays in

the overall motion. If this is coupled with actual experimental work with masses on the end

of a spring, I believe the approach to be much more truly physics than the traditional

mathematical approach.

 For projectiles there are two directions (x and y) to consider, However, these can be

considered entirely independently, so the only complication is that there are twice as many

calculations in each cycle. PROJECTILES (30) illustrates this: the motion in the x direction

is constant velocity, while that in the y direction is constant acceleration (Plate 16). This

program also shows how easy it now is to include more difficult ideas. The usual treatment

of projectiles ignores friction and leads to the ideal case of 45 degrees as the angle for

maximum range. PROJECTILES incorporates a frictional drag, proportional to the speed,

which reduces the speed and leads to the idea of terminal velocity. The resulting motion is

not unlike that predicted by Bacon's impetus theory. The acceleration

The BBC microcomputer in science teaching

88

Plate 16 Projectiles

due to gravity and the friction (dragcoeff) can be altered for different effects (projectiles

in treacle?).

 Motion under a central force is rarely understood. NEWTON (31) is a game that any

student should be able to solve, but it often fools physics graduates. The objective is to put

a rocket into moon orbit from outside. Try it and see if you understand Newton's laws

yourself (Plate 17). The program first calculates the distance between the rocket and the

centre of the moon. This is converted into two forces, one which affects the acceleration in

the x direction, the other the y direction. This in turn leads to predictions of where the rocket

will be after the next unit of time (timeinc) and the process reiterates until the rocket crashes

on the moon's surface or disappears off the screen. The value of 'timeinc' can be altered as

before to achieve smoother if slower motion.

 Alpha particle scattering by a gold nucleus provides a classic derivation for university

undergraduates. I understand that the mathematics of this was too difficult for Rutherford

and was handed over to a mathematician. I imagine that Rutherford would have loved the

iterative method. The essential part of RUTHERFORD (32) is very similar to its equivalent

in NEWTON, except that the force acting is reversed to produce repulsion instead of

attraction. The motion is also speeded up (with a loss in resolution) to allow a large number

of particles to be observed. These are fired at random at the gold nucleus and only a few

pass close enough to be deflected (Plate 18). So the mathematics is reduced to the level

where any sixth former can understand it. I

Computation and mathematical modelling

89

Plate 17 Satellite motion

Plate 18 Rutherford alpha particle scattering simulation

The BBC microcomputer in science teaching

90

am not sure that many teachers, particularly of physics, have yet realized the implications

of this. If, as I suspect it will, computer programming becomes the fourth R, the traditional

dependence of advanced science subjects upon mathematics could be allowed to decline,

thus opening them up to more students than hitherto.

Modelling the environment

The iterative process has wider applications than those above and it was used by the

Huntingdon Project, which produced the well-known simulations in biology and

chemistry. One of these, POLLUT, analyses the effect of certain types of pollutant upon

water life and another, HABER, looks at the effects of changing the temperature and

pressure etc. of the reactants in an industrial process. Practically anything that can be

quantified, can be mathematically modelled, although the accuracy of the predicted

outcomes is not necessarily reliable. It depends upon whether all the important factors

have been taken into account.

 To illustrate the principles, fox and rabbit populations can be modelled to predict how

they change with time. It is assumed that the rabbits' food is infinite so that they can

reproduce without restriction. Although the increment of time is assumed to be one week,

it is possible to enter an arbitrary rate of growth for the rabbit population between 0 and 5

per cent.

 The growth in the fox population is dependent upon the supply of rabbits. If foxes only

Plate 19 Fox and rabbit population simulation

Computation and mathematical modelling

91

eat rabbits, then they will begin to die if their population exceeds some factor of the rabbit

population. Foxes with abundant food reproduce at a constant rate, which is also chosen

before the start of the iteration. It is assumed that the starvation rate of foxes depends upon

the ratio of foxes to rabbits, which seems reasonable. It is further assumed that the death rate

of rabbits is proportional to the product of rabbits and foxes. This assumes that one fox with

1000 rabbits will still eat twice as much as the same fox with 500 rabbits. (I greatly suspect

the model at this point.) The number of rabbits that are eaten depends upon the number of

foxes and the number of foxes depends upon the number of rabbits. This classic problem

can only be solved by an iterative process, since the equations generated have no analytical

solution (Plate 19).

 10 REM FOX AND RABBIT SIMULATION
 100 MODE4
 110 ON ERROR GOTO 500
 200 CLS
 300 INPUT "FOX GROWTH RATE (range 0 to 5%) "foxgrowthrate
 310 INPUT "RABBIT GROWTH RATE (range 0 to 5%) "rabbitgrowthrate
 320 PROCpopulation
 500 PRINT TAB(0,0);"Press R to repeat. "
 510 IF INKEY$(255)<>"R" THEN 510
 520 GOTO 200
 1000
 2000 DEF PROCpopulation
 2010 CLS
 2020 LET
weeks=0:rabbitgrowthrate=rabbitgrowthrate/100:foxgrowthrate=foxgrowthrat
e/100
 2030 PRINT TAB(0,0);"Press ESCAPE to stop."
 2040 PRINT TAB(12,2);"weeks = "
 2050 LET rabbits=3000
 2060 LET foxes=20
 2070 PRINT TAB(12,30);"Fox population"
 2080 PRINT TAB(10,20);"Rabbit population"
 2100 REPEAT
 2200 LET babyrabbits=rabbits*rabbitgrowthrate
 2210 LET deadrabbits=0.001*foxes*rabbits
 2220 LET rabbits=rabbits+babyrabbits-deadrabbits
 2230 LET babyfoxes=foxes*foxgrowthrate
 2240 LET deadfoxes=5*foxes/rabbits
 2250 LET foxes=foxes+babyfoxes-deadfoxes
 2260 weeks=weeks+1
 2270 PRINT TAB(20,2);weeks
 2280 GCOL0,1:PLOT69,weeks,2*foxes+100
 2290 GCOL0,3:PLOT69,weeks,rabbits/20+400

The BBC microcomputer in science teaching

92

 2300 UNTIL weeks>1279 OR rabbits>25000
 2400 ENDPROC

As a physicist I find this much less satisfying than the same approach applied to physics

because I can justify some of the values entered into the equations of motion. I am not at all

sure about the constants entered into the fox and rabbits program. (I chose them to get the

right result!) However, I am sure that biologists will be able to do it properly once the

essential idea has been appreciated.

93

4 Microcomputer timing and control

'The question is,' said Humpty Dumpty, 'which

is to be Master that's all.'

(Lewis Carroll, Through the Looking Glass)

Interfacing a microcomputer

Most control applications use two-state devices. An electric light switch can be up or down.

An electromagnetic relay can be on or off. A valve can be open or closed. Digital electronic

systems are used to switch such devices on or off. Although quite complex, a microcomputer

is still only another digital system, so it is possible to use a microcomputer to control the

above devices. It can switch lamps, relays, motors and valves on or off.

 This is not a normal function of a microcomputer and it has not been designed specifically

to do this. Consequently the current needed to switch on these devices may be larger than

that provided by the microcomputer output. There has to be some interface between the

microcomputer and the device being switched, to boost the switching current to the correct

levels.

 A microcomputer can also be used to detect whether any particular two-state device is in

its on or its off state. Here, the switching voltages involved may be different for each device,

so some interface must be used to change the voltage levels of the device to the levels

acceptable to the microcomputer.

 In digital electronics we are only concerned with two-state devices, ones that can be

switched on or off. Generally, to switch a device on, we send a HIGH voltage to its input.

To turn it off, we send a LOW voltage. HIGH and LOW are obviously not the same for

different devices, here are a few examples:

Device On Off
light emitting diode 1.2V 0.5V
torch bulb 3.0V 1.5V
electromagnetic relay 5.0V 2.0V
silicon transistor 0.7V 0.5V
TTL integrated circuit 2.4V 0.4V

 To remove this uncertainty about what is 'HIGH' and what is 'LOW', engineers use TTL

logic levels. TTL stands for Transistor-Transistor-Logic; it is a particular standard used in

the electronics industry. A TTL HIGH voltage is between 2.4 and 5.5 V, which, as you can

see, will switch on all the above devices. A TTL LOW voltage is between 0.4 and 0 V,

which will switch all these devices off. A HIGH voltage is also called logic level 1 and a

LOW voltage is called logic level 0.

 Connections to the BBC microcomputer are made through its user port. This is

The BBC microcomputer in science teaching

94

described in detail later in this chapter, but to begin with we shall just use it without

explaining how it works. A logic board or a two-input board may be connected to this user

port and all investigations in this chapter will be done with these. The design of these boards

and the method of connecting them to the user port are described at the end of this chapter.

The power supply for these logic boards comes from the microcomputer itself.

 The two-input board (Figure 4.1) consists of two input sockets and a transistor driven

LED to indicate the logic state of the output. It can be used by the microcomputer to

Figure 4.1 The two-input board

Plate 20 LOGIC GATES

Microcomputer timing and control

95

simulate each of the standard logic gates. Once the board has been connected to the

microcomputer in the manner discussed in the Appendix, LOGIC GATES (1) should be

loaded and run. It works in the following way.

 The two-input board has two inputs labelled A and B. When the program is run it asks

which logic gate is to be simulated (the choice is AND, OR, NOT, NAND, NOR,

EXCLUSIVE-OR or EQUIVALENCE) (Plate 20). After the selection is made (by pressing

one of the keys 1 to 7) the screen displays a diagram of the board (Plate 21), indicates the

current logic states of the inputs and the output, displays the appropriate truth table and

highlights the particular line of this truth table which is currently being implemented.

 The input logic levels can be changed by connecting them to the 5 V terminals (red),

which makes them go HIGH, or they may be connected to the black 0 V terminals, which

makes them go LOW. Unconnected inputs float HIGH; the normal condition for TTL

devices. When the logic level of either input is changed, the display also changes

accordingly.

 This program has been found to give a good introduction to the principles of logic gates.

It also illustrates the way that a programmable device, like a microcomputer, can be used to

produce different Boolean functions under the control of a program. Program 1A is a

variation on the above called LOGIC TEST. This illustrates the capability of the

microcomputer to assess practical ability as well as just knowledge (admittedly in a

specialized area). This program uses the same two-input logic board, but this time it is the

program that selects the type of gate being implemented. The student has

Plate 21 Simulation of logic gates

The BBC microcomputer in science teaching

96

to send the inputs HIGH or LOW and look at the output logic level each time. From the truth

table is constructed and the student guesses which of ten possible gates is being produced.

After three guesses the student is informed of the correct answer and its truth table is

displayed. The student may verify this before proceeding with another gate.

Four-bit logic

The logic board (Figure 4.2) has four input terminals labelled A, B, C and D and four output

terminals labelled W, X, Y and Z. All terminals are connected to LED indicators to show

their logic state. When a terminal is HIGH, its LED is on, when a terminal is

Figure 4.2 The logic board

Figure 4.3 Switch inputs

Microcomputer timing and control

97

LOW, its LED is off. The LEDs connected to A, B, C and D indicate the state of the inputs.

These states are determined by the voltages at the input terminals, usually from some

external device like a switch. The LEDs connected to W, X, Y and Z show the output logic

levels. These are the levels chosen by the microcomputer. They do not depend upon the

devices connected to the output terminals.

Logic inputs

The easiest way to create HIGH and LOW logic inputs is with switches. When a switch is

to the left, its output is connected to the 0 V line (also called ground), so it will be LOW,

or at logic 0. When the switch is to the right, the output is connected to the 5 volt line through

the 1 kilohm resistor, so it will be HIGH, or at logic 1. Connect the outputs from the four-

switch unit to the logic board inputs as in Figure 4.3. Make sure that the 5 V and 0 V lines

of each board are connected too. When the switches are operated, the LEDs should go on

and off.

Logic gates
With integrated circuits different Boolean functions can be made by connecting NAND

gates together. Each function is made by combining the gates in a different way, as described

in Chapter 2 of Microelectronics. The advantage of a programmable system is that the same

circuit can be used to produce these different functions, under the control of the program.

This can be demonstrated with LOGIC GATES, but the more powerful version of this

program, called LOGIC TUTOR (2) enables several different gates to be simulated at the

same time. This program uses the logic board and makes each of the four

outputs into different Boolean functions of the inputs. For example, in Figure 4.4, output W

has been set up as the AND combination of inputs A and B. The program allows you to set

up any output as a particular logical combination of any inputs. The best way of explaining

it is to do this example.

Figure 4.4 Simulating an AND gate

The BBC microcomputer in science teaching

98

When the program is run, it asks which Boolean function is required, thus:

 BOOLEAN FUNCTIONS
 SELECT ONE OF THESE FUNCTIONS BY TYPING ITS NUMBER THEN
 PRESS <RETURN>

 1 AND
 2 OR
 3 NOT
 4 EXCLUSIVE-OR
 5 EQUIVALENCE
 6 NAND
 7 NOR

Select the AND function by pressing key 1 followed by the RETURN key. The program

will then ask which output you want to provide this function:

 WHICH OUTPUT ?
 ENTER ONE OF W, X, Y OR Z
 THEN PRESS <RETURN>

Select output W by pressing key W followed by the RETURN key. The program now asks

 HOW MANY INPUTS ?
 ENTER 1, 2, 3 OR 4 AND THEN PRESS

Select two inputs by pressing key 2 followed by RETURN. Finally the program asks

 WHICH INPUTS ?
 ENTER TWO OF A, B, C OR D
 THEN PRESS <RETURN>

Select inputs A and B, by typing A followed by RETURN and then B followed by

RETURN.

 The screen clears to display a symbol for the AND gate, indicating your chosen inputs

and outputs. At the same time the logic board is set up to behave in the same way. Output

W will become the AND combination of inputs A and B. The display will show the logic

state of the inputs and the outputs as a 1 or as a 0.

 Connect the logic board to the switches as in Figure 4.3 and then investigate this AND

combination by switching inputs A and B HIGH and LOW. Note what happens to the LEDs

associated with W and with A and B. First make both inputs LOW and check on the W

output. Then make input B HIGH and input A LOW. Then make input A HIGH and input

B LOW. Finally make both inputs HIGH. Note that the screen display also shows the logic

state of these inputs and outputs (although there is a short delay after they are changed,

because the program is in BASIC and is rather slow).

Microcomputer timing and control

99

It is possible to summarize all the information about the AND gate with its truth table:

Input A Input B Output
LOW LOW LOW
LOW HIGH LOW
HIGH LOW LOW
HIGH HIGH HIGH

The 'HIGH' and 'LOW' in this table are voltages. Note that the output from the AND gate is

only HIGH if both of its inputs are HIGH. If only one or neither inputs are HIGH, then the

output is LOW. The reason for calling this an AND gate is now clear. The output is HIGH

only if both input A AND input B are HIGH.

 This program allows all the standard gates to be investigated as before, but with the

advantage of being able to compare different gates. For example it is easy to show that the

EQUIVALENCE gate is the inverse of the EXCLUSIVE-OR gate by giving them the same

inputs and two adjacent outputs.

 For later reference, the truth tables that can be investigated with these two programs will

now be discussed. First, note that there are two other ways of writing truth tables, as follows:

A B Output A B Output
0 0 0 L L L
0 1 0 L H L
1 0 0 H L L
1 1 1 H H H

The 'H' and 'L' stand for HIGH and LOW voltages as before, and the '1' and '0' have the

same meaning: they are called logic 1 and logic 0 to avoid confusion with the integers 0 and

1.

The NOT gate

Select the NOT function by entering key 3 when the menu is displayed. Make W the output

for this function in the way described above. A NOT gate only has one input, so make this

input A, by entering A as the required input.

 A switch can be used to make this input HIGH or LOW and the LED can be used to see

if the output is HIGH or LOW. The NOT gate produces this truth table.

Input Output
LOW HIGH
HIGH LOW

You will notice that the output is always the exact opposite or inverse of the input, which

gives this function its other name: the INVERTER.

The NAND gate

Create the NAND function by selecting 6 on the menu. Set up W as the output and A and

B as the inputs, exactly as for the AND function above. Two switches are needed to

The BBC microcomputer in science teaching

100

provide the inputs to this NAND gate, called input A and input B. The LED indicators show

the logic level of these inputs and of the NAND gate output. Try different combinations of

inputs A and B and note the effect on the output each time.

Input A Input B Output
LOW LOW HIGH
LOW HIGH HIGH
HIGH LOW HIGH
HIGH HIGH LOW

The OR gate

The OR function can be investigated after being selected with key 2.

Input A Input B Output
LOW LOW LOW
LOW HIGH HIGH
HIGH LOW HIGH
HIGH HIGH HIGH

The NOR gate

Select and investigate the NOR function with key 7.

Input A Input B Output
LOW LOW HIGH
LOW HIGH LOW
HIGH LOW LOW
HIGH HIGH LOW

The EXCLUSIVE-OR gate

Select the EXCLUSIVE-OR gate by entering key 4 from the menu.

Input A Input B Output
LOW LOW LOW
LOW HIGH HIGH
HIGH LOW HIGH
HIGH HIGH LOW

The EQUIVALENCE gate

select the EQUIVALENCE gate with key S and continue as before.

Input A Input B Output
LOW LOW HIGH
LOW HIGH LOW
HIGH LOW LOW
HIGH HIGH HIGH

Microcomputer timing and control

101

Boolean algebra

The language of Boolean algebra is used to describe the functions produced by different

logic gates. In this algebra only three relationships are used: AND, OR and NOT. 'NOT'

refers to the INVERTER. If the input to an INVERTER is called A then its output is NOT

A. The words AND, OR and NOT have particular meanings not to be confused with their

normal English usage. Let us therefore digress for a moment to study the meaning of these

terms as used by BBC BASIC. This will help to explain how AND, OR and NOT may be

used for controlling and monitoring external equipment.

 From the point of view of the microprocessor, data is processed as eight-bit bytes. Each

byte has eight separate logic levels giving 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 or 256 possible

combinations of 1 s and Os. Every piece of information, whether instructions like add or

AND or numbers like 99, are sent to the microprocessor as different combinations of bytes.

We have already seen how eight bits can be used to represent numbers in the binary code or

different alphabetic and graphics characters in the ASCII code. Interpreted as a decimal,

each byte can represent any one of the 256 integers from 0 to 255.

 When using Boolean expressions BBC BASIC interprets these bytes in yet another

different way. A number in a BASIC Boolean expression is regarded as a twos

complement integer, with a value between -128 and 127, according to the following

table:

Binary Twos complement Decimal
0000 0000 0 0

0000 0001 1 1

0000 0010 2 2

0000 0011 3 3

0000 0100 4 4

…. …. … …

…. …. … …

0111 1100 124 124

0111 1101 125 125

0111 1110 126 126

0111 1111 127 127

1000 0000 -128 128

1000 0001 -127 129

1000 0010 -126 130

1000 0011 -125 131

1000 0100 -124 132

…. …. … …

…. …. … …

1111 1100 -4 252

1111 1101 -3 253

1111 1110 -2 254

1111 1111 -1 255

It can be seen that adding 1 to any of these representations increases it by 1. When 1 is

The BBC microcomputer in science teaching

102

added to -1 , the binary number becomes 100000000 as its decimal equivalent goes from -1

to 0, but the register can only hold eight bits, so this ninth bit is lost and the result is zero.

 The only exception for twos complement coding is when 127 is increased by 1 to become

-128. This representation is often used at machine code level to represent negative integers.

For example, in Chapter 2, to make a *-character move backwards across the screen, we

subtracted 1 from its current screen address. In the equivalent machine code program in

Chapter 8, we achieve the same end by adding 255.

 Just to complicate matters, BBC BASIC uses four bytes to store integers, so that it actually

interprets the binary number

 11111111 11111111 11111111 11111111

as -1. However, since we only deal with eight-bit input and output devices, I shall ignore

this and pretend that the table above is the valid one. It makes no difference to the discussion

at all.

BASIC and the logic board
The logic operations of BBC BASIC follow straightforward rules, which seem to be

nonsense until these rules are understood. The BASIC statement Z = A AND B, performs

the AND operation between each bit of the number A and the number B. The corresponding

bits of Z are set or cleared accordingly. If A is 6 and B is 5, then the AND combination of

the two binary numbers is 4, thus:

A is 0 0 0 0 0 1 1 0
B is 0 0 0 0 0 1 0 1
Z is 0 0 0 0 0 1 0 0

The AND truth table is applied to each corresponding pair of bits in A and B. There is a 1

in Z wherever there is a 1 in the same bit position of both A and B. Thus the BASIC

command PRINT 6 AND 5, gives the result 4.

 AND is a very useful expression for turning a logic board output off without altering other

outputs. The logic board outputs share the same output address. Output Z is connected to bit

7 of the output port and has the decimal value of 128. Similarly, output Y is 64, output X is

32 and output W is 16. The statement ?outputs = 240 switches all outputs on and the

statement ?outputs = 0 switches them all off. To switch one particular output off, we AND

all the other outputs with logic 1 and the chosen output with logic 0. For example, to turn

off output Z, use

 ?outputs = (?outputs AND 112).

112 in binary is 0111 0000, so if output Z is already on (l), it will go off (1 AND O). If Z is

already off, it will stay off (0 AND 0). Output X will be unaffected since it is ANDed with

l. If X is on, it stays on (1 AND l). If X is off, it stays off (0 AND l).

Microcomputer timing and control

103

The BASIC statement OR behaves in a similar way. A 1 is placed in the result for each 1

in either A OR B at that bit position:

A is 0 0 0 0 0 1 1 0
B is 0 0 0 0 0 1 0 1
Z is 0 0 0 0 0 1 1 1

Thus the BASIC command PRINT 6 OR 5, gives the result 7.

 OR is useful for turning a logic board output on, without altering the other outputs.

 ?outputs = (?outputs OR 128)

will turn output Z on, irrespective of whether it is already on or off, yet the other output bits

are being ORed with O, so they are unaffected.

 The NOT operation is the most difficult to understand, since it is here that negative values

occur. Decimal zero is actually 0000 0000 in binary, so NOT 0 is the bit-wise complement

of this 1111 1111. BASIC interprets this as -1. This also explains why the BBC

microcomputer gives such funny results when asked to do comparisons between numbers:

 PRINT (1>0) which is TRUE and gives the result -1
 PRINT (0>1) which is FALSE and gives the result 0
 PRINT (X=X) which is TRUE and gives the result -1
 Oddest of all is the following:
 PRINT 1 AND -1 which gives the value 1.

The Boolean constants TRUE and FALSE can be converted to single bits by using the AND

operation above. This is because true is 1111 11111111 1111, which it printed as -1. To

get TRUE = 1 it (or the result of any logical expression) should either be ANDed with 1 or

alternatively the ABSOLUTE value can be taken.

 PRINT gives the value 1
 PRINT (0<1) AND 1 gives the value 1

If A is 1 then NOT A will have the value -2.

A is 0 0 0 0 0 1 1 0
NOT A is 0 0 0 0 0 1 0 1

It can be seen that the twos complement code interprets this as -2, which is the result that is

printed.

 To overcome such problems when using BASIC with inputs and outputs, it is necessary

to ensure that all input variables are single bits to begin with. The BASIC operations AND,

OR and NOT can then be used as required. Then, before the final result is printed, it should

again be ANDed with 1, to remove all the other bits. An inspection of the listing for LOGIC

TUTOR will show how this is actually achieved.

 The BASIC statement EOR behaves in the same way as EXCLUSIVE-OR discussed

above; a 0 is placed in the result for each corresponding bit position where A and B are the

same. A 1 is placed in the result if the A and B bits are different.

The BBC microcomputer in science teaching

104

A is 0 0 0 0 0 1 1 0
B is 0 0 0 0 0 1 0 1
 same same same same same same diff. diff.
Result 0 0 0 0 0 0 1 1

Thus the BASIC command PRINT 6 EOR 5, gives the result 3.

 This operation is also useful for manipulating an output. EORing it with logic 1 will make

it change state, since I EOR 1 is 0 and 0 EOR 1 is 1. So the statement ?output = (?output

EOR 128) will turn output Z on if it is off and off if it is on. The four outputs of the logic

board could thus be toggled in this way by EORing each of them with their corresponding

bit value.

 Before the invention of the microprocessor, in order to make a new electronic system an

engineer would have to design a new circuit. It was most unlikely that new components

could just be added on to a previous circuit, so the whole system would have to be re-made

from the beginning. This is how digital systems were built in the 1960s and 70s, from

combinations of separate integrated circuits. They were all wired together in the correct way

to produce the desired function. Even if the system was sold in large numbers, each one had

still to be built up separately on a printed circuit board, so that the different gates could be

correctly wired together.

 The microprocessor changes this, because the same hardware can be made to do different

things merely by changing its program. The same microprocessor can thus be made to do

many different things, from shearing sheep to controlling a power station, making a teddy

bear speak or running a microcomputer or even space invaders. Because it is the same

microprocessor in each case, a very large number of them can be produced very cheaply.

 Program 3 (called LOGIC MAKER) shows this flexibility, allowing you to create your

own Boolean functions. In order to do this the required function must be entered as part of

the program. Begin by connecting the logic board to the BBC microcomputer user port and

then load LOGIC MAKER. This can be run, to produce the logic function A AND B, which

will appear at gate Z. On the screen the inputs and outputs of the logic board will be

displayed.

 To change the function, press key E, which will end the program, leaving lines 5000 to

5100 of the program displayed on the screen. You may now create any function of your

own, provided it conforms to the syntax rules of BASIC and the ways we have already

described for writing out Boolean functions.

 Change the function in line 5010 to any other function (and remember to press

<RETURN> to enter the new function). Then re-run the program and it will now execute

with your new function. For example,

 5010 Z = (NOT A OR B)
 or 5010 Z = NOT(NOT A AND NOT B)
 or 5010 Z = A EOR B

The variables should be A, B, C or D but you will not have to declare beforehand which you

have used. The final outputs should be W, X, Y or Z. It is possible to use other variables,

although you will not be able to find out what values they take. For example,

Microcomputer timing and control

105

5010 T = NOT A AND B
5020 S = NOT B AND A
5030 Z = T OR S

This example also shows that it is possible to put in more than one line for the function,

provided it does not have to work backwards. That is, you cannot put

5010 Z = NOT T
5020 T = NOT B OR A

because T does not have its correct value in line 5010 until after line 5020 has been executed.

This causes a 'no such variable' message to appear. A few more examples are given below,

but the fun in this program is to create your own functions and then see what you have

produced. Do this by stepping through the truth table with the switches and noting the

outputs in each case.

5010 Z = NOT (A OR B)
5010 Z = NOT (NOT A AND NOT B)
5010 Z = NOT (A AND B)
5010 Z = NOT (A EOR B)
5010 Z = (NOT A AND B) OR (A AND NOT B)
5010 Z = (A AND B) OR (NOT A AND NOT B)

The BBC microcomputer user port

The microcomputer communicates to humans in the outside world through its keyboard and

TV display. It communicates with electronic control systems through its user port. This

consists of eight lines through which digital signals can pass in either direction. These

signals are voltage levels on each of the eight lines, that are either HIGH or LOW. These

lines are connected to a VIA (versatile interface adapter), which is a special input/output

chip inside each BBC Model B microcomputer. The eight lines can be set up so that they

are all outputs, or so that they are all inputs or any combination of the two. The VIA is told

which lines are inputs and which are outputs through its data direction register (DDR).

This is an eight-bit register with each bit corresponding to one of the user port lines. If a bit

of the DDR is turned on (logic 1), then the corresponding line of the user port becomes an

output. If that bit is turned off, then the same corresponding line of the user port becomes

an input. The decimal values of each bit are as follows:

Line number Bit Decimal value
7 1000 0000 128
6 0100 0000 64
5 0010 0000 32
4 0001 0000 16
3 0000 1000 8
2 0000 0100 4
1 0000 0010 2
0 0000 0001 1

The BBC microcomputer in science teaching

106

The individual bits of the DDR are changed from BASIC by writing to its memory location

with the decimal equivalent of the bits. The addresses used are as follows:

DDR = 65122 (DATA DIRECTION REGISTER)
PRT = 65120 (USER PORT)

Figure 4.5 Configuring the VIA

?DDR=4 will turn bit 2 of the DDR on and all other bits off. So the user port will turn line

2 into an output, whereas the other seven lines become inputs. By adding these decimal

values together different combinations of input and output lines can be achieved (Figure

4.5). Thus ?DDR=240 (which is 128 + 64 + 32 + 16) will make the lines corresponding to

bits 7, 6, 5 and 4 into outputs and the lines corresponding to bits 3, 2, 1 and 0 into inputs.

Outputs

After being configured in the required way, the user port can then be used. Data can only

be sent out from a line if it has previously been configured for output. Since ?DDR = 255

will set up all eight lines for output, let us assume that this has been done. Now the user

port can be told which of its output lines are to be on (or HIGH) and which are to be off

(or LOW). A line goes HIGH if the corresponding bit of the user port (PRT) is a 1; the

line is LOW if the corresponding bit is a 0. Thus ?PRT = 1 will switch on line 0 and will

switch all other lines off. The decimal values of each line are as in the table above.

Combinations of lines may thus be made by adding these decimal values together, for

example,

?PRT=0 (in binary: 0000 0000) sends all lines LOW.
?PRT=53 (0011 1111) sends lines 0 to 5 HIGH and 6 and 7 LOW.
?PRT=127 (0111 1111) send lines 0 to 6 HIGH and line 7 LOW.
?PRT=255 (1111 1111) sends all lines HIGH

Microcomputer timing and control

107

Inputs

If lines have been configured for input (by executing ?DDR = O), then their voltage levels

can be read from the PRT address with

LET X=?PRT or X=?PRT

If any line to the user port is connected to a voltage between 2.4 and 5.5 volts, the user port

interprets this as a HIGH (or logic l) level. If the voltage applied to the line is between 0.4

and 0 volts, the interface interprets this as a LOW (or logic 0) level. This range, 0 to 5.5

volts represents the maximum and minimum voltages that can be applied to the user port.

Voltages outside this range can damage it, so care must be taken to keep input voltages

below 6 V and above 0 V. This implies that alternating voltages should not be input to the

user port without protective buffering circuits.

Sensing and controlling the environment

Increasingly in industry, the solution of problems in electronics is becoming one of adapting

a general purpose circuit to a specific application, rather than designing a special circuit each

time. Traditional control technology in schools has laid emphasis upon the second of these

approaches: the hardware solution. The user port of the microcomputer can be used to

demonstrate the more modern software approach. The first programs described below

demonstrate how the unit can be used to control the LEDs of the logic board. Note that in

each case, the electronic circuit remains the same, it is only the programs that are changed.

Switching outputs

This investigation enables you to switch the outputs on or off in any sequence. The first

example shows how any outputs can be switched on in any order. For this program it is

assumed that the top three LEDs on the right side of the logic board (Z, Y and X) represent

the red, amber and green traffic lights. The program shows how these lights can be

controlled by writing the numbers 128, 64 and 32 (and combinations of them) into the

correct address for the logic board. The data direction register in line 100 is used to set up

the lines of the user port (bits 4, 5, 6 and 7) as outputs.

 1 REM CONTROL EXAMPLE 1 - TRAFFIC LIGHTS
 10 DDR=65122:REM DATA DIRECTION REGISTER
 20 PRT=65120:REM USER PORT
100 ?DDR=240:REM SET UP INPUTS AND OUTPUTS
110 ?PRT=128:REM SWITCH ON RED
120 FOR T=1 TO 8000:NEXT T:REM LONG DELAY
130 ?PRT=128+64:REM SWITCH ON RED AND AMBER
140 FOR T=1 TO 1500:NEXT T:REM SHORT DELAY
150 ?PRT=32:REM SWITCH ON GREEN
160 FOR T=1 TO 8000:NEXT T:REM LONG DELAY
170 ?PRT=64:REM SWITCH ON AMBER
180 FOR T=1 TO 1500:NEXT T:REM SHORT DELAY
200 GOTO 110:REM REPEAT SEQUENCE

The BBC microcomputer in science teaching

108

Now try switching on the output LEDs in a different sequence with different delays. To

satisfy those critics of example 1, who say that they can do traffic lights just as well without

a microcomputer, example 2 is almost impossible to emulate with traditional hardware;

switching the LEDs on and off in random sequence. For this purpose a random number

between 0 and 255 is sent to the user port address. You may observe that this also switches

the bits corresponding to the input lines too, but that the input LEDs are not affected. A line

configured for input will not respond to outputs from the microcomputer.

 1 REM CONTROL EXAMPLE 2 - RANDOM LIGHTS
 10 DDR = 65122:REM DATA DIRECTION REGISTER
 20 PRT = 65120: REM USER PORT
100 ?DDR = 240:REM SETUP INPUTS AND OUTPUTS
110 R=RND(256-1)
120 ?PRT=R:REM SWITCH LIGHTS AT RANDOM
130 FORT=1 TO 500:NEXT T:REM SHORT DELAY
140 GOTO 110

The next program switches on the LEDs in a more orderly way, by adding sixteen to the

number written to the user port address each time. The LEDs thus count up in binary.

 1 REM CONTROL EXAMPLE 3 - BINARY COUNTER
 10 DDR = 65122:REM DATA DIRECTION REGISTER
 20 PRT = 65120: REM USER PORT
100 ?DDR = 240:REM SETUP INPUTS AND OUTPUTS
110 FOR R=0 TO 240 STEP 16
120 ?PRT=R
130 FOR T=1 TO 1000:NEXT T:REM SHORT DELAY
140 NEXT R
150 GOTO 110

Can you discover how to make the LEDs count down in binary instead?

A common chip used in microelectronics is the shift register, which is simulated by this

example. It is particularly useful for converting serial data, where the eight bits are sent

one after the other along a single pair of lines, into parallel data, where all eight bits are

sent simultaneously along a set of eight separate lines (or vice versa).

 1 REM CONTROL EXAMPLE 4 - SHIFT REGISTER
 10 DDR = 65122:REM DATA DIRECTION REGISTER
 20 PRT = 65120:REM USER PORT
100 ?DDR=24:REM SET UP INPUTS AND OUTPUTS
110 R%=4
120 R%=R%+R%
130 ?PRT=R%
140 FOR T=1 TO 1000:NEXT T:REM SHORT DELAY
150 IF R%<200 THEN 120
160 GOTO 110

Microcomputer timing and control

109

Pulse output

The simplest way of producing output pulses is by switching lines of the user port alternately

off and on, relying on delay loops to control the timing. In BASIC, the maximum rate at

which an output can be switched on and off is about 50 Hz. This is sufficient for a

metronome but not for much else. The program used is relatively simple as follows. It

produces pulses on bit 7 of the logic board (output Z), which may be connected to an

amplifier and loudspeaker if required. The sound could, more sensibly, be produced by the

BBC microcomputer's own SOUND statements. Here we are demonstrating the use of the

user port:

 1 REM CONTROL EXAMPLE 5 - METRONOME
 10 DDR = 65122:REM DATA DIRECTION REGISTER
 20 PRT = 65120:REM USER PORT
 50 CLS
100 INPUT "NUMBER OF BEATS PER MINUTE" N
110 LET limit = 6000/N
120 ?DDR = 128:REM BIT 7 AS OUTPUT
130 TIME = 0
140 ?PRT=128:REM BIT 7 HIGH
150 FOR T=1 TO 10:NEXT T
160 ?PRT=0:REM BIT 7 LOW
170 RET UNTIL TIME>limit
180 GOTO 130

 Using these principles you should now be able to control any system you wish. For

example, the logic board outputs could be connected via relays to a mobile crane to shift a

load. One output might be connected to switch a motor in the forward direction to lower an

electromagnet. Another output could switch the power to the motor in reverse to raise it

again. Another might drive the crane forwards and the fourth could drive it backwards. The

distances travelled could be controlled by the length of time that the motor is switched on.

 If such a system is tried out, you will discover one problem. A motor switched on for, say

ten seconds, in the forward direction might cause the crane to travel say fifty centimetres.

Ten seconds in the reverse direction produces a movement of say forty-five centimetres. So

each sequence results in the crane ending up in a different place. What is missing is

feedback. The microcomputer needs to know exactly where the crane has got to at any

instant. This is one reason for providing the microcomputer with inputs.

Using the inputs

The state of the user port is read from its address with the LET X = ?PRT statement. Only

bits 0 to 3 of the logic board can be inputs. The number read will, however, include the states

of the outputs too. It must be decoded to determine which particular inputs are HIGH and

which are LOW. If more than one line is HIGH, the value returned in X will be a

combination of the corresponding numbers above. Thus if the X value is 12, this means that

inputs C and D are HIGH and the others are LOW. Similarly if X = ?PRT yields the value

3, this means that inputs A and B are HIGH and the others are LOW.

The BBC microcomputer in science teaching

110

Individual inputs can be monitored with the AND statement.

 LET X = ?PRT AND 1

will look at input A only. If A is HIGH then X will become 1, otherwise it will be 0.

Similarly

 LET x = ?PRT AND 2 monitors input B,
 LET x = ?PRT AND 4 monitors input C
and

 LET x = ?PRT AND 8 monitors input D.

The inputs can be connected to different devices, such as photocells, trip switches, water

level indicators, temperature switches and the like. The outputs can be connected to lamp

indicators, heaters, water valves and pumps. It is thus possible to operate an automatic

washing machine with the logic board, given the necessary 'buffers' to obtain sufficient

power. For present purposes though, the different input devices can be simulated with

switches and the output devices represented by LEDs. The next example shows how the

state of each input can be echoed to the output LEDs. When this program is run, the input

and output LEDs will always show the same state, depending on the setting of the switches.

 1 REM CONTROL INPUT PORT INDICATOR
 10 DDR = 65122:REM DATA DIRECTION REGISTER
 20 PRT = 65120: REM USER PORT
 100 ?DDR=240:REM LAST FOUR LINES AS OUTPUTS, FIRST
 FOUR AS INPUTS
 110 X = (?PRT AND 15) * 16
 120 ?PRT=X
 130 GOTO 110

Burglar alarm

A traditional electronic circuit is the burglar alarm. This can now be made far more versatile.

The simple hard-wired version of this does not allow the owner to get out of the house

without setting off the alarm. This program introduces a delay, during which the alarm will

not operate. The owner has about ten seconds between switching on the system (i.e. starting

the program) and the system's being active. The presence of a burglar can be simulated with

a switch. The switch will have no effect for about ten seconds after the program is started.

 1 REM CONTROL EXAMPLE 7 - BURGLAR ALARM
 10 DDR = 65122:REM DATA DIRECTION REGISTER
 20 PRT = 65120:REM USER PORT
 100 ?DDR=240:REM LAST FOUR LINES AS OUTPUTS, FIRST
 FOUR AS INPUTS
 105 ?PRT=0:REM ALL LEDS OFF
 110 FOR T=1 TO 10000:NEXT T:REM DELAY

Microcomputer timing and control

111

120 N = ?PRT
130 IF N = ?PRT THEN 130:REM WAIT FOR BURGLAR
140 FOR I=1 TO 20
150 ?PRT=240:REM ALL ALARM LIGHTS ON
160 FOR T = 1 TO 200:NEXT T:REM DELAY
170 ?PRT=0:REM ALL LIGHTS OFF
180 FOR T=1 TO 200:NEXT T
190 NEXT I

Time measurement

The principle of measuring time intervals is as follows. The user port is read and stored in a

memory location called status. The current state of the user port is then monitored

continuously and compared with status. Normally it will be the same, but when it is different,

this is because an input has been activated. The microcomputer's internal clock is then

started and the new status of the user port is saved in status. When the user port again

changes its status, the current contents of the clock are noted. The time interval involved can

then be calculated and displayed. The BBC microcomputer has a centisecond timer, which

is available from BASIC with the variable called TIME.

 Time intervals exceeding a few tenths of a second are measured quite satisfactorily in this

way. This simple timer can replace the centisecond timers used in school laboratories in

most instances. The usual problems over 'make to start', 'break to stop', are avoided, since

the routine detects any change at the input. Accurate timing of short intervals must be

achieved by other means, since BASIC is too slow.

 1 REM CONTROL EXAMPLE 8 - A SIMPLE TIMER
 10 DDR = 65122:REM DATA DIRECTION REGISTER
 20 PRT = 65120:REM USER PORT
100 ?DDR = 240:REM LAST FOUR LINES AS OUTPUTS, FIRST
 FOUR AS INPUTS
110 LET status = ?PRT
120 IF status = ?PRT THEN 120
130 LET status = ?PRT:REM INPUT HAS CHANGED
140 TIME = 0:REM START CLOCK
150 IF status = ?PRT THEN 150
160 REM INPUT HAS CHANGED AGAIN
170 PRINT "ELAPSED TIME = ";TIME/100;" SECONDS"

Counting

The next example shows how the microcomputer can be used to count closures of a switch

connected to input A. It is possible to use hardware to prevent contact bounce, but in this

case we shall overcome such problems with a software solution. The program senses a

switch closure, waits for a while, and then checks to make sure that the switch is still closed.

If not, then no count is made. If the switch is still closed, the program records the count and

then waits until the switch is released again.

The BBC microcomputer in science teaching

112

 1 REM CONTROL EXAMPLE 9 - AN INPUT COUNTER
 10 DDR = 65122:REM DATA DIRECTION REGISTER
 20 PRT = 65120:REM USER PORT
 50 CLS
 60 PRINT TAB(5,5)"CURRENT COUNT = 0"
100 ?DDR=240:REM LAST FOUR LINES AS OUTPUTS, FIRST
 FOUR AS INPUTS
110 LET status = ?PRT:REM INITIALIZE SWITCH STATUS
120 LET count = 0: REM INITIALIZE COUNTER
130 IF status=?PRT THEN 130
140 REM INPUT HAS CHANGED
150 FOR T = 1 TO 100:NEXT T:REM DELAY TO DEBOUNCE
 SWITCH
160 IF status=?PRT THEN 130:REM CHANGE IS NOT VALID
170 LET count = count + 1:REM CHANGE IS GENUINE
180 PRINT TAB(5,5)"CURRENT COUNT = ";count
190 IF status<>?PRT THEN 190:REM WAIT FOR SWITCH TO BE
 RELEASED
200 GOTO 130

Interfacing the user port

So far, we have not considered how different external devices can be switched off and on.

Certainly, this cannot be done just by connecting the user port to the external device. The

output current from the user port is very small, just a few milliamps, so it cannot even drive

a lamp directly. It will drive the electronic units of the Nuffield Advanced Physics

'Electronics and reactive circuits', because these contain the necessary power amplification.

We shall now consider the methods of driving other devices also.

 User port interfaces are readily available. Some manufacturers make equipment which

connects directly into the user port and input and output lines are then accessed via sockets

on the front panel. Griffin and George Ltd have produced a digital interface unit, which has

been specifically designed for use in the school environment. It is fully isolated, so that even

if you inadvertently connect 250 V to the input terminals, the VIA should not be damaged.

Most of the programs given as examples in this book will run with the Griffin digital

interface directly. Other interfaces may need a few program changes, it just depends which

lines are configured as inputs and which as outputs.

 Another interface specially designed for use with the BBC microcomputer is the Unilab

interface. This has relay outputs, so it is capable of switching quite large currents on and off,

for example to small heaters and motors. More details of available interfaces for the BBC

microcomputer are given in the Appendix.

DIY interfaces

To make your own interfacing equipment there are several ways of buffering the outputs of

the VIA for driving external devices. In Figure 4.6 each output buffer consists of a pair of

SN7404 INVERTERS, one of which drives the LED indicator The output from this is

sufficient to sink up to 16 mA, although it will source less than 1 mA.

Microcomputer timing and control

113

Figure 4.6 7404 buffers

Figure 4.7 Darlington driver

Figure 4.7 shows a Darlington driver, which is ideal for sinking the currents from LEDs,

relays, lamps and small motors. The integrated circuit version contains seven (RS 307-109)

or eight (RS 307-422) drivers and is thus an ideal buffer for the user port. The power supply

for some motors and relays may have to be more than the 5 V indicated but this Darlington

driver device will handle voltages up to 50 V, provided the power handling capacity of the

whole chip (l W) is not exceeded. Note that this device contains diodes, which protect it

when inductive loads (relays and motors) are being switched on and off.

 A suitable relay is the RS Components sub-miniature device (RS Components 348-526)

which can operate from the 5 V supply of the user port. A suitable amplifier circuit for large

currents can be made from a power transistor, itself driven by a smaller transistor in voltage

follower mode (Figure 4.8). This may be used with any output from the user port including

the CB2 output, which is described later. An 8 ohm speaker may be connected as the

amplifier load if sound output is required.

 Similar problems occur with inputs; different devices switch between different levels,

The BBC microcomputer in science teaching

114

Figure 4.8 Power amplifier

so there has to be some buffer between the user port and the external device to adjust its

inputs to TTL levels. Ideally such an input buffer would also protect the user port from

voltages outwith its allowable range, for example, negative voltages, which can easily

destroy the VIA.

 Input buffers are easily provided. The most useful are those that respond to either a

voltage change or to a change in resistance such as the LM324 op-amp circuit of Figure 4.9.

One of the problems with inputs is that the voltage might rise rather slowly. For example,

the input might be a sine wave voltage, whose frequency is being measured. This could put

a logic gate into its indeterminate state where it is neither HIGH nor LOW and (since it is

then in its amplifying region) this could result in unwanted oscillations. The op-amp circuit

allows for this by having a feedback resistor that forces the input either HIGH or LOW.

 This means that the external input voltage has to push a little harder to overcome this

feedback voltage and cause the op. amp. to switch over. The voltage at which it switches on

will therefore be slightly higher than the voltage at which it switches off. This effect is called

hysteresis. In some cases too much hysteresis is a disadvantage. For example when using a

photocell to make measurements of the speed and acceleration of trolleys, a card is fixed to

the trolley which then passes in front of the photocell. If the light level needed to switch the

photocell on is too different from that needed to switch it off, then the apparent length of the

card will be different from its actual length. This will cause serious errors in the

measurements. The larger the feedback resistor in the op-amp circuit, the less hysteresis

there is and the less serious is this error.

 An alternative transistor circuit is shown in Figure 4.10. The transistor drives an LED

indicator and is followed by a Schmidt trigger, part of an SN7414 integrated circuit. This is

an INVERTER, which also provides the necessary hysteresis for slowly changing inputs.

 With either of these circuits, if the input terminal is grounded through a resistance of less

than about 2000 ohms or if a voltage below about 2 V is applied to it, then the output

Microcomputer timing and control

115

Figure 4.9 Op-amp input buffer

Figure 4.10 Transistor input buffer

output goes LOW. If the input is left unconnected or if a voltage above about 2 V is

connected to it, then the line becomes HIGH. The state of the input is shown by the

associated LED indicator. The connection between the ground and the input can be a light

sensitive resistor, a photodiode, a thermistor, a temperature sensitive switch or a foot switch,

etc.

Switch inputs

One problem with simple switches like that of Figure 4.3 , is the contact bounce produced

when the switch is closed. This can create several pulses which cause problems in counting

circuits. Earlier we showed a way of debouncing the switch by adding a few lines of BASIC

to the program. The hardware solution to this problem is to use a two-way switch and a

bistable, made either from two NAND gates or from a J-K bistable (Figure 4.11). A

particularly useful device is the DM8833 line transceiver, which is used in the logic board.

In Figure 4.12 just one of these is shown connected to bit 7 of the user port. Each

The BBC microcomputer in science teaching

116

Figure 4.11 A debounced switch

Figure 4.12 Transceiver buffer

chip contains four of these with common disable and power supply lines. Each output can

sink or source up to ten milliamps, so it can drive LEDs directly. Either the input buffer or

the output driver can be disabled by taking their disable lines HIGH. In our use of this circuit

both the input buffers and the output drivers of chip 1 are permanently enabled by tying the

disable inputs to the 0 V line. The input buffers of chip 2 are not needed so they are disabled

by tying the disable input to the 5 V line. An alternative arrangement with the enable lines

connected to switches would allow all eight lines to be inputs or outputs as well as allowing

four of each. A point to point diagram for the logic board is given at the end of this chapter

(Figure 4.26).

Microcomputer timing and control

117

Isolation

Sometimes it is necessary to accept inputs from devices that run at voltages greater than 5

V. To protect the microcomputer and its user port it is a common practice to isolate the input

by using an optical communication link (RS Components 307-064). The high voltage device

is connected to an LED (through a suitable series resistor to limit the current). When the

device goes HIGH the LED comes on. Next to the LED (inside the same chip) is a

phototransistor, which can be used to provide correct TTL levels for the user port (Figure

4.13). When the LED comes on, it causes this phototransistor to conduct, so that a LOW

output is produced for the user port. Since there is no electrical connection between the LED

and the phototransistor, even several hundred volts applied to the input will not damage the

user port.

 The same device can be used to isolate the user port from devices connected to its output.

The user port will not drive the LED directly, so one of the output buffers mentioned above

should be used too. Isolation of this type should be used whenever large voltages are being

sensed or switched. For switching alternating voltages, particularly the mains voltage, an

optically coupled triac (RS Components 308-196) is more useful. This can be connected

directly to the device being switched provided this does not need too much current. For

larger currents the triac itself can be used to switch on a power SCR (silicon controlled

rectifier) (RS Components 308-001) (Figure 4.14).

Figure 4.13 Optical isolation

Figure 4.14 Optical triac

The BBC microcomputer in science teaching

118

Sensors

So far, we have only looked at photocells and thermistors as input sensing devices, but there

is much more that can be done. Mechanical switches include push button switches, float

switches for determining a liquid level, foot switches, tilt switches for determining if

something is being moved (useful for an anti-theft system), rotary and edge switches (for

choosing one of several options), pressure pads (for automatic door opening) and, of course,

keyboards. Electronic switches are even more numerous. The most useful are proximity

detectors that react to the presence of metals, non-metals, liquids and animals (human or

otherwise). An interesting device is the Hall effect switch which detects the nearness of a

magnet. The magnet could be fixed to a model train so that its presence could be determined

whenever it passed the switch mounted on the track. For temperature sensing the thermistor

needs some sort of buffering, but complete temperature switches are available for direct

connection to the user port.

 For school purposes the most useful input device is a photocell. This is a photodiode (RS

Components 304-346) or LDR (light dependent resistor) (RS Components 305-620),

which may be connected to the op-amp or transistor input buffers. When light falls upon the

photocell, its resistance is low, so the input is at logic O and the LED indicator will be off.

If the light is interrupted, the photocell resistance rises and the input goes to logic 1. The

LED indicator on the input should be used to check that this does happen. If not, then one

or more of the following may be true:

i) The light source is not powerful enough, move it closer or increase its intensity.

ii) The photocell is polarized the wrong way, swap over its connections to the input and

ground.

iii) The photocell is unsuitable for this application.

Note that the light dependent resistor (LDR) will do the job of a photocell quite well unless

it is required to respond quickly. LDRs should not be used for time intervals of less than a

few milliseconds. Faster switching is obtained with photodiodes connected to high speed

op-amps (RS Components 304-346, data sheet R/ 2135 Dec 81).

The 6522 versatile interface adapter

The BBC microcomputer user port is connected to a most remarkable device, the Rockwell

6522 versatile interface adapter or VIA for short. At the end of this chapter we will look

at a way of connecting another VIA to the I MHz bus of the BBC microcomputer. The

present description applies equally well to either VIA, but the emphasis is upon the one in

the user port. Those wishing to use the programs in this book for a VIA connected otherwise,

will need to rewrite them for the different addresses of the new VIA.

 The 6522 VIA contains sixteen eight-bit registers, each with an address: two input/output

ports (the A-port and the B-port), two data direction registers (DDRA and DDRB) to

control the flow of data in these I/O Ports, two sixteen-bit timers, timer 1 and

Microcomputer timing and control

119

timer 2 and the peripheral control register (PCR) and the auxiliary control register (ACR)

for selecting the VIA modes of operation.

 In the BBC microcomputer the A-port of the VIA is used for the printer interface, and the

B-port goes to the user port connector (together with + 5 V and 0 V lines). Connection to

the user port is best made with a ribbon connector cable and an RS Components SpeedBloc

PCB 20-way plug (Stock no. 467-970). The timers and the B-port control lines are all

accessible. The VIA is memory-mapped meaning that it can be read and written to just like

any other memory location. Its addresses in the BBC microcomputer are as follows:

Name Function Decimal Hexadecimal
BPRT B-port 65120 &FE60
APRT A-port (+ handshake) 65121 &FE61
DDRB Data direction reg B 65122 &FE62
DDRA Data direction reg A 65123 &FE63
TILLO Low-byte Timer 1- latch 65124 &FE64
TILHI High-byte Timer l - latch 65125 &FE65
TICLO Low-byte Timer l - count 65126 &FE66
TICHI High-byte Timer l - count 65127 &FE67
T2LO Low-byte Timer 2 - latch 65128 &FE68
T2Hl High-byte Timer2 - latch 65129 &FE69
SR Serial register 65130 &FE6A
ACR Auxiliary control reg 65131 &FE6B
PCR Peripheral control reg 65132 &FE6C
FLAG Interrupt flag reg 65133 &FE6D
IER Interrupt enable reg 65134 &FE6E
APRT A-port (no-handshake) 65135 &FE6F

Both the A-port and the B-port registers may be configured for input or for output. The

number written into the corresponding data direction register determines this (as described

earlier). However, the A-port is connected to output drivers (for use as a printer output) so

there is little point in configuring it as an input. If necessary, it may be used as an output,

with the advantage of already being buffered by an SN74LS244 device. This is capable of

sinking 8 mA and sourcing 0.4 mA, enough for transistors or Darlington drivers.

 To read the user port after it has been configured for input is simply a matter of loading

the contents of the correct address, exactly the equivalent of the 'X = ?PRT' used earlier.

Control lines

There are four control lines available, two for each port of the VIA, a CA1, CA2, CB1 and

a CB2 line. They are provided for a variety of functions, which are chosen by two Other

VIA registers, the peripheral control register (PCR) and the auxiliary control register (ACR).

On the BBC microcomputer user port only the CB1 and CB2 control lines are available.

One of their functions is like that of the linesman at a football match, to wave a flag to catch

the attention of the referee. Of course this could be done by simply

The BBC microcomputer in science teaching

120

having the microcomputer watch one of the user port lines until it changes. For example,

100 IF (?PRT AND 4)=0 THEN 100

will cause the microcomputer to wait until line 2 of the B-port goes HIGH. But even in

machine code it takes several microseconds for the microprocessor to loop round and read

the B-port again and a quickly changing input signal could come and go in the meantime

and so be missed.

This problem is solved by getting the VIA to set a particular bit in its flag register to catch

the attention of the microprocessor when it notices a change at its CA1 or CB1 input. There

are seven such bits (flags) in this flag register. Bit 1 is affected by changes to CA1 and bit 4

is affected by changes to CB1. Changes to the CA1 or CB1 logic levels can be produced by

an external device to tell the microcomputer that it is ready for something. A printer

connected to the BBC microcomputer printer port, has one of its output lines connected to

the CA1 input. When it changes this line from HIGH to LOW, the VIA interprets this as a

request for attention, so it flags the microprocessor accordingly. This is necessary because

the printer only prints about ten characters per second and the microcomputer is capable of

sending characters very much faster than this. The printer therefore tells the microcomputer

when it is ready for the next character by sending an appropriate signal along the CA1 line,

called the acknowledge input (ACK).

 A signal from an external device is often called a strobe and it may be a HIGH to LOW

i transition (negative strobe) or a LOW to HIGH transition (positive strobe). The PCR, at

the address 65132, has one bit for controlling CA1 and one bit for CB1. Either control line

can be used in two ways, chosen by the setting of its corresponding bit in the PCR. If this

bit is HIGH, the control line will set its flag whenever it receives a positive strobe. If the

PCR bit is LOW, the control line will set its flag for a negative strobe.

 ?65132=0 or ?&FE6C=0 will select HIGH to LOW transitions
 ?65132=16 or ?&FE6C=16 will select LOW to HIGH transitions

After being configured, the flag in the flag register (bit 4 for the CB1 flag, bit 1 for the CA1

flag) can be cleared by reading or writing the corresponding A-port or B-port. Thus or LET

X=?BPRT will clear the CB1 flag, and ?APRT=0 or LET X=?APRT will clear the CA1

flag.

These flags remain LOW until the CA1 or CB1 lines receive their correct transition, upon

which the corresponding flag will be raised. Like the football referee the microprocessor

does not immediately heed the flag but may wait for a more opportune moment.

Nevertheless, the flag remains up until some attention is paid to it, even when the strobe has

gone. This explains the advantage of this system over the simpler one of just watching the

user port until it changes.

 Consider one particular application of this idea, the classic problem of which contestant

in a quiz was the first to press his or her switch. It is no good just getting the microcomputer

to look occasionally at the individual switches, the time interval between two different

people pressing their switch might be too short to be discriminated. To solve this problem

we use the latching facility of the VIA to capture data into the user port as

Microcomputer timing and control

121

soon as it is received. This mode is selected by the auxiliary control register (ACR) at

address 65131. When bit 1 of this register is LOW, there is no latching of the input data to

the B-port, but when bit 1 is HIGH, the latching facility is enabled. When the B-port is

latched, any data on its lines is captured so that even if the original input signals are removed,

their logic levels will remain. The same is true for the A-port, except that it is bit 0 of the

ACR that has to be set HIGH. This is no use for the VIA in the BBC microcomputer, since

the A-port cannot be made into an input anyway.

 The latching of the data at the user port occurs when the corresponding CA1 or CB1 line

gets its expected HIGH-LOW or LOW-HIGH transition (as determined by the PCR). Figure

4.15 gives the circuit diagram for solving the quiz problem. The eight push button switches

are normally HIGH. They are connected to the lines of the user port and also to an eight-

input NAND gate (SN7430). The output from the NAND gate is thus LOW and is connected

to the CB1 line.

 10 REM INPUT DATA LATCHING
 20 BPRT = 65120:REM USER PORT
 30 DDRB = 65122:REM DATA DIRECTION REGISTER
 40 ACR = 65131 :REM AUXILIARY CONTROL REGISTER
 50 PCR = 65132:REM PERIPHERAL CONTROL REGISTER
 60 FLAG = 65133:REM FLAG REGISTER
 100 ?DDRB = 0:REM B-PORT IS INPUT
 110 ?ACR = 2:REM ACR SET TO ENABLE B-PORT LATCH
 120 ?PCR = 16:REM PCR SET TO LATCH ON LOW-HIGH
 TRANSITION
 130 IF(?FLAG AND 16)=0 THEN 130
 140 X = ?BPRT:REM READ B-PORT AND RESET LATCH

Now, whenever any of the switches is pressed, it goes momentarily LOW, so the output

from the NAND gate will go HIGH, thus activating the CB1 line. The state of all switches

will then be latched into the user port and held there indefinitely. The microcomputer can

read them at its own convenience, thus discovering which one was activated first (unless,

Figure 4.15 Input latching

The BBC microcomputer in science teaching

122

of course, there were simultaneous switch closures). On reading the user port, the flag is

again lowered and the CB1 latching facility is reset ready for the next time. Alternatively,

the flag can be deliberately lowered by writing its decimal value to the flag register. Another

application of this latching facility is the connection of a concept keyboard to a

microcomputer. This keyboard has pressure sensitive pads, the function of which can be

changed with suitable overlays. When pressed each keypad places a seven-bit byte of data

on its parallel port and signals this by sending a negative strobe to the CB1 line of the

microcomputer user port. The VIA has to be set up so that when the CB1 line goes LOW

(indicating a key press), the number on the data lines is latched into the user port. This can

then be read at leisure by the microcomputer, upon which the latch is automatically reset,

ready for the next key closure. If the CB1 line is pulled LOW, bit 4 of the flag register in

the VIA is set, so the program simply waits for this flag to go HIGH and then it reads the

contents of the user port.

Interrupts

In several instances so far we have been content to let the microcomputer sit around

watching the user port or the flag register waiting for something to happen. In the past,

computers cost so much that nobody could afford to waste computer time in this way and

the special technique of the interrupt was developed. This is similar to when I am reading

a book and the telephone rings. I immediately place a marker into the book and attend to the

call. When I have finished I return to the task I was doing when interrupted, using the

bookmark to find out which page I was on.

 The microprocessor has a similar facility. When it receives an interrupt signal, it finishes

its current instruction and services the interrupt. Afterwards it returns to its original task

from where it left off. An interrupt request can be sent to the microprocessor when a CA1

or CB1 line gets its correct strobe. There are also five other ways in which an interrupt can

be generated by the VIA; by the CA2 or CB2 control lines, time-outs by either of the timers

and shift-outs by the shift register, each controlled by a flag in the flag register. If any flag

goes up, an interrupt request could be sent to the microprocessor along its IRQ line. We do

not always want this to happen, so it is possible to prevent it. The interrupt facility is only

enabled if one of the bits in the interrupt enable register (IER) is HIGH, the bit

corresponding to the flag concerned.

Bit 6 5 4 3 2 1 0
Flag T1 T2 CB1 CB2 SR CA1 CA2
IER T1 T2 CB1 CB2 SR CA1 CA2

 In the BBC microcomputer the interrupt facility is used a great deal by the

microprocessor, for example, to deal with inputs from the keyboard, which occur at very

irregular intervals. It is not, therefore, possible in BASIC for the user to make use of it too,

nor is it actually necessary in machine code routines. The main reason for mentioning it is

so that you will be aware of what can happen during timing routines, etc. You may carefully

calculate that a timing loop should last one hundred microseconds only to find that it is some

five per cent longer than this. The reason is that the microprocessor is being interrupted by

a timer every hundredth of a second to update the

Microcomputer timing and control

123

clock in the microcomputer. There is a simple solution; to switch off the interrupt facility

completely before starting the machine code timing loop. This is done with the instruction

SEI (set the interrupt mask). The interrupt facility is restored with the instruction CLI

(clear the interrupt mask). These instructions occur quite often in succeeding programs.

 To prevent individual interrupts from occurring without disabling the whole facility, the

requisite bits of the IER can be cleared.

CA2 and CB2 control lines

The CA2 and CB2 lines can be used as inputs just like the CA1 and CB1 lines by configuring

the PCR and ACR correctly. They can therefore also be used for sending interrupt requests

to the microprocessor. They have many more functions than CA1 and CB1 and are more

versatile. Their particular advantage is that they can also be turned into output lines. They

are switched HIGH or LOW by setting the correct bits of the PCR. Bits l, 2 and 3 control

CA2 and if bits 2 and 3 are both set, this selects the direct output mode. Thereafter if bit 1

is set, CA2 will be HIGH and if bit I is cleared then CA2 will be LOW. CB2 is controlled

in the same way by bits 5, 6 and 7 of the PCR.

?PCR = 12:REM SET CA2 LOW
?PCR = 14:REM SET CA2 HIGH
?PCR = 192:REM SET CB2 LOW
?PCR = 224:REM SET CB2 HIGH

This facility effectively increases the number of available output lines, although those

already there are usually enough. The CA2 line is available as a strobe at the printer

connector.

The 'concept' keyboard

This soft keyboard can be used for inputting data without using the standard QWERTY

keyboard and all its attendant problems. As described in Chapter 1 a soft keyboard can have

its keys altered (or disabled) to suit each particular application. The concept keyboard

(available from Star Microsystems) is one particular board that is easily fitted to the BBC

microcomputer (Figure 4.16).

Figure 4.16 Connecting the concept keyboard

The BBC microcomputer in science teaching

124

Figure 4.17 'Concept' key arrangement

 The keyboard consists of a washable surface beneath which are 128 pressure sensitive

keys (Figure 4.17). When pressed, each key sends a number along seven parallel lines, which

can be connected to bits 0 to 6 of the user port. A separate 'strobe' line is connected to the

CB1 line and configured inside the connecting cable such that it goes LOW, when a key is

pressed. The data on the lines is then latched into the B-Port and the flag set in the flag

register. It is necessary to use the latching facility since, if no key is being pressed, the data

lines are open circuit and present a random number. Finally bit 7 is grounded for

convenience, the keys thus providing data numbers from 0 to 127. The keys are ASCII coded

but this is only for ease of reference.

 The procedure for reading the keyboard waits for the flag to go HIGH, whereupon the

data is read, thus resetting the flag ready for the next keypress.

 1000 DEF PROCreadconceptkeyboard
 1010 REPEAT
 1020 UNTIL
 1030 LET Q%=?BPRT
 1040 ENDPROC

Q% returns with the data for the key pressed since the last time PROCreadconceptkeyboard

was called. Initially the VIA must be configured as follows:

 1 REM CONCEPT KEYBOARD CONFIGURATION
 2 BPRT= 65120:REM USER PORT
 3 DDRB = 65122:REM DATA DIRECTION REGISTER
 4 ACR = 65131:REM AUXILIARY CONTROL REGISTER
 5 PCR = 65132:REM PERIPHERAL CONTROL REGISTER
 6 FLAG = 65133:REM FLAG REGISTER
 7 IER = 65134:REM INTERRUPT REGISTER

Microcomputer timing and control

125

10 ?DDRB = 0:REM B-PORT IS INPUT
11 ?ACR = 2:REM ACR SET TO ENABLE B-PORT LATCH
12 ?PCR = O:REM PCR SET TO LATCH ON HIGH-LOW TRANSITION
13 ?FLAG = 24:REM RESET CB1 and CB2 FLAGS
14 ?IER = 24:REM DISABLE INTERRUPTS FROM CB1 and CB2
15 LET Q% = BPRT:REM CLEAR FLAG INITIALLY

 The way that the keyboard routine is used within the body of the program depends upon

the requirements of the program. For example, suppose the program was training a child to

recognize colours. The board could be divided into four parts, each differently coloured.

The program would proceed as follows:

 560 PROCreadconceptkeyboard
 570 LET N = 1 + AND 8) + AND 64)
 580 ON N GOTO w, x, Y, z

N will end up with the values 1, 2, 3 or 4 depending on which quadrant of the board is being

pressed. Alternatively, for finer discrimination, adjacent keys could be distinguished by

checking on bit 0 of the value in Individual keys may, of course, simply be checked by

number directly.

Handshaking

One useful purpose of the Cl and C2 lines is for handshaking. When data is sent from one

machine to another, the sender needs to tell the receiver when the data is available. Similarly

the receiver needs to signal the sender to indicate that the data has been received. As an

example of this procedure a technique for transferring data from one BBC microcomputer

to another is now described. The two machines are connected as shown in Figure 4.18.

 After configuring the registers the receiver toggles its CB2 line to send a negative pulse

to the CB1 line of the sender. The CB1 line sets its flag, telling the sender that the receiver

is now ready for data (RFD). The sender responds by collecting the byte of data to be sent

and writing it into the user port. The sender then signals data available (DAV) by toggling

its CB2 line, sending a negative strobe to the CB1 line of the receiver. Upon receiving this

strobe (or more accurately the negative transition of the strobe) the CB1 line sets its flag and

at the same time latches the data into the user port. The receiver notes that the flag is

Figure 4.18 Parallel data transfer

The BBC microcomputer in science teaching

126

raised and reads the data, thus resetting the flag and re-enabling the latch for the next byte.

 In this program the byte to be sent is merely input to the sender from the keyboard and is

displayed on the receiver's screen. This allows the user to type on one machine and have the

characters appear on the other at the same time. The end of a line of text is signalled by

sending a carriage return (character 13) and this is sensed in line 230 of the sender's program.

It is, however, necessary to precede this with a line feed (character 10), which is the purpose

of the subroutine at line 500. These ideas can be extended to any communication between

the two microcomputers. Clearly one very important application is the transfer of program

and data files from one microcomputer to another. I used a routine like this to transfer

programs from a PET to the BBC microcomputer. Unfortunately, the process was not

particularly valuable in most instances. For example, MASTERMIND prints everything in

upper case letters (as in the original PET program) so it would have been better to have

rewritten the program from the beginning on the BBC microcomputer.

 1 REM PARALLEL TRANSFER-SENDER ROUTINE
 10 BPRT = &FE60
 20 DDRB = &FE62
 30 ACR = &FE6B
 40 PCR = &FE6C
 50 FLAG = &FE6D
 60 IER = &FE6E
 70
100 REM INITIALIZE REGISTERS
110 ?IER = 16:REM DISABLE CB1 INTERRUPT
120 ?DDRB=255:REM USER PORT AS OUTPUT
130 ?ACR = 0:REM DISABLE LATCH
140 ?PCR=236:REM SET CB2 HIGH
150 X = ?BPRT:REM RESET CB1 FLAG
160
200 REM SEND BYTE
210 IF(?FLAG AND 16) = 0 THEN 210:REM WAIT FOR RFD
220 A$=GET$:REM GET BYTE TO SEND
230 IFA$=CHR$(13) THEN 500:REM SEND LINE FEED
240 ?BPRT=ASC(A$):REM SEND VALUE OF CHARACTER
250 ?PCR = 192:REM SET LOW
260 ?PCR = 224:REM HIGH AGAIN
270 GOTO 200:REM DO NEXT CHARACTER
500 REM SEND CARRIAGE RETURN
510 ?BPRT = 13:REM SEND Ascii VALUE OF CARRIAGE RETURN
520 ?PCR = 192:REM SET CB2 LOW
530 ?PCR = 224:REM SET CB2 HIGH AGAIN

Microcomputer timing and control

127

540 IF(?FLAG AND 16) = 0 THEN 540:REM WAIT FOR RFD
550 ?BPRT = 10:REM NOW SEND LINE FEED
560 GOTO 250

1 REM PARALLEL TRANSFER-RECEIVER ROUTINE
10 BPRT = &FE60
20 DDRB = &FE62
30 ACR = &FE6B
40 PCR = &FE6C
50 FLAG = &FE6D
60 IER = &FE6E
70
100 REM INITIALIZE REGISTERS
110 ?IER = 16:REM DISABLE CBI INTERRUPT
120 ?DDRB = 0:REM USER PORT AS INPUT
130 ?ACR = 2:REM ENABLE LATCHING FACILITY
140 ?PCR = 224:REM SET CB2 HIGH, HIGH-LOW TRANSITION ON CB1
200 REM RECEIVE BYTE
210 ?PCR = 192:REM SET CB2 LOW FOR 'READY TO RECEIVE'
220 IF (?FLAG AND 16) = 0 THEN 220:REM WAIT FOR FLAG
230 X = ?BPRT:REM GET BYTE AND RESET LATCH AND FLAG
240 PRINT CHR$(X);:REM DISPLAY RECEIVED CHARACTER
250 ?PCR = 224:REM SET CB2 HIGH AGAIN
260 GOTO 200:REM GET NEXT BYTE

Timer 1

The VIA possesses two sixteen-bit counter/timers with a variety of modes. These provide a

great facility for measuring time intervals and for counting pulses. Note that, although the

clock rate of the BBC microcomputer is 2 MHz, the VIA timers run at 1 MHz. The different

modes of the timers are selected by sending a particular bit-pattern to the ACR.

Bit 7 6 5 4 3 2 1 0
 Timer 1 Timer 2 Shift register B-latch A-latch

Auxiliary control register functions

Bits 6 and 7 control timer 1 and bit 5 controls timer 2, but the modes available for each timer

are very different. Not all modes are equally useful either, so only a few will be

described.

 As a sixteen-bit counter each is capable of counting to 65 536, or rather counting down

from 65 535 to zero, which is the way they work. Upon reaching zero a time-out signal is

sent to the flag register (FLAG) in the VIA. Time-outs on timer 1 affect bit 6 of FLAG and

time-outs on timer 2 affect bit 5. These bits can be inspected and if one is set, then a time-

out has occurred. Alternatively, the interrupt enable bits can be set, thus generating an

interrupt request upon time-out.

The BBC microcomputer in science teaching

128

 There are two parts to each timer, the counter itself and its input latches. These are

necessary because in some modes the counters automatically restart upon reaching zero.

Thus timer 1 can be set to count down from, say, 1000 to zero and on reaching zero the

number 1000 is reloaded into the timer from the latches and the countdown repeats. This

produces a series of time-outs, at intervals of about one millisecond.

 In addition to the time-outs a digital signal can be made to appear at bit 7 of the B-port

(irrespective of the setting of DDRB). The logic level of this line (PB7) changes from HIGH

to LOW or from LOW to HIGH, whenever a time-out occurs from timer 1. The selection of

this mode is made through bit 7 of the ACR. If ACR7 is set, then the digital signals will be

output through PB7. If ACR7 is cleared, then no signals appear at PB7.

 ACR bit 6 controls whether timer 1 generates a single time-out signal or continuous

signals as follows:

i) ACR6 LOW: the one shot mode

After timer 1 has been loaded with some number, it is decremented at the I MHz clock-pulse

rate. When it reaches zero, the time-out occurs and a signal is sent to bit 6 of the flag register

to say so. If ACR7 is also HIGH, then the logic level of PB7 is changed. PB7 will go LOW

as soon as the high byte is loaded into timer 1. Countdown begins at the same instant and,

on the time-out signal, PB7 will go HIGH again.

ii) ACR6 HIGH: free running mode

After timer 1 has been loaded, it is decremented at the clock pulse rate until it reaches zero,

exactly as before. A time-out signal is sent to bit 6 of the flag register also as before. But the

number originally loaded into the latch of timer 1 is then automatically reloaded and the

countdown begins again. If, at the same time, ACR7 is HIGH, then the logic level of PB7

changes, as described above. In this mode the PB7 line goes alternately HIGH and LOW

with every time-out signal. The countdown of timer 1 begins as soon as its latch is loaded

with its starting number. Since it is a sixteen-bit register, it must be loaded in two halves.

The low byte is written into T1LLO (address = 65124) and the high byte into T1LHI (address

= 65125). The countdown begins when the high byte is loaded, so the low byte must be

loaded first. For a particular time interval (t in microseconds) the required numbers are

loaded into T1LHI and T1LLO by

?T1LLO = (t-2) MOD 256
?T1LHI = (t-2) DIV 256

Applications of timer 1

i) Generate output pulses on PB7

In free running mode the PB7 logic level changes once every time-out. Thus, if it is desired

to make PB7 generate a frequency of I kHz, time-outs must occur every 500 microseconds.

Timer 1 thus needs to be loaded with 500. However, this number must be reduced by 1.75

to allow for the reloading time etc. of the system. The pulses cannot therefore be quite as

accurate a one might hope. This gives 498 to be loaded into the T1 latches, a low byte of

242 into T1LLO and 1 into T1LHI.

 Note that it is not necessary to set up PB7 as an output beforehand — this present

Microcomputer timing and control

129

function overrides its configuration by DDRB. The pulses can be stopped by loading 0 into

the ACR (?ACR = ()). Since this is a sixteen-bit timer, pulse frequencies between 250 kHz

and a few hertz can be produced with this method. This includes the audio range and so is a

possible method of producing audio-frequency square wave pulses. This idea is also used in

PULSE TIMER (11) to determine the length of a square pulse (Plate 23).

ii) Generate a single (negative) pulse on PB7

To generate a single time-out requires ACR6 to be LOW. Timer 1 should be loaded with

the length of the time interval required (less 1.5 machine cycles), so for an output pulse of

1 millisecond duration, timer 1 should be loaded with 998, a high byte of 3 and a low byte

of 230. This idea is used in FREQUENCY METER (12) to open a gate for a specified length

of time (Plate 22).

100 SET ACR7 HIGH and LOW
110 LOAD LOW BYTE
120 LOAD HIGH BYTE AND BEGIN PULSE

iii) Provide an internal clock

The BBC microcomputer clock is only a centisecond timer. Timer 1 may be used to provide

accurate time-outs at shorter intervals. Rather than use the interrupt system of the

microcomputer, it is usually quite easy to inspect bit 6 of the flag register to see if it is set.

If so a time-out has occurred and T1LHI can be reloaded to start a new countdown.

Plate 22 FREQUENCY METER instructions

The BBC microcomputer in science teaching

130

Plate 23 Timing of short intervals

Plate 24 Centisecond timer – STOPCLOCK

Microcomputer timing and control

131

 This use of timer 1 is illustrated by STOPCLOCK(5)(Plate 24). This is a centisecond

clock that is started by an event (a change in logic level) at either bit 0 or bit 1 of the User

port. The current time is displayed in minutes, seconds and centiseconds in large digits on

the screen, using the machine code subroutine developed in Chapter 7. Another event stops

the clock, which then displays the elapsed time. The whole program illustrates the freedom

given by using the timer instead of microprocessor delay loops to do the timing. The latter

can then get on with other tasks, like sorting out where the digits have to go and displaying

them.

 When the countdown in timer 1 reaches zero, it sets a flag in the flag register, reloads

itself from the latch and carries on counting down. Thus if the latch contains the number

10000, timer I gives out a steady stream of one centisecond signals. STOPCLOCK actually

reads the centisecond clock provided by the operating system at address 662 (OS 1.0 and

above) or 594 (OS 0.1). This works in the way just described except that it uses the 'other'

VIA.

Timer 2

Timer 2 modes are controlled by bit 5 of the ACR and thus it only has two modes. When

ACR5 is LOW, timer 2 acts rather like timer 1 in its one shot mode. Since no output pulses

are produced, this mode is of no special interest to us. The other mode is a pulse counting

mode and is more valuable. It is selected when ACR5 is HIGH. Timer 2 is then loaded with

the number to be counted. Every time that line 6 of the B-port (PB6) goes LOW, timer 2 is

decremented. When it reaches zero, it has counted the required number of pulses and a time-

out occurs. Bit 5 of the flag register is set HIGH to show this time-out.

Applications of timer 2

i) A clock

By getting timer 1 to generate continuous output pulses on PB7 at, say, 10 millisecond

intervals and subsequently counting these pulses by timer 2, then quite long time intervals

can be produced. To do this PB6 and PB7 should be connected together.

 Then, after selecting the pulse counting mode, timer 2 is loaded with the required number

of centiseconds to be counted. Upon time-out timer 2 sets bit 5 of the flag register. A BASIC

program simply sets up the ACR and the timers and then waits until this flag has been set,

thus indicating that the required time has elapsed. By altering the numbers loaded into the

timers initially, time intervals as low as one millisecond may be produced, which is about

as low as BASIC can handle. Timer I set to produce tenth-second pulses and timer 2 set to

count 60 000 of these, gives a 100 minute interval.

 The following example generates an interval of one second. It measures this time interval

by counting a thousand one millisecond pulses. PB7 and PB6 should be connected together

for this application.

 100 ?ACR=224:REM SET ACR5,6 AND 7 HIGH
 110 ?T2LO=232:REM SET TIMER 2 LOW
 120 ?T2HI=3:REM SET TIMER 2 HIGH
 130 ?T1LLO=230:REM LOAD TIMER 1 LOW
 140 ?T1LHI=1:REM START TIMER AND RESET FLAG

The BBC microcomputer in science teaching

132

150 X = INSPECT FLAG REGISTER
160 X = X - 192
170 IFX<32 THEN 150
180 RETURN

Since we are using timer I too, bits 6 and 7 of the flag register will also be set, hence line

160.

ii) A frequency meter

Timer 1 is set to produce a single negative pulse on PB7. This is inverted and opens a gate

to allow pulses from an alternating voltage of unknown frequency to reach PB6 to be

counted by timer 2. Upon observing time-out on timer 1, the microprocessor reads timer 2

to see how many pulses had been received (Figure 4.19)(Plate 22). This number is then

converted into a frequency and displayed.

 100 REM FAST FREQUENCY METER
 320 ?IER = 127:REM DISABLE INTERRUPTS
 330 ?ACR=160:REM PB6 TO COUNT PULSES, PB7 TO PROVIDE ONE-
SHOT PULSE
 340 ?PCR=0:REM TURN OFF LATCHES AND SERIAL REGISTER
 350 ?T2LO=255:?T2HI=255:REM INITIALIZE COUNTER
 360 ?DDRB=128:REM BIT 7 AS OUTPUT (THIS INSTRUCTION
UNNECESSARY)
 380 ?FLAG=127:REM CLEAR FLAGS
 390
 500 GOSUB 1000:REM OPEN GATE FOR 50 MILLISECONDS
 510 freq=(256 * (255 - ?T2HI) + (255 ?T2LO)) * 20
 530 PRINT freq
 540
 1000 REM OPEN GATE FOR 50 MILLISECONDS
 1010 ?T1LLO=79
 1020 ?T1LHI=195:REM OPEN GATE AND RESET LATCH
 1030 IF(?FLAG AND 64)=0 THEN 1030:REM WAIT FOR TIMEOUT ON
TIMER 1
 1040 RETURN

A frequency below 2 kHz will provide less than a hundred counts in timer 2 and is thus

inaccurately measured. For these low frequencies the internal clock is used just to provide

a time interval of one second, during which time the gate is opened to allow the input

frequency to be measured.

 800 REM LOW FREQUENCY OPTION
 810 ?ACR=32:DISABLE OUTPUTS ON PB7
 820 ?DDRB=128:REM PB7 AS OUTPUT
 830 ?PRT = 128:REM SET PB7 HIGH
 840 ?T2LO=255:?T2HI=255:REM INITIALIZE COUNTER

Microcomputer timing and control

133

Figure 4.19 Gating input pulses to PB6

 850 ?PRT=0:REM OPEN GATE
 860 TIME=0:REM START CLOCK
 870 REPEAT
 870 UNTIL TIME=100
 890 ?PRT=128:REM CLOSE GATE
 900 freq=256*(255 - ?T2HI) + (255 - ?T2LO)
 910 PRINT freq

The following line can be added to the above program, so that it automatically runs this low

frequency section if the frequency is too low for the first method.

 520 IF freq<2000 THEN 800

The full listing of this program is given in FREQUENCY METER (12).

iii) A pulse timer

The same technique can be used in reverse to measure the length of a pulse. In this case the

unknown pulse is used to open the gate to allow through millisecond pulses from PB7 to be

counted via PB6 (Plate 23).

 One difficulty about the automatic nature of this program is to determine when the pulse

has finished. For this reason it is also connected to PB1, which can then be monitored (Figure

4.20). Timer 1 should be loaded with 500-2 to provide one millisecond pulses through PB7

(the number is reduced by two to allow for the reloading time described above).

Figure 4.20 Pulse measuring circuit

The BBC microcomputer in science teaching

134

 100 REM PULSE TIMER
 110 ?IER=127:REM DISABLE INTERRUPTS
 120 ?ACR=224:REM PB6 TO COUNT,
 PB7 TO PROVIDE CONTINUOUS PULSES
 130 ?PCR=0:REM TURN OFF LATCHES AND SERIAL REGISTER
 140 ?T2LO=255:?T2HI=255:REM INITIALIZE COUNTER
 150 ?FLAG=127:REM CLEAR FLAGS
 155 ?DDRB=128:REM BIT 0 AS INPUT
 160 ?T1LLO=242:REM LOAD TIMER 1 WITH 500
 170 ?T1LHI=1:REM AND START CLOCK AND CLEAR FLAG
 180 IF(?PRT AND 1)=0 THEN 180:REM PULSE HAS NOT
 YET STARTED
 190 IF(?PRT AND 1) THEN 190:REM PULSE HAS NOT YET FINISHED
 200 time = 256 * (255 — ?T2HI) + (255 — ?T2LO)
 210 PRINT time;" milliseconds"

The full listing is given in PULSE TIMER (11).

The serial register

This register, SR, (at address 65130) outputs its contents to the CB2 line, one bit at a time.

There are eight modes for this, determined by bits 2, 3 and 4 of the ACR. If ACR4 is cleared

then the bits are shifted into the SR and if ACR4 is set they are shifted out. The advantage

of the system is that, once initiated, the bits are output automatically, thus freeing the

microprocessor for other tasks.

 The main use of the SR is for serial data transfer. Parallel transfer requires all eight bits

to be sent at once along eight separate lines but only one is needed for serial transfer (in both

cases another line for ground return and two more for control signals are also needed). Thus

it is possible to send data from one computer to another, with only four lines instead of the

eleven needed for parallel data transfer (Figure 4.21). To illustrate the principles the

following BASIC program transfers bytes from one BBC microcomputer to another.

 The contents of the serial register can be shifted out in four different ways:

1 Mode 100 — free running, which is discussed later.

2 Mode 101 — under the control of timer 2. This is the mode we shall actually use for data

 transfer. The contents of the shift register are shifted out bit by bit on the CB2

Figure 4.21 Serial data transfer

Microcomputer timing and control

135

 line starting with the most significant bit. At the same time the bit is shifted back into

bit O of the SR. Thus after eight shifts, the byte in SR has been rotated completely. A

new shift-out occurs when timer 2 reaches time-out, which depends upon the value

loaded into T2LO initially. Note that T2HI is not used, so the timer is only eight bits

wide, giving a maximum interval between shifts of 255 microseconds. The process is

initiated by writing the byte to be sent into the serial register. After eight shifts the

corresponding flag (bit 2) in the flag register is set. This can be used to give an interrupt,

or alternatively as in this application, can simply be inspected until it goes HIGH. This

can be the signal for the microcomputer to get the next byte to be shifted out. The flag

is reset at the same time as the next byte is loaded into SR to begin the next byte transfer.

 Time-outs on T2 cause the contents of the T2 latch to be reloaded into the timer

itself ready for the next bit shift. At the same time a pulse is output through the CB1

control line for strobing the receiver. The CB1 line goes LOW when the next bit has

stabilized at the CB2 output. Note that this is the only condition for which CB1 is an

output.

3 Mode 110 — under the control of the system clock. This is similar to the method

 above, except that the shift-out rate is controlled by the system clock.

4 Mode 111 — under the control of external clock pulses. This time it is the external

 receiver that generates the clock pulses and sends these to the VIA through the CB1

 control line.

There are similar ways for shifting the data into the SR in the receiving microcomputer

(modes 001 to 011). In this application it is mode 011 that is used, which shifts the bits in

from the CB2 line under the control of external clock pulses along the CBI line. These are

the clock pulses generated by mode 101 above. Thus the CBI lines of the two machines are

connected together to communicate the shift pulses, as are the CB2 lines, which are used to

carry the data itself (Figure 4.21).

 There has also to be some signal from the receiver to the sender to initiate the process

each time. The line used is bit O of the user port in both cases. The receiver holds this line

HIGH until it is ready to receive data and then it sends it LOW. The sender waits for its line

to go LOW before loading its SR and thus starting to send the byte. In use, this allows

characters to be typed in on one keyboard to appear on the screen of the other. It terminates

when the character @ is typed in. It is necessary to generate a line feed whenever a carriage

return is pressed and this is done by the subroutine at line 500.

 1 REM SERIAL TRANSFER-SENDER ROUTINE
 10 BPRT = &FE60
 20 DDRB = &FE62
 30 T2LO = &FE68
 40 SR = &FE6A
 50 ACR = &FE6B
 60 PCR = &FE6C
 70 FLAG = &FE6D
 80 IER = &FE6E

The BBC microcomputer in science teaching

136

 90
100 REM INITIALIZE VIA
110 ?DDRB=0:REM BIT 0 IS INPUT
120 ?IER=0:REM DISABLE SHIFT INTERRUPT
130 ?ACR=20:REM ACR IN SHIFT-OUT MODE
140 ?PCR=236:REM CB2 HIGH INITIALLY
150 ?T2LO=100:REM SHIFT OUT AT ONE BIT PER 100
MICROSECONDS
160
200 REM SEND BYTE
210 A$=GET$
220 IFA$=CHR$(13) THEN GOSUB 500
230 IF(?BPRT AND 1) THEN 230:REM WAIT FOR SIGNAL FROM
RECEIVER
240 ?SR=ASC(A$):REM SEND BYTE
250 IF(?FLAG AND 4)=0 THEN 250:REM WAIT FOR SHIFT-DONE FLAG
260 GOTO 200:REM GET NEXT BYTE READY
270
500 REM LINE FEED SUBROUTINE
510 IF(?BPRT AND 1) THEN 510:REM WAIT FOR SIGNAL FROM
RECEIVER
520 ?SR=10:REM SEND LINE FEED
530 IF(?FLAG AND 4)=0 THEN 530:REM WAIT FOR SHIFT-DONE FLAG
540 RETURN

 1 REM SERIAL TRANSFER-RECEIVER ROUTINE
 10 BPRT=&FE60
 20 DDRB=&FE62
 30 SR=&FE6A
 40 ACR=&FE6B
 50 FLAG=&FE6D
 60 IER=&FE6E
 70
100 REM INITIALIZE VIA
110 ?IER=0:REM DISABLE INTERRUPTS
120 ?DDRB=1: REM BITO IS OUTPUT
130 ?ACR=12:REM SHIFT IN MODE
140 ?BPRT=1:REM NOT READY FOR DATA
156 X=?SR:REM INITIALIZE FLAGS, ETC
160
200 REM GET BYTE
210 ?BPRT=0:REM READY FOR DATA

Microcomputer timing and control

137

220 IF (?FLAG AND 4)=0 THEN 220:REM WAIT FOR SHIFT-DONE FLAG
230 ?BPRT=1:REM NOT READY FOR DATA
240 X=?SR:REM COLLECT BYTE
250 IF X=64 THEN STOP:REM @ CHARACTER IS END-OF-DATA
260 PRINT CHR$(X);
270 GOTO 200:REM GET READY FOR NEXT BYTE

Continuous pulse output

This is mode 100 mentioned above. It is very like mode 101 and utilizes T2LO in exactly

the same way. The only difference is that once all eight bits have been output from SR along

the CB2 line, the process is immediately restarted, so that the contents of SR are repeatedly

output. The data in the serial register can thus be made to produce pulses of a particular

shape continuously output via CB2 (Figure 4.22). To select this free running output requires

ACR bits 4, 3 and 2 to be set to 1 , O and O respectively and T2LLO should be loaded with

the required time interval between the shift-outs of the individual bits. Suppose we require

a frequency of I kHz for the selected pulse shape. With eight bits to be output, we require

one bit every 125 microseconds, so we load the low byte of timer 2 with 124 (one less than

125) to get the correct time interval. The routine is as follows:

100 ?SR=15:REM SET UP SR WITH PULSE SHAPE
110 ?T2LLO=128:REM LOAD TIMER 2 LOW
120 ?ACR=16:SET UP ACR FOR FREE-RUNNING OUTPUT

To switch off these pulses, the simplest way is to load SR with zero, thus retaining the mode

without outputting any pulses.

Figure 4.22 Pulse waveforms

 Because this method only uses the low byte of timer 2, the lowest frequency available is

when timer 2 is loaded with 255 and SR with 15, giving about 200 Hz. The maximum

frequency is when timer 2 is loaded with O, giving 31 kHz (since the routine takes 1 cycle

per bit). This can be raised to 125 kHz if SR is loaded with four pulses at once, that is with

85 or 170. This is not as good as that available by using timer 1 and outputting through PB7,

and so is not actually much use. Its main application is in providing asymmetric pulses.

The BBC microcomputer in science teaching

138

The 1 MHz bus

As an alternative to connecting inputs and outputs to the user port, the BBC microcomputer

provides the 1 MHz bus. In order to make use of this some knowledge of the way the

microprocessor works is helpful. As we shall see in the next chapter, the microprocessor

reads and writes to memory or to the user port through two sets of lines, called the data bus

and the address bus. When the microprocessor wants to collect the contents of a particular

location, it places the address of that location on the address bus. This consists of sixteen

separate lines, each of which is made HIGH or LOW. For example, to read the user port, the

microprocessor sets the lines of the address bus like this:

Address line Status Address
A15 HIGH

F
A14 HIGH
A13 HIGH
A12 HIGH
A11 HIGH

E
A10 HIGH
A9 HIGH
A8 LOW
A7 LOW

6
A6 HIGH
A5 HIGH
A4 LOW
A3 LOW

0
A2 LOW
A1 LOW
A0 LOW

These address lines go through a series of logic gates (in the ULA of the BBC

microcomputer) and only the B-port of the 6522 VIA is enabled to respond. All other

locations are ignored. This is called decoding the address. Since there are sixteen address

lines, there are 65 536 possible locations that can be separately addressed.

 When the addressed location sees its own address on the address bus, its response is of

two kinds. Either the data in the location is read or new data is written into it. To tell the

location which is to occur, the microprocessor signals along a separate R/NW line (read/ not

write). When this line is HIGH, the data will be read, when this line goes LOW, new data is

written into the addressed location. Either way, it is the data bus which carries the data. This

consists of eight separate lines, one for each bit of the data.

 There also has to be careful control of when the data is available. In a data write

instruction, the address is placed on the address bus, the data is placed on the data bus and

the R/NW line is made LOW, but still nothing happens until the microprocessor sends the

action signal. This is very much like an orchestra, where the conductor keeps everyone

together by regular beats of the baton. The microprocessor does the same with clock

Microcomputer timing and control

139

pulses. These are carried to all parts of the microcomputer along the clock pulse line

(CLK).

 All of these lines appear at the connector of the 1 MHz bus. To add more memory or

another device of our own to the microcomputer is ideally a matter of connecting the power

supply, address, data, R/NW and CLK lines to the correct pins of the device.

Unfortunately there are a few problems.

 The first of these is that the selected address for the device must be different from any

others that have already been chosen for the operating system of the microcomputer. This

whittles the choice down from 65 536 to 63! Actually the BBC microcomputer sets aside

512 spare addresses, which run in the memory from &FC00 to &FDFF. Unfortunately some

of these are scheduled to be used by add-on units, such as the teletext adaptor and the

sideways ROM. Since you can never be sure which of these devices will be added to your

machine in the future, it is safest to stick to the 63 that have not been booked (so far!). These

are from &FCC0 to &FCFE. (&FCFF has a special use.)

 All these addresses start with &FC, and so the BBC microcomputer automatically

decodes the top eight address lines for us. When any location beginning with &FC is

addressed, a special line in the 1 MHz bus connector (called FRED) goes LOW to signify

the fact. FRED is therefore used instead of the top eight address lines. The lower eight

address lines may be decoded as required.

 To illustrate the principles, Figure 4.23 shows how sixteen separate select signals can be

obtained from the SN74154 decoder. This has five inputs (address lines A4, A5, A6 and A7,

and FRED) and produces sixteen device select lines — &FC0x to &FCFx ('x' can be any

number from 0 to F). Of these only &FCCx, &FCDx, &FCEx and &FCFx can be used

alongside the other add-on devices mentioned above. As the following truth table

Figure 4.23 Decoding the 1MHz bus

The BBC microcomputer in science teaching

140

indicates, only one of these select lines goes LOW at any one time, when the binary address

of the required line is sent to the address inputs (A4, AS, A6 and A7).

A7 A6 A5 A4 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 0 0 L H H H H H H H H H H H H H H H

0 0 0 1 H L H H H H H H H H H H H H H H

0 0 1 0 H H L H H H H H H H H H H H H H

0 0 1 1 H H H L H H H H H H H H H H H H

0 1 0 0 H H H H L H H H H H H H H H H H

0 1 0 1 H H H H H L H H H H H H H H H H

0 1 1 0 H H H H H H L H H H H H H H H H

0 1 1 1 H H H H H H H L H H H H H H H H

1 0 0 0 H H H H H H H H L H H H H H H H

1 0 0 1 H H H H H H H H H L H H H H H H

1 0 1 0 H H H H H H H H H H L H H H H H

1 0 1 1 H H H H H H H H H H H L H H H H

1 1 0 0 H H H H H H H H H H H H L H H H

1 1 0 1 H H H H H H H H H H H H H L H H

1 1 1 0 H H H H H H H H H H H H H H L H

1 1 1 1 H H H H H H H H H H H H H H H L

Figure 4.24 Connecting another VIA

Microcomputer timing and control

141

If the other add-on units are not being used, each of these output lines can be used to select

a different VIA, giving a possible 256 extra input/output lines for control. Figure 4.24 shows

how one of these (address &FCC0) is connected to the device select input of just one of

these VIAs. The lower four address lines are connected to the four address inputs of the VIA

and the R/NW and CLK lines are connected too. Pin 21 of the VIA is left unconnected, it is

an interrupt request line and the use of this has not been considered in this book. I have yet

to find how the BBC interrupts work and, in any case, very few of my applications require

interrupts. The technique of occasionally checking an input is nearly always satisfactory.

Pin 34 of the VIA is connected to the RESET line. When the BREAK key of the BBC

microcomputer is pressed, the RESET line goes temporarily LOW and clears all the registers

of the VIA.

 This VIA may now be used in exactly the same way as has just been described, except

that it responds to different addresses, as follows:

Name Function Decimal Hexadecimal
BPRT B-port 64704 &FCC0
APRT A-port (+handshake) 64705 &FCC1
DDRB Data direction reg B 64706 &FCC2
DDRA Data direction reg A 64707 &FCC3
T1LLO Low-byte Timer 1 - latch 64708 &FCC4
T1LHI High-byte Timer 1 - latch 64709 &FCC5
TICLO Low-byte Timer 1 - count 64710 &FCC6
TICHI High-byte Timer 1 - count 64711 &FCC7
T2LO Low-byte Timer2 - latch 64712 &FCC8
T2Hl High-byte Timer2 - latch 64713 &FCC9
SR Serial register 64714 &FCCA
ACR Auxiliary control reg 64715 &FCCB
PCR Peripheral control reg 64716 &FCCC
FLAG Interrupt flag reg 64717 &FCCD
IER Interrupt enable reg 64718 &FCCE
APRT A-port (no-handshake) 64719 &FCCF

There are other input/output devices that may be connected to the 1 MHz bus, but I am a

firm advocate of the 6522 VIA. It is not much more expensive than simpler devices that just

latch data in or out, yet it is far more powerful. In the next chapter we shall return to the 1

MHz bus to connect other devices also.

 This chapter has tried to show the principles of environmental monitoring and control.

Using the input and output buffers described in this chapter, almost any system can be either

simulated or realized in a practical way. It is, however, most unlikely that a microcomputer

would be used in a real situation. Chapter 9 discusses more realistic ways of producing

control equipment.

Practical details

The practical wiring details for the two input board and the logic board are shown in Figures

4.25 and 4.26 respectively. The logic board requires two DS8833 quad line

The BBC microcomputer in science teaching

142

Figure 4.25 Two input board

transceivers (not available from RS Components but from Farnell Ltd). Each output driver

is used to drive an LED indicator. The inputs of the four transceivers used for the output

terminals are not used, so they are disabled. Connection to the BBC microcomputer user

port is via a 20-way cable, each end which requires a 20-way cable mounting socket (RS

467-289). One end plugs into the user port and the other end plugs into a PCB mounting

plug (RS 467-346), which may be soldered directly onto each logic board. The eight data

lines and the +5V and 0V lines should then be connected as shown in Figure 4.26. The pin

connections to the user port are shown in Figure 4.27. This configuration assumes that you

have lifted up the front of the BBC microcomputer and are looking underneath at the socket

directly from the front.

Specific applications of timing

Now that we have looked at the general principles of timing, let us examine a few specific

timing applications in physics. The BBC microcomputer can be made to measure the time

interval between logic level changes at either input. These changes can be caused by

switches or, more importantly, with photocells, one connected to bit 0 and the other to bit 1

of the user port through a suitable op. amp. or transistor driver (Figures 4.9 and 4.10), For

some programs only one of these is needed.

 Events or logic level changes at the inputs are used to measure time intervals in exactly

the same way as in CONTROL EXAMPLE 8. The inputs are read and stored in a memory

location called status. The current state of the inputs are then monitored continuously and

compared with status, Normally they will be the same, but when they are different, this is

because one or other of the photocells has been activated. At this point the contents of a

clock are noted. When the timing is finished, the time intervals involved can be calculated

and displayed.

 There are three ways of achieving the clock. The first is to make use of the BBC

Microcomputer timing and control

143

Figure 4.26 Logic board

Figure 4.27 User port connections

The BBC microcomputer in science teaching

144

microcomputer's own clock, which runs at 100 Hz, thus enabling time intervals of 10 ms

to be counted. The technique is illustrated by this primitive reaction timer, which assumes

a push button switch connected to one of the inputs.

 1 REM CONTROL EXAMPLE 10 - REACTION TIMER
 10 ?65122=60:REM CONFIGURE USER PORT
100 PRINT"WHEN THE SCREEN GOES BLANK,"
110 PRINT"PRESS THE SWITCH."
120 max=5000+RND(10000)
130 FORT=1 TO max:NEXT T
140 CLS
150 now=TIME
160 status=?65120 AND 3
170 IF status=?65120 AND 3 THEN 170
180 PRINT "REACTION TIME = ";(TIME-now)/60

The more sophisticated REACTION TIMER (6) uses the same timing technique, but it

displays the results in large digits for all to see (Plate 26). It also replaces the switch input

with a keyboard input, so an interface is not needed for this program (Plate 25).

 STOPCLOCK (5) accesses the same centisecond clock from machine code and

continually updates the display to show the elapsed time. This has to be done with a

machine code routine, because the display of the large digits would be too slow in BASIC.

All the machine code routine in this section are described in Chapter 8, only their uses in

teaching are discussed here. You do not have to be a machine code expert to make use of

machine code programs, as long as you know how to call them and how to pass values

from them back to BASIC. As already mentioned, programs like STOPCLOCK have

many applications, for example they can replace centisecond timers in most instances. A

simple photocell connected to bit 0 will operate STOPCLOCK for experiments on

kinematics, etc.

 Unfortunately, for intervals shorter than a second, the BBC centisecond clock is not

sufficiently accurate. In this case the timers of the VIA can be used in the manner already

discussed. A third way of timing relies on the fact that the BBC microcomputer is itself

under the control of a crystal oscillator, which produces clock pulses at a rate of roughly 2

MHz. Each machine code operation of the microprocessor inside the BBC microcomputer

requires a given number of such clock pulses. These can be counted, thus giving a

measured time interval. This counting can be done with the VIA timers as discussed

above, or by machine code loops as discussed in Chapter 8.

 FAST TIMER (7) uses the latter technique to measure intervals up to milliseconds in

ten-microsecond units. It is of universal application and can easily be used in other

programs without knowing how it works; for example:

i) Speed of a rifle pellet

Bits 0 and 1 should be grounded through the thin pieces of foil as in Figure 4.28. When the

pellet breaks the first foil, the clock starts and when it breaks the second foil, the clock

stops. The program will then stop the clock and display the elapsed time in large digits on

the screen.

Microcomputer timing and control

145

Plate 25 REACTION TIMER instructions

Plate 26 REACTION TIMER result

The BBC microcomputer in science teaching

146

Figure 4.28 Foils

Plate 27 Contact bounce when a switch is closed

Microcomputer timing and control

147

Figure 4.29 Switchover time of a switch

ii) Contact bounce

Some idea of the speed of the timing routine can be gained by using a single push button

switch connected to one of the inputs. FAST TIMER is run and when the display says it is

ready, the switch is pressed once. In most instances the program will display a result,

indicating that at least two input changes have been detected. There were probably many

more changes than this, caused by the contact bounce in the switch, when it is closed. FAST

TIMER is more than fast enough to measure this contact bounce time. The same

arrangement with a fast voltage measurement program (Chapter 5) produces Plate 27.

iii) Switchover time

Using this program with a two-way switch as indicated in Figure 4.29, enables the

changeover time of this switch to be measured. An interesting experiment is to see if the

switchover time is dependent upon the speed at which the toggle is operated.

iv) Camera shutter speed

Instead of switches to produce changes in the input status, this can also be done by the

interruption of a beam of light focused on a photocell, with the photocell connected to one

of the inputs. It then becomes possible to measure the effective shutter speed of a camera.

The photocell should be mounted inside the camera at the image of an external light source,

When the camera is operated, the time measured by this program is a good indication of the

exposure time that the film receives.

v) Trolley speed measurement

If a card attached to a trolley crosses a light beam focused on the photocell, the time taken

for it to do so may be measured by this program and displayed for all to see. In this instance

both changes take place at the same input. If the length of the card is entered into the program

beforehand, the microcomputer will automatically compute the speed of the trolley.

Unfortunately, this program cannot be used with two photocells, i.e. one

The BBC microcomputer in science teaching

148

connected to each input. This would be very useful, since the speed of the card could then

be measured over a much greater distance. However, as the card crossed the first photocell,

it would start and then stop the clock at this point. A more sophisticated timing routine is

needed to measure the time between two different photocells.

Advanced timing

The advanced timing routine used in the following programs needs some explanation so that

it can be used even without a knowledge of machine code. A full assembly listing is given

in Chapter 8. To enable multiple measurements of speed for studying the law of conservation

of momentum, there must be two photocells. Furthermore, in this experiment, it is possible

for a second trolley to begin a transit of its photocell before the first has finished crossing

the other photocell. Thus it must be possible to detect the two inputs independently and to

keep their results separate. We still only need the one clock, but at the start or finish of an

event, the time on the clock is copied into a store. In fact up to sixteen stores are available

for each input. Thus, in the conservation of momentum experiment, it is possible to have

two trolleys approach from different directions, to collide in the middle and both go off in

one particular direction at different speeds. This involves two events at one input and six

events at the other, but the routine can easily cope with this. (An event is any change in logic

level at either of the inputs.)

 This advanced timing routine can be called from a BASIC program in a variety of ways,

to measure time and speed as above and also to measure period, frequency and acceleration.

All measurements are displayed in large digits on the screen using the large digits machine

code routine described in Chapter 7.

 Program 8 (TIME, SPEED AND ACCELERATION METER) makes use of this routine

for a number of purposes. Firstly, it measures time intervals of up to twelve minutes in units

of fifty microseconds. Speed measurements are based upon the photocell technique using a

card length of 40 mm. By changing lines 5070 and 6070 of the program this may be changed

to any other length. However, there is considerable inaccuracy introduced by the photocells,

because the point at which they switch on is not necessarily the same point at which they

switch off. So a 40 mm card may not necessarily look like a 40 mm card to the photocell.

The error is only a few mm, and this is only important if very short cards are being used. If

great accuracy is desired, then 100 mm cards or longer should be used. The advantage of

short cards is that some meaning can then be given to the difficult concept of 'instantaneous'

velocity.

 A double card such as that shown in Figure 4.30 enables acceleration to be determined

and displayed directly. This quantity is computed from the standard equation

 acceleration = (final speed — initial speed)/ time taken

 An interesting experiment is simply to drop this double card vertically in front of a

photocell using the acceleration option of program 8. The display gives the acceleration due

to gravity directly (Plate 28). (But see the educational note later.) If different lengths are

used for this double card, then line 5070 of the program should be changed. It is only the 40

mm lengths that are important, not the distance between them. The double card provides the

two measurements of speed required in the calculation.

Microcomputer timing and control

149

Figure 4.30 Double card

Plate 28 Measurement of acceleration due to gravity

By connecting two photocells in series, they can be placed any distance apart, and then a

single card can pass in front of both photocells to provide the initial and final speeds for this

calculation. This would be a good way to introduce the function of the double card.

 The advanced timing routine of program 8 was designed to be used for measuring the

speeds resulting from trolley collisions. It is used for this purpose in program 9

(CONSERVATION OF MOMENTUM). The same restrictions on card lengths apply as

above. The speeds are displayed for each photocell separately, with the readings in

chronological order for each separate channel (Plate 29).

The BBC microcomputer in science teaching

150

Plate 29 Speeds measured in the conservation of momentum experiment

Plate 30 Speed-time plot of a moving trolley

Microcomputer timing and control

151

Plate 31 Result from SPEED-TIME PLOTTER

 Using a 16-slot card (Plate 30) the speed of a trolley in front of a photocell can be

measured several times and the distance-time and speed-time graphs can be plotted and

displayed automatically (Plate 31). Program 10 (SPEED-TIME PLOTTER) uses this

technique with the advanced timing routine to demonstrate the graphical relationships

between distance, speed and acceleration.

Educational note

At this point a cautionary note must be made to discourage the over-zealous use of the

microcomputer in the laboratory. The acceleration due to gravity experiment mentioned

above can be carried out much more easily and accurately by the following program.

 100 PRINT "Acceleration due to gravity = 9.81 metres per second squared"

This is not, of course, a measurement, but to a pupil who does not know how a

microcomputer works, it is no less valid than the method described for program 8! It is

essential that pupils understand what the microcomputer is doing, when it is taking

measurements.

 This does not require that pupils understand in the sense that they should know about

programming and interfacing that is clearly impracticable. What is needed is a

demonstration that the microcomputer is giving the same results that could have been

obtained by other, more longwinded, methods. The teaching sequence might be as follows:

The BBC microcomputer in science teaching

152

i) Show the microcomputer as a measurer of time by getting pupils to press a

switch for an estimated ten seconds, say.

ii) Show the microcomputer as a measurer of short time intervals using REACTION

TIMER.

iii) Measure the time of transit of a card in front of a photocell using program 8. Use

calculators to determine the speed of this card and then show that the

microcomputer can carry out the same calculations automatically.

iv) Having shown how the microcomputer can calculate speed, allow it to measure

the speed of a trolley at several different places as it runs down an inclined plane.

The times of transit of the cards would be measured by the program and

displayed as speeds, while the time intervals between these transits could be

measured by a separate stopwatch. Pupils can again use their calculators to

determine the acceleration of the trolley.

v) The principle of the double card should now be apparent; the microcomputer is

measuring three time intervals and using them to compute the acceleration of the

card. The acceleration due to gravity experiment can now be understood.

vi) Program 8 could now be used to demonstrate Newton's second law. Because

acceleration is so easily measured, it is probable that pupils will get a better

understanding of this law than they usually do with ticker timer measurements of

acceleration.

vii) Conservation of momentum experiments are much more easily carried out using

program 9, because it is no longer necessary to use stroboscopic techniques to

measure the speeds of the colliding trolleys. Nor is it necessary to restrict the

experiments to perfectly elastic or perfectly inelastic collisions.

 At all times the teacher must be wary of using the microcomputer 'because it is there'. It

must offer a clear advantage over the conventional ways of teaching before its use can be

justified. The teaching of motion is an example of its advantage; the measurement of time

in hours and minutes just to display it on the video screen is just a gimmick. A

microcomputer should not be used for such purposes.

153

5 Analogue interfacing

'One side will make you grow taller, and the other

side will make you grow shorter. '

(Lewis Carroll, Alice's Adventures in Wonderland)

Interfacing is the general name given to all connections between the microcomputer and

other equipment. In Chapter 4 we looked at ways of connecting the user port of the BBC

microcomputer to monitor and control the outside world using the logic board (digital

interfacing). This chapter extends these ideas to analogue input and output too, showing how

their use turns a microcomputer into a general purpose laboratory instrument.

Digital to analogue conversion

Measurements with laboratory instruments normally cover a whole range of values;

examples are a spring balance, a meter rule and a thermometer. The word analogue is used

to describe such measurements. A set of digital lines can produce analogue voltages using a

digital to analogue converter (DAC). The DAC unit in this chapter has eight inputs, which

give a set of 256 different voltages, each directly proportional to the input binary number.

These voltages are in steps of 10 mV up to a maximum of 2.55 V. The DAC unit can be

connected directly to the user port or, alternatively, a ZN428 device may be connected to

the 1 MHz bus.

Digital to analogue converters

The easiest way to add a DAC is via the user port (Figure 5.1). The ZN425 device (RS

Components 306-904 data sheet R/2911 March 1977) is still the best to use in this situation.

It contains its own 2.5 V reference voltage and internal clock.

 If you want to keep the user port free for other purposes, the DAC will need to be

connected elsewhere. One obvious place is the printer port, which is already buffered. This

is the A-port of the same VIA that runs the user port and is addressed at &FE61. Its

associated data direction register is at address &FE63. In use it is just like the user port,

except that it can only be used for output. The user guide shows the pin connections to this

port.

 If you need the printer port for other purposes, you will have to use the 1 MHz bus instead.

The ZN425 DAC can be connected to a data latch (SN74LS373) or another 6522 VIA as

described in Chapter 4. If you intend to hang a vast amount of hardware onto the I MHz bus,

you will need to decode address lines 4 to 7 as shown in Figure 5.4.

The BBC microcomputer in science teaching

154

Figure 5.1 ZN425 DAC

Figure 5.2 ZN428 DAC connected to the 1 MHz bus

Analogue interfacing

155

 A simpler method is to use a ZN428 device instead, which contains its own data latch. In

Figure 5.2 the ZN428 DAC responds to any address from &FC00 to &FCFF, but again,

further address decoding could be provided if necessary.

Applications of the DAC

The binary number to be converted is written into the user port address and the analogue

voltage is produced at the output of the DAC a few microseconds later. The statement to do

this is ?PRT = n where n is the decimal number between 0 and 255, which determines the

final output voltage. To investigate this connect a 0 to 5 V voltmeter between the output

terminal of the DAC unit and the 0 V line. Then connect the user port to the DAC through

the ten-pin connector and configure the user port for output with ?DDR = 255. Now enter

direct commands of the form ?PRT = n and observe the output voltage on the voltmeter. (Of

course DDR and PRT will have to be declared previously using the appropriate addresses.)

 As well as direct voltages, the DAC can also be used to produce alternating voltages of

almost any waveform. This gives different waveforms, which are slow enough to be

observed on the 0 to 5 V voltmeter. It is most convenient if one cycle of the waveform is

produced by a single FOR...NEXT loop. This requires a conversion factor 'confac' to be

chosen accordingly. For machine code programs the best number of loops per cycle is 256

(the limit of the X-INDEX). This gives confac a value of PI/128.

 WAVEFORM OUTPUT
 10 DDR = 65122:REM DATA DIRECTION REGISTER
 20 PRT = 65120:REM USER PORT
 30 confac = PI/128:REM CONVERSION FACTOR FOR ONE CYCLE PER
LOOP
 100 ?DDR = 255:REM ALL LINES AS OUTPUTS
 110 FOR X = 0 TO 255
 120 A = 128 + 127*SIN(X*confac)
 130 ?PRT = A
 140 NEXT X
 150 GOTO 110

 Different waveforms can be produced by altering the equation in line 120. For example,

 120 A = 255 * ABS(X>127) will give a square wave,
 120 A = X will produce a ramp voltage and
 120 A = ABS(128 - X) will give a triangular waveform.

The period of this oscillation is about 12 seconds. If a longer period is required then a delay

can be included. For example,

 125 FORT = 1 TO 50: NEXT T

 This principle may also be used to produce an output slow enough to be drawn using a

chart recorder. The production of higher frequency oscillations is more difficult owing to

The BBC microcomputer in science teaching

156

the slow speed of BASIC. One way is to reduce the resolution of the waveform, by having

fewer output points per cycle. This statement raises the frequency by a factor of 5:

 110 FOR X = 0 TO 255 STEP 5

A better solution is to do all the calculations in BASIC beforehand and store the results in

the memory as individual bytes. These can then be collected one by one from the memory

and sent directly to the DAC using a machine code routine (PROGRAMMABLE

OSCILLATOR, 13). This routine is described in Chapter 8.

Analogue to digital conversion
In Chapter 4 of Microelectronics I described how an analogue to digital converter converts

a voltage in the range 0 to 2.5 V into a binary number from 0000 to 1111, with an accuracy

of one in sixteen. By using all eight inputs of the user port the resolution can be increased

to one in 256, thus giving greater accuracy. The built-in ADC of the BBC microcomputer

gives twelve-bit resolution, an accuracy of one in 4096.

 There are four channels for this A-to-D converter (Ch0 to Ch3), which continuously

convert input analogue voltages into numbers from 0 to 65 520 (in steps of sixteen). These

values are accessed with the statements

 LET voltage1 = ADVAL(1):REM Channel 0
 LET voltage2 = ADVAL(2):REM Channel 1
 LET voltage3 = ADVAL(3):REM Channel 2
 LET voltage4 = ADVAL(4):REM Channel 3

For the majority of applications the BBC microcomputer's own analogue to digital converter

is satisfactory. It is very much easier to use and more accurate than the one I am about to

describe. Its main fault is that it is slow (by microelectronic standards), since it takes several

milliseconds to complete a conversion. The ZN427 device is a thousand times faster. Figure

5.3 shows how it may be connected to the I MHz bus and Figure 5.4 shows how further

address decoding is achieved to allow this ADC to share the bus with other devices too.

 Even better is the ZN448 device, which is similar to the ZN427, but may be triggered

asynchronously (that is, out of step with the BBC microcomputer's own clock). The ZN448

also contains its own clock and reference voltage and may be connected directly to the 1

MHz bus as shown in Figure 5.5

 There is little point in using either of these devices in BASIC, since the built-in ADC is

more accurate and BASIC is too slow to take full advantage of the speed of these other

ADCs. A description of how they might be used is therefore left until Chapter 8. The ZN448

device is single channel only. To allow different channels to be utilized, it should be

preceded with an analogue multiplexer. This is rather like the rotary switch shown in Figure

5.6, except that the switching is done electronically. A useful analogue switch is the AD7590

(RS Components 303-595), which can switch one of four separate input voltages

Analogue interfacing

157

Figure 5.3 ADC connected to the 1 MHz bus

Figure 5.4 1 MHz bus address decoder

The BBC microcomputer in science teaching

158

Figure 5.5 ZN448 ADC connected to the 1 MHz bus

Figure 5.6 Mechanical switch

Figure 5.7 Analogue switch

Analogue interfacing

159

to the ADC for conversion. Connected as in Figure 5.7, each channel is selected by the

following statements:

 Channel
1 ?&FCC2 = 254 (D0 goes LOW)

 2 ?&FCC2 = 253 (D1 goes LOW)
 3 ?&FCC2 = 251 (D2 goes LOW)
 4 ?&FCC2 = 247 (D3 goes LOW)

The converted voltage may then be read from the address &FCC2 ten microseconds later.

 Alternatively the ZN448 can be connected to the user port (Figure 5.8) and the data

latched in using the CBI control line as described in Chapter 4. The device needs a start

conversion pulse which can be provided by the CB2 line. Although this arrangement can

be handled from BASIC, there is little point in doing this. A machine code program for

using the ZN448 is listed as FAST ADC (15) in the Appendix and is also described in

Chapter 8. A measure of the speed that can be obtained is shown in Plate 32, where the

Plate 32 Light output from a mains driven lamp

The BBC microcomputer in science teaching

160

Plate 33 Light output from a lamp at switch on

light output from a mains-driven lamp is measured continuously and plotted. The 100 Hz

fluctuation in the light intensity is readily observed. To obtain this plot the light output was

sampled every 200 microseconds. At this sampling rate the variation in light output when

the lamp is first switched on can easily be determined (Plate 33). FAST ADC is capable of

sampling at fifteen microsecond intervals, if you can think of anything that goes that fast!

Voltage measurement

Measuring voltage with an ADC is obvious, but there are some pitfalls. A check should be

made to see that the input voltage is within the acceptable range. If not, then the ADC will

simply return the saturation values of 65 520 or 0. If the measured voltage is too large, it

can be passed to a suitable voltage divider network to reduce it to the acceptable range.

Likewise, if it is too small, a fixed gain op-amp multiplier can be used to boost it. Figure 5.9

shows a universal input amplifier that can be connected to the BBC microcomputer analogue

port for this purpose. Connections to this port are given in the user guide (page 499).

Analogue interfacing

161

Figure 5.8 The ZN448 connected to the user port

Figure 5.9 Voltage measurement

 The following routine should initially be used to calibrate an ADC, allowing for

different power supplies, etc. Connect the analogue input terminal to ground to produce an

input voltage of 0 V and check that the voltage displayed on the screen reads zero. Next

connect a voltage of 1.5 V to the input terminal (measured with a good voltmeter) and

check that the value displayed on the screen is within a few millivolts of this. If not, adjust

the conversion factor (confac in line 110 of the program) until it is.

 100 REM ADC CALIBRATION
 110 V = ADVAL(1) * confac
 120 PRINT V
 130 GOTO 110

The BBC microcomputer in science teaching

162

Figure 5.10 Current measurement

Current measurement

To measure current with an ADC, it should be allowed to flow through a known shunt

resistor (Figure 5.10) and the voltage across that resistor measured by the ADC.

Resistance measurement

If both the voltage across a component and the current flowing through it are measured at

the same time, their product gives the power developed in the component. Similarly, the

resistance of the component can be calculated and displayed. This gives very effective

demonstrations of the change of resistance of a lamp as it gets brighter. DIGITAL

Plate 34 Digital multimeter

Analogue interfacing

163

Figure 5.11 Resistance/power measurement

MULTIMETER (16) does this, displaying voltage, current, resistance or power in large

digits (Plate 34). It requires a circuit like the one shown in Figure 5.11.

Other measurements

Any other physical quantity that can be turned into a voltage can be measured by the ADC

too, provided it is turned into a voltage within the correct range. Devices that turn other

physical quantities into voltages are called transducers and there are a large number of these

available. Here are some examples from the current RS Components catalogue:

RS Stock No. Measurement Output Range
308-809 temperature 0 to 1V

303-337 pressure 0 to 75mV

304-267 magnetic field 0 to 400mV

305-462 light intensity 0 to 1V

In addition there exist transducers to measure force, displacement, wind speed, humidity,

oxygen content, acidity and sound intensity. The last of these is called a microphone! This

illustrates the point that alternating voltages are easily turned into direct voltages using A.C.

to dec. converters. The latter can be a diode rectifier or the more expensive R.M.S. to dec.

converter (RS Components AD536A). With this range of transducers, an ADC and a

microcomputer, most laboratories will need no other instrument.

 Many useful devices convert some physical quantity into a change of resistance.

Examples of this are the thermistor (which changes its resistance with temperature) and the

light-dependent resistor. These devices can be turned into transducers by putting them into

a voltage divider network.

 Another device in this category is the strain gauge, which converts the strain in a bar of

metal into a voltage. Since strain is proportional to stress this allows force and hence weight

to be measured too. Also, by connecting a spring to the force transducer and an object to the

other end of the spring, the displacement of this object may be measured too (replacing the

metre rule?). There are commercially available movement sensors, which provide an output

voltage proportional to the distance moved. With one of these connected to the bottom of

an oscillating spring, it is possible to carry out measurements on simple and damped

harmonic motion.

The BBC microcomputer in science teaching

164

Figure 5.12 Transducer measurements

Potentiometer

This simple device is a transducer too. It is particularly easy to connect a potentiometer to

the BBC microcomputer analogue input (Figure 5.13). Four such potentiometers may be

mounted on a board side by side to simulate a control panel (Figure 5.15). The 'firing buttons'

of the analogue port may also be connected to this control panel, enabling a range of

industrial processes to be simulated. The control buttons are connected as shown in Figure

5.14 and monitored with ADVAL(O) as described in the user guide. The simulation of

Millikan's experiment is much more satisfactory if voltages are entered via a control knob

than by typing them in at the keyboard. This idea was suggested by M.Ryan and J.Stewart

at the Dundee College National Course in 1982.

 If two potentiometers are mounted perpendicularly the result is a joystick (RS

Components 162-732). This allows the coordinates of a physical position (the knob of the

joystick) to be plotted directly on the screen (which is what many video games are all about).

The joystick is actually a displacement transducer but with two dimensional capabilities. A

two dimensional plotter based on this idea is as follows:

 10 REM ETCHASKETCHA
 30 confac = 0.015:REM CONVERSION FACTOR
110 X = ADVAL(1) * confac
120 Y = ADVAL(2) * confac
125 PLOT5,X,Y
130 GOTO 110

Some devices do not produce values that are directly proportional to the quantity being

measured. For example, a simple thermistor or LDR in a voltage divider circuit gives an

ADC reading that is related to the physical quantity but not in a linear way. If twenty degrees

produces an ADC value of 100, then forty degrees will not produce an ADC value

Analogue interfacing

165

Figure 5.13 Potentiometer input

Figure 5.14 Connecting push buttons

Figure 5.15 A simulated control panel

The BBC microcomputer in science teaching

166

of 200. To obtain the true value (for temperature, etc.) a look-up data table needs to be

created. The next example shows the general idea.

 100 REM SET UP THE DATA TABLE
 110 FOR I%=0 TO 15
 120 READ X$(I%)
 130 NEXT I%
 140 DATA "OUT OF RANGE"
 150 DATA "IMPOSSIBLE TO MEASURE"
 160 DATA "IMPOSSIBLE TO MEASURE"
 170 DATA "22 degrees C"
 180 DATA "24 degrees C"
 190 DATA "27 degrees C"
 200 DATA "30 degrees C"
 210 DATA "34 degrees C"
 220 DATA "37 degrees C"
 230 DATA "41 degrees C"
 240 DATA "46 degrees C"
 250 DATA "50 degrees C"
 270 etc.
3000 REM CONVERT READING AND DISPLAY IT
3010 X% = ADVAL(1)/4096
3020 PRINT "THE TEMPERATURE IS ";X$(X%)
3030 etc.

This program should obviously be expanded to 256 or more values to become sensible,

otherwise a mercury thermometer is more accurate and easier to use. Care should always be

taken not to use the microcomputer where an ordinary instrument does the job easier and

more cheaply. The microcomputer is much more suited to areas where a simple instrument

will not work. For example the speed of the microcomputer can be used to measure voltages

several thousand times per second or to measure several different voltages repeatedly in

rapid succession. The microcomputer memory can be used to store these voltage readings

for later output to a cathode ray oscilloscope or to a chart recorder. The readings may be

listed on the microcomputer screen or presented graphically as a bar chart or a graph. From

there they can be printed out for everyone to see if screen copy facilities are available. This

example shows how voltage changes can be measured and plotted immediately on a graph:

 10 REM ADC GRAPHPLOT
 20 LET X = 0
 30 confac = 0.015:REM CONVERSION FACTOR
100 REPEAT
110 V=ADVAL(1) * confac
120 PLOT5,X,V
130 X=X+1
140 UNTIL X>1279

Analogue interfacing

167

The machine code routines for doing these things are discussed in Chapter 8.

 This simple data acquisition routine can be speeded up by taking several hundred

successive readings, storing them in an array and later outputting them to a chart recorder

or a cathode ray oscilloscope using adaptations of the DAC programs described previously.

If, instead, the data is displayed graphically on the VDU, this program is really carrying out

the function of a storage oscilloscope. The microcomputer is being used as a data memory,

later displaying the readings it has remembered.

 This arrangement can replace the cathode ray oscilloscope in many instances. For some

purposes it is even better, since it only needs to take a single set of readings, which can then

be displayed indefinitely to allow measurements to be taken (for example, the gradient of

the graph). There is also the possibility of overlaying two or more successive sets of results

(Plate 35). Another example is the voltage-current characteristics of a transistor, which

could be plotted for different values of the bias current. Plate 36 shows how the input/output

voltage transfer curve may be plotted directly. Using transducers it

Plate 35 Capacitor discharge by practical measurement

The BBC microcomputer in science teaching

168

Plate 36 Using the DAC and ADC for automatic measurement

Figure 5.16 Diode characteristics

Analogue interfacing

169

Plate 37 Diode characteristics by automatic measurement

would even be possible to plot pressure-volume curves of a gas at different temperatures (a

three-dimensional CRO!).

 The arrangement shown in Figure 5.16 allows the characteristics of three types of diode to

be plotted automatically on the same graph. I-V PLOT (17) will carry out this task. The LED

is particularly suitable for this, since it has a high turn-on voltage and it also lights up when

it starts to conduct (Plate 37). Note how the output from the DAC is used to produce the

steadily increasing voltage.

 Programs like this allow a large number of measurements to be made in the science

laboratory. Because the graphical results are quickly available, it is easier to see the science

before it gets lost in the mathematics. Such a system is especially valuable for studying

transient phenomena such as the discharge of a capacitor through a resistor (Plate 35). When

the switch is pressed, the capacitor starts to discharge through the resistor (Figure 5.17). The

effects of different starting voltages or different resistors are easy to investigate.

The BBC microcomputer in science teaching

170

Figure 5.17 Capacitor discharge

Figure 5.18 Bias voltage

 If the resistor is replaced with an inductor, the voltage can go negative and a bias voltage

must be added to prevent this using either of the methods shown in Figure 5.18.

 For some purposes it is the peak value of an alternating voltage that is required. This can

be achieved with a simple diode rectifier and smoothing circuit as in Figure 5.19. The values

of R and C need to be chosen so that the time constant (RxC) is at least five times the period

of the alternating voltage being measured (i.e. RxC > 5/ freq.). For accurate measurement it

may be worth the extra cost to obtain an R.M.S.-to-D.C. converter (RS Components 308-

786) instead.

Analogue interfacing

171

Figure 5.19 Peak voltage measurement

It is quite easy to make the display scroll slowly sideways at the same time that the four

ADC channels are monitored and plotted. This produces a FOUR-CHANNEL CHART

RECORDER (18) (Plate 38).

Plate 38 Scrolling the screen sideways

The BBC microcomputer in science teaching

172

 Two most interesting applications of DAC and ADC techniques were described by Paul

Beverley at the 1982 MUSE Annual Conference. The first of these consists in applying the

voltage from a DAC to the input terminals of a chart recorder. When the DAC output voltage

is ramped (with the DAC treated like a binary counter) the pen of the chart recorder moves

steadily along. The pen is replaced by a photocell and made to scan along the diffraction

pattern produced by a laser. The photocell is connected to an ADC channel and a plot of

intensity against position is made automatically on the VDU. The effect is magnificent!

 The second application uses a DAC to produce a direct voltage, which is then fed to a

waveform generator (RS Components 305-844)(Figure 5.20). The latter produces sine

waves for feeding into a circuit and square pulses that can be accurately counted by the

microcomputer. The frequency of these sine waves is proportional to the direct voltage fed

to its input terminal. By ramping the DAC voltage a whole frequency spectrum is produced

by the waveform generator. A range of 500 Hz to 20 kHz was produced with this

arrangement.

 The main problem of connecting the waveform generator to the DAC is that the direct

voltage has to be applied to the former between its input and the +15V line, not its 0V line.

This is solved by tying its positive rail to 0V and using an initial op-amp circuit to convert

the voltage output from the DAC to the right levels. The second op-amp is to buffer the

output from the waveform generator before it is fed to a 30W power amplifier (HY 60). The

sine wave voltage is input to a filter circuit, the output from which is connected to an ADC

channel via an R.M.S.-to-D.C. converter, thus measuring the output

Figure 5.20 Waveform generator

Analogue interfacing

173

Figure 5.21 Spectrum analyser

voltage from the filter (Figure 5.21). A plot of the output voltage against frequency gives

the frequency characteristics of the filter circuit. The idea is such a beautiful application of

hardware and software techniques that it forms a fitting note on which to end this chapter.

174

6 The 6502 microprocessor

 'When I make a word to do a lot of work like that,'

 said Humpty Dumpty, 'I always pay it extra.'

 (Lewis Carroll, Through the Looking Glass)

Under the lid of the microcomputer
The microprocessor is the manager of all the operations that the microcomputer undertakes.

As in any organization the best results are obtained by talking directly to the manager!

Unfortunately, this one does not speak English — communication with it is in the binary

code. This chapter is an introduction to microprocessors and includes a detailed examination

of one particular device, the Rockwell 6502. This is the microprocessor in the Apple, PET,

VIC, Atom, UK 101 and BBC microcomputers.

Programmed logic

In Chapter 3 of Microelectronics I showed how a set of bytes stored in RAM could be used

to switch traffic lights on in their correct sequence. Each byte was an instruction to switch

particular LEDs on or off, and each such instruction was executed when its address was sent

to the memory (RAM). This is a primitive form of programmed logic. Now imagine a RAM

driven by a binary counter with its output lines connected to the

Figure 6.1 Programmed logic

The 6502 microprocessor

175

the control lines of an ALU (arithmetic and logic unit) as in Figure 6.1. Each byte in the

RAM can be regarded as an instruction to the ALU to perform some logical or arithmetic

operation. Any instruction received by the ALU would be in code and the ALU would need

to decode it to find out which instruction it was. With only four bits the number of different

instruction codes that can be given is limited to sixteen. This is enough for the traffic lights

(which only need four different codes), but it is not enough for more complex control

systems. If the RAM consisted of eight-bit bytes instead, then there could be 256 different

instructions codes.

The microprocessor

Extend the above ideas still further, so that the RAM contains the data as well as the

instructions and you have a system rather like a microcomputer. The instruction codes

contained in the RAM are called a program and the binary counter, which points to each

successive address in the RAM, is called a PROGRAM COUNTER (PC). Some of the

instructions to the ALU tell it to collect its data from the RAM and some other instructions

tell it what to do with that data. Of course there has to be some clever way for the ALU to

distinguish between a binary number that is an instruction code and a binary number that is

data. We shall see later how this is done.

 This system is limited by the total number of instructions and data bytes that can be stored,

which will affect the size of its program. A RAM with four address lines only has sixteen

different addresses and can therefore only hold sixteen instruction codes (or data). If the

number of address lines were increased to eight, this would allow a program of 256 steps,

but even this would not be enough. The Rockwell 6502 microprocessor (Figure 6.2) has

sixteen address lines, enabling it to address 65 536 different bytes each consisting of eight

bits.

How the microprocessor works

In addition to an ALU a microprocessor contains several memories of its own called

registers. Some of these are eight bits long and some sixteen. The address of the next

instruction to be executed is contained in a sixteen-bit register called the PROGRAM

COUNTER (PC). When the microprocessor is ready, it fetches the next instruction from

Figure 6.2 The 6502 microprocessor

The BBC microcomputer in science teaching

176

the address indicated by the PC. To do this it switches on some of the lines of the address

bus to point to the correct place (or location) in RAM; this is called putting the address on

the address bus. It then sends a signal to the addressed location, which says 'Tell me what

binary number you are storing'. This signal is called a read signal and the R/ NW line of

the microprocessor goes HIGH, indicating that a memory read is taking place. The addressed

location responds by copying its contents onto the data bus, and the microprocessor collects

them from there. It has now fetched the binary code for its next instruction.

 The microprocessor now decodes this binary code to see which instruction is represented

by it. Some instructions only affect the internal registers of the microprocessor, they are

called single byte instructions. The microprocessor simply executes these instructions

straightaway. Some other instructions require two bytes before they can be executed. When

the microprocessor has fetched the first byte and has decoded it, it knows if it has to fetch

the rest of the instruction. The program counter is increased by one (incremented) to point

to the next address and the next byte is fetched from there. The first byte in any instruction

is the operation to be carried out (like ADD or AND) and the second byte tells the

microprocessor which data to use. This byte is called the operand. There are also cases where

the information about the data cannot be contained in one byte and so two bytes are used for

the operand and this gives a three-byte instruction.

 In a microcomputer, a BASIC program is stored in RAM in a particular way. The

microprocessor cannot just execute a BASIC program immediately, it must interpret it first.

The microprocessor fetches each byte of the BASIC program and then asks its BASIC

interpreter what to do with it. This interpreter is another program, but written in terms of the

instruction codes that the microprocessor understands, that is, in machine code. This is why

BASIC is so slow, relative to the great speed of the microprocessor itself. Every BASIC

instruction is first translated into machine code before it can be executed and this wastes

time. If you write the program directly in machine code, the microprocessor can get on with

the job of executing it, without having to interpret it first.

Memory

The BASIC program can be changed by the user, so it is stored in RAM. The operating

system of the microcomputer and the BASIC interpreter do not need to be changed, so they

are frozen in ROM (which stands for read only memory). As the name implies, ROM can

only be read, it cannot be changed. RAM is like a box that can be opened and the contents

taken out and changed. ROM is like a sealed box with a glass lid; you can see what is in the

box but you cannot change it. The advantage of ROM is that it is always there, even when

the microcomputer has been switched off, whereas the contents of RAM disappear.

 Because the user's program is in RAM, the amount of RAM in a microcomputer is a

measure of its power. This is counted in kilobytes(K), hence there are 16K and 32K

microcomputers available. In the context of computers a kilobyte of memory is actually

1024 bytes, not 1000. The reason for this is the binary system again, 1024 is an exact

multiple of 256. It is useful to imagine the microcomputer's memory as being like the

The 6502 microprocessor

177

stamp locations in an album, with each location representing one byte. A particular binary

number (i.e. a stamp) can be put into any location or taken out of it at any time. It is, of

course, necessary to know where any particular stamp is stored, so that it can be found again.

Hence every location in the microcomputer's memory is given a different address. For our

purposes there are 256 pages in the album and 256 places (byte positions) on each page. To

refer to any particular location we must specify its page number and its byte number within

that page. Thus the fifty-first byte on page thirty-one would be referred to as byte 51, page

31. To find its position with respect to the first byte in the whole album, we need to calculate

256*page number + byte number. This is called its decimal address.

 We noted above that the 6502 microprocessor has sixteen address lines, giving a possible

65 536 different addresses. It is convenient to regard each address as being made up from

two eight-bit bytes, the high byte giving the page address and the low byte giving the address

within that page. This is why some instructions take up three bytes — two bytes are needed

to specify the sixteen-bit address of the data to be used.

 In 16K microcomputers the RAM goes from page 0, byte 0 (or decimal address 0) to page

63, byte 255 (or decimal address 16383). However, each microcomputer uses some of the

RAM for its own purposes, so not all addresses are available to the user. In the BBC

microcomputer the bottom fourteen pages of RAM addresses (from 0 to 3583) are not used

to store a normal BASIC program. Other machines are organized differently, but the same

principles apply. When you write a BASIC program, the operating system of the

microcomputer automatically stores it in a particular part of the memory and when you type

RUN , the operating system goes to the start of this program and begins to collect and

interpret it.

 It is more difficult to write a machine code program. You may have to decide where to

put the program in the memory and tell the microprocessor where your program has been

placed. Thus there are two tasks to be performed:

1 Enter the instruction codes into their correct locations.

2 Tell the microprocessor where to go to execute these instructions.

 Before you can do either of these tasks, you need to know what sort of instructions can

be given to the microprocessor. The rest of this chapter is devoted to a description of the

6502 instruction set. In Chapter 7 we shall return to these two tasks so that you will be able

to run real machine code programs.

Why use machine code ?

We ought first to ask why anyone wants to write programs in machine code at all: isn't

BASIC good enough? The answer is that BASIC is good enough for some purposes but not

for all; there is no alternative if you want to have complete control over the microprocessor.

With this control you gain speed; machine code programs run up to 400 times faster than

their BASIC equivalents. You also gain compactness; a machine code program occupies

only a fraction of the memory space needed to run an equivalent BASIC program. Thirdly,

you gain freedom; you become independent of the operating system of your microcomputer

and become able to add extra facilities, which are not

The BBC microcomputer in science teaching

178

implemented by your machine. Finally, it even becomes possible to build your own

microcomputer for a particular task, one that is self-contained with its own operating system,

memory, program and microprocessor. Such a system is said to be dedicated and can be

produced comparatively cheaply (see Chapter 9).

 Many people start to learn how to write machine code programs. Unfortunately, there are

so many things to be learned to begin with, that some get discouraged. After studying

hexadecimal coding, addressing modes and indexation, the usual conclusion is, that machine

code programming is too difficult. This introduction tries to overcome these initial

problems, by reducing the number of ideas that have to be learned at the beginning. Each of

the instructions of a microprocessor is described in a visual way, so that its effects can be

more easily observed, thus making this introduction as easy as possible. But, machine code

programming is not simple!

 Some people use the words 'microprocessor' and 'microcomputer' interchangeably, but

they should be distinguished. The microprocessor is the silicon chip which acts as the brain

of a computer. A microcomputer contains a microprocessor, but it contains other chips too,

especially memory and I/O chips. (I/O stands for INPUT-OUTPUT, and refers to devices

used for getting information into and out of the microprocessor.) Usually a microcomputer

will have a keyboard and a TV screen controller too, but this is not always true. Confusion

between the two words arises because a dedicated system may contain a microprocessor,

I/O and memory all inside a single package called a single chip microcomputer. Yet from

the outside this single chip microcomputer looks just like a microprocessor. Nevertheless I

shall reserve the word 'microcomputer' for complete machines like the PET, the BBC

microcomputer and the Apple and 'microprocessor' for the processing unit inside each

microcomputer that makes it work.

 In this book we consider one particular microprocessor, the Rockwell 6502, which is

found inside many different microcomputers (Apple, PET, VIC, Atom, UK101 and BBC).

There are several other microprocessors, another popular one being the Zilog Z80, which is

used in the RML 380Z and the Sinclair ZX 81 and ZX Spectrum microcomputers. The

instruction set and the codes used for the 6502 are not the same as for other microprocessors,

so, unfortunately, you will not be able to use this book to guide you in programming them.

 To study machine code programming some sort of microprocessor development system

can be used, but I am assuming that most readers will not have access to one of these. Instead

you may use a microcomputer for this purpose, but that is not until the next chapter. In this

chapter we shall only be using a simulation of how the 6502 microprocessor behaves. One

of the problems of real microprocessors is that they have to be programmed exactly in the

right way, or they can cause the microcomputer to crash. The advantage of a simulation run

from BASIC is that mistakes can be trapped to prevent such disasters.

 This program, called 6502 SIMULATION, uses the graphics capability of the

microcomputer to show what happens inside the 6502 microprocessor. With its aid you can

write machine code instructions immediately and thus learn more quickly, what each

instruction does. The listing of this program is given in the Appendix (MICSIM, 4). The

simulation does not attempt to deal with all of the instructions that the 6502 can handle,

The 6502 microprocessor

179

only the more important ones. Also 6502 SIMULATION only deals with one-byte and two-

byte instructions; most three-byte instructions left until Chapter 7.

What is a machine code program?

In all cases a microprocessor is told what to do by a program. This is a list of instructions,

'do this' or 'do that', in many ways similar to BASIC statements. The microprocessor carries

out these instructions one by one, fetching each instruction from the program memory when

it is required. It is because this program can be changed by the user, that the microprocessor

can be made to do so many different things.

 Both the 6502 and the Z80 are eight-bit microprocessors. This refers to the size of the

binary numbers that they can handle. These binary numbers (data) are the information that

is being processed by the microprocessor. An eight-bit binary number can be any value from

0000 0000 to 1111 1111 (0 to 255 in decimal). All of the different things that are done by a

microprocessor are done with binary numbers like this. (Even letters of the alphabet are

turned into binary numbers so that the microprocessor can handle them. Each letter is

represented by a special binary number, called its ASCII code.) The microprocessor has

special places inside itself for the temporary storage of such data called registers. We shall

now look at the different registers in the 6502 microprocessor and see what each one does

(Plate 39). The three most important registers are the ACCUMULATOR, the X-INDEX and

the Y-INDEX.

 The ACCUMULATOR is the most used register. The results of logic or arithmetic

operations are stored in the ACCUMULATOR after they have been executed. The

ACCUMULATOR is an 8-bit register, so it can store any binary number from 0000 0000 to

1111 1111. From the ACCUMULATOR this binary number (data) can be sent to other parts

of the microcomputer, such as the user port, the TV screen or RAM.

 The X-INDEX and Y-INDEX are both similar to the ACCUMULATOR; they too are

eight-bit registers. They are often used as counters, but their most important purpose is to

point to different memory locations.

 There are three other registers that are used by the microprocessor, although the

programmer is not usually aware of them, these are the PROGRAM COUNTER, the DATA

REGISTER and the ADDRESS REGISTER. These are used by the microprocessor like a

diary, to keep notes of what it has to do next. The most important of these is the PROGRAM

COUNTER, which is a 16-bit register and can store numbers from 0000 0000 0000 0000 to

1111 1111 1111 1111 (0 to 65 635 in decimal).

 The purpose of the PROGRAM COUNTER (PC) is to point to the instruction that is

being executed. (More accurately the PC contains the address of the location in memory

where the code for the next instruction is stored.) These may be instructions written by the

user or instructions from the BBC microcomputer operating system. In any microcomputer

there are instructions to tell the microprocessor how to read the keyboard, how to display

letters on the TV screen, how to interpret BASIC statements, etc. These fixed instructions

are stored in ROM and cannot be changed by the microcomputer user. On the other hand

you will want to write any machine code program you wish, so your instructions have to be

stored in memory locations that can be changed, i.e. RAM.

The BBC microcomputer in science teaching

180

The microprocessor does not care whether its instructions come from RAM or from ROM,

it treats them both in the same way. But it has to know which instruction to do next and this

is the purpose of the PROGRAM COUNTER. This holds the 16-bit binary number or

address of the memory location where the next instruction can be found. After this

instruction has been completed, the PROGRAM COUNTER is incremented (increased by

one) to point to the address of the following instruction. In this way the microprocessor

executes a series of instructions continuously.

 Each location holds an eight-bit binary number (or byte) which is the code for an

instruction. After an instruction code has been fetched from the memory, it is decoded by

the microprocessor to find out what it is required to do. Some simple instructions only need

one byte to tell the microprocessor all it needs to know. For example, the code 1010 1010

tells the microprocessor to copy the data in the ACCUMULATOR into the X-INDEX; no

other information is required. Some instructions require two bytes. The code to tell the

microprocessor to put the number 0001 1001 (25 in decimal) into the ACCUMULATOR is

1010 1001 0001 1001. The first byte (the operation) tells the microprocessor what to do,

while the second byte (the operand) tells it what data to use.

 Some instructions expect the data to be collected from a location in the memory. When

the microprocessor wants to collect data from a particular location, it puts the address of that

location into its ADDRESS REGISTER. This register is connected to the outside memory

via the address bus. Each external location looks at the address bus, but only one location

responds, the one that sees its own address on the address bus. This is like calling the class

register in school; all the pupils hear the name being called out, but only the pupil with that

name responds.

 The addressed location can respond in two ways. If it is being read, then it places a copy

of the data it contains onto the data bus. This data bus is connected to the DATA REGISTER

in the microprocessor, so the data in the addressed location is copied into this DATA

REGISTER. If the instruction to the microprocessor is to load the ACCUMULATOR with

this data, then the DATA REGISTER transfers this data into the ACCUMULATOR. The

whole instruction is called loading the ACCUMULATOR from memory. Note that the data

is not removed from the addressed memory location, it is only copied into the DATA

REGISTER. From there it is moved into the ACCUMULATOR and any data already in the

ACCUMULATOR will be destroyed.

 If the instruction is 'store the contents of the ACCUMULATOR in memory', the data

moves the opposite way. A copy of the data in the ACCUMULATOR is first placed in the

DATA REGISTER and it travels along the data bus to the addressed location in the memory.

Only this addressed location will capture the data being sent. This is called a write

instruction. Note that the data in the ACCUMULATOR is not destroyed by this instruction,

it is only copied into the addressed memory location. Clearly though, any data that was in

the addressed location before the write instruction will be lost, replaced by the new data.

 Since the microprocessor only handles eight-bit data, the DATA REGISTER is only an

eight-bit register. The data bus thus consists of only eight lines, one for each bit of the data.

The PROGRAM COUNTER and the ADDRESS REGISTER are sixteen-bit registers,

because they are concerned with addresses rather than data. They allow the

The 6502 microprocessor

181

microprocessor to collect data from any of 65 536 available addresses and the address bus

consists of sixteen lines going to different parts of the microcomputer. To simplify matters

6502 SIMULATION does not use these full sixteen-bit addresses, but only the lower eight

bits of this address. The proper method of addressing is discussed later.

Mnemonic instruction codes
The instructions to the microprocessor are themselves binary numbers. The microprocessor

interprets them according to a special code. For example, the code to instruct the

microprocessor to load the decimal number 25 into the ACCUMULATOR is

1010100100011001

It is clear that codes like this are difficult to remember and it would be easy to make a

mistake when programming a microprocessor with them. To make life easier a special

language has been developed, called mnemonic language. The mnemonic for

1010100100011001 is LDA#25, which means load the ACCUMULATOR with the number

25. As you can see, the mnemonic is easier to interpret than the binary code.

 The instruction LDA#25 consists of two parts, the operation, which tells the

microprocessor what to do and the operand, which tells it what data to use. In this instruction

the operand itself contains the data to be used, so it can be immediately transferred to the

ACCUMULATOR. It is therefore called a load immediate instruction. The # symbol is

used to show that it is an immediate instruction.

 Another instruction is load from memory. This has the mnemonic LDA 2. The operation

has the same mnemonic (LDA) but the operand is different, it does not contain the # symbol.

This tells the microprocessor that the operand is not itself data but is an address, where the

desired data can be found. LDA 2 means load the ACCUMULATOR with the data which is

in memory at the address number 2 (i.e. at memory location 2). The data is collected from

location 2 by putting the number 2 on the address bus and collecting the data via the data

bus, exactly as described above.

 To write data into a memory location the store instruction is used. STA 2 means 'copy

the data from the ACCUMULATOR into memory location 2'. There is no instruction like

STA#25, because #25 is not an address, it is data. You can only store the contents of the

ACCUMULATOR in an addressed location.

 This means that if you want to change the contents of memory location 2 to the value 25,

you must do it in two stages. First you must load the value into the ACCUMULATOR with

the instruction LDA #25 and then you must store it in location 2 with the instruction STA

2.

 If you want the data in location 2 to be copied into location 1, you must also do it in two

stages. First you copy the data from location 2 into the ACCUMULATOR with LDA 2.

Next you copy it from the ACCUMULATOR into location 1 with the instruction STA 1.

 Load and run the simulation program called 6502 MICROPROCESSOR SIMULATION,

which is listed in the Appendix. If you do not have a disk system, execute PAGE=&1C00

before entering this program. Plate 39 shows how this program displays the following

registers:

The BBC microcomputer in science teaching

182

Plate 39 Microprocessor simulation

X-INDEX
Y-INDEX
ACCUMULATOR
PROGRAM COUNTER
ADDRESS REGISTER
DATA REGISTER

It also shows the STATUS REGISTER and the STACK, but we shall not deal with these

just yet. The microprocessor is connected to the external memory via the data bus and the

address bus. Only seven memory locations are shown but all memory locations from 0 to

255 can be addressed. In a real microcomputer any of 65 536 locations can be addressed. In

this respect, our simulation is invalid. The change to full sixteen-bit addressing will be made

later.

In the middle of the screen is the INSTRUCTION REGISTER containing the current

instruction. Normally this instruction has been fetched from the program memory at the

address pointed to by the PROGRAM COUNTER. We shall, however, enter instructions

one at a time, so the PROGRAM COUNTER will not actually be used in this way. Each

instruction is shown in mnemonic language, so that it can be more easily

The 6502 microprocessor

183

understood, but remember that each instruction would really be stored as a binary number.

After each instruction has been executed, the INSTRUCTION REGISTER will display the

old instruction on the line above, thus creating a space for the next instruction.

 Type in the following instruction:

 LDA#25

If you make a mistake while typing, you can rub it out by using the DELETE (DEL) key.

Repeated pressing of this key will erase the whole line and a new one can be re-typed. The

cursor movement keys cannot, however, be used. Some obvious typing errors are trapped

by this program, so if the display does not change when you press certain keys, this is

because the 6502 SIMULATION refuses to accept what you are typing.

 When you have typed LDA #25 correctly, press the RETURN key to tell the

microprocessor that you have finished. The simulation program will then attempt to execute

your instruction. If you have typed it wrongly (for example, if you have typed LAD #25),

the simulation program will tell you that your instruction is not valid by displaying ERROR

1. A list of the different error codes is given at the end of the chapter. If you do get one of

these, press RETURN to clear a space for the correct instruction. After entering an

instruction press the RETURN key, you should observe the number 25 enter into the

ACCUMULATOR. The ADDRESS REGISTER will not be affected, because it is not used

for this instruction.

 Now type STA 2 and press <RETURN>. You should see that the number 25 in the

ACCUMULATOR is copied into location 2. The original data in location 2 is destroyed,

but the 25 in the ACCUMULATOR is not lost. Because the data and the address buses are

used to do this, their corresponding DATA and ADDRESS REGISTERS are affected.

Finally copy the contents of location 2 to location l. Type:

 LDA 2 <RETURN>
 STA 1 <RETURN>

Continue this investigation for yourself. Try changing the operand #25 to other values in the

range to #255 and the operands 1 and 2 to other addresses in the range 1 to 255 (values

outside these ranges will produce an ERROR). Only locations 1 to 7 are visible, so you

should use these only at first.

The index registers

The X-INDEX can be used in the same way as the ACCUMULATOR. LDX loads the X-

INDEX and STX stores the contents of the X-INDEX in memory. The X-INDEX may be

used instead of the ACCUMULATOR to put the value 30 into location 6. Type:

 LDX #30
 STX 6

 The Y-INDEX behaves the same way as the X-INDEX. The mnemonics LDY and STY

are used for the Y-INDEX. Type:

 LDY #10
 STY 5

The BBC microcomputer in science teaching

184

Now try the following problems, the solutions to which are given at the end of the chapter:

1 Type in a series of instructions to make the contents of location 2 equal to 50.

2 Type in a series of instructions to make the contents of location 6 equal to the

contents of location 7, but do not change the contents of location 7.

3 Type in a series of instructions to make the contents of location 1 equal to the

number 1, the contents of location 2 equal to 2 and the contents of location 3

equal to 3.

4 What is the effect of a succession of STA instructions to different locations? Can

you make all the locations contain the data 0 by this method? You only need to

carry out the instruction LDA #0 once.

5 Load the Y-INDEX with 5, store this in memory location 1. Then load the

contents of this memory location into the X-INDEX.

6 What is the difference between the contents of location 5, the address of location

5 and data with the value of 5?

7 What is the difference between a 'write to memory' and a 'read from memory'?

Which occurs when the instruction LDA 2 is executed?

LDA #10 is called an immediate instruction to distinguish it from LDA 10, which is an

addressed instruction.

Microprocessor arithmetic

Addition

In the 6502, addition is performed by adding data to the current contents of the

ACCUMULATOR. The instruction ADC #30 will add 30 to the existing contents of the

ACCUMULATOR. The instruction ADC 4 will fetch the contents of location 4 and add

them to the existing contents of the ACCUMULATOR. In both cases the result of the

addition is left in the ACCUMULATOR and the original contents of the

ACCUMULATOR are destroyed.

 To add together the numbers 5 and 6, we first of all execute the instruction LDA #5,

followed by the instruction ADC #6. You can try this for yourself using the simulation

program. You will see that the result (11) is left in the ACCUMULATOR.

 LDA#5 <RETURN>
 ADC#6 <RETURN>

The numbers added may also be obtained from the external memory. For example,

 LDA 1 <RETURN>
 ADC 2<RETURN>

will add the contents of location 1 to the contents of location 2, leaving the result in the

ACCUMULATOR.

 Enter each of these instructions in turn. After each one, note the effect on the contents of

the ACCUMULATOR.

The 6502 microprocessor

185

 LDA#5 <RET>
 STA 1 <RET>
 LDA#6 <RET>
 STA 3 <RET>
 LDA 1 <RET>
 ADC 3 <RET>
 STA 5 <RET>

Repeat this with some of your own numbers.

 Now try

 LDA#255
 ADC#1

The result 0 remains in the ACCUMULATOR. A moment's thought will explain this. The

largest number that the ACCUMULATOR can store is 1111 1111 (or 255 in decimal). If

we try to exceed this number, it starts again from zero. (For the mathematically minded,

the microprocessor is counting in modulo 256.) This is like the milometer in a motor car,

when the distance exceeds 99 999 miles, the milometer starts again from zero. Although it

is possible to tell from the appearance of a car, whether it has travelled ten or 100 010

miles, the ACCUMULATOR does not age in the same way. To show that the

ACCUMULATOR has exceeded 255 a special CARRY bit is used in the STATUS

REGISTER. If the result of the addition is greater than 255 then this CARRY

bit is set to logic 1. If the result of the calculation is not greater than 255, then this

CARRY bit is cleared to 0. Check this by entering the following instructions:

 CLC <RET>
 LDA #100 <RET>
 ADC #100 <RET>
 ADC #100 <RET>
 ADC #100 <RET>
 ADC #100 <RET>

 The CARRY bit is particularly useful, since it enables the microprocessor to add large

numbers, (it would be very inconvenient if it could not handle numbers greater than 255).

First of all, how does the microprocessor store such numbers? This problem has to be

solved in the decimal system too, since a set of decimal digits can only count up to nine.

To count higher numbers we use more sets of digits, arranged in columns and called

hundreds, tens and units. The decimal number 23, is really 2 x 10 + 3.

 Similarly we can use two eight-bit bytes to store numbers larger than 256. This is not

simple because the two columns are not tens and units, but 256s and units. The first

column is called the high byte and the second is called the low byte. Converting a two

byte binary number to decimal requires the following formula:

 decimal = 256 * high byte + low byte.

A further complication is that the 6502 needs to collect the number in the order low byte

The BBC microcomputer in science teaching

186

followed by high byte. We shall stick to this practice, even though we shall not be dealing

with the microprocessor directly for some time yet.

 The decimal number 4100 becomes 4, 16 when written in this order as a two byte binary

number: (16 x 256 + 4 = 4100). Other examples are 3, 12, which is 12 x 256 + 3 3075 and

250,255 which is 255 x 256 + 250 = 65 530. To convert a decimal number to a two byte

number, divide the number by 256; the integer part remaining is the high byte. Multiply

this by 256 and subtract it from the original number to get the low byte. BBC BASIC is

ideal for carrying out these calculations; n DIV 256 gives the high byte and n MOD 256

gives the low byte.

 Try these problems

8 Convert each of the following low byte/high byte numbers to decimal:

 (i) 0,2
 (ii) 10,12
 (iii) 200,40
 (iv) 0,80
 (v) 96,234

9 Convert each of the following decimal numbers to low byte/ high byte numbers:

 (i) 256
 (ii) 1024
 (iii) 4097
 (iv) 8000
 (v) 65 535

Numbers larger than 255 are added in the following way. Each number is held in two

successive locations, low byte and high byte. First the low bytes of the two numbers are

added together and the result is stored. Then the high bytes are added together and the

result is stored also. If the CARRY bit was set after the low byte addition, it will be added

in with the high bytes. The instruction ADC means just that, add with CARRY.

 There is one problem with this ADC instruction; when the low bytes are added, the

CARRY bit is also added in automatically. This may already have been set to 1 by a

previous unrelated instruction. We therefore clear it to 0 before the low byte addition to

prevent any mistake from being made. This is done with the single byte instruction CLC

(clear the CARRY bit).

 Since we cannot store both the high byte and the low byte together in the

ACCUMULATOR, we make use of the memory. This is illustrated in Figure 6.3. We put

the number 4100 in the two locations 1 and 2, with the low byte (4) in location 1 and the

high byte (16) in location 2. Then we put the number 510 into the next two locations (254

into location 3 and 1 in location 4).

 Next we clear the CARRY bit and then add together the low bytes of the two numbers

(like adding up the units in a decimal addition). Because the result is greater than 255, the

CARRY bit will be set (like the decimal addition 5 + 8 = 3, carry 1). We store the result of

this low byte addition in location 5.

The 6502 microprocessor

187

Figure 6.3 Double byte addition

 Then we add together the high bytes. As we do this the CARRY bit from the low byte

addition is added in as well (as in decimal addition, when we get to the tens column we add

in the carry from the units) (Figure 6.3). The final result is then stored in location 6. The

whole set of instructions for this double byte addition is given below. Enter each of these

instructions in turn. As each instruction is entered and executed, note what happens to the

CARRY bit in the STATUS REGISTER and to the contents of the ACCUMULATOR. The

first eight instructions are simply setting up the memory locations with the correct numbers.

 LDA #4 <RET>
 STA 1 <RET>
 LDA #16 <RET>
 STA 2 <RET>
 LDA #254 <RET>
 STA 3 <RET>
 LDA #1 <RET>
 STA 4 <RET>
 CLC <RET>
 LDA 1 <RET>
 ADC 3 <RET>
 STA 5 <RET>
 LDA 2 <RET>
 ADC 4 <RET>
 STA 6 <RET>

The BBC microcomputer in science teaching

188

The result is stored in locations 5 and 6, is it the result you expected?

 Continue this investigation with large and small numbers. You will get the correct answer

as long as the result is not greater than 65 535. What happens if the result is larger than this?

(Clue, look at the CARRY bit when all the instructions have been executed.)

 Try these problems:

10 Add together thenumbers45 and 54 (single byte addition) without using any external

memory locations (Clue: use the immediate mode.)

11 Add together the contents of locations 4 and 5 (single byte addition) and put the result

in location 3.

12 Add together the numbers 450 and 540 using double byte addition. Put one double

byte number into locations 1 and 2 and the other into locations 3 and 4. Then add the

numbers and put the result in locations 5 and 6.

13 Put the single byte number 225 into location 1 and 100 into location 2. Then add up

the numbers and put the result into locations 3 and 4. The result is greater than 255,

so be very careful about what happens to the CARRY bit.

14 Put the double byte number 1000 into locations 5 and 6. Now add 1 in immediate

mode to the contents of locations 5 and 6, storing the result in the same locations.

Consider how you will cope with the situation where the low byte addition results in

the CARRY bit being set.

15 What two decimal numbers can be added together, using double byte addition, to give

the result 0? (Clue: there are 32 768 different answers!)

Subtraction

Subtraction can also be performed using the immediate mode or the addressed mode. The

instruction SBC #1 will subtract 1 from the contents of the ACCUMULATOR, leaving the

result in the ACCUMULATOR. The instruction SBC 1 will subtract the contents of location

1 from the contents of the ACCUMULATOR, again leaving the result in the

ACCUMULATOR.

 The effect on the CARRY bit is however different from the addition case. If the second

number is larger than the first, then 1 is borrowed from the next column. In the units column

this 1 becomes 256, and the result in the ACCUMULATOR is larger than before.

For example,

 LDA #10
 SBC #11

will result in the number 255 being left in the ACCUMULATOR and a 1 being borrowed

from the next column. This 'borrow' is shown by the CARRY bit being cleared to 0. If there

is no borrow as in the following case:

 LDA #11
 SBC #10

then the CARRY bit is set to 1 after the subtraction.

 It is interesting to ask why the CARRY bit in subtraction works the opposite way from

addition. Rather than have a special set of gates in the ALU of the microprocessor to

The 6502 microprocessor

189

carry out subtraction, this operation is accomplished by the method known as twos

complement addition. First we need to explain what is meant by the complement of a

binary number. Complement is, in fact, another word for inversion, where all the ones

become zeros and all the zeros become ones. Thus the complement of 0000 1011 is 1111

0100 and the complement of 1111 1111 is 0000 0000.

 The complement of a number may be found by EXCLUSIVE-ORing it with 1111 1111.

This is done bit by bit, so wherever the original number contains 1, this becomes a 0, and

wherever it contains 0, this becomes 1. The twos complement is obtained by adding one to

the complement of the number. Thus the twos complement of 0000 1011 is 1 + 1111 0100

(which is 1111 0101). The twos complement of 1111 1111 is 1 + 0000 0000 (or 0000 0001).

Another way of looking at this is that the complement of a number is the same as subtracting

it from 1111 1111 (or 255 in decimal) and the twos complement is the same as subtracting

it from 256.

 Subtracting a binary number B from a binary number A is accomplished by adding A to

the twos complement of B. For example, consider the subtraction of 0000 1011 from 0000

1111 (which is 15—11 in decimal). First the twos complement of B is found, which is at the

beginning of the answer is in the ninth column, which in our eight-bit subtraction will be

left as the CARRY bit. Since this cannot be stored in an eight-bit ACCUMULATOR,

the result is 0000 0100 (or 4 in decimal). Thus, although we did not need to borrow any

digits from the next column, the CARRY bit is still set to 1 at the end of the subtraction.

 Now see what happens if the subtraction is done the other way round, that is 11—15.

ninth column is 0 this time. Now why do we get this answer? If we had tried to do this in

decimal subtraction, we should have started with the units and said '1—5, you can't, so

borrow 1 from the tens column'. In the decimal system this '1' is actually worth ten.

 In binary subtraction we do exactly the same, except that the '1' we are borrowing is taken

from the CARRY bit (the ninth column, which is worth 256). Thus our result is really the

answer to the decimal problem 11 + 256 - 15, which is, of course, 252. This is the answer

that our twos complement addition actually produced. The fact that we have borrowed from

the sixteens column is shown by the CARRY bit. Thus if the CARRY bit is set to 1 after a

subtraction then no borrow has occurred. If it is cleared to 0, then a borrow has been made.

 The operation SBC automatically 'pays back' the CARRY bit (in the same way that ADC

automatically adds in the CARRY bit). To avoid errors, therefore, the first SBC instruction

must be preceded by SEC (set the CARRY bit), which signifies that there is no borrow to

be repaid. Check the above ideas by entering each of the following instructions, and note

the status of the CARRY bit each time.

 SEC <RET>
 LDA #11 <RET>
 SBC #10 <RET>

The BBC microcomputer in science teaching

190

SEC <RET>
 LDA #10 <RET>
 SBC #11 <RET>

Note how the following instructions

SEC <RET>
 LDA #0 <RET>
 SBC #1 <RET>

leave 255 in the ACCUMULATOR, thus indicating that 255 is equivalent to —l in this

arithmetic.

 If the process involves double byte subtraction, the 'borrow' is repaid during the high

byte subtraction. If the CARRY bit is set to 1 , there is no 'borrow' to be repaid. But if the

CARRY bit is cleared to 0, then the result of the high byte subtraction is reduced by 1 to

pay back the 1 that was borrowed during the low byte subtraction. Enter each of the

following instructions in 6502 SIMULATION and observe their effect on the various

registers:

Place the number 3,2 (decimal 515) into locations 1 and 2. Then subtract 5,1 (decimal

261) from the first number in immediate mode and place the result in locations 3 and 4.

 LDA #3 <RET>
 STA 1 <RET>
 LDA #2 <RET>
 STA 2 <RET>
 SEC <RET>
 LDA 1 <RET>
 SBC #5 <RET>
 STA 3 <RET>
 LDA 2 <RET>
 SBC #1 <RET>
 STA 4 <RET>

Now try these problems:

16 Load a number into the ACCUMULATOR. Then subtract this number from itself,

leaving the result in the ACCUMULATOR. Do you get the result 0? If the CARRY

BIT is initially cleared then you will not get the expected result. Perform SEC

before your subtraction to get the correct result.

17 Place a single byte number into location 1 and another number into location 2.

Subtract the contents of location 2 from the contents of location 1 , placing the

result in location 3.

18 Place a double byte number in locations 1 and 2. Add this number to itself and put

the result in locations 3 and 4. Then subtract the number in locations 1 and 2 from

the number in locations 3 and 4, leaving the result in locations 3 and 4. What do you

notice about this result?

The 6502 microprocessor

191

19 Place 0 into the locations 1 and 2. Treat this as a double byte number and subtract 1

from it in immediate mode, leaving the result in locations 1 and 2. What do you notice

about the result?

Counting

Counting can be done by adding one repeatedly to the location being used as a counter, but

it can also be done with the single instruction increment. The instruction, INC 3, fetches

the content of location 3 from memory, adds one to it, and places it back in the original

memory location. The ACCUMULATOR is not involved in this, so it is not changed.

 The decrement instruction, DEC 3, does the same, except that the content of location 3

is reduced by one instead. In both cases no account is taken of the CARRY bit, so this does

not have to be cleared or set before the INC or DEC instruction. The CARRY bit is not

affected if the register is incremented above 255. The register becomes zero but the CARRY

bit is not altered. Likewise, if the register is at zero and it is decremented, it becomes 255

but the CARRY bit is unchanged. Because INC and DEC involve storing the data after it

has been incremented or decremented, then these instructions cannot be used in the

immediate mode.

 Both instructions are used a great deal in counting. It is often necessary in a program to

repeat an instruction or a set of instructions several times (like the FOR...NEXT loop in

BASIC). Suppose we want to repeat it eight times. The location being used as a counter is

initially made equal to eight. After each cycle of the required instructions, this counter is

decremented. When it reaches zero, the cycle has been repeated eight times.

 The register most often used for counting is the X-INDEX. The single byte instructions

to increment and decrement the X-INDEX are INX and DEX respectively. INY and DEY

do the same for the Y-INDEX. None of these affect the CARRY bit in any way. It is not

possible to increment or decrement the ACCUMULATOR directly, but this can be done by

adding or subtracting 1 in the immediate mode. However, in this case the normal rules

regarding the CARRY bit will apply.

Investigate this set of instructions:

 LDX #0 <RET>
 LDA #3 <RET>
 STA 5 <RET>
 INX <RET>
 DEC 5 <RET>
 INX <RET>
 DEC 5 <RET>
 INX <RET>
 DEC 5 <RET>
 INX <RET>
 DEC 5 <RET>

Now try this problem:

20 Place 0 in the X-INDEX and 5 in the ACCUMULATOR. Now increment the

The BBC microcomputer in science teaching

192

X-INDEX and decrement the ACCUMULATOR (by subtracting one) until the latter

reaches zero. What value is left in the X-INDEX?

Logic instructions

As well as its arithmetic instructions, the microprocessor can also perform logic operations

on data. Since each byte of data consists of eight bits, the microprocessor has to perform

eight logic operations at a time. Consider the series of instructions:

LDA #5
AND #6

The second data in this case is the binary number 0000 0110. This is ANDed with the data

already in the ACCUMULATOR, which is the binary number 0000 0101. These two bytes

are ANDed one bit at a time and the result is put into the ACCUMLATOR.

6 is 0 0 0 0 0 1 1 0
5 is 0 0 0 0 0 1 0 1
Result 0 0 0 0 0 1 0 0

The result has a logic 1 only where there is a logic 1 in both of the corresponding bit positions

of the two bytes being ANDed. This is the bit 2 position, so the result of ANDing 5 and 6 is

4.

 ANDing is a good way of clearing particular bits to 0 without affecting the other bits at

the same time. If the ACCUMULATOR contained the value 3 (binary 00000011) and we

1110), which would only affect bit 0.

 LDA #3
 AND #254

If location 5 contained the value 7 (binary 0000 0111) and we wanted to switch off bit 1

only, we could first load the contents of location 5 into the ACCUMULATOR, then AND

it immediately with 253 and finally store the result back in location 5. There is, however,

another way. We could load the ACCUMULATOR with the number 253 and AND it with

the contents of location 5, using the instruction AND 5. As before the result (0000 0101)

can then be stored in location 5.

LDA #7 <RET>
STA 5 <RET>
LDA 5 <RET>
AND #253 <RET>
STA 5 <RET>

or

LDA #7 <RET>
STA 5 <RET>
LDA #253 <RET>
AND 5 <RET>
STA 5 <RET>

The 6502 microprocessor

193

The other use of the AND instruction is to mask an input (say from the user port) to inspect

one particular bit (say bit 0). If we load the contents of location 5 into the ACCUMULATOR

and perform the instruction AND #1, the result will be 1 if bit 0 of location 5 was set and 0

if bit 0 was cleared. This is the equivalent of the BASIC statement Q = ?5 AND 1 on the

BBC microcomputer. In a similar way

LDA #127 <RET>
STA 5 <RET>
LDA 5 <RET>
AND #128 <RET>

leaves 0 in the ACCUMULATOR.

LDA #255 <RET>
STA 5 <RET>
LDA 5 <RET>
AND #128 <RET>

leaves 128 in the ACCUMULATOR.

 Logical OR is carried out with the ORA operation, which can take an immediate (+) or

an addressed mode operand.

LDA <RET>
ORA #5 <RET>

The ACCUMULATOR contains 6 and this is ORed with 5, so the result is 7, as follows:

6 is 0 0 0 0 0 1 1 0
5 is 0 0 0 0 0 1 0 1
Result 0 0 0 0 0 1 1 0

There is a logic 1 in the result if there is a logic 1 in either of the corresponding bit positions

of the two starting numbers.

 The main use of ORA is to switch a particular bit on, without affecting the other bits. To

turn on bit 7 of location 5, we load the contents of location 5 into the ACCUMULATOR,

OR it with 1000 0000 (decimal 128) and store the result back in the ACCUMULATOR, OR

it with 1000 0000 (decimal 128) and store the result back in the user port (the exact

equivalent of ?5 = (?5 OR 128) in BASIC).

LDA #127 <RET>
STA 5 <RET>
LDA 5 <RET>
ORA #128 <RET>

leaves 255 in the ACCUMULATOR.

 In Chapter 4 we looked at the EXCLUSIVE-OR function and noted that there is a logic

1 output if the two inputs to the gate are different. The EXCLUSIVE-OR output goes to

logic 0 if its two inputs are the same. The BBC BASIC EOR works in the same way. The

microprocessor operation which does this is also EOR. This too, can be used in the

immediate mode and in the addressed mode:

The BBC microcomputer in science teaching

194

LDA #6
EOR #255

6 is 0 0 0 0 0 1 1 0
255 is 1 1 1 1 1 1 1 1
Result 1 1 1 1 1 0 0 1

 EOR has one special property that makes it particularly useful. If the contents of location

5 are loaded into the ACCUMULATOR and then EXCLUSIVE-ORed with previously off

will be turned on. This can be seen from a comparison of the two numbers above. If the data

collected from location 5 is 6, the result shows a logic 0 in each bit position where it was

previously a logic l, and vice versa. The instruction EOR #255 is thus the equivalent of the

BASIC statement Q = NOT Z.

Try each of the following sets of instructions:

 LDA #255 <RET> ;This instruction will switch all
 STA 5 <RET> ;bits of location 5 on.

 LDA 5 <RET>
 AND#16 <RET> ;This will switch off all
 STA 5 <RET> ;bits except bit 4.

 ORA #128 <RET>
 STA 5 <RET> ;This will turn on bit 7 also.

 EOR #240 <RET> ;This will turn bits 4 and 7 off and
 STA 5 <RET> ;bits 5 and 6 on.

Enter each of the following instructions in turn. Before each one, try to predict what the

result in the ACCUMULATOR will be. Then see if you were correct.

 LDA #170 <RET>
 STA 1 <RET>
 LDA #15 <RET>
 AND #10 <RET>
 ORA #15 <RET>
 EOR #10 <RET>
 AND 1 <RET>
 STA 2 <RET>
 LDA 2 <RET>
 ORA 1 <RET>
 AND 2 <RET>
 EOR #255 <RET>

The 6502 microprocessor

195

 Now try these problems:

21 What is the result of ANDing 85 with 45?

22 What is the result of ORing 85 with 45?

23 What is the result of EXCLUSIVE-ORing 85 with 45?

24 How do you switch off bits 1 and 2 of location 5 without changing the state of the

other bits?

25 How do you switch bits 0, 1, 2, 3, 4, 5 and 6 of location 5 on, yet not affect bit 7?

Indexed addressing

We mentioned above that the X-INDEX is often used as a pointer to memory locations.

We use this when we want to point to a table of values. For example location 1 could

contain the square of the number 1, location 2 could contain the square of the number 2

and so on. Then, to find the square of a number in a machine code program, we only have

to look it up in this table. We do this with indexed addressing.

 The instruction LDA 1,X loads the ACCUMULATOR with the contents of a memory

location. The chosen location is obtained by adding the X-INDEX to the address specified

in the operand. Thus if the X-INDEX is equal to 5, the chosen location would have the

address 1 + 5, which is, of course, location 6. The contents of this location would thus be

loaded into the ACCUMULATOR.

 LDX #5 <RET>
 LDA 1,X <RET>

Since the X-INDEX cannot be greater than 255, the desired location must be within 255 of

the operand address. The instruction LDA O,X can fetch data from any of the locations O

to 255. However, 6502 SIMULATION only displays the locations 1 to 7, so it is not

possible to give indexed addressing a full test. All arithmetic and logic instructions so far

described can be used with indexed addressing as well as immediate or ordinary addressed

modes.

 The advantage of indexing will not yet be apparent, because we have not discussed how

to repeat a series of instructions. Let us first learn how to use the indexed address mode.

The address that occurs in the operand is taken as the starting address for working out

where the chosen location should be. The operand indicates the indexed addressed mode

by the ',X' that occurs after this starting address.

 The following program will put the value 1 into location 1 , the value 2 into location 2

and so on. Enter this series of instructions and see what happens each time. Note

especially what happens to the ADDRESS REGISTER.

LDX #1 <RET>
LDA #1 <RET>
STA 0,X <RET>
INX <RET>
LDA #2 <RET>
STA 0,X <RET>
INX <RET>

The BBC microcomputer in science teaching

196

 LDA #3 <RET>
 STA 0,X <RET>
 INX <RET>
 LDA #4 <RET>
 etc.

This program can be greatly simplified with a new set of single byte instructions, that are

used to copy data from one register to another:

 TXA copy data from the X-INDEX to the ACCUMULATOR
 TAX from the ACCUMULATOR to the X-INDEX
 TYA from the Y-INDEX to the ACCUMULATOR
 TAY from the ACCUMULATOR to the Y-INDEX

Here is the same program but using TXA. Note now how the same set of instructions is

repeated over and over again. Clearly the machine code equivalent of a FOR...NEXT loop

will make this a very simple program, when we come to it.

 LDX #1 <RET>
 TXA <RET>
 STA 0,X <RET>
 INX <RET>
 STA 0,X <RET>
 INX <RET>
 STA 0,X <RET>
 INX <RET>
 TXA <RET>
 etc.

Repeat this procedure, but change the store instructions to 1,X instead of 0,X. What

difference does it make?

 Rewrite the above program to read the contents of each memory location into the

ACCUMULATOR, to add 1 and to store the result back in the same location. The program

should use indexed addressing to point to each location in turn.

The PROGRAM COUNTER

Although 6502 SIMULATION is useful for demonstrating the different instructions

available in the 6502 microprocessor, it is only possible to make it run a few types of

program. So far we have not asked it to carry out a set of instructions automatically. It is as

if in BASIC we could only enter statements one at a time into a microcomputer. We need a

way of storing a whole series of instructions that the microprocessor can execute one by

one. This is the only way that we shall be able to repeat a cycle of instructions for a

given number of times.

 Up till now we have not bothered particularly about the PROGRAM COUNTER,

The 6502 microprocessor

197

henceforth called the PC. This is a sixteen-bit counter that points to the address of the next

instruction. Try each of these instructions and note how each single byte instruction

increments the PC by one and each double byte instruction increases it by two.

CLC <RET>
SEC <RET>
LDX #5 <RET>
LDA #0 <RET>
TXA <RET>
TAY <RET>

 The address in the PC starts at 16000, which is roughly where most of my BBC machine

code programs begin. If you enter a large number of instructions you could get this to

increase to 65535. Further increases cause it to reset to zero. 65535 is the maximum number

that a sixteen-bit register can hold. In the memory a segment of a program would be stored

sequentially like this.

16100 LDX #5
16102 TXA
16103 CLC
16104 LDA 5

Notice how the PC seems to be giving each instruction a number as in BASIC. But it is not

at all like BASIC: these numbers are the address of the first byte of the instruction, some of

which are two byte and some of which are one byte instructions. Here is the same program

written out one byte at a time:

16100 LDX
16101 #5
16102 TXA
16103 CLC
16104 LDA
16105 5

The line numbers must be consecutive and none may be omitted. This is annoying when

writing machine code programs, because if you later want to insert another instruction, you

have to move all the others down by one or two bytes (which is one of the reasons why

BASIC is a better language than machine code). In BASIC the next statement fetched is the

one with the next highest number, and it does not matter if some numbers are omitted. The

line numbers in machine code programming represent the addresses in memory where the

codes for the instructions are stored. They are the values taken by the PROGRAM

COUNTER to get each new instruction. Each time the PC executes an instruction it is simply

incremented to fetch the next instruction. If we put our next instruction in the wrong place,

the microprocessor will not notice, it will still fetch its next instruction from the next location

in memory. It is quite possible that this wrong instruction collected by the microprocessor

will cause the whole system to crash.

 Using the address of the program counter, it is common to write out machine code

programs like this:

The BBC microcomputer in science teaching

198

16100 LDX #5 ;set the counter to 5
16102 LDA #0 ;set ACCUMULATOR to 0
16104.rpt STA 0,X ;clear the location
16106 DEX ;next value of X
16107 BNE -5 ;do next location

We have not yet dealt with how this program works, we are just looking at the method of

writing it.

 The first column is the value of the PC as before, which is the address of the operation

part of each instruction.

 The second column of the program listing is the name or label of the cycle of instructions

to be repeated (.rpt). This way of labelling the program is to show us where the cycle (or

loop) begins. The microprocessor takes no notice of labels, because it uses the PC to

determine where this loop is. 6502 SIMULATION likewise uses numbers to determine the

next instruction. The label is only included for our information (and it cannot be entered as

any part of an instruction in 6502 SIMULATION).

 The third column has the mnemonic of the instruction as before. The remainder ofthe

line, after the semi-colon, is the comment column. This is used to explain what is going on,

rather like the REM statement in BASIC. 6502 SIMULATION will not such comments,

even if there is room to put them in, so these too should not be entered. In the BBC assembler

comments are indicated by the backslash (\) character.

Program jumps

BASIC has two methods of jumping to a different part of the program, GOTO and GOSUB.

There are exact equivalents in machine code too, JMP (jump) and JSR (jump to

subroutine). The instruction JMP 12000 loads the address 12000 into the PROGRAM

COUNTER and the next instruction is fetched from that address. Execution then continues

line by line from this new position. JMP therefore transfers control completely to this new

part of the program. The microprocessor loses all knowledge of where it has come from and

it has no way of getting back to it (unless, that is, the new part of the program sends it back

with another JMP instruction). JMP and JSR are three byte instructions so you might expect

to see the PC increase by three when they are used.

However these instruction change the address in the PC, so you cannot really see this

happen. The operand is a two byte address (written in the low byte, high byte order). We

can treat it as a decimal number, however, and let 6502 SIMULATION take care of the two

bytes. Enter these instructions and watch especially how the PC changes its address:

 JMP 12000 <RET>
 12000 JMP 10000 <RET>

 JSR 12000 behaves almost the same, but there is one important difference. After jumping

to line 12000 execution continues until the single byte instruction RTS (return from

subroutine) is met. Control then returns to the line immediately after the original JSR

instruction. The microprocessor keeps a note of the address of the JSR instruction (called

the return address) in a special register called the STACK. When the RTS

The 6502 microprocessor

199

instruction is encountered, this return address is pulled off the STACK and put back into the

PC. The latter is then incremented and execution continues from the new address. When the

following instructions are tried out, watch the STACK as well as the PC. Note that both the

low byte and the high byte of the return address are stored on the STACK and note how the

STACK POINTER (the arrow) moves up and down, pointing to the last entry in the

STACK. Note the relationship between the number pushed onto or pulled off the STACK

and the PC address, when the JSR and the RTS instructions are executed.

 JSR 12000 <RET>
 12000 LDA #1 <RET>
 12002 RTS <RET>

Do you see the difference between the JMP and JSR instructions?

 Try these problems:

26 What address would be left in the PC after the following instructions had been

executed?

 JMP 12000
 12000 JMP 10000

27 What would a microprocessor do if it met this instruction?

 12000 JMP 12000

Conditional jumps

In BASIC the IF... THEN statement allows the program to choose between alternatives:

 1000 IF Y=0 THEN GOTO 5000
 1010 X=2

If Y is zero at statement 1000, this causes a jump to line 5000. If Y is not zero, the program

continues with statement 1010. In machine code the BRANCH instructions have the same

purpose. After nearly every instruction a special bit in the STATUS REGISTER, called the

ZERO bit, is changed. It is set to 1 if the result of the instruction is zero, it is cleared to 0 if

the result is not zero. Watch the effect on the ZERO bit (Z) in the 6502 SIMULATION,

when each of the following is executed:

LDA #0 <RET>
LDY #0 <RET>
TAX <RET>
INY <RET>
LDA #1 <RET>

 The BNE instruction (branch if not equal to zero) tests this ZERO bit and if it is cleared

to 0 (i.e. the result of the previous instruction was not zero), the branch is obeyed. If the

ZERO bit is set to 1, then the result of the previous instruction was zero, so the branch is

not obeyed and execution continues with the next line.

The BBC microcomputer in science teaching

200

The BEQ instruction (branch if equal to zero) is the opposite of this: the branch is obeyed

when the ZERO bit is set and is not obeyed when the ZERO bit is cleared.

 The operand of the branch instruction is the number of lines to be skipped over. Unlike

the JMP instruction, it is not the actual address to which the PC is changed. The operand is

called a displacement and it is the number of bytes to be added to the PROGRAM

COUNTER. This displacement can be positive (a forward jump) or negative (a backward

jump). For 6502 SIMULATION we signify this with the + or -- symbols, which must be

included. A real microprocessor has a special way of distinguishing positive and negative

numbers -- we shall deal with this later.

 Let us now see how this conditional branching is used. It is assumed that the following

program begins at 16100. You can get to this address by entering JMP 16100 <RET>.

Remember not to type in the label or the comment columns.

 16100 LDY#20 set counter <RET>
 16102 LDX#1 set pointer <RET>
 16104 .rpt TXA Get value <RET>
 16105 STA 0,X save value <RET>
 16107 INX Next location <RET>
 16108 DEY Dec counter <RET>
 16109 BNE-7 Repeat cycle <RET>
 16111 remainder of program

In this program the BNE -7 instruction tells the microprocessor to go back seven bytes to

the address 16104, labelled (.rpt). BNE stands for 'branch if the result of the previous

instruction is not zero'. In this case the previous instruction was DE Y (decrement the Y-

INDEX). Since the Y-INDEX starts at twenty, every time it is decremented it becomes

smaller, but not equal to zero. So the branch condition is obeyed and the program branches

back to line 16104 each time. It does this by adding -7 to the PC, thus making it point to the

previous address. After the twentieth decrement, the Y-INDEX finally becomes zero, so the

ZERO bit is set and the branch condition is not obeyed. Now the PC is incremented to 16111

and the next instruction is fetched from address 16111.

 The reason for jumping back seven bytes and not six is as follows. Look at what happens

if the ZERO bit is set so that the branch condition is not obeyed. The BNE -7 instruction is

a two byte instruction, starting at address 16109. After it has fetched the operand (—7), the

PC is equal to 16110. The branch condition fails, so this instruction has now been completed

and the PC is incremented to point to the next instruction, which is at address 16111.

Now suppose that the Y-INDEX was not zero so that the ZERO bit is cleared. In this case

the branch condition will be obeyed and —7 will be added to the PC, which will thus become

16103, since 16110 + (—7) = 16103. This is the end of the current instruction, so the PC is

incremented (to 16104) and the next instruction is fetched from line 16104. This is exactly

where we want to be. The rule, therefore, is as follows: all BRANCH instructions must

branch to the address immediately before the desired address.

 Let us see how this applies to the following program, which achieves the same as the one

above:

The 6502 microprocessor

201

 16100 LDY #20 ;Set counter <RET>
 16102 LDX #0 ;Set pointer <RET>
 16104 . next TXA <RET>
 16105 STA 0,X <RET>
 16107 INX ;Inc pointer <RET>
 16108 DEY ;Dec counter <RET>
 16109 BEQ +2 ;Branch to end <RET>
 16111 JMP 104 ;Go to next <RET>
 16113 end of program

This time line 16109 is a forward jump BEQ + 2. This is after the instruction DEY and will

thus be obeyed whenever the Y-INDEX is zero. This does not occur for the first nineteen

loops, so the PC is incremented to point to address 16111, which is a JMP to address 16104.

On the twentieth loop the Y-INDEX becomes zero so the branch is obeyed and the PC

becomes 16112 (i.e. 16110 + 2). This is the end of the current instruction, so the PC is

incremented to point to the next instruction at address 16113. Note once again that the

displacement added to the PC makes it point to the address immediately in front of the

desired address. This is to allow for the fact that the PC is incremented before the next

instruction is fetched. Of all ideas in machine code programming, this is probably the most

difficult to get right.

Comparison

So far we have only looked at counting down to zero; this is too restrictive. To enable us to

count up as well, the ability to compare two sets of data is essential. The CMP (compare)

instruction performs this function. The instruction CMP #5 carries out the following steps:

i) The CARRY bit is set to 1 initially, as for a subtraction.

ii) The data in the operand is subtracted from the data in the ACCUMULATOR and the

result is held in the DATA REGISTER. The data in the ACCUMULATOR is not

changed.

iii) If the operand data is equal to the ACCUMULATOR data then the result will be zero

and the ZERO bit will be set, otherwise it will be cleared. Thus if CMP #5 is followed

by BEQ, the branch will be obeyed if the ACCUMULATOR also contains 5.

 iv) If the operand data is greater than the ACCUMULATOR data, then the CARRY bit

will be cleared, indicating that a borrow has occurred. If the operand data is not greater than

the ACCUMULATOR data then the CARRY bit will be set. These conditions can be

detected by the branch instructions BCC (branch if the CARRY bit is cleared) and BCS

(branch if the CARRY bit is set).

To summarize:

CMP # 5 followed by BCS will branch if the ACCUMULATOR data is greater than or

equal to 5.

CMP followed by BCC will branch if the ACCUMULATOR data is less than 5.

The BBC microcomputer in science teaching

202

CMP +5 followed by BEQ will branch if the ACCUMULATOR data is equal to 5.

CMP #5 followed by BNE will branch if the ACCUMULATOR data is not equal to 5.

The CMP operation can have an operand in the immediate, the addressed or the indexed

modes. In all cases the data (immediate or from an external memory location) will be

compared with the ACCUMULATOR data.

 The X-INDEX is tested by the CPX operation. This usually has operands that are in

immediate or addressed mode (indexing an INDEX is possible, but is a special case).

 The Y-INDEX has a similar instruction, CPY, which also can have an operand in the

immediate mode or the addressed mode.

 Try each of the following sets of instructions. Make sure that you understand why the

branch operands have the values they do. Try to predict what each program should do, then

see if you were correct. You will have to re-enter the instructions in the loop (16208 to

16216) three times over, because 6502 SIMULATION will not remember them. Later we

shall see how to enter these instructions into a program.

Program to place the square of the number 3 into location 5

 16000 LDA #0 ;Set result to <RET>
 16002 STA 5 ;zero <RET>
 16004 LDY #3 ;Set counter <RET>
 16006 STY 7 ;Keep value <RET>
 16008.loop CLC
 16009 LDA 7 ;Getvalue <RET>
 16011 ADC 5 ;Add result <RET>
 16013 STA 5 ;Keep new result <RET>
 16015 DEY ;Dec counter <RET>
 16016 BNE -10 ;Repeat loop <RET>

The loop adds together the contents of location 7, called value and location 5, called result.

This loop is performed a total of three times, initially set by the counter. The final result at

the end will thus be 3 + 3 + 3 or three squared.

 Try these problems:

28 What would happen if the BNE —10 instruction in line 16016 were replaced by BNE

-9, or by BCC -10?

29 Write a series of instructions to put 100 into location 1, 99 into location 2, 98 into

location 3 and so on, to 91 in location 10. You will need to increment the location

pointer, but decrement the value being placed in each successive location.

Negative numbers

So far we have written -5, say, to indicate a backward jump. The microprocessor knows

nothing about the negative sign and needs some other way of indicating whether a number

is positive or negative. It does this by the coding technique known as twos complement

discussed earlier. This relies on the phenomenon that 256 is actually equivalent to 0 if the

CARRY is ignored. Hence 255, which is one less than zero' is equivalent to -1, which is also

one less than zero. A table of some of these equivalents shows this more clearly.

The 6502 microprocessor

203

Pos.
decml.

Positive
Binary

2s compl.
binary

Equiv.
decml.

Neg.
decml.

128 1000 0000 1000 0000 128 -128

127 0111 1111 1000 0001 129 -127

126 0111 1110 1000 0010 130 -126

125 0111 1101 1000 0011 131 -125

41 0010 1001 1101 0110 215 -41

40 0010 1000 1101 0111 216 -40

39 0010 0111 1101 1010 217 -39

38 0010 0110 1100 1001 218 -38

30 0001 1110 1100 1010 226 -30

20 0001 0100 1110 1100 236 -20

10 0000 1010 1111 0101 246 -10

2 0000 0010 1111 1101 254 -2

1 0000 0001 1111 1110 255 -1

0 0000 0000 1111 1111 0 0

 An inspection of the table shows that we can now represent both positive and negative

numbers with binary numbers, depending upon which form of binary coding is being used.

Twos complement coding represents numbers in the range —128 to + 127 only, and it is

possible to distinguish the negative numbers, because their most significant bit (bit 7, at the

left end) is always 1. For all positive numbers this bit is 0. Thus we need only test the most

significant bit position to see if it is a 1 or a 0. The 6502 microprocessor is aware of this

need and sets the SIGN bit in the STATUS register to tell us if a number is positive or

negative. We do not have to bother about this unless we want to make use of twos

complement coding. The numbers behave quite 'normally' and it is up to us to decide what

we want those numbers to represent. The operand of a BRANCH instruction is the number

of bytes of the machine code program to be skipped over. This is not difficult to calculate,

provided you remember that the program counter is incremented immediately before the

next byte of an instruction is fetched from memory. So a BRANCH must go to the byte

immediately preceding the desired instruction.

 In the case of forward branching, one counts up in the normal way until one reaches this

preceding byte. The number obtained is the required operand. For example,

 16100 LDX #0 <RET>
 16102 BEQ +2 <RET>
 16104 yyy zz
 16106 ppp qq

 After BEQ+2, the PC is at memory location 16103. To this is added + 2, giving 16105

and the PC is then incremented to 16106. The next instruction is fetched from 16106.

Instruction ppp qq will be executed next after the branch instruction.

 For backward branching the operand should really be a twos complement number, but

6502 SIMULATION has been programmed to accept negative numbers instead. Later we

shall have to do this properly, but for the moment we can ignore this.

The BBC microcomputer in science teaching

204

 An idea of twos complement numbers enables us to do a simple check on bit 7 of any

location. If bit 7 is set to I , then the number in the location is regarded as negative, if bit 7

is 0 then the number is regarded as positive. So the operation BMI (branch if minus) will

succeed if bit 7 is a 1 and the operation BPL (branch if plus) will succeed if bit 7 is

cleared to 0. For example,

 16100 LDX #255 <RET>
 16102 BMI +2 <RET>
 16104 yyy zz <RET>
 16106 ppp qq <RET>

will cause instruction ppp qq to be executed next after the branch instruction, whereas

 16100 LDX #255 <RET>
 16102 BPL +2 <RET>
 16104 yyy zz <RET>
 16106 ppp qq <RET>

will cause instruction yyy zz to be executed next after the branch instruction.

Shift instructions

This set of instructions is often used in binary multiplication and division. Multiplying by

ten with decimal numbers holds no terrors, we simply add a 0. Similarly in binary,

multiplication by two is accomplished by adding a O. The instruction to do just that is ASL

(arithmetic shift left). This causes each bit in the specified location (or the

ACCUMULATOR) to move into the next position left, with O loaded into the lowest bit. If

the number was originally greater than 127 (or negative in twos complement coding) then

the 1 originally in bit 7 is shifted into the CARRY bit.

 LDA #81 <RET>
 ASL A <RET>

(The ACCUMULATOR now contains 162.)

 ASL A <RET>
(The ACCUMULATOR contains 68 and the CARRY bit contains 1, which is really 256 and

256 + 68 = 324.)

 Two byte shifting can also be performed, by allowing the CARRY bit to be shifted into

bit 0 of the high byte (Figure 6.4). This is done with ROL (rotate left). This causes the

CARRY bit (if any) from the low byte to be shifted into bit 0 of the high byte.

Figure 6.4 Left shifting on two bytes

The 6502 microprocessor

205

 LDA # 181 <RET>
 STA 1 <RET>
 LDA #0 <RET>
 STA 2 <RET>
 ASL 1 <RET>
 ROL 2 <RET>
 ASL 1 <RET>
 ROL 2 <RET>
 ASL 1 <RET>
 ROL 2 <RET>

will cause the original two byte number (181,0) to be multiplied by 8.

 A similar set of instructions can be used to divide by two. This time the routine starts with

the high byte and performs an LSR (logical shift right) on it. Bit 7 becomes 0, bit 6 becomes

equal to the previous value of bit 7, etc. and the contents of bit 0 are shifted into the CARRY

bit. This instruction can be followed by an ROR (rotate right) and the CARRY bit is pushed

into bit 7 of the low byte (Figure 6.5). Bit 0 of the low byte is pushed into the CARRY bit

itself. (This is very useful for determining if the original number was odd or even, since only

an odd number leaves the CARRY bit set to 1.)

Figure 6.5 Right shifting on two bytes

The STACK

Another set of instructions is concerned with the STACK. The single byte instruction

PHA makes the stack pointer move down to point to the next STACK position and then

pushes the contents of the ACCUMULATOR onto the STACK for temporary storage.

The reverse instruction PLA will pull the contents of the current position off the STACK

into the ACCUMULATOR and make the stack pointer move up one. Try these

examples:

 LDA #5 <RET>
 PHA <RET>
 LDA #0 <RET>
 PHA <RET>
 LDA #255 <RET>
 PLA <RET>
 PLA <RET>
 PLA <RET>

and watch the movement of the stack pointer in each case.

The BBC microcomputer in science teaching

206

No operation

The most mystifying instruction must surely be NOP (no operation). It simply causes the

microprocessor to waste time. None of the registers is affected in any way, except for the

PROGRAM COUNTER, which is incremented by 1, to point to the next instruction. The

main use of NOP is to adjust delay loops to get the correct delay time. Try it for yourself

and see its lack of effect.

Break

This instruction (BRK) performs a special task. When encountering it the microprocessor

treats it rather like a JSR instruction. It saves the current address of the PC on the STACK

and looks at locations 65532 and 65533 to collect an address. These often contain the start

address for the microprocessor (the one it jumps to when first switched on). When building

a dedicated system, one often needs to use this instruction while debugging. It is also useful

to BBC microcomputer users, since it allows us to access the error messages of BASIC to

add our own. Its use is described in the user guide (page 464). In 6502 SIMULATION the

start address is assumed to be 16000. When using this instruction, note how the PC address

is pushed onto the STACK for future reference.

Running a program

So far instructions have been entered one at a time just like BASIC in command mode. To

run a BASIC program you have to store the commands (called statements) in a series of

lines. 6502 SIMULATION behaves in the same way, except that the line numbers must

follow consecutively, allowing one number for each byte of the instruction. In our case this

is not too difficult. Single byte instructions use a single mnemonic with no operand. The

only three byte instructions I have implemented are JMP and JSR (and these can only be

three bytes). In 6502 SIMULATION (though not in the real microprocessor) all other

instructions require two bytes. All programs should start from the address 16000, which will

be where the simulation will expect to begin. To illustrate the techniques, carry out the

following instructions carefully. In this respect 6502 SIMULATION is somewhat fragile

and gives unpredictable results if it meets situations it was not programmed to handle.

 First type NEW and press RETURN. The simulation display will disappear and be

replaced by some instructions on how to use the programming mode. Press SPACE to begin.

Then type:

 LDA #5 <RETURN>
 16002 LDX #5 <RETURN>
 16004 CLC <RETURN>
 16005 ADC #5 <RETURN>
 16007 DEX <RETURN>
 16008 BNE -5 <RETURN>

If you make a mistake, just retype the offending line again. To delete a line just type its

number and press RETURN exactly as with BASIC. To run this program type CALL

The 6502 microprocessor

207

and watch what happens to the X-INDEX and the ACCUMULATOR. You can type CALL

from within the simulation to re-run the same program.

 Notice how some lines of this program occupy two bytes while others only take up one

byte (CLC and DEX). Note too how the last line (BNE -5) branches back to line 105 (ADC

#5). If you try your own programs, you will need to work out such offsets very carefully, or

the simulation will crash. You should always be able to recover by pressing the ESCAPE

key, but your program will then be lost. In this respect the simulation is quite accurate, the

microprocessor also gets lost if you tell it to fetch its next instruction from the wrong place.

The ESCAPE key can also be used if you get yourself into an infinite loop. For example:

 16000 JMP 16000

will keep going for ever.

 If you wish to write a new program, type NEW from within the simulation. It will send

you to the programming mode and wipe out any existing program at the same time. To edit

an existing program, do not type NEW, but type PROG instead. This returns you to the

programming mode and displays your current program, which may then be edited. To return

to the direct command mode at any time, type COMMAND.

 You may wish to try out any of the programs that you have already entered one instruction

at a time. Then try out your own ideas using 6502 SIMULATION. Apart from the restriction

on memory locations (single bytes only) the simulation supports most 6502 instructions (and

also a few that are not implemented on the 6502, but this is a mistake on my part). In

particular 6502 SIMULATION will allow indirect-indexed and indexed-indirect addressing

of a sort (subject to the single byte limitation). A list of the most useful 6502 instruction

codes is given at the end of this chapter, so try them out for yourself. There is no doubt that

the ability to handle the mnemonics properly does speed up the writing of assembly language

programs later.

 I do not guarantee that your programs will work, since the programming mode of 6502

SIMULATION was an afterthought. It is in fact a perfect example of poor programming

style - structured programs are planned from the start as described in Chapter 2. However,

6502 SIMULATION does work to some extent. If you want a crash-proof version, you will

have to wait until it has been rewritten.

Sixteen-bit addressing

This brief tour of the 6502 microprocessor has shown some of the available instructions and

their effects on the internal registers of the microprocessor. You should now be able to move

on to the more exciting challenge of putting these instructions into a real machine code

program and seeing their overall effect. There are, though, a few more general ideas that

need to be understood, before the next chapter can be tackled.

 So far we have assumed that the external memory has only consisted of addresses 0 to

255. In fact this is not so. The PC has to address memory locations from 0 to 65535 (that is

&0000 to &FFFF). The address bus thus consists of sixteen lines and the PC and ADDRESS

REGISTER are sixteen-bit registers. To store data in an address, the ADDRESS REGISTER

sends the chosen address as two bytes: the low byte and the high

The BBC microcomputer in science teaching

208

byte. A convenient way to think of the memory, is to imagine it divided into a series of

pages each containing 256 bytes. The high byte of the address is the page number and the

low byte is the address within the chosen page. The STA instruction will thus need two bytes

to specify the address and not just the one as we have so far assumed. For example,

Hex code Mnemonic
8D 00 80 STA 32768 (&8000)

(&8000 is the hexadecimal equivalent of the decimal address 32768).

 One of the quirks of the 6502 microprocessor is that it requires this double byte address

to be stored in the program with the low byte first followed by the high byte. The screen

address 32768 is byte 0, page 128, which is therefore sent as 0, 128 in hex). The hex code

for 'store the contents of the ACCUMULATOR in a two-byte address' is &8D, so the

instruction becomes 8D 00 80 in hex.

Review of addressing modes

i) Immediate mode

The operand is the actual number to be loaded into the accumulator.

Decimal code Hex. code Mnemonic
169,42 A9 2A LDA #42

The # sign used in the mnemonic indicates this mode of addressing. This is followed by a

single byte, which is the data to be loaded. There can only be one because the

ACCUMULATOR can only store a single byte at a time.

ii) Absolute mode

If we want to load the ACCUMULATOR with the contents of a particular memory location,

we use the absolute addressing mode, in which the operand is an address. The

microprocessor goes to that address to find the number to be loaded into the

ACCUMULATOR. Since there are so many different addresses, the operand consists of two

bytes, the low byte of the address followed by the high byte. As an example, we could fetch

the contents of address 32768 (&8000).

 173,0,128 AD 00 80 LDA 32768

The absence of a # sign indicates the ABSOLUTE addressing mode. Note that the numeric

code is different from the code for the immediate addressing mode.

iii) Zero page mode

If the required data is on page 0 of the memory (locations 0 to 255), it could be fetched with

the absolute mode thus:

 173,2,0 AD 0200 LDA 2

which means, 'load the ACCUMULATOR with the contents of memory location 2'. The

zero page mode enables the same instruction to be executed faster and it also takes up less

space to write because it is a two byte instruction only. The microprocessor understands

from the operation code that the location is on page zero.

 165,2 A5 02 LDA 2

The 6502 microprocessor

209

The mnemonic codes for both modes are identical, it is only the numeric codes that show

the difference.

iv) Indexed addressing

This has also been described above. The final address is calculated by adding the X-

INDEX to the operand address. The microprocessor then goes to this final address to get

the desired data.

189,0,128 BD0080 LDA 32768,X

The ',X' in the mnemonic indicates this mode. Alternatively this same mode may be used

with the Y-INDEX instead of the X-INDEX.

185,0,128 B9 00 80 LDA 32768,Y

v) Other addressing modes

This by no means exhausts the addressing modes available to the 6502 microprocessor;

another very important one (indirect indexed) will be introduced in the next chapter. Most

of the others are zero page modes and there are very few zero page locations available in

our chosen microcomputers, so these modes can rarely be used. For a fuller discussion

refer to the texts described in the Bibliography.

Disassembly

Program 37 (DISASSEMBLER) allows you to look at other machine code programs.

This program is in BASIC and is very slow, but it does work. Disassembling the operating

Plate 40 The DISASSEMBLER in use

The BBC microcomputer in science teaching

210

system of the BBC microcomputer is a life's work, so do not be too ambitious (Plate 40). It

is useful to do this for some parts of the ROM, particularly to see if there are ways of using

any routines there. The user guide gives a great deal of information about using operating

system (OS) calls, and there is little to be gained by trying to be too clever. I have found it

useful for one or two discoveries, which will be revealed in Chapter 8. You may likewise

like to play with it.

Some 6502 instructions
The first code is hexadecimal, the second is decimal.

Part 1 Arithmetic and logic instructions

ADC — Add with carry

Adds operand data to ACCUMULATOR and adds in the CARRY bit too, the result is left

in the ACCUMULATOR.

Affects SIGN, CARRY and ZERO bits.

Codes:

Immediate 69 105 2 bytes 2 cycles
Absolute 6D 109 3 bytes 4 cycles
Absolute indexed with X 7D 125 3 bytes 4 cycles
Absolute indexed with Y 79 121 3 bytes 4 cycles
Zero page 65 101 2 bytes 3 cycles
Zero page indexed with X 75 117 2 bytes 4 cycles
Indirect indexed with Y 71 113 2 bytes 5 cycles
Indexed indirect with X 61 97 2 bytes 6 cycles

AND - Logical AND

Performs the AND function on the operand data and the ACCUMULATOR. The result is

left in the ACCUMULATOR.

Affects SIGN and ZERO bits.

Codes:

Immediate 29 41 2 bytes 2 cycles
Absolute 2D 45 3 bytes 4 cycles
Absolute indexed with X 3D 61 3 bytes 4 cycles
Absolute indexed with Y 39 57 3 bytes 4 cycles
Zero page 25 37 2 bytes 3 cycles
Zero page indexed with X 35 53 2 bytes 4 cycles
Indirect indexed with Y 31 49 2 bytes 5 cycles
Indexed indirect with X 21 33 2 bytes 6 cycles

ASL - Arithmetic shift left

The 6502 microprocessor

211

Shifts each bit one place to the left. 0 enters bit 0 and the previous bit 7 enters the CARRY

bit.

Affects SIGN, CARRY and ZERO bits.

Codes:

ACCUMULATOR 0A 10 1 byte 2 cycles
Absolute 0E 14 3 bytes 6 cycles
Absolute indexed with X 1E 30 3 bytes 7 cycles
Zero page 06 06 2 bytes 5 cycles
Zero page indexed with X 16 22 2 bytes 6 cycles

CMP - Compare with the ACCUMULATOR

The operand data is subtracted from the ACCUMULATOR, but the ACCUMULATOR is

not altered. The CARRY bit is cleared if the ACCUMULATOR is less than the operand

data, otherwise it is sei. The ZERO bit is set if the ACCUMULATOR is equal to the operand

data, otherwise it is cleared. The SIGN bit is set if the final result is negative.

Affects SIGN, CARRY and ZERO bits.

Codes:

Immediate C9 201 2 bytes 2 cycles
Absolute CD 205 3 bytes 4 cycles
Absolute indexed with X DD 221 3 bytes 4 cycles
Absolute indexed with Y D9 217 3 bytes 4 cycles
Zero page C5 197 2 bytes 3 cycles
Zero page indexed with X D5 213 2 bytes 4 cycles
Indirect indexed with Y D1 209 2 bytes 5 cycles
Indexed indirect with X C1 193 2 bytes 6 cycles

CPX - Compare with the X-INDEX

The operand data is compared with the X-INDEX. The SIGN, CARRY and ZERO bits are

affected in the same way as for CMP.

Codes:

Immediate E0 224 2 bytes 2 cycles
Absolute EC 236 3 bytes 4 cycles
Zero page E4 228 2 bytes 3 cycles

CPY - Compare with the Y-INDEX

The operand data is compared with the Y-INDEX. The SIGN, CARRY and ZERO bits are

affected in the same way as for CMP.

Codes:

Immediate C0 192 2 bytes 2 cycles
Absolute CC 204 3 bytes 4 cycles
Zero page C4 196 2 bytes 3 cycles

The BBC microcomputer in science teaching

212

DEC - Decrement

The contents of the specified register or memory location are decremented by one and put

back in the same place.

Affects SIGN and ZERO bits, but not the CARRY bit.

Codes:

Absolute CE 206 3 bytes 6 cycles
Absolute indexed with X DE 222 3 bytes 7 cycles
Zero page C6 198 2 bytes 5 cycles
Zero page indexed with X D6 214 2 bytes 6 cycles
DEX (Decrement X-INDEX) CA 202 1 byte 2 cycles
DEY (Decrement Y-INDEX) 88 136 1 byte 2 cycles

EOR - EXCLUSIVE-OR

Performs the EXCLUSIVE-OR function with the operand data and the

ACCUMULATOR. The SIGN and ZERO bits are affected but not the CARRY bit.

Codes:

Immediate 49 73 2 bytes 2 cycles
Absolute 4D 77 3 bytes 4 cycles
Absolute indexed with X 5D 93 3 bytes 4 cycles
Absolute indexed with Y 59 89 3 bytes 4 cycles
Zero page 45 69 2 bytes 3 cycles
Zero page indexed with X 55 85 2 bytes 4 cycles
Indirect indexed with Y 51 81 2 bytes 5 cycles
Indexed indirect with X 41 65 2 bytes 6 cycles

INC - Increment

The contents of the specified register or memory location are incremented by one and put

back in the same place.

Affects SIGN and ZERO bits, but not the CARRY bit.

Codes:

Absolute

Absolute EE 206 3 bytes 6 cycles
Absolute indexed with X FE 222 3 bytes 7 cycles
Zero page E6 198 2 bytes 5 cycles
Zero page indexed with X F6 214 2 bytes 6 cycles
INX (Increment X-INDEX) E8 202 1 byte 2 cycles
INY (Increment Y-INDEX) C8 136 1 byte 2 cycles

LDA - Load the ACCUMULATOR

The operand data is loaded into the ACCUMULATOR.

Affects SIGN and ZERO bits but not the CARRY bit.

Codes:

Immediate A9 169 2 bytes 2 cycles
Absolute AD 173 3 bytes 4 cycles

The 6502 microprocessor

213

Absolute indexed with X BD 189 3 bytes 4 cycles
Absolute indexed with Y B9 185 3 bytes 4 cycles
Zero page A5 165 2 bytes 3 cycles
Zero page indexed with X B5 181 2 bytes 4 cycles
Indirect indexed with Y B1 177 2 bytes 5 cycles
Indexed indirect with X A1 161 2 bytes 6 cycles

LDX - Load the X-INDEX

The operand data is loaded into the X-INDEX.

Affects SIGN and ZERO bits, but NOT the CARRY bit.

Codes:

Immediate A2 162 2 bytes 2 cycles
Absolute AE 174 3 bytes 4 cycles
Absolute indexed with Y BE 190 3 bytes 4 cycles
Zero page A6 166 2 bytes 3 cycles
Zero page indexed with Y B6 182 2 bytes 4 cycles

LDY - Load the Y-INDEX

The operand data is loaded into the Y-INDEX.

Affects SIGN and ZERO bits, but NOT the CARRY bit.

Codes:

Immediate A0 160 2 bytes 2 cycles
Absolute AC 172 3 bytes 4 cycles
Absolute indexed with X BC 188 3 bytes 4 cycles
Zero page A4 164 2 bytes 3 cycles
Zero page indexed with X B4 180 2 bytes 4 cycles

LSR - Logical shift right

The contents of the specified memory location or the ACCUMULATOR are shifted one

bit to the right. Bit 7 becomes 0 and the previous bit 0 is shifted into the CARRY bit.

Affects SIGN, CARRY and ZERO bits.

ACCUMULATOR 4A 74 1 byte 2 cycles
Absolute 4E 78 3 bytes 6 cycles
Absolute indexed with X 5E 94 3 bytes 7 cycles
Zero page 46 70 2 bytes 5 cycles
Zero page indexed with X 56 86 2 bytes 6 cycles

NOP - No operation

A 'filler' or 'time-waster'; it affects nothing but just uses up one byte and takes two

cycles.

Does not affect SIGN, CARRY or ZERO bits.

Code:

NOP (No operation) EA 234 1 byte 2 cycles

The BBC microcomputer in science teaching

214

ORA - Logical-OR

Performs the OR function with the operand data and the ACCUMULATOR Affects SIGN

and ZERO bits, but NOT the CARRY bit.

Codes:

Immediate 09 9 2 bytes 2 cycles
Absolute 0D 13 3 bytes 4 cycles
Absolute indexed with X 1D 29 3 bytes 4 cycles
Absolute indexed with Y 19 25 3 bytes 4 cycles
Zero page 05 5 2 bytes 3 cycles
Zero page indexed with X 15 21 2 bytes 4 cycles
Indirect indexed with Y 11 17 2 bytes 5 cycles
Indexed indirect with X 01 1 2 bytes 6 cycles

ROL - Rotate left

The contents of the specified location or the ACCUMULATOR are shifted left by one bit.

The CARRY bit is shifted into bit 0 and the previous bit 7 is shifted into the CARRY bit.

Affects SIGN, CARRY and ZERO bits.

Codes:

ACCUMULATOR 2A 42 1 byte 2 cycles
Absolute 2E 46 3 bytes 6 cycles
Absolute indexed with X 3E 62 3 bytes 7 cycles
Zero page 26 38 2 bytes 5 cycles
Zero page indexed with X 36 54 2 bytes 6 cycles

ROR - Rotate right

The contents of the specified location or the ACCUMULATOR are shifted right by one bit.

The CARRY bit is shifted into bit 7 and the previous bit O is shifted into the CARRY bit.

Affects SIGN, CARRY and ZERO bits.

Codes:

ACCUMULATOR 6A 106 1 byte 2 cycles
Absolute 6E 110 3 bytes 6 cycles
Absolute indexed with X 7E 126 3 bytes 7 cycles
Zero page 66 102 2 bytes 5 cycles
Zero page indexed with X 76 118 2 bytes 6 cycles

SBC - Subtract with carry

The operand data is subtracted from the ACCUMULATOR. If the CARRY bit is initially

cleared, then a further ' 1 ' is subtracted from the result. The final result is stored in the

ACCUMULATOR. If a borrow occurs during the subtraction, the CARRY bit is cleared to

0, otherwise it is set to 1.

Affects SIGN, CARRY and ZERO bits.

Codes:

The 6502 microprocessor

215

Immediate E9 233 2 bytes 2 cycles
Absolute ED 237 3 bytes 4 cycles
Absolute indexed with X FD 253 3 bytes 4 cycles
Absolute indexed with Y F9 249 3 bytes 4 cycles
Zero page E5 229 2 bytes 3 cycles
Zero page indexed with X F5 245 2 bytes 4 cycles
Indirect indexed with Y F1 241 2 bytes 5 cycles
Indexed indirect with X E1 225 2 bytes 6 cycles

STA - Store the ACCUMULATOR contents

The contents of the ACCUMULATOR are stored in the specified memory location. The

SIGN, CARRY and ZERO bits are not affected.

Codes:

Absolute BD 189 3 bytes 4 cycles
Absolute indexed with X 9D 157 3 bytes 4 cycles
Absolute indexed with Y 99 153 3 bytes 4 cycles
Zero page 85 133 2 bytes 3 cycles
Zero page indexed with X 95 149 2 bytes 4 cycles
Indirect indexed with Y 91 145 2 bytes 5 cycles
Indexed indirect with X 81 129 2 bytes 6 cycles

STX - Store the X-INDEX contents

The contents of the X-INDEX are stored in the specified memory location. The SIGN,

CARRY and ZERO bits are not affected.

Codes:

Absolute 8E 142 3 bytes 4 cycles
Zero page B6 182 2 bytes 3 cycles
Zero page indexed with Y 96 150 2 bytes 4 cycles

STY - Store the Y-INDEX contents

The contents of the Y-INDEX are copied into the specified memory location. The SIGN,

CARRY and ZERO bits are not affected.

Codes:

Absolute 8C 140 3 bytes 4 cycles
Zero page 84 132 2 bytes 3 cycles
Zero page indexed with X 94 148 2 bytes 4 cycles

Part 2 Jump and branch instructions

None of the branch or jump instructions has any affect on the SIGN, CARRY or ZERO

bits. Each branch instruction takes 2 cycles if it is not obeyed. If it is obeyed, it takes 3

cycles, plus one further cycle if a page boundary is crossed.

BCC (if the CARRY bit is 0) 90 144 2 bytes
BCS (if the CARRY bit is 1) B0 176 2 bytes
BEQ (if the ZERO bit is 1) F0 240 2 bytes

The BBC microcomputer in science teaching

216

BNE (if the ZERO bit is 0) D0 208 2 bytes
BMI (if the SIGN BIT is 1) 30 48 2 bytes
BPL (if the SIGN BIT is 0) 10 16 2 bytes
JMP - Jump to operand address 4C 76 3 bytes 3 cycles
JSR - Jump to subroutine 20 32 3 bytes 6 cycles
RTS - Return from subroutine 60 96 1 byte 6 cycles
BRK - Break 00 0 1 byte 7 cycles

Execution of the program stops and the PROGRAM COUNTER is loaded with the contents

of memory locations 65534 and 65535. A jump to this address then occurs. In the BBC

microcomputer control passes to a special routine (see page 464 of the guide).

Part 3 Internal microprocessor register instructions

CLC - Clear the CARRY bit 18 24 1 byte 2 cycles
SEC - set the CARRY bit 38 56 1 byte 2 cycles
CLI - Clear the INTERRUPT bit 58 88 1 byte 2 cycles
SEI - set the INTERRUPT bit 78 120 1 byte 2 cycles

The following transfer instructions copy the contents of the first register into the second.

The SIGN and ZERO bits are affected, but not the CARRY bit.

TAX - ACCUMULATOR to X-INDEX AA 170 1 byte 2 cycles
TAY - ACCUMULATOR to Y-INDEX A8 168 1 byte 2 cycles
TXA - X-INDEX to ACCUMULATOR 8A 138 1 byte 2 cycles
TYA - Y-INDEX ACCUMULATOR 98 152 1 byte 2 cycles

The following instructions increment or decrement the internal registers. The SIGN and

ZERO bits only are affected.

DEX - Decrement the X-INDEX CA 202 1 byte 2 cycles
DEY - Decrement the Y-INDEX 88 136 1 byte 2 cycles
INX - Increment the X-INDEX E8 232 1 byte 2 cycles
INY - Increment the Y-INDEX C8 200 1 byte 2 cycles

This list is not complete. Several instructions involving interrupts exist, but the BBC

microcomputer uses the interrupt system for its own purposes. It is difficult for another user

to construct his own interrupts because of conflicts. These instructions are thus not

described.

 There are also instructions involving decimal addition and subtraction. There is no point

in the user writing machine code programs involving these instructions, it is nearly always

easier to use BASIC and to pass the results to a machine code routine later.

The 6502 microprocessor

217

Number notation
Binary Decimal Hexadecimal
0000 0000 0 00
0000 0001 1 01
0000 0010 2 02
0000 0011 3 03
0000 0100 4 04
0000 0101 5 05
0000 0110 6 06
0000 0111 7 07
0000 1000 8 08
0000 1001 9 09
0000 1010 10 0A
0000 1011 11 0B
0000 1100 12 0C
0000 1101 13 0D
0000 1110 14 0E
0000 1111 15 0F
0001 0000 16 10
0001 0001 17 11
0001 0010 18 12
0001 0011 19 13
0001 0100 20 14
0001 0101 21 15
0001 0110 22 16
0001 0111 23 17
0001 1000 24 18
0001 1001 25 19
0001 1010 26 1A
0001 1011 27 1B
0001 1100 28 1C
0001 1101 29 1D
0001 1110 30 1E
0001 1111 31 1F
0010 0000 32 20
0011 0000 48 30
0100 0000 64 40
0101 0000 80 50
0110 0000 96 60
0111 0000 112 70
1000 0000 128 80
1001 0000 144 90
1010 0000 160 A0

The BBC microcomputer in science teaching

218

1011 0000 176 B0
1100 0000 192 C0
1101 0000 224 D0
1110 0000 232 E0
1111 0000 240 F0
1111 1111 255 FF

Solutions to problems

The following are not necessarily the only solutions. The test of any solution is whether it

actually works. 6502 SIMULATION lets you try out your own ideas in 99 per cent of all

cases.

1 LDA #50
 STA 2
2 LDA 7
 STA 6
3 LDA #1
 STA 1
 LDA #2
 STA 2
 LDA #3
 STA 3
4 LDA #0
 STA 1
 STA 2
 STA 3
 etc.
5 LDY #5
 STY 1
 LDX 1
6 The contents of location 5 are the data contained in the memory at the

address number 5. This data can have any value from 0 to 255. The address
of location 5 is in fact 5 (the fifth address).

7 Data write: the data is copied from the ACCUMULATOR, or the X- or Y-INDEX
into the addressed location in memory.
Data read: the data in a memory location is copied into the ACCUMULATOR,
or the X- or Y-INDEX. LDA 2 is a data read instruction

8 (i) 512
 (ii) 3082
 (iii) 10440
 (iv) 20480
 (v) 60000

The 6502 microprocessor

219

9 (i) 0,1
 (ii) 0,4
 (iii) 1,16
 (iv) 64,31
 (v) 255,255
10 CLC
 LDA #45
 ADC #54
11 CLC
 LDA 4
 ADC 5
 STA 3
12 LDA #194
 STA 1
 LDA #1
 STA 2

 LDA #28
 STA 3
 LDA #2
 STA 4

 CLC
 LDA 1
 ADC 3
 STA 5
 LDA 2
 ADC 4
 STA 6
13 LDA #225
 STA 1
 LDA #100
 STA 2

 CLC
 LDA 1
 ADC 2
 STA 3
 LDA #0
 ADC #0
 STA 4
14 LDA #232
 STA 5
 LDA #3
 STA 6

The BBC microcomputer in science teaching

220

 CLC
 LDA 5
 ADC #1
 STA 5
 LDA 6
 ADC #0
 STA 6
15 32768 + 32768
 32769 + 32767
 32770 + 32766
 32771 + 32765
 etc.
16 SEC
 LDA #25
 SBC #25
17 LDA #15
 STA 1
 LDA #45
 STA 2

 SEC
 LDA 1
 SBC 2
 STA 3
18 LDA #15
 STA 1 Place the number
 LDA #3 in the stores
 STA 2
 CLC
 LDA 1
 ADC 1
 STA 3 Add the number
 LDA 2 to itself
 ADC 2
 STA 4

 SEC
 LDA 3
 SBC 1
 STA 3 Subtract the first
 LDA 4 number, hopefully
 SBC 2 leaving the same
 STA 4 number in both stores.

The 6502 microprocessor

221

19 LDA #0
 STA 1
 STA 2
 SEC
 LDA 1
 SBC #1
 STA 1 The result is 255,255
 LDA 2 the two-byte
 SBC #0 equivalent of -1.
 STA 2
20 5
 85 is 0 1 0 1 0 1 0 1
 45 is 0 0 1 0 1 1 0 1
21 85 AND 45 is 5
22 85 OR 45 is 125
23 85 EOR 45 is 120
24 LDA 5
 AND #249
 STA 5
25 LDA 5
 ORA #127
 STA 5
26 10000...the last JMP instruction
27 A crash; the program continually jumps back to repeat itself (just like 100

GOTO 100 in BASIC).
28 BNE —9 causes a branch back to line 16209, thus omitting the CLC

instruction. This would cause an error if the CARRY bit had been set, but there
is no danger of that here, so the result will be the same as with BNE
-10.

 BCC -10 will cause about eighty-five repeats of the loop, since the CARRY bit
will not become set until the addition exceeds 255. The DEY instruction has no
effect on the CARRY bit.

The BBC microcomputer in science teaching

222

7 Assembly language programming

 'If you want to get somewhere else, you must run at

 least twice as fast as that!'

 (Lewis Carroll, Through the Looking Glass)

Microcomputers are not designed for running machine code programs in the same way that

they are for BASIC. There are generally more problems in entering, saving, loading and

running such programs. In particular, machine code programs contain no error checking

procedures like BASIC. If you ask the microcomputer (in BASIC) to GOTO a non-existent

line, it will stop and tell you that this is not possible. If you tell a

microprocessor to JMP to the wrong address, it will still jump and may cause a crash. This

may mean that you lose all control of the machine and have to reset to regain control.

 Crashes are quite common in machine code programming. Fortunately, the BBC

microcomputer can recover from such events without loss of program in most cases. The

BREAK key will usually regain control over the microprocessor. Then, if OLD is typed, the

original program will usually be restored too. The exceptions are when the crash has written

rubbish into the part of memory used by BASIC. The message 'Bad program' might then

appear, so that it has to be reloaded. This is not a disaster provided you saved the program

on cassette tape or disk before it was run.

Machine code graphics

Machine code graphics give a particularly good introduction to machine code programming

in general, as well as being important in their own right. The screen gives a visible record

of the contents of the memory locations, so direct observations on the course of the program

can be made. In Chapter 2 we looked at BASIC methods of making the *-character move

around the screen. We shall now study how to do this in machine code.

 A program to place 40 *-characters along the top line of the screen (in MODE 7) is

relatively simple. To begin with we write it in the way we used in Chapter 6.

 LDX #0 ;first screen position
 LDA #42 ;get value for *-character
.next STA &7C00,X ;place * in screen position
 INX
 CPX #40 ;All positions done?
 BNE -8 ;No, do next position
 RTS ;Yes, so finish

Assembly language programming

223

This now has to be converted into the binary codes that the microprocessor understands.

With most other microcomputers there are three ways of doing this, two of which involve

hand compilation. Each mnemonic is looked up in a table and converted into the correct

decimal or hexadecimal code. Branch displacements or offsets must be carefully worked

out and actual addresses calculated and split into their high byte, low byte components.

Finally, the codes must be entered into the memory from BASIC. The BBC

microcomputer user is most fortunate in having an assembler to do this instead and

therefore can ignore hand compilation altogether.

Assembler

The BBC assembler allows a mnemonic program to be entered as part of a BASIC

program. Only those who have had to use microcomputers without an assembler can

appreciate the value of this. Its inclusion puts the BBC microcomputer designers into the

genius class.

 The method of using this assembler is shown below. Each instruction is preceded by a

line number, as in BASIC, but these numbers have no significance for the machine code

program itself; they are simply there as a programming aid, to allow the insertion of extra

lines, deletions or for listings, etc. You cannot GOTO any of these line numbers from

BASIC, nor JMP to them in machine code. In Chapter 6 our line numbers represented the

memory locations where the instructions (or rather their binary codes) were stored.

This is not true for the BBC assembler.

 This is how the 40-* program looks when listed in any MODE other than MODE 7. (In

MODE 7 the [and I brackets are printed as left and right arrows, also the backslash

character becomes the symbol for one half.)

 1 MODE 7
 2 HIMEM = &4000:REM RESERVE SPACE FOR MACHINE CODE
 PROGRAM
 3 FOR pass = 0 TO 3 STEP 3
1000 P% = &4000:REM START ADDRESS OF MACHINE CODE
 PROGRAM
1010 [OPT pass
1020 \ STARS
1030 \ THIS PROGRAM PLACES 40
 *-CHARACTERS
1040 \ ON THE TOP LINE OF THE SCREEN
1060
1070 .stars LDX #0 \ POINT TO FIRST POSITION
1080 LDA #42 \ GET *-CHARACTER
1090 .nxtpos STA &7C00,X \ SEND IT TO THE SCREEN
1100 INX
1110 CPX #40 \ ALL POSITIONS DONE?
1120 BNE nxtpos \ NO DO NEXT POSITION
1130 RTS \ YES SO FINISH

The BBC microcomputer in science teaching

224

1140]
1150 NEXT pass
1160 FOR T=1 TO 2000:NEXTT:REM Delay to emphasize the rapidity of
 the machine code routine
1190 CLS
1200 CALL stars

There are several points to be noted about this listing. Firstly, line 1010 sets the program

counter (P%) to the desired starting address of the machine code routine. This is where the

machine code is placed when the program is run. This facility enables us to put different

parts of the program into different locations, particularly to keep tables apart from the

program. To prevent BASIC from competing with our machine code program, we tell

BASIC not to use any locations at or above HIMEM. Thus line 2 of the program sets

HIMEM to the desired limit for BASIC. This instruction must be placed very early in the

program, preferably immediately after setting the MODE. Care must also be taken not to

be too greedy, or BASIC will die of starvation! HIMEM = &4000 leaves BASIC with at

least eight kilobytes, which is enough for most purposes. It gives us fifteen kilobytes for

our machine code programs in MODE 7, at least six kilobytes in MODE 4, 5 and 6 and

practically nothing at all for the other modes (so if you want to use them with machine

code programs, you will need to set HIMEM lower still).

 BBC BASIC does not allow a variable (or label as it is called in this case) like nxtpos to

be used before it has been declared. In this particular program nxtpos is declared first and

afterwards line 1120 of the machine code routine makes reference to it, so there is no

problem. In the case of a forward branch, however, the label would be referred to before

being declared and the program would signal an error. This is prevented by making two

passes through the assembly listing, the first time with OPT 0 selected and the second time

with OPT 3 selected. OPT 0 allows the listing to be assembled but suppresses the error

messages caused by any such forward referencing. The first pass through the listing does,

however, assign addresses to the labels, so that during the second pass all labels can be

referenced without error. If P% is declared before entering the FOR...NEXT loop, BASIC

compiles the assembly language routine into two different places and this may cause

complications later. The format given above should therefore be adhered to every time.

 Note too that the BASIC statement to run this machine code routine (CALL stars) is

reached after the machine code has been assembled. It is more usual to have such CALLs

at the start, in which case the assembly language routine could be placed as a subroutine at

the end of the program and compiled from a GOSUB at the beginning. Most of the

programs to be described later are like this.

 Because of the peculiar nature of the BBC microcomputer screen memory, machine

code graphics routines should be called after clearing the screen with CLS. If this is not

done, then the address &7C00 may not be at the top of the screen, and the result will be

rather different from that expected. It can be seen that it is not necessary to calculate the

branch displacement (offset) in line 1 120. The place in the program to where we intend to

branch is already labelled '.nxtpos'

Assembly language programming

225

We simply state BNE nxtpos and leave the assembler to work out the offset for us. If the

branch exceeds the limits of —128 to + 127, the assembler will tell us of this error during

pass 3.

 Note, finally, the ability to put comments into the source program. These must be placed

after the backslash (\) and they behave just like BASIC REM statements. The

microprocessor ignores them, but they are invaluable for explaining how the program works.

This is essential, not only for others, who may wish to read the program to see how it works

but also for the programmer; it is incredible how incomprehensible an undocumented

program becomes after even a few weeks. Note that the backslash is only essential if the

comment is the only thing on a particular line. After an instruction it is not always needed -

if there is a space between the operand and the comment and if the comment begins with an

alphabetic character then all is well.

 When this program is run, it first compiles the assembly language part (between the []

brackets) into machine code and stores these codes in the memory starting at location &4000

(as we instructed in line 1010). During OPT 3 the assembled routine is printed on the screen

like this:

>RUN
4000 OPT pass
4000 \ STARS
4000 \ THIS PROGRAM PLACES 40 *-CHARACTERS
4000 \ ON THE TOP LINE OF THE SCREEN
4000
4000 A2 00 .stars LDX#0 \POINT TO FIRST POSITION
4002 A9 2A LDA#42 \ GET *-CHARACTER
4004 9D 00 7C00 .nxtpos STA &7C00,X \SEND IT TO SCREEN
4007 E8 INX
4008 E0 28 CPX#40 \ALL POSITIONS DONE?
400A D0 F8 BNE nxtpos \NO DO NEXT POSITION
400C 60 RTS \YES SO FINISH

The mnemonic instructions and comments are unchanged, but now they are preceded by

new sets of numbers. The first numbers (4000 etc.) are the memory locations where the

machine codes for the instructions are now placed. This is exactly the same as in 6502

SIMULATION. Because some instructions take two bytes and others take three bytes, these

memory locations are apparently not consecutive, but they are. Note that these numbers are

in hexadecimal.

 The second set of numbers are the codes themselves, also in hexadecimal. Since the BBC

assembler does all the work for us, you need not bother with these, but spare a thought for

those who still have to compile programs by hand. They have to look up each instruction

code and work out each branch offset with pencil and paper. What lucky We are still,

however, making very little use of the power of the assembler. Here is a people we are!

better version of STARS:

The BBC microcomputer in science teaching

226

 1 MODE7
 2 HIMEM=&4000:REM RESERVE SPACE FOR MACHINE CODE
 PROGRAM
 3
 900 char = 42
 910 screen = &7C00
 920 max = 40
 930
 1000 FOR pass=0 TO 3 STEP 3
 1010 P%=&4000:REM START ADDRESS OF MACHINE CODE
 PROGRAM
 1020 [OPT pass
 1030 \BETTER STARS
 1040 \THIS PROGRAM PLACES 40
 *-CHARACTERS
 1050 \ON THE TOP LINE OF THE
 SCREEN
 1060
 1070 .charput LDX#0 \POINT TO FIRST POSITION
 1080 LDA#char \GET *-CHARACTER
 1090 .nxtpos STA screen,X \SEND IT TO THE SCREEN
 1100 INX
 1110 CPX#max \ALL POSITIONS DONE?
 1120 BNE nextpos \NO DO NEXT POSITION
 1130 RTS \YES SO FINISH
 1140]
 1150 NEXTpass
 1160 FORT=1TO2000:NEXTT
 1190 CLS
 1200 CALL charput

This ability to use symbols, as they are called, to refer to different quantities is of no

advantage in a short program. But in a long program we might want to refer to 'char' many

times. Later, we might wish to replace this by a different character. It would be time

consuming to go through the whole program, changing every 42 to 81 say, but a single

change to line 900 (char = 81) achieves the same end. The same is true about the screen

position for these characters (screen) and the number to be placed there (max).

Direct coding

There are other ways of entering binary codes into memory for the BBC microcomputer.

One of these is via BASIC and is particularly useful for loading tables into the memory.

Suppose, for example, you wanted to use the sine functions of numbers from 0 to 255 in a

machine code program. It is easy to do this from BASIC with the following routine:

 10 FOR i =0 TO 255
 20 ?(&4200+i) = 128 + 127 * SIN(i*PI/128)
 30 NEXT i

Assembly language programming

227

This constructs a sine table of one cycle stored in 256 successive bytes of memory. The

numbers can then be accessed from this table in machine code. The number of degrees being

looked up in the table is first loaded into the X-INDEX and the sine value retrieved with

 LDA &4200,X

We shall see several examples of this technique in later programs. In particular it is used in

the wave motion programs and the large digits routine described later in this chapter. This

method can also be used for entering machine code routines directly into the memory. The

program above could be written as follows:

 10 FOR location = &4000 TO &400C
 20 READ code
 30 ?location = code
 40 NEXT location
 50 DATA 162,0,169,42,157,0,124,232,224,40,208,248,96
 100 CLS
 200 CALL &4000

Apart from using up less memory (of doubtful value) the only advantage of this is that it

hides your program from others. However, a determined poacher could easily load it and

disassemble it to see how it works. This technique is thus only of historical interest now.

REACTION TIMER (6) uses this technique because that program was written before I

learned how to do forward referencing by making two passes through the assembler.

 A DISASSEMBLER (37) is listed in the Appendix for those who wish to use it for the

purposes mentioned above. Its main application is for investigating the operating system of

the BBC microcomputer itself. This may reveal several possible ways of making use of the

operating system in user-written programs, particularly its keyboard handling and display

routines. However, since the user guide is so helpful in providing these details, I am not sure

that it will yield much new information.

Description of the 40-* program

The initial line numbers are used to refer to particular lines. Lines 900, 910 and 920 declare

the values of the variables to be used in the assembly language program. Some of these are

decimal and some are hexadecimal, but BASIC will take care of this. Line 1070 is the start

of the assembly language program, so it is given its name with the label ' .charput'. LDX #0

sets up the X-INDEX as a pointer, initializing it to the first screen position (0). In line 1080

the ACCUMULATOR is loaded with the screen value of the character to be displayed — in

this case the *-character. The # symbol in front of the symbol 'char' shows that it is the value

of char that is loaded (that is, char is not an address). The instruction LDA char means 'load

the ACCUMULATOR from the address called char'. This difference between immediate

and memory addressing is exactly as described in Chapter 6, except that there we used

numbers instead of symbols.

 In line 1090 the value of char is sent to its screen position using the indexed address

mode; the value of the X-INDEX is added to the value of the operand, which is called

The BBC microcomputer in science teaching

228

screen. This value is an address (which was chosen in line 910). Line 1090 is labelled

'nxtpos' so that a BRANCH can be made to it later.

 Next, in line 1100, the X-INDEX is incremented to point to the next adjacent screen

position. Line 1110 compares the new value of the X-INDEX with the maximum allowable

value ('max', which was initially set to 40, because there are forty columns on the screen).

If the two values are equal, then the routine finishes, returning control to BASIC with RTS.

But this only happens after forty *s have been printed. Initially the X-INDEX will be smaller

than max, in which case the branch condition will succeed and the program counter will go

back eight bytes to the label 'nxtpos'. The value of char will next be stored in screen + l,

then, during the next loop in screen + 2 and so on. This will happen a total of forty times,

giving a whole row of *-characters.

Branching

In Chapter 6 we had a brief look at branching, but this is such a vital concept that we must

now study it more deeply. A branch is not a direction to jump to a particular place, it is more

like a jump over a particular number of bytes. The numerical operand of a branch instruction

is the number of bytes to be missed out. This branching, or skipping as it is also called, can

occur in the forward direction or in the reverse direction. The purpose of a BRANCH is to

perform the equivalent of IF...THEN...ELSE in BASIC. In the above

program we required:

IF the X-INDEX is not equal to max, THEN go back to nxtpos, ELSE return to BASIC.

With this sort of BRANCH the ZERO bit in the STATUS register is inspected and whether

the branch is obeyed (succeeds) or whether the branch is ignored (fails) depends upon

whether the ZERO bit is set or cleared. We have already mentioned the STATUS register

bits that are used in this way, they are as follows:

 Set to 1 by Cleared to 0 by

The CARRY bit addition, or
subtraction,
or shifting

addition, or
subtraction,
or shifting

The SIGN bit Negative
result

Positive
result

The ZERO bit Zero result

Non-zero result

By 'result' in this context is meant the result of any operation, whether loading, storing,

adding or subtracting to the ACCUMULATOR, the X-INDEX or the Y-INDEX. The only

exceptions are INCREMENT and DECREMENT, which do not affect the CARRY bit,

although these operations do affect the other two bits.

 Here are the more useful 6502 BRANCHING operations:

Assembly language programming

229

BEQ BRANCH IF EQUAL TO ZERO (if the ZERO bit is set to 1)
BNE BRANCH IF NOT EQUAL TO ZERO (if the ZERO bit is cleared)
BCC BRANCH IF CARRY BIT IS CLEARED
BCS BRANCH IF CARRY BIT IS SET
BPL BRANCH IF PLUS (if the SIGN bit is cleared)
BMI BRANCH IF MINUS (if the SIGN bit is set)

 The OPERAND of a branch instruction is the number of bytes of the machine code

program to be skipped over. This is not difficult to calculate, but it is far more convenient

to use labels. There will not then have to be a recalculation every time that extra instructions

are inserted. The only problem is that forward branches cannot occur over more than 127

bytes. Backward branches cannot go more than 128 bytes. This means that the position to

be branched to must not be too far ahead nor too far behind the position of the branch

instruction. If this happens error 1 (out of range) will occur during the second pass through

the assembler.

 This restriction is overcome by using a JMP instruction. For example, the 40-* program

might contain a large number of extra instructions, making it impossible to branch back to

nxtpos. The relevant part might look like this:

 1070 .charput LDX #0
 1080 LDA #char
 1090 .nxtpos STA screen,X
 1100 (many more instructions here)
 1200
 1300
 1400
 1500
 1600
 1700
 1710 INX
 1720 CPX #max \ALL POSITIONS DONE?
 1730 BEQ done \YES SO FINISH
 1740 JMP nxtpos \NO DO NEXT POSITION
 1750 .done RTS

Because the JMP can be to anywhere in the memory, this structure will always work.

Program 26 (MOLECULAR MOTION) shows several examples where this has become

necessary.

 One advantage of a BRANCH over a JMP is that the latter must refer to a particular place

in the memory. Once the assembly language routine has been compiled, the position of this

particular place cannot be changed. A JMP operand refers to one particular memory

location, so, if the compiled machine code routine is relocated (put) somewhere else, say

beginning at location &5000, then the JMP operand will have to be recalculated and

changed. Since the assembler does this automatically you rarely need to bother about it in

normal programs. You would tend to use JMP instructions for unconditional jumps and

BRANCH instructions otherwise.

The BBC microcomputer in science teaching

230

But, if you ever intend to burn your program into EPROM (see Chapter 9) all JMP operands

will need to be changed to fit the new addresses. In such instances unconditional jumps are

better made by setting the correct STATUS bit to a known value and branching accordingly.

For example, the 40-* program could be written as follows:

1070 .charput LDX #0 \POINT TO FIRST POSITION
1080 LDA #char \GET * CHARACTER
1090 .nxtpos STA screen,X \SEND IT TO SCREEN
1100 INX
1110 CPX #max \ALL POSITIONS DONE ?
1120 BEQ done \YES SO FINISH
1130 CLC
1140 BCC nxtpos \DO NEXT POSITION
 (UNCONDITIONAL BRANCH)
1150 .done RTS

Line 1130 now contains the CLC instruction (clear the CARRY bit) and this is followed by

BCC (branch if the CARRY bit is cleared). Well of course the CARRY bit is cleared, so this

condition will always succeed! This technique implements the unconditional branch found

on some other microprocessors (e.g. the Z80). In the previous version of this program we

achieved the same result by a simple JMP instruction. The only advantage of this second

method is that the BRANCH occurs over the required number of bytes, irrespective of where

the whole routine is located. It can thus be placed anywhere in the memory, in particular, it

can be burned into an EPROM without any changes. Note, however, that this only works if

the number of bytes skipped over is less than 128.

Screenfill

The X-INDEX can only point to screen positions that are no more than 255 away from the

address called 'screen'. How then can we fill the whole screen with *-characters? The

solution lies in being able to change the value of screen while the program is being run. This

is done in the following self-modifying program:

 1 MODE7
 2 HIMEM = &4000:REM RESERVE SPACE FOR MACHINE CODE
 PROGRAM
 3
 900 star = 42
 910
1000 FOR pass = 0 TO 3 STEP 3
1010 P% = &4000:REM START ADDRESS OF MACHINE CODE
 PROGRAM
1020 [OPT pass
1030 \ STARS
1040 \ THIS PROGRAM FILLS THE SCREEN
1050 \ WITH STARS
1100 .begin LDA#&00 \SET OPERAND TO LOW BYTE

Assembly language programming

231

1110 STA &400F \ADDRESS
1120 LDA #&7C \SET OPERANDTO HIGH BYTE
1130 STA &4010 \ADDRESS
1140 LDX #4 \FOUR PAGES TO BE SENT
1150 LDA #star \GET *-CHARACTER
1160 .nxtpos STA &FFFF \SEND TO SCREEN
1170 INC &400F \DO NEXT POSITION
1180 BNE nxtpos \ALL DONE ON THIS PAGE?
1190 INC &4010 \YES TURN TO THE NEXT PAGE
1200 DEX \ALL PAGES DONE
1210 BNE nxtpos \NO DO NEXT PAGE
1220 RTS \FINISH
1230]
1300 NEXT pass
1350 CLS
1360 FOR T=0 TO 2000:NEXTT
1400 CALL begin

The effect of this program is quite electrifying, a thousand stars hit the screen

simultaneously! A picture, or screenful of text could be flashed on and off the screen just as

quickly (as in FAST SCREEN TRANSFER, 36). we now have to see how it works. To aid

this discussion the compiled routine is reproduced in the form that the assembler displays it,

but with the comments omitted.

4000 A9 00 .begin LDA#&00
4002 8D 0F 40 STA&400F
4005 A9 7C LDA#&7C
4007 8D 10 40 STA&4010
400A A2 04 LDX#4
400C A9 2A LDA#star
400E 8D FF FF .nxtpos STA&FFFF
4011 EE 0F 40 INC&400F
4014 D0 F8 BNE nxtpos
4016 EE 10 40 INC&4010
4019 CALL DEX
401A D0 F2 BNE nxtpos
401C 60 RTS

The first task is to discover where the machine code program has stored the value of the

screen address operand. A look at the assembly listing indicates that the binary code for this

operand is placed in locations &400F and &4010. The numbers in the left column are where

the machine code instructions are stored in the memory, These are consecutive, because the

microprocessor will fetch each one in turn and execute it. The numbers in the next columns

are the hexadecimal machine codes that are placed into the successive memory locations by

the assembler. In a single column they look like this:

The BBC microcomputer in science teaching

232

4000 A9
4001 00
4002 8D
4003 0F
4004 40
4005 A9
4006 7C
4007 8D
4008 10
4009 40
400A A2
400B 04
400C A9
400D 2A
400E 8D
400F FF (low byte of screen address)
4010 FF (high byte of screen address)
4011 EE
4012 0F
4013 40
4014 D0
4015 F8
4016 EE
4017 10
4018 40
4019 CA
401A D0
401B F2
401C 60

Location &400F contains the low byte of the operand address for screen and location &4010

contains the high byte address. To begin with these locations contain &FF and &FF which

is clearly the wrong address altogether. When the routine is executed (CALL begin) the

routine first places in location &400F and then puts &7C in location &4010. Thus when the

program reaches the '.nxtpos STA screen' instruction, the operand address has been correctly

set to &7C00.

 Later the low byte of this address is incremented to to point to the next screen location at

&7C01 and the routine returns to nxtpos once again. This is repeated a total of 256 times

until location &400F contains again. At this point the first 'BNE nxtpos' instruction fails and

the high byte of the screen position is incremented to &7D to point to the next page of 256

bytes. This continues for a total of four pages, counted by the X-INDEX. Throughout the

execution of this routine the program thus changes itself, so that it contains a different screen

address every time.

 Having now explained how to do it, we shall now abandon this technique in favour of a

Assembly language programming

233

better one! There are two reasons for this. Firstly this routine would be tied forever to RAM,

it would never be possible to burn it into EPROM, because locations &400F and &4010 (or

whatever they became) could not then be altered whenever the routine is executed.

Secondly, and of very great importance, programs that change themselves are very difficult

to interpret later. Explaining what a program does is as important as doing it in the first

place, because no program is ever absolutely error-free, and you may wish to return to it

weeks or even years later to change it. A properly laid out and documented program will

save many hours of frustration later.

 There are instances where self-modifying programs give the best results, particularly if

speed is at a premium. The SCROLL routine described later in this chapter is a good

example of this, so it is worth noting the technique. Be very sparing in its use, however, or

you will make your programs almost unintelligible.

Indirect-indexed addressing

If we do not allow ourselves to use the self-modifying technique, how can we address all

1000 screen positions? The solution lies in a new and very powerful addressing mode that

we have not yet mentioned indirect-indexed addressing. This mode uses only page zero

addresses and only works with the Y-INDEX. For example,

 LDA (&80),Y

The operand consists of a single byte, which is an address on page zero of the memory. This

address does not contain data, but the low byte of another address, called the interim

address. The adjacent location on page zero (which is location &81) contains the high byte

of this interim address. The microprocessor gets the two parts of this interim address and

uses them to calculate the final address it is looking for.

 An analogy may help to explain what is going on. If a postman delivers a letter to a

particular house in a street, that is absolute addressing. If, however, he does not know the

final address, he might take it to the corner shop and ask, 'Where should I deliver this?'. At

the corner shop (the page zero address in the mnemonic) the postman is told an interim

address which he could use to find the correct final address. This is the meaning of 'indirect'

, the corner shop contains information about the final address, it is not itself the final address.

In the corner shop the postman might be told, 'The house you want is five houses further

down than Mr Smith's'. In this analogy, Mr Smith's is the interim address. Note that the

interim address is in two parts, the low byte being in the zero page location specified by the

operand, while the high byte is in the next higher zero page location.

 It now remains to use this idea in conjunction with indexed addressing. The interim

address that has been collected from the zero page address is not the final address. To obtain

this, the value of the Y-INDEX is added to produce the required final address. A concrete

example should help to remove any remaining mystery:

 900 screen = 880: REM zero page address
 910 !screen = fix interim address
 920
 1000 [

The BBC microcomputer in science teaching

234

1100
1140 LDY #&19 \set the Y-INDEX to 25
1150 LDA #42 \Get screen value of *-character
1160 STA (screen),Y \Place character on screen
1170 RTS \Finish

Line 900 sets up two adjacent memory locations (&80 and &81) as the low byte and high

byte respectively of the zero page location we are calling 'screen'. The instruction in line

910 puts the correct interim address into the successive zero page locations and &81, (low

byte, high byte order). The ! operator actually puts four bytes into the four successive

locations &80 to &83.&00 goes into location &80 (the low byte of the screen address), &7C

goes into location &81 (the high byte of the screen address) and goes into &82 and &83.

The assembly routine contains an instruction to set the value of the Y-INDEX to 25 (hex

&19). The next instruction puts the screen value of the *-character into the

ACCUMULATOR and the next in line 1160 places this value where we want it on the

screen. Where is that?

 The microprocessor goes to locations &80 and &81 on zero page and gets the interim

address from there. Location &80 contains and location &81 contains &7C, so the interim

address is &7C00. The Y-INDEX contains &19 which is added to the interim address to

give the final address &7C19. This is the screen address where the *-character should

appear.

 We can now use this instruction to fill the whole screen with stars. The machine code

routine to do this follows. The screen consists of nearly four pages of memory (not quite

1024 bytes). This number is kept in a location called 'pages'. Indirect-indexed addressing is

used to place the * in the first position, then the Y-INDEX is incremented to point to the

next position and so on until the Y-INDEX reaches 256. This is, of course, the same as 0,

so BNE nxtpos (line 1150) finally fails. The page counter (X-INDEX) is then reduced by

one and the process repeats until all four pages have been done. The significant difference

between this program and the previous self-modifying version is that the screen address,

which is changed every 256 times, is now kept separate from the program itself. Even if the

above program were stored permanently in ROM, it would still work. When this program is

run, see how long it takes between the screen's going blank (CLS in line 1350) and the 1000

stars being printed. Again, it is virtually instantaneous.

 Screenfill

 1 MODE7
 2 HIMEM = &4000:REM RESERVE SPACE FOR MACHINE CODE
 PROGRAM
 3
 900 star = 42
 910 pages = 4:REM Number of pages to be sent
 920 screen = &80: REM Low/high bytes of interim address of screen
 930 !screen = &7C00
 940
 1000 FOR pass = 0 TO 3 STEP 3

Assembly language programming

235

1010 P% = &4000:REM START ADDRESS OF MACHINE CODE
PROGRAM
1020 [OPTpass
1030 \ STARS
1040 \ THIS PROGRAM FILLS THE SCREEN
1050 \ WITH STARS
1100 .begin LDX #pages \SET COUNTER TO 4 PAGES
1110 .nxtpage LDY #0 \POINT TO FIRST POSITION
1120 .nxtpos LDA #star
1130 STA (screen),Y \SEND IT TO SCREEN
1140 INY \MOVE TO NEXT POSITION - END OF
PAGE?
1150 BNE nxtpos \NO DO NEXT POSITION
1160 INC screen+1 \DO ANOTHER SCREEN PAGE
1180 DEX \ALL PAGES DONE?
1190 BNE nxtpage \NO DO NEXT PAGE
1200 RTS \FINISH
1210]
1300 NEXT pass
1310 FOR T=1 TO 2000:NEXTT
1350 CLS
1400 CALL begin

OS calls

We noted before, the dire warnings made to those who address memory directly, rather than

use the 'proper' methods. But as I pointed out then, there is no alternative, if you want fast

graphics. This point of view will now be justified. First, here is a BASIC program to carry

out the screenfill described above.

100 MODE7
110 FOR row = 0 TO 24
120 PRINT TAB(0,row);"**";
130 NEXT row

Next here is a BASIC version that uses the forbidden direct memory access (to illustrate

the principles).

100 MODE7
110 FOR I=&7C00 TO &7FE7
120 ?I=42
130 NEXT I

As you will see the second program is slower than the first and also it will not work when

a second processor is added to the BBC microcomputer. The addresses &7C00 to &7EF7

will not be the screen memory from the point of view of the second processor. Programs

The BBC microcomputer in science teaching

236

thus ought to be written using the operating system calls. Here is a machine code version

that obeys the BBC microcomputer user guide rules. Instead of accessing memory directly,

the stars are sent via 'oswrch', which is a routine located at &FFEE in ROM. The program

is fundamentally that on page 315 of the guide. The X and Y-INDEXES are acting only as

counters, they do not 'point' to the screen in any way.

 1 MODE7
 10 oswrch=&FFEE
 20 DIM P% 100
 30 [OPT0
 40 .start LDA#42
 50 LDX#4 \FOUR PAGES
 60 LDY#0 \256 BYTES PER PAGE
 70 .loop JSR oswrch
 80 DEY \DO NEXT POSITION
 90 BNE loop
100 DEX \DO NEXT PAGE
110 BNE loop
120 RTS
130]
200 CLS
210 CALL start

Load and run all three versions of this screenfill program. In the BASIC programs the screen

starts to fill straightaway. The machine code program has to be compiled first, which takes

half a second, and then the screen clears and the screenfill routine is called. It can be seen

that there is little to choose between any of these programs (the direct write to memory in

the second program is the slowest). Compared with the other two machine code routines

already discussed, these latter programs are positively snail-like. So if you want fast

graphics, you can forget about the OS calls.

Instant pictures

The screenfill routine can be used to paint instant pictures. The picture to be placed on the

screen is first drawn with the methods described in Chapter 2. It is then transferred to a

different part of the memory (say &7000 to &73E7) with the BASIC routine:

 1 HIMEM = &7000
 2
100 FORi= 0 TO 999
110 ?(i+&7000)=?(i+&7C00)
120 NEXT i

This program should be loaded beforehand and run to copy the contents of the screen

memory to the new locations. The following machine code routine will transfer the picture

back to the screen when it is called:

Assembly language programming

237

Flash

 1 MODE7
 2 HIMEM = &4000:REM RESERVE SPACE FOR MACHINE CODE
 PROGRAM
 3
 910 pages = 4: REM Number of pages to be sent
 920 screen = &80:REM Low/high bytes of interim address of screen
 930 !screen = &7C00
 940 source = &84:REM Low/high bytes of interim address of source
 950 !source = &7000
 960
1000 FOR pass = 0 TO 3 STEP 3
1010 P% = &4000:REM START ADDRESS OF MACHINE CODE
 PROGRAM
1020 [OPTpass
1030 \PAINT
1040 \THIS PROGRAM TRANSFERS A
 PICTURE
1050 \FROM &7000 UPWARDS TO THE
 SCREEN
1100.paint LDX # pages \SET COUNTER TO 4 PAGES
1110.nxpage LDY #0 \POINT TO FIRST POSITION
1120.nxtpos LDA (source),Y \GET BYTE
1130 STA (screen),Y \SEND IT TO SCREEN
1140 INY \MOVE TO NEXT POSITION - END OF
 PAGE?
1150 BNE nxtpos \NO DO NEXT POSITION
1160 INC screen + 1 \DO ANOTHER SCREEN PAGE
1170 INC source + 1
1180 DEX \ALL PAGES DONE?
1190 BNE nxpage \NO DO NEXT PAGE
1200 RTS \FINISH
1210]
1300NEXT pass
1350CLS
1400CALL paint

The technique used here also works with the high-resolution modes, except that it takes

much longer. An example is given in program 36, where the 'flashed' pictures are just big of

words. The same routine will also work with pictures, except that you rapidly run out

memory for storing the pictures.

Animation

By adjusting the starting position and the number of bytes transferred, the "flash' routine

The BBC microcomputer in science teaching

238

In MODE 4 can produce excellent animation for small pictures. If several different versions

of, say, an animal, are saved in successive blocks of memory, each one can be called in

succession, placed on the screen for a few centiseconds and then replaced with the next

picture. This is the traditional way of making cartoons and animated diagrams become

relatively easy with this technique. More usually, it is parts of pictures that are to be moved

to the screen in this way (for example the piston in the cylinder of a motor car, or a happy

face for reinforcement of a correct answer in a quiz program).

 Low resolution part-pictures can be transferred in the same way as described in Chapter

2, with two tables, one to hold the character (what) and the other to hold the relative place

for that character (where).

Engine

 1 MODE7
 2 HIMEM = &4000:REM RESERVE SPACE FOR MACHINE CODE
 PROGRAM
 10 GOSUB 900
 20
 100 REM LOAD DATA INTO TABLES
 110 max = 35
 120 FOR i = 1 TO max
 130 READ position
 140 ?(where + i) = position
 150 READ character
 160 ?(what + i) = character
 170 NEXT i
 180 DATA 0,32,1,252,2,252,3,32,4,32,5,32,6,32
 190 DATA 40,32,41,234,42,255,43,240,44,240,45,240,46,244
 191 DATA 80,32,81,234,82,255,83,255,84,255,85,255,86,255
 192 DATA 120,32,121,250,122,255,123,255,124,255,125,255,126,255
 193 DATA 160,32,161,32,162,79,163,32,164,32,165,79,166,32
 194
 200 REM SET UP SCREEN FOR GRAPHICS
 210 CLS
 220 FOR i = 31744 TO 32703 STEP 40
 230 ?i = 151
 240 NEXT i
 250 REM MOVE PICTURE
 260 FOR place = 1 TO 30
 270 !screen = !screen + 1
 280 CALL partpic
 285 FOR T = 1 TO 30:NEXT T:REM DELAY
 290 NEXT place
 300 END
 310

Assembly language programming

239

 900 REM assembly language subroutine
 910 max = 35 : REM number of characters
 920 screen = &80:REM Low/high bytes of interim address of screen
 930 !screen = &7CC9
 940 what = &7000
 950 where = &7100
 960
1000 FOR pass = 0 TO 3 STEP 3
1010 P% = &4000:REM START ADDRESS OF MACHINE CODE
 PROGRAM
1020 [OPTpass
1030 \ PAINT
1040 \ THIS ROUTINE TRANSFERS
 CHARACTERS
1050 \ FROM &7000 UPWARDS TO THE
 SCREEN
1060 \AT ADDRESSES DETERMINED BY
1070 \THE CONTENTS OF &7100 UPWARDS
1100 .partpic LDX #max \SET POINTER TO NUMBER OF
 CHARACTERS
1110 .nxchar LDY where,X \GET POSITION
1120 LDA what,X \GET CHARACTER
1130 STA (screen),Y \SEND IT TO SCREEN
1140 DEX \ALL CHARACTERS DONE?
1150 BNE nxchar \NO DO NEXT CHARACTER
1200 RTS \FINISH
1210]
1300NEXT pass
1400RETURN

It would be a simple matter to increment the contents of location &80 (screen) in machine

code to transfer the engine to its adjacent position. The inclusion of the blank character (32)

at the start of each line ensures that bits of the engine do not remain behind as it is moved

along. However, in machine code the movement would be much too rapid. Later we shall

discuss ways of slowing down a machine code routine, but for now it is easiest to do this

from BASIC; line 285 controls the speed of the engine.

Particle motion

One of the earliest applications of microcomputers in science was the use of fast machine

code animations to simulate wave motion and the movement of molecules etc. We have

already seen how the top line of the screen can be filled with the -character. Let us now look

at how the motion of this character may be achieved in machine code graphics. The obvious

way of achieving horizontal motion is to paint the character successively one

The BBC microcomputer in science teaching

240

screen position further to the right each time as we did in the BASIC program in

Chapter 2.

 The following program will place the *-character into the 40 contiguous positions at the

top of the screen. It is similar to the program discussed before, except that this time the Y-

INDEX is used as a pointer instead.

Stars

 1 MODE7
 2 HIMEM = &4000: REM RESERVE SPACE FOR MACHINE CODE
 PROGRAM
 3
 900 star = 42
 910 max = 40
 920 screen = &7C00:REM absolute address of screen
1000
1010 FOR pass = o TO 3 STEP 3
1020 P% = &40000:REM START ADDRESS OF MACHINE CODE
 PROGRAM
1030 [OPTpass
1040 \ STARS
1050 \ THIS PROGRAM PLACES 40
1110 \ ACROSS THE TOP OF THE SCREEN
1120 .stars LDY #0 \POINT TO FIRST POSITION
1130 .nxtpos LDA # star
1140 STA screen, Y \SEND IT TO SCREEN
1150 INY \MOVE TO NEXT POSITION
1160 CPY #max \END OF LINE ?
1200 BNE nxtpos \NO DO NEXT POSITION
1210 RTS \YES FINISH
1300 NEXT pass
1350 CLS
1400 CALL stars

When you run this program, you will not get motion but merely a set of stars. The reason is

not too hard to find, but it requires a little more knowledge about the microprocessor.

 Because so many things are happening in the microcomputer, everything is under the

control of the system clock, which beats away regularly at 500 nanosecond intervals (half a

microsecond). Single byte instructions require two machine cycles, so they take one

microsecond to be executed. If the operation requires an operand, then the execution time is

increased. Some instructions need one byte for the operand while others need two. An

example of a three byte instruction is STA &7COO (store to an absolute address). An

example of a two byte instruction is LDA *42 (load the number 42 immediately). Two byte

instructions are generally executed in three cycles, while three byte instructions take one

cycle longer (for the extra byte to be fetched and decoded). Thus it is easy to predict

Assembly language programming

241

how long a particular program will take. The whole routine to place 40 *-characters on the

screen takes 40 times 6 = 240 microseconds. From a human point of view this is

instantaneous, hence the absence of motion. The solution is obvious, we must find a means

of making the microprocessor waste time.

There is a single byte instruction in the 6502 set, which performs just this function; NOP

(no operation). It takes two cycles to execute and causes absolutely nothing else to happen.

Unfortunately, we are looking for a much longer delay than this and must look elsewhere.

The most efficient time wasting technique is to ask the microprocessor to count up to 256

every time before proceeding with the rest of its instructions. This is known as a delay loop.

Its use in BASIC is quite common:

100 FORT = 1 TO 1000:NEXT T

In machine code the simplest delay loop uses one of the indexes and since we are using the

Y-INDEX as a pointer, we shall have to use the X-INDEX instead. Here is a delay loop

routine:

 LDX #0 \Initialize X-INDEX
.LOOP INX \2 cycles

 BNE LOOP \3 cycles if successful
 \2 cycles otherwise

etc.

 The X-INDEX is initialized to 0. Then it is incremented and a test is made to see if it is

equal to zero. If it is not equal to zero, then the PROGRAM COUNTER jumps back to the

second instruction, labelled 'loop'. When the X-INDEX is incremented on the 256th time, it

becomes 0000 0000 and the looping is then terminated. The execution times for each

instruction are shown in the comment column, and it can be seen that this loop takes five

cycles per loop or 1279 cycles in total. Note: not 1280, which is 256*5, because on the last

loop, the branch condition is not successful, so the execution time is reduced by one cycle.

 An alternative way is to decrement the X-INDEX instead with DEX, which makes

absolutely no difference to this program, because it still requires 256 loops. However, if we

were counting 100 loops, then the decrement method would be advantageous as we shall

see later.

 With either of these delay loops in the program, the time to place all forty *s on the screen

would be increased to around fifty milliseconds, which is still practically instantaneous to

us. Our delay loop will thus have to be extended, but we are already at the limit for the X-

INDEX. The solution is to make the microprocessor go round the inner delay loop again,

several times if necessary. This requires an outer loop and a loop counter to go with it. Since

we have now run out of internal registers in the microprocessor, the obvious choice is an

external memory location called temp. We could either increment this counter or decrement

it. The increment method would be:

limit = 100
LDA #0 \Initialize temp
STA temp

The BBC microcomputer in science teaching

242

.oloop LDX #0 \Initialize X-INDEX

.iloop DEX
 BNE iloop \Do inner loop 256 times
 INC temp
 LDA temp
 CMP #limit \All loops done?
 BNE oloop \No do next outer loop
etc.

The decrement method requires less code, since it removes the need to load temp and

compare it with the required limit each time. This time we load temp with a variable number

each time before starting the countdown. We use another location called count for this, since

its purpose is to count the number of inner delay loops to be executed each time. Initially

count can be chosen in BASIC before execution of the machine code program. The delay

routine thus becomes:

temp = &8C
count= &8D
.delay LDA count \Get outer loop count
STA temp \and keep in temporary store
.oloop LDX #0 \Set inner loop counter
.iloop DEX \All done ?
BNE iloop \loop No do the next inner loop
DEC temp \Yes. All outer loops done?
BNE oloop \No do the next outer loop
RTS \Yes, so finish

The number written into count before the routine is called can be varied from 1 to 255, thus

resulting in a delay each time of between about 0.5 ms and 150 ms. The total time needed

to place the forty *s on the screen can thus be varied from about 20 ms to a few seconds.

Longer delays than this are unnecessary, since the program would then be slow enough for

BASIC, but they could be achieved with an additional outer counting loop.

 How do we insert this delay routine into our machine code program? It could be fitted in

after the * has been sent to its screen position and before the pointer is incremented to the

next position, but there is a strong reason for not doing that. It is possible that the routine for

producing a delay will need to be used several times more and every time we use it, it will

have to be written out again. So a better technique is to place the delay loop in a separate

subroutine very much like GOSUB 5000 in BASIC. The mnemonic for this is JSR (jump

to subroutine) and the numeric code contains the address at which the subroutine starts.

The memory locations in the delay program have been chosen to run from the end of the

previous routine upwards and it too ends with RTS (return from subroutine).

 The * -fixing program that we started with must now be altered to take account of this

delay subroutine. In addition each star must be erased from the screen after it has been placed

there, to produce the illusion of motion. We do this by placing a blank character

Assembly language programming

243

(value 32) into each screen location soon after the * character. I say 'soon after' and not

'immediately after' because we want to leave the * long enough to be able to see it. The best

place is therefore after the delay subroutine as follows. The value for count is written directly

into its proper location from BASIC and this sets the speed at which the star moves across

the screen.

Moving star

 1 MODE7
 2 HIMEM = &4000: REM RESERVE SPACE FOR MACHINE CODE
 PROGRAM
 3
 900 star = 42
 910 blank = 32
 920 max = 40
 930 screen = &7C00:REM absolute address of screen
 940 temp = &8C
 950 count = &8D
 960
1000 FOR pass = 0 TO 3 STEP 3
1010 P% = &4000:REM START ADDRESS OF MACHINE CODE
 PROGRAM
1020 [OPTpass
1030 \STARS
1040 \THIS PROGRAM MOVES A STAR
1050 \ACROSS THE TOP OF THE SCREEN
1110 .starmv LDY #0 \POINT TO FIRST POSITION
1120 .nxtpos LDA #star
1130 STA screen,Y \SEND IT TO SCREEN
1140 JSR delay \WAIT A BIT
1150 LDA #blank
1160 STA screen,Y \SEND IT TO SCREEN
1170 JSR delay \WAIT A BIT
1180 INY \MOVE TO NEXT POSITION
1190 CPY #max \END OF LINE?
1200 BNE nxtpos \NO DO NEXT POSITION
1210 RTS \YES FINISH
1215
1220 .delay LDA count \GET OUTER LOOP COUNT
1230 STA temp \AND KEEP IN TEMPORARY STORE
1240 .oloop LDX #0 \SET INNER LOOP COUNTER
1250 .iloop DEX \ALL DONE?
1260 BNE iloop \NO DO THE NEXT INNER LOOP
1270 DEC temp \ALL OUTER LOOPS DONE?
1280 BNE oloop \NO DO THE OUTER LOOP

The BBC microcomputer in science teaching

244

1290 RTS \YES SO GO BACK
1300]
1310 NEXT pass
1350 CLS
1360 INPUT TAB(0,5) "ENTER SPEED (range 10 to 100) ";S
1370 ?count = 101 - S
1400 CALL starmv

 So far we have only considered what happens when the pointer to the next screen position

(the Y-INDEX) is increased. You can probably guess that if we were to decrease the pointer

instead, then the star would move backwards across the screen from right to left. The

instruction to decrement the Y-INDEX is just DEY, and when executed, the Y-INDEX is

reduced by 1 and points to the previous screen position, rather than the next one.

 What we shall do is wait until the star reaches the fortieth screen position and then, instead

of finishing with the RTS as at present, we shall decrement the Y-INDEX successively until

it reaches the beginning again. We can easily detect when it gets there, because the pointer

will become zero. The BNE condition will succeed until the Y-INDEX reaches zero, and

then it will fail, and we can stop the program at that point. The extra instructions to do this

are listed below, starting from the location where they are different from the previous listing.

1201 DEY \MOVE TO END OF LINE AGAIN
1202 .nxtrev LDA #star
1203 STA screen,Y \SEND IT TO SCREEN
1204 JSR delay \WAIT A BIT
1205 LDA #blank
1206 STA screen,Y \SEND IT TO SCREEN
1207 JSR delay \WAIT A BIT
1208 DEY \MOVE TO NEXT POSITION
1209 BNE nxtrev \DO NEXT POSITION UNLESS AT END

Instead of a return to BASIC in line 1210, a BRANCH to the start of the program will keep

the star in continuous motion. But how then would we ever leave this program? It would

continue for ever until the BREAK key is pressed and this is not an elegant way to finish. A

better way is to look at the keyboard to see if any key is being pressed and, if so, to return

to BASIC with RTS. If this keyboard routine is placed at the end of the main program it will

only be effective when the star reaches the left side of the screen. A better way would be to

place the keyboard routine inside the delay routine so that the keyboard will be checked

more often. Unfortunately, this means that we cannot then immediately return to BASIC

with RTS, because we are still in a subroutine. We must first pull two bytes off the STACK

to get at the BASIC return address. The keyboard causes the CA2 line of the keyboard VIA

to trigger a flag, which is sensed at the location &FE4D. The following additional sequence

will check if a key is being pressed and, if so, will return to BASIC:

Assembly language programming

245

1281 LDA &FE4D \GET FLAG REGISTER
1282 AND #1 \MASK TO GET CA2 FLAG
1283 BNE finish \FINISH IF IT IS SET
1284 RTS \CARRY ON IF NO FLAG
1285 .finish PLA \PULL STACK TO FIND THE
1286 PLA \RETURN ADDRESS TO BASIC
1287 RTS

With this keyboard sensing routine the star can now bounce back and forth until you stop it

by pressing the SPACE key. At some speeds the motion of the particle is rather jerky

because the screen refresh rate is out of synchronization with the display of the particle.

There ought to be a way of preventing this by maintaining control over when the screen is

refreshed, but I have yet to discover how. In the interim period just use those speeds that

produce the smoothest motion (70 is very good).

Molecular motion

Now we can start to move the *-character all over the screen as we did in Chapter 2, but this

time with machine code. First, let us consider a single molecule:

 1 MODE 7
 2 HIMEM = &4000
 10 GOSUB 10000:REM ASSEMBLY LANGUAGE ROUTINE
 100 REM MOTION OF A MOLECULE
 130 CLS
 140 PROCwalls
 150 INPUT " Temperature (range 1 to 10) " S%
 160 IF S%>10 OR S%<1 THEN 130
 165 LET S% = 15-S%
 170 ?count = S%:?tptr = S%
 190 ?oposlo = 32500 MOD 256
 191 ?oposhi = 32500 DIV 256
 192 ?drtn = 215
 195 PRINT TAB(3,0); Press SPACE to alter temperature"
 200 CALL onemol
 205 IF INKEY$(0) = " "THEN 130
 210 GOTO 200
 220
5000 DEF PROCwalls
5010 REM DRAW WALLS
5020 REM LEFT SIDE IS GRAPHICS WHITE CHARACTER (151)
5030 REM LEFT WALL IS CHARACTER 234
5040 REM RIGHT WALL IS CHARACTER 181
5050 FOR 32064 TO 32083 STEP 40
5060 ?I = 151:?(I + 1) = 234:?(I + 39) = 181
5070 NEXT I
5080

The BBC microcomputer in science teaching

246

 5090 REM TOP SIDE IS CHARACTER 240
 5100 REM BOTTOM SIDE IS CHARACTER 163
 5110 FOR I = 32065 TO 32103
 5120 ?I = 240
 5130 ?(I + 640) = 163
 5140 NEXT I
 5150 ENDPROC
 5160
10000 REM MOLECULE ASSEMBLY LANGUAGE ROUTINE
10010
10020 oposlo = &70
10030 oposhi = &71
10040 nposlo = &72
10050 nposlo = &73
10060 tptr = &74
10070 drtn = &75
10080 count = &76
10220
11000 FOR pass = 0 TO 2 STEP 2
11010 P% = &-4000
11020 [OPT pass
11030 \ SINGLE MOLECULE ROUTINE
11040
11050 .onemol DEC count \IS COUNT AT ZERO?
11060 BEQ domol \YES CARRY ON
11065 RTS \NO RETURN TO BASIC
11070 .domol LDA tptr \BEGIN
11080 STA count \RESET COUNT
11090 LDY #0 \INITIALIZE POSITION POINTER
11100 CLC
11110 LDA oposlo \GET OLD POSITION
11120 ADC drtn \ADD DISPLACEMENT
11130 STA inposlo \KEEP RESULT
11140 LDA drtn \IS DISPLACEMENT NEGATIVE?
11150 BMI negdr \YES DO SUBTRACTION
11160 LDA oposhi
11170 ADC #0
11180 STA inposhi \KEEP RESULT
11190 BNE cont \UNCONDITIONAL BRANCH
11200.negdr LDA oposhi
11210 SBC #0
11220 STA inposhi
11230 .cont LDA (nposlo),Y \LOOK AT NEW POSITION
11240 CMP #32 \IS IT EMPTY?

Assembly language programming

247

11250 BNE wall \NO IT MUST BE THE WALL
11260 JMP empty \YES IT IS EMPTY
11270
11280.wall CMP #240 \TOP WALL?
11290 BEQ top \YES
11300 CMP #234 \LEFT?
11310 BEQ left \YES
11320 CMP #181 \RIGHT?
11330 BEQ right \YES
11340 \IT MUST BE THE BOTTOM WALL
11470 LDA drtn
11480 CMP #39 \SOUTH-WEST?
11490 BEQ sw \YES
11500 CMP #40 \SOUTH?
11510 BEQ s \YES
11520 \IT MUST BE SOUTH-EAST
11530 LDA #217 \GO NORTH-EAST
11540 STA drtn
11550 BNE exit
11560 .sw LDA #215 \GO NORTH-WEST
11570 STA drtn
11580 BNE exit
11590 .s LDA #216 \GO NORTH
11600 STA drtn
11610 BNE exit
11620 .top \DO NORMAL REFLECTION FROM
 TOP
11630 LDA drtn
11640 CMP #215 \NORTH-WEST?
11650 BEQ nw \YES
11660 CMP #216 \NORTH?
11670 BEQ n \YES
11680 \IT MUST BE NORTH-EAST
11690 LDA #41 \GO SOUTH-EAST
11700 STA drtn
11710 BNE exit
11720 .nw LDA #39 \GO SOUTH-WEST
11730 STA drtn
11740 BNE exit
11750 .n LDA #40 \GO SOUTH
11760 STA drtn
11770 BNE exit
11780.left \DO NORMAL REFLECTION FROM
 LEFT

The BBC microcomputer in science teaching

248

11790 LDA drtn
11800 CMP #215 \NORTH-WEST?
11810 BEQ lnw \YES
11820 CMP #255 \WEST?
11830 BEQ lw \YES
11840 \IT MUST BE SOUTH-WEST
11850 LDA #41 \GO SOUTH-EAST
11860 STA drtn
11870 BNE exit
11880 .lnw LDA #217 \GO NORTH-EAST
11890 STA drtn
11900 BNE exit
11910.lw LDA #1 \GO EAST
11920 STA drtn
11930 BNE exit
11940 .right \DO NORMAL REFLECTION FROM
 RIGHT
11950 LDA drtn
11960 CMP #217 \NORTH-EAST?
11970 BEQ rne \YES
11980 CMP #1 \EAST?
11990 BEQ re \YES
12000 \IT MUST BE SOUTH-EAST
12010 LDA #39 \GO SOUTH-WEST
12020 STA drtn
12030 BNE exit
12040 .rne LDA # 215 \GO NORTH-WEST
12050 STA drtn
12060 BNE exit
12070.re LDA #255 \GO WEST
12080 STA drtn
12090 BNE exit
12100
12170 .empty LDA #32 \ERASE OLD MOLECULE
12180 STA (oposlo),Y
12190 LDA #79 \GET MOLECULE CHARACTER
12200 STA (nposlo),Y
12210 LDA nposlo
12220 STA oposlo
12230 LDA nposhi
12240 STA oposhi \SAVE NEW POSITIONS
12250 .exit RTS
15000]
16000 NEXT pass
17000 RETURN

Assembly language programming

249

Although this routine is alarmingly long, it is relatively straightforward. First, the walls of

the container are drawn, each using a different graphics character. The old screen position

of the molecule is kept in two locations - oposlo which holds the low byte of the screen

position and oposhi which holds the high byte. The displacement of the molecule is kept in

drtn. This value can have one of eight possible directions as follows:

Value Direction
1 East

41 South-east
40 South
39 South-west

255 West
215 North-west
216 North
217 North-east

Values greater than 127 represent negative directions, the contents of the screen address are

reduced when added to it. To ensure that this happens there has to be a check that the high

byte of the screen address (oposhi) is also reduced when the CARRY bit is set following the

low byte addition. The instructions from 11140 to 11230 do this. Another way of doing this

would be to use two bytes to store the displacement, containing the

following values:

Value Direction
1 East

41 South-east
40 South
39 South-west

65535 West
65495 North-west
65496 North
65494 North-east

The displacement would then be contained in drtnlo and drtnhi and would be added to oposlo

and oposhi each time. This would automatically ensure that the screen position was reduced

for movement in a negative direction. This technique is used in WAVE REFLECTION (25).

 Once the new position for the molecule has been computed, a check is made to see if it is

empty. If not, then this can only be because the molecule has reached the wall. We therefore

look to see which wall it is and we bounce off according to the normal laws of relection.

The new direction is stored in drtn and the routine is quitted without changing anything else.

Next time, the original oposlo and oposhi will have the new value of drtn added to them and

another check made as to the suitability of the new position.

Eventually, the new position will be empty, so the molecule is erased from its old position

and replaced in its new position. Only then are the values of oposlo and oposhi changed to

The BBC microcomputer in science teaching

250

record the new position. The routine then returns to BASIC, where a keyboard check is

made, before returning to the routine for the next move.

 While not particularly exciting this routine is the foundation of many simulations of

molecular movement. It is not difficult to manage the movement of up to 256 different

molecules at the same time. One addition must first be made to the single molecule routine

to cover a new eventuality. We need to handle the situation where two molecules collide.

This can be done by checking that the new position for any molecule does not already

contain the character 79 for a different molecule. If so, we simply ignore it! The

conservation laws tell us that the two molecules would swap directions anyway and the

principle of indistinguishability means that we need not bother about which molecule is

which either. This neat solution unfortunately is not applicable to other cases. If we want

the gas molecules to condense to a liquid, we have to be more careful about allowing them

apparently to pass through each other. The program KINETIC MODEL (not listed here but

available separately) looks after this problem by giving the molecules different properties

below a certain temperature (obviously our critical temperature!).

 For moving many molecules 'onemol' is treated as a subroutine, which is applied to each

molecule in turn. The delay routine at the start of onemol is not needed for each separate

molecule, so this is deleted from there and placed in the main program. The latter collects

the values of position and displacement for each molecule in turn from three tables poslo,

poshi and dr. These are passed to the onemol subroutine through the locations oposlo, oposhi

and drtn. On returning from this routine these values may well be different, so they are stored

in the table of values in place of the old ones. The main program loops once for each new

molecule and then exits to BASIC to check on the keyboard.

 A flag is set when any molecule strikes the left wall. On return to BASIC if this flag is

set, then a noise is made to simulate this collision. The program therefore allows students to

observe the greater number of collisions when the temperature is increased or the number

of molecules is increased. The complete program for MOLECULAR MOTION is listed in

the Appendix (program 26, called MOLMOT).

 The program KINETIC MODEL uses the same techniques to demonstrate what happens

to gas molecules under conditions of expansion and contraction and at different

temperatures. Sufficiently low temperatures cause the molecules to condense into liquids

and solids. The added bonus here is the regular crystalline shape produced when the

molecules reach the solid phase. The inclusion of a partition to divide the container into two

parts allows a discussion of entropy. Students can be challenged to alter the direction of

entropy change by collecting all the molecules onto one side of the partition (playing the

part of Maxwell's demon by opening and closing the hole in the partition). Similar routines

are used in BROWNIAN MOTION (not the same as program 27) to simulate the movement

of a smoke particle under the bombardment of gas molecules. Neither of these programs is

listed in this book, but both are available separately. The reason for this is because they have

been carefully checked to make them crash-proof and have had extensive evaluation.

Assembly language programming

251

The display of large screen characters

One useful application of machine code graphics is the display of large digits and letters on

the screen. This enables the whole class to see the results of a voltage measurement or some

other reading. It is used extensively in measurement and timing programs. The principle is

based upon the normal method used by the microcomputer to display characters on the

screen. Each character is made up from a matrix of 8 x 8 pixels. If the same matrix is used

to display a matrix of 8 x 8 screen positions instead, then each character is eight times larger.

 Because there are 40 squares across the screen (5 times 8) and there are 25 down the

screen (3 times 8, nearly) then the choice of an 8 by 8 matrix allows fifteen different large

digit positions on the screen, or three rows each of five digits. Even with a negative sign and

a decimal point, this is enough. Each digit actually only occupies five columns and seven

rows of the matrix, thus allowing a border to separate each large character from its

neighbour. The appearance of the characters as they occur in TSA METER (8) is shown in

Figure 7.1.

 We need eight bytes to store the rows of any one large digit, using one bit for each column

position in each row. If the bit at, say, position 7 is a 1, then the screen square corresponding

to that position in the matrix is turned on (white square). If the bit in position 7 is a 0 then

the corresponding screen position is turned off (blank square). Thus a row of eight blank

and white squares can be stored in a single byte. The byte values for each of the digits in the

diagram is shown alongside each line. The sets of eight bytes for each digit are stored

sequentially in a table called bittbl. The first part of the program gets the digit code (which

is passed via BASIC in a location called dgtval), multiplies it by eight and enters bittbl to

collect the eight bytes of the selected digit. These are kept in a set of eight temporary stores

temp.

 The starting position for each large digit is specified and there are two ways in which this

can be done. Either the digit can be placed almost anywhere on the screen, in which case the

full screen address must be passed to the machine code subroutine, or alternatively the full

screen can be considered as having 3 by 5 possible destinations only. Then it is only

necessary to pass to the machine code subroutine a single value from 0 to 14 corresponding

to the ultimate destination of the large digit. We shall adopt the latter practice.

 In this case the screen destination of a particular digit is passed via a location called dest

as one of the numbers 0 to 14, each corresponding to a screen position. This is converted

into the correct screen values which are kept in two successive locations called screen and

screen + 1.

 Having obtained the bytes of the digit to be displayed and its screen position, it remains

to look at each bit of each byte in turn and to send a blank or a white character to the

appropriate position on the screen. This is done using the ASL instruction (arithmetic shift

left) and looking at the CARRY bit to see if it is a 0 or a 1. The routine needs three counters,

one to keep the screen position (Y-INDEX), one to count the eight bytes of each digit (X-

INDEX) and a third to keep track of the bits within each byte (a location called bitcnt).

The BBC microcomputer in science teaching

252

 124

 68

 68

 68

 68

 68

 124

 0

 code 0

 8

 8

 8

 8

 8

 8

 8

 0

 code 1

 124

 68

 4

 4

 124

 64

 124

 0

 code 2

 124

 4

 4

 124

 4

 4

 124

 0

 code 3

 64

 64

 64

 72

 124

 8

 8

 0

 code 4

 124

 64

 64

 124

 4

 4

 124

 0

 code 5

 124

 64

 64

 124

 68

 68

 124

 0

 code 6

 124

 4

 4

 4

 4

 4

 4

 0

 code 7

 124

 68

 68

 124

 68

 68

 124

 0

 code 8

 124

 68

 68

 124

 4

 4

 4

 0

 code 9

 0

 0

 0

 0

 0

 0

 16

 0

 code 10

 0

 0

 0

 124

 0

 0

 0

 0

 code 11

 0

 0

 60

 32

 60

 4

 60

 0

 code 12

 0

 0

 254

 146

 146

 146

 146

 0

 code 13

 68

 68

 68

 124

 68

 68

 68

 0

 code 14

 0

 0

 60

 4

 60

 32

 60

 0

 code 15

 0

 0

 0

 0

 0

 0

 0

 0

 code 16

Figure 7.1 Large digits

Assembly language programming

253

10000 REM Large digit display
10010 REM BASIC loader for
10200 REM digits table
10210 FOR I = &7100 TO &716F
10220 READ X
10230 ?I = X
10240 NEXT I
10250 DATA 124,68,68,68,68,68,124,0:REM DIGIT 0
10260 DATA 3,8,8,8,8,8,8,0:REM DIGIT 1
10270 DATA 124,68,4,4,124,64,124,0:REM DIGIT 2
10280 DATA 124,4,4,124,4,4,124,0:REM DIGIT 3
10290 DATA 64,64,64,72,124,8,8,0:REM DIGIT 4
10300 DATA 124,64,64,124,4,4,124,0:REM DIGIT 5
10310 DATA 124,64,64,124,68,68,124,0:REM DIGIT 6
10320 DATA 124,4,4,4,4,4,4,0:REM DIGIT 7
10330 DATA 124,68,68,124,68,68,124,0:REM DIGIT 8
10340 DATA 124,68,68,124,4,4,4,0:REMI DIGIT 9
10350 DATA 0,0,0,0,0,0,16,0:REM DECIMAL POINT
10360 DATA 0,0,0,124,0,0,0,0:REM NEGATIVE SIGN
10370 DATA 0,0,60,32,60,4,60,0:REM LETTER S
10380 DATA 0,0,127,73,73,73,73,0:REM LETTER M
11000 REM Large digit display
12000 REM assembly language routine
12001 dest = 114
12002 dgtval = 115
12003 screen = 112:REM AND ALSO 113
12004 bitcnt = 116
12005 temp = &7080:REM AND NEXT 7 BYTES
12006 bittbl = &7100:REM AS LISTED ABOVE
12007
12008 FOR pass = 0 TO 2 STEP 2
12010 P% = &7000
12020 [OPT pass
12030 .display LDA dest \GET DESTINATION
12040 CMP#10 \BOTTOM ROW ?
12050 BPL bottom \YES
12060 CMP #5 \MIDDLE ROW?
12070 BPL middle \YES
12080 ASL A \MUST BE TOP ROW
12090 ASL A
12100 ASL A \MULTIPLY BY 8
12110 STA screen \KEEP NOTE OF POSITION
12120 LDA #&7C \SCREEN ADDRESS
12130 STA screen + 1

The BBC microcomputer in science teaching

254

12140 BNE begin \UNCONDITIONAL BRANCH
12150
12160.bottom SEC
12170 SBC#10
12180 ASL A
12190 ASL A
12200 ASL A
12210 ADC#128 \MOVE TO PROPER PLACE
12220 STA screen \AND SAVE IT
12230 LDA#&7E
12240 STA screen+1
12250 BNE begin \UNCONDITIONAL BRANCH
12260.middle SEC
12270 SBC#5
12280 ASL A
12290 ASL A
12300 ASL A
12310 ADC#64 \MOVE TO PROPER PLACE
12320 STA screen \AND SAVE IT
12330 LDA#&7D
12340 STA screen + 1
12250
12360 \GET BITS FOR DIGIT
12370 .begin LDX#0 \INITIALIZE BYTE POINTER
12380 LDA dgtval \GET DIGIT CODE
12390 ASL A
12400 ASL A
12410 ASL A \MULTIPLY BY 8
12420 TAY \POINT TO TABLE OF BITS
12430 .bytget LDA bittbl,Y \GET BYTE
12440 STA temp,X \KEEP IN TEMP STORE
12450 INY \ADVANCE TABLE POINTER
12460 INX \ADVANCE BYTE POINTER
12470 CPX#8 \8 BYTES COLLECTED?
12480 BNE bytget \NO - GET THEM
12490 LDY#223 \SET SCREEN POINTER TO - -32
12500 LDX#255 \SET ROW POINTER TO - 1
12510 .nxtrow INX \READY FOR NEXT ROW
12520 CPX#7 \ALL ROWS DONE?
12530 BEQ finish
12540 LDA#8 \INITIALIZE BIT POINTER
12550 STA bitcnt
12560 CLC
12570 TYA \GET SCREEN POINTER

Assembly language programming

255

12575 ADC #32 \ADVANCE TO NEXT ROW
12580 TAY \RESTORE SCREEN POINTER
12590 .nxtbit INY \NEXT SCREEN POSITION
12600 ASL temp, X \SHIFT BIT INTO CARRY STORE
12610 BCC empty \BIT IS ZERO
12620 LDA#255 \BIT IS ONE - SEND WHITE BLOCK
12630 BNE send \UNCONDITIONAL BRANCH
12640 .empty LDA#151 \SEND BLANK BLOCK
12650 .send STA (screen),Y \SEND TO SCREEN
12660 DEC bitcnt \ALL BITS SENT?
12670 BEQ nxtrow \YES DO NEXT ROW
12680 BNE nxtbit \NO DO NEXT BIT
12690
12700 .finish RTS:]
12800 NEXT pass
12900 RETURN

The way that this routine is called can best be seen by studying one of the programs that

uses it, particularly TSA METER (8). I find it of universal value in displaying digits to a

whole class, where a BASIC equivalent takes too long to paint each digit in turn.

STOPCLOCK (5) updates the digits every ten milliseconds and this is not possible in

BASIC.

High-resolution plotting

It is occasionally necessary to plot points on the screen in machine code. An example is in

STANDING WAVES (23)(Plate 41), where the screen picture has to be changed quite often

to give the appearance of motion. Let us first look at the algorithm used to do this. The high-

resolution screen of MODE 4 runs from &5800 (top left corner) to &7FFF. Adjacent screen

positions are not contiguous in the memory. Running the following program shows that each

character position (8 by 8 bits) is made from eight consecutive bytes. The next set of eight

bytes is next door to this and so on. After 320 bytes (40 columns) the next row is started and

so on to the bottom of the screen.

 1 MODE 4
100 FOR I = &5800 TO &7FFF
110 ?I = 255
120 NEXT I

The algorithm to plot the point (X,Y) directly is thus:

 byte number = &5800 + 320*(Y DIV 8) + 8*(X DIV 8) + (Y MOD 8)
The position within this byte is just (X MOD 8). This is not quite right because the top left

of the screen is now the origin (0,0). This is a situation that Apple users have long been be

used too. For most programs it is not a serious problem, the point (X,256-Y) has to be plotted

instead. For wave motion programs this complication is ignored completely.

The BBC microcomputer in science teaching

256

Plate 41 Interference between two waves of different phase angle

The machine code routine that achieves the above algorithm is as follows:

10000 REM MACHINE CODE PLOTTING ROUTINE
10010 y=&70:REM Y-COORDINATE
10020 x=&71:REM X-COORDINATE
10030 Xval=&72:REM TEMPORARY STORE FOR X-INDEX
10040 scrlo=&73
10050 scrhi=&74
10060 temp=&75
10070 FOR pass=0 TO 3 STEP 3
10075 P%=&4000
10080[OPT pass
10090.find STX Xval \KEEP CURRENT X-INDEX
10095 LDA y \CONVERT Y-COORDINATE
10150 LSR A
10160 LSR A
10170 LSR A \y DIV 8
10190 STA scrlo \TEMPORARY STORE
10210 CLC
10220 ADC#&58 \ADD TOP-OF-SCREEN ADDRESS
10230 STA scrhi \y DIV 8 EFFECTIVELY MULTIPLIED BY 256

Assembly language programming

257

10232 LDA#0
10240 LDX#6 \SIX SHIFTS OF y DIV 8 IS
10250.next ASL scrlo \EQUIVALENT TO MULTIPLYING BY 64
10252 ROL A
10254 DEX
10256 BNE next
10270 ADC scrhi \GIVING EQUIVALENT OF
 MULTIPLYING BY 320
10280 STA scrhi
10300
10320 LDA y
10330 AND#7 \EQUIVALENT TO y MOD 8
10333 STA temp
10380
10400 LDA X
10410 AND#&F8 \EQUAL TO (x DIV 8) * 8
10420 ADC temp \ADD IN PREVIOUS CALCULATIONS
10425 ADC scrlo
10430 STA scrlo \KEEP LOW BYTE OF SCREEN
 ADDRESS
10440 LDA scrhi
10450 ADC#0 \ADD CARRY BIT TO HIGH BYTE
10460 STA scrhi
10470 LDY#0 \DETERMINE BIT POSITION
 WITHIN BYTE
10480 LDA x
10490 AND#7
10500 TAX
10505 SEC \SHIFT CARRY BIT DOWN
 ACCUMULATOR
10512 LDA#0 \UNTIL CORRECT BIT POSITION IS
 REACHED
10515.shift ROR A
10516 DEX
10520 BPL shift
10530 STA temp
10535 LDX Xval \RESTORE X-INDEX
10536
10540 RTS

On returning from this routine the locations scrlo and scrhi contain the screen address of the

byte in which the dot was found and the ACCUMULATOR contains the bit position itself.

To plot a point without erasing any other points in the same byte requires that byte to be

ORed with the new bit, thus:

12760 JSR find \GET BIT AND BYTE

The BBC microcomputer in science teaching

258

12770 ORA (scrlo),Y
12780 STA (scrlo), Y

To erase the dot requires the inverse of the ACCUMULATOR contents to be ANDed with

the current screen byte in this way:

12430 JSR find \GET BIT AND BYTE
12440 EOR#255 \INVERT BIT
12450 AND (scrlo),Y
12460 STA (scrlo),Y

This routine is used extensively in the programs listed in the Appendix. A slightly different

version is used for CHART RECORDER (18), because that only needs to determine the y-

coordinate. This is plotted on the extreme left of the screen, which is then scrolled across.

 STANDING WAVES is a machine code version of what is essentially a simple process.

To create a wave on the screen we need to plot a sine wave, erase it and replot it one pixel

to the left or right. In BASIC this takes far too long and wave motion is not apparent.

Unfortunately, a machine code routine to work out sines is beyond my capabilities. The

solution is to use BASIC to work out the sines beforehand. These values are then stored in

a table (sintbl), which is accessed in machine code using the X-INDEX as a pointer. If the

X-INDEX contains the value 25, then LDA sintbl, X will retrieve the sine of 25 from the

table. The table is loaded with the correct values by a program like this:

20000 REM SET UP SINE TABLE
20010 REM CONTAINS 256 DATA ITEMS
20020 FOR I = 0 TO 255
20024 LET angle = *PI/128
20025 LET val = SIN(angle)
20035 ?(&4A00 + I) = INT(20*val)
20090 NEXT I

This produces sines with an amplitude of 20. When I started to write my wave motion

programs, I wanted the option of choosing different amplitudes. To produce waves of

different amplitudes requires each sine value in the table to be multiplied by some factor.

The following multiplication routine was developed for the purpose.

13000 \MULTIPLICATION ROUTINE RESULT IN ACCUMULATOR
13030 .mult LDA#0 \PRODUCT
13050 LDY#8 \8 SHIFTS
13060 .nxmult ASL A \MULTIPLY RESULT BY TWO
13070 ASL mult1 \FIRST NUMBER
13080 BCC cont \IF CARRY IS CLEAR IGNORE REST
13085 CLC
13090 ADC mult2 \ADD SECOND NUMBER
13100 .cont DEY \ALL SHIFTS DONE?
13110 BNE nxmult \NO, DO NEXT BIT
13120 RTS \YES ALL DONE

Assembly language programming

259

This subroutine takes two numbers stored in mult1 and mult2, multiplies them together by

a shift and add method and returns with their product in the ACCUMULATOR. Clearly this

product must be less than 255 or the ACCUMULATOR will overflow. In cases where this

subroutine is being used, this is always true. It is an interesting the note one reason why

compiled BASIC is still too slow to cope with fast graphics: point it is too to universal and

cannot adapt itself to particular cases in the way that I have done here.

 Unfortunately, all this effort proved to be in vain. The time taken to use this routine each

dot on the wave turned out to be too great. I had to choose the alternative technique for of

using several sine tables, each for a different amplitude. Fortunately, the total number of

amplitudes needed was sufficiently low that this could be done. A look at the listing for

STANDING WAVES will show exactly how.

 The algorithm used to draw the waves is rather like that used to plot the molecules. For

each x-coordinate the present y-value of the wave is kept in a table (opos) and accessed via

the X-INDEX. This value is retrieved and passed to the erasing routine above. The current

x-position is then multiplied by a constant (called wvln) and another constant (time) is

subtracted to give the position so far reached in the table. The current amplitude for the wave

is used to point to the correct sine table and the sine value is retrieved from it. To this is

added an offset to get the wave to the correct height and the new point is plotted. It is also

put back into the table of positions ready to be erased the next time round.

 Fundamentally we are computing the wave displacement from the equation

displacement = amplitude*SIN(wvln*x-time)

Physicists will appreciate that the constant called 'wvln' is actually the reciprocal of the

wavelength. This can be altered before the routine is called to change the number of waves

that appear on the screen (and hence their wavelength). By adjusting the constant called time

at the completion of each cycle, the wave can be made to move through the table faster or

slower. This is a means of adjusting the speed of the waves. The third variable (frequency)

depends upon both speed and wavelength and cannot be independently altered.

 The great advantage of this technique is the ease with which the wave can be made to

travel backwards. The constant (time) is added instead of subtracted to produce the result.

The two displacements for the two waves are then added together to produce the standing

waves. Close inspection of the listing in the STANDING WAVES program will reveal

exactly how this is done. If you want both waves to travel in the same direction, producing

interference when the waves have the same wavelength and beats when they are different,

change this program to the following:

12520 CLC
12530 ADC time

You now have the capability to produce your own wave motion programs for a variety of

purposes.

Ripple tank simulations

The plot routine can be used to make the plane (or circular) wavefronts of water waves

The BBC microcomputer in science teaching

260

travel across the ripple tank and be reflected from a plane (or circular) barrier. For practical

purposes the time to set up the starting conditions is too long to make this idea a viable

simulation program (although I am working on this problem). Again the basic method is

similar to that of moving molecules around the screen. Because the screen locations are not

contiguous, it is not possible to add a constant to move a particular dot up or down. Instead

the x- and y-coordinates are handled separately. As before though, the current positions are

stored in two sets of tables (X-POSITION HIGH,X-POSITIONLOW etc.). The

displacement added each time to the current positions are also held as double-byte numbers

(INITIAL Y-SPEED HIGH, INITIAL Y-SPEEDLOW, etc.). This allows each dot on a

wavefront to move independently of all the others. If all the dots are initially lined up and

given the same displacement, they will progress across the screen as a plane wave.

 Upon reaching the barrier each dot is given a different displacement, so that it then moves

off in a different direction. Simulations of spherical wavefronts colliding with spherical

barriers are thus quite possible. The only price to be paid is the setting up of some twelve

tables initially, each consisting of 256 elements. Once this has been done the result is

reasonably satisfactory. WAVE REFLECTION (25) gives the full listing.

Brownian motion

More satisfactory from my point of view is the ease of simulating the Brownian motion of

smoke particles. I am indebted to W.Jeffries (Jordanhill College of Education) for bringing

this idea to my attention. Each smoke particle is a dot on the screen, which is then given a

random displacement in one of the usual eight directions. A random number which can be

+ 1, 0 or - 1 is added to the x-coordinate and another is added to the y-coordinate, thus giving

the eight directions (plus the possibility of not moving at all).

 These random numbers cannot be generated in machine code quickly enough, so we resort

to trickery, by setting timer1 in the VIA ticking away in microseconds and accessing its

lower two bits. These are ORed with 1 to produce numbers 1, 2 or 3 and 254 is added to

them to give the required displacements. By my reckoning this ought to produce a bias in

the results towards -1, but it doesn't seem to have that effect. The clock for the VIA is

asynchronous with that running the microprocessor and this seems to produce the necessary

randomness. The whole program is listed as BROWNIAN MOTION (27).

Screen scroll

The layout of the screen makes it possible to shift each pixel into the neighbouring position,

using the ROR instruction. This has several applications as we shall see later. I was first

alerted to this possibility by S. Rushbrook-Williams of the Microelectronics Educational

Development Centre in Paisley. What will upset some purists is my use of a modified

address for the current screen byte being shifted. This program is not, therefore, relocatable.

 1 MODE 4
 2 HIMEM = &4000
10020 rowcnt = &71

Assembly language programming

261

11000 FOR pass = 0 TO 3 STEP 3
11005 P% = &4000
11010 [OPT pass
11012 .scroll LDA#&58
11014 STA &4018
11016 LDA#&00
11018 STA&4017 \RESTORE STARTING ADDRESS
 OF SCREEN
11020 LDA#32 \COUNT 32 ROWS
11030 STA rowcnt
11040 .nxrow LDY#40 \COUNT 40 COLUMNS
11050 CLC \SHIFT BLANK INTO LEFTMOST
 BIT
11060 LDA#0 \ACCUMULATOR KEEPS ALL
 RIGHTMOST BITS
11070 .nxcol ROR A
11080 LDX#8 \8 LINES PER COLUMN
11090 .nxlin ROR &FFFF \MODIFIED SCREEN ADDRESS
11100 ROR A
11110 INC &4017 \INCREMENT MODIFIED SCREEN
 ADDRESS
11120 BNE cont
11130 INC &4018
11140 .cont DEX
11150 BNE nxlin \DO NEXT LINE IN SET OF EIGHT
11160 DEY
11170 BNE nxcol \DO NEXT SET OF EIGHT
11180 DEC rowcnt
11190 BNE nxrow \DO NEXT ROW
11200 RTS
11500]
12400 NEXT pass
20000 CALL scroll
20010 GOTO 20000

Each row of the MODE 4 screen contains 320 bytes arranged as forty rows of eight lines.

Each of the eight lines is rotated in turn into the ACCUMULATOR and any bit 0 positions

that contain a 1 will place that bit in bit 7 of the ACCUMULATOR. This is repeated eight

times for each set of lines in a column. At the end of eight shifts the ACCUMULATOR

has collected all these bits and shifted them down to the other end. At the same time, any

bits which dropped off the end of previous bytes are shifted out of the ACCUMULATOR

into the bit 7 position of each screen byte. This happens for forty column positions, except

for the first, which has a 0 shifted into its bit 7 position. The whole routine can be repeated

for as many lines as required by setting the initial starting address to the beginning of any

row and by adjusting the value stored in rowcnt.

The BBC microcomputer in science teaching

262

Plate 42 Beats between two waves of differing frequency

When the whole screen is shifted, as above, the result is rather slow, although it is quite

adequate for FOUR-CHANNEL CHART RECORDER (18).

 If the extreme left positions are plotted with the displacements of a sine table, then waves

will be produced as the screen scrolls across. This is used in WAVE SUPERPOSITION (24)

to provide a different technique for demonstrating beats and wave interference (Plate 42).

Although slower, it is more powerful than STANDING WAVES, since its calculations are

in BASIC and give finer tuning of the beat frequency, wavelengths and phase relationship

between the waves. A faster machine code version of this program is currently being

prepared.

 This chapter has come a long way and some readers may well feel that it is not for them.

I did warn that machine code programming was not easy, but no matter. Study the program

listings to see the way that each routine is used and you should then be able to make use of

them yourself, even if you cannot see how they work.

Interfacing in machine code

263

8 Interfacing in machine code

'Now! Now! cried the Queen. 'Faster! Faster!'

(Lewis Carroll, Through the Looking Glass)

This chapter brings together previous ideas to produce very useful routines for making fast

measurements. First, let us look at the VIA from the point of view of machine code. It is

assumed that we are using the B-port, since this is the normal user port of the BBC

microcomputer. The address of this VIA is &FE60, referred to as the BASE address.

Using the B-port for output

LDA #&FF \All B-port lines as outputs
STA BASE+2 \Data direction register
LDA #&80 \B-port line 7 HIGH, all others LOW
STA BASE+0 \B-port

Using the B-port for input

LDA #&00 \All B-port lines as inputs
STA BASE+2
LDA BASE+0 \Read B-port

Using the B-port for inputs and outputs and looking at bit 0 only

LDA #&F0 \Lines 0 to 3 as inputs, others as outputs
STA BASE+2
LDA BASE+0 \Read inputs
AND #1 \Mask to get bit 0 only

The VIA timers may be accessed in just the same way to produce machine code versions of

the programs described in Chapter 4.

 Using machine code versions of these programs gives faster results and turns the

microcomputer into a very powerful laboratory aid. One example of this is STOPCLOCK,

listed as program 5 in the Appendix. It prints the current value of a centisecond clock on the

screen in large digits, which is updated one hundred times a second. This 'clock' is actually

the internal clock of the BBC microcomputer, which is accessed in machine code through

location 594 (OS 0.1) or location 662 (OS 1.0). The of BBC microcomputer's own operating

system interrupts the program every hundredth a second to update this clock. It is important,

therefore, not to disable the operating system, or this clock system will not work. The

position of this clock seems to depend on which operating system you have. OS 0.1 uses

location 594 stated above, but OS 1.0

The BBC microcomputer in science teaching

264

appears to have moved it to location 662. If STOPCLOCK does not work with your system,

change line 1010 to:

1010 CSLO = 662

An alternative timing technique is to use timer 1 of the VIA to provide accurate time-outs

at predetermined intervals. This could then generate its own interrupts at whatever time

interval might be required. However, centiseconds are ideal for the present purposes, so the

use of timer 1 is an unnecessary complication.

 Rather than use the interrupt system of the microcomputer, it is also quite easy just to

inspect bit 6 of the flag register to see if it is set. If so a time-out has occurred and T1LHI

can be reloaded to start a new countdown. When the countdown reaches zero, it sets a flag

in the flag register, reloads itself from the latch and carries on counting down. If the latch

contains the number 10 000 (actually 9998 to allow for the reloading time), because the VIA

clock runs at 1 MHz, timer 1 gives out a steady stream of one centisecond signals.

 A final alternative would be to use a timing loop lasting exactly ten milliseconds. In this

application, though, we need to update the display at the same time and it is quite awkward

to do both tasks simultaneously. The chosen technique is therefore the best in this instance.

 The clock is started by an event (a change in logic level) at either bit 0 or bit 1 of the user

port. The current time is displayed in minutes, seconds and centiseconds in large digits on

the screen, using the machine code subroutine developed in Chapter 7. Another event stops

the clock, which then displays the elapsed time. Pressing a key halts the display, while

allowing the clock to continue counting. The whole program illustrates the freedom given

by using the VIA instead of delay loops to do the timing. The microprocessor can then get

on with other tasks, like sorting out where the digits have to go and displaying them.

 The full program is listed in the Appendix. The following brief description may help to

explain it, since comments in that listing are rather sparse.

2025 to 2049: the special codes for the large letters m, S and the decimal point are sent to

the large digit subroutine. Each of these characters is placed in turn into dgtval and its

position is placed in dest and the routine is called by JSR display.

2050 to 2125: the minutes, seconds and centiseconds are initialized to zero and then

displayed on the screen by JSR showtimes.

2130 to 2195: bits 0 and 1 of the user port are collected and stored in status. The program

then sits at this point until one or other of these bits changes.

2200 to 2610: the centisecond store is cleared and the timing begins. Every centisecond the

BBC operating system adds one to location 594 (called CSLO). If this location contains a

number less than ten, the routine jumps to see if any key on the keyboard is being pressed.

If not the current time measured by the clock is displayed. If a key is being pressed, the

showtimes routine is bypassed and the clock display freezes at its previous value. After the

current time has (or has not) been displayed, the routine checks the user port to see if any

input has changed. If so, a return to BASIC is made. If not, the routine goes back to check

the current value of CSLO.

 When CSLO exceeds ten, it is reset to zero and CSHI is incremented, thus effectively

Interfacing in machine code

265

counting ten centiseconds. When it reaches ten, it too is reset and one second is added to the

time. This process continues up to 100 minutes or until the input status changes. The clock

stores continue to be incremented every hundredth of a second even if the display is

temporarily frozen. It would be more difficult to do this if a timing loop was being used to

generate the centisecond intervals.

2620 to 3170: the showtimes subroutine collects the contents of each of CSLO, CSHI, etc.

and displays each in its correct position with the display subroutine.

Timing loop routines

We saw in Chapter 4 how user port outputs may be switched on for controlled intervals of

time using simple delay loops in BASIC. The maximum rate at which an output (other than

PB7 and CB2) can be switched on and off in this way is limited to about 100 Hz and this is

inadequate for most purposes. A better way is to use the timers of the VIA to control outputs

on PB7, but there is an alternative, which is to use machine code delay loops, as we did

when moving characters across the screen in Chapter 7. However, we were not then

interested in accuracy.

 Since timing loops are used extensively for accurate measurement of short intervals, they

will now be described. We shall use them to switch user port outputs rapidly on and off to

produce sound in a suitable loudspeaker. (This particular application, chosen only to

illustrate the principles, is not a sensible one because better ways of producing sound already

exist in the BBC microcomputer.) The algorithm is as follows:

 i) Switch the output on
 ii) Delay for half-period
 iii) Switch the output off
 iv) Delay for other half-period
 v) Go back to step i

The delay routine is half a millisecond, based upon counting the number of machine cycles

needed to execute each instruction.

 LDX count ;2 cycles
.DLY2 LDY #198 ;2 cycles
.DLY1 DEY ;2 cycles

 BNE DLY1 ;2 or 3 cycles
 NOP ;2 cycles
 NOP ;2 cycles
 DEX ;2 cycles
 BNE DLY2 ;2 or 3 cycles

The loop DLY1 takes five cycles to complete if the conditional branch BNE and DLY1

makes succeeds. After the last decrement the branch fails, so it then takes two cycles and

makes the last loop four cycles in total. Since DLY1 is executed 198 times it takes 198*5-1

or 989 cycles. The other instructions in the loop DLY2 take 11 cycles (except for the last

loop)

The BBC microcomputer in science teaching

266

which is one less than this), so every time that the X-INDEX is decremented a total delay of

1000 cycles is introduced (which is half a millisecond).

 When this delay routine is used in the algorithm above to cause the delay between

switching the user port lines alternately HIGH and LOW, a frequency of about 1 kHz will

obviously be produced if the location called count contains a value of one. Changing count

allows different (lower) frequencies to be produced.

Time measurement by counting machine cycles

The principle of measuring time intervals is as follows. The user port is read and stored in a

memory location called status. The current state of the user port is then monitored

continuously and compared with status. Normally it will be the same, but when it is different,

this is because an input has been activated. A clock is then started and the new status of the

user port is saved in status. When the user port again changes state, the current contents of

the clock are noted and copied into a store. The time interval involved can then be calculated

and displayed. We saw how this routine was used with the internal clock to produce a

centisecond timer in BASIC.

 Accurate timing of short intervals is only possible using machine code routines, since

BASIC is too slow to respond to input changes. Although it is possible to use the VIA timers

in machine code, the use of timing loops is still a good way to measure time intervals and

this will now be described. It works because it takes exactly the same length of time to add

one unit to a chosen (zero page) location (called clock). During each loop the user port is

checked to see if it has changed its status and, if so, the program jumps out of the timing

loop.

Initialization

.begin SEI
 LDA #0
 STA clock
 STA errflag
 LDA PRT
 STA status

Wait for input status to change

.wait LDA PRT
 CMP status
 BEQ wait
 STA status \Keep new status

Timing loop

.loop INC clock \5 cycles
 BEQ error \2 cycles usually
 LDA PRT \4 cycles
 CMP status \3 cycles

Interfacing in machine code

267

 BEQ loop \3 cycles usually
 CLI
 RTS
.error LDA #1
 STA errflag
 CLI
 RTS

The timing loop interval is seventeen cycles. The instruction BEQ error is normally

unsuccessful, so it takes two cycles. BEQ loop is successful until the input status changes,

so it takes three cycles. Each cycle takes 500 nanoseconds to be executed, giving a loop of

8.5 microseconds. There is not usually any need to make this a round number (like ten) since

it may have to be processed by BASIC later anyway.

 Note the following further points. The interrupt system is disabled (with SEI) to prevent

the BBC microcomputer's operating system from interrupting the timing routine and causing

timing errors. At the end of the routine the interrupt system is restored with CLI. The

maximum interval that can be measured is 256 loops X 8.5 microseconds (2.176ms). If the

interval exceeds this an error will be flagged through the location called errflag. On return

to BASIC this will be zero if the timing was satisfactory and one if the maximum interval

was exceeded. This can be checked by a BASIC routine and the operator informed of a

timing error if necessary.

 The timing of longer intervals may be achieved with a two byte clock. Using the

increment method is now more difficult because the high byte of this clock is only

incremented whenever the low byte of the clock reaches zero (i.e. 256). This takes an

additional five cycles so a 5-cycle delay has to be incorporated to compensate for the 255

occasions when the high byte is not incremented. To achieve the greatest speed the X-

INDEX (low byte) and the Y-INDEX (high byte) are used for the clock.

Initialization

.begin SEI
 LDA #0
 STA errflag
 TAX
 TAY
 LDA PRT
 STA status
.wait LDA PRT \Wait for input status to change
 CMP status
 BEQ wait
 STA status \Keep new status
.loop INX \Timing loop 2 cycles
 BNE delay \3 cycles usually
 INY \2 cycles
 BNE cont \3 cycles usually
 LDA #1 \Error condition

The BBC microcomputer in science teaching

268

 STA errflag
 CLI
 RTS
.delay NOP \2 cycles
 NOP \2 cycles
.cont LDA PRT \4 cycles
 CMP status \3 cycles
 BEQ loop \3 cycles usually
 CLI
 RTS

The delay of two NOP instructions compensates for not incrementing the high byte of the

clock. Branching to this delay also involves one extra cycle, thus giving a total of five cycles,

which is equivalent to the time taken to increment the high byte of the clock and to see

if it has exceeded its limit. The total 19-cycle timing loop thus takes 9.5 microseconds and

can measure intervals up to 600 milliseconds. Intervals exceeding this cause the overflow

error which is detected in BASIC later. This routine is the basis of FAST TIMER (7). The

accuracy of this program depends upon the accuracy of the 1 MHz clock rate. If it is not

exact, then the 0.0095 factor in line 405 of this program can be altered accordingly.

 For still longer time intervals a three-byte clock may be used. The incrementing method

now needs so many compensatory delays that it is better to use the technique of adding one

unit to the clock during each loop instead. The CARRY bit from the low byte addition may

be added in to the next byte by adding in zero each time. The three bytes for the clock are

kept on zero page and called CLOCKLO, CLOCKMID and CLOCKHI.

This 24-bit clock can count up to 16 777 216 and for a 50-cycle loop can measure times up

to several minutes.

Count subroutine

.COUNT CLC \2 cycles
 LDA CLOCKLO \3 cycles
 ADC #1 \2 cycles
 STA CLOCKLO \3 cycles
 LDA CLOCKMID \3 cycles
 ADC #0 \2 cycles
 STA CLOCKMID \3 cycles
 LDA CLOCKHI \3 cycles
 ADC #0 \2 cycles
 STA CLOCKHI \3 cycles
 LDA KEYBRD \4 cycles
 CMP KEY \2 cycles
 BNE CHK \3 cycles unless timing has finished
 BEQ DONE
.CHK LDA APRT \4 cycles

Interfacing in machine code

269

 AND #3 \2 cycles
 TAY \2 cycles
 CMP STATUS \4 cycles
 BEQ COUNT \3 cycles unless timing has finished.

Using the tables given at the end of Chapter 7 to convince yourself that it takes fifty cycles

to complete this loop and that the clock will have increased by one unit in the process.

 Once entered, this loop continuously counts time in units of fifty cycles. There are two

ways of leaving the loop. If the keyboard is pressed during the timing then the keyboard flag

in the VIA will be set and will terminate the loop. Alternatively, if there has been some

change at the user port so that it no longer compares with STATUS, then the microprocessor

goes off to find out what caused the change. Because the maximum time interval is so great,

the overflow checking routine can now be abandoned. This routine could be used virtually

as it is to measure short time intervals. In programs 8 to 12 it has, however, been replaced

by the alternative technique of waiting for time-outs on timer 1.

 The original version of this program was developed on the PET and no timers are

available there. The BBC microcomputer has both timer 1 and timer 2, so that they are free

for a user program. Timer 1 is set to provide continuous 50 microsecond timeouts

(approximately), which is quite long enough for the routine to update its clock and check its

flags, etc. After this the routine waits for the timeout, resets the flag and continues. The

timing continues even when the routine goes off to store the clock data after an event,

although this is too short to make a lot of difference. Hence there is little to choose between

this technique and loop counting, except that it is easier to adjust the timing interval when

using timer 1. In both cases the time interval measured is not quite 50 microseconds and an

adjustment is made in BASIC later, when the readings are processed. The amount of this

adjustment was determined by accurate measurement over several minutes with a stopwatch

(digital, I hasten to add!).

 These advanced timing routines can be used in a variety of programs. For example a

photocell connected to bit 0 of the user port could be mounted inside a camera to measure

how long its shutter remains open. The timing routine actually used in programs 8 to 12 has

been made even more powerful by including extra facilities. Firstly, it allows up to sixteen

different time intervals to be measured consecutively. This means that it can be used for a

variety of purposes, particularly the measurement of an A.C. frequency (which requires

several cycles to be counted), the measurement of the speeds of a trolley as it runs down an

inclined plane and the measurement of acceleration. TSA METER (8) uses this advanced

timing routine and the large digits subroutine to display the results.

 To allow the measurements of speed when studying the laws of collision between two

trolleys, there must be two photocells. It is possible for the second trolley to begin a transit

of its photocell before the first has finished crossing the other. Thus it must be possible to

detect two inputs independently and to keep their results separate. We still only need the

one clock, but at the start or finish of a transit, the time on the clock is copied into a store.

In fact, up to sixteen stores are available for each input and the pointers (ptr) keep it would

track of which status changeis currently being timed. Thus in the collision experiment it

would be possible to have two trolleys approach from different directions, to collide in the

middle

The BBC microcomputer in science teaching

270

and both go off in one particular direction at different speeds. This involves two events at

one input and six events at the other, but the routine can easily cope with this. (In this context

an event is any change at either of the inputs.)

 The whole routine has a method for deciding how long it has to continue taking readings,

since the number of events is kept in a location (evntctr) beforehand. It also has an escape

route, for the occasion when you run the program and find that the photocell is not working.

This is achieved by the keyboard detect routine.

 The final part of the routine (.done) is a means of converting the recorded clock times into

time intervals. This is carried out for all of the stores even if most of them are empty.

15000 REM ADVANCED TIMER
15005 REM MACHINE CODE ROUTINE
15010 ptr = &6880:REM CHANNEL 1 POINTER IS &6880
15020 REM CHANNEL 2 POINTER IS &68C0
15030 store = &6800: REM UP TO &687F
15040 status = E6881:REM INPUT STATUS
15050 evntctr = E6882:REM NUMBER OF EVENTS
15060 clocklo = &70
15070 clockmid = &71
15080 clockhi = &72
15090 PRT = &FE60:REM USER PORT
15100 DDRB = &FE62:REM DATA DIRECTION REGISTER
15110 flag = &FE6D:REM FLAG REGISTER
15120 T1LLO = &FE64:REM TIMER 1 LATCH LOW
15130 T1LHI = &FE65:REM TIMER 1 LATCH HIGH
15140 ACR = &FE6B:F REM AUXILIARY CONTROL REGISTER
15150 ?ACR = 64:REM GENERATE CONTINUOUS TIMEOUTS (TIMER 1)
15160 ?&FE6E = 127: REM DISABLE ALL INTERRUPTS FROM VIA
15170 ?T1LLO = 48:?T1LHI = 0:REM TIMEOUTS AT 50 MICROSECOND
INTERVALS
15200 keyboardflag = &FE4D: REM TO DETECT KEY CLOSURE
16000 REM ASSEMBLY LANGUAGE ROUTINE
16010 FOR pass = 0 TO 3 STEP 3
16020 P% = &6000
16030 [OPT pass
16040 .timer SEI
16050 CLD
16055 \CLEAR ALL STORES
16060 LDX #127 \POINTER TO STORES
16070 LDA #0
16080 STA clocklo
16090 STA clockmid
16100 STA clockhi
16110 .nxtclr STA store, X
16120 DEX \ALL DONE ?

Interfacing in machine code

271

16130 BPL nxtclr \NO DO NEXT
16140 STA DDRB \USER PORT IS FOR INPUT
16150 LDA #252 \SET POINTERS TO - 4
16160 STA ptr \SAVE CHANNEL 1 POINTER
16170 STA ptr+64 \SAVE CHANNEL 2 POINTER
16180 LDA PRT \GET CURRENT INPUT STATUS
16190 AND #3 \MASK FOR BITS 0 AND 1
16200 STA status \KEEP CURRENT STATUS
16210.wait LDA PRT \GET CURRENT INPUT STATUS
16220 AND #3 \MASK FOR BITS 0 AND 1
16230 TAY \KEEP STATUS TEMPORARILY
16240 CPY status \SAME STATUS ?
16250 BEQ wait \WAIT UNTIL IT CHANGES
16255 \STATUS HAS CHANGED
16256 \DETERMINE WHICH CHANNEL
16260.query TYA \RETRIEVE STATUS
16270 EOR status \WHICH CHANNEL?
16280 STY status \KEEP NEW STATUS
16290 CMP #1 \CHANNEL 1?
16300 BEQ chan1 YES
16310 CMP #2 \CHANNEL 2?
16320 BEQ chan2 \YES
16330 TYA \BOTH CHANNELS
16340 EOR #2 \IGNORE CHANNEL 2 THIS TIME
16350 STA status
16360.chan1 LDX #0 \POINT TO CHANNEL 1 EVENT
 COUNTER
16370 BEQ cont \UNCONDITIONAL BRANCH
16380.chan2 LDX #64 \POINT TO CHANNEL 2 EVENT
 COUNTER
16390.cont LDA ptr,X \GET CORRECT EVENT
 POINTER
16400 CLC
16410 ADC #4 \MOVE DOWN 4 BYTES
16420 STA ptr,X \AND PUT IT BACK
16430 CLC
16440 TXA \GET CHANNEL POINTER
16450 ADC ptr,X \ADD EVENT POINTER
16460 TAX \POINT TO NEXT EMPTY STORE
16470 LDA clocklo \STORE CURRENT CLOCK
 READING
16480 STA store,X
16490 LDA clockmid
16500 STA store + 1,X

The BBC microcomputer in science teaching

272

16510 LDA clockhi
16520 STA store+2,X
16530 DEC evntctr \ALL EVENTS DONE?
16540 BEQ done \QUIT IF FINISHED
16550 LDA keyboardflag \CLEAR FLAG FOR
 KEYBOARD
16551 STA keyboardflag
16559 \ TIMING ROUTINE
16560.count CLC
16570 LDA clocklo \INCREMENT CLOCK
16580 ADC #1
16590 STA clocklo
16600 LDA clockmid
16610 ADC #0
16620 STA clockmid
16630 LDA clockhi
16640 ADC #0
16650 STA clockhi
16660 LDA keyboardflag
16665 AND # 1 \KEY PRESSED?
16668 BNE done \YES SO FINISH
16670.timewait LDA flag \TIMEOUT?
16672 AND #64
16674 BEQ timewait
16675 STA flag \RESET TIMER FLAG
16700 LDA PRT \HAS INPUT STATUS
 CHANGED?
16710 AND #3
16720 TAY \KEEP TEMPORARILY
16730 CMP status
16740 BEQ count \NO CHANGE CONTINUE
 TIMING
16750 BNE query \YES FIND OUT WHICH
 CHANNEL
16760.done LDX #120 \CONVERT STORES TO
 TIME INTERVALS
16770.nxtstore SEC
16780 LDA store+4,X
16790 SBC store+0,X
16800 STA store+4,X
16810 LDA store+5,X
16820 SBC store+1,X
16830 STA store+5,X
16840 LDA store+6,X
16850 SBC store+2,X

Interfacing in machine code

273

16860 STA store+6,X
16870 DEX
16880 DEX
16890 DEX
16900 DEX
16910 BPL nxtstore
16920 CLI
16930 RTS:]
16940 NEXT pass
16950 RETURN

Fast digital to analogue conversion
In Chapter 5 we noted that the frequency of the alternating voltage produced by a DAC via

BASIC was limited to a few hertz. I stated then that for higher frequencies it is necessary to

do all the calculations in BASIC beforehand and store the results in the memory as

individual bytes. These are then collected one by one from the memory and sent directly to

the DAC using a machine code routine. The waveform is created by BASIC before the

machine code routine is called. This gives a table of numbers between 0 and 255 held in a

set of locations called store. The machine code routine outputs these numbers to the DAC

one by one. A delay routine similar to that used before will alter the rate at which the

numbers are sent to the DAC and thus change the frequency of the waveform. The length of

this delay is loaded from BASIC into a location called count before the DAC output routine

is called.

 PROGRAMMABLE OSCILLATOR (13) is based upon this routine. As with the BASIC

programs already discussed, different waveforms are produced by altering the defining

equation. The waveform can be inspected by connecting the DAC output to a cathode ray

oscilloscope or turned into sound with a suitable amplifier and loudspeaker.

.begin LDX #0

.next LDA store,X \4 cycles
STA PRT \4 cycles
LDY count \3 cycles

.delay DEY \2 cycles
BNE delay \2 or 3 cycles
INX \2 cycles
BNE next \2 or 3 cycles
BEQ begin \3 cycles

The delay loop can range from 4 to 1279 cycles, depending upon the value in count; to 1 to

256 (which is, in fact, 0). Including the remaining instructions, the rate of output to the DAC

thus ranges from 20 to 1295 cycles and the period for the whole waveform is between about

2.5 ms and 160 ms (highest frequency 400 Hz).

 Higher frequencies can still be obtained by putting more than one cycle of the waveform

into store to begin with, although this will reduce the resolution obtained. Even so, a mere

eight voltage levels per waveform cycle still gives an acceptable sound, in which case the

frequency can be as high as 12 kHz.

The BBC microcomputer in science teaching

274

The above routine suffers from one fault; it is not possible to get out of it!

PROGRAMMABLE OSCILLATOR contains a method of quitting the routine by having

the keyboard flag checked regularly. When the flag goes up, the routine returns to BASIC.

Applications

This DAC is very useful for producing alternating voltages. From an electronic engineering

viewpoint, its waveform can have almost any shape, so it can be used to analyse the

behaviour of filter circuits. For this purpose the output from the DAC can be boosted as

described in Chapter 5.

Fast analogue to digital conversion
In Chapter 5 we saw how readings from the ADC may be plotted on the screen. If the

measured voltages are changing rapidly however, BASIC is too slow and a machine code

routine is needed to collect the readings and to store them for future use. The built-in ADC

is itself rather slow, but if it is restricted to channel 0 only (*FX16, 1 in version 1.0 of BBC

BASIC), then it may be accessed up to a hundred times per second. Rather than address the

built-in ADC directly (which creates an interrupt) the locations used by the operating system

to store the reading obtained should be used instead. This is 652 for the low byte and 656

for the high byte (adjacent locations store the results for the other channels). Alternatively

the analogue port can be accessed with the OSBYTE call as described in the user guide

(page 429).

 Much faster results are obtained by using the ZN448 device described in Chapter 5. A

single delay loop provides data acquisition rates between 1000 and 100 000 readings per

second. Since the screen is not much more than 256 pixels wide (actually 320) a single page

of stores can be accessed by indexed addressing to save the readings until a BASIC routine

later plots them on the screen.

 If this ADC is connected to the 1 MHz bus (Figure 5.5) or the user port (Figure 5.8), it

has to be triggered to start a conversion. If the ADC is connected to the user port as in the

program listed in the Appendix, the start conversion pulse is obtained from CB2. At the end

of the conversion the data is latched into the user port with a strobe on CB1.

 The way to achieve the maximum data acquisition rate is to start the next conversion

before storing the results of the previous one. The data acquisition time can then be reduced

to 15 microseconds. This is ideal for fast transient phenomena such as the light output from

a flashgun.

Fast ADC

.go SEI
LDY # 0

.wait LDA BPRT \Clear latch
STA BPRT \Start conversion
NOP
NOP
NOP
NOP

Interfacing in machine code

275

NOP
NOP
LDA BPRT
STA BPRT \Begin next conversion
CMP thrshld \Ready to start ?
BCC wait \No wait for change

.new LDA BPRT \Start taking readings
STA BPRT \Begin next conversion
STA store,Y \Save present sample
LDX delay \Get delay time

.dly NOP \2 cycles
LDA delay \3 cycles dummy load
DEX \2 cycles
BNE dly \3 cycles usually
INY \Total delay 10 cycles
BNE new
CLI
RTS

 The minimum time between starting and completing a conversion is about ten

microseconds, which is the best that can be achieved with this device. Because of the time

needed to collect the results the minimum delay between readings is thirty cycles or fifteen

microseconds. The maximum delay is 2590 cycles or 600 readings per second. To decrease

this further is simply a matter of putting extra NOP instructions in the .dly loop. If fewer

readings per second are needed then an inner loop of say 120 microseconds can be provided

in place of the NOP instruction in the manner shown in Chapter 7.

.next LDY delay \3 cycles
.dly LDA #30

STA temp
.iloop DEC temp \5 cycles

BNE iloop \2 or 3 cycles
DEY \2 cycles
BNE dly \2 or 3 cycles

This provides a minimum delay of about 125 microseconds (8000 readings per second) and

a maximum of about 30 ms (33 readings per second). Lower rates than this can conveniently

be handled from BASIC.

At full speed the time required to collect all 256 readings is about 2.5 ms. There thus has

to be some means of telling the routine when to begin taking readings. One software solution

to this problem is based on the assumption that nobody is interested in the voltage until it

starts to change. So, the routine waits until it changes, before beginning to

The BBC microcomputer in science teaching

276

store its readings regularly. In practice, ordinary fluctuations due to electrical noise means

that the required change should be substantial, a change in the lower three bits at least. This

is a little complicated, since the change may be positive or negative, so the absolute value

of the change must be retrieved before the comparison can be made. The following listing

gives the general idea:

 LDA BPRT \Keep note of present reading
 STA status

.wait LDA BPRT \Check reading for change
 SBC status
 BPL pos
 EOR #255 \Negative - so complement

.pos AND #240 \Mask to ignore lower four bits
 BEQ wait \Wait till change is significant

.go SEI
etc.

 In FAST ADC the simpler technique of just comparing the measured ADC value with a

previously declared threshold is used. This does mean that the voltage cannot be used with,

say, capacitor discharge, where the voltage approaches the threshold from the other

direction. In such cases the BCC of the FAST ADC routine must be replaced by BCS. The

method above covers both eventualities, but takes too long for some purposes (e.g. the light

output from a flashgun). Which technique is used depends on the application.

 Connecting the ZN448 device to the user port does prevent the latter being used with a

DAC at the same time (although I use the printer port for this instead), but it does make the

programming simpler. Using the 1 MHz bus as described in Chapter 5, requires different

addresses for the VIA, but the same program may be used otherwise. The full listing for

FAST ADC is given in the Appendix (15). Once taken the readings are plotted on the screen

by BASIC in the normal way. One peculiarity is worth a mention, the need to write to the

user port to start the conversion. This is the only way to make the CB2 line go LOW for a

single cycle. The CA2 line, on the other hand, will also go LOW as the data is read from the

A-port. This would save one whole microsecond. If this is important to you, connect the

ZN448 device to the A-port of your 1 MHz bus VIA and you will be able to get 100 000

readings per second. I can't think what you will use it for!

277

9 Dedicated systems

'I see you're admiring my little box,' the knight

said in a friendly tone. 'It's my own invention.'

(Lewis Carroll, Through the Looking Glass)

Permanent programs

Most microprocessors spend their time doing one set of tasks only. It is only the few that

find their way into personal or school microcomputers, that are given different tasks from

day to day at the whim of the programmer. The microprocessor inside a calculator has been

pre-programmed to carry out calculations only. It will not be asked to play tunes or measure

time intervals or temperatures etc. The microprocessor in a supermarket checkout will not

be asked to play space invaders as well. The microprocessors in these

systems are said to be dedicated to their one function. The programs that run these dedicated

systems are usually frozen in ROM, because there is no need to change them once they have

been written and debugged.

 ROM is produced by a silicon chip manufacturer exactly as requested by the purchaser.

The program is placed in the ROM by a process called mask programming. An individual

ROM may contain 32 000 or more bytes, which is 256 000 different bits. Each bit of every

byte in the ROM is initially switched on. Then, by a photographic process, each individual

bit is marked, either as one to be left on, or one to be switched off. The final process then

permanently switches each bit off, or leaves it on, according to the information printed on

it. Once the program has been produced in this way, it is not possible to alter it later. The

program remains in the ROM even if the power supply to the equipment is later switched

off. When this ROM is coupled to a microprocessor, the latter will only carry out the

program in the ROM.

 The making of the masks for a ROM is a very expensive business and it is not done unless

several thousand such ROMs are required. In the development stage, therefore, before the

bugs have been ironed out, a different form of ROM is used, called programmable ROM.

One version of this is especially useful; it is called EPROM or erasable programmable

ROM. This allows programs to be burned in, just as with ROM, but it is also possible to

erase this program and burn in a different one, if the first is found to contain bugs. The

equipment needed to burn a program into an EPROM is not too expensive (fifty pounds or

so for an add-on unit to the BBC microcomputer), and but it is probably not worth the

average user getting such equipment. Local polytechnics and FE colleges usually possess it

and are willing to let visitors make use of it under supervision.

 EPROM enables the programmer to store machine code routines permanently in his or

her microcomputer, which can then be called from BASIC in the usual way (CALL

The BBC microcomputer in science teaching

278

nnnnn). The exact value for 'nnnnn' depends upon where in the memory space the EPROM

is placed. The most convenient EPROM is the 2516 (also known as the single-rail 2716),

which can hold 2048 eight-bit bytes. A larger EPROM is the 2532, which can hold 4096

bytes. The older 2708 EPROM is less useful since it needs a separate -5V supply, not always

available.

 Because of the many facilities offered, the BBC microcomputer has very little space

available for such EPROMs in its 65 536 addressable locations. Only &FC00 to &FDFE are

free and some of these are earmarked for future expansion. One useful facility, therefore,

allows the user to switch different sets of memory into the memory space using a separate

latch. Thus three EPROMs could be plugged into the spare sockets and the routines

contained in them could be accessed with an *FX call. This is how the graphics chip, word

processor chip and the speech chip are added. I expect it will thus be possible for users to

add their own chips with the same technique, although details of this are not available at the

time of writing.

 Unfortunately these sockets are themselves earmarked for other uses, particularly the

word processor chip, Econet interface chip, LOGO chip and so on. The Acorn publication

BBC Microcomputer Applications, Note 1 - The 1 MHz Bus, describes how another 64K of

RAM, ROM or EPROM may be connected to the 1 MHz bus. Only 256 bytes of this can be

accessed directly at any one time through the JIM addresses (&FD00

to &FDFF). What happens is this. The desired page of the extra memory is selected by

writing the page number into an eight-bit data latch at the address &FCFF. Thus

?&FCFF = &80

will select page 128 of the extra memory. This number is retained by the latch and used to

set up the top eight lines of the address bus. The bottom eight lines are selected by the

microprocessor in the usual way in conjunction with the JIM address. Thus

LET X = ?&FD90

will read the contents of the extra memory at the actual address &8090. The &80 comes

from the data latch and the &90 from the lower eight address lines. To switch to the next

page of memory the data latch must be separately loaded with the next address with

?&FCFF=&81

and so on through the whole of the 65 536 addresses (256 pages) available.

 For physics teachers an obvious resident program for an EPROM is the timing routine

discussed in the last chapter. To get such a routine into the EPROM, the hexadecimal code

is usually typed into an EPROM burner and checked. Then a freshly erased EPROM is

placed in one socket and the burn commences. Each binary code in turn is sent to its correct

address and stored there by sending a voltage pulse along the program line. It takes one or

two minutes for this process, after which the EPROM can be installed in the microcomputer.

An EPROM can be erased again (for example, if a mistake has been made or if a better

version has been developed) by exposing it to the correct dose of ultra-violet radiation. Any

establishment with an EPROM burner will probably possess such a UV eraser too. EPROM

burners are also currently being developed for use with the BBC microcomputer.

Dedicated systems

279

If this sounds a little complicated, and then there is EAROM (electrically alterable ROM).

This too can be programmed and retains its program after the power has been switched off.

Its program can location be changed can later, without having to erase the whole program

first since each memory location can be changed independently. EAROM is unfortunately

much more expensive than EPROM, but does not need special equipment to program it. It

is simple placed into the ROM socket and treated like ordinary RAM, only it retains its

program after the machine is switched off.

 RAM has such tiny power requirements that a suitable battery can maintain a program in

it for years after it has been programmed. Some RAM units, therefore, have a built-in battery

to retain a program after the main power has been switched off. Here too, it is not necessary

to buy a special burner and eraser equipment, since the device behaves like any other RAM

from the point of view of the microcomputer.

A stand-alone system
The above system is still just a microcomputer with some special resident routines. It

would be possible to buy a microcomputer, add an EPROM and use it purely as a

dedicated system. Fundamentally this is what has happened to some older

microcomputers; for example my PET is now used exclusively for word processing.

However, the manufacturers of, say, video games, are not going to do it like this. For

them most of the microcomputer, such as the BASIC interpreter and the keyboard are

unnecessary. Their procedure is to design each system specially, using only those

components necessary for the task required. This is also a technique which we can use

too.

Requirements

A dedicated system will need some means of collecting data and giving information back to

the user. In a microcomputer this is the typewriter keyboard and video display. In a control

system this could be a sensor and a few switches for input and an electromagnetic relay as

an output (for example, in a system to open the garage doors automatically upon the arrival

of a motor car). In both cases, however, some sort of input/output chip, like a VIA, will be

needed and the techniques discussed in Chapter 4 are relevant in this context.

 The system will also need a microprocessor and some RAM for storing variable data. The

amount of RAM depends upon the system, a garage doors system may only need a few

bytes, whereas a programmable electronic organ may need thousands. Finally, the dedicated

system will need its program stored in ROM or EPROM. Small dedicated systems can be

developed around multi-purpose chips, such as the RRIOT (which contains ROM, RAM,

input and output lines and a timer). The user's program is burned into the ROM when it is

manufactured. This is combined with a microprocessor to give and a two-chip system. The

ultimate is a single chip containing all the RAM, ROM and I/O the microprocessor as well.

Such a chip is called a single-chip microcomputer.

 These reductions in chip count give an obvious saving in cost, since the inter-connections

between the different parts of the system have already been made. All that is

The BBC microcomputer in science teaching

280

needed is a small printed circuit board to take the remaining components and a socket for

the single-chip microcomputer and the complete system is ready.

 This brings us right up to the present in microelectronic technology, since it is the use of

such dedicated systems that is so profoundly affecting our lives. They are found in washing

machines, sewing machines, knitting machines, motor cars, supermarket checkout points,

video games and electric train sets. They control robots in factories, word processing

equipment in the office and automatic stock delivery and despatch in the warehouse. What

else they will do in the future is speculation, but I think it is safe to bet that those who can

understand and program microelectronic systems are more likely to be employed than those

who cannot.

 This book was originally intended to be a part of a complete introduction to

microelectronics, beginning with transistors and ending with complete single-chip

microcomputers. This proved to be too ambitious and the emphasis was thus changed to

using an existing microcomputer (in this case the BBC microcomputer) to do most of the

tasks that a microprocessor normally does. I do want to complete the picture, however, and

to encourage some of you to build your own dedicated systems (even your own

microcomputer).

 The first problem with any dedicated system is the number of connections needed. By the

time an EPROM, a VIA, RAM, address decoders and a microprocessor are connected

together, the resulting forest of wires is quite alarming. A printed circuit board (PCB) is a

much better proposition. It isn't difficult to make a PCB but it probably isn't worth the effort

either, since commercial boards with connections for these chips already exist. I use the

"Cubit', which is available from Control Universal Ltd. Their board contains space for the

6502 microprocessor, a single rail 2716 EPROM, address decoding circuits, 2114 memory

chips and a VIA. There are hundreds of simple systems that could be produced with this

board, although some expertise in machine code programming and a good knowledge of the

6502 are needed before such a project is tackled. Some possible means of putting data into

and getting it out of such a system are as follows:

Keyboard

The simple and cheap hexadecimal keyboard contains the numerals 0 to 9 and the keys A to

F. There are two different versions of it, one of which has sixteen separate switches, each

operated by one of the keys. The way to use this keyboard is to run it from the a four-to-

sixteen demultiplexer (SN74LS154) described in Chapter 4. This device switches on one of

sixteen possible lines when the binary address of the required line is sent to the address

inputs (A0, A1, A2, A3). Only one of the outputs goes LOW at any time, depending on the

binary number at the inputs. These inputs would be driven by four lines of the VIA to select

any of the sixteen output lines. Each of these output lines is connected to one of the keys of

the keyboard. If any of the keys is depressed, while its line is being held LOW (or strobed),

then the output from the keyboard will itself be driven LOW. If this keyboard output is

connected to a VIA input line, it can be sensed by the microprocessor.

 The keyboard scan procedure is to put each of the numbers 0000 to 1111 in turn into the

demultiplexer and to look at the keyboard output each time. When it is LOW, the

Dedicated systems

281

Figure 9.1 Matrix keyboard

number currently being output to the demultiplexer is the key that is being pressed. The

obvious line for the keyboard output is bit 7, since that can be detected with the single

operation BPL, which will only be obeyed if one of the keys is being pressed.

 An alternative is the 4 x 4 matrix keyboard of Figure 9.1, which connects to the eight

lines of the user port, configured to make PBO to 3 into inputs and PB4 to 7 into outputs.

Each line of PB4 to PB7 is then made to go LOW and each of PBO to PB3 is checked to

see if it has gone LOW. If so, the key at the intersection of the two chosen lines must have

been pressed.

Display

If the display only needs to show a few digits at a time and simple words, an ideal device

is the eight-digit seven-segment LED display, just like that found in most calculators.

Different characters are displayed by controlling each segment of each digit

independently. Calculator-style displays also have the advantage of being inexpensive.

Each line (segment) of the display is an LED and all eight segments have a common

cathode (or anode). The seven segments of the digit are labelled a, b, c, d, e, f and g and

there is also a decimal point dp. When any segment is taken HIGH and its cathode is taken

LOW, that segment will light up. To display digits different codes need to be sent to the

segments. By alternating between upper and lower case letters, it is even possible to

display enough letters of the alphabet to present such words as 'rEAdy', 'yES' and 'no', as

well as the responses A, b, C, d and E. The codes for these are calculated just like those for

the digits.

The BBC microcomputer in science teaching

282

 At first sight it looks as if the requirements of the eight-digit, seven-segment display are

impossible to meet. The number of segments is actually eight, because of the decimal point,

and this might imply that 8 X 8 or 64 lines are needed to drive all eight digits. In practice,

only one digit is displayed at any one time and only the segments needed for that particular

digit are switched on. This technique is called multiplexing and is the standard procedure

for this type of display. (If the number 8888888888 is entered into a pocket calculator, which

is then waved about, it becomes obvious that this is happening.) With this method we can

use the same eight lines to run the segments for all of the digits and we only need eight more

lines, one for each digit.

 The same demultiplexer that drives the sixteen-key keyboard, can be used to provide these

digit drives. As each keyboard position is strobed, it applies a LOW to the cathode of one

of the display digits. The required segments are then driven HIGH at the same time, so that

the desired character is displayed in its correct position. Each position is strobed in turn so

that, in fact, up to sixteen digits could be displayed by this method. All of them could appear

to be showing a different digit or character.

 This technique means that the segment drive and the selected digit have to be held for a

few milliseconds, to give the user time to see the displayed character. Although this slows

up the rate of scanning the keyboard, there is really no problem because an operator is

unlikely to press a key for less than several centiseconds. There is plenty of time to strobe

the keyboard as well as to display all eight digits. This method therefore only needs thirteen

lines of the VIA to run the keyboard and display. The remaining lines may be used for switch

inputs or other outputs.

Memory

To provide temporary storage for input data and to allow a working space for the operating

system some RAM is necessary. On the Cubit board RAM comes in blocks of 1K up to a

maximum of 4K. The obvious place to put this 1K is on pages zero to three of the memory

map so that we can use zero page addressing modes and make savings in execution time. To

make use of subroutines, we also need to create a STACK in RAM, which, for the 6502

microprocessor, must be on page one. This leaves the remainder for data storage. As we saw

above, only one VIA is required to handle all the I/O. The VIA address on the Cubit is

chosen to be &9000 to &900F.

 The program needed to run the operating system will need routines for handling the

keyboard input and display output, for sending and receiving the data and for processing the

data entered from the keyboard. This might sound a great deal, but in fact machine code is

very sparing in its use of memory, so the two kilobytes of a single 2716 EPROM are more

than enough. Its 2048 bytes take up the memory space from &F800 to &FFFF. This is

essential because the 6502 will need addresses &FFFC and &FFFD, which is where the

microprocessor will look for its first jump address after being switched on. We shall put the

starting address of our program into the locations &FFFC and &FFFD and the

microprocessor will jump to the start of our program every time we switch on or reset the

terminal.

Dedicated systems

283

Our memory map will therefore look like this:

Memory User address
RAM &0000-803FF
VIA &9000-8900F
EPROM &F800-&FFFF

The Cubit board itself has switches to decide where the ROM and RAM are simple system

like ours does not need these switches, wires are soldered instead to to choose go. A block

zero for RAM and block F for ROM (or EPROM in our case).

VIA usage

The keyboard and display require only thirteen I/O lines. The 6522 VIA has 16 available

I/O lines, so there is a little choice. We could use the C1 and C2 control lines too if this is

found to be unnecessary. The whole of the B-Port is chosen to drive the segments and the

lower four bits of the A-Port are connected to the four-to-sixteen demultiplexer to provide

the digit select and keyboard scan. Bit 7 of the A-Port is chosen for the input from the

keyboard. The remaining lines could be used for other purposes such as communication with

other systems or for input sensors or relay outputs:

 B-port: bits 0 to 7 : segment select (to segment drivers)
 A-port: bits 0 to 3 : digit select (to inputs of SN74154)
 : and key select on the keyboard
 bit 7 : input from keyboard

Programming

I have made several stand-alone systems based upon the Cubit board, which I find

exceptionally easy to use. I actually wrote the programs for these systems using an Apple II

microcomputer. The address and data lines from an Apple connector socket were connected

to a VIA and the outputs from this went to the keyboard, display and I/O lines of my system.

The program was written in the Apple's memory accessing the VIA through the address

&C0C0. When the program had been debugged, the hexadecimal codes were copied out by

hand and the VIA address changed to &9000 to fit the Cubit system. The Cubit board was

constructed and its VIA connected to the keyboard, display and I/O lines in exactly the same

way as the other VIA had been. The program codes were then taken to Glasgow University

and typed into their EPROM burner. The EPROM was then plugged into the final system.

To my utter astonishment it worked first time! One of the systems I made using the Apple

was a simple microprocessor tutor, now marketed by Griffin and George Ltd as the Mini-

microprocessor. I have been hooked on dedicated systems ever since.

 There is no reason why the same arrangement I developed for the Apple would not also

a work with a VIA connected to the 1 MHz bus of the BBC microcomputer. However that

much better way to do the development is to use an emulator. This is a small board is fits

the BBC microcomputer and terminates in a twenty-four pin plug. This plug the Cubit pin-

compatible with the 2516 EPROM and it is fitted into the EPROM socket of board. A

suitable program in the BBC microcomputer turns that microcomputer and the

The BBC microcomputer in science teaching

284

emulation board into a simulated 2516 EPROM. The routines to run the Cubit board can

then be written using the BBC assembler and the Cubit board system can be run to try them

out. Debugging is quick and easy and when the program has been fully developed, it can be

burned into an EPROM. This can then be plugged into the stand-alone Cubit board system.

 At the time of writing a great deal of work is being done to produce emulators and

EPROM burners for coupling to the BBC microcomputer (for example, Control Universal

Ltd). They will make the development of dedicated systems quite easy and perfectly feasible

projects for fifth and sixth year students. There is something very pleasing about inventing

and producing your very own computer; it is real microelectronics. May I wish you the same

success and joy in any of your ventures into dedicated systems.

Dedicated systems

285

Suppliers

At the time of writing several commercial interfaces are available for the BBC

microcomputer. Soon there will be an overwhelming supply. What criteria should be used

in selecting one for use in the science laboratory?

 First and foremost is cost. Some interfaces for the Apple cost a few hundred pounds and

offer less than is standard in the BBC microcomputer, so the cost of an interface is no guide

to its facilities. There is no point in duplicating the facilities already offered on the BBC

microcomputer, so a slow analogue converter is not needed. Similarly, unbuffered inputs

and outputs are available at the user port, so these are no use either.

 A useful laboratory interface would have a fast analogue converter, preferably with up to

four channels. A data acquisition rate of at least 10000 readings a second is needed for

measuring transients. The inputs may be A.C. or D.C. and it should be possible to alter the

sensitivity and the bias, so that, for example, the voltage across a capacitor could be

measured as it discharged through an inductor. A useful facility would allow the alteration

of the threshold level at which the measurements begin to be taken.

 The interface ought also to provide a digital to analogue converter with sufficient power

output to drive current through an LCR circuit or a lamp. Even better would be an A.C.

output with controllable frequency as described in Chapter 5.

Plate 43 Unilab interface

The BBC microcomputer in science teaching

286

Plate 44 Philip Harris analogue interface

Plate 45 Griffin interface units

Suppliers

287

Plate 46 BBC Interface

 The digital side should have relay outputs for driving motors and heaters and TTL outputs

for driving other integrated circuits. Inputs that can be driven directly from a switch or a

photocell are also desirable. A minimum number of outputs is four and at least two inputs

would be needed. Eight of each is very nice if the expense can be justified.

 There is no commercially available interface that yet fulfils all of these requirements. A

good contender is that produced by Unilab Ltd (Plate 43). Those sold by Philip Harris are

also very good, although a full set would be rather expensive (Plate 44). Griffin and George

Ltd have their digital and analogue units (Plate 45) which are satisfactory, if costly. An

exciting development is a new, very cheap interface available through Griffin and George

Ltd, which is close to my specification above. It is called the BBC Interface (Plate 46)

For further details contact:

 Griffin and George Ltd Unilab Ltd

 Ealing Road Clarendon Road

 Wembley HAO 1HJ Blackburn BB1 9TA

 Philip Harris Ltd

 Lynn Lane

 Shenstone WS14 OEE

The BBC microcomputer in science teaching

288

Electronic components

Chapters 4 and 5 describe several interfacing circuits that can easily be made in school.

Components are the biggest problem, but those mentioned are normally available from one

of the following suppliers:

 Farnell Electronic Components Ltd

 Canal Road

 Leeds LS2 2TU

 RS Components Ltd

 13-17 Epworth Street

 London EC2P 2HA

 Verospeed Components

 Stansted Road

 Boyatt Wood

 Eastleigh

 Hants SO5 4ZY

Concept keyboard

The best known is obtainable from:

 Star Microterminals Ltd

 22 Hyde Street

 Winchester

 Hants SO23 7DR

Cubit PCB

The PCBs for dedicated microcomputers based upon the Cubit system are obtainable from:

 Control Universal Ltd

 Unit 2

 Andersons Court

 Newnham Road

 Cambridge CB3 9E

289

Bibliography

Introductory

 J. McGregor and A. Watt, The BBC Micro Book, Addison-Wesley

 T. Hartnell, Let your BBC Micro Teach you to Program, Interface

 N. and P. Cryer, Basic Programming on the BBC Microcomputer, Prentice Hall

 P. Williams, Programming the BBC Microcomputer, Newnes Technical Books

Microcomputer graphics

 J. Cownie, Creative Graphics on the BBC Microcomputer, Acornsoft

 R. E. Myers, Microcomputer Graphics with Apple II examples, Addison-Wesley

Advanced

 J. McGregor and A. Watt, Advanced Programming Techniques for the BBC

 Micro, Addison-Wesley

 L. Poole and M. Borchers, Some Common BASIC Programs,

 Osborne/McGraw Hill

 J. S. Coan, Advanced BASIC, Hayden Book Co. Inc.

 J. S. Gilder, BASIC Computer Programs in Science and Engineering,

 Hayden Book Co. Inc.

Assembly language

 I. Birnbaum, Assembly Language Programming for the BBC Microcomputer,

 Macmillan

 J. Ferguson and A. Shaw, Assembly Language Programming on the BBC Micro,

 Addison-Wesley

 L. A. Levethal, 6502 Assembly Language Programming, Osborne/McGraw Hill

Electronics

 Malmstadt, Enk and Crouch, Electronics and Instrumentation,

 Benjamin/Cummings Pub. Co. Inc. California

On education

 C. Doerr, Microcomputers and the 3Rs, Hayden Book Co. Inc.

The BBC microcomputer in science teaching

290

National BBC user clubs

Beebug

374 Wandsworth Road

London SW3 4TE

Laserbug

18 Dawley Ride

Colnbrook

Slough

Berks SL3 0QH

291

Program listings

LOGIC GATES – PROGRAM 1

LIST
 1 MODE 7
 10 REM LOGIC GATES
 20 PRT=&FE60:REM USER PORT
 25 DDR=&FE62:REM DATA DIRECTION REGISTER
 80 SR=&7C00:REM SCREEN VALUE
 90 ?DDR=240:REM BITS o TO 3 ARE INPUTS, BITS 4 TO 7 ARE OUTPUTS
 100 REM
 110 CLS
 120 PRINT TAB(12,0);"LOGIC GATES"
 121 PRINT TAB(0,2);"SELECT DESIRED GATE BY PRESSING ONE"
 122 PRINT TAB(0,4) ;"OF THE FOLLOWING NUMBERS."
 123 PRINT TAB(6,6);"1 AND"
 124 PRINT TAB(6,8);"2 OR"
 125 PRINT TAB(6,10);"3 NOT"
 126 PRINT TAB(6,12);"4 EXCLUSIVE-OR"
 127 PRINT TAB(6,14);"5 EQUIVALENCE"
 128 PRINT TAB(6,16);"6 NAND"
 129 PRINT TAB(6,18);"7 NOR"
 140 LET S$=GET$
 145 S%=VAL(S$)
 150 IF S%<1 OR S%>7 THEN 140
 151 PRINT TAB(0,20);"YOUR SELECTION IS"
 152 IF S%=1 THEN PRINT TAB(20,20);"AND"
 153 IF S%=2 THEN PRINT TAB(20,20);"OR"
 154 IF S%=3 THEN PRINT TAB(20,20);"NOT"
 155 IF S%=4 THEN PRINT TAB(20,20);"EXCLUSIVE-OR"
 156 IF S%=5 THEN PRINT TAB(20,20);"EQUIVALENCE"
 157 IF S%=6 THEN PRINT TAB(20,20);"NAND"
 158 IF S%=7 THEN PRINT TAB(20,20) "NOR"
 160 PRINT :PRINT"Press RETURN to confirm"
 165 PRINT :PRINT"or press SPACE to try again.";
 170 IF GET$<>CHR$(13) THEN 110
 250 IF S%<>3 THEN 490
 260 CLS:PRINT TAB(0,2);"THE 'NOT' FUNCTION HAS ONE INPUT."
 270 PRINT:PRINT"WHICH INPUT? PRESS A OR B"
 420 I$=GET$
 430 IF I$<>"A" AND I$<>"B" THEN 420
 460 REM
 470 REM DISPLAY FUNCTION AND TERMINALS
 480 REM
 490 CLS
 500
 510 GOSUB 1000:REM DISPLAY FUNCTION
 530 ON S% GOSUB 1100,1200,1300,1400,1500,1600,1700
 540 PRINT TAB(13,8);P$
 550 PRINT TAB(30,8);"() OUTPUT"
 590 REM DISPLAY INPUTS
 600 IF S%=3 THEN GOSUB 5000 ELSE GOSUB 5100
 620 PRINT TAB(0,20);"Press F for different gate, or E to end."
 630 A$=INKEY$ (0)
 640 IF A$="F" THEN 110
 650 IF A$="E" THEN END
 660 REM GET DATA

The BBC microcomputer in science teaching

292

 670 LET A%=?PRT AND 1
 680 LET B%=(?PRT AND 2)DIV 2
 720
 730 REM CHANGE INPUT VALUES ON SCREEN
 740 FOR PN=5TO 15
 750 SC=SR+PN*40
 760 J=?SC-64
 770 IF J=1 THEN ?(SC+2)=A%+48
 780 IF J=2 THEN ?(SC+2)=B%+48
 790 NEXT PN
 800 REM CALCULATE OUTPUT DATA
 910 ON S% GOSUB 3100, 3200, 3300, 3400, 3500,3600,3700
 920 REM SEND OUTPUT TO USER PORT
 930 ?PRT=128*VO%
 940 REM SEND LOGIC LEVEL TO SCREEN
 950 PRINT TAB(31,8);VO%
 990 GOTO 630
1000 REM BOX DISPLAY
1010 PRINT TAB(11,6);CHR$(151);CHR$(55);CHR$(96);CHR$(96);CHR$(96);CHR$(96);CHR$(96);CHR$(96);C
HR$(107);CHR$(135)
1020 PRINT TAB(11,7);CHR$(151);CHR$(53);" ";CHR$(106);CHR$(135)
1030 PRINT TAB(11,8);CHR$(151);CHR$(53);" ";CHR$(106);CHR$(44);CHR$(44);CHR$(4
4);CHR$(44);CHR$(44);CHR$(44);CHR$(44);CHR$(44);CHR$(44);CHR$(135)
1040PRINT TAB(11,9);CHR$(151);CHR$(53);" ";CHR$(106);CHR$(135)
1050PRINT TAB(11,10);CHR$(151);CHR$(117);CHR$(112);CHR$(112);CHR$(112);CHR$(112);CHR$(112);CHR
$(112);CHR$(122);CHR$(135)
1060 RETURN
1100 P$=" AND":RETURN
1200 P$=" OR":RETURN
1300 P$=" NOT":RETURN
1400 P$="EX OR":RETURN
1500 P$="EQUIV":RETURN
1600 P$=" NAND":RETURN
1700 P$=" NOR":RETURN
3000 REM DETERMINE OUTPUTS FOR EACH FUNCTION
3100 REM AND FUNCTION
3110 VO%=A% AND B%
3150 RETURN
3200 REM OR FUNCTION
3210 VO%=A% OR B%
3250 RETURN
3300 REM NOT FUNCTION
3310 IF S%=3 AND I$="A" THEN VO%=(NOT A%) AND 1
3320 IF S%=3 AND I$="B" THEN VO%=(NOT B%) AND 1
3330 RETURN
3400 REM EXCLUSIVE-OR FUNCTION
3410 VO%=((A% AND NOT B%) OR (NOT A% AND B%)) AND 1
3430 RETURN
3500 REM EQUIVALENCE FUNCTION
3510 VO%=((A% AND B%) OR (NOT A% AND NOT B%)) AND 1
3530 RETURN
3600 REM NAND FUNCTION
3610 VO%=NOT (A% AND B%) AND 1
3620 RETURN
3700 REM NOR FUNCTION
3710 VO%=NOT (A% OR B%) AND 1
3760 RETURN
5000 REM APPEND THE INPUTS
5010 REM ONE INPUT
5020 PROCline(8,I$)

Program listings

293

5030 RETURN
5100 REM TWO INPUTS
5110 PROCline(7,"B")
5120 PROCline(9,"A")
5130 RETURN
6000 DEFPROCline(K,G$)
6010 PRINT TAB(0,K);G$;"()";CHR$(151);CHR$(44);CHR$(44);CHR$(44);CHR$(44);CHR$(44);CHR$(44);CHR$
(44)
6020 ENDPROC

LOGIC TEST – PROGRAM 1A
 1 MODE 7
 10 ON ERROR GOTO 110
 20 REM TURN CURSOR OFF
 30 VDU23;8202;0;0;0
100 DIM unused(10)
110 REM LOGIC TEST
120 PRT=&FE60:REM USER PORT
130 DDR=&FE62:REM DATA DIRECTION REGISTER
140 LET score=0
145 LET I$=""
150 FOR I=0 TO 9:LET unused(I)=TRUE:NEXT I
160 LET question=0
170 ?DDR=240:REM BITS 0 TO 3 ARE INPUTS, BITS 4 TO 7 ARE OUTPUTS
180 REPEAT
190 LET status=1000:REM INITIALIZE INPUT STATUS
200 CLS
210 LET attempt=FALSE:LET correct=FALSE:LET question=question+1
220 PROCselect
230 PROCgate:GOSUB 5100:REM APPEND TWO INPUTS
240 PRINT TAB(0,6)
250PRINT:PRINT"Which of these functions is the board"
260PRINT:PRINT"now producing? Choose by pressing "
270 PRINT"one of these numbers."
280 PRINT:PRINT"0 A AND B 1 A OR B"
290 PRINT:PRINT"2 NOT A 3 NOT B"
300 PRINT:PRINT"4 (A AND NOT B) OR (NOT A AND B)"
310 PRINT:PRINT"5 (NOT A AND NOT B) OR (A AND B)"
320 PRINT:PRINT"6 NOT (A AND B) 7 NOT (A OR B)"
330 PRINT:PRINT"8 NOT A AND B 9 NOT A OR B";
340 PROCdogate
350 LET S%=INKEY(0)-48
360 IF S%=17 THEN LET line=15:CLS:GOTO 650
370 IF S%<0 OR S%>9 THEN 340
380 PRINT TAB(0,8);" "
390 PRINT TAB(0,10);" "
400 PRINT TAB(0,12);" "
410 PRINTTAB(0,8);"Your selection is ";
420 IF S%=0 THEN PRINT TAB(18,8);"A AND B"
430 IF S%=1 THEN PRINT TAB(18,8);"A OR B"
440 IF S%=2 THEN PRINT TAB(18,8);"NOT A"
450 IF S%=3 THEN PRINT TAB(18,8);"NOT B"
460 IF S%=4 THEN PRINT TAB(2,10);"(NOT A AND B) OR (A AND NOT B)"
470 IF S%=5 THEN PRINT TAB(2,10);"(NOT A AND NOT B) OR (A AND B)"
480 IF S%=6 THEN PRINT TAB(18,8);"NOT (A AND B) "
490 IF S%=7 THEN PRINT TAB(18,8);"NOT (A OR B)"
500 IF S%=8 THEN PRINT TAB(18,8);"NOT A AND B"
510 IF S%=9 THEN PRINT TAB(18,8);"NOT A OR B"
520 PRINT:PRINT"RETURN to confirm or T to try again."
530 PROCdogate

The BBC microcomputer in science teaching

294

540 LET K$=INKEY$(0)
550 IF K$=CHR$13 THEN 580
560 IF K$="T" THEN 240
570 GOTO 530
580 REM CHECK ANSWER
590 IF S%<>N% THEN PROCwrong:GOTO 340
600 LET correct=TRUE
610 LET line=15:REM Initialize row
620 CLS
630 IF attempt=0 THEN PRINT TAB(6); "CORRECT FIRST TIME" ELSE PRINT TAB(6);"CORRECT THIS
TIME"
640 IF attempt=0 THEN score=score+1
650 PROCgate
660 PROCnamegate
670 PROCtable
680 PRINT TAB(0,22); "Press N for next question. "
690 REPEAT
700 PROCshow
710 UNTIL INKEY$ (0)="N"
720 UNTIL question=10
730 REM SHOW SCORE
740 CLS
750 PRINT TAB(B,1);"LOGIC GATES"
760 PRINT:PRINT:PRINT"Your score is ";score
770 PRINT:PRINT:PRINT"Press SPACE to begin again. "
780 REPEAT UNTIL GET$=" "
790 GOTO 110
800
1000 DEF PROCgate
1010 PRINT TAB(11,2);CHR$(151);CHR$(55);CHR$(96);CHR$(96);CHR$(96);CHR$(96);CHR$(96);CHR$(96);C
HR$(107);CHR$(135)
1020 PRINT TAB(11,3);CHR$(151);CHR$(53);" ";CHR$(106);CHR$(135)
1030 PRINT TAB(11,4);CHR$(151);CHR$(53);" ";CHR$(106);CHR$(44);CHR$(44);CHR$(44);CHR$(44);
CHR$(44);CHR$(44);CHR$(44);CHR$(44);CHR$(44);CHR$(135)
1040PRINT TAB(11,5);CHR$(151);CHR$(53);" ";CHR$(106);CHR$(135)
1050PRINT TAB(11,6);CHR$(151);CHR$(117);CHR$(112);CHR$(112);CHR$(112);CHR$(112);CHR$(112)CHR$(
112);CHR$(122);CHR$(135)
1060 PRINT TAB(30,4)"() OUTPUT"
1070 ENDPROC
1200 P$=" AND":RETURN
1210 P$=" OR": RETURN
1220 P$=" NOT A": RETURN
1230 P$=" NOT B": RETURN
1240 P$="EX OR" :RETURN
1250 P$="EQUIV": RETURN
1260 P$=" NAND":RETURN
1270 P$=" NOR":RETURN
1280 P$=CHR$11+" NOT A"+CHR$8+CHR$8+CHR$8+CHR$8+CHR$8+CHR$10+CHR$10+"AND B":RETURN
1290 P$=CHR$11+" NOT "+CHR$8+CHR$8+CHR$8+CHR$8+CHR$8+CHR$10+CHR$10+" OR B":RETURN
1400 DEF PROCnamegate
1410 ON (N%+1) GOSUB1200,1210,1220,1230,1240,1250,1260,1270,1280, 1290
1420 PRINT TAB(13,4);P$
1430 REM DISPLAY INPUTS
1440 IF N%=2 OR N%=3 THEN GOSUB 5000 ELSE GOSUB 5100
1450 ENDPROC
2000 DEF PROCselect
2010 REPEAT
2020 LET N%=RND(10)-1
2030 UNTIL unused(N%)
2040 LET unused(N%)=FALSE

Program listings

295

2050 IF N%=2 THEN LET I$="A"
2060 IF N%=3 THEN LET I$="B"
2070 ENDPROC
3000 REM DETERMINE OUTPUTS FOR EACH FUNCTION
3001 REM AND FUNCTION
3010 VO%=A% AND B%
3020 RETURN
3100 REM OR FUNCTION
3110 VO%=A% OR B%
3120 RETURN
3200 REM NOT A FUNCTION
3210 VO%= (NOT A%) AND 1
3220 RETURN
3300 REM NOT B FUNCTION
3310 VO%=(NOT B%) AND 1
3330 RETURN
3400 REM EXCLUSIVE-DR FUNCTION
3410 VO%=((A% AND NOT B%) OR (NOT A% AND B%)) AND 1
3430 RETURN
3500 REM EQUIVALENCE FUNCTION
3510 VO%=((A% AND B%) OR (NOT A% AND NOT B%)) AND 1
3530 RETURN
3600 REM NAND FUNCTION
3610 VO%=NOT (A% AND B%) AND 1
3620 RETURN
3700 REM NOR FUNCTION
3710 VO%=NOT(A% OR B%) AND 1
3760 RETURN
3800 REM NOT A AND B FUNCTION
3810 VO%=(NOTA% AND B%) AND 1
3820 RETURN
3900 REM NOT A OR B FUNCTION
3910 VO%=(NOTA% OR B%) AND 1
3920 RETURN
4000 DEF PROCtable
4010 PRINT TAB(8,8);CHR$(151);CHR$(183);CHR$(163);CHR$(163);CHR$(163);CHR$(183);CHR$(163);CHR$(
163);CHR$(163);CHR$(183);CHR$(163);CHR$(163);CHR$(163);CHR$(163);CHR$(163);CHR$(163);CHR$(163);C
HR$(163);CHR$(235)
4020 PRINT TAB(8,9);CHR$(151);CHR$(53);CHR$(32);CHR$(193);CHR$(32);CHR$(53);CHR$(32);CHR$(194);
CHR$(32);CHR$(53);CHR$(32);CHR$(207);CHR$(213);CHR$(212);CHR$(208);CHR$(213);CHR$(212);CHR$(32);
CHR$(234)
4030 PRINT TAB(8,10);CHR$(151);CHR$(117);CHR$(240);CHR$(240);CHR$(240);CHR$(117);CHR$(240);CHR
$(240);CHR$(240);CHR$(117);CHR$(240);CHR$(240);CHR$(240);CHR$(240);CHR$(240);CHR$(240);CHR$(240)
;CHR$(240);CHR$(250)
4040 PRINT TAB(8,11);CHR$(151);CHR$(53);CHR$(32);CHR$(32);CHR$(32);CHR$(53);CHR$(32);CHR$(32);C
HR$(32);CHR$(53);CHR$(32);CHR$(32);CHR$(32);CHR$(32);CHR$(32);CHR$(32);CHR$(32);CHR$(32);CHR$(10
6)
4050 PRINT TAB(8,12);CHR$(151);CHR$(53);CHR$(32);CHR$(207);CHR$(32);CHR$(53);CHR$(32);CHR$(207)
;CHR$(32);CHR$(53);CHR$(32);CHR$(32);CHR$(32);CHR$(32);CHR$(32);CHR$(32);CHR$(32);CHR$(32);CHR$(2
34)
4060 PRINT TAB(8,13);CHR$(151);CHR$(53);CHR$(32);CHR$(32);CHR$(32);CHR$(53);CHR$(32);CHR$(32);C
HR$(32);CHR$(53);CHR$(32);CHR$(32);CHR$(32);CHR$(32);CHR$(32);CHR$(32);CHR$(32);CHR$(32);CHR$(10
6)
4070 PRINT TAB(8,14);CHR$(151);CHR$(53);CHR$(32);CHR$(207);CHR$(32);CHR$(53);CHR$(32);CHR$(201)
;CHR$(32);CHR$(53);CHR$(32);CHR$(32);CHR$(32);CHR$(32);CHR$(32);CHR$(32);CHR$(32);CHR$(32);CHR$(2
34)
4080 PRINT TAB(8,15);CHR$(151);CHR$(53);CHR$(32);CHR$(32);CHR$(32);CHR$(53);CHR$(32);CHR$(32);C
HR$(32);CHR$(53);CHR$(32);CHR$(32);CHR$(32);CHR$(32);CHR$(32);CHR$(32);CHR$(32);CHR$(32);CHR$(10
6)

The BBC microcomputer in science teaching

296

4090 PRINT TAB(8,16);CHR$(151);CHR$(53);CHR$(32);CHR$(201);CHR$(32);CHR$(53);CHR$(32);CHR$(207)
;CHR$(32);CHR$(53);CHR$(32);CHR$(32);CHR$(32);CHR$(32);CHR$(32);CHR$(32);CHR$(32)
CHR$(32);CHR$(234)
4100 PRINT TAB(8,17);CHR$(151);CHR$(53);CHR$(32);CHR$(32);CHR$(32);CHR$(53);CHR$(32);CHR$(32);C
HR$(32)CHR$(53);CHR$(32);CHR$(32);CHR$(32);CHR$(32);CHR$(32);CHR$(32);CHR$(32);CHR$(32);CHR$(106
)
4110 PRINT TAB(8,18);CHR$(151);CHR$(53);CHR$(32);CHR$(201);CHR$(32);CHR$(53);CHR$(32);CHR$(201)
;CHR$(32);CHR$(53);CHR$(32);CHR$(32);CHR$(32);CHR$(32);CHR$(32);CHR$(32);CHR$(32);CHR$(32);CHR$(2
34)
4120 PRINT TAB(8,19);CHR$(151);CHR$(117);CHR$(240);CHR$(240);CHR$(240);CHR$(117);CHR$(240);CHR
$(240);CHR$(240);CHR$(117);CHR$(240);CHR$(240);CHR$(240);CHR$(240);CHR$(240);CHR$(240);CHR$(240)
;CHR$(240);CHR$(250)
4200 ENDPROC
5000 REM APPEND THE INPUTS
5010 REM ONE INPUT
5020 PROCline(4,I$)
5030 RETURN
5100 REM TWO INPUTS
5110 PROCline(3,"B")
5120 PROCline(5,"A")
5130 RETURN
6000 DEFPROCline(K,G$)
6010 PRINT TAB(0,K);G$;"()";CHR$(151);CHR$(44);CHR$(44);CHR$(44);CHR$(44);CHR$(44);CHR$(44);CHR$
(44)
6020 ENDPROC
7000 DEF PROCshow
7010 LET A%=?PRT AND 1
7020 LET B%=(?PRT AND 2)DIV 2
7030 IF status=2*B%+4*A% THEN ENDPROC
7040 REM CHANGE SCREEN VALUES ETC.
7050 LET status=2*B%+4*A%
7060 IF N%=2 OR N%=3 THEN 7100:REM ONE INPUT
7070 PRINT TAB(2,3);B%
7080 PRINT TAB(2,5);A%
7090 GOTO 7200
7100 IF N%=2 THEN PRINT TAB(2,4);A%
7110 IF N%=3 THEN PRINT TAB(2,4);B%
7200 REM CALCULATE OUTPUT DATA
7210 ON (N%+1) GOSUB 3000, 3100, 3200, 3300, 3400, 3500, 3600, 3700, 3800, 3900
7220 REM SEND OUTPUT TO USER PORT
7230 ?PRT=16*VO%
7240 REM SEND LOGIC LEVEL TO SCREEN
7250 PRINT TAB(31,4);VO%
8000 REM HIGHLIGHT TRUTH LINE
8010 PRINT TAB(3,line);" "
8020 PRINT TAB(28,line);" "
8030 LET line=12+2*B%+4*A%
8040 PRINT TAB(3,line);"]]]]]"
8050 PRINT TAB(28,line)
8060 REM FILL IN TRUTH TABLE
8070 IF VO% THEN PRINT TAB(20,line);"I" ELSE PRINT TAB(20,line) ; "0"
8080 ENDPROC
9000 DEF PROCwrong
9010 PRINT TAB(0,8);" WRONG "
9020 PRINT TAB(0,10);" TRY AGAIN "
9030 PRINT TAB(0,12) "or press A for the answer."
9040 LET attempt=TRUE
9050 ENDPROC
10000 DEF PROCdogate
10010 LET A%=?PRT AND 1

Program listings

297

10020 LET B%=(?PRT AND 2)DIV 2
10030 IF status=2*B%+4*A% THEN ENDPROC
10040 PRINT TAB(2,3);B%
10050PRINT TAB(2,5);A%
10060 REM CALCULATE OUTPUT DATA
10070 ON (N%+1) GOSUB 3000, 3100, 3200, 3300, 3400, 3500, 3600, 3700, 3800, 3900
10080 REM SEND OUTPUT TO USER PORT
10090 ?PRT=16*VO%
10100 REM SEND LOGIC LEVEL TO SCREEN
10110 PRINT TAB(31,4);VO%
10120 ENDPROC

LOGIC TUTOR - PROGRAM 2
LIST
 1 MODE 7
 10 REM BOOLEAN FUNCTIONS
 20 PRT=&FE60:REM USER PORT
 25 DDR=&FE62:REM DATA DIRECTION REGISTER
 30 DIM I%(4):REM NUMBER OF INPUTS PER GATE
 35 DIM T$(4,4):REM FUNCTION VARIABLES (INPUTS,OUTPUTS)
 40 DIM A%(4):REM INPUT DATA FROM USER PORT
 50 DIM VI%(4):REM VALUES FOR INPUT DATA
 60 DIM F%(4):REM MENU VALUE OF FUNCTION
 70 N=0:M=0:REM INPUT AND OUTPUT REFERENCE NUMBERS
 80 SR=&7C00:REM SCREEN VALUE
 90 ?DDR=240:REM BITS o TO 3 ARE INPUTS, BITS 4 TO 7 ARE OUTPUTS
 100 FOR M=1 TO 4:F%(M)=0:NEXT M
 110 CLS
 120 PRINT TAB(12,0);"BOOLEAN FUNCTIONS"
 121 PRINT TAB(0,2);"SELECT DESIRED FUNCTION BY ENTERING ONE"
 122 PRINT TAB(0,4);"OF THE FOLLOWING NUMBERS. "
 123 PRINT TAB(6,6);"1 AND"
 124 PRINT TAB(6,8);"2 OR"
 125 PRINT TAB(6,10);"3 NOT"
 126 PRINT TAB(6,12); "4 EXCLUSIVE-OR"
 127 PRINT TAB(6,14); "5 EQUIVALENCE"
 128 PRINT TAB(6,16); "6 NAND"
 129 PRINT TAB(6,18); "7 NOR"
 130 PRINT TAB(0,20); "THEN PRESS RETURN. "
 140 INPUT S$
 145 S%=VAL (S$)
 150 IF S%<1 OR S%>7 THEN 140
 151 CLS:PRINT TAB(0,5);"YOUR SELECTION IS"
 152 IF S%=1 THEN PRINT TAB(20,5);"AND"
 153 IF S%=2 THEN PRINT TAB(20,5)"OR"
 154 IF S%=3 THEN PRINT TAB(20,5)"NOT"
 155 IF S%=4 THEN PRINT TAB(20,5)"EXCLUSIVE-OR"
 156 IF S%=5 THEN PRINT TAB(20,5);"EQUIVALENCE"
 157 IF S%=6 THEN PRINT TAB(20,5)"NAND"
 158 IF S%=7 THEN PRINT TAB(20,5)"NOR"
 160 PRINT TAB(0,8)"WHICH OUTPUT FOR THIS FUNCTION ?"
 170 PRINT TAB(0,10); "ENTER ONE OF W, X, Y OR Z "
 180 PRINT TAB(0,12);"AND THEN PRESS RETURN. "
 190 INPUT O$
 200 IF O$<>"W" AND O$<>"X" AND O$<>"Y" AND O$<>"Z" THEN 190
 210 IF O$="W" THEN M=4
 220 IF O$="X" THEN M=3
 230 IF O$="Y" THEN M=2
 240 IF O$="Z" THEN M=1
 245 F%(M)=S%

The BBC microcomputer in science teaching

298

 246 IF S%=4 OR S%=5 THEN 280
 250 IF S%<>3 THEN 290
 260 CLS:PRINT TAB(0,2);"THE 'NOT' FUNCTION HAS ONE INPUT. "
 270 I%(M)=1:GOTO340
 280 CLS:PRINT TAB(0,2);"THIS FUNCTION HAS TWO INPUTS. "
 285 I%(M)=2:GOTO 350
 290 PRINT TAB(0,15);"HOW MANY INPUTS ?"
 300 PRINT TAB(0,18);"ENTER 1, 2, 3 OR 4 AND THEN PRESS RETURN"
 310 INPUT I$
 320 I%(M)=VAL(I$)
 330 IF I%(M)<1 OR I%(M)>4 THEN 310
 340 IF I%(M)=1 THEN PRINT:PRINT;"WHICH INPUT ?":GOTO 360
 345 CLS
 350 PRINT TAB(0,4)"WHICH INPUTS ?"
 360 PRINT:PRINT"ENTER A, B, C OR D FOR EACH REQUEST. "
 365 IF I%(M)=1 THEN 400
 370 PRINT:PRINT"IT IS POSSIBLE TO USE ONE INPUT MORE"
 380 PRINT:PRINT"THAN ONCE, PROVIDED YOU HAVE ASKED"
 390 PRINT:PRINT"FOR ENOUGH INPUTS."
 400 FOR N=1 TO 4:T$(N,M)="": NEXT N
 410 FOR N=1 TO I%(M)
 420 INPUT I$
 430 IF I$<>"A" AND I$<>"B" AND I$<>"C" AND I$<>"D" THEN 420
 440 T$(N,M)=I$
 450 NEXT N
 460 REM
 470 REM DISPLAY FUNCTIONS AND TERMINALS
 480 REM
 490 CLS
 500 FOR M=1 TO 4
 501 C=(M-1)*6
 505 IF F%(M)=0 THEN 610
 510 GOSUB 1000:REM DISPLAY FUNCTION
 530 ON F%(M) GOSUB 1100,1200, 1300, 1400, 1500, 1600, 1700
 540 PRINT TAB(13,C+2);P$
 550 PRINT TAB(31,C+2);"()";CHR$(91-M)
 590 REM DISPLAY INPUTS
 600 ON I%(M) GOSUB 5000, 5100, 5200, 5300
 610 NEXT M
 620 PRINT TAB(0,24);"PRESS 'F' FOR MORE FUNCTIONS, 'E' TO END";
 630 A$=INKEY$(0)
 640 IF A$="F" THEN 110
 650 IF A$="E" THEN END
 660 REM GET DATA
 670 FOR N=1 TO 4
 680 A%(N)=0
 690 IF ?PRT AND 2^(N-1) THEN A%(N)=1
 700 NEXT N
 710 REM
 720
 730 REM CHANGE INPUT VALUES ON SCREEN
 740 FOR PN=0 TO 22
 750 SC=SR+PN*40
 760 J=?SC-64
 770 IF J<1 OR J>4 THEN 790
 780 ?(SC+2)=(A%(J)+48)
 790 NEXT PN
 800 REM CALCULATE OUTPUT DATA
 810 FOR M=1 TO 4
 820 IF F%(M)=0 THEN 980

Program listings

299

 830 FOR N=1 TO I%(M)
 840 IF T$(N,M) ="A" THEN VI%(N)=A%(1)
 850 IF T$(N,M) ="B" THEN VI%(N)=A%(2)
 860 IF T$(N,M)="C" THEN VI%(N)=A%(3)
 870 IF T$(N,M)="D" THEN VI%(N)=A%(4)
 900 NEXT N
 910 ON F%(M) GOSUB 3100,3200,3300,3400,3500,3600,3700
 920 REM SEND OUTPUT TO USER PORT
 930 H=(2^(8-M))
 940 ?PRT=(?PRT AND (255-H))
 950 K%=H*VO%
 960 ?PRT=(?PRT OR K%)
 970 IF ?(31615+240*M)<>32 THEN ?(31616+240*M) = (48+VO%)
 980 NEXT M
 990 GOTO 630
1000 REM BOX DISPLAY
1010 PRINT TAB(11,C);CHR$(151);CHR$(55);CHR$(96);CHR$(96);CHR$(96);CHR$(96);CHR$(96);CHR$(96);C
HR$(107);CHR$(135)
1020 PRINT TAB(11,C+1);CHR$(151);CHR$(53);" ";CHR$(106);CHR$(135)
1030 PRINT TAB(11,C+2);CHR$(151);CHR$(53);" ";CHR$(106);CHR$(44);CHR$(44);CHR$(44);CHR$(44
);CHR$(44);CHR$(44);CHR$(44);CHR$(44);CHR$(44);CHR$(44);CHR$(135)
1040PRINT TAB(11,C+3);CHR$(151);CHR$(53);" ";CHR$(106);CHR$(135)
1050PRINT TAB(11,C+4);CHR$(151);CHR$(117);CHR$(112);CHR$(112);CHR$(112);CHR$(112);CHR$(112);CH
R$(112);CHR$(122);CHR$(135)
1060 RETURN
1100 P$=" AND": RETURN
1200 P$=" OR": RETURN
1300 P$=" NOT": RETURN
1400 P$="EX OR": RETURN
1500 P$="EQUIV" : RETURN
1600 P$=" NAND" : RETURN
1700 P$=" NOR": RETURN
3000 REM DETERMINE OUTPUTS FOR EACH FUNCTION
3100 REM AND FUNCTION
3110 VO%=1
3120 FOR N=1 TO I%(M)
3130 VO%=VO% AND VI%(N)
3140 NEXT N
3150 RETURN
3200 REM OR FUNCTION
3210 VO%=0
3220 FOR N=1 TO I%(M)
3230 VO%=VO% OR VI%(N)
3240 NEXT N
3250 RETURN
3300 REM NOT FUNCTION
3310 VO%=0
3320 IF VI%(1)=0 THEN VO%=1
3330 RETURN
3400 REM EXCLUSIVE-OR FUNCTION
3410 VO%=1
3420 IF VI%(1)=VI%(2) THEN VO%=0
3430 RETURN
3500 REM EQUIVALENCE FUNCTION
3510 VO%=0
3520 IF VI%(1)=VI%(2) THEN VO%=1
3530 RETURN
3600 REM NAND FUNCTION
3610 VO%=1
3620 FOR N=1 TO I%(M)

The BBC microcomputer in science teaching

300

3630 VO%=VO% AND VI%(N)
3640 NEXT N
3650 IF VO%=0 THEN VO%=1:RETURN
3660 IF VO%=1 THEN VO%=0:RETURN
3700 REM NOR FUNCTION
3710 VO%=0
3720 FOR N=1 TO I%(M)
3730 VO%=VO% OR VI%(N)
3740 NEXT N
3750 IF VO%=0 THEN VO%=1:RETURN
3760 IF VO%=1 THEN VO%=0:RETURN
5000 REM APPEND THE INPUTS
5010 REM ONE INPUT
5020 PROCline(2,T$(1,M))
5030 RETURN
5100 REM TWO INPUTS
5110 PROCline(1,T$(1,M))
5120 PROCline(3,T$(2,M))
5130 RETURN
5200 REM THREE INPUTS
5210 PROCline(0,T$(1,M))
5220 PROCline(2,T$(2,M))
5230 PROCline(4,T$(3,M))
5240 RETURN
5300 REM FOUR INPUTS
5310 PROCline(0,T$(1,M))
5320 PROCline(1,T$(2,M))
5330 PROCline(3,T$(3,M))
5340 PROCline(4,T$(4,M))
5350 RETURN
6000 DEFPROCline(K,G$)
6010 PRINT TAB(0,K+C);G$;"()";CHR$(151);CHR$(44);CHR$(44);CHR$(44);CHR$(44);CHR$(44);CHR$(44);CH
R$(44)
6020 ENDPROC

Program listings

301

LOGIC MAKER - PROGRAM 3
LIST

 1 MODE 7
 10 REM BOOLEAN FUNCTIONS
 20 PRT=&FE60:REM USER PORT
 25 DDR=&FE62:REM DATA DIRECTION REGISTER
 30 ?DDR=240:REM BITS 0 TO 3 AS INPUTS, 4 TD 7 AS OUTPUTS
 40 DD=31994:DC=32114:DB=32234:DA=32354
 50 DZ=32012:DY=32132:DX=32252: DW=32372
 60 REM DECLARE OUTPUTS
 70 Z=0:Y=0:X=0:W=0
100CLS
110 PRINT TAB(10,0);"BOOLEAN FUNCTIONS"
120 PRINT TAB(0,3);"You may enter any desired function"
130 PRINT TAB(0,5);"by quitting this program and changing"
140 PRINT TAB(0,7);"lines 5010 to 5100 of this program."
150 PRINT TAB(0,9);"If you do not change the function,"
160 PRINT TAB(0,11);"then it is automatically chosen to be"
170 PRINT TAB(0,13);"A AND B, which appears at output z."
180 PRINT TAB(0,21) "Press 'C' to observe the function."
200 PRINT TAB(0,23);"Press 'E' to quit the program."
210 A$=GET$
220 IF A$<>"E" AND A$<>"C" THEN 210
230 IF A$="E" THEN 400
240 REM DISPLAY FUNCTIONS
250 CLS
260 PRINT TAB(8,3);"INPUTS OUTPUTS"
270 PRINT TAB(8,6);"D() Z() "
280 PRINT TAB(8,9);"C() Y() "
290 PRINT TAB(8,12);"B() X()"
300 PRINT TAB(8,15);"A() W() "
320 PRINT TAB(0,23);"Press 'E' to quit the program.";
330 IF A$<>"E" THEN 500
400 IF A$="E" THEN CLS:PRINT TAB(0,8);"Type LIST 5000,5100 then press RETURN"
410 PRINT TAB(0,10); "Enter any desired functions"
420 PRINT TAB(0,12);"as proper BASIC statements, "
430 PRINT TAB(0,14);"and then restart the program with RUN."
440 STOP
500 REM GET INPUTS FROM USER PORT
505 A=0:B=0:C=0:D=0
510 IF (?PRT AND 1) THEN A=1
520 IF (?PRT AND 2) THEN B=1
530 IF (?PRT AND 4) THEN C=1
540 IF (?PRT AND 8) THEN D=1
560 REM DISPLAY INPUTS
570 ?DD=D+48
580 ?DC=C+48
590 ?DB=B+48
600 ?DA=A+48
610 REM CALCULATE FUNCTION
620 GOSUB 5000
700 REM CHANGE OUTPUTS
710 IF (Z AND 1) THEN ?PRT=(?PRT OR 128):?DZ=49
720 IF (NOT Z AND 1) THEN ?PRT=(?PRT AND 127):?DZ=48
730 IF (Y AND 1) THEN ?PRT=(?PRT OR 64):?DY=49
740 IF (NOT Y AND 1) THEN PPRT=(?PRT AND 191):?DY=48
750 IF (X AND 1) THEN ?PRT=(?PRT OR 32):?DX=49
760 IF (NOT X AND 1) THEN ?PRT=(?PRT AND 223):?DX=48
770 IF (W AND 1) THEN PRINT ?PRT=(?PRT OR 16):?DW=49

The BBC microcomputer in science teaching

302

780 IF (NOT W AND 1) THEN ?PRT=(?PRT AND 239):?DW=48
790 A$=INKEY$(0)
800 GOTO 330
5000 REM BOOLEAN FUNCTIONS
5010 Z=A AND B
6000 RETURN

6502 MICROPROCESSOR SIMULATION – PROGRAM 4

Execute with PAGE=&1C00 before loading this program

 1 MODE4
 20 DIM stack(7),mem(256),prog$(25)
 30 GOSUB 10000
 40 LET exec=26
 50 ON ERROR LET exec=26:IN$="COMMAND":J$=IN$:GOTO 20000
 100 GOSUB 30000:REM DRAW DIAGRAM
 110 GOSUB 25000:REM INITIALISE REGISTERS
 120 GOTO 26000:REM DISPLAY REGISTER CONTENTS
 130 IF exec<26 THEN GOSUB21000:GOTO141
 140 INPUT LINE IN$
 141 IF LEFT$(IN$,1)=" " THEN IN$=RIGHT$(IN$,(LEN(IN$)-1)):GOTO 141
 142 PRINT IN$
 143 IF IN$="COMMAND" THEN 140
 145 J$=IN$:REM INSTRUCTION RETAINED
 146 IF J$="" THEN PRINT" ":GOTO130
 150 REM DETERMINE OPERATION
 153 IF J$="NEW" THEN 11000:REM WRITE NEW PROGRAM
 154 IF J$="PROG" THEN 15140:REM CONTINUE WITH SAME PROGRAM
 155 IF J$="CALL" THEN 20000
 160 operation$=LEFT$(IN$,3)
 170 operand$=RIGHT$(IN$,(LEN(IN$)-3))
 180 RESTORE
 200 J=0: FOR JJ=1 TO 43
 210 READ P$
 220 IF operation$=P$ THEN J=JJ
 230 NEXT JJ
 240 REM OPERATION NOT FOUND
 250 IF J=0 THEN 1910
 280 REM OPERATION FOUND
 300 DATA NOP,INX,DEX,INY,DEY
 310 DATA RTS,CLC,SEC,TXA,TAX
 320 DATA TYA,TAY,PHA,PLA,BRK
 330 DATA BNE,BEQ,BMI,BPL,BCC
 340 DATA BCS,JMP,JSR,ADC,AND
 350 DATA CMP,EOR,LDA,ORA,SBC
 360 DATA CPX,CPY,LDX,LDY,STA
 370 DATA STX,STY,INC,DEC,ROL
 380 DATA ROR,LSR,ASL
 400 REM DETERMINE OPERAND
 410 Ln=LEN(operand$)
 420 FF=0:REM OFFSET FLAG
 430 IN=0:REM INDIRECTION FLAG
 440 BR=0:REM BRANCH FLAG
 450 CM=0:REM COMMA FLAG
 460 NUM=0:REM NUMBER IN OPERAND
 470 AF=0:REM ACCUMULATOR FLAG
 480 IM=0:REM IMMEDIATE FLAG
 490 OP=0:REM OPERAND FLAG
 495 SN=0 :REM RESET OFFSET TO POSITIVE

Program listings

303

 500 K=0:REM COUNTER
 510 K=K+1
 520 IF K>Ln THEN 2000:REM OPERAND FINISHED
 530 B$=MID$(operand$,K,1)
 540 REM B$ IS ONE CHARACTER IN THE OPERAND
 550 IF B$=" " THEN 510:REM GET NEXT CHARACTER
 560 IF AF=1 THEN 1955:REM ERROR
 570 OP=1:REM THERE IS AN OPERAND
 580 IF ASC(B$)>47 AND ASC(B$)<58 THEN 1200:REM OPERAND IS A NUMBER
 590 IF B$="-" OR B$="+" THEN 1300:REM OPERAND IS AN OFFSET
 600 IF B$="#" THEN 1400:REM OPERAND IS IMMEDIATE DATA
 610 IF B$="(" THEN 1500:REM OPEN BRACKETS
 620 IF B$=")" THEN 1600:REM CLOSE BRACKETS
 630 IF B$="A" THEN 1700:REM OPERAND IS ACCUMULATOR
 640 IF B$="," THEN CM=1:GOTO 510:REM SET COMMA FLAG AND GET NEXT CHARACTER
 650 IF (B$="X" OR B$="Y") AND CM=1 THEN 1800:REM INDEXED
 660 IF (B$="X" OR B$="Y") AND CM=0 THEN 1970:REM ERROR IN INDEXED MODE
 670 GOTO 1910:REM CHARACTER IS UNRECOGNISED
 1200 REM NUMBER: ADDRESS OR DATA
 1210 NUM=NUM*10+VAL(B$)
 1220 IF NUM>255 AND J<>22 AND J<>23 THEN 1920:REM OPERAND TOO LARGE ERROR
 1230 GOTO 510:REM GET NEXT CHARACTER
 1300 REM OFFSET
 1310 IF J>21 THEN 1930:REM ERROR IN SIGN
 1320 IF B$="-" THEN SN=1:REM NEGATIVE OFFSET
 1330 GOTO 510:REM GET NEXT CHARACTER
 1400 REM IMMEDIATE DATA
 1410 IF J<24 OR J>34 THEN 1940:REM ERROR IN IMMEDIATE MODE
 1420 IM=1
 1430 GOTO 510:REM GET NEXT CHARACTER
 1500 REM OPEN BRACKETS
 1510 IF BR=1 THEN 1950:REM ERROR IN INDIRECTION
 1520 IN=1
 1530 BR=1
 1540 GOTO 510:REM GET NEXT CHARACTER
 1600 REM CLOSE BRACKET
 1610 IF BR=0 THEN 1950:REM ERROR IN INDIRECTION
 1620 BR=0
 1630 GOTO 510:REM GET NEXT CHARACTER
 1700 REM ACCUMULATOR
 1710 IF J<40 THEN 1960:REM ACCUMULATOR ERROR
 1720 AF=1
 1730 GOTO 510:REM GET NEXT CHARACTER
 1800 REM INDEXATION
 1810 IF J<24 THEN 1970:REM ERROR IN INDEXATION
 1820 IF B$="X" THEN1850
 1825 IF IN=1 THEN 1840:REM INDIRECTION
 1830 NUM=NUM+Y
 1832 IF NUM>255 THEN NUM=NUM-256
 1835 GOTO 510:REM GET NEXT CHARACTER
 1840 IF BR=1 THEN 1950:REM ERROR IN INDIRECTION
 1842 NUM=mem(NUM)+Y
 1843 IF NUM>255 THEN NUM=NUM-256
 1845 GOTO 510:REM GET NEXT CHARACTER
 1850 REM X-INDEX
 1855 IF IN=1 THEN 1870:REM INDIRECTION
 1860 NUM=NUM+X
 1865 GOTO 510:REM GET NEXT CHARACTER
 1870 REM X-INDIRECTION
 1875 IF BR=0 THEN 1970:REM OPERAND ERROR

The BBC microcomputer in science teaching

304

 1880 NUM=NUM+X
 1885 IF NUM>255 THEN NUM=NUM-256
 1890 NUM=mem(NUM)
 1895 GOTO 510:REM GET NEXT CHARACTER
 1900 REM ERROR IN INSTRUCTION
 1910 E=1:GOTO 1990
 1920 E=2:GOTO 1990
 1930 E=3:GOTO 1990
 1940 E=4:GOTO 1990
 1950 E=5:GOTO 1990
 1955 E=6:GOTO 1990
 1960 E=7:GOTO 1990
 1965 E=8:GOTO 1990
 1970 E=9:GOTO 1990
 1975 E=10:GOTO 1990
 1980 E=11:GOTO 1990
 1985 E=12:GOTO 1990
 1986 E=13:GOTO 1990
 1987 E=14
 1990 PRINT" ERROR ";E;
 1992 VDU8:VDU8:VDU8:VDU8:VDU8:VDU8:VDU8:VDU8:VDU8
 1993 LET exec=26
 1995 GOTO 130:REM GET NEXT INSTRUCTION
 2000 REM DETERMINE DATA
 2010 IF J<16 THEN 3000:REM SINGLE BYTE INSTRUCTION
 2020 IF AF=1 THEN 5500:REM ACCUMULATOR INSTRUCTION
 2025 PC=PC+1
 2030 IF J<24 THEN 4000:REM BRANCH OR JUMP
 2040 REM ADDRESS MODE INSTRUCTION
 2050 IF IM=1 THEN data=NUM:GOTO 2100:REM IMMEDIATE DATA
 2060 data=mem(NUM):REM GET DATA FROM MEMORY
 2100 REM EXUCUTION OF INSTRUCTION
 2110 IF J=35 OR J=36 OR J=37 THEN 2800:REM STORE INSTRUCTION
 2120 IF J=24 THEN 6000:REM ADC
 2130 IF J=25 THEN 6100:REM AND
 2140 IF J=26 THEN 6200:REM CMP
 2150 IF J=27 THEN 6300:REM EOR
 2160 IF J=28 THEN 6400:REM LDA
 2170 IF J=29 THEN 6500:REM ORA
 2180 IF J=30 THEN 6600:REM SBC
 2190 IF J=31 THEN 6700:REM CPX
 2200 IF J=32 THEN 6800:REM CPY
 2210 IF J=33 THEN 6900:REM LDX
 2220 IF J=34 THEN 7000:REM LDY
 2230 IF J=38 THEN 7100:REM INC
 2240 IF J=39 THEN 7200:REM DEC
 2250 IF J=40 THEN 7300:REM ROL
 2260 IF J=41 THEN 7500:REM ROR
 2270 IF J=42 THEN 7600:REM LSR
 2280 IF J=43 THEN 7700:REM ASL
 2500 REM DETERMINE STATUS
 2510 C=0
 2520 IF Acc>255 THEN Acc=Acc-256:C=1
 2530 TP=Acc
 2540 GOTO 2630
 2600 REM DETERMINE SIGN STATUS
 2610 C=1
 2620 IF TP<0 THENTP=TP+256:C=0
 2630 S=0
 2640 IF TP>127 THEN S=1

Program listings

305

 2650 Z=0
 2660 IF TP=0 THEN Z=1
 2670 GOTO 26080
 2680
 2700 REM DETERMINE STATUS AND STORE DATA
 2710 mem(NUM)=data
 2720 S=0
 2730 IF data>127 THEN S=1
 2740 Z=0
 2750 IF data=0 THEN Z=1
 2760 GOTO 26000:REM DISPLAY RESULTS
 2790
 2800 REM STORE INSTRUCTION
 2810 IF J=35 THEN data=Acc
 2820 IF J=36 THEN data=X
 2830 IF J=37 THEN data=Y
 2840 mem(NUM)=data
 2860 GOTO 26000:REM DISPLAY RESULTS
 2870
 3000 REM SINGLE BYTE INSTRUCTION
 3010 IF J=1 THEN 26340:REM NOP
 3020 IF J=2 THEN 3200:REM INX
 3030 IF J=3 THEN 3250:REM DEX
 3040 IF J=4 THEN 3300:REM INY
 3050 IF J=5 THEN 3350:REM DEY
 3060 IF J=6 THEN 3400:REM RTS
 3070 IF J=7 THEN C=0: GOTO 26340:REM CLC
 3080 IF J=8 THEN C=1: GOTO 26340:REM SEC
 3090 IF J=9 THEN 3500:REM TXA
 3100 IF J=10 THEN 3550:REM TAX
 3110 IF J=11 THEN 3600:REM TYA
 3120 IF J=12 THEN 3650:REM TAY
 3130 IF J=13 THEN 3700:REM PHA
 3140 IF J=14 THEN 3750:REM PLA
 3150 REM BRK
 3160 NUM=16000
 3170 GOTO4600:REM TREAT IT AS A JSR
 3200 REM INX
 3210 X=X+1
 3220 IF X=256 THEN X=0
 3230 TP=X
 3240 GOTO 2630
 3250 REM DEX
 3260 X=X-1
 3270 IF X<0 THEN X=255
 3280 TP=X
 3290 GOTO 2630
 3300 REM INY
 3310 Y=Y+1
 3320 IF Y=256 THEN Y=0
 3330 TP=Y
 3340 GOTO 2630
 3350 REM DEY
 3360 Y=Y-1
 3370 IF Y<0 THEN Y=255
 3380 TP=Y
 3390 GOTO 2630
 3400 REM RTS
 3405 IF SP<2 THEN 1986:REM RTS ERROR
 3410 HI=256*stack(SP)

The BBC microcomputer in science teaching

306

 3415 SP=SP-1
 3430 PC=stack(SP) + HI
 3440 SP=SP-1
 3450 GOTO 26080
 3460
 3500 REM TXA
 3510 Acc=X
 3520 TP=X
 3530 GOTO 2630
 3540
 3550 REM TAX
 3560 X=Acc
 3570 TP=Acc
 3580 GOTO 2630
 3590
 3600 REM TYA
 3610 Acc=Y
 3620 TP=Y
 3630 GOTO 2630
 3640
 3650 REM TAY
 3660 Y=Acc
 3670 TP=Acc
 3680 GOTO 2630
 3690
 3700 REM PHA
 3710 IF SP=7 THEN 1975:REM STACK OVERFLOW ERROR
 3720 SP=SP+1
 3730 stack(SP)=Acc
 3740 GOTO 26080
 3750 REM PLA
 3760 IF SP=0 THEN 1985:REM STACK UNDERFLOW ERROR
 3770 Acc=stack(SP)
 3780 SP=SP-1
 3790 GOTO 2530
 3900
 4000 REM BRANCH INSTRUCTION
 4005 IF J<22 AND SN=0 AND NUM>127 THEN 1987
 4006 IF J<22 AND NUM>128 THEN 1987
 4010 IM=0:OP=0
 4020 IF J=16 THEN 4100:REM BNE
 4030 IF J=17 THEN 4150:REM BEQ
 4040 IF J=18 THEN 4200:REM BMI
 4050 IF J=19 THEN 4250:REM BPL
 4060 IF J=20 THEN 4300:REM BCC
 4070 IF J=21 THEN 4350:REM BCS
 4080 IF J=22 THEN 4500:REM JMP
 4090 IF J=23 THEN 4600:REM JSR
 4100 REM BNE
 4110 IF Z=0 THEN 4400:REM BRANCH SUCCEEDS
 4120 GOTO 4900:REM BRANCH FAILS
 4130
 4150 REM BEQ
 4160 IF Z=1 THEN 4400:REM BRANCH SUCCEEDS
 4170 GOTO 4900:REM BRANCH FAILS
 4180
 4200 REM BMI
 4210 IF S=1 THEN 4400:REM BRANCH SUCCEEDS
 4220 GOTO 4900:REM BRANCH FAILS
 4230

Program listings

307

 4250 REM BPL
 4260 IF S=0 THEN 4400:REM BRANCH SUCCEEDS
 4270 GOTO 4900:REM BRANCH FAILS
 4280
 4300 REM BCC
 4310 IF C=0 THEN 4400:REM BRANCH SUCCEEDS
 4320 GOTO 4900:REM BRANCH FAILS
 4330
 4350 REM BCS
 4360 IF C=1 THEN 4400:REM BRANCH SUCCEEDS
 4370 GOTO 4900:REM BRANCH FAILS
 4380
 4400 REM BRANCH SUCCEEDS
 4410 IF SN=1 THEN PC=PC-NUM:REM BACKWARD BRANCH
 4420 IF SN=0 THEN PC=PC+NUM:REM FORWARD BRANCH
 4430 IF PC<0 THEN PC=PC+65536
 4431 IF PC>65535 THEN PC=PC-65536
 4440 GOTO 26080
 4450
 4500 REM JMP
 4510 PC=NUM-1
 4520 IF PC<0 THEN PC=PC+65536
 4521 IF PC>65535 THEN PC=PC-65536
 4530 IM=1:OP=0
 4540 GOTO 26080
 4600 REM JSR
 4603 PC=PC+1
 4605 IF SP>5 THEN 1975:REM STACK OVERFLOW ERROR
 4610 SP=SP+1
 4620 stack(SP)=PC MOD 256
 4630 SP=SP+1
 4640 stack(SP)=(PC DIV 256)MOD 256
 4650 PC=NUM-1
 4660 IF PC<0 THEN PC=PC+65536
 4661 IF PC>65535 THEN PC=PC-65536
 4680 IM=1:OP=0
 4690 GOTO 26080
 4700
 4900 REM BRANCH FAILS
 4910 IF PC<0 THEN PC=PC+65536
 4911 IF PC>65535 THEN PC=PC-65536
 4920 GOTO 26080
 4930
 5500 REM OPERAND IS ACCUMULATOR
 5510 IF J=40 THEN 5600:REM ROL
 5520 IF J=41 THEN 5700:REM ROR
 5530 IF J=42 THEN 5800:REM LSR
 5540 IF J=43 THEN 5900:REM ASL
 5550
 5600 REM ROL
 5610 Acc=Acc+Acc+C
 5620 C=0
 5630 IF Acc>255 THEN Acc=Acc-256:C=1
 5640 GOTO 2530
 5650
 5700 REM ROR
 5710 AA=0
 5720 IF C=1 THEN AA=128
 5730 TP=Acc DIV 2
 5740 C=Acc-TP*2

The BBC microcomputer in science teaching

308

 5750 Acc=TP+AA
 5760 GOTO 2530
 5790
 5800 REM LSR
 5810 AA=0
 5820 TP=Acc DIV 2
 5830 C=Acc-TP*2
 5840 Acc=TP+AA
 5850 GOTO 2530
 5860
 5900 REM ASL
 5910 Acc=Acc+Acc
 5920 C=0
 5930 IF Acc>255 THEN Acc=Acc-256:C=1
 5940 GOTO 2530
 6000 REM ADC
 6010 Acc=Acc+C+data
 6020 GOTO 2500:REM DETERMINE STATUS
 6040
 6100 REM AND
 6110 Acc=Acc AND data
 6120 GOTO 2530:REM DETERMINE STATUS
 6130
 6200 REM CMP
 6210 TP=Acc-data
 6220 GOTO 2600:REM DETERMINE STATUS
 6230
 6300 REM EOR
 6310 Acc=(Acc AND (NOT data)) OR ((NOT Acc) AND data)
 6320 GOTO 2630:REM DETERMINE STATUS
 6330
 6400 REM LDA
 6410 Acc=data
 6420 GOTO 2530:REM DETERMINE STATUS
 6430
 6500 REM ORA
 6510 Acc=Acc OR data
 6520 GOTO 2530:REM DETERMINE STATUS
 6530
 6600 REM SBC
 6610 CC=0
 6620 IF C=0 THEN CC=1
 6630 Acc=Acc-CC-data
 6640 TP=Acc
 6650 IF Acc<0 THEN Acc=Acc+256
 6660 GOTO 2600:REM DETERMINE STATUS
 6670
 6700 REM CPX
 6710 TP=X-data
 6720 GOTO 2600:REM DETERMINE STATUS
 6730 IF data = 256 THEN data=0
 6740 GOTO 2700
 6750
 6800 REM CPY
 6810 TP=Y-data
 6820 GOTO 2600
 6830
 6900 REM LDX
 6910 X=data
 6920 TP=X

Program listings

309

 6930 GOTO 2630
 6940
 7000 REM LDY
 7010 Y=data
 7020 TP=Y
 7030 GOTO 2630
 7040
 7100 REM INC
 7110 data=data+1
 7120 TP=data
 7130 IF data=256 THEN data=0
 7140 GOTO 2700
 7150
 7200 REM DEC
 7210 data=data-1
 7220 TP=data
 7230 IF data<0 THEN data=255
 7240 GOTO 2700
 7250
 7300 REM ROL
 7310 data=data+data+C
 7320 C=0
 7330 IF data>255 THEN data=data-256:C=1
 7340 GOTO 2700
 7350
 7500 REM ROR
 7510 AA=0
 7520 IF C=1 THEN AA=128
 7530 TP= data DIV 2
 7540 C=data-TP*2
 7550 data=TP+AA
 7560 GOTO 2700
 7570
 7600 REM LSR
 7610 AA=0
 7620 TP= data DIV 2
 7630 C=data-TP*2
 7640 data=TP+AA
 7650 GOTO 2700
 7660
 7700 REM ASL
 7710 data=data+data
 7720 C=0
 7730 IF data>255 THEN data=data-256:C=1
 7740 GOTO 2700
 7750
 8000 STOP
 9000 END
10000 REM DEFINE GRAPHICS CHARACTERS
10010 REM
10020 REM
10030 REM
10040 REM
10050 REM
10060 VDU23,118,0,0,0,31,16,16,16,16
10070 VDU23,119,0,0,0,240,16,16,16,16
10080 VDU23,120,16,16,16,240,0,0,0,0
10090 VDU23,121,16,16,16,31,0,0,0,0
10100 VDU23,122,0,0,0,255,0,0,0,0
10110 VDU23,123,16,16,16,16,16,16,16,16

The BBC microcomputer in science teaching

310

10120 VDU23,113,16,16,16,240,16,16,16,16
10130 VDU23,125,16,16,16,31,16,16,16,16
10140 VDU23,126,0,0,0,255,16,16,16,16
10150 VDU23,117,16,16,16,255,0,0,0,0
10160 RETURN
11000 REM PRODUCE A DUMMY PROGRAM
11020 FOR YY=1 TO 25
11030 LET prog$(YY)=""
11040 NEXT YY
15000 REM WRITE A PROGRAM
15010 MODE 7
15020 PRINT TAB(2,0) "6502 MICROPROCESSOR SIMULATION"
15030 PRINT TAB(0,2) "You are now in programming mode."
15040 PRINT:PRINT"To enter a program just type in the"
15050 PRINT:PRINT"mnemonics in the same way as before."
15060 PRINT:PRINT"Each instruction must be given a"
15070 PRINT:PRINT"a memory location in correct order."
15085 PRINT:PRINT"The last line in the program MUST be"
15086 PRINT:PRINT".END. This is not part of the program."
15090 PRINT:PRINT"To execute your program, type CALL."
15100 PRINT:PRINT"Any programming errors may cause a"
15110 PRINT:PRINT"CRASH, leaving you in the command mode."
15120 PRINT TAB(0,24) "Press SPACE to begin programming.";
15130 IF GET$<>" " THEN 15130
15140 MODE 7
15145PRINT TAB(10)".begin"
15150 FOR YY= 1 TO 25
15160 IF prog$(YY)<>"" THEN PRINT 15999+YY;" ";prog$(YY)
15170 NEXT YY
15175 PRINT TAB(10)".END"
15180 PRINT:PRINT"Enter new line number and instruction."
15184 PRINT:PRINT"The last program line must be .END"
15185 PRINT:PRINT"Type CALL to execute the program."
15186 PRINT:PRINT"Type COMMAND to return to command mode."
15190 PRINT
15200 INPUT LINE ZZ$
15210 IF LEFT$(ZZ$,1)=" " THEN ZZ$=RIGHT$(ZZ$,(LEN(ZZ$)-1)):GOTO 15210
15211 IF ZZ$="COMMAND" THEN LET exec=26:IN$=ZZ$: PC=15999:GOTO 20000
15214 IF ZZ$="CALL" THEN LET exec=0: PC=15999:GOTO 20000
15215 LET proglin$=""
15220 IF ASC(LEFT$(ZZ$,1))>47 AND ASC(LEFT$(ZZ$,1))<58 THEN proglin$=proglin$+LEFT$(ZZ$,1):ZZ$
=RIGHT$(ZZ$,(LEN(ZZ$)-1)):GOTO 15220
15225 LET QQ%=INT(VAL(proglin$)) - 15999
15226 IF QQ% <1 OR QQ%> 25 THEN 15140
15230 IF LEFT$(ZZ$,1)=" " THEN ZZ$=RIGHT$(ZZ$,(LEN(ZZ$)-1)):GOTO 15230
15240 LET prog$(QQ%)=ZZ$
15250 GOTO 15140
20000 REM SET UP FOR RUNNING PROGRAM
20010 LET PC=15999
20020 MODE 4
20030 GOSUB 30000
20040 GOTO 26000
21000 REM EXECUTE PROGRAM
21005 LET exec=PC-15999
21010 FOR time=1 TO 2000:NEXT time
21015 IN$=prog$(exec)
21020 IF IN$="" THEN IN$="COMMAND"
21030 RETURN
25000 REM INITIALISE REGISTERS
25010 Acc=0

Program listings

311

25020 X=0
25030 Y=0
25040 FOR N=1 TO 7:stack(N)=0:NEXT N
25050 SP=0:REM STACK POINTER
25060 S=0:Z=0:C=0:REM STATUS
25070 PC=15999:REM PROGRAM COUNTER
25080 J$=".begin":REM PREVIOUS INSTRUCTION
25090 IN$="":REM CURRENT INSTRUCTION
25100 IM=0:Add=0:NUM=0:REM FOR ADDRESS REGISTER
25110 data=0
25120 FOR N=0 TO 255:mem(N)=RND(255):NEXT N
25130 REM RANDOMISE MEMORY CONTENTS
25140 RETURN
26000 REM DISPLAY REGISTER CONTENTS
26004 VDU26:REM ENABLE SCREEN POSITIONS
26010 REM MEMORY
26020 FOR N=1 TO 7
26050 PROCPUT(33,(2+3*N),mem(N))
26060 NEXT N
26080 VDU26:REM ENABLE SCREEN POSITIONS : JUMP POSITION FOR REGISTER REFRESH
26100 REM STACK POINTER
26110 FOR N=0 TO 7
26120 PRINT TAB(24,(5+N));" "
26130 NEXT N
26140 PRINT TAB(24,(5+SP));"<"
26200 REM STACK
26210 FOR N=1 TO 7
26220 PROCPUT(20,4+N,stack(N))
26230 NEXT N
26300 REM X-INDEX
26310 PROCPUT(2,5,X)
26320 REM Y-INDEX
26330 PROCPUT(11,5,Y)
26340 VDU26:REM INCREASE PROGRAM COUNTER AND DISPLAY IT
26350 PC=PC+1
26360 IF PC>65535 THEN PC=0
26362 PRINT TAB(2,15);" "
26364 PRINT TAB(2,15);PC
26370 REM ACCUMULATOR
26375 IF IM=1 AND NUM<>0 THEN Add=0:REM NOT ADDRESSING MODE
26376 IF IM=0 THEN Add=NUM
26380 PROCPUT(2,9,Acc)
26390 REM ADDRESS REGISTER
26400 PROCPUT(3,19,Add)
26410 REM DATA REGISTER
26420 PROCPUT(3,23,data)
26430 REM STATUS
26440 PRINT TAB(8,9);S
26450 PRINT TAB(12,9);Z
26460 PRINT TAB(16,9);C
26470 REM SET & CLEAR INSTRUCTION WINDOW
26475 VDU28,11,15,22,14
26480 CLS
26490 REM DISPLAY LAST INSTRUCTION
26500 PRINT J$
26510 GOTO 130:REM GET NEXT INSTRUCTION
26525
27000 DEF PROCPUT(Xpos,Ypos,nmbr)
27010REM DISPLAY nmbr AT LOCATION Xpos,Ypos WITH RIGHT JUSTIFICATION
27020

The BBC microcomputer in science teaching

312

27030 AV=nmbr DIV 100
27040 resid=nmbr MOD 100
27050 BV=resid DIV 10
27060 CV=resid MOD 10
27065 n=0
27070 IF AV<>0 THEN 27200
27075 n=n+1
27080 IF BV<>0 THEN 27200
27085 n=n+1
27200 PRINT TAB(Xpos,Ypos);" "
27210 PRINT TAB(Xpos+n,Ypos);nmbr
27300 ENDPROC
30000 CLS
30001 PRINT
30005 PRINT" MICROPROCESSOR MEMORY"
30010 PRINT"vzzzzzzzzzzzzzzzzzzzzzzzzw"
30020 PRINT"{ STACK { DATA"
30030 PRINT"{vzzzw vzzzw vzzzw { 1vzzzw"
30040 PRINT"{{ { { { { { { vzzzq }zw"
30050 PRINT"{yzzzx yzzzx { { { A{ yzzzx {"
30060 PRINT"{X-INDEX Y-INDEX { { { D{ 2vzzzw {"
30070 PRINT"{vzzzw vzw vzw vzw { { { D}zzzq }zq"
30080 PRINT"{{ { { { { { { { { { { R{ yzzzx {"
30090 PRINT"{yzzzx yzx yzx yzx { { { E{ 3vzzzw {"
30100 PRINT"{ACCUM S Z C { { { S}zzzq }zq"
30110 PRINT"{ STATUS REG. yzzzx { S{ yzzzx {"
30120 PRINT"{PROGRAM vzzzzzzzzzzzzw { { 4vzzzw {"
30130 PRINT"{vzzzzzw { { { B}zzzq }zq"
30140 PRINT"{{ }>>q { { U{ yzzzx {"
30150 PRINT"{yzzzzzx yzzzzzzzzzzzzx { S{ 5vzzzw {"
30160 PRINT"{COUNTER INSTRUCTION { }zzzq }zq"
30170 PRINT"{vzzzzzzw REGISTER { { yzzzx {"
30180 PRINT"{{ }zzzzzzzzzzzzzzzzzzzq 6vzzzw {"
30200 PRINT"{yzzzzzzx { }zzzq }zq"
30202 PRINT"{ADDRESS REGISTER { { yzzzx {"
30204 PRINT"{vzzzzzzw { { 7vzzzw {"
30206 PRINT"{{ }zzzzzzzzzzzzzzzzzw yzzzq }zq"
30208 PRINT"{yzzzzzzx {{ yzzzx {"
30210 PRINT"{DATA REGISTER {{ {"
30212 PRINT"yzzzzzzzzzzzzzzzzzzzzzzzzxyzzzzzzzzzzzx"
30214 PRINT" DATA BUS"
30250 RETURN

Program listings

313

STOPCLOCK – PROGRAM 5

LIST
 1 MODE 7
 2 HIMEM = &7000
 3 GOSUB 10000:REM FIRST LOAD DISPLAY ROUTINE
 1000 REM CLOCK ROUTINE
 1010 CSLO = 594
 1020 CSHI = &7201
 1030 SECLO = &7202
 1040 SECHI = &7203
 1050 MINLO = &7204
 1060 MINHI = &7205
 1070 status = &7206
 1090 PRT = &FE60
 1100 DDRB = &FE62
 1150 keyboardflag = &FE4D
 2010 FOR pass = 0 TO 2 STEP 2
 2015 P%=&7500
 2020 [OPT pass
 2025 .timer LDA #13 \DISPLAY M
 2026 STA dgtval
 2027 LDA #4
 2028 STA dest
 2029 JSR display
 2035 LDA #10 \DISPLAY DECIMAL POINT
 2036 STA dgtval
 2037 LDA #10
 2038 STA dest
 2039 JSR display
 2045 LDA #12 \DISPLAY S
 2046 STA dgtval
 2047 LDA #14
 2048 STA dest
 2049 JSR display
 2050 LDA #0
 2060 STA CSLO
 2070 STA CSHI
 2080 STA SECLO
 2090 STA SECHI
 2100 STA MINLO
 2110 STA MINHI
 2120 STA DDRB
 2125 JSR showtimes
 2130 LDA PRT
 2140 AND #3
 2150 STA status
 2160 .wait LDA PRT
 2170 AND #3
 2180 CMP status
 2190 BEQ wait
 2195 STA status
 2200 LDA #0
 2205 STA CSLO
 2210 .loop LDA CSLO
 2220 CMP #10
 2230 BCC cont
 2240 LDA #0
 2250 STA CSLO
 2260 INC CSHI

The BBC microcomputer in science teaching

314

 2270 LDA CSHI
 2280 CMP #10
 2290 BNE cont
 2300 LDA #0
 2310 STA CSHI
 2320 INC SECLO
 2330 LDA SECLO
 2340 CMP #10
 2350 BNE cont
 2360 LDA #0
 2370 STA SECLO
 2380 INC SECHI
 2390 LDA SECHI
 2400 CMP #6
 2410 BNE cont
 2414 LDA #0
 2416 STA SECHI
 2420 INC MINLO
 2430 LDA MINLO
 2440 CMP #10
 2450 BNE cont
 2460 LDA #0
 2470 STA MINLO
 2480 INC MINHI
 2500 CMP #10
 2510 BNE cont
 2520 LDA #0
 2530 STA MINHI
 2540 .cont LDA keyboardflag
 2542 AND #1 \IS A KEY BEING PRESSED ?
 2544 BNE kyprss
 2546 JSR showtimes
 2548 .kyprss LDA PRT
 2570 AND #3
 2580 CMP status
 2590 BNE done
 2600 JMP loop
 2610 .done RTS
 2620 .showtimes LDA CSLO
 2630 STA dgtval
 2640 LDA #12
 2650 STA dest
 2660 JSR display
 2720 LDA CSHI
 2730 STA dgtval
 2740 LDA #11
 2750 STA dest
 2760 JSR display
 2820 LDA SECLO
 2830 STA dgtval
 2840 LDA #7
 2850 STA dest
 2860 JSR display
 2920 LDA SECHI
 2930 STA dgtval
 2940 LDA #6
 2950 STA dest
 2960 JSR display
 3020 LDA MINLO
 3030 STA dgtval

Program listings

315

 3040 LDA #2
 3050 STA dest
 3060 JSR display
 3120 LDA MINHI
 3130 STA dgtval
 3140 LDA #1
 3150 STA dest
 3160 JSR display
 3170 RTS
 3300]
 3400 NEXT pass
 5000 CLS
 5010 PRINT TAB(6,4);CHR$(141);"DIGITAL STOPCLOCK"
 5020 PRINT TAB(6,5) CHR$(141);"DIGITAL STOPCLOCK"
 5030 PRINT TAB(0,10);"This program waits for the status"
 5040 PRINT TAB(0,12);"of bit 0 or bit 1 of the User Port"
 5050 PRINT TAB(0,14);"to change, and then starts timing."
 5060 PRINT TAB(0,16);"The timing stops when a second change"
 5070 PRINT TAB(0,18);"in the status of either bit occurs."
 5080 PRINT TAB(0,20);"The elaspsed time is displayed"
 5090 PRINT TAB(0,22);"in large digits.'"
 5100 PRINT TAB(0,24);"Press SPACE to begin.";
 5200 IF GET$<>" " THEN 5200
 5250 CLS
 5260 PRINT TAB(0,24);"Press SPACE to hold the display.";
 5300 CALL timer
 5350 *FX 15,0
 5400 PRINT TAB(0,24);"Press SPACE to restart. ";
 5500 GOTO 5200
 6000 STOP
10000 REM LOADER FOR MACHINE CODE SUBROUTINE
10010 REM 'LARGE DIGIT DISPLAY'
10200 REM DIGITS TABLE
10210 FOR I=&7100 TO &716F
10220 READ X
10230 ?I=X
10240 NEXT I
10250 DATA 124,68,68,68,68,68,124,0:REM DIGIT 0
10260 DATA 8,8,8,8,8,8,8,0:REM DIGIT 1
10270 DATA 124,68,4,4,124,64,124,0:REM DIGIT 2
10280 DATA 124,4,4,124,4,4,124,0:REM DIGIT 3
10290 DATA 64,64,64,72,124,8,8,0:REM DIGIT 4
10300 DATA 124,64,64,124,4,4,124,0:REM DIGIT 5
10310 DATA 124,64,64,124,68,68,124,0:REM DIGIT 6
10320 DATA 124,4,4,4,4,4,4,0:REM DIGIT 7
10330 DATA 124,68,68,124,68,68,124,0:REM DIGIT 8
10340 DATA 124,68,68,124,4,4,4,0:REM DIGIT 9
10350 DATA 0,0,0,0,0,0,16,0:REM DECIMAL POINT
10360 DATA 0,0,0,124,0,0,0,0:REM DATA REM NEGATIVE SIGN
10370 DATA 0,0,60,32,60,4,60,0:REM LETTER S
10380 DATA 0,0,254,146,146,146,146,0:REM LETTER M
11000 REM LARGE DIGIT DISPLAY
12000 REM MACHINE CODE ROUTINE
12001 dest=114
12002 dgtval=115
12003 screen = 112:REM AND 113
12004 bitcnt = 116
12005 temp = &7080:REM AND NEXT SEVEN BYTES
12006 bittbl=&7100
12008 FOR pass = 0 TO 2 STEP 2

The BBC microcomputer in science teaching

316

12010 P%=&7000
12020 [OPT pass
12030 .display LDA dest \GET DESTINATION
12040 CMP #10 \BOTTOM ROW ?
12050 BPL bottom \YES
12060 CMP #5 \MIDDLE ROW ?
12070 BPL middle \YES
12080 ASL A \MUST BE TOP
12090 ASL A
12100 ASL A \MULTIPLY BY 8
12110 STA screen \MAKE NOTE OF POSITION
12120 LDA #&7C
12130 STA screen + 1
12140 BNE begin \UNCONDITIONAL BRANCH
12150
12160 .bottom SEC
12170 SBC #10
12180 ASL A
12190 ASL A
12200 ASL A
12210 ADC #128 \MOVE TO CORRECT PLACE
12220 STA screen \AND SAVE IT
12230 LDA #&7E
12240 STA screen + 1
12250 BNE begin \UNCONDITIONAL BRANCH
12260 .middle SEC
12270 SBC #5
12280 ASL A
12290 ASL A
12300 ASL A
12310 ADC #64 \MOVE TO CORRECT PLACE
12320 STA screen \AND SAVE IT
12330 LDA #&7D
12340 STA screen + 1
12350
12360 \GET BITS FOR DIGIT
12370 .begin LDX #0 \INITIALISE BYTE POINTI
12380 LDA dgtval \GET DIGIT CODE
12390 ASL A
12400 ASL A
12410 ASL A \MULTIPLY BY 8
12420 TAY \POINT TO TABLE
12430 .bytget LDA bittbl,y \GET BYTE
12440 STA temp, X \KEEP IN TEMP STORE
12450 INY \ADVANCE TABLE POINTER
12460 INX \ADVANCE BYTE POINTER
12470 CPX #8 \8 BYTES COLLECTED ?
12480 BNE bytget
12490 LDY #223 \SET SCREEN POINTER TO -32
12500 LDX #255 \SET ROW POINTER TO -1
12510 .nxtrow INX \READY FOR NEXT ROW
12520 CPX #7 \ALL ROWS DONE ?
12530 BEQ finish
12540 LDA #8 \INITIALISE BIT COUNTER
12550 STA bitcnt
12560 CLC
12570 TYA \GET SCREEN POINTER
12575 ADC #32 \ADVANCE TO NEXT ROW
12580 TAY \RESTORE SCREEN POINTER
12590 .nxtbit INY \NEXT SCREEN POSITION

Program listings

317

12600 ASL temp, X \SHIFT BIT INTO CARRY
12610 BCC empty \BIT IS ZERD
12620 LDA #127 \BIT IS ONE - SEND WHITE BLOCK
12630 BNE send \UNCONDITIONAL BRANCH
12640 .empty LDA #23 \SEND BLANK
12650 .send STA (screen), Y \SEND TO SCREEN
12660 DEC bitcnt \ALL BITS SENT ?
12670 BEQ nxtrow \YES DO NEXT ROW
12680 BNE nxtbit \NO SEND NEXT BIT
12690
12700 .finish RTS:]
12800 NEXT pass
13000 RETURN

REACTION TIMER – PROGRAM 6

LIST
 100 MODE 7
 110 DIM digit(5)
 200 REM INSTRUCTIONS
 210 CLS
 220 PRINT TAB(10,2) "REACTION TIMER"
 230 PRINT TAB(10,4) "by R.A.Sparkes"
 235 GOSUB 10000:REM LOAD MACHINE CODE DISPLAY KOUTINE
 240 PRINT TAB(0,7);"This program measures reaction time."
 250 PRINT TAB(0,9);"A few seconds after you press the"
 260 PRINT TAB(0,11);"RETURN key, the screen will go blank."
 270 PRINT TAB(0,13);"As soon as this happens, you must press"
 280 PRINT TAB(0,15); "the SPACE bar. Your reaction time"
 290 PRINT TAB(0,17);"will then be displayed."
 300 PRINT TAB(0,22);"Press RETURN to begin."
 310 IF GET$<>CHR$(13) THEN 310
 315 PRINT TAB(0,22);"The screen will go blank very soon."
 320 time=RND(500)+300
 330 TIME=0
 340 REPEAT
 350 UNTIL TIME>time
 360 IF INKEY$(0)=" " THEN 600
 370 TIME=0
 375 CLS
 380 IF GET$<>" " THEN 380
 390 number=TIME/100
 400 pos=5
 410 GOSUB 9000
 420 GOSUB 9500
 430 PRINT TAB(0,1);"Press RETURN to start again"
 440 IF GET$<>CHR$(13) THEN 440
 450 CLS
 460 PRINT TAB(10,2);"REACTION TIMER"
 470 PRINT TAB(10,4);"by R.A. Sparkes"
 480 GOTO 240
 600 REM CHEAT ROUTINE
 610 CLS
 620 PRINT TAB(0,10) "PLEASE WAIT UNTIL THE SCREEN GOES BLANK"
 630 PRINT TAB(0,22) "Press RETURN to begin again."
 640 IF GET$<>CHR$(13) THEN 640
 650 GOTO 450

The BBC microcomputer in science teaching

318

 9000 REM DIGIT SEPARATION AND DISPLAY
 9005 loc=114:dgtval=115
 9010 decpt=0:sign=1
 9020 IF number<0 THEN number=ABS(number):sign=-1
 9030 IF number>=1 THEN number=number/10:decpt=decpt+1:GOTO 9030
 9040 IF decpt>4 THEN 500:REM OUT OF RANGE
 9050 FOR I=0 TO 3
 9060 digit=INT(number*10)
 9070 number=number*10-digit
 9080 IF I<decpt THEN digit(I)=digit
 9090 IF I>=decpt THEN digit(I+1)=digit
 9100 NEXT I
 9110 digit(decpt)=10
 9120 IF sign<0 THEN FOR I=4 TO 1 STEP -1:digit(I)=digit(I-1):NEXT I:digit(0)=11
 9200 REM DIGIT DISPLAY ROUTINE
 9210 sigfig=2:REM SET NUMBER OF SIG. FIGS.
 9220 IF sign<0 THEN sigfig=sigfig+1
 9230 FOR I=0 TO sigfig
 9240 ?loc=(I+pos):?dgtval=digit(I)
 9250 CALL display
 9260 NEXT I
 9270 RETURN
 9500 REM DISPLAY 'S'
 9510 ?loc=9:?dgtval=12
 9520 CALL display
 9530 RETURN
10000 REM LOADER FOR MACHINE CODE SUBROUTINE
10010 REM 'LARGE DIGIT DISPLAY'
10020 display=28672
10030 HIMEM=&7000
10035 loc=114:dgtval=115:display=28672
10040 FOR I=28672 TO 28781
10050 READ X
10060 ?I=X
10070 NEXT I
10080 DATA 165,114,201,10,16,15,201,5,16,27
10090 DATA 10,10,10,133,112,169,124,133,113,208
10100 DATA 28,56,233,10,10,10,10,105,128,133
10110 DATA 112,169,126,133,113,208,14,56,233,5
10120 DATA 10,10,10,105,64,133,112,169,125,133
10130 DATA 113,162,0,165,115,10,10,10,168,185
10140 DATA 0,113,157,128,112,200,232,224,8,208
10150 DATA 244,160,223,162,255,232,224,7,240,29
10160 DATA 169,8,133,116,24,152,105,32,168,200
10170 DATA 30,128,112,144,4,169,127,208,2,169
10180 DATA 23,145,112,198,116,240,224,208,236,96
10200 REM DIGITS TABLE
10210 FOR I=28928 TO 29031
10220 READ X
10230 ?I=X
10240 NEXT I
10250 DATA 124,68,68,68,68,68,124,0:REM DIGIT 0
10260 DATA 8,8,8,8,8,8,8,0:REM DIGIT 1
10270 DATA 124,68,4,4,124,64,124,0:REM DIGIT 2
10280 DATA 124,4,4,124,4,4,124,0:REM DIGIT 3
10290 DATA 64,64,64,72,124,8,8,0:REM DIGIT 4
10300 DATA 124,64,64,124,4,4,124,0:REM DIGIT 5
10310 DATA 124,64,64,124,68,68,124,0:REM DIGIT 6
10320 DATA 124,4,4,4,4,4,4,0:REM DIGIT 7
10330 DATA 124,68,68,124,68,68,124,0:REM DIGIT 8

Program listings

319

10340 DATA 124,68,68,124,4,4,4,0:REM DIGIT 9
10350 DATA 0,0,0,0,0,0,16,0:REM DECIMAL POINT
10360 DATA 0,0,0,124,0,0,0,0:REM NEGATIVE SIGN
10370 DATA 0,0,60,32,60,4,60,0:REM LETTER S
10380 RETURN

FAST TIMER – PROGRAM 7

LIST
 10 HIMEM=&6000
 20 GOSUB 10000:REM LOAD MACHINE CODE ROUTINES
 100 MODE 7
 110 DIM digit(5)
 200 REM INSTRUCTIONS
 210 CLS
 220 PRINT TAB(12,2);"FAST TIMER"
 230 PRINT TAB(10,4);"by R.A.Sparkes"
 240 PRINT TAB(0,7);"This program measures time intervals"
 250 PRINT TAB(0,9);"between 0 and 600 milliseconds"
 260 PRINT TAB(0,11);"in units of about 10 microseconds."
 270 PRINT TAB(0,13);"The timing begins when any of the"
 280 PRINT TAB(0,15) "User Port changes its status."
 290 PRINT TAB(0,19) "Press RETURN when you are ready"
 300 PRINT TAB(0,21) "to begin taking readings."
 310 IF GET$<>CHR$(13) THEN 310
 320 CLS
 330 PRINT TAB(10,2) "FAST TIMER"
 340 PRINT TAB(0,5); "Ready for input changes."
 350 CALL timer
 360 IF ?errflag=0 THEN 400
 365 PRINT TAB(0,8) "Time interval exceeds 600 milliseconds."
 370 PRINT:PRINT"Press SPACE to begin again."
 380 REPEAT UNTIL GET$=" "
 385 CLS
 390 GOTO 200
 400 REM RETRIEVE RESULT
 405 LET number=(256*?&85+?&84)*0.0095
 410 CLS
 420 GOSUB 9000
 430 PRINT TAB(0,1);"Press RETURN to start again"
 440 IF GET$<>CHR$(13) THEN 440
 450 GOTO 320
 9000 REM DIGIT SEPARATION AND DISPLAY
 9005 loc=114:dgtval=115
 9010 decpt=0:sign=1
 9020 IF number<0 THEN number=ABS(number):sign=-1
 9030 IF number>=1 THEN number=number/10:decpt=decpt+1:GOTO 9030
 9050 FOR I=0 TO 3
 9060 digit=INT(number*10)
 9070 number=number*10-digit
 9080 IF I<decpt THEN digit(I)=digit
 9090 IF I>=decpt THEN digit(I+1)=digit
 9100 NEXT I
 9110 digit(decpt)=10
 9120 IF sign<0 THEN FOR I=4 TO 1 STEP-1:digit(I)=digit(I-1):NEXTI:digit(0)=11
 9200 REM DIGIT DISPLAY ROUTINE
 9210 sigfig=4:REM SET NUMBER OF SIG. FIGS.

The BBC microcomputer in science teaching

320

 9220 IF sign<0 THEN sigfig=sigfig+1
 9230 FOR I=0 TO sigfig
 9240 ?loc=(I+5):?dgtval=digit(I)
 9250 CALL display
 9260 NEXT I
 9400 REM DISPLAY 'M'
 9410 ?loc=13:?dgtval=13
 9420 CALL display
 9500 REM DISPLAY 'S'
 9510 ?loc=14:?dgtval=12
 9520 CALL display
 9530 RETURN
10000 REM LOADER FOR MACHINE CODE SUBROUTINE
10010 REM 'LARGE DIGIT DISPLAY'
10030 loc=114:dgtval=115:display=28672
10040 FOR I=28672 TO 28781
10050 READ X
10060 ?I=X
10070 NEXT I
10080 DATA 165,114,201,10,16,15,201,5,16,27
10090 DATA 10,10,10,133,112,169,124,133,113,208
10100 DATA 28,56,233,10,10,10,10,105,128,133
10110 DATA 112,169,126,133,113,208,14,56,233,5
10120 DATA 10,10,10,105,64,133,112,169,125,133
10130 DATA 113,162,0,165,115,10,10,10,168,185
10140 DATA 0,113,157,128,112,200,232,224,8,208
10150 DATA 244,160,223,162,255,232,224,7,240,29
10160 DATA 169,8,133,116,24,152,105,32,168,200
10170 DATA 30,128,112,144,4,169,127,208,2,169
10180 DATA 23,145,112,198,116,240,224,208,236,96
10200 REM DIGITS TABLE
10210 FOR I=28928 TO 29039
10220 READ X
10230 ?I=X
10240 NEXT I
10250 DATA 124,68,68,68,68,68,124,0:REM DIGIT 0
10260 DATA 8,8,8,8,8,8,8,0: REM DIGIT 1
10270 DATA 124,68,4,4,124,64,124,0: REM DIGIT 2
10280 DATA 124,4,4,124,4,4,124,0: REM DIGIT 3
10290 DATA 64,64,64,72,124,8,8,0: REM DIGIT 4
10300 DATA 124,64,64,124,4,4,124,0:REM DIGIT 5
10310 DATA 124,64,64,124,68,68,124,0:REM DIGIT 6
10320 DATA 124,4,4,4,4,4,4,0: REM DIGIT 7
10330 DATA 124,68,68,124,68,68,124,0:REM DIGIT 8
10340 DATA 124,68,68,124,4,4,4,0: REM DIGIT 9
10350 DATA 0,0,0,0,0,0,16,0: REM DECIMAL POINT
10360 DATA 0,0,0,124,0,0,0,0:REM NEGATIVE SIGN
10370 DATA 0,0,60,32,60,4,60,0:REM LETTER S
10380 DATA 0,0,127,73,73,73,73,0:REM LETTER M
11000 REM FAST TIMER ROUTINE
11010 LET status=&80
11014 ?65122=0:REM USER PORT AS INPUT
11015 LET PRT=65120:REM USER PORT
11020 LET errflag= &81
11030 FOR pass=0 TO 2 STEP 2
11040 P%=&6000
11050 [OPT pass
11060 .timer SEI
11070 LDA #0
11080 STA errflag

Program listings

321

11090 TAX
11100 TAY \INITIALIZE CLOCK
11110 LDA PRT
11120 STA status
11130 .wait LDA PRT \WAIT TILL STATUS CHANGES
11140 CMP status
11150 BEQ wait
11155 STA status \KEEP NEW STATUS
11160 .loop INX
11170 BNE delay
11180 INY
11190 BNE cont
11200 LDA #1
11210 STA errflag \CLOCK OVERFLOW
11220 CLI
11230 RTS
11240 .delay NOP \COMPENSATORY DELAY
11250 NOP
11260 .cont LDA PRT \FINISHED?
11270 CMP status
11280 BEQ loop \CARRY ON TIMING
11285 STY &85
11286 STX &84 \SAVE CLOCK READING
11290 CLI
11300 RTS
11310]
11320 NEXT pass
11330 RETURN

TIME, SPEED & ACCELERATION METER - PROGRAM 8
LIST
 1 MODE7
 2 HIMEM = &6000
 3 GOSUB 10000:REM FIRST LOAD DISPLAY ROUTINE
 4 GOSUB 15000:REM LOAD TIMING ROUTINE
 5 @%=00020306: REM FIXED FORMAT
 6 DIM A(4)
 7 DIM s(4)
 8 DIM T(4)
 9 DIM digit (4)
 100 REM TIME SPEED AND ACCELERATION METER
 110 CLS
 120 PRINT " TIME, SPEED AND ACCELERATION METER"
 130 PRINT TAB(0,3);"For acceleration, press A"
 140 PRINT TAB(0,5);"For speed, press S"
 150 PRINT TAB(0,7);"For time intervals, press T"
 160 A$=GET$
 170 IF A$="A" THEN 5000
 180 IF A$="S" THEN 6000
 190 IF A$="T" THEN 7000
 200 GOTO 160:REM IGNORE OTHER KEYS
 1000 END
 5000 CLS
 5010 PRINT TAB(3,1); "Measuring ACCELERATION"
 5020 GOSUB 8000
 5030 GOSUB 9000
 5040 GOTO 5060
 5050 PRINT TAB(0,1); "Ready to take reading number ";counter

The BBC microcomputer in science teaching

322

 5060 ?evntctr=4:REM FOUR EVENTS
 5070 CALL timer
 5080 GOSUB 14000:REM COLLECT RESULTS
 5090 T2=T2+(T1+T3)/2
 5100 Q=0.04*(1/T3-1/T1)/T2):REM CALCULATE ACCELERATION
 5110 A(counter)=Q:REM KEEP CURRENT MEASUREMENT
 5120 GOSUB 13000:REM DISPLAY MEASUREMENT
 5130 counter=counter + 1
 5140 IF counter>maxcount THEN 500:REM ALL READINGS TAKEN
 5150 GOTO 5050:REM TAKE NEXT READING
 6000 CLS
 6010 PRINT TAB(5,1); "Measuring SPEED"
 6020 GOSUB 8000
 6030 GOSUB 9000
 6040 GOTO 6060
 6050 PRINT TAB(0,1); "Ready to take reading number ";counter
 6060 ?evntctr=2:REM TWO EVENTS
 6070 CALL timer
 6080 GOSUB 14000:REM COLLECT RESULTS
 6100 Q=0.04/T1:REM CALCULATE SPEED
 6110 S(counter)=Q:REM KEEP CURRENT MEASUREMENT
 6120 GOSUB 13000:REM DISPLAY MEASUREMENT
 6130 counter=counter+1
 6140 IF punter>maxcount THEN 7500:REM ALL READINGS TAKEN
 6150 GOTO 6050:REM TAKE NEXT READING
 7000 CLS
 7010 PRINT TAB(1,1);"Measuring TIME INTERVALS"
 7020 GOSUB 8000
 7030 GOSUB 9000
 7040 GOTO 7060
 7050 PRINT TAB (0,1);"Ready to take reading number ";counter
 7060 ?evntctr=2:REN TWO EVENTS
 7070 CALL timer
 7080 GOSUB 14000:REM COLLECT RESULTS
 7100 Q= T1
 7110 Ticounter) = Q:REM KEEP CURRENT MEASUREMENT
 7120 GOSUB 13000:REM DISPLAY MEASUREMENT
 7130 counter=counter+1
 7140 IF counter>maxcount THEN 7500:REM ALL READINGS TAKEN
 7150 GOTO 7050:REM TAKE NEXT READING
 7500 REM RESTART ROUTINE
 7510 PRINT:PRINT"Press R to restart"
 7520 PRINT:PRINT"Press M to recall previous readings"
 7530 C$=GET$
 7540 IF C$="R" THEN 100
 7550 IF C$="M" AND A$="A" THEN 9800:REM LIST ACCELERATION READINGS
 7560 IF C$="M" AND A$="S" THEN 9700:REM LIST SPEED READINGS
 7570 IF C$="M" AND A$="T" THEN 9600:REM LIST TIME INTERVAL READINGS
 7580 GOTO 7530:REM IGNORE OTHER KEYS
 8000 REM NUMBER OF DISPLAYED DIGITS
 8010 PRINT:PRINT"Enter the number of digits to be"
 8020 PRINT:PRINT"displayed (2 to 4)."
 8030 E$=GET$
 8040 maxdig=VAL (E$)
 8050 IF maxdig<2 OR maxdig>4 THEN 8030
 8060 RETURN
 9000 REM SELECT NUMBER OF SUCCESSIVE READINGS
 9010 PRINT:PRINT:PRINT"You may take 1, 2, 3 or 4 successive"
 9020 PRINT:PRINT"readings which will be stored"
 9030 PRINT:PRINT"as well as being displayed."

Program listings

323

 9040 PRINT:PRINT:PRINT"When you are ready to begin,"
 9050 PRINT:PRINT"press one of these numbers."
 9060 B$=GET$
 9070 maxcount=VAL(B$)
 9080 IF maxcount<1 OR maxcount>4 THEN 9060
 9090 PRINT:PRINT:PRINT" OK. I am ready."
 9100 counter=1:REM INITIALISE READINGS COUNTER
 9110 RETURN
 9500 REM LIST STORED READINGS
 9600 REM TIME INTERVALS
 9610 CLS
 9620 FOR Z=1 TO maxcount
 9630 PRINT TAB(0,Z*2); "TIME"; 7;" = ";T(Z)
 9640 NEXT Z
 9650 PRINT:PRINT"Press R to restart."
 9660 D$=GET$
 9670 IF D$<>"R" THEN 9660
 9680 GOTO 100
 9700 REM SPEEDS
 9710 CLS
 9720 FOR Z=1 TO maxcount
 9730 PRINT TAB(0,Z*2) ; "SPEED";Z;" = ";S(Z)
 9740 NEXT Z
 9750 PRINT:PRINT"Press R to restart.
 9760 D$=GET$
 9770 IF D$<>"R" THEN 9760
 9780 GOTO 100
 9800 REM ACCELERATIONS
 9810 CLS
 9820 FOR Z=1 TO maxcount
 9830 PRINT TAB 10,Z*2) ; "ACCELERATION"; Z;" = ";A<ZZ
 9840 NEXT Z
 9850 PRINT:PRINT"Press R to restart."
 9860 D$=GET$
 9870 IF D$<>"R" THEN 9860
 9880 GOTO 100
 9991 FOR i=&6800 TO &6882
 9992 PRINT; ;?i;
 9993 NEXT i
 9994 STOP
10000 REM LOADER FOR MACHINE CODE SUBROUTINE
10010 REM LARGE DIGIT DISPLAY
10200 REM DIGITS TABLE
10210 FOR I=&7100 TO &716F
10220 READ X
10230 ?I=X
10240 NEXT I
10250 DATA 24,68,68,68,68,68,124,0:REM DIGIT 0
10260 DATA 8,8,8,8,8,8,8,0:REM DIGIT 1
10270 DATA 124,68,4,4,124,64,124,0:REM DIGIT 2
10280 DATA 124,4,4,124,4,4,124,0:REM DIGIT 3
10290 DATA 64,64,64,72,124,8,8,0:REM DIGIT 4
10300 DATA 124,64,64,124,4,4,124,0:REM DIGIT 5
10310 DATA 124,64,64,124,68,68,124,0:REM DIGIT 6
10320 DATA 124,4,4,4,4,4,4,0:REM DIGIT 7
10330 DATA 124,68,68,124,68,68,124,0:REM DIGIT 8
10340 DATA 124,68,68,124,4,4,4,0:REM DIGIT 9
10350 DATA 0,0,0,0,0,0,16,0:REM DECIMAL POINT
10360 DATA 0,0,0,124,0,0,0,0:REM NEGATIVE SIGN
10370 DATA 0,0,60,32,60,4,60,0:REM LETTER S

The BBC microcomputer in science teaching

324

10380 DATA 0,0,127,73,73,73,73,0:REM LETTER M
11000 REM LARGE DIGIT DISPLAY
12000 REM MACHINE CODE ROUTINE
12001 dest=114
12002 dgtval=115
12003 screen=112: REM AND 113
12004 bitent=116
12005 temp=&7080:REM AND NEXT SEVEN BYTES
12006 bittbl=&7100
12008 FOR pass=0 TO 2 STEP 2
12010 P%=&7000
12020 [OPT pass
12030 .display LDA dest \GET DESTINATION
12040 CMP #10 \BOTTOM ROW ?
12050 BPL bottom \YES
12060 CMP #5 \MIDDLE ROW ?
12070 BPL middle \YES
12080 ASL A \MUST BE TOP
12090 ASL A
12100 ASL A \MULTIPLY BY 8
12110 STA screen \MAKE NOTE OF POSITION
12120 LDA #&7C
12130 STA screen + 1
12140 BNE begin \UNCONDITIONAL BRANCH
12150
12160 .bottom SEC
12170 SBC #10
12180 ASL A
12190 ASL A
12200 ASL A
12210 ADC #128 \MOVE TO CORRECT PLACE
12220 STA screen \AND SAVE IT
12230 LDA #&7E
12240 STA screen+1
12250 BNE begin \UNCONDITIONAL BRANCH
12260 .middle SEC
12270 SBC #5
12280 ASL A
12290 ASL A
12300 ASL A
12310 ADC #64 \MOVE TO CORRECT PLACE
12320 STA screen \AND SAVE IT
12330 LDA #&7D
12340 STA screen+1
12350
12360 \GET BITS FOR DIGIT
12370 .begin LDX #0 \INITIALISE BYTE POINTER
12380 LDA dgtval \GET DIGIT CODE
12390 ASL A
12400 ASL A
12410 ASL A \MULTIPLY BY 8
12420 TAY \POINT TO TABLE
12430 .bytget LDA bittbl,Y \GET BYTE
12440 STA temp, X \KEEP IN TEMP STORE
12450 INY \ADVANCE TABLE POINTER
12460 INX \ADVANCE BYTE POINTER
12470 CPX #8 \8 BYTES COLLECTED ?
12480 BNE bytget
12490 LDY #223 \SET SCREEN POINTER TO -32
12500 LDX #255 \SET ROW POINTER TO -1 -

Program listings

325

12510 .nxtrow INX \READY FOR NEXT ROW
12520 CPX #7 \ALL ROWS DONE ?
12530 BEQ finish
12540 LDA #8 \INITIALISE BIT COUNTER
12550 STA bitent
12560 CLC
12570 TYA \GET SCREEN POINTER
12575 ADC #32 \ADVANCE TO NEXT ROW
12580 TAY \RESTORE SCREEN POINTER
12590 .nxtbit INY \NEXT SCREEN POSITION
12600 ASL temp, X \SHIFT BIT INTO CARRY
12610 BCC empty \BIT IS ZERO
12620 LDA #255 \BIT IS ONE - SEND WHITE BLOCK
12630 BNE send \UNCONDITIONAL BRANCH
12640 .empty LDA #151 \SEND BLANK
12650 .send STA (screen), Y \SEND TO SCREEN
12660 DEC bitent \ALL BITS SENT ?
12670 BEQ nxtrow \YES DO NEXT ROW
12680 BNE nxtbit \NO SEND NEXT BIT
12690
12700 .finish RTS:]
12800 NEXT pass
12900 RETURN
13000 REM DIGIT SEPARATION AND DISPLAY
13010 CLS
13020 decpt=0
13030 sign=1
13040 IF Q<0 THEN Q=ABS(Q):sign=-1
13050 IF Q>=1 THEN Q=Q/10:decpt=decpt+1:GOTO 130
13060 IF decpt>4 THEN PRINT:PRINT:PRINT:PRINT"OUT OF RANGE.":GOTO 7500
13070 FOR i=0 TO 3
13080 digit=INT(Q*10)
13090 Q=0*10-digit
13100 IF i<decpt THEN digit(i)=digit ELSE digit(i+1)=digit
13110 NEXT i
13120 digit(decpt)=10
13130 IF sign<0 THEN GOSUB 13500:REM INSERT NEGA
13140 REM SEND DIGITS TO DISPLAY
13150 FOR n=0 TO maxdig
13160 ?dest=n+5
13170 ?dgtval=digit(n)
13180 CALL display
13190 NEXT n
13200 REM DISPLAY UNITS
13210 ?dest=13
13220 ?dgtval=12
13230 CALL display:REM DISPLAY 's'
13240 IF A$="T" THEN 13310
13250 ?dest=12
13260 ?dgtval=13
13270 CALL display:REM DISPLAY 'm'
13280 ?32453=135:732415=135:REM ALPHANUMERICS
13283 ?32454=141:732416=141:REM DOUBLE EIGHT CHARACTERS
13285 ?32455=61:REM DISPLAY NEGATIVE SIGN
13290 IF A$="A" THEN ?32417=50:732457=50:REM DISPLAY '2'
13300 IF A$="S" THEN ?32417=49:732457=49:REM DISPLAY '1'
13310 RETURN
13500 REM NEGATIVE SIGN
13510 FOR i=4 TO 1 STEP -1
13520 digit(i)=digit(i-1)

The BBC microcomputer in science teaching

326

13530 NEXT i
13540 digit(0)=11:REM NEGATIVE SIGN
13550 RETURN
14000 REM COLLECT TIME INTERVALS MEASURED BY TIMER ROUTINE
14010 J1=65536:J2=256:J3=4.975E-5
14020 ST=store+4
14030 T1=(J1*?(ST+2) + J2*?(ST+1) + ?(ST))*J3
14040 T2=(J1*?(ST+6) + J2*?(ST+5) + ?(ST+4))*J3
14050 T3=(J1*?(ST+10) + J2*?(ST+9) + ?(ST+8))*J3
14060 IF(ST=store+4) AND (T1+T2+T3=0) THEN ST=store+64:GOTO 14030
14070 RETURN
15000 REM ADVANCED TIMER
15010 ptr=&6880:REM PTR1 IS &6880
15020 REM PTR2 IS &68C0
15030 store=&6800:REM TO &687F
15040 status=&6881
15050 evntctr=&6882
15060 clocklo=&70
15070 clockmid=&71
15080 clockhi=&72
15090 PRT=&FE60
15100 DDRB=&FE62
15110 flag=&FE6D
15120 T1LLO=&FE64
15130 T1LHI=&FE65
15140 ACR=&FE6B
15150 ?ACR=64:REM GENERATE CONTINUOUS TIMEOUTS ON TIMER 1
15160 ?&FE6E=127:REM DISABLE ALL INTERRUPTS
15170 ?T1LLO=48:?T1LHI=0:REM TIMEOUTS AT 50 MICROSECOND INTERVALS APPROXIMATELY
15200 keyboardflag=&FE4D
16010 FOR pass=0 TO 3 STEP 3
16020 P%=&6000
16030 [OPT pass
16040 .timer SEI
16050 CLD
16060 LDX #127
16070 LDA #0
16080 STA clocklo
16090 STA clockmid
16100 STA clockhi
16110.nxtclr STA store, X
16120 DEX \CLEAR STORES
16130 BPL nxtclr
16140 STA DDRB \USER PORT IS INPUTS
16150 LDA #252 \SET POINTERS TO -4
16160 STA ptr
16170 STA ptr +64
16180 LDA PRT \GET CURRENT INPUT STATUS
16190 AND #3 \MASK FOR BITS 0 AND 1
16200 STA status \SAVE CURRENT STATUS
16210 .wait LDA PRT
16220 AND #3
16230 TAY
16240 CPY status \SAME STATUS ?
16250 BEQ wait \WAIT UNTIL IT CHANGES
16260 .query TYA \RETRIEVE INPUT
16270 EOR status \WHICH INPUT CHANGED
16280 STY status \KEEP NEW STATUS
16290 CMP #1 \INPUT 1 ?
16300 BEQ chan1 \YES

Program listings

327

16310 CMP #2 \INPUT 2 ?
16320 BEQ chan2 \YES
16330 TYA \BOTH CHANNELS
16340 EOR #2 \IGNORE CHAN2 THIS TIME
16350 STA status
16360 .chan1 LDX #0
16370 BEQ cont \UNCONDITIONAL BRANCH
16380 .chan2 LDX #64
16390 .cont LDA ptr, X \GET EVENT POINTER
16400 CLC
16410 ADC #4 \INCREASE BY 4
16420 STA ptr, X \PUT IT BACK
16430 CLC
16440 TXA \GET CHANNEL POINTER
16450 ADC ptr, X\ADD EVENT POINTER
16460 TAX \RESTORE TO X-INDEX
16470 LDA clocklo \STORE CURRENT CLOCK READING
16480 STA store, X
16490 LDA clockmid
16500 STA store+1, X
16510 LDA clockhi
16520 STA store+2, X
16530 DEC evntctr \ALL EVENTS FINISHED ?
16540 BEQ done
16550 LDA keyboardflag
16551 STA keyboardflag \CLEAR FLAGS
16560 .count CLC
16570 LDA clocklo \INCREMENT CLOCK
16580 ADC #1
16590 STA clocklo
16600 LDA clockmid
16610 ADC #0
16620 STA clockmid
16630 LDA clockhi
16640 ADC #0
16650 STA clockhi
16660 LDA keyboardflag
16665 AND #1
16668 BNE done \KEY PRESSED FINISH
16670 .timewait LDA flag
16672 AND #64 \TIMEOUT ?
16674 BEQ timewait
16675 STA flag \RESET TIMEOUT FLAG
16700 LDA PRT \CHECK IF INPUT CHANGED
16710 AND #3
16720 TAY
16730 CMP status
16740 BEQ count \CONTINUE TIMING
16750 BNE query
16760 .done LDX #120 \CONVERT STORES TO TIME INTERVALS
16770 .nxtstore SEC
16780 LDA store+4,X
16790 SBC store+0,X
16800 STA store+4,X
16810 LDA store+5,X
16820 SBC store+1,X
16830 STA store+5,X
16840 LDA store+6,X
16850 SBC store+2,X
16860 STA store+6,X

The BBC microcomputer in science teaching

328

16870 DEX
16880 DEX
16890 DEX
16900 DEX
16910 BPL nxtstore
16920 CLI
16930 RTS:]
16940 NEXT pass
16950 RETURN

CONSERVATION OF MOMENTUM - PROGRAM 9

LIST
 1 MODE7
 2 HIMEM=&6000
 4 GOSUB 15000:REM LOAD TIMING ROUTINE
 5 @%=&00020206:REM FORMAT
 9 DIM digit(4)
 100 REM CONSERVATION OF MOMENTUM
 110 CLS
 120 PRINT"CONSERVATION OF MOMENTUM"
 130 PRINT TAB(0,3);"This program measures the speeds of "
 140 PRINT TAB(0,5);"40-mm cards crossing photocells,"
 150 PRINT TAB(0,7);"which are connected to bits o and 1"
 160 PRINT TAB(0,9);"of the User Port."
 170 PRINT TAB(0,12);"Measurements via bit 0 are listed"
 180 PRINT TAB(0,14);"under CHANNEL 1."
 190 PRINT TAB(0,16);"Measurements via bit 1 are listed"
 200 PRINT TAB(0,18);"under CHANNEL 2."
 210 PRINT TAB(0,20);"The measurements are in chronological"
 220 PRINT TAB(0,22);"order within each channel"
 230 PRINT TAB(25,24);"Press SPACE";
 240 REPEAT UNTIL GET$=" "
 6000 CLS
 6010 PRINT TAB(5,1); "Measuring SPEED"
 6060 ?evntctr=8:REM EIGHT EVENTS
 6070 CALL timer
 6080 CLS:PRINT TAB(5,0) ; "CONSERVATION OF MOMENTUM"
 6090 PRINT TAB(0,4) ; "Measurement Speed "
 6095 PRINT:PRINT"CHANNEL 1"
 6100 FOR reading = 1 TO 4
 6110 LET value%=8*(reading-1)
 6120 LET tableposition=&6804+value%
 6130 LET timeinterval=(65536*?(tableposition+2)+256*?(tableposition+1)+?(tableposition))*0.00005
 6140 IF timeinterval=0 THEN LET reading=4:GOTO 6190
 6150 LET speed=40/timeinterval
 6180 PRINT: RINT"Speed (";STR$(reading);") = ":speed;TAB(20);"mm/s"
 6190 NEXT reading
 6200 PRINT:PRINT"CHANNEL 2"
 6210 FOR reading = 1 TO 4
 6220 LET value%=8*(reading-1)
 6230 LET tableposition=&6844+value%
 6240 LET timeinterval=(65536*?(tableposition+2)+256*?(tableposition+1)+?(tableposition))*0.00005
 6250 IF timeinterval=0 THEN LET reading=4:GOTO 6300
 6260 LET speed=40/timeinterval

Program listings

329

 6270 PRINT:PRINT"Speed (";STR$(reading);") = ";speed;TAB(20);"mm/s"
 6300 NEXT reading
 6400 PRINT TAB(0,24);"Press SPACE to repeat";
 6500 REPEAT UNTIL GET$=" "
 6600 GOTO 100
15000 REM ADVANCED TIMER
15010 ptr = &6880:REM PTR1 IS &6880
15020 REM PTR2 IS &68C0
15030 store=&6800:REM TO &687F
15040 status=&6881
15050 evntctr=&6882
15060 clocklo=&70
15070 clockmid=&71
15080 clockhi=&72
15090 PRT=&FE60
15100 DDRB=&FE62
15110 flag=&FE6D
15120 T1LLO=&FE64
15130 T1LHI=&FE65
15140 ACR=&FE6B
15150 ?ACR=64:REM GENERATE CONTINUOUS TIMEOUTS ON TIMER 1
15160 ?&FE6E=127:REM DISABLE ALL INTERRUPTS
15170 ?T1LLO=48:?T1LHI=0:REM TIMEOUTS AT 50 MICROSECOND INTERVALS APPROXIMATELY
15200 keyboardflag=&FE4D
16010 FOR pass = 0 TO 2 STEP 2
16020 P%=&6000
16030 [OPT pass
16040 .timer SEI
16050 CLD
16060 LDX #127
16070 LDA #0
16080 STA clocklo
16090 STA clockmid
16100 STA clockhi
16110 .nxtclr STA store, X
16120 DEX \CLEAR STORES
16130 BPL nxtclr
16140 STA DDRB \USER PORT IS INPUTS
16150 LDA #252 \SET POINTERS TO -4
16160 STA ptr
16170 STA ptr +64
16180 LDA PRT \GET CURRENT INPUT STATUS
16190 AND #3 \MASK FOR BITS 0 AND 1
16200 STA status \SAVE CURRENT STATUS
16210 .wait LDA PRT
16220 AND #3
16230 TAY
16240 CPY status \SAME STATUS ?
16250 BEQ wait \WAIT UNTIL IT CHANGES
16260 .query TYA \RETRIEVE INPUT
16270 EOR status \WHICH INPUT CHANGED
16280 STY status \KEEP NEW STATUS
16290 CMP #1 \INPUT 1 ?
16300 BEQ chan1 \YES
16310 CMP #2 \INPUT 2 ?
16320 BEQ chan2 \YES
16330 TYA \BOTH CHANNELS
16340 EOR #2 \IGNORE CHAN2 THIS TIME
16350 STA status
16360 .chan1 LDX #0

The BBC microcomputer in science teaching

330

16370 BEQ cont \UNCONDITIDNAL BRANCH
16380 .chan2 LDX #64
16390 .cont LDA ptr, X \GET EVENT POINTER
16400 CLC
16410 ADC #4 \INCREASE BY 4
16420 STA ptr,X \PUT IT BACK
16430 CLC
16440 TXA \GET CHANNEL POINTER
16450 ADC ptr, X \ADD EVENT POINTER
16460 TAX \RESTORE TO (-INDEX
16470 LDA clocklo \STORE CURRENT CLOCK READING
16480 STA store, X
16490 LDA clockmid
16500 STA store+1, X
16510 LDA clockhi
16520 STA store+2, X
16530 DEC evntctr \ALL EVENTS FINISHED ?
16540 BEQ done
16550 LDA keyboardflag
16551 STA keyboardflag \CLEAR FLAGS
16560 .count CLC
16570 LDA clocklo \INCREMENT CLOCK
16580 ADC #1
16590 STA clocklo
16600 LDA clockmid
16610 ADC #0
16620 STA clockmid
16630 LDA clockhi
16640 ADC #0
16650 STA clockhi
16660 LDA keyboardflag
16665 AND #1
16668 BNE done \KEY PRESSED FINISH
16670 .timewait LDA flag
16672 AND #64 \TIMEOUT ?
16674 BEQ timewait
16675 STA flag \RESET TIMEOUT FLAG
16700 LDA PRT \CHECK IF INPUT CHANGED
16710 AND #3
16720 TAY
16730 CMP status
16740 BEQ count \CONTINUE TIMING
16750 BNE query
16760 .done LDX #120 \CONVERT STORES TO TIME INTERVALS
16770 .nxtstore SEC
16780 LDA store+4,X
16790 SBC store+0,X
16800 STA store+4,X
16810 LDA store+5,X
16820 SBC store+1,X
16830 STA store+5,X
16840 LDA store+6,X
16850 SBC store+2,X
16860 STA store+6,X
16870 DEX
16880 DEX
16890 DEX
16900 DEX
16910 BPL nxtstore
16920 CLI

Program listings

331

16930 RTS:]
16940 NEXT pass
16950 RETURN

SPEED-TIME PLOTTER - PROGRAM 10

LIST
 1 MODE7
 2 HIMEM = &4000
 4 GOSUB 15000:REM LOAD TIMING ROUTINE
 5 @%=&020209
 6 DIM timeinterval(32)
 7 DIM speed(32)
 8 DIM elapsedtime(32)
 10 ON ERROR GOTO 100
 100 REM SPEED-TIME PLOTTER
 110 MODE7
 120 PRINT " SPEED-TIME PLOTTER"
 130 PRINT TAB(0,2);"This program measures the time taken"
 140 PRINT TAB(0,4);"for each 'tooth' of the following"
 150 PRINT TAB(0,6);"card to cross in front of a photocell"
 160 PRINT TAB(0,8);"connected to bit 0 of the User Port."
 170 LET B$=CHR$(32):LET A$=CHR$(255)
 175 PRINT:PRINT" 1cm 1cm 16 teeth in total"
 180 PRINT" > < > <"
 190 PRINTCHR$(151);B$;B$;A$;B$;A$;B$;A$;B$;A$;B$;A$;B$;A$;B$;A$;B$;A$;B$;A$;B$;A$;B$;A$;B$;A$;B$;
A$;B$;A$;B$;A$;B$;A$
 200 PRINTCHR$(151);B$;B$;A$;B$;A$;B$;A$;B$;A$;B$;A$;B$;A$;B$;A$;B$;A$;B$;A$;B$;A$;B$;A$;B$;A$;B$;
A$;B$;A$;B$;A$;B$;A$
 210 PRINTCHR$(151);B$;B$;A$;
A$;A$;A$;A$;A$;A$;A$
 214 PRINTCHR$(147);B$;A$;
A$;A$;A$;A$;A$;A$;A$;A$
 215 PRINTCHR$(147);B$;A$;A$;A$;A$;A$;A$;A$;A$;A$;A$;A$;" TROLLEY ";A$;A$;A$;A$;A$;A$;A$;A$;A$;A
$;A$;A$;A$
 216 PRINTCHR$(147);B$;A$;
A$;A$;A$;A$;A$;A$;A$;A$
 230 PRINT TAB(5,20);"Ready to take readings.";
 240 PRINT TAB(5,22);"Release the trolley now.";
 250 PRINT TAB(3,24);"Press ESCAPE if problems occur.";
 7010 REM Measuring TIME INTERVALS
 7060 ?evntctr=31:REM THIRTY-ONE EVENTS
 7070 CALL timer
 7080 GOSUB 14000: REM COLLECT RESULTS
 7100 REM DISPLAY SPEED-TIME GRAPH
 7110 MODE 4
 7120 MOVE50,0:DRAW 50,1023
 7130 MOVE0,50:DRAW 1279,50
 7140 PRINT TAB(12,0);"SPEED-TIME GRAPH"
 7150 PRINT TAB(5,1);"Press SPACE for DISTANCE-TIME GRAPH"
 7160 PRINT TAB(5,2);"Press R for new readings."
 7170 MOVE 50,50
 7180 FOR reading=1 TO 30
 7190 DRAW 50+elapsedtime(reading),50+speed(reading)
 7200 NEXT reading
 7250 *FX 15,0
 7300 LET A$=INKEY$ (255)

The BBC microcomputer in science teaching

332

 7400 IF A$=" " THEN 8000
 7500 IF A$="R" THEN 100
 7600 GOTO 7300
 8000 CLS
 8010 REM DISPLAY DISTANCE-TIME GRAPH
 8020 MOVE50,0:DRAW 50,1023
 8030 MOVE0,50:DRAW 1279,50
 8040 PRINT TAB(10,0);"DISTANCE-TIME GRAPH"
 8050 PRINT TAB(5,1);"Press SPACE for SPEED-TIME GRAPH"
 8060 PRINT TAB(5,2);"Press R for new readings."
 8100 MOVE 50,50
 8180 FOR reading=1 TO 30
 8190 DRAW elapsedtime(reading)+50,reading*30+50
 8200 NEXT reading
 8250 *FX 15,0
 8300 LET A$=INKEY$ (255)
 8400 IF A$=" " THEN 7100
 8500 IF A$="R" THEN 100
 8600 GOTO 8300
14000 REM COLLECT TIME INTERVALS MEASURED BY TIMER ROUTINE
14010 J1=65536:J2=256:J3=0.1
14020 FOR reading=1 TO 31
14030 LET timestore=store+reading*4
14035 LET intervalstore=128+timestore
14040 LET timeinterval(reading)=(J1*?(intervalstore+2)+J2*?(intervalstore+1)+?(intervalstore))*J3
14045 IF timeinterval(reading)=0 THEN LET reading=31:GOTO 14060
14050 LET speed(reading)=10000/timeinterval(reading)
14056 LET elapsedtime(reading)=(J1*?(timestore+2)+J2*?(timestore+1)+?(timestore))*J3
14060 NEXT reading
14100 RETURN
15000 REM ADVANCED TIMER
15010 ptr = &4880:REM PTRI IS &4880
15020 REM PTR2 IS &4BC0
15030 store=&4800:REM TO &4B7F
15040 status = &4881
15050 evntctr = &4882
15060 clocklo = &70
15070 clockmid = &71
15080 clockhi = &72
15090 PRT=&FE60
15100 DDRB=&FE62
15110 flag=&FE6D
15120 T1LLO=&FE64
15130 T1LHI=&FE65
15140 ACR=&FE6B
15150 ?ACR=64:REM GENERATE CONTINUOUS TIMEOUTS ON TIMER 1
15160 ?&FE6E=127:REM REM DISABLE ALL INTERRUPTS
15170 ?T1LLO=48:?T1LHI=0:REM TIMEOUTS AT 50 MICROSECOND INTERVALS APPROXIMATELY
15200 keyboardflag=&FE4D
16010 FOR pass = 0 TO 2 STEP 2
16020 P%=&4000
16030 [OPT pass
16040 .timer SEI
16050 CLD
16060 LDX #127
16070 LDA #0
16080 STA clocklo
16090 STA clockmid
16100 STA clockhi
16110 .nxtclr STA store,X

Program listings

333

16120 DEX \CLEAR STORES
16130 BPL nxtclr
16140 STA DDRB \USER PORT IS INPUTS
16150 LDA #252 \SET POINTERS TO -4
16160 STA ptr
16170 STA ptr+64
16180 LDA PRT \GET CURRENT INPUT STATUS
16190 AND #3 \MASK FOR BITS O AND 1
16200 STA status \SAVE CURRENT STATUS
16210 .wait LDA PRT
16220 AND #3
16230 TAY
16240 CPY status \SAME STATUS
16250 BEQ wait \WAIT UNTIL IT CHANGES
16260 .query TYA \RETRIEVE INPUT
16270 EOR status \WHICH INPUT CHANGED
16280 STY status \KEEP NEW STATUS
16290 CMP #1 \INPUT 1?
16300 BEQ chan1 \YES
16310 CMP #2 \INPUT 2?
16320 BEQ chan2 \YES
16330 TYA \BOTH CHANNELS
16340 EOR #2 \IGNORE CHAN2 THIS TIME
16350 STA status
16360 .chan1 LDX #0
16370 BEQ cont \UNCONDITIONAL BRANCH
16380 .chan2 LDX #64
16390 .cont LDA ptr,X \GET EVENT POINTER
16400 CLC
16410 ADC #4 \INCREASE BY 4
16420 STA ptr,X \PUT IT BACK
16430 CLC
16440 TXA \GET CHANNEL POINTER
16450 ADC ptr,X \ADD EVENT POINTER
16460 TAX \RETORE TO X-INDEX
16470 LDA clocklo \STORE CURRENT CLOCK READING
16480 STA store,X
16490 LDA clockmid
16500 STA store+1,X
16310 LDA clockhi
16320 STA store+2,X
16330 DEC evntctr \ALL EVENTS FINISHED?
16540 BEQ done
16550 LDA keyboardflag
16551 STA keyboardflag \CLEAR FLAGS
16560 .count CLC
16570 LDA clocklo \ INCREMENT CLOCK
16580 ADC #1
16590 STA clocklo
16600 LDA clockmid
16610 ADC #0
16620 STA clockmid
16630 LDA clockhi
16640 ADC #0
16650 STA clockhi
16660 LDA keyboardflag
16665 AND #1
16668 BNE done \KEY PRESSED FINISH
16670 .timewait LDA flag
16672 AND #64 \TIMEOUT ?

The BBC microcomputer in science teaching

334

16674 BEQ timewait
16675 STA flag \RESET TIMEOUT FLAG
16700 LDA PRT \CHECK IF INPUT CHANGED
16710 AND #3
16720 TAY
16730 CMP status
16740 BEQ count \CONTINUE TIMING
16750 BNE query
16760 .done LDX #120 \CONVERT STORES TO TIME INTERVALS
16770 .nxtstore SEC
16780 LDA store+4,X
16790 SBC store+0,X
16800 STA store+132,X
16810 LDA store+5,X
16820 SBC store+1,X
16830 STA store+133,X
16840 LDA store+6,X
16850 SBC store+2,X
16860 STA store+134,X
16870 DEX
16880 DEX
16890 DEX
16900 DEX
16910 BPL nxtstore
16920 CLI
16930 RTS:]
16940 NEXT pass
16950 RETURN

PULSE TIMER – PROGRAM 11

 1 MODE 7
 2 HIMEM=&7000
 100 REM SIMPLE TIMER
 110 PRT=&FE60
 120 DDRB=&FE62
 130 T1LLO=&FE64
 140 T1LHI=&FE65
 150 T2LO=&FE68
 160 T2HI=&FE69
 170 SR=&FE6A
 180 ACR=&FE6B
 190 PCR=&FE6C
 200 FLAG=&FE6D
 210 IER=&FE6E
 300
 310 REM INITIALISE TIMER
 320 ?IER=127:REM DISABLE ALL INTERRUPTS
 330 ?ACR=224:REM SET UP PB6 TO COUNT PULSES AND PB7 AS FREE-RUNNING OUTPUT
 340 ?PCR=0:REM TURN OFF LATCHES ETC.
 350 ?DDRB=128:REM BIT 7 AS OUTPUT
 360 ?T2LO=255
 370 ?T2HI=255:REM INITIALISE COUNTER
 380 ?FLAG=127:REM CLEAR ALL FLAGS
 390
 500 CLS

Program listings

335

 510 PRINT TAB(8,2);CHR$(141);"SIMPLE TIMER"
 520 PRINT TAB(8,3);CHR$(141);"SIMPLE TIMER"
 530 PRINT TAB(0,6);"When input X goes HIGH, 1 millisecond"
 540 PRINT TAB(0,8);"pulses will be counted by Timer 2."
 550 PRINT TAB(0,10);"This continues until input X goes LOW."
 555 GOSUB 2000
 560 PRINT TAB(0,20);"When you are ready for the timing"
 570 PRINT TAB(0,22);"to start, press SPACE."
 580 IF GET$<>" " THEN 580
 580
 590 PRINT TAB(0,24);"O.K. Waiting for POSITIVE pulse.";
 600 REM START TIMER 1 TO PROVIDE 1 KHZ PULSES ON PB7
 610 ?T1LLO=244
 620 ?T1LHI=1300
 630 IF (?PRT AND 1)=0 THEN 630
 640 PRINT TAB(0,24);"O.K. Timing is under way. ";
 650 IF (?PRT AND 1) THEN 650
 655 t=256*(255-?T2HI) + (255-?T2LO)
 660 CLS
 670 PRINT TAB(8,2);CHR$(141);"SIMPLE TIMER"
 680 PRINT TAB(8,3);CHR$(141);"SIMPLE TIMER"
 690 PRINT TAB(0,8);"The measured time interval is "
 700 PRINT TAB(0,10);t;" milliseconds."
 720 PRINT TAB(0,16); "Press SPACE for another measurement. "
 730 IF GET$<>" " THEN 730
 740 GOTO 300
2000 REM DRAW DIAGRAM
2010 PRINT TAB(5,12);CHR$(151);CHR$(32);CHR$(32);CHR$(32);CHR$(32);CHR$(32);CHR$(32);CHR$(112);
CHR$(112);CHR$(112);CHR$(112);CHR$(112);CHR$(112);CHR$(112);CHR$(151);
2020 PRINT TAB(0,13);"Input X ";CHR$(151);CHR$(53);" ";CHR$(106)
2030 PRINT TAB(0,14);"& PB0";CHR$(151);CHR$(79);CHR$(44);CHR$(44);CHR$(44);CHR$(44);CHR$(44)CH
R$(53);"NAND ";CHR$(106)
2040 PRINT TAB(5,15);CHR$(151);" ";CHR$(53);" ";CHR$(106);CHR$(44);CHR$(44);CHR$(44);CH
R$(44);CHR$(44);CHR$(79);CHR$(135);" TO PB6"
2050 PRINT TAB(1,16);"PB7 ";CHR$(151);CHR$(79);CHR$(44);CHR$(44);CHR$(44);CHR$(44);CHR$(44);CHR
$(53);"GATE ";CHR$(106)
2060 PRINT TAB(0,17);"1 ms pulses";CHR$(151);CHR$(53);" ";CHR$(106)
2070 PRINT TAB(11,18);CHR$(151);CHR$(96);CHR$(96);CHR$(96);CHR$(96);CHR$(96);CHR$(96);CHR$(96)
2100 RETURN

The BBC microcomputer in science teaching

336

FREQUENCY METER – PROGRAM 12

LIST
 1 MODE 7
 100 REM FAST FREQUENCY METER
 110 PRT=&FE60
 120 DDRB=&FE62
 130 T1LLO=&FE64
 140 T1LHI=&FE65
 150 T2LO=&FE68
 160 T2HI=&FE69
 170 SR=&FE6A
 180 ACR=&FE6B
 190 PCR=&FE6C
 200 FLAG=&FE6D
 210 IER=&FE6E
 300
 310 REM INITIALISE TIMER
 320 ?IER=127:REM DISABLE ALL INTERRUPTS
 330 ?ACR=160:REM SET UP PB6 TO COUNT PULSES AND PB7 AS SINGLE PULSE OUTPUT
 340 ?PCR=0:REM TURN OFF LATCHES ETC.
 350 ?DDRB=128:REM BIT 7 AS OUTPUT
 360 ?T2LO=255
 370 ?T2HI=255:REM INITIALISE COUNTER
 380 ?FLAG=127:REM CLEAR ALL FLAGS
 390
 560 GOSUB 2000
 600 GOSUB 1000:REM OPEN GATE FOR 50 MILLISECONDS
 640 f=256* (255-?T2HI) + (255-?T2LO)
 650 freq = f * 20
 655 IF freq<2000 THEN GOTO 800:REM LOW FREQUENCY ROUTINE
 660 CLS
 670 PRINT TAB(8,2);CHR$(141);"FREQUENCY METER"
 680 PRINT TAB(8,3);CHR$(141);"FREQUENCY METER"
 690 PRINT TAB(0,8);"The measured frequency is "
 700 PRINT TAB(0,10);freq;" Hz"
 720 PRINT TAB(0,16);"Press SPACE for another measurement. "
 730 IF GET$<>" " THEN 730
 740 GOTO 300
 800 REM LOW FREQUENCY ROUTINE
 810 ?ACR=32:REM DISABLE PB7 OUTPUT
 820 ?PRT=128:REM PB7 HIGH INITIALLY
 830 ?T2LO=255
 840 ?T2HI=255 :REM RELOAD COUNTER
 860 PRINT TAB(0,24);"O.K. Now taking measurement."
 870 ?PRT=0:REM OPEN PB7 GATE
 880 FOR count = 1 TO 20:GOSUB 1000:NEXT count
 890 ?PRT=128:REM CLOSE PB7 GATE
 900 f=256*(255-?T2HI) + (255-?T2LO)
 910 freq = f
 920 GOTO 660
1000 REM DELAY FOR 50 MILLISECONDS
1010 ?T1LLO=79:?T1LHI=195:REM RESTART TIMER 1 AND RESET FLAG
1020 IF (?FLAG AND 64) = 0 THEN 1020:REM WAIT FOR TIME-OUT ON TIMER 1
1030 RETURN
2000 REM DISPLAY DIAGRAM AND INSTRUCTIONS
2010 CLS
2020 PRINT TAB(8,1);CHR$(141);"FREQUENCY METER"
2030 PRINT TAB(8,2);CHR$(141);"FREQUENCY METER"

Program listings

337

2040 PRINT TAB(0,4);"When started, the PB7 line goes LOW to"
2050 PRINT TAB(0,6);"enable pulses to be counted."
2060 PRINT TAB(0,8);"by Timer 2 via PB6."
2070 PRINT TAB(0,10);" ";CHR$(151);CHR$(112);CHR$(112);CHR$(112);CHR$(112);CHR$(112);
CHR$(112);CHR$(112)
2080 PRINT TAB(0,11);"From PB7 ";CHR$(151);CHR$(53);" NOT ";CHR$(106)
2090 PRINT TAB(0,12);" ";CHR$(151);"O";CHR$(44);CHR$(44);CHR$(44);CHR$(44);CHR$(44);CHR$(53);"
 ";CHR$(106);CHR$(44);CHR$(44);CHR$(44);CHR$(44);CHR$(52)
2100 PRINT TAB(0,13);" ";CHR$(151);CHR$(53);"GATE ";CHR$(106);" ";CHR$(53)
2110 PRINT TAB(0,14);" ";CHR$(151);CHR$(96);CHR$(96);CHR$(96);CHR$(96);CHR$(96);CHR$(9
6);CHR$(96);" ";CHR$(53);" ";CHR$(112);CHR$(112);CHR$(112);CHR$(112);CHR$(112);CHR$(112);CHR$(
112)
2120 PRINT TAB(21,15);CHR$(151);CHR$(45);CHR$(44);CHR$(53);"NAND ";CHR$(106);CHR$(135);" To
PB6";
2130 PRINT TAB(5,16);"Unknown freq. ";CHR$(151);CHR$(53);" ";CHR$(106);CHR$(44);CHR$(44)
;CHR$(44);CHR$(44);CHR$(79);
2140 PRINT TAB(4,17);CHR$(151);CHR$(79);CHR$(44);CHR$(44);CHR$(44);CHR$(44);CHR$(44);CHR$(44);C
HR$(44);CHR$(44);CHR$(44);CHR$(44);CHR$(44);CHR$(44);CHR$(44);CHR$(44);CHR$(44);CHR$(44);CHR$(44)
;CHR$(44);CHR$(53);"GATE ";CHR$(106)
2150 PRINT TAB(23,18);CHR$(151);CHR$(96);CHR$(96);CHR$(96);CHR$(96);CHR$(96);CHR$(96);CHR$(96)
2160 PRINT TAB(0,20); "Press SPACE to take the measurement."
2170 IF GET$<>" " THEN 2170
2200 RETURN

PROGRAMMABLE OSCILLATOR – PROGRAM 13

 1 REM PROGRAMMABLE OSCILLATOR
 2 HIMEM = &4000
 3 MODE 4
 10 GOSUB 1000:REM LOAD MACHINE CODE ROUTINE
 20 CLS
 30 PRINT TAB(8,1);"PROGRAMMABLE OSCILLATOR"
 40 PRINT TAB(0,3);"This program allows you to select any"
 50 PRINT TAB(0,5);"waveform to be output through the DAC."
 60 PRINT TAB(0,7);"The frequency can also be selected"
 70 PRINT TAB(0,9);"up to a maximum of 200 Hz."
 80 PRINT TAB(0,11);"Enter the waveform equation like this:"
 90 PRINT TAB(0,13);" function (T) For example:"
 95 PRINT TAB(0,15);"SINE 128 + 20*SIN(T*PI/128)"
 96 PRINT TAB(0,17);"SQUARE 250 * INT(T/128) "
 97 PRINT TAB(0,19);"TRIANGULAR ABS(128-T)"
 100 INPUT A$
 110 FOR T=0 TO 255
 120 V=EVAL(A$)
 125 IF V>255 THEN V=255
 126 IF V<0 THEN V=0
 130 ?(store+T)=INT(V)
 140 NEXT T
 150 PRINT TAB(0,21);"Enter the required frequency. ";
 160 INPUT freq
 170 IF freq>200 THEN PRINT TAB(10,24);"up to a maximum of 200 Hz.":GOTO 150
 180 reptn=1000000/(freq*256)-9
 181 ?reptnhi=INT(reptn/256)
 182 ?reptnlo=reptn-256*INT(reptn/256)
 190 PRINT TAB(0,24);"The waveform is now being output."
 200 PRINT TAB(0,26);"Press any key to stop."
 205 FOR T=1 TO 1000:NEXT T:REM DELAY TO ALLOW KEY TO BE RELEASED
 210 CALL output

The BBC microcomputer in science teaching

338

 220 CLS
 230 PRINT TAB(0,3);"Do you wish to alter the waveform ?"
 240 PRINT TAB(0,5);"Press Y for yes and N for no."
 250 C$=GET$:IF C$<>"Y" AND C$<>"N" THEN 250
 260 IF C$="Y" THEN GOTO 20 ELSE GOTO 150
1000 REM MACHINE CODE ROUTINE
1010 PRT = &FE60
1020 DDR = &FE62
1030 timerlo=&FE64
1040 timerhi=&FE65
1050 ACR = &FE6B
1060 PCR = &FE6C
1070 FLAG= &FE6D
1080 keyboardflag = &FE4D
1095 reptnlo=&4100
1096 reptnhi=&4101
1097 store = &4200
1099 FOR pass=0 TO 2 STEP 2
1100 P% = &4000
1105
1110 [OPT pass
1120 .output SEI
1125 LDA #64
1130 STA ACR \ENABLE TIMER ONE CONTINUOUS INTERRUFTS
1154 LDA reptnlo
1156 STA timerlo
1160 LDA reptnhi
1170 STA timerhi \START COUNTDOWN
1173 LDA #64
1175 STA FLAG \RESET FLAG
1180 LDX #0
1200 .next LDA FLAG
1210 AND #64
1220 BEQ next
1225 STA FLAG \RESET FLAG
1230 LDA store,X
1235 STA PRT
1240 INX
1250 BNE next
1260 LDA keyboardflag
1270 AND #1
1280 BEQ next
1290 CLI:RTS:]
1300
1310 NEXT pass
1320 RETURN
2000 FOR I=&4200 TO &42FF
2010 PRINT ?I;
2020 NEXT I

Program listings

339

CAPACITOR DISCHARGE - PROGRAM 14

LIST
 100 REM CAPACITOR DISCHARGE PLOT
 110 MODE1
 120 CLS
 123 VDU19,0,7,0,0,0
 124 VDU19,3,0,0,0,0
 130 CLG
 140 PRINT TAB(0,0)" THE VOLTAGE ACROSS A CAPACITOR"
 150 PRINT TAB(0,2)" PRESS THE SPACE BAR TO BEGIN"
 180 PRINT TAB(0,6)" 1.6-"
 185 PRINT TAB(0,9)" 1.4-"
 190 PRINT TAB(0,12)" 1.2-"
 195 PRINT TAB(0,15)" 1.0-"
 200 PRINT TAB(0,18)" 0.8-"
 205 PRINT TAB(0,21)" 0.6-"
 210 PRINT TAB(0,24)" 0.4-"
 220 PRINT TAB(0,27)" 0.2-"
 225 PRINT TAB(0,30)" 0-"
 250 MOVE 150,850
 260 DRAW 150,50
 270 DRAW 1200,50
 300 PRINT TAB(4,31)"0 2 3 4 5 6 7 8 9 10 11 12";
 310 PRINT TAB(38,29)"t"
 700 VDU30
 800 X$=GET$
 850 PRINT TAB(4,3) "V "
 900 X=150
 950 PRINT TAB(0,0)" THE VOLTAGE ACROSS A CAPACITOR "
 960 PRINT TAB(0,2)" PRESS THE SPACE BAR TO BEGIN "
1000 REM MEASURE VOLTAGE AND CONVERT TO TRUE READING
1010 Y=(ADVAL(1)-672)/68+80
1020 PLOT69,X,Y
1025 REPEAT
1030 Y=(ADVAL(1)-672)/68+80
1040 PLOT5,X,Y
1050 X=X+1
1060 UNTIL X>1200
1065 SOUND1,-15,100,10
1070 PRINT TAB(0,0);"Press SPACE for another graph or "
1080 PRINT TAB(0,2);"press RETURN to finish. "
1090 LET S$=GET$
1100 IF S$=CHR$(13) THEN END
1110 IF S$=" " THEN 900
1120 GOTO 1090

FAST ANALOGUE CONVERTER - PROGRAM 15

LIST
 10 REM CONFIGURE USER PORT
 20 BPRT=65120:REM USER PORT
 30 DDRB=65122: REM DATA DIRECTION REGISTER
 40 ACR=65131:REM AUXILIARY CONTROL REGISTER
 50 PCR=65132:REM PERIPERAL CONTROL REGISTER
 60 FLAG=65133:REM FLAG REGISTER
 70 IER=65134:REM INTERRUPT REGISTER
 100 REM ?DDRB=0:REM B-PORT IS INPUT

The BBC microcomputer in science teaching

340

 110 ?ACR=2:REM ACR SET TO ENABLE B-PORT LATCH
 120 ?PCR=176:REM PCR SET TD LATCH ON LOW-HIGH TRANSITION
 125 REM PCR SET TO PROVIDE CB2 PULSE OUTPUT ON DATA WRITE
 130 ?FLAG=16:REM RESET CB1 FLAG
 140 ?IER=127:REM DISABLE VIA INTERRUPTS
 150 GOSUB 24000:REM COMPILE ASSEMBLY CODE
 500 REM INSTRUCTIONS
 510 MODE4
 520 CLS
 530 PRINT TAB(5,1);"FAST ANALOGUE CONVERTER"
 540 PRINT TAB(0,5);"This program collects 256 readings "
 550 PRINT TAB(0,7);"from the fast ADC connected"
 560 PRINT TAB(0,9);"to the User Port."
 570 PRINT TAB(0,11);"Choose the time interval between"
 580 PRINT TAB(0,13);"successive readings in microseconds."
 590 PRINT TAB(0,15);"(minimum 15, maximum 1280)"
 600 PRINT:INPUT interval
 610 IF interval<15 OR interval>1280 THEN 600
 620 ?delay=1+INT((interval-15)/5)
 630 PRINT TAB(0,20);"Enter the threshold voltage level "
 640 PRINT TAB(0,22);" (range 0 to 2.0 volts)"
 650 PRINT: INPUT startvolts
 660 ?threshold=startvolts*100
 661 PRINT TAB(0,28);"For a centre-zero graph press C"
 662 PRINT TAB(0,30);"For a bottom-zero graph press B"
 663 LET S$=INKEY$ (255)
 664 IF S$="C" THEN 1000
 665 IF S$="B" THEN 2000
 666 GOTO 663
 1000 REM CENTRE-ZERO GRAPH
 1005 CLS
 1006 PRINT TAB(5,0); "Ready to take readings "
 1007 CALL begin
 1010 MOVE 100,0:DRAW 100,1000
 1020 MOVE 0,500:DRAW 1200,500
 1030 VDU5
 1040 MOVE 0,1000:PRINT"2.0"
 1050 MOVE 0,750:PRINT"1.0"
 1060 MOVE 0,490:PRINT"0"
 1070 MOVE 0,250:PRINT"-1"
 1080 MOVE 0,32:PRINT"-2"
 1090 MOVE 110,490:PRINT"0"
 1100 FOR i=1 TO 5
 1110 MOVE 102+200*i,490:PRINTSTR$(interval*.05*i)
 1120 NEXT i
 1130 MOVE 400,450:PRINT"time/milliseconds"
 1140 VDU4
 1150 GOTO 3000
 2000 REM BOTTOM-ZERO GRAPH
 2005 CLS
 2006 PRINT TAB(5,0);"Ready to take readings "
 2007 CALL begin
 2010 MOVE 100,0:DRAW 100,1000
 2020 MOVE 0,80:DRAW 1200,80
 2030 VDU5
 2040 MOVE 0,900:PRINT"4.0"
 2050 MOVE 0,700:PRINT"3.0"
 2060 MOVE 0,500:PRINT"2.0"
 2070 MOVE 0,300:PRINT"1.0"
 2080 MOVE 0,70:PRINT" 0"

Program listings

341

 2090 MOVE 110,70:PRINT"0"
 2100 FOR i=1 TO 5
 2110 MOVE 102+200*i,70:PRINTSTR$(interval*.05*i)
 2120 NEXT i
 2130 MOVE 400,35:PRINT"time/milliseconds"
 2140 VDU4
 3000 N=4
 3010 FOR i=0 TO 255
 3020 PLOTN,100+i*4,?(i+&4100)*3.6+100
 3025 N=5
 3030 NEXT i
 3040 PRINT TAB(5,0);"S for same interval, N for new "
 3050 LET A$=INKEY$(255)
 3060 IF A$="N" THEN 500
 3070 IF A$="S" AND S$="C" THEN 1006
 3080 IF A$="S" AND S$="B" THEN 2006
 3090 GOTO 3050
24000 REM MACHINE CODE ROUTINE FOR FAST ADC
24010
24020 threshold=&70
24030 delay=&80
24040 store=&4100:REM AND NEXT 256 BYTES
24200 FOR pass=0 TO 3 STEP 3
24205 P%=&4000
24210 [OPT pass
24220 .begin SEI
24230 LDY #0
24234 .wait LDA BPRT \CLEAR LATCH
24235 STA BPRT \BEGIN NEXT CONVERSION
24236 NOP
24238 NOP
24240 NOP
24242 NOP
24244 NOP
24246 NOP
24248 LDA BPRT
24250 STA BPRT \BEGIN NEXT CONVERSION
24252 CMP threshold
24260 BCC wait \WAIT FOR CHANGE
24320 .new LDA BPRT
24340 STA BPRT \BEGIN NEXT CONVERSION
24350 STA store, Y
24360 LDX delay
24370 .pause NOP \2 CYCLES
24374 LDA delay \DUMMY LOAD FOR 3 CYCLES
24376 DEX \2 CYCLES
24380 BNE pause \3 CYCLES
24390 INY
24400 BNE new
24410 CLI
24420 RTS
24430]
24440 NEXT pass
24500 RETURN

The BBC microcomputer in science teaching

342

DIGITAL MULTIMETER - PROGRAM 16
LIST
 100 MODE 7
 110 DIM digit(5)
 200 REM INSTRUCTIONS
 210 CLS
 220 PRINT TAB(8,2);"DIGITAL MULTIMETER"
 230 PRINT TAB(10,4);"by R. A. Sparkes"
 235 GOSUB 10000:REM LOAD MACHINE CODE DISPLAY ROUTINE
 240 PRINT TAB(0,7);"This program measures and displays"
 250 PRINT TAB(0,9);"voltage input to analogue channel 1"
 260 PRINT TAB(0,11);"current input to analogue channel 2"
 270 PRINT TAB(0,13);"and their product, power"
 280 PRINT TAB(0,15);"or their ratio, resistance."
 300 PRINT TAB(0,22);"Press R for resistance or P for power."
 305 LET A$=GET$
 310 IF A$<>"P" AND A$<>"R" THEN 305
 320 CLS
 330 FOR I=31777 TO 32737 STEP 40
 340 ?I=23
 350 NEXT I
 351 PRINT TAB(0,23);"Press R for resistance or P for power.";
 355 REM DISPLAY V
 360 PRINT TAB(34,0);"5 j";
 370 PRINT TAB(34,1);"5 j";
 380 PRINT TAB(34,2);"5 j";
 385 PRINT TAB(34,3);"5 j";
 390 PRINT TAB(34,4);"m >";
 392 PRINT TAB(35,5);"m >";
 394 PRINT TAB(36,6);"m>";
 395 REM DISPLAY A
 400 PRINT TAB(36,8);">m";
 402 PRINT TAB(35,9);"> m";
 404 PRINT TAB(34,10);"> m";
 406 PRINT TAB(34,11);"5 j";
 408 PRINT TAB(34,12);"=,,,,n";
 410 PRINT TAB(34,13);"5 j";
 412 PRINT TAB(34,14);"5 j";
 420 IF A$="R" THEN 700
 425 REM DISPLAY W
 430 PRINT TAB(34,16);"5 j";
 440 PRINT TAB(34,17);"5 j";
 450 PRINT TAB(34,18);"5 j";
 460 PRINT TAB(34,19);"5 j5 j";
 470 PRINT TAB(34,20);"5 j5 j";
 480 PRINT TAB(34,21);"5 j5 j";
 490 PRINT TAB(34,22);"m|>m|>";
 500 REM MEASURE VOLTAGE AND CURRENT
 510 voltage=(ADVAL(1)-600)/30000
 520 number=voltage
 530 pos=0
 540 GOSUB 9000
 550 current=(ADVAL(2)-600)/30000
 560 number=current
 570 pos=5
 580 GOSUB 9000
 590 number=current*voltage
 600 pos=10
 610 GOSUB 9000

Program listings

343

 620 IF INKEY$(0)="R" THEN 700
 630 GOTO 500
 700 REM RESISTANCE
 710 REM DISPLAY OHMS
 720 PRINT TAB(34,16);" _<l0 ";
 730 PRINT TAB(34,17);" j 5 ";
 740 PRINT TAB(34,18);" 7 k ";
 750 PRINT TAB(34,19);" 5 j ";
 760 PRINT TAB(34,20);" i 6 ";
 770 PRINT TAB(34,21);" 5j ";
 780 PRINT TAB(34,22);",.!""-,";
 800 REM MEASURE VOLTAGE AND CURRENT
 810 voltage=(ADVAL(1)-600)/30000
 820 number=voltage
 830 pos=0
 840 GOSUB 9000
 850 current=(ADVAL(2)-600)/30000
 860 number=current
 870 pos=5
 880 GOSUB 9000
 890 number=voltage/current
 900 pos=10
 910 GOSUB 9000
 920 IF INKEY$(0)="P" THEN 425
 930 GOTO 800
 9000 REM DIGIT SEPARATION AND DISPLAY
 9005 loc=114:dgtval=115
 9010 decpt=0:sign=1
 9020 IF number<0 THEN number=ABS(number):sign=-1
 9030 IF number>=1 THEN number=number/10:decpt=decpt+1:GOTO 9030
 9040 IF decpt>4 THEN 500:REM OUT OF RANGE
 9050 FOR I=0 TO 3
 9060 digit = INT(number*10)
 9070 number=number*10-digit
 9080 IF I<decpt THEN digit(I)=digit
 9090 IF I>=decpt THEN digit(I+1)=digit
 9100 NEXT I
 9110 digit(decpt)=10
 9120 IF sign<0 THEN FOR I=4 TO 1 STEP -1:digit(I)=digit(I-1):NEXT I:digit(0)=11
 9200 REM DIGIT DISPLAY ROUTINE
 9210 sigfig=3:REM SET NUMBER OF SIG. FIGS.
 9220 IF sign<0 THEN sigfig=sigfig+1
 9230 FOR I=0 TO sigfig
 9240 ?loc=(I+pos):?dgtval=digit(I)
 9250 CALL display
 9260 NEXT I
 9270 RETURN
10000 REM LOADER FOR MACHINE CODE SUBROUTINE
10010 REM 'LARGE DIGIT DISPLAY'
10020 display=28672
10030 HIMEM=&7000
10035 loc=114:dgtval=115:display=28672
10040 FOR I=28672 TO 28781
10050 READ X
10060 ?I=X
10070 NEXT I
10080 DATA 165,114,201,10,16,15,201,5,16,27
10090 DATA 10,10,10,133,112,169,124,133,113,208
10100 DATA 28,56,233,10,10,10,10,105,128,133
10110 DATA 112,169,126,133,113,208,14,56,233,5

The BBC microcomputer in science teaching

344

10120 DATA 10,10,10,105,64,133,112,169,125,133
10130 DATA 113,162,0,165,115,10,10,10,168,185
10140 DATA 0,113,157,128,112,200,232,224,8,208
10150 DATA 244,160,223,162,255,232,224,7,240,29
10160 DATA 169,8,133,116,24,152,105,32,168,200
10170 DATA 30,128,112,144,4,169,127,208,2,169
10180 DATA 23,145,112,198,116,240,224,208,236,96
10200 REM DIGITS TABLE
10210 FOR I=28928 TO 29031
10220 READ X
10230 ?I=X
10240 NEXT I
10250 DATA 124,68,68,68,68,68,124,0:REM DIGIT 0
10260 DATA 8,8,8,8,8,8,8,0:REM DIGIT 1
10270 DATA 124,68,4,4,124,64,124,0:REM DIGIT 2
10280 DATA 124,4,4,124,4,4,124,0:REM DIGIT 3
10290 DATA 64,64,64,72,124,8,8,0:REM DIGIT 4
10300 DATA 124,64,64,124,4,4,124,0:REM DIGIT 5
10310 DATA 124,64,64,124,68,68,124,0:REM DIGIT 6
10320 DATA 124,4,4,4,4,4,4,0:REM DIGIT 7
10330 DATA 124,68,68,124,68,68,124,0:REM DIGIT 8
10340 DATA 124,68,68,124,4,4,4,0:REM DIGIT 9
10350 DATA 0,0,0,0,0,0,16,0:REM DECIMAL POINT
10360 DATA 0,0,0,124,0,0,0,0:REM NEGATIVE SIGN
10370 DATA 0,0,60,32,60,4,60,0:REM LETTER S
10380 RETURN

CURRENT-VOLTAGE PLOTTER - PROGRAM 17

LIST
 1 MODE7
 10 PRINTTAB(8,1);"VOLTAGE-CURRENT PLOT"
 20 PRINT:PRINT:PRINT"This program produces a ramp voltage"
 30 PRINT:PRINT"from a digital-to-analogue converter"
 40 PRINT:PRINT"connected to the User Port."
 50 PRINT:PRINT"This can drive a current through a diode"
 60 PRINT"or other device and this current can be"
 70 PRINT:PRINT"measured at analogue channel 0 as the"
 80 PRINT:PRINT"voltage across a small series resistor."
 90 PRINTTAB(0,23);"Press SPACE to begin taking readings."
 95 REPEAT UNTIL GET$=" "
 100 REM VOLTAGE-CURRENT PLOT
 110 MODE1
 120 CLS
 123 VDU19,0,7,0,0,0
 124 VDU19,3,0,0,0,0
 130 CLG
 140 PRINT TAB(0,1)" CURRENT-VOLTAGE PLOT"
 180 PRINT TAB(0,6)" 16-"
 185 PRINT TAB(0,9)" 14-"
 190 PRINT TAB(0,12)" 12-"
 195 PRINT TAB(0,15)" 10-"
 200 PRINT TAB(0,18)" 8-"
 205 PRINT TAB(0,21)" 6-"
 210 PRINT TAB(0,24)" 4-"
 220 PRINT TAB(0,27)" 2-"
 225 PRINT TAB(0,30)" 0-"

Program listings

345

 250 MOVE 150,850
 260 DRAW 150,50
 270 DRAW 1200,50
 300 PRINT TAB(4,31)"0 1 2 3 4 volt"
 320 PRINT TAB(2,3) "milli-":PRINT TAB(2,4);"amps"
 700 VDU30
 800 REM INITIALIZE VALUES
 810 LET n=4:REM PLOT FIRST POINT
 820 LET dac=&FE60:REM USER PORT ADDRESS
 830 ?&FE62=255:REM USER PORT SET FOR OUTPUT
 840 PRINT TAB(0,0);" "
 845 PRINT TAB(0,2);" "
 850 PRINT TAB(0,1) " CURRENT-VOLTAGE PLOT"
 855 X=150
 860 REPEAT
 900 REM OUTPUT VOLTAGE
 910 LET volt%=(X-150)DIV4
 920 ?dac=volt%
1000 REM MEASURE VOLTAGE AND CONVERT TO CURRENT READING
1010 Y=(ADVAL(1)-672)/68 + 80
1020 PLOTn,X,Y
1030 LET n=5:REM DRAW FROM NOW ON
1050 X=X+4
1060 UNTIL X>1200
1065 SOUND1, -15,100,10
1070 PRINT TAB(0,0);"Press SPACE for another graph or "
1075 PRINT TAB(0,1);" "
1080 PRINT TAB(0,2);"press RETURN to finish. "
1090 LET S$=GET$
1100 IF S$=CHR$(13) THEN MODE 7:END
1110 IF S$=" " THEN 800
1120 GOTO 1090

FOUR-CHANNEL CHART RECORDER - PROGRAM 18

LIST
 1 HIMEM=&4000
 2 MODE 4
 10 REM CHART RECORDER
 20 REM BY R. A. SPARKES
 30 REM AFTER AN IDEA BY S. RUSHBRDDK-WILLIAMS
 31 REM THIS PROGRAM DISPLAYS FOUR VOLTAGES
 32 REM MEASURED BY THE ANALOGUE PORT
 33 REM AND SCROLLS THEM ACROSS THE SCREEN
 34 REM CHANNEL O IS DISPLAYED AT THE BOTTOM
 35 REM AND CHANNEL 3 IS AT THE TOP
 50 GOSUB 10000
 100 CLS
 110 PRINT TAB(5,0);"FOUR-CHANNEL CHART RECORDER"
 120 PRINT TAB(0,2);"Press any key to finish"
 130 PRINT TAB(2,30);"Channel 0"
 140 PRINT TAB(2,22);"Channel 1"
 150 PRINT TAB(2,14);"Channel 2"
 160 PRINT TAB(2,6);"Channel 3"
 170 CALL chtrec
 180 PRINT TAB(0,0);"Press R to restart"
 190 REPEAT UNTIL GET$="R"

The BBC microcomputer in science teaching

346

 200 GOTO 170
10000 REM MACHINE CODE ROUTINE FOR PLOTTING
10001 xpos=&4200
10002 ypos=&4300
10005 adval=655
10006 flag=&FE4D:REM KEYBOARD FLAG
10010 y=&70
10020 rowcnt=&71
10030 pointer=&72
10040 scrlo=&73
10050 scrhi=&74
10060 temp=&75
10070 FOR pass=0 TO 2 STEP 2
10075 P%=&4100
10080 [OPTpass
10090 .chtrec LDA#4
10100 STA pointer \POINTER TO ADC CHANNELS
10110 .nxadc LDY pointer
10120 LDA adval, Y \GET NEXT READING
10122 LSR A
10124 LSR A \DIVIDE BY 4
10130 STA y
10131 LDA pointer
10132 SEC
10133 SBC #1
10134 ASL A
10135 ASL A
10136 ASL A
10137 ASL A
10138 ASL A
10139 ASL A \MULT BY 64
10140 CLC
10142 ADC y
10144 EOR #255 \INVERT
10146 STA y \KEEP VERTICAL POSITION
10150 LSR A
10160 LSR A
10170 LSR A
10190 STA scrlo
10210 CLC
10220 ADC #&58
10230 STA scrhi
10232 LDA #0
10240 LDX #6
10250 .next ASL scrlo
10252 ROL A
10254 DEX
10256 BNE next
10270 ADC scrhi
10280 STA scrhi
10300
10320 LDA y
10330 AND #7
10380 CLC
10390 ADC scrlo
10400 STA scrlo
10410 LDY#0
10420 LDA #128
10430 ORA (scrlo),Y
10440 STA (scrlo), Y

Program listings

347

10480 JSR scroll
10490 DEC pointer
10500 BNE nxadc
10510 LDA flag
10520 AND #1
10530 BEQ chtrec
10536
10540 RTS
10560
10600]
11000 P%=&4000
11010 [OPT pass
11012 .scroll LDA #&58
11014 STA &4018
11016 LDA #&00
11018 STA &4017 \RESTORE SCREEN ADDRESS
11020 LDA #32 \ROW COUNT
11030 STA rowcnt
11040 .nxrow LDY #40 \COLUMN COUNT
11050 CLC
11060 LDA #0
11070 .nxcol ROR A
11080 LDX #8 \8 LINES PER COLUMN
11090 .nxlin ROR &4040 \SELF MODIFYING ADDRESS
11100 ROR A
11110 INC &4017
11120 BNE cont
11130 INC &4018
11140 .cont DEX
11150 BNE nxlin
11160 DEY
11170 BNE nxcol
11180 DEC rowcnt
11190 BNE nxrow
11200 RTS
11500]
12400 NEXT pass
12500 RETURN

MECHANICS DRILL – PROGRAM 19

LIST
 10 REM MECHANICS DRILL
 20 REM BY R.A.SPARKES
 30
 50 *FX11,0
 60 REM TURN OFF AUTO-REPEAT FACILITY
 70 ON ERROR GOTO 300
 100 MODE 7
 110 PRINT TAB(7,1);"MECHANICS DRILL"
 120 PRINT TAB(0,4);"This program tests your ability to "
 130 PRINT:PRINT"solve equations in mechanics."
 140 PRINT:PRINT:PRINT"First I should like to know your name."
 150 PRINT:PRINT"Type your first name. If you make"
 160 PRINT:PRINT"a mistake, you can rub it out with"
 170 PRINT:PRINT"the DELETE key at the bottom-right."
 180 PRINT:PRINT"When you have typed your name correctly,"

The BBC microcomputer in science teaching

348

 190 PRINT"press the key marked RETURN, then"
 200 PRINT:PRINT"I will know that you have finished."
 210PRINT
 220 INPUT name$
 280
 290 REM WHAT SORT OF QUESTIONS
 300 MODE1
 310 PRINT TAB(7,0);"MECHANICS DRILL"
 320 PRINT:PRINT"You can choose questions for"
 330 PRINT:PRINT"three different equations, as follows:"
 340 VDU5:MOVE 200,700:PRINT"1. s = ut + at":MOVE 680,716:PRINT"1":MOVE
680,684:PRINT"2":MOVE 776,716::PRINT"2":VDU4
 350 VDU5:MOVE 200,600:PRINT"2. v = u + 2as":MOVE 424,616:PRINT"2":MOVE
584,616::PRINT"2":VDU4
 360 VDU5:MOVE 200,500:PRINT"3. v = u + at":VDU4
 370 PRINT TAB(0,28);"Press one of these numbers to choose."
 380 LET N$=INKEY$(255)
 390 IF ASC(N$)<45 THEN N$=CHR$(ASC(N$)+16)
 400 IF N$<>"1" AND N$<>"2" AND N$<>"3" THEN 380
 410 ON VAL(N$) GOTO 1000,2000,3000
 1000 REM S = UT + AT^2/2
 1005 LET attempts=0
 1010 PROCgetnum
 1020 CLS
 1025 LET attempts=attempts+1
 1030 VDU5:MOVE 200,1000:PRINT" s = ut + at":MOVE 680,1016:PRINT"1":MOVE 680,984:PRINT"
2":MOVE 776,1016::PRINT"2":VDU4
 1040 PRINT TAB(0,4);"What is the value of s"
 1050 PRINT:PRINT"if u has the value ";v1;" m/s"
 1060 PRINT:PRINT" t has the value ";v2;" s"
 1070 PRINT:PRINT" a has the value ";v3:PRINT TAB(24,10);"m s ?":PRINT TAB(27,9);"-2"
 1075 IF attempts>3 THEN response$="Press SPACE BAR for a different question":PRINT:PRINT:PRIN
T:PRINT"This seems to be too difficult.":PRINT:PRINT"The correct answer is ";true;" m":correct=TRUE:G
OTO 1130
 1080 PRINT:PRINT:PRINT"Give your answer as a number of metres."
 1090 PRINT:PRINT:PRINT"Type this number now."
 1100 PRINT:PRINT"Then press the RETURN key.":PRINT
 1110 INPUT ans
 1120 true = v1*v2 + v3*v2*v2/2
 1125 IF ABS(ans - true)/true<0.01 THEN PROCcorrect ELSE PROCwrong
 1130 PRINT:PRINT response$
 1150 PRINT:PRINT"Press ESCAPE to choose a different"
 1160 PRINT:PRINT"equation."
 1170 LET A$=INKEY$(255)
 1180 IF A$<>" " THEN 1170
 1190 IF correct THEN 1000 ELSE 1020
 1200
 2000 REM V^2=U^2+2AS
 2005 LET attempts=0
 2010 PROCgetnum
 2020 CLS
 2025 LET attempts=attempts+1
 2030 VDU5:MOVE 200,1000:PRINT" v = u + 2as":MOVE 424,1016:PRINT"2":MOVE 580,1016::PRI
NT"2":VDU4
 2040 PRINT TAB(0,4);"What is the value of v"
 2050 PRINT:PRINT"if u has the value ";v1;" m/s"
 2060 PRINT:PRINT" s has the value ";v2;" m"
 2070 PRINT:PRINT" a has the value ";v3:PRINT TAB(24,10);"m s ?":PRINT TAB(27,9);"-2"

Program listings

349

 2075 IF attempts>3 THEN response$="Press SPACE BAR for a different question":PRINT:PRINT:PRIN
T:PRINT"This seems to be too difficult.":PRINT:PRINT"The correct answer is ";true;" m/s":correct=TRU
E:GOTO 2130
 2080 PRINT:PRINT:PRINT"Give your answer as a number of m/s."
 2090 PRINT:PRINT:PRINT"Type this number now."
 2100 PRINT:PRINT"Then press the RETURN key.":PRINT
 2110 INPUT ans
 2120 true = SQR(v1*v1 + 2*v3*v2)
 2125 IF ABS(ans - true)/true<0.01 THEN PROCcorrect ELSE PROCwrong
 2130 PRINT:PRINT response$
 2150 PRINT:PRINT"Press ESCAPE to choose a different"
 2160 PRINT:PRINT"equation."
 2170 LET A$=INKEY$(255)
 2180 IF A$<>" " THEN 2170
 2190 IF correct THEN 2000 ELSE 2020
 2200
 3000 REM V = U + AT
 3005 LET attempts=0
 3010 PROCgetnum
 3020 CLS
 3025 LET attempts=attempts+1
 3030 VDU5:MOVE 200,1000:PRINT" v = u + at":VDU4
 3040 PRINT TAB(0,4);"What is the value of v"
 3050 PRINT:PRINT"if u has the value ";v1;" m/s"
 3060 PRINT:PRINT" t has the value ";v2;" s"
 3070 PRINT:PRINT" a has the value ";v3:PRINT TAB(24,10);"m s ?":PRINT TAB(27,9);"-2"
 3075 IF attempts>3 THEN response$="Press SPACE BAR for a different question":PRINT:PRINT:PRIN
T:PRINT"This seems to be too difficult.":PRINT:PRINT"The correct answer is ";true;" m/s":correct=TRU
E:GOTO 3130
 3080PRINT:PRINT:PRINT"Give your answer as a number of m/s."
 3090 PRINT:PRINT:PRINT"Type this number now."
 3100 PRINT:PRINT"Then press the RETURN key.":PRINT
 3110 INPUT ans
 3120 true = v1 + v3*v2
 3125 IF ABS(ans - true)/true<0.01 THEN PROCcorrect ELSE PROCwrong
 3130 PRINT:PRINT response$
 3150 PRINT:PRINT"Press ESCAPE to choose a different"
 3160 PRINT:PRINT"equation."
 3170 LET A$=INKEY$(255)
 3180 IF A$<>" " THEN 3170
 3190 IF correct THEN 3000 ELSE 3020
 3200
 4000 DEF PROCcorrect
 4010 PRINT:PRINT"WELL DONE, ";name$
 4020 LET response$="Press SPACE BAR for another question."
 4050 LET correct=TRUE
 4090 ENDPROC
 4100 DEF PROCwrong
 4110 PRINT:PRINT"This is not good enough."
 4120 LET response$="Press SPACE BAR to try again."
 4150 LET correct=FALSE
 4190 ENDPROC
 4999 END
 5000 DEF PROCgetnum
 5010 REM RETURNS WITH THREE VARIABLES
 5020 LET v1=RND(50)
 5030 LET v2=RND(50)
 5040 LET v3=RND(50)
 5050 ENDPROC

The BBC microcomputer in science teaching

350

INTEGRATED SCIENCE TEST - PROGRAM 20

LIST
 1 REM INTEGRATED SCIENCE TEST
 5 ON ERROR GOTO 90
 6 *FX11,0
 10 REM INITIALISE VARIABLES
 20 LET max=5:REM 5 QUESTIONS IN TEST
 30 DIM score(max)
 35 DIM response$(max)
 40 DIM questions(max)
 50 LET totalscore=0
 60 PROCdefinegraphics
 70
 80 REM MAIN PROGRAM
 90 MODE7
 100 PROCinstructions
 110 PROCgetname
 115 MODE 4
 120 FOR n=1 TO max
 140 PROCaskquestion(n)
 150 LET totalscore=totalscore+score(n)
 160 NEXT n
 170 PROCscore
 180
 190 GOTO 50
 200 END
 300
 700
 800
 1000 REM *** THE QUESTIONS ****
 2000
 3000 DEF PROCaskquestion(qnum)
 3020 ON qnum GOSUB 4000, 4500, 5000, 5500,6000
 3030 ENDPROC
 3500
 4000 REM *** QUESTION ONE ***
 4010 CLS:PRINT"Question 1"
 4020 LET attempts=0
 4025 RESTORE
 4030 FOR row = 1 TO 9
 4040 FOR column = 1 TO 16
 4050 READ char
 4060 PRINT TAB(10+column,row);CHR$(char)
 4070 NEXT column
 4080 NEXT row
 4090 PRINT TAB(0,11);"A bulb gives out light energy"
 4100 PRINT TAB(0,13);"when it is switched on."
 4110 PRINT TAB(0,15);"It also gives out another kind of"
 4120 PRINT TAB(0,17);"energy. Which one ?"
 4130 REPEAT
 4140 PROCshowanswers
 4150 LET attempts=attempts+1
 4200 PROCgetletter
 4210 IF letter$="a" OR letter$="A" THEN correct = TRUE ELSE correct = FALSE
 4220 LET clue$="A bulb gives out light energy
 AND heat energy."
 4230 IF correct THEN PROCcorrect ELSE PROCwrong
 4240 UNTIL next OR attempts=3
 4250 IF attempts=1 THEN LET score(1)=1 ELSE LET score(1)=0

Program listings

351

 4260 RETURN
 4300 DATA 236,241,241,241,241,241,241,233,241,241,241,241,241,241,241,238
 4301 DATA 240,32,32,32,32,32,32,253,32,32,32,32,32,32,32,239
 4302 DATA 243,255,255,255,249,32,32,253,32,32,32,32,32,32,32,239
 4303 DATA 240,32,32,32,253,32,250,42,249,32,32,32,32,32,32,239
 4304 DATA 240,32,32,32,253,32,32,32,32,32,32,32,32,32,32,239
 4305 DATA 240,32,32,45,253,32,32,32,32,32,32,32,239,32,32,239
 4306 DATA 240,32,32,32,253,32,247,255,255,255,247,32,239,32,32,239
 4307 DATA 240,32,32,32,253,32,253,32,32,32,253,239,238,32,32,239
 4308 DATA 241,241,241,241,241,241,241,241,241,241,241,241,241,241,241,241
 4490
 4500 REM *** QUESTION TWO ***
 4510 CLS:PRINT"Question 2"
 4520 LET attempts=0
 4530 FOR row = 1 TO 9
 4540 FOR column = 1 TO 16
 4550 READ char
 4560 PRINT TAB(10+column,row);CHR$(char)
 4570 NEXT column
 4580 NEXT row
 4590 PRINT TAB(0,13);"What kind of energy is stored in food ?"
 4600 REPEAT
 4610 PROCshowanswers
 4680 LET attempts=attempts+1
 4690 PROCgetletter
 4700 IF letter$="b" OR letter$="B" THEN correct = TRUE ELSE correct = FALSE
 4710 LET clue$="Food is chemical energy,
 we turn it into heat and movement energy
 when we eat it."
 4720 IF correct THEN PROCcorrect ELSE PROCwrong
 4730 UNTIL next OR attempts=3
 4740 IF attempts=1 THEN LET score(2)=1 ELSE LET score(2)=0
 4750 RETURN
 4800 DATA 240,32,32,32,239,32,32,32,32,32,32,32,32,32,32,32
 4810 DATA 240,32,32,32,239,32,32,32,32,32,32,32,32,32,32,32
 4820 DATA 240,32,32,32,239,32,32,32,32,32,32,32,32,32,32,32
 4830 DATA 240,32,32,32,239,32,32,32,32,32,32,32,32,32,32,32
 4840 DATA 232,232,232,232,232,32,32,32,32,32,32,32,32,32,32,32
 4850 DATA 232,232,232,232,232,32,32,32,32,32,32,32,32,32,32,32
 4860 DATA 232,232,232,232,232,32,32,32,32,32,32,32,32,32,32,32
 4870 DATA 232,232,232,232,232,32,32,32,32,230,230,230,230,230,230,32
 4880 DATA 232,232,232,232,232,32,32,32,231,230,230,230,230,230,230,231
 4999
 5000 REM *** QUESTION THREE ***
 5010 CLS:PRINT"Question 3"
 5015 REM DRAW ROAD
 5020 FOR position = 0 TO 39
 5030 PRINT TAB(position,10);CHR$(230)
 5040 NEXT position
 5090 REM DEFINE VAN
 5100 LET line1$=CHR$(32)+CHR$(232)+CHR$(232)+CHR$(232)+CHR$(232)+CHR$(232)+CHR$(232)+CHR$
(111)+CHR$(32)
 5110 LET line2$=CHR$(32)+CHR$(232)+CHR$(77)+CHR$(73)+CHR$(76)+CHR$(75)+CHR$(232)+CHR$(232)
+CHR$(233)
 5120LET line3$=CHR$(32)+CHR$(232)+CHR$(232)+CHR$(232)+CHR$(232)+CHR$(232)+CHR$(232)+CHR$(
232)+CHR$(232)
 5130 LET line4$=CHR$(32)+CHR$(32)+CHR$(111)+CHR$(32)+CHR$(32)+CHR$(32)+CHR$(32)+CHR$(111)
 5140 LET back$=CHR$(8)+CHR$(8)+CHR$(8)+CHR$(8)+CHR$(8)+CHR$(8)+CHR$(8)+CHR$(8)+CHR$(8)
 5150 LET down$=CHR$(10)
 5160 LET van$=line1$+back$+down$+line2$+back$+down$+line3$+back$+down$+line4$

The BBC microcomputer in science teaching

352

 5170 REM MOVE VAN ALONG
 5180 FOR position=0 TO 24
 5190 PRINT TAB(position,6);van$
 5200 NEXT position
 5220 LET attempts=0
 5230 PRINT TAB(0,12);"What kind of energy does the engine"
 5240 PRINT TAB(0,14);"give to the van ?"
 5250 REPEAT
 5260 PROCshowanswers
 5330 LET attempts=attempts+1
 5340 PROCgetletter
 5350 IF letter$="c" OR letter$="C" THEN correct = TRUE ELSE correct = FALSE
 5360 LET clue$="The engine makes the van move along."
 5370 IF correct THEN PROCcorrect ELSE PROCwrong
 5380 UNTIL next OR attempts=3
 5390 IF attempts=1 THEN LET score(3)=1 ELSE LET score(3)=0
 5400 RETURN
 5490
 5500 REM *** QUESTION FOUR ***
 5510 CLS:PRINT"Question 4"
 5520 LET attempts=0
 5530 LET B$=CHR$(32)
 5540 LET W$=CHR$(232)
 5550 PRINT TAB(15,4);W$;B$;W$;B$;W$;B$;W$;B$;W$;B$;W$
 5560 PRINT TAB(15,5);W$;W$;W$;W$;W$;W$;W$;W$;W$;W$;W$
 5570 PRINT TAB(15,6);W$;W$;W$;W$;W$;"A";W$;W$;W$;W$;W$
 5580 PRINT TAB(15,7);W$;W$;"SPARKES";W$;W$
 5590 PRINT TAB(15,8);W$;W$;"BATTERY";W$;W$
 5600 PRINT TAB(15,9);W$;W$;W$;W$;W$;W$;W$;W$;W$;W$;W$
 5700 PRINT TAB(0,11);"What sort of energy is stored"
 5710 PRINT TAB(0,13);"in a battery ?"
 5720 REPEAT
 5730 PROCshowanswers
 5800 LET attempts=attempts+1
 5810 PROCgetletter
 5820 IF letter$="b" OR letter$="B" THEN correct = TRUE ELSE correct = FALSE
 5830 LET clue$="A battery stores its energy as chemical
 energy. This is turned into electrical energy only if
connected into a circuit."
 5840 IF correct THEN PROCcorrect ELSE PROCwrong
 5850 UNTIL next OR attempts=3
 5870 IF attempts=1 THEN LET score(4)=1 ELSE LET score(4)=0
 5900 RETURN
 5950
 6000 REM *** QUESTION FIVE ***
 6010 CLS:PRINT"Question 5"
 6020 REM DRAW PATH
 6030 MOVE 0,945:DRAW 200,945:DRAW 505,635:DRAW 1279,635
 6040 REM MAKE BALL MOVE ALONG
 6050 VDU5:GCOL0,3
 6055 FOR pos=0 TO 192 STEP 8:MOVE pos,976:PRINT"O";
 6060 FOR T=1 TO 50:NEXT T
 6070 VDU127:NEXT pos
 6100 FOR pos= 200 TO 496 STEP 16:MOVE pos,1176-pos:PRINT"O";
 6110 FOR T=1 TO 10000 STEP pos:NEXT T
 6120 VDU127:NEXT pos
 6130 VDU4
 6140 FOR pos= 16 TO 39:PRINT TAB(pos,11);CHR$(79);
 6150 FOR T=1 TO 50:NEXT T
 6160 PRINT CHR$(127);:NEXT pos

Program listings

353

 6200 LET attempts=0
 6210 PRINT TAB(0,15);"What kind of energy is the ball LOSING ?"
 6220 REPEAT
 6230 PROCshowanswers
 6240 LET attempts=attempts+1
 6250 PROCgetletter
 6260 IF letter$="d" OR letter$="D" THEN correct = TRUE ELSE correct = FALSE
 6270 LET clue$="The ball is losing potential and gaining
movement energy."
 6280 IF correct THEN PROCcorrect ELSE PROCwrong
 6290 UNTIL next OR attempts=3
 6300 IF attempts=1 THEN LET score(5)=1 ELSE LET score(5)=0
 6310 RETURN
 6400
 6500 REM *************************
 6600
 6700 REM PROCEDURES
 6800
 6900 REM *************************
 7000
 8000 DEF PROCinstructions
 8010 CLS:PRINT TAB(5,1);"HOW TO RUN THIS PROGRAM"
 8020 PRINT TAB(0,3);"You will be asked to answer some"
 8030 PRINT:PRINT"integrated science questions."
 8040 PRINT:PRINT"After each question there are five"
 8050 PRINT:PRINT"possible answers, A, B, C, D and E."
 8060 PRINT:PRINT"Choose the best of these answers and"
 8070 PRINT:PRINT"press ONE of these letters."
 8080 PRINT:PRINT"Sometimes you will be asked to press"
 8090 PRINT:PRINT"the SPACE BAR to go on to the next page."
 8100 PRINT:PRINT:PRINT"Press the SPACE BAR now."
 8110 PROCwait(" ")
 8120 ENDPROC
 8400
 8500 DEF PROCgetname
 8510 CLS:PRINT TAB(0,5);"First I want to know your name."
 8520 PRINT:PRINT"Type your first name. If you make"
 8530 PRINT:PRINT"mistake, you can rub it out with the"
 8540 PRINT:PRINT"DELETE key (the bottom row of keys,"
 8550 PRINT:PRINT"on the right side)."
 8560 PRINT:PRINT"When you have typed your name correctly,"
 8570 PRINT"press the RETURN key (on the right)."
 8580 PRINT:INPUT name$
 8590 ENDPROC
 8600
10000 DEF PROCwait(a$)
10010 *FX15,0
10020 IF INKEY$(255)<>a$ THEN 10020
10030 ENDPROC
11000 DEF PROCgetletter
11010 letter$=""
11020 REPEAT
11030 *FX15,1
11040 LET letter$=GET$
11050 UNTIL letter$="A" OR letter$="B" OR letter$="C" OR letter$="D" OR letter$="E" OR letter$="a"
OR letter$="b" OR letter$="c" OR letter$="d" OR letter$="e"
11060 IF attempts=1 THEN LET response$(qnum)=letter$
11070 ENDPROC
13000 DEF PROCcorrect
13010 PROCclearlines(20,30)

The BBC microcomputer in science teaching

354

13070 PRINT TAB(0,20);"Well done, ";name$
13080 PRINT TAB(0,24);clue$
13090 PRINT TAB(0,30);"Press SPACE for the next question."
13100 PROCwait(" ")
13110 LET next=TRUE
13120 ENDPROC
14000 DEF PROCwrong
14010 PROCclearlines(20,30)
14070 PRINT TAB(0,20);"Sorry, ";name$
14080 PRINT TAB(0,22);"that is not right."
14090 PRINT TAB(0,24);clue$
14100 PRINT TAB(0,30);"Press SPACE to try again."
14110 PROCwait(" ")
14120 LET next=FALSE
14130 ENDPROC
15000 DEF PROCclearlines(begin,end)
15010 FOR i= begin TO end
15020 PRINT TAB(0,i);" ";
15030 NEXT i
15040 ENDPROC
16000 DEF PROCshowanswers
16010 PROCclearlines(20,30)
16020 PRINT TAB(0,20);"A Heat energy"
16030 PRINT TAB(0,22);"B Chemical energy"
16040 PRINT TAB(0,24);"C Movement energy"
16050 PRINT TAB(0,26);"D Potential energy"
16060 PRINT TAB(0,28);"E Electrical energy"
16070 PRINT TAB(0,30);"Press ONE of the letters A, B, C, D or E";
16080 ENDPROC
20000 DEF PROCdefinegraphics
20010 REM LINE GRAPHICS
20020 VDU23,255,0,0,0,255,255,0,0,0
20030 VDU23,253,16,16,16,16,16,16,16,16
20070 VDU23,250,0,0,0,31,31,16,16,16
20080 VDU23,249,0,0,0,240,240,16,16,16
20090 VDU23,248,16,16,16,255,255,0,0,0
20100 VDU23,247,0,0,0,255,255,16,16,16
20120 VDU23,245,16,16,16,31,31,16,16,16
20130 VDU23,244,128,128,128,255,255,128,128,128
20160 VDU23,243,128,128,128,255,255,128,128,128
20170 VDU23,240,128,128,128,128,128,128,128,128
20175 VDU23,241,255,0,0,0,0,0,0,0
20180 VDU23,239,1,1,1,1,1,1,1,1
20190 VDU23,238,255,1,1,1,1,1,1,1
20210 VDU23,236,255,128,128,128,128,128,128,128
20220 VDU23,235,128,128,128,128,128,128,128,255
20230 VDU23,234,0,0,0,0,0,0,0,255
20240 VDU23,233,255,16,16,16,16,16,16,16
20250 VDU23,232,255,255,255,255,255,255,255,255
20260 VDU23,231,0,0,0,0,0,255,255,255
20270 VDU23,230,85,170,85,170,85,170,85,170
20300 ENDPROC
24000
25000 DEF PROCscore
25010 CLS
25020 PRINT TAB(5,0);name$;"'S SCORE"
25030 PRINT TAB(0,4);"You scored ";totalscore;" first-time"
25040 PRINT TAB(0,6);"correct answers out of ";max;" questions."
25050 PRINT TAB(0,9);"Question first answer"
25060 FOR n= 1 TO max

Program listings

355

25070 PRINT TAB(4,n*2+9);n;TAB(22);response$(n);" ";
25080 IF score(n)=1 THEN PRINT"correct" ELSE PRINT"wrong"
25090 NEXT n
25100 PRINT TAB(0,29);"Press RETURN to repeat the test."
25110 PRINT TAB(0,31);"Press F to finish. ";
25120 LET G$=GET$
25130 IF G$=CHR$(13) THEN ENDPROC
25140 IF G$="F" OR G$="f" THEN CLS:END
25150 GOTO 25120

RADIOACTIVE DECAY – PROGRAM 21

LIST
 1 MODE 1
 5 DIM nucleus(40,10)
 10 ON ERROR CLS:GOTO 20
 15 VDU23;8202;0;0;0
 20 REM SET UP MOLECULES
 30 FOR Y=0 TO 9
 40 FOR X=0 TO 39
 50 PRINT TAB(X,Y);CHR$(79)
 55 LET nucleus(X,Y)=1
 60 NEXT X
 70 NEXT Y
 80 MOVE 50,0:DRAW 50,700
 90 MOVE 0,32:DRAW 1279,32
 100 PRINT TAB(12,10);"RANDOM DECAY PLOT"
 105 PRINT TAB(0,11);"400"
 110 PRINT TAB(0,16);"300"
 120 PRINT TAB(0,21);"200"
 130 PRINT TAB(0,26);"100"
 135 PRINT TAB(0,30);"0"
 140 VDU5:FOR X%=0 TO 30 STEP 5:MOVE X%*40-240,31:PRINT X%:NEXT X%:VDU4
 150 LET count=400
 160 LET x=50
 170 PLOT69,x,32+count*1.55
 180 REPEAT
 220 REM ALLOW NUCLEI TO DECAY AT RANDOM
 230 LET xpos=RND(40)-1
 240 LET ypos=RND(10)-1
 250 IF nucleus(xpos,ypos)=1 THEN PROCdonuc
 300 LET x=x+1
 310 PLOT69,x,32+count*1.55
 320 UNTIL x>1250
 330 PRINT TAB(0,0);"PLOT FINISHED "
 340 PRINT"Press ESCAPE "
 350 GOTO 350
20000 DEF PROCdonuc
20010 LET nucleus(xpos,ypos)=0
20020 *FX21,4
20030 SOUND0,-15,4,1
20040 PRINT TAB(xpos,ypos);CHR$(42)
20050 LET count=count-1
20060 ENDPROC

The BBC microcomputer in science teaching

356

SUM OF TWO DICE – PROGRAM 22

LIST
 100 REM SUM OF TWO DICE
 110 MODE4
 120 CLS
 130 CLG
 140 PRINT TAB(10,2) "THE SUM OF TWO DICE"
 150 DIM S(12)
 160 PRINT TAB(4,4) "TOTAL NUMBER OF THROWS = "
 180 PRINT TAB(0,6) " 160-"
 190 PRINT TAB(0,12) " 120-"
 200 PRINT TAB(0,18) " 80-"
 210 PRINT TAB(0,24) " 40-"
 220 PRINT TAB(0,30) " 0-"
 250 MOVE 150,850
 260 DRAW 150,50
 270 DRAW 1200,50
 300 PRINT TAB(4,31) "0 2 3 4 5 6 7 8 9 10 11 12";
 1000 total=0
 1010 FOR I= 2 TO 12:S(I)=0:NEXT I
 1015
 1020 REM SHAKE THE DICE AND ADD THEM UP
 1021 REM AND DETERMINE WHICH VALUE
 1022
 1030 REPEAT
 1040 dice1=RND(6)
 1050 dice2=RND(6)
 1060 sum=dice1+dice2
 1080 FOR I=2 TO 12
 1090 IF sum =I THEN S(I)=S(I)+1:PROCplot(I,S(I))
 1100 NEXT I
 1110 total=total+1
 1120 PRINT TAB(29,4);total
 1130 UNTIL total=1000
 1140 END
 3000 DEF PROCplot(H,V)
 3005 LOCAL X,Y
 3010 X=H*96+32
 3020 Y=V*5+50
 3030 PLOT4,X,Y
 3040 PLOT4,X+32,Y
 3050 PLOT85,X,Y+5
 3060 PLOT85,X+32,Y+5
 3070 ENDPROC

Program listings

357

STANDING WAVES – PROGRAM 23

LIST
 1 HIMEM=&4000
 2 MODE4
 10 REM BASIC WAVE ROUTINE
 20 REM TO DEMONSTRATE THE PRINCIPLES INVOLVED
 30 REM BY R.A.SPARKES
 50 CLS
 60 PRINT TAB(0,10);"Please wait while tables are constructed"
 70 GOSUB 10000 :REM MACHINE CODE ROUTINES AND TABLE COMPILATION
 100 REM OBTAIN VALUES
 110 CLS
 130 PRINT
 140 INPUT "Wave 1: number of waves ? (1 to 8) " W1
 150 ?wvln1=W1
 160 PRINT
 170 INPUT "Wave 2: number of waves ? (1 to 8) " W2
 180 ?wvln2=W2
 190 PRINT
 200 INPUT "Amplitude of wave 1 (0 to 9) " A1
 210 ?amp1=A1+&45
 220 PRINT
 230 INPUT "Amplitude of wave 2 (0 to 9) " A2
 240 ?amp2=A2+&45
 245 PRINT
 250 INPUT "Speed (range 1 to 6) " S
 260 REM SPEED DEPENDS UPON WAVELENGTH
 290 LET S=S*W1
 300 ?speed=S
 1000 CLS
 2000 CALL begin
 3000 GOTO 100
10000 REM MACHINE CODE ROUTINE FOR PLOTTING
10001 opos1=&4200
10002 opos2=&4300
10003 opos3=&4400
10004 sintbl=&84:?sintbl=0
10005 tblhi=&85
10006 REM tblhi IS ALTERED FROM WITHIN THE
10007 REM ROUTINE TO POINT TO ONE OF SIX
10008 REM DIFFERENT SINE TABLES,
10009 REM EACH WITH A DIFFERENT AMPLITUDE
10010 y=&70
10020 x=&71
10030 Xval=&72
10040 scrlo=&73
10050 scrhi=&74
10060 temp=&75
10061 amp1=&76
10062 amp2=&77
10063 wvln1=&78
10064 wvln2=&79
10065 speed=&7A
10066 time=&7B
10067 mult1=&7C
10068 mult2=&7D
10069 flag=&FE4D
10070 FOR pass=0 TO 2 STEP 2
10075 P% = &4000

The BBC microcomputer in science teaching

358

10080 [OPTpass
10090 .find STX Xval
10095 LDA y
10150 LSR A
10160 LSR A
10170 LSR A
10190 STA scrlo
10210 CLC
10220 ADC #&58
10230 STA scrhi
10232 LDA #0
10240 LDX #6
10250 .next ASL scrlo
10252 ROL A
10254 DEX
10256 BNE next
10270 ADC scrhi
10280 STA scrhi
10300
10320 LDA y
10330 AND #7
10333 STA temp
10380
10400 LDA x
10410 AND #&F8
10420 ADC temp
10425 ADC scrlo
10430 STA scrlo
10440 LDA scrhi
10450 ADC #0
10460 STA scrhi
10470 LDY#0
10480 LDA x
10490 AND #7
10500 TAX
10505 SEC
10512 LDA #0
10515 .shift ROR A
10516 DEX
10520 BPL shift
10530 STA temp
10535 LDX Xval
10536
10540 RTS
10560
12000 \WAVE MOTION
12010 NOP
12020 .begin NOP
12030 .nxwave LDX #0
12060 .nxpos LDA opos1,X \GET OLD POSITION FOR WAVE 1
12070 STA y
12075 STX x
12080 JSR find
12090 EOR #255 \INVERT DOT
12100 AND (scrlo),Y
12120 STA (scrlo),Y \ERASE OLD POSITION
12130
12140 LDA wvln1 \WAVELENGTH OF WAVE 1
12150 STA mult1
12170 STX mult2

Program listings

359

12180 JSR mult \GET KX
12190 CLC
12200 ADC time \ KX-WT
12210 TAY \KEEP RESULT
12220 LDA amp1 \GET WAVE 1 AMPLITUDE
12230 STA tblhi
12240 LDA (sintbl),Y \GET SINE
12270 CLC
12280 ADC #38 \ADD OFFSET FOR WAVE 1
12290 STA opos1,X \KEEP NEW POSITION
12300 STA y
12310 JSR find
12320 ORA (scrlo),Y
12330 STA (scrlo),Y \PLOT NEW WAVE
12350 \REPEAT FOR WAVE 2
12400 LDA opos2,X \GET OLD POSITION FOR WAVE 2
12410 STA y
12420 STX x
12430 JSR find
12440 EOR #255 \INVERT DOT
12450 AND (scrlo),Y
12460 STA (scrlo),Y \ERASE OLD POSITION
12470
12480 LDA wvln2 \WAVELENGTH OF WAVE 2
12490 STA mult1
12500 STX mult2
12510 JSR mult \GET KX
12520 SEC
12530 SBC time \BACKWARDS TRAVEL
12540 TAY \KEEP RESULT
12550 LDA amp2
12560 STA tblhi
12570 LDA (sintbl),Y \GET SINE
12600 CLC
12610 ADC #110 \ADD OFFSET FOR WAVE 2
12620 STA opos2,X \KEEP NEW POSITION
12630 STA y
12640 JSR find
12650 ORA (scrlo),Y
12660 STA (scrlo),Y \PLOT NEW WAVE
12670 LDA opos3,X \GET OLD POSITION FOR WAVESUM
12680 STA y
12690 STX x
12692 JSR find
12694 EOR #255 \INVERT DOT
12696 AND (scrlo),Y
12698 STA (scrlo),Y \ERASE OLD POSITION
12700
12710 CLC \SUM OF WAVES
12720 LDA opos2,X
12730 ADC opos1,X
12734 ADC #36
12735 STA opos3,X
12740 STA y
12750 STX x
12760 JSR find
12770 ORA (scrlo),Y
12780 STA (scrlo),Y \PLOT NEW WAVESUM
12800
12810 \DO NEXT POSITION

The BBC microcomputer in science teaching

360

12820 INX
12830 INX
12840 BEQ endlin
12850 JMP nxpos
12860 .endlin LDA time
12870 SEC
12880 SBC speed \ -WT
12890 STA time
12900
12910 \KEYBOARD CHECK
12920 LDA flag
12930 AND #1
12940 BNE finish
12945 JMP nxwave
12950 .finish CLI
12960 RTS
13000
13010 \MULTIPLICATION ROUTINE
13020 \RESULT IN ACCUMULATOR
13030 .mult LDA #0 \PRODUCT
13050 LDY #8 \8 BITS
13060 .nxmult ASL A
13070 ASL mult1
13080 BCC cont
13085 CLC
13090 ADC mult2
13100 .cont DEY
13110 BNE nxmult
13111 STA &80
13120 RTS
13130]
13140 NEXT pass
14000
20000 REM SET UP SINE TABLE
20010 REM CONTAINS 256 DATA ITEMS
20020 FOR I= 0 TO 256
20024 LET angle = I*PI/128
20025 LET val=SIN(angle)
20030 ?(&4500+I)=0
20031 ?(&4600+I)=INT(4*val)
20032 ?(&4700+I)=INT(8*val)
20033 ?(&4800+I)=INT(12*val)
20034 ?(&4900+I)=INT(16*val)
20035 ?(&4A00+I)=INT(20*val)
20036 ?(&4B00+I)=INT(24*val)
20037 ?(&4C00+I)=INT(28*val)
20038 ?(&4D00+I)=INT(32*val)
20039 ?(&4E00+I)=INT(36*val)
20050 REM CLEAR OLD POSITIONS
20060 ?(&4200+I)=0
20070 ?(&4300+I)=0
20080 ?(&4400+I)=0
20090 NEXT I
25000 RETURN

Program listings

361

SUPERPOSITION OF WAVES – PROGRAM 24

LIST

 1 HIMEM=&4000
 2 MODE 4
 10 REM WAVE SUPERPOSITION
 20 REM BY R.A.SPARKES
 50 GOSUB 10000
 100 CLS
 110PRINT:PRINT
 120 INPUT "Frequency of first wave (0 to 12) " f1
 130 PRINT
 140 INPUT "Frequency of second wave (0 to 12) " f2
 150 PRINT
 160 INPUT "Amplitude of first wave (0 to 10) " a1
 170 PRINT
 180 INPUT "Amplitude of second wave (0 to 10) " a2
 190 PRINT
 200 INPUT "Phase angle between the waves (degrees) " ph
 210 CLS
 219 PRINT"Press SPACE to stop"
 220 LET a=0
 225 REPEAT
 230 LET y1=850 + 15*a1*SIN(RAD(a*f1))
 240 LET y2=600 + 15*a2*SIN(RAD(a*f2 + ph))
 250 LET ysum=y1+y2-1150
 260 PLOT69,0,y1
 270 PLOT69,0,y2
 280 PLOT69,0,ysum
 290 CALL scroll
 300 LET a=a+1
 310 UNTIL INKEY$(0)<>""
 320 GOTO 100
10000 REM MACHINE CODE ROUTINE FOR PLOTTING
10020 rowcnt=&71
10070 FOR pass=0 TO 2 STEP 2
11000 P%=&4000
11010[OPT pass
11012 .scroll LDA #&58
11014 STA &4018
11016 LDA #&00
11018 STA &4017 \RESTORE SCREEN ADDRESS
11020 LDA #32 \ROW COUNT
11030 STA rowcnt
11040 .nxrow LDY #40 \COLUMN COUNT
11050 CLC
11060 LDA #0
11070 .nxcol ROR A
11080 LDX #8 \8 LINES PER COLUMN
11090 .nxlin ROR &4040 \SELF MODIFYING ADDRESS
11100 ROR A
11110 INC &4017
11120 BNE cont
11130 INC &4018
11140 .cont DEX
11150 BNE nxlin
11160 DEY
11170 BNE nxcol
11180 DEC rowcnt

The BBC microcomputer in science teaching

362

11190 BNE nxrow
11200 RTS
11500]
12400 NEXT pass
12500 RETURN

WAVE REFLECTION – PROGRAM 25

LIST
 100 MODE4
 105 HIMEM=&3FFF
 110 GOSUB 10000
 111 CLS
 112 REM CLEAR KEYBOARD BUFFER
 113 *FX21,0
 114 PRINT:PRINT"You are asked to enter the angle"
 115 PRINT:PRINT"at which the mirror is inclined"
 116 PRINT:PRINT"to the horizontal."
 117 PRINT:PRINT"Angles between 0 and 60 degrees are best"
 118 PRINT"and 90 degrees causes a program crash !"
 119 PRINT:PRINT:INPUT "ANGLE (IN DEGREES) " angle
 120 M=TAN(RAD(angle))
 125 FM=(1+M*M)
 130 PRINT:PRINT:PRINT"Please wait while the appropriate tables"
 140 PRINT:PRINT"are constructed."
 150 M=TAN(RAD(angle))
 160 FM=(1+M*M)
 170 YPOSLO%=0:REM Y POSITION LOW
 180 YPOSHI%=0:REM Y POSITION HIGH
 190 XPOSLO%=0:REM X POSITION LOW
 200 XPOSHI%=0:REM X POSITION HIGH
 210 YINITLO%=0:REM INITIAL Y SPEED LOW
 220 YINITHI%=1:REM INITIAL Y SPEED HIGH
 230 XINITLO%=0:REM INITIAL X SPEED LOW >
 240 XINITHI%=0:REM INITIAL X SPEED HIGH
 250 YSPEED=(M*M-1)/FM
 260 IF YSPEED<0 THEN YSPEED=YSPEED+256
 270 YFINLO%=(256*YSPEED) MOD 256:REM FINAL Y SPEED LOW
 280 YFINHI%=YSPEED:REM FINAL Y SPEED HIGH
 290 XSPEED=2*M/FM
 300 XFINLO%=(256*XSPEED) MOD 256:REM FINAL X SPEED LOW
 310 XFINHI%=XSPEED:REM FINAL X SPEED HIGH
 1000
 1200 REM PUT DATA INTO DATA STORES
 1210 FOR I=0 TO 255
 1220 ?(I+&4000)=(I MOD 6)*24:REM Y POSITION HIGH
 1230 ?(I+&4100)=YPOSLO%
 1240 ?(I+&4200)=I:REM X POSITION HIGH
 1250 ?(I+&4300)=XPOSLO%
 1260 ?(I+&4400)=YINITHI%
 1270 ?(I+&4500)=YINITLO%
 1280 ?(I+&4600)=XINITHI%
 1290 ?(I+&4700)=XINITLO%
 1300 ?(I+&4800)=YFINHI%
 1310 ?(I+&4900)=YFINLO%
 1320 ?(I+&4A00)=XFINHI%
 1330 ?(I+&4B00)=XFINLO%

Program listings

363

 1340 NEXT I
 1400 PRINT:PRINT:PRINT"Press the SPACE bar to stop the motion."
 1410 PRINT:PRINT"Press B to begin."
 1450 REPEAT UNTIL GET$="B"
 1500
 1600 REM DRAW MIRROR
 1800 CLS
 1810 FX=500*COS(RAD(angle))
 1820 FY=500*SIN(RAD(angle))
 1830 FOR Y=500 TO 505
 1840 MOVE 200,Y
 1850 PLOT5,200+FX,Y-FY
 1860 NEXT Y
 1870
 1880 REM MOVE WAVE
 1900 FOR pos=1 TO 240
 2000 CALL wave
 2100 NEXT pos
 2200 GOTO 111
 3000 END
10000 REM MACHINE CODE ROUTINE FOR PLOTTING
10005 DIM PROG 600
10010y=&70
10020 x=&71
10030 Xval=&72
10040 scrlo=&73
10050 scrhi=&74
10060 temp=&75
10065 keyboardflag=&FE4D
10070 FOR pass =0 TO 1
10075 P% = PROG
10080 [OPT0
10090 .find STX Xval
10095 LDA y
10150 LSR A
10160 LSR A
10170 LSR A
10190 STA scrlo
10210 CLC
10220 ADC #&58
10230 STA scrhi
10232 LDA #0
10234 STA temp
10240 LDX #6
10250 .next ASL scrlo
10252 ROL temp
10254 DEX
10256 BNE next
10260 LDA scrhi
10270 ADC temp
10280 STA scrhi
10300
10325 LDA y
10330 AND #7
10335 ADC scrlo
10340 STA scrlo
10350 LDA scrhi
10360 ADC #0
10370 STA scrhi
10380

The BBC microcomputer in science teaching

364

10400 LDA x
10410 AND #&F8
10420 ADC scrlo
10430 STA scrlo
10440 LDA scrhi
10450 ADC #0
10460 STA scrhi
10470 LDY#0
10480 LDA x
10490 AND #7
10500 TAX
10505 SEC
10510 INX
10512 LDA #0
10515 .shift ROR A
10516 DEX
10520 BNE shift
10535 LDX Xval
10540 RTS
10560
11000 .wave LDX #0
11010 .wait LDA keyboardflag
11011 AND #1
11012 BNE wait
11020 .rpt LDA &4000,X
11021 STA y
11022 LDA &4200,X
11023 STA x
11028 JSR find
11029 EOR #255
11030 AND (scrlo),Y
11031 STA (scrlo),Y
11032
11033 .nxtry CLC
11034 LDA &4100,X
11035 ADC &4500,X
11036 STA &4100,X
11037 LDA &4000,X
11038 ADC &4400,X
11040 STA y
11060
11070 CLC
11075 LDA &4300,X
11080 ADC &4700,X
11085 STA &4300,X
11090 LDA &4200,X
11095 ADC &4600,X
11110 STA x
11120 JSR find
11130 AND (scrlo),Y
11131 BEQ empty
11132 INC y
11133 JSR find
11134 AND (scrlo),Y
11135 BEQ empty
11136
11137 LDA &4B00,X
11138 STA &4700,X
11139 LDA &4A00,X
11140 STA &4600,X

Program listings

365

11141 LDA &4900,X
11142 STA &4500,X
11143 LDA &4800,X
11144 STA &4400,X
11147 JMP nxtry
11148 .empty LDA y
11149 CMP #254
11150 BCS done
11151 STA &4000,X
11152 LDA x
11153 CMP #254
11154 BCS done
11155 STA &4200,X
11160 JSR find
11162 ORA (scrlo),Y
11163 STA (scrlo),Y
11230 .done INX
11240 BNE rpt
11250 RTS:]
11255 NEXT pass
11260 RETURN

MOLECULAR MOTION – PROGRAM 26

LIST

 1 HIMEM=&4000
 10 REM MULTI-MOLECULAR MOTION
 20 REM BY R.A.SPARKES
 30 GOSUB 10000
 100 REM BEGIN
 110 PROCmols
 154 *FX15,0
 155 PRINT TAB(0,0);"Press S to keep the same number of "
 156 PRINT"molecules, or press N to change it."
 157 LET n$=GET$
 159 IF n$="n" OR n$="N" THEN 100
 160 PROCclear
 161 PRINT TAB(0,0);"Temperature ? (range 1 to 8) ?":PRINT:INPUT " " S%
 165 IF S%<1 OR S%>8 THEN 160
 166 PROCclear
 167 PRINTTAB(0,0);"Press SPACE to change values"
 170 ?count=9-S%:?tptr=?count
 200 CALL mols
 204 IF ?flag=1 THEN ?flag=0:SOUND0,-15,4,1
 205 IF INKEY$(1)=" " THEN 154
 210 GOTO 200
 999 END
 4000 DEF PROCclear
 4020 FOR row=0 TO 6
 4030 PRINTTAB(0,row);" "
 4040 NEXT row
 4050 ENDPROC
 5000 DEF PROCwalls
 5010 REM DRAW WALLS
 5020 REM LEFT SIDE IS GRAPHICS WHITE CHARACTER (151)
 5030 REM LEFT WALL IS CHARACTER 234
 5040 REM RIGHT WALL IS CHARACTER 181

The BBC microcomputer in science teaching

366

 5050 FOR I=32064 TO 32803 STEP 40
 5060 ?I=151:?(I+1)=234:?(I+39)=181
 5070 NEXT I
 5080
 5090 REM TOP SIDE IS CHARACTER 240
 5100 REM BOTTOM SIDE IS CHARACTER 163
 5110 FOR I=32065 TO 32103
 5120 ?I=240
 5130 ?(I+640)=163
 5140 NEXT
 5150 ENDPROC
 6000 DEF PROCmols
 6001 CLS
 6002 PROCwalls
 6005 PRINT TAB(0,0);"Number of molecules ? (1 to 255) ":PRINT:INPUT max%
 6006 ?max=max%
 6010 REM RANDOMLY ASSIGN MOLECULES TO POSITIONS AND DIRECTIONS
 6015 FOR molecule =1 TO max%
 6020 LET position%=RND(600)+32103
 6030 IF ?position%<>32 THEN 6020:REM REJECT IF MOLECULE IS IN END WALL OR ON TOP OF
ANOTHER MOLECULE
 6040 ?position%=79
 6050 ?(poslo+molecule)=position%MOD256
 6060 ?(poshi+molecule)=position%DIV256
 6070
 6080 REM CHOOSE RANDOM POSITIONS
 6090
 6100 LET number%=RND(8)
 6110 IF number%=1 THEN direction%=1:REM EAST
 6120 IF number%=2 THEN direction%=41:REM SOUTH-EAST
 6130 IF number%=3 THEN direction%=40:REM SOUTH
 6140 IF number%=4 THEN direction%=39:REM SOUTH-WEST
 6150 IF number%=5 THEN direction%=255:REM WEST
 6160 IF number%=6 THEN direction%=215:REM NORTH-WEST
 6170 IF number%=7 THEN direction%=216:REM NORTH
 6180 IF number%=8 THEN direction%=217:REM NORTH-EAST
 6190 ?(dr+molecule)=direction%
 6200 NEXT molecule
 6300 ENDPROC
10000 REM MOLECULE ASSEMBLY ROUTINE
10010
10020 oposlo=&70
10030 oposhi=&71
10040 nposlo=&72
10050 nposhi=&73
10060 tptr=&74
10070 drtn=&75
10080 count=&76
10090 max=&77
10100 flag=&79
10110 ?flag=0
10190 REM TABLE OF POSITIONS
10200 poslo=&4200
10210 poshi=&4300
10220 dr=&4400
11000 FOR pass = 0 TO 2 STEP 2
11010 P%=&4000
11020 [OPT pass
11030 \SINGLE MOLECULE ROUTINE
11040

Program listings

367

11050 .onemol CLC
11110 LDA oposlo \GET OLD POSITION
11120 ADC drtn \COMPUTE NEW POSITION
11130 STA nposlo \KEEP NEW POSITION
11140 LDA drtn \IS DIRECTION NEGATIVE
11150 BMI negdr \YES DO SUBTRACTION
11160 LDA oposhi \NO- ADD DIRECTION
11170 ADC #0
11180 STA nposhi \KEEP NEW POSITION
11190 BNE cont
11200.negdr LDA oposhi
11210 SBC #0
11220 STA nposhi \KEEP NEW POSITION
11230.cont LDA (nposlo),Y \LOOK AT NEW SCREEN POSITION
11240 CMP #32 \IS IT EMPTY ?
11250 BEQ relay
11260 CMP #79 \ANOTHER MOLECULE ?
11265 BNE trywall
11270 .relay JMP empty \IGNORE IT
11280 .trywall CMP #240 \TOP WALL ?
11290 BEQ top \YES- REFLECT
11300 CMP #234 \LEFT ?
11310 BEQ left \YES- REFLECT
11320 CMP #181 \RIGHT ?
11330 BEQ right \YES- REFLECT
11340 \IT MUST BE THE BOTTOM
11460 \DO NORMAL REFLECTION FROM BOTTOM
11470 LDA drtn
11480 CMP #39 \SOUTH-WEST?
11490 BEQ sw \YES
11500 CMP #40 \SOUTH ?
11510 BEQ s \YES
11520 \MUST BE SOUTH-EAST
11530 LDA #217 \GO NORTH-EAST
11540 STA drtn
11550 JMP exit
11560 .sw LDA #215 \GO NORTH-WEST
11570 STA drtn
11580 BNE exit
11590.s LDA #216 \GO NORTH
11600 STA drtn
11610 BNE exit
11620.top \DO NORMAL REFLECTION FROM TOP
11630 LDA drtn
11640 CMP #215 \NORTH-WEST ?
11650 BEQ nw \YES
11660 CMP #216 \NORTH ?
11670 BEQ n \YES
11680 \MUST BE NORTH-EAST
11690 LDA #41 \GO SOUTH-EAST
11700 STA drtn
11710 BNE exit
11720.nw LDA #39 \GO SOUTH-WEST
11730 STA drtn
11740 BNE exit
11750.n LDA #40 \GO SOUTH
11760 STA drtn
11770 BNE exit
11780.left \DO NORMAL REFLECTION FROM LEFT SIDE
11782 \MAKE SOUND

The BBC microcomputer in science teaching

368

11784 LDA #1
11786 STA flag
11790 LDA drtn
11800 CMP #215 \NORTH-WEST ?
11810 BEQ lnw \YES
11820 CMP #255 \WEST ?
11830 BEQ lw \YES
11840 \MUST BE SOUTH-WEST
11850 LDA #41 \GO SOUTH-EAST
11860 STA drtn
11870 BNE exit
11880.lnw LDA #217 \GO NORTH-EAST
11890 STA drtn
11900 BNE exit
11910.lw LDA #1 \GO EAST
11920 STA drtn
11930 BNE exit
11940.right \DO NORMAL REFLECTION FROM RIGHT SIDE
11950 LDA drtn
11960 CMP #217 \NORTH-EAST ?
11970 BEQ rne \YES
11980 CMP #1 \EAST ?
11990 BEQ re \YES
12000 \MUST BE SOUTH-EAST
12010 LDA #39 \GO SOUTH-WEST
12020 STA drtn
12030 BNE exit
12040.rne LDA #215 \GO NORTH-WEST
12050 STA drtn
12060 BNE exit
12070.re LDA #255 \GO WEST
12080 STA drtn
12090 BNE exit
12100 \ANOTHER MOLECULE - IGNORE IT
12170.empty LDA #32 \RUB OUT OLD MOLECULE
12180 STA (oposlo),Y
12190 LDA #79 \GET MOLECULE CHARACTER
12200 STA (nposlo),Y
12210 LDA nposlo
12220 STA oposlo
12230 LDA nposhi \SAVE NEW POSITIONS
12240 STA oposhi
12250 .exit RTS
13000
13010 .mols NOP
13020 DEC count \IS COUNT AT ZERO ?
13030 BEQ domol \YES CARRY ON
13040 RTS \NO RETURN TO BASIC
13060 .domol LDA tptr \ BEGIN
13070 STA count
13080 LDY #0 \INITIALIZE POINTER
13090 LDX max \GET NUMBER OF MOLECULES
13100 .nxmol LDA poslo,X
13110 STA oposlo
13120 LDA poshi,X
13130 STA oposhi \POSITION OF NEXT MOLECULE
13140 LDA dr,X
13150 STA drtn \DIRECTION OF NEXT MOLECULE
13160 JSR onemol \MOVE THIS MOLECULE
13170 LDA drtn

Program listings

369

13180 STA dr,X \RETAIN NEW DIRECTION
13190 LDA oposlo
13200 STA poslo,X
13210 LDA oposhi
13220 STA poshi,X \RETAIN NEW POSITION
13230 DEX \NEXT MOLECULE
13240 BNE nxmol
13260 RTS
15000]
16000 NEXT pass
17000 RETURN

SMOKE PARTICLE BROWNIAN MOTION – PROGRAM 27

LIST
 1 HIMEM=&4000
 2 MODE 4
 3 VDU23;8202;0;0;0
 10 REM BROWNIAN MOTION
 20 REM BY R.A.SPARKES
 30 REM AFTER AN IDEA BY W.JEFFRIES
 100 CLS
 110 PRINT TAB(4,10);"Setting up data, please wait."
 120 GOSUB 10000
 130 GOSUB 5000
 140 CLS
 150 LET word1$=" SMOKE "
 160 LET word2$="PARTICLES"
 170 FOR n = 1 TO 9
 175 LET vertpos= 5+n*2
 180 PRINT TAB(33,vertpos);MID$(word1$,n,1);" ";MID$(word2$,n,1)
 190 NEXT n
 200 CALL brown
 210 END
 5000 REM SET UP INITIAL POSITIONS
 5010 FOR I=0 TO 255
 5020 ?(xpos+I)=RND(256)-1
 5030 ?(ypos+I)=RND(256)-1
 5040 NEXT I
 5050 RETURN
10000 REM MACHINE CODE ROUTINE FOR PLOTTING
10001 xpos=&4200
10002 ypos=&4300
10010 y=&70
10020 x=&71
10030 Xval=&72
10040 scrlo=&73
10050 scrhi=&74
10060 temp=&75
10064 ?&FE6B=64 :REM ACR TO GIVE CONTINUOUS CLOCK
10065 ?&FE64=255:REM TIMER1 LO
10066 ?&FE65=255:REM START CLOCK
10067 clock=&FE64
10069 flag=&FE4D
10070 FOR pass=0 TO 2 STEP 2
10075 P% = &4000
10080 [OPTpass

The BBC microcomputer in science teaching

370

10090 .find STX Xval
10095 LDA y
10150 LSR A
10160 LSR A
10170 LSR A
10190 STA scrlo
10210 CLC
10220 ADC #&58
10230 STA scrhi
10232 LDA #0
10240 LDX #6
10250 .next ASL scrlo
10252 ROL A
10254 DEX
10256 BNE next
10270 ADC scrhi
10280 STA scrhi
10300
10320 LDA y
10330 AND #7
10333 STA temp
10380
10400 LDA x
10410 AND #&F8
10420 ADC temp
10425 ADC scrlo
10430 STA scrlo
10440 LDA scrhi
10450 ADC #0
10460 STA scrhi
10470 LDY#0
10480 LDA x
10490 AND #7
10500 TAX
10505 SEC
10512 LDA #0
10515 .shift ROR A
10516 DEX
10520 BPL shift
10530 STA temp
10535 LDX Xval
10536
10540 RTS
10560
12000
12010 .brown LDX #0 \256 SMOKE PARTICLES
12020 .nxsmk LDA ypos,X \GET OLD POSITION
12030 STA y
12035 LDA xpos,X \GET OLD POSITION
12040 STA x
12050 JSR find
12060 EOR #255
12070 AND (scrlo),Y
12080 STA (scrlo),Y
12090
12100 LDA clock
12110 AND #3
12115 ORA #1
12120 CLC
12130 ADC #254

Program listings

371

12140 CLC
12150 ADC x
12160 STA x
12165 STA xpos,X
12170 LDA clock
12180 AND #3
12185 ORA #1
12190 CLC
12200 ADC #254
12210 CLC
12220 ADC y
12230 STA y
12240 STA ypos,X
12250 JSR find
12260 ORA (scrlo),Y
12270 STA (scrlo),Y
12280 INX
12290 BNE nxsmk
12300 LDA flag
12310 AND #1
12320 BEQ brown
12330 RTS
12360]
12400 NEXT pass
12500 RETURN

GRAVITY – PROGRAM 28

LIST

 1 MODE 7
 2 @%=&020209
 5 LET acceleration = -10
 10 CLS
 20 PRINT TAB(8,0);"VERTICAL HEIGHT"
 30 PRINT:PRINT:PRINT"This program prints the vertical height"
 40 PRINT:PRINT"reached by an object thrown vertically"
 50 PRINT:PRINT"upwards against gravity."
 60 PRINT:PRINT:INPUT"Initial speed (range 0 to 200) " initspeed
 70 CLS
 80 PRINT TAB(8,0);"VERTICAL HEIGHT"
 90 PRINT:PRINT"Acceleration Speed Height Time"
 100 FOR time = 0 TO 20
 110 LET height=initspeed*time+0.5*acceleration*time*time
 120 LET speed=initspeed+acceleration*time
 130 PRINTacceleration,speed,height,time
 140 NEXT time

The BBC microcomputer in science teaching

372

LCR RESONANCE – PROGRAM 29

LIST
 100 MODE1
 110 GCOL0,3
 120 MOVE 0,50
 130 DRAW 1279,50
 140 MOVE 50,0
 150 DRAW 50,1023
 155PRINT TAB(0,0);"
"
 160 PRINT TAB(0,0);"Inductance (mH) ";:INPUT L:PRINT TAB(22,0);"Resistance ";:INPUT R:PRINT TAB
(0,2);"Capacitance (microfarad) ";:INPUT C
 170 PRINT TAB(0,14);"V"
 180 PRINT TAB(20,31);"frequency";
 190 IF R=0 THEN R=0.001
 200 LET E=50
 210 MOVE 50,50
 220 FOR frequency=1 TO 1279 STEP 5
 240 LET XL=frequency*L/1000:XC=1000000/(frequency*C)
 250 LET X=XL-XC
 260 LET Z=SQR(R*R+X*X)
 270 LET I=E/Z
 280 LET VC=I*XC
 290 DRAW frequency+50,VC+50
 300 NEXT frequency
 310 GOTO 155

PROJECTILES – PROGRAM 30

LIST
 1 MODE 4
 2 REM PROJECTILE MOTION
 3 REM BY R.A.SPARKES
 5 REM INITIAL VALUES
 6 speed=30
 7 angle=45
 8 g=10
 9 dragcoeff = 0
 10 CLS : PRINT TAB(9,1);"PROJECTILE MOTION"
 20 PRINT:PRINT:PRINT"The motion of a projectile depends upon"
 30 PRINT:PRINT"a) the initial speed,"
 40 PRINT:PRINT"b) the angle to the horizontal,"
 50 PRINT:PRINT"c) the amount of friction."
 60 PRINT:PRINT"d) the acceleration due to gravity."
 70 PRINT TAB(0,30);"Press SPACE to continue."
 80 REPEAT UNTIL GET$=" "
 1000 REM SHOW CURRENT VALUES
 1005 CLS
 1010 PRINT:PRINT"A. initial speed = ";speed
 1020 PRINT:PRINT"B. angle of projection = ";angle
 1030 PRINT:PRINT"C. coefficient of friction = ";dragcoeff
 1040 PRINT:PRINT"D. acceleration due to gravity = ";g
 1050 PRINT:PRINT:PRINT"Choose which quantity you want"
 1053 PRINT:PRINT"to change by pressing A, B, C OR D"
 1055 PRINT:PRINT"or press RETURN to confirm these values."
 1058 *FX15,0

Program listings

373

 1060 LET S$=GET$
 1070 IF S$<>"A" AND S$<>"B" AND S$<>"C" AND S$<>"D" AND S$<>CHR$(13) THEN 1060
 1080 IF S$="A" THEN 1500
 1090 IF S$="B" THEN 1600
 1100 IF S$="C" THEN 1700
 1110 IF S$="D" THEN 1800
 1120 REM VALUES ACCEPTED: CHOOSE WHICH VARIABLE
 1130 PRINT:PRINT"Choose which variable you want"
 1140 PRINT:PRINT"to investigate by pressing A, B, C OR D"
 1145 *FX15,0
 1150 LET x$=GET$
 1160 IF x$<>"A" AND x$<>"B" AND x$<>"C" AND x$<>"D" THEN 1150
 1165 CLS
 1170 IF x$="A" THEN 2000
 1180 IF x$="B" THEN 2100
 1190 IF x$="C" THEN 2200
 1200 IF x$="D" THEN 2300
 1230
 1500 PRINT:PRINT"Enter new initial speed (range 1 to 100)"
 1510 INPUT speed
 1520 GOTO 1000
 1600 PRINT:PRINT"Enter new angle of projection in degrees"
 1610 PRINT"range 10 to 80. ";:INPUT angle
 1620 GOTO 1000
 1700 PRINT:PRINT"Enter new drag coefficient (0 to 10) "
 1710 INPUT dragcoeff
 1720 GOTO 1000
 1800 PRINT:PRINT"Enter new acceleration due to gravity "
 1810 PRINT:PRINT"range 0 to 20. ";:INPUT g
 1820 GOTO 1000
 2000 REM SPEED
 2010 PROCthrow
 2020 IF Z$=CHR$(13) THEN 1000
 2030 PRINT TAB(0,0);"Enter new initial speed (range 1 to 100)"
 2040 INPUT speed
 2050 GOTO 2000
 2100 REM ANGLE
 2110 PROCthrow
 2120 IF Z$=CHR$(13) THEN 1000
 2130 PRINT TAB(0,0);"Enter new angle of projection in degrees"
 2140 PRINT"range 10 to 80. ";
 2150 INPUT angle
 2160 GOTO 2100
 2200 REM FRICTIONAL DRAG
 2210 PROCthrow
 2220 IF Z$=CHR$(13) THEN 1000
 2230 PRINT TAB(0,0);"Enter new drag coefficient (0 to 10) "
 2240 INPUT dragcoeff
 2250 GOTO 2200
 2300 REM ACCELERATION DUE TO GRAVITY
 2310 PROCthrow
 2320 IF Z$=CHR$(13) THEN 1000
 2330 PRINT TAB(0,0);"Enter new acceleration due to gravity "
 2340 PRINT:PRINT"range 0 to 20. ";
 2350 INPUT g
 2360 GOTO 2300
 4230 PRINT:PRINT "Enter the drag coefficient (0 to 10)"
 5000 DEF PROCthrow
 5020 LET timeinc=1
 5030 REM AXES

The BBC microcomputer in science teaching

374

 5040 VDU29,0;300;
 5050 MOVE 0,0
 5060 DRAW 1279,0
 5070 REM INITIAL POSITIONS
 5080 LET X=0:Y=0:MOVE X,Y
 5090 LET VX=speed*COS(RAD(angle))
 5100 LET VY=speed*SIN(RAD(angle))
 5110 LET acc=-g/10:LET drag=dragcoeff/100
 5120 REPEAT
 5130 REM MOTION IN X-DIRECTION
 5140 LET VX=VX-drag*VX*timeinc
 5150 LET X=X+VX*timeinc
 5160 REM MOTION IN Y-DIRECTION
 5170 LET AY=acc - drag*VY*timeinc
 5180 LET VY=VY+AY*timeinc
 5190 LET Y=Y+VY*timeinc
 5200 REM PLOT NEW POSITIONS
 5210 DRAW X,Y
 5220 UNTIL X>1279 OR Y<-300
 5230 PRINT TAB(0,0);"Press SPACE to change the same variable"
 5240 PRINT TAB(0,2);"Press RETURN to change another variable"
 5250 LET Z$=GET$
 5260 IF Z$<>CHR$(13) AND Z$<>" " THEN 5250
 5270 PRINT TAB(0,0);"
"
 5280 ENDPROC

NEWTON – PROGRAM 31

LIST
 100 MODE1
 104 *FX11,0
 105 ON ERROR GOTO 100
 110 PRINT TAB(12,0);"SATELLITE MOTION"
 120 PRINT:PRINT"The aim of this program is"
 130 PRINT:PRINT"to set a rocket in orbit around"
 140 PRINT:PRINT"the moon from a space station,"
 150 PRINT:PRINT"which is orbiting the earth."
 160 PRINT:PRINT"You must choose the initial speed and"
 170 PRINT:PRINT"direction for the rocket."
 180 PRINT
 185 PRINT:PRINT"Crashing on the surface of the moon"
 186 PRINT:PRINT"or losing your rocket in outer space"
 187 PRINT:PRINT"causes a restart."
 188 PRINT:PRINT"If you achieve an orbit or wish"
 189 PRINT:PRINT"to restart the program, press ESCAPE."
 190 PRINT:PRINT:PRINT:PRINT"Press B to begin."
 195 A$=INKEY$(255)
 200 IF A$<>"B" AND A$<>"b" THEN 195
 210 REM DRAW EARTH-MOON SYSTEM
 215 CLS
 220 PROCcircle(33,600,500)
 230 PRINT TAB(0,31);"Space station o";
 240 PRINT TAB(0,0);"SPEED (0 TO 10) ";:INPUT speed
 250 PRINT TAB(0,1);"ANGLE (-90 TO +90) ";:INPUT angle
 260 REM CALCULATE CURRENT POSITION AND SPEED
 270 LET x=592:LET y=32

Program listings

375

 280 LET xvelocity=speed*SIN(RAD(angle))/4
 290 LET yvelocity=speed*COS(RAD(angle))/4
 300 MOVE x,y
 310 LET crash=FALSE
 350 REPEAT
 400 REM MAIN CALCULATION
 410 REM THE MOON IS AT 600,500
 420 REM FIRST CALCULATE THE DISTANCE FROM THE CENTRE OF THE MOON
 430 LET xdisplacement=x-600
 440 LET ydisplacement=y-500
 450 LET parameter=xdisplacement^2 + ydisplacement^2
 455 LETdistance=SQR(parameter^3)
 460 IF parameter<1200 THEN crash=TRUE
 465 REM COMPUTE NEW SPEED
 470 LET xvelocity=xvelocity-1000*xdisplacement/distance
 480 LET yvelocity=yvelocity-1000*ydisplacement/distance
 490 REM COMPUTE NEW POSITIONS
 500 LET x=x + xvelocity
 510 LET y=y + yvelocity
 520 DRAW x,y
 530 UNTIL x>1300 OR x<0 OR y>1100 OR y<0 OR crash
 540 PRINT TAB(0,0);" "
 550 GOTO 240
 900 END
 1000 DEF PROCcircle(radius,xcentre,ycentre)
 1007 MOVE xcentre,ycentre
 1010 FOR angle=0 TO 360 STEP 10
 1020 LET x=xcentre + radius*COS(RAD(angle))
 1030 LET y=ycentre + radius*SIN(RAD(angle))
 1040 MOVE xcentre,ycentre
 1050 PLOT85,x,y
 1060 NEXT angle
 1070 ENDPROC

RUTHERFORD – PROGRAM 32

LIST
 100 MODE1
 105 ON ERROR GOTO 100
 110 PRINT TAB(5,0);"ALPHA PARTICLE SCATTERING"
 115PRINT:PRINT
 120 PRINT:PRINT"The aim of this program is"
 130 PRINT:PRINT"to fire alpha particles at random"
 140 PRINT:PRINT"at a nucleus of gold."
 145PRINT:PRINT
 150 PRINT:PRINT"The alpha particles are deflected by"
 155 PRINT:PRINT"the nucleus and there is a chance"
 160 PRINT:PRINT"that some will achieve a direct hit."
 165PRINT:PRINT
 170 PRINT:PRINT"Press SPACE to fire the particles."
 185 PRINT:PRINT"and see if you get the same result as"
 186 PRINT:PRINT"Rutherford, Geiger and Marsden."
 195 A$=INKEY$(255)
 200 IF A$<>" "THEN 195
 210 REM DRAW GOLD NUCLEUS
 215 CLS
 220 PROCcircle(10,600,500)

The BBC microcomputer in science teaching

376

 230 PROCelectrons
 235 VDU23;8202;0;0;0
 240 PRINT TAB(0,0);"Press ESCAPE to restart. "
 250 REM CALCULATE CURRENT POSITION AND SPEED
 270 LET x=0:LET y=RND(800)+100
 280 LET xvelocity=100
 290 LET yvelocity=0
 300 MOVE x,y
 310 LET crash=FALSE
 350 REPEAT
 400 REM MAIN CALCULATION
 410 REM THE NUCLEUS IS AT 600,500
 420 REM FIRST CALCULATE THE DISTANCE FROM THE CENTRE OF THE NUCLEUS
 430 LET xdisplacement=x-600
 440 LET ydisplacement=y-500
 450 LET parameter=xdisplacement^2 + ydisplacement^2
 455 LETdistance=SQR(parameter^3)
 460 IF parameter<120 THEN crash=TRUE
 465 REM COMPUTE NEW SPEED
 470 LET xvelocity=xvelocity+50000*xdisplacement/distance
 480 LET yvelocity=yvelocity+50000*ydisplacement/distance
 490 REM COMPUTE NEW POSITIONS
 500 LET x=x + xvelocity
 510 LET y=y + yvelocity
 520 DRAW x,y
 530 UNTIL x>1300 OR x<0 OR y>1100 OR y<0 OR crash
 550 GOTO 250
 900 END
 1000 DEF PROCcircle(radius,xcentre,ycentre)
 1005 GCOL0,2
 1007 MOVE xcentre,ycentre
 1010 FOR angle=0 TO 360 STEP 10
 1020 LET x=xcentre + radius*COS(RAD(angle))
 1030 LET y=ycentre + radius*SIN(RAD(angle))
 1040 MOVE xcentre,ycentre
 1050 PLOT85,x,y
 1060 NEXT angle
 1065 GCOL0,3
 1070 ENDPROC
 1100 DEF PROCelectrons
 1105 *FX9,2
 1106 *FX10,2
 1110 VDU19,1,12,0,0,0
 1115 GCOL0,1
 1120 FOR n=1 TO 79
 1130 LET xval=RND(1000)+100
 1140 LET yval=RND(1000)
 1150 PLOT69,xval,yval
 1160 NEXT n
 1170 GCOL0,3
 1180 ENDPROC

Program listings

377

MASTERMIND – PROGRAM 33

LIST

 10 REM MASTERMIND
 20 MODE 7
 30 DIM A(4),B(4),C(4)
 40 DIM R(25),S(25),T(25),Z(25)
 50 CLS
 60 PRINT TAB(15,10);"MASTERMIND"
 70 PRINT TAB(12,13);"BY R.A.SPARKES"
 80 PRINT:PRINT:PRINT
 90 PRINT TAB(0,20);"IF YOU WOULD LIKE TO PLAY, PRESS Y"
 100 IF GET$<>"Y" THEN 100
 110 CLS:PRINT:PRINT
 120 PRINT"THIS GAME LETS YOU GUESS THE FOUR DIGITS"
 130 PRINT"WHICH I SHALL CHOOSE AT RANDOM."
 140 PRINT
 150 PRINT"IT WORKS LIKE THIS."
 160 PRINT
 170 PRINT"I PICK THE SEQUENCE OF DIGITS 1 2 3 4."
 180 PRINT
 190 PRINT"YOU GUESS THIS SEQUENCE TO BE 4 2 6 3."
 200 PRINT
 210 PRINT"YOU SCORE 1 BULL , BECAUSE 2 IS CORRECT"
 220 PRINT"AND IT IS IN THE CORRECT POSITION."
 230 PRINT
 240 PRINT"YOU SCORE 2 COWS , BECAUSE 4 AND 3 ARE"
 250 PRINT
 260 PRINT"CORRECT BUT IN THE WRONG POSITIONS."
 270 PRINT
 280 PRINT"YOU CAN THEN GUESS AGAIN."
 290 PRINT
 300 PRINT "PRESS 'SPACE' FOR A GAME."
 310 IF GET$<>" " THEN 310
 320 Z=1
 330 CLS
 340 PRINT"FIRST CHOOSE THE LEVEL OF DIFFICULTY."
 350 PRINT:PRINT
 360 PRINT"THIS IS THE NUMBER OF DIFFERENT KINDS"
 370 PRINT
 380 PRINT"OF DIGIT, I MAY CHOOSE FROM."
 390 PRINT
 400 PRINT"PICK ONE FROM THE FOLLOWING LIST:"
 410 PRINT
 420 PRINT"LEVEL 4 (DIGITS 1,2,3 OR 4)"
 430 PRINT"LEVEL 5 (DIGITS 1,2,3,4 OR 5)"
 440 PRINT"LEVEL 6 (DIGITS 1 TO 6)"
 450 PRINT"LEVEL 7 (DIGITS 1 TO 7)"
 460 PRINT"LEVEL 8 (DIGITS 1 TO 8)"
 470 PRINT"LEVEL 9 (DIGITS 1 TO 9)"
 480 PRINT TAB(0,17);"PRESS ONE OF THE KEYS 4 TO 9 TO CHOOSE."
 490 K=VAL(GET$)
 500 IF K>9 OR K<4 THEN PRINT TAB(0,23);"PRESS ONE OF THE KEYS 4 TO 9 ONLY.":GOTO 490
 510 CLS
 520 PRINT :PRINT
 530 FOR N=1 TO 4
 540 A(N)=RND(K)
 550 NEXT N
 560 PRINT"NOW MAKE YOUR GUESS"

The BBC microcomputer in science teaching

378

 570 PRINT
 580 PRINT "TYPE OUT YOUR NEXT FOUR DIGITS "
 590 PRINT
 600 PRINT"TYPE 0000 TO BE TOLD THE HIDDEN NUMBER."
 610 FORI=1TO4
 620 *FX15,0
 630 B$=GET$
 640 IF B$=CHR$(127) THEN I=I-1:PRINT TAB(5+2*I,20);" ":GOTO 620
 650 B(I)=VAL(B$)
 660 IF B(I)>K THEN PRINT TAB(0,22);"THAT VALUE IS NOT IN THE RANGE YOU CHOSE":GOTO 620
 670 PRINT TAB(0,22);" "
 680 PRINT TAB(5+2*I,20);B(I)
 690 NEXT
 700 IFB(1)=0ANDB(2)=0ANDB(3)=0ANDB(4)=0THEN 1140
 710 R(Z)=1000*B(1)+100*B(2)+10*B(3)+B(4)
 720 Y=0:X=0
 730 FOR N=1 TO 4:C(N)=A(N):NEXT
 740 FORN=1TO4
 750 IFC(N)<>B(N)THEN770
 760 X=X+1:C(N)=99:B(N)=100
 770 NEXT N
 780 FOR N=1 TO 4:FORM=1TO4
 790 IF C(N)<>B(M) THEN 810
 800 Y=Y+1:C(N)=99:B(M)=100
 810 NEXT M:NEXT N
 820 CLS
 830 PRINT"GUESS BULLS COWS GUESS NO."
 840 S(Z)=X:T(Z)=Y
 850 FOR L=1 TO Z:PRINT;R(L);SPC(9);S(L);SPC(9);T(L);SPC(9);L:NEXT L
 860 IF X=4 THEN 890
 870 Z=Z+1:IFZ>16THEN940
 880 GOTO 580
 890 PRINT"WELL DONE, YOU HAVE GUESSED CORRECTLY"
 900 PRINT"YOU TOOK ONLY ";Z;" GUESSES "
 910 PRINT"IF YOU WANT TO TRY AGAIN, PRESS Y"
 920 IF GET$<>"Y" THEN STOP
 930 GOTO320
 940 CLS:PRINT:PRINT"YOU DON'T SEEM TO KNOW HOW TO PLAY."
 950 PRINT
 960 PRINT"YOU SHOULD NOT JUST MAKE WILD GUESSES."
 970 PRINT
 980 PRINT"USE THE INFORMATION ABOUT BULLS AND COWS"
 990 PRINT"TO HELP YOU."
 1000 PRINT
 1010 PRINT:PRINT"MAKE ONLY ONE CHANGE TO YOUR "
 1020 PRINT:PRINT"GUESS EACH TIME, THEN YOU CAN SEE"
 1030 PRINT:PRINT"IF THAT CHANGE HAS GIVEN AN EXTRA BULL"
 1040 PRINT:PRINT"OR COW (OR ONE LESS)."
 1050 PRINT:PRINT"HAVE ANOTHER TRY AT A DIFFERENT"
 1060 PRINT:PRINT"SET OF DIGITS. PRESS Y"
 1070 IF GET$<>"Y" THEN 1070
 1080 GOTO 320
 1140 REM GIVE ANSWER
 1150 CLS
 1160 PRINT:PRINT:PRINT"MY NUMBER IS ";A(1);A(2);A(3);A(4)
 1170 PRINT:PRINT"DO YOU SEE WHERE YOUR DIFFICULTY IS ?"
 1180 PRINT:PRINT"HAVE ANOTHER TRY AT A DIFFERENT"
 1190 PRINT:PRINT"SET OF DIGITS. PRESS Y"
 1200 IF GET$<>"Y" THEN 1200
 1210 GOTO 320

Program listings

379

ELEMENTS – PROGRAM 34

LIST

 1 REM ELEMENTS
 2 REM BY R.A.Sparkes
 3 MODE 7
 4 CLS
 10 *FX11,0
 20 PROCelements
 30 DIM p$(15), D$(15)
 50 PRINT TAB(10,1);CHR$(141);"ELEMENTS"
 51 PRINT TAB(10,2);CHR$(141);"ELEMENTS"
 52 PRINT:PRINT"ELEMENTS is a simple guessing game."
 53 PRINT:PRINT"You type in the missing letters"
 54 PRINT:PRINT"one at a time. Each correct letter"
 55 PRINT:PRINT"takes you nearer to guessing the whole"
 56 PRINT:PRINT"element. You are only allowed eight"
 57 PRINT:PRINT"incorrect guesses, after which you"
 58 PRINT:PRINT"will be told the correct answer."
 59 PRINT:PRINT"Press ESCAPE at any time during this"
 60 PRINT:PRINT"program, if you wish to finish."
 61 PRINT:PRINT"Press the SPACE BAR to continue."
 62 *FX15,0
 63 IF INKEY$(255)<>" "THEN 63
 64 CLS
 65 PRINT TAB(0,11);CHR$(141);"Type your name."
 66 PRINT TAB(0,12);CHR$(141);"Type your name."
 70 PRINT TAB(0,14);CHR$(141);"Then press the RETURN key"
 75 PRINT TAB(0,15) CHR$(141);"Then press the RETURN key"
 80 PRINT TAB(0,17)
 90 INPUT A$
 100 REM set up word
 110 PROCgetelement
 120 LET wordlength=LEN(word$)
 130 FOR i = 1 TO wordlength
 140 LET p$(i) = MID$(word$,i,1)
 150 LET D$(i) = "-"
 160 NEXT i
 170 LET guess=0
 180 CLS:PRINT TAB(10,11);
 190 REM PRINT OUT LETTER POSITIONS
 200 FOR n=1 TO wordlength
 210 PRINT D$(n);
 220 NEXT n
 250 REM ASK QUESTION
 260 PRINT TAB(0,1);CHR$(141);A$;","
 270 PRINT TAB(0,2);CHR$(141);A$;","
 300 PRINT TAB(0,4);CHR$(141);"Guess a letter."
 310 PRINT TAB(0,5);CHR$(141);"Guess a letter."
 330 LET letter$=GET$
 333 IF ASC(letter$)>96 THEN letter$=CHR$(ASC(letter$) - 32)
 340 IF ASC(letter$)<65 OR ASC(letter$)>90 THEN GOTO 330
 360 LET flag = 0
 370 FOR i= 1 TO wordlength
 380 IF letter$<> p$(i) THEN GOTO 400
 390 LET flag = 1
 395 LET D$(i)=letter$
 400 NEXT i
 410 REM CONSTRUCT WORD SO FAR

The BBC microcomputer in science teaching

380

 415 LET guess$=""
 420 FOR i= 1 TO wordlength
 430 LET guess$=guess$ + D$(i)
 440 NEXT i
 500 PRINT TAB(0,11);CHR$(141); "The word is ";guess$
 510 PRINT TAB(0,12);CHR$(141); "The word is ";guess$
 520 IF flag = 0 THEN PRINT TAB(0,15) "Your letter is not in my word."
 530 IF flag = 0 THEN PRINT TAB(0,17) "Try again."
 540 IF flag = 1 THEN PRINT TAB(0,15) " "
 545 IF flag = 1 THEN PRINT TAB(0,17) " "
 546 IF flag=0 THEN PROCno
 550 IF guess$=word$ THEN GOTO 800
 555 IF flag=0 THEN guess = guess +1
 560 IF guess >8 THEN GOTO 880
 580 IF flag=1 THEN PROCyes
 590 GOTO 300
 800 REM SUCCESSFUL
 801 SOUND1,-15,97,10
 802 SOUND1,-15,105,10
 803 SOUND1,-15,89,10
 804 SOUND1,-15,41,10
 805 SOUND1,-15,69,20
 806 PRINT TAB(0,1);CHR$(141);"Well done ";A$
 810 PRINT TAB(0,2);CHR$(141);"Well done ";A$
 815 PRINT TAB(0,4);CHR$(141);"The hidden element is"
 816 PRINT TAB(0,5);CHR$(141);"The hidden element is"
 818 PRINT TAB(0,8);CHR$(141);word$;" "
 819 PRINT TAB(0,9);CHR$(141);word$;" "
 820 PRINT TAB(0,20);"Press SPACE for another word"
 830 PRINT TAB(0,15) " "
 840 PRINT TAB(0,17) " "
 850 IF INKEY$(0)<>" " THEN GOTO 850
 860 GOTO 100
 880 REM TOO MANY GUESSES
 900 PRINT TAB(0,1);CHR$(141);"No. ";A$;", the hidden element"
 905 PRINT TAB(0,2);CHR$(141);"No. ";A$;", the hidden element"
 910 PRINT TAB(0,4);CHR$(141);" is ";word$;" "
 915 PRINT TAB(0,5);CHR$(141);" is ";word$;" "
 916 PRINT TAB(0,15) " "
 917 PRINT TAB(0,17) " "
 920 PRINT TAB(0,8);"Press SPACE for another word"
 940 IF INKEY$(0)<>" " THEN GOTO 940
 950 GOTO 100
15000 DEF PROCelements
15010 DATA ACTINIUM,ALUMINIUM,AMERICIUM,ANTIMONY,ARGON
15020 DATA ARSENIC,ASTATINE,BARIUM,BERKELIUM,BERYLLIUM
15030 DATA BISMUTH,BORON,BROMINE,CADMIUM,CAESIUM
15040 DATA CALCIUM,CALIFORNIUM,CARBON,CERIUM,CHLORINE
15050 DATA CHROMIUM,COBALT,COPPER,CURIUM,DYSPROSIUM
15060 DATA EINSTEINIUM,ERBIUM,EUROPIUM,FERMIUM,FLUORINE
15070 DATA FRANCIUM,GADOLINIUM,GALLIUM,GERMANIUM,GOLD
15080 DATA HAFNIUM,HELIUM,HOLMIUM,HYDROGEN,INDIUM
15090 DATA IODINE,IRIDIUM,IRON,KRYPTON,LANTHANUM
15100 DATA LAWRENCIUM,LEAD,LITHIUM,LUTETIUM,MANGESIUM
15110 DATA MANGANESE,MENDELEVIUM,MERCURY,MOLYBDENUM,NEODYMIUM
15120 DATA NEON,NEPTUNIUM,NICKEL,NIOBIUM,NITROGEN
15130 DATA NOBELIUM,OSMIUM,OXYGEN,PALLADIUM,PHOSPHORUS
15140 DATA PLATINUM,PLUTONIUM,POLONIUM,POTASSIUM,PRASEODYMIUM
15150 DATA PROMETHIUM,PROTACTINIUM,RADIUM,RADON,RHENIUM
15160 DATA RHODIUM,RUBIDIUM,RUTHENIUM,SAMARIUM,SCANDIUM

Program listings

381

15170 DATA SELENIUM,SILICON,SILVER,SODIUM,STRONTIUM
15180 DATA SULPHUR,TANTALUM,TECHNETIUM,TELLURIUM,TERBIUM
15190 DATA THALLIUM,THORIUM,THULIUM,TIN,TITANIUM
15200 DATA TUNGSTEN,URANIUM,VANADIUM,XENON,YTTERBIUM
15210 DATA YTTRIUM,ZINC,ZIRCONIUM
15220
15230 RESTORE 15010
15240 DIM element$(103)
15250 FOR n=1 TO 103
15260 READ element$(n)
15270 NEXT n
15280 ENDPROC
15290
15300 DEF PROCgetelement
15310 REPEAT
15320 R=RND(103)
15330 UNTIL element$(R)<>""
15340 LET word$=element$(R)
15350 LET element$(R)=""
15360 ENDPROC
20000 DEF PROCyes
20040 REM SUCCESSFUL NOISE
20050 SOUND1,-15,53,5
20060 SOUND1,-15,69,5
20070 SOUND1,-15,81,5
20100 ENDPROC
21000 DEF PROCno
21040 REM RASPBERRY
21050 SOUND0,-15,6,20
21100 ENDPROC

The BBC microcomputer in science teaching

382

PILES – PROGRAM 35

LIST

 1 REM PILES
 2 REM created by R.A.Sparkes
 3 REM after an idea by A.Wiltshire
 4 MODE 7
 8 *FX11,0
 9 DIM brick(20),wall(4,4)
 10 CLS:PRINT TAB(4,2) CHR$(141);"Please type in your name."
 11 PRINT TAB(4,3) CHR$(141);"Please type in your name."
 12 PRINT TAB(4,6) CHR$(141);"Then press the RETURN key."
 13 PRINT TAB(4,7) CHR$(141);"Then press the RETURN key."
 14 PRINT TAB(10,10)
 15 INPUT A$
 20 REM TURN CURSOR OFF
 30 VDU23,1,0;0;0;0;
 50 REM SET UP TWENTY BRICKS IN WALL
 51 REM TEN YELLOW, TEN BLUE
 54 LET yellow=0:LET blue =0:LET I = 0
 55 REPEAT
 56 LET brick(I)=RND(2)+146
 58 IF brick(I)=148 THEN LET blue=blue+1
 60 IF brick(I)=147 THEN LET yellow=yellow + 1
 65 LET I = I + 1
 70 UNTIL blue=10 OR yellow=10
 80 FOR Z=I TO 19
 90 LET brick(Z)=147+((yellow=10)AND1)
 100 NEXT Z
 110 CLS
 120 PRINT TAB(1,17) CHR$(141);"1 2 3 4 5"
 130 PRINT TAB(1,18) CHR$(141);"1 2 3 4 5"
 140 FOR I = 0 TO 19
 150 PROCblock(brick(I),(I DIV 4), (I MOD 4))
 160 LET wall((I DIV 4), (I MOD 4)) = brick(I)
 170 NEXT I
 180 FOR I=0 TO 4:LET wall(I,4)=0:NEXT I
 200 REM FIND WHICH BRICK TO MOVE
 205 FOR T=1 TO 2000:NEXT T
 210 PRINT TAB(3,21) CHR$(141);"Move ? "
 220 PRINT TAB(3,22) CHR$(141);"Move ? "
 230 LET N$=GET$
 240 LET N%=VAL(N$)
 250 IF N%<1 OR N%>5 THEN GOTO 230
 255 LET source=N% - 1
 260 PRINT TAB(14,21);N%;" to ?"
 270 PRINT TAB(14,22);N%;" to ?"
 280 LET N$=GET$
 290 LET N%=VAL(N$)
 300 PRINT TAB(27,21);N%
 310 PRINT TAB(27,22);N%
 320 destination= N% - 1
 400 REM CHECK ON VALIDITY OF MOVE
 405 REM DOES SOURCE BLOCK EXIST ?
 410 LET topsource=5:LET endcondition = FALSE
 420 REPEAT
 430 LET topsource=topsource-1
 440 LET allgone = (topsource=-1)
 445 IF allgone THEN SOUND0,-15,4,10 ELSE endcondition = (wall(source,topsource)<>0)

Program listings

383

 450 UNTIL endcondition OR allgone
 460 IF allgone THEN PRINT TAB(3,21) CHR$(141);" Not possible "
 470 IF allgone THEN PRINT TAB(3,22) CHR$(141);" Not possible "
 480 IF topsource=-1 THEN GOTO 200
 500 REM DOES DESTINATION BLOCK EXIST ?
 510 IF wall(destination,4)=0 THEN GOTO 600
 515 SOUND0,-15,4,10
 520 PRINT TAB(3,21) CHR$(141);" Not possible "
 530 PRINT TAB(3,22) CHR$(141);" Not possible "
 540 GOTO 200
 600 REM ERASE SOURCE BLOCK
 605 SOUND0,-15,1,10
 610 LET brick = wall(source,topsource)
 620 LET wall(source,topsource)=0
 630 PROCblock(152,source,topsource)
 640 REM FIND TOP POSITION OF NEW BRICK
 650 LET topdest=-1
 660 REPEAT
 670 LET topdest=topdest + 1
 680 UNTIL (wall(destination,topdest)=0)
 700 REM PLACE BRICK IN NEW POSITION
 710 LET wall(destination,topdest)=brick
 720 PROCblock(brick,destination,topdest)
 790 finished = TRUE
 800 FOR position=0 TO 4
 810 FOR height= 0 TO 4
 820 IF wall(position,height)<>wall(position,0) THEN finished = FALSE
 840 NEXT height
 850 NEXT position
 900 IF NOT finished THEN GOTO 210
 910 PRINT TAB(3,21) CHR$(141);" Well done ";A$;" "
 920 PRINT TAB(3,22) CHR$(141);" Well done ";A$;" "
 930 ENVELOPE 1,8,1,-1,1,1,1,1,121,-10,-5,-2,120,120
 940 SOUND 1,1,100,500
 941 SOUND 2,1,80,500
 950 PRINT TAB(0,24) "Press SPACE for a new game";
 960 IF INKEY$(0)<>" " THEN GOTO 960
 970 GOTO 50
 1000 REM DEFINE BLOCK-MAKING ROUTINE
 1001
 1010 DEF PROCblock(colour,position,height)
 1020 LET X=position*8
 1030 LET Y=15 - height*3
 1040 PRINT TAB(X,Y) CHR$(colour);CHR$(255);CHR$(124);CHR$(124);CHR$(255)
 1050 PRINT TAB(X,Y-1) CHR$(colour);CHR$(255);CHR$(32);CHR$(32);CHR$(255)
 1060 PRINT TAB(X,Y-2) CHR$(colour);CHR$(124);CHR$(124);CHR$(124);CHR$(124)
 1070 ENDPROC

The BBC microcomputer in science teaching

384

MACHINE CODE TRANSFER – PROGRAM 36

LIST
 1 MODE 4
 2 HIMEM=&2F00
 3 GOSUB 30000
 100 REM MAIN PROGRAM
 110 REM etc.
 1000 REM EXAMPLE
 1500 CLS
 1600 PRINT:PRINT"It's much quicker with machine code."
 2000 !dest=&6C00:!source=&3000:?pages=20:CALL swap
 3000FOR T=1 TO 1000:NEXT T
 4000 !dest=&6C00:!source=&4400:?pages=20:CALL swap
 5000 GOTO 3000
30000 REM FLASH ROUTINE IN MODE 4
30010 REM EXCHANGES A SELECTED PART OF THE SCREEN
30020 REM WITH BYTES STORED IN MEMORY
30030
30040 pages =&71
30050 dest=&80:REM LOW/HIGH BYTES OF SCREEN INTERIM ADDRESS
30070 source=&84:REM LOW/HIGH BYTES OF STORE INTERIM ADDRESS
30090 temp=&70 :REM TEMPORARY STORE
30100 FOR pass = 0 TO 2 STEP 2
30110 P%=&2F00:REM STARTING ADDRESS FOR SWAP ROUTINE
30120 [OPT pass
30130 .swap LDX pages \SET COUNTER TO NUMBER OF PAGES
30140 .nxpage LDY #0
30150 .nxtpos LDA (source),Y \GET BYTE
30160 STA temp ! \SAVE IN TEMPORARY STORE
30170 LDA (dest),Y \GET CURRENT SCREEN BYTE
30180 STA (source),Y \KEEP IN STORE
30190 LDA temp \RETRIEVE SOURCE BYTE
30200 STA (dest),Y \SEND TO SCREEN
30210 INY \END OF PAGE?
30220 BNE nxtpos \NO DO NEXT BYTE
30230 INC (dest+1) \MOVE TO NEXT PAGE
30240 INC (source+1)
30250 DEX \ALL PAGES DONE?
30260 BNE nxpage \NO DO NEXT PAGE
30270 RTS
30280]
30290 NEXT pass
30300 REM CONSTRUCT GRAPHICS AND STORE IN MEMORY
30310 PROCyes
30320 !dest=&6C00:!source=&4400:?pages=20:CALL swap
30330 PROCno
30340 !dest=&6C00:!source=&3000:?pages=20:CALL swap
30350 RETURN
31000 DEF PROCyes
31010 CLS:PRINT:PRINT"Constructing responses in BASIC, please wait."
31015 REM Y
31020 MOVE 100,500:DRAW 225,250
31030 PLOT85,150,500
31040 PLOT85,275,250
31050 MOVE 400,500
31060 MOVE350,500
31070 PLOT85,275,250
31075 PLOT85,225,250
31080 MOVE 225,30

Program listings

385

31090 PLOT85,275,250
31100 PLOT85,275,30
31110 REM E
31120 MOVE 500,30:MOVE 500,500
31130 PLOT85,550,30
31140 PLOT85,550,500
31150 MOVE 700,30:MOVE 550,30
31160 PLOT85,700,80
31170 MOVE 550,80
31180 PLOT85,550,30
31190 MOVE 550,250:MOVE 550,300
31200 PLOT85,660,250
31210 PLOT85,660,300
31220 MOVE 550,450:MOVE 550,500
31230 PLOT85,700,450
31240 PLOT85,700,500
31250 REM S
31260 FOR a=200 TO 450 STEP 10
31270 MOVE 930+90*COS(RAD(a)),152+90*SIN(RAD(a))
31280 MOVE 930+130*COS(RAD(a)),152+130*SIN(RAD(a))
31290 PLOT85,930+90*COS(RAD(a+10)),152+90*SIN(RAD(a+10))
31300 PLOT85,930+130*COS(RAD(a+10)),152+130*SIN(RAD(a+10))
31310 NEXT a
31460 FOR a=270 TO 20 STEP -10
31470 MOVE 930+90*COS(RAD(a)),370+90*SIN(RAD(a))
31480 MOVE 930+130*COS(RAD(a)),370+130*SIN(RAD(a))
31490 PLOT85,930+90*COS(RAD(a-10)),370+90*SIN(RAD(a-10))
31500 PLOT85,930+130*COS(RAD(a-10)),370+130*SIN(RAD(a-10))
31510 NEXT a
31520 ENDPROC
31600 DEF PROCno
31610 CLS:PRINT:PRINT"Constructing responses in BASIC, please wait."
31615 REM N
31620 MOVE 200,30:MOVE 250,30
31630 PLOT85,200,500
31640 PLOT85,250,500
31650 PLOT85,450,30
31660 PLOT85,500,30
31670 PLOT85,450,500
31680 PLOT85,500,500
31700 REM O
31710 FOR a=0 TO 360 STEP 10
31720 MOVE 770+110*COS(RAD(a)),265+195*SIN(RAD(a))
31730 MOVE 770+150*COS(RAD(a)),265+235*SIN(RAD(a))
31740 PLOT85,770+110*COS(RAD(a+10)),265+195*SIN(RAD(a+10))
31750 PLOT85,770+150*COS(RAD(a+10)),265+235*SIN(RAD(a+10))
31760 NEXT a
31770 ENDPROC

The BBC microcomputer in science teaching

386

DISASSEMBLER – PROGRAM 37

LIST
 100 MODE7
 110 DIM O$(255)
 120 DIM N(255)
 130 DIM M(255)
 140 DIM bit(3)
 200 FOR I=0 TO 255
 210 READ O$(I)
 220 READ N(I)
 230 READ M(I)
 240 NEXT I
 250 DATA BRK,1,1,ORA,2,9,???,1,1,???,1,1
 260 DATA ???,1,1,ORA,2,3,ASL,2,3,???,1,1
 270 DATA PHP,1,1,ORA,2,2,ASL,1,12,???,1,1
 280 DATA ???,1,1,ORA,3,4,ASL,3,4,???,1,1
 290 DATA BPL,2,13,ORA,2,10,???,1,1,???,1,1
 300 DATA ???,1,1,ORA,2,5,ASL,2,5,???,1,1
 310 DATA CLC,1,1,ORA,3,8,???,1,1,???,1,1
 320 DATA ???,1,1,ORA,3,6,ASL,3,6,???,1,1
 340 DATA JSR,3,4,AND,2,9,???,1,1,???,1,1
 350 DATA BIT,2,3,AND,2,3,ROL,2,3,???,1,1
 360 DATA PLP,1,1,AND,2,2,ROL,1,12,???,1,1
 370 DATA BIT,3,4,AND,3,4,ROL,3,4,???,1,1
 380 DATA BMI,2,13,AND,2,10,???,1,1,???,1,1
 390 DATA ???,1,1,AND,2,5,ROL,2,5,???,1,1
 400 DATA SEC,1,1,AND,3,8,???,1,1,???,1,1
 410 DATA ???,1,1,AND,3,6,ROL,3,6,???,1,1
 420 DATA RTI,1,1,EOR,2,9,???,1,1,???,1,1
 430 DATA ???,1,1,EOR,2,3,LSR,2,3,???,1,1
 440 DATA PHA,1,1,EOR,2,2,LSR,1,12,???,1,1
 450 DATA JMP,3,4,EOR,3,4,LSR,3,4,???,1,1
 460 DATA BVC,2,13,EOR,2,10,???,1,1,???,1,1
 470 DATA ???,1,1,EOR,2,5,LSR,2,5,???,1,1
 480 DATA CLI,1,1,EOR,3,8,???,1,1,???,1,1
 490 DATA ???,1,1,EOR,3,6,LSR,3,6,???,1,1
 500 DATA RTS,1,1,ADC,2,9,???,1,1,???,1,1
 510 DATA ???,1,1,ADC,2,3,ROR,2,3,???,1,1
 520 DATA PLA,1,1,ADC,2,2,ROR,1,12,???,1,1
 530 DATA JMP,3,11,ADC,3,4,ROR,3,4,???,1,1
 540 DATA BVS,2,13,ADC,2,10,???,1,1,???,1,1
 550 DATA ???,1,1,ADC,2,5,ROR,2,5,???,1,1
 560 DATA SEI,1,1,ADC,3,8,???,1,1,???,1,1
 570 DATA ???,1,1,ADC,3,6,ROR,3,6,???,1,1
 580 DATA ???,1,1,STA,2,9,???,1,1,???,1,1
 590 DATA STY,2,3,STA,2,3,STX,2,3,???,1,1
 600 DATA DEY,1,1,???,1,1,TXA,1,1,???,1,1
 610 DATA STY,3,4,STA,3,4,STX,3,4,???,1,1
 620 DATA BCC,2,13,STA,2,10,???,1,1,???,1,1
 630 DATA STY,2,5,STA,2,5,STX,2,7,???,1,1
 640 DATA TYA,1,1,STA,3,8,TXS,1,1,???,1,1
 650 DATA ???,1,1,STA,3,6,???,1,1,???,1,1
 660 DATA LDY,2,2,LDA,2,9,LDX,2,2,???,1,1
 670 DATA LDY,2,3,LDA,2,3,LDX,2,3,???,1,1
 680 DATA TAY,1,1,LDA,2,2,TAX,1,1,???,1,1
 690 DATA LDY,3,4,LDA,3,4,LDX,3,4,???,1,1
 700 DATA BCS,2,13,LDA,2,10,???,1,1,???,1,1
 710 DATA LDY,2,5,LDA,2,5,LDX,2,5,???,1,1
 720 DATA CLV,1,1,LDA,3,8,TSX,1,1,???,1,1

Program listings

387

 730 DATA LDY,3,6,LDA,3,6,LDX,3,8,???,1,1
 740 DATA CPY,2,2,CMP,2,9,???,1,1,???,1,1
 750 DATA CPY,2,3,CMP,2,3,DEC,2,3,???,1,1
 760 DATA INY,1,1,CMP,2,2,DEX,1,1,???,1,1
 770 DATA CPY,3,4,CMP,3,4,DEC,3,4,???,1,1
 780 DATA BNE,2,13,CMP,2,10,???,1,1,???,1,1
 790 DATA ???,1,1,CMP,2,5,DEC,2,5,???,1,1
 800 DATA CLD,1,1,CMP,3,8,???,1,1,???,1,1
 810 DATA ???,1,1,CMP,3,6,DEC,3,6,???,1,1
 820 DATA CPX,2,2,SBC,2,9,???,1,1,???,1,1
 830 DATA CPX,2,3,SBC,2,3,INC,2,3,???,1,1
 840 DATA INX,1,1,SBC,2,2,NOP,1,1,???,1,1
 850 DATA CPX,3,4,SBC,3,4,INC,3,4,???,1,1
 860 DATA BEQ,2,13,SBC,2,10,???,1,1,???,1,1
 870 DATA ???,1,1,SBC,2,5,INC,2,5,???,1,1
 880 DATA SED,1,1,SBC,3,8,???,1,1,???,1,1
 890 DATA ???,1,1,SBC,3,6,INC,3,6,???,1,1
 900
 910
 1000 CLS
 1010 PRINT TAB(5,1) "DISASSEMBLER"
 1020 PRINT TAB(0,3) "Enter the starting address."
 1030 PRINT TAB(0,5) "If this is in hexadecimal, your number"
 1035 PRINT TAB(0,7) "must be in the range 0 to FFFF"
 1036 PRINT TAB(0,9) "and should begin with &"
 1040 PRINT TAB(0,11)"Enter a decimal address directly."
 1050 line=1
 1060 PRINT TAB(1,14);:INPUT A$
 1070 IF LEFT$(A$,1)="&" THEN PROChex ELSE address=VAL(A$)
 1080 REM ADDRESS IS IN VARIABLE address
 1200
 3000 REM CHECK ADDRESS IN RANGE
 3050 IF address<0 OR address>65535 THEN PRINT TAB(10,19) "OUT OF RANGE: TRY AGAIN.":GOTO
1010
 3060 IF address<>INT(address) THEN PRINT TAB(10,19) "WHOLE NUMBERS ONLY: TRY AGAIN.":GOTO
1010
 3070 REM LIST ASSEMBLY CODE
 3080 CLS:PRINT
 3090 FOR J=1 TO 20
 3100 opcode=?(address)
 3110 operation$=O$(opcode)
 3120 numofbytes=N(opcode)
 3130 type=M(opcode)
 3210 ON type GOSUB 4010,4020,4030,4040,4050,4060,4070,4080,4090,4100,4110,4120,4130
 3400 code3$="": IF numofbytes>2 THEN PROCdechex(?(address+2)):code3$=hexval$
 3410 code2$="": IF numofbytes>1 THEN PROCdechex(?(address+1)):code2$=hexval$
 3420 PROCdechex(?(address)):code1$=hexval$
 3510 PROCdechex(address)
 3520 PRINT "&"+hexval$,code1$;" ";code2$;" ";code3$,operation$;" ";operand$
 3570 address=address+numofbytes
 3600
 3800 NEXT J
 3810 PRINT TAB(0,22);"Press SPACE for more, A for new address";
 3820 X$=GET$
 3830 IF X$=" " THEN 3070
 3840 IF X$="A" THEN 1000
 3850 GOTO 3820
 4000 REM DETERMINE TYPE OF OPERATION
 4010 REM SINGLE BYTE INSTRUCTION
 4011 operand$=""

The BBC microcomputer in science teaching

388

 4012 RETURN
 4020 REM IMMEDIATE DATA
 4021 operand$="#"+STR$(?(address+1))
 4022 RETURN
 4030 REM ZERO PAGE ADDRESS
 4031 PROCdechex(?(address+1))
 4032 operand$="&"+hexval$
 4033 RETURN
 4040 REM ABSOLUTE ADDRESS
 4041 PROCdechex(?(address+1)+256*?(address+2))
 4042 operand$="&"+hexval$
 4043 RETURN
 4050 REM ZERO PAGE, X-INDEXED
 4051 PROCdechex(?(address+1))
 4052 operand$="&"+hexval$+",X"
 4053 RETURN
 4060 REM ABSOLUTE, X-INDEXED
 4061 PROCdechex(?(address+1)+256*?(address+2))
 4062 operand$="&"+hexval$+",X"
 4063 RETURN
 4070 REM ZERO PAGE, Y-INDEXED
 4071 PROCdechex(?(address+1))
 4072 operand$="&"+hexval$+",Y"
 4073 RETURN
 4080 REM ABSOLUTE, Y-INDEXED
 4081 PROCdechex(?(address+1)+256*?(address+2))
 4082 operand$="&"+hexval$+",Y"
 4083 RETURN
 4090 REM INDIRECT, X-INDEXED
 4091 PROCdechex(?(address+1))
 4092 operand$="(&"+hexval$+",X)"
 4093 RETURN
 4100 REM INDIRECT, Y-INDEXED
 4101 PROCdechex(?(address+1))
 4102 operand$="(&"+hexval$+"),Y"
 4103 RETURN
 4110 REM INDIRECT
 4111 PROCdechex(?(address+1)+256*?(address+2))
 4112 operand$="(&"+hexval$+")"
 4113 RETURN
 4120 REM ACCUMULATOR
 4121 operand$="A"
 4122 RETURN
 4130 REM BRANCH OFFSET
 4131 offset=?(address+1)
 4132 IF offset>127 THEN offset=offset-256
 4133 branchaddress=address+2+offset
 4134 PROCdechex(branchaddress)
 4135 operand$="&"+hexval$
 4136 RETURN
 5000 DEF PROCprinthex
 5010 PRINT TAB(0,20) "The hex. equivalent of this is &";hexval$
 5020 ENDPROC
 9000 DEF PROChex
 9010 A$=RIGHT$(A$,(LEN(A$)-1))
 9030 PROChexdec(A$)
 9040 address=decval
 9050 ENDPROC
10000 DEF PROCdechex(add)
10005 REM PROCEDURE RETURNS WITH HEXADECIMAL VALUE IN hexval$

Program listings

389

10010 bit(3)=INT(add/4096)
10020 add=add-bit(3)*4096
10030 bit(2)=INT(add/256)
10040 add=add-bit(2)*256
10050 bit(1)=INT(add/16)
10060 bit(0)=add-bit(1)*16
10070 add$=""
10075 IF bit(2)=0 AND bit(3)=0 THEN nibs=1 ELSE nibs=3
10080 FOR I= nibs TO 0 STEP -1
10090 IF bit(I)>9 THEN hex$=CHR$(55+bit(I)) ELSE hex$=STR$(bit(I))
10100 add$=add$ + hex$
10110 NEXT I
10120 hexval$=add$
10130 ENDPROC
11000 DEF PROChexdec(address$)
11005 REM PROCEDURE RETURNS WITH DECIMAL VALUE IN decval
11010 add$=RIGHT$("0000"+address$,4)
11020 decval=0
11030 FOR I=1 TO 4
11040 A$=MID$(add$,I,1)
11050 IF A$>="A" AND A$<="F" THEN bitval =ASC(A$)-55
11060 IF A$>="0" AND A$<="9" THEN bitval=VAL(A$)
11070 decval=decval*16+bitval
11080 NEXT I
11090 ENDPROC

391

Index

acceleration bus, 1MHz, 138-9

 measurement, 148, 151-2 byte, 29

 simulation, 70

ACCUMULATOR, 181-3 calculation, 60

address, 31, 138, 207 CALL, 224

addressing modes of the capacitor discharge

 microprocessor, 208-9 measurement of, 167

administration, 15 simulation of, 84-6

ADVAL, 156 CARRY bit, 185

aligning columns of numbers, 38, 61 characters

amplifier, 114-5 user-defined, 33

analogue interfacing, 153-73 graphics, 33

analogue switch, 158 chunky (teletext), 35

analogue to digital CHR$, 33

 conversion (ADC), 156-73 clock

analyser, spectrum, 172 internal, 111, 129

AND, 97-9, 102, 192 pulses, 138, 144

ANIMALS, 25 timer 1, 127-31

animation, 33, 35, 238 timer 2, 131-3

arithmetic, machine code, 184-92 comments in assembly language, 225

ASC, 40 computer assisted learning (CAL), 19

ASCII code, 40 concept keyboard, 41, 121-4

assembler passes, 224 conditional branching, 199

assembly language CALL, 224 conservation of momentum, 149

assembly language OPT, 224 control lines of VIA, 119-123

assembly language programming, 222-62 control panel, simulated, 165

auto-repeat of keys, 39 coordinates of screen, 34, 61

 counting, 191-2

BASIC, 28-9 counting input pulses, 111, 132

BASIC logic, 102-4 crash, program, 31, 222

bar graph/chart, 78-81 crash protection, 41

Boolean algebra, 101 current measurement, 162

Boolean functions, 104 curves, trigonometric, 63-9

bit, 28, 105

bitwise logic, 102

binary code, 28 Darlington driver buffer, 113

branch instructions, 199, 228-9 data direction register of VIA, 106

branch offset, 200 data latch, 121, 125

BRK instruction, 206 data memory, 167

buffer, keyboard, 39 decay

buffering inputs, 114-15 random (radioactive), 18

buffering outputs, 112 capacitor, 84-86

The BBC microcomputer in science teaching

392

dedicated systems, 277-284 plotting crosses, 75

defining characters, 33 plotting points, 61, 256

demonstration programs (not pulse output, 109, 128

 listed in Appendix) pulse timing, 133

 acceleration due to gravity, 70 random lights, 108

 ADC calibration, 161 reaction timing, 144

 ADC graphplot, 166 resonance, LCR, 73

 advanced timer, 270 resonance in a tube, 53

 analogue data conversion, 166 row of stars, 226

 bar chart, 78 screenfill, 234

 binary counter, 108 screen scroll, 260

 burglar alarm, 110 serial data transfer, 135

 capacitor discharge, 84 shift register, 108

 circle, 66 simple timer, 111

 clock, 131 sine curve, 63

 concept keyboard, 124 tangent curve, 66

 cosine curve, 64 temperature measurement, 166

 counter, 112 timing loops, 265

 damped oscillations, 71, 87 timing, use of VIA, 127

 ellipse, 68 traffic lights, 107

 engine in BASIC, 36 waveform output, 155, 273

 engine in machine code, 238 decay

 ETCHASKETCHA, 164 random (radioactive), 83

 fast ADC, 274 capacitor, 84-6

 fox and rabbit populations, 90 delays, 40, 241

 Fourier synthesis, 72 digital interfacing, 93-152

 frequency measuring, 132 digital to analogue conversion (DAC), 153-6

 gravity, 70, 151 diode characteristics, 168

 high-resolution plotting, 61, 255 disassembly, 209

 hyperbola, 68 discovery learning, 22

 input gating, 139 DRAW, 61

 input port indicator, 110

 instant transfer to screen, 236 EAROM, 279

 large digit display, 253 electronic blackboard, 13

 LCR circuit, 73 entry point in assembler, 224

 least squares fit, 75 EOR, 103, 193

 line drawing, 62 EPROM, 277

 Lissajous figures, 69 EQUIVALENCE, 100

 molecular motion, 245 EVAL, 70

 motion, 35 EXCLUSIVE-OR, 100

 moving origin, 63

 moving star, 35, 243 FALSE, 103

 multiplication, 258 feedback, 114

 one second timer, 131 flags, 120

 oscillations, 71, 87 flush keyboard buffer, 39

 parabola, 68 formatting, 61, 75

 parallel data transfer, 126 Fourier synthesis, 72

 pie chart, 81 fox and rabbit populations, 90-2

Index

393

FRED, 139 JMP instructions, 198

frequency measurement, 84 joystick, 164

games, 24-6 keyboard auto-repeat, 39

GET and GETS, 39 keyboard sensing in machine code, 245

graphics kinetic model of a gas, 250

 chunky (teletext), 34

 high-resolution, 33-4 large digits display, 145, 251-5

 machine code, 222-62 latching inputs, 121

 mode, 33 LD instructions, 183

 origin, 63 learning

 user-defined, 33 computer assisted, 19

 discovery, 22

handshaking, 125 programmed, 14

hexadecimal, 30 light emitting diode (LED), 93, 115

high-resolution graphics, 33-4 line transceiver, 115, 141

HIMEM, 224 Lissajous figures, 69

hysteresis, 114 logic

 BBC BASIC, 102-4

immediate addressing, 184 board, 94, 116, 143

INC instructions, 191 gates, 94

indexed addressing, 195 levels, 93

indirect addressing, 233 machine code, 192

individualized learning, 14

INKEY and INKEY$, 40 machine code

INPUT, 39 arithmetic, 184-91

input comparison with BASIC, 29

 analogue, 156 graphics, 222

 buffer, 114 instructions, 181

 digital, 109 keyboard sensing, 245

 isolation, 117 location in memory, 224

 latching, 121 timing, 265-72

 sensing, 109 marking, 40-1

instant pictures, 236 memory

instructions, 6502, 181-217 EAROM, 279

instruction set, 6502, 210-17 EPROM, 277

interaction, 37 RAM, 27

interfacing ROM, 30, 176, 277

 analogue, 153-73 saving for machine code progams, 224

 digital, 95-152 in machine code, 263-76 top of memory pointers, 224

interference microprocessor, 27, 138, 174-217

 light, 172 mnemonic codes, 181-217

 waves, 258 modelling, 23, 90-2

interpreter, BASIC, 29, 176 monitor, 29

interrupts, 122, 141 motion

interval timing, 111 directed, 35

INVERTER, 99 linear, 35

iterative methods, 84-92 molecular, 245-50

The BBC microcomputer in science teaching

394

 Newton's laws, 152 PROGRAM COUNTER, 174, 196

 planetary, 88 programmed learning, 20

 projectile, 86 projectile motion, 23, 86

 simple harmonic, 71 pulse measurement, 133

 wave, 258 pulse production, 128, 137

MOVE, 61 push button input, 121, 165

moving origin, 63

multiple choice items RAD, 67, 83

 testing, 15 radioactive decay, 18, 83

 marking, 40-1 RAM, 28, 176

 random numbers in machine code, 260

NAND, 99 reaction timer, 144

negative numbers, 101, 202 read memory, 183

non-volatile memory, 30 resistance measurement, 162

NOR, 100 resonance

NOT, 99, 103 LCR, 73, 170

numerical problems, 15, 60 tube, 44-59

nybble, 30 response, student's, 42

 rifle pellet speed, 145

ON ERROR, 41, 66 RND, uses, 18, 83-4

OPERAND, 176 ROM, 30, 176, 277

operating system, 27

OPERATION, 176 scattering of alpha particles, 24, 88

optical isolation, 117 screenfill, 230

OR, 100, 193 screen scroll, 260

origin move, 63 second processor, 32, 52

OS calls, 33, 235 self-modifying programs, 230

OSWRCH, 236 sensing inputs, 109

output sensors, 118

 analogue, 153-73 serial data transfer, 134

 buffering, 112 serial register, 134

 controlling, 107 seven segment display, 281

 digital, 106 shift instructions, 204

 pulses, 109, 128 shift register, 108

output port of VIA, 106 SIGN bit, 203

 simulation

parallel data transfer, 125 alpha particles, 24, 88

parameters in graph plotting, 67 Brownian motion, 250, 260

photocell, 118, 147 capacitor discharge, 84

pictures, 33, 36, 236-8 fox and rabbit populations, 90

pixel, 33, 35 interference of waves, 19

PLOT a point in BASIC, 61 molecular motion, 19, 250

PLOT a point in machine code, 255-7 oscillations, 71, 87

potentiometer input, 165 projectiles, 23, 86

power amplification, 113, 117 radioactive decay, 18

power measurement, 162 resonance tube, 44

PRINT, 37 ripple tank, 19, 22

procedures, 41 satellite motion, 24, 88

Index

395

wave motion, 258 connection to ADC, 161

spectrum analyser, 172 connection to DAC, 154

speed connector, 143

 measurement, 145-52 versatile interface adaptor (VIA)

 simulation, 70 A-port, 119, 153

 of camera shutter, 147 B-port, 105, 119, 153

 of rifle pellet, 145 connection to I MHz bus, 140

 of trolley, 147 control registers, 119

STA instruction, 183 data direction registers, 105, 118

STACK, 198, 205 timers, 127, 33

STATUS register, 185 user port, 105

stopclock, 144

string manipulation, 42 volatile memory, 27

strobe, 120 voltage measurement, 160

structuring programs, 43-58

subroutines waveform output, 137, 155, 172

 machine code, 242 wave simulation, 19

switch write to memory, 31, 183

 hardware debouncing, 115

 software debouncing, 111 X-INDEX, 182

switching outputs, 107

 Y-INDEX, 182

TAB, 33

teletext ZERO bit, 199

 characters, 34 ZN425 DAC, 153

 graphics, 34 ZN427 ADC, 157

 in machine code, 222 ZN428 DAC, 154

temperature measurement, 166 ZN448 ADC, 156

testing, 15

text presentation, 37

timing

 applications 142-52

 in BASIC, 111

 in machine code, 265-72

 with the internal clock, 111

 with timer 1, 127-31

 with timer 2, 131-3

traffic lights, 107

transducers, 163

TRUE, 103

tutorial, 20

two-byte address, 128

two input board, 94, 142

twos complement, 101, 189

user port

 addresses, 106

 configuring, 106

Orignal scan by David Hunt 14th October 2021

396

As a child, I typed in the programs listed in this book with my Physics teacher father. I would suspect

children today would rather not endeavour on such a foolhardy chore! To that end, a double-sided, single

density Acorn DFS disc image containing the majority of the programs in this book should be in the same

folder as this document. Use an emulator such as BeebEm or B-Em to create a BBC Micro environment

to demonstrate these programs. All the listings (and subsequent disc image) have been checked and

corrected where necessary and run on a BBC Model B OS 1.2 and BBC Master 128 OS 3.50.

I need to point out to readers, however, that some of the programs are heavily dependent on I/O such as the

printer port, user port and analogue port, as well as peripherals detailed in the text. Thus, it would be

valuable to transfer the associated disc image to a real floppy disc or via a USB stick to run a Gotek floppy

emulator and running these programs on a hardware BBC Microcomputer Model B or Master 128.

Index

397

The BBC microcomputer in science teaching is an essential source

book for science teachers who want to realize the full potential of

the BBC microcomputer in their teaching — both in the classroom

and in the laboratory.

The BBC microcomputer has many possible uses in the classroom.

The full-colour graphics can be used to create imaginative,

animated teaching programs. Difficult topics like waves and

radioactive decay can be dynamically illustrated. This book shows

you how to write your own programs using fast machine-code

graphics and lists many example programs in full. It examines the

uses of the BBC microcomputer in areas such as testing and

marking, modelling and simulation and the full range of

possibilities in computer assisted learning.

The BBC microcomputer can also be used to great effect in the

laboratory where it can be linked to external devices through an

interface and be used to take measurements and control

experiments. Here too, the book lists many useful programs in full,

showing for example, how time, speed and acceleration can be

measured or how the voltage across a capacitor can be measured

and plotted as it discharges.

This book is an expanded and completely rewritten BBC version of

an earlier book by R. A. Sparkes called Microcomputers in science

teaching.

Some reviews of Microcomputers in science teaching:

'R.A. Sparkes has produced a book, written directly for those

science teachers who have a desire not only to use computers but

also to get behind the coding and know how the programs

work....The text is a goldmine of programming ideas and

techniques showing the way desirable features can be

coded.' School Science Review

'Any teacher, whatever subject or machine, will benefit from a look

through these pages — here's an author who has undoubtedly

spent an immense amount of time producing a wide-ranging and

delightfully readable text.

 One must repeat — brilliant, brilliant, brilliant!' Computers in

Schools

ISBN 0 09 154571 4

