Academia.eduAcademia.edu
Biblid: 1821-4487 (2019) 23; 2; p 88-95 UDK: 581.48 Original Scientific Paper Originalni naučni rad STABILITY OF GRAIN NUMBER PER PANICLE IN A COLLECTION OF AUTUMN OAT (AVENA SATIVA L.) GENOTYPES STABILNOST BROJA ZRNA PO KLASU U KOLEKCIJI OZIMIH GENOTIPOVA OVSA (AVENA SATIVA L.) Emilian MADOSA*, Sorin CIULCA*, Giancarla VELICEVICI*, Adriana CIULCA*, Constantin AVADANEI*, Lavinia SASU** * Banat`s University of Agricultural Sciences and Veterinary Medicine „King Michael I from Romania”, Timisoara, Calea Aradului 119, Romania ** ”Vasile Goldis” Western University, Arad, B-dul Revolutiei 94, Romania e-mail: madosae@yahoo.com ABSTRACT The purpose of this study is to examine the stability of grain number per panicle in a collection of autumn oat genotypes under different climatic conditions. The biological material analysed consisted of 73 oat genotypes studied over a period of three years. The experimental data were obtained by biometric measurements and subsequently processed using the following linear regression models: Finlay-Wilkinson, Hardwick-Wood, Muir and Wrike. The grain number per panicle obtained varied according to the annual climatic conditions both as means and the intrapopulational variability. The Jefferson, Carrie and Florina cultivars, as well as the 4458, PA 725-4743 and PA 822-818 lines, exhibited a high dynamic stability associated with the above-average values of the grain number per panicle. Relative to this character, a total 53.10 % of the genotype x environment interaction is due to the heterogeneity of variances. Key words: oats, stability, grain number per panicle. REZIME Svrha ove studije je da se ispita stabilnost broja zrna po klasu u kolekciji ozimih genotipova ovsa u različitim klimatskim uslovima. Analizirani biološki materijal sastojao se od 73 genotipa ovsa, ispitivanih tokom perioda od tri godine . Eksperimentalni podaci su dobijeni biometrijskim merenjima i naknadno obrađeni korišćenjem sle dećih modela linearne regresije : Finlai-Vilkinson, Hardvick-Vood, Muir i Vrike. Broj zrna po dobijenim klasu varirao je u zavisnosti od godišnjih klimatskih uslova i po srednjoj vrednosti i kao intrapopulacijska varijabilnost. Sorte Jefferson, Carrie i Florina, kao i linije 4458, PA 725-4743 i PA 822-818, pokazale su visoku dinamičku stabilnost povezanu sa iznad-prosečnim vrednostima broja zrna po klasu. U odnosu na ovaj pokazatelj, ukupno 53,10% interakcije između genotipa x i okoline je rezultat heterogenosti varijanse. Ključne reči: ovas, stabilnost, broj zrna po klasu. INTRODUCTION The interaction between the oat genotype and the environment exerts significant effects on the grain production and quality. Under different environmental conditions, oat genotypes vary relative to the production of grains, the mass of 1000 grains, the percentage of chaff, the starch content and the β-glucan content. Oat genotypes with high quality and production values, as well as a high stability of characters, have the ability to pass these attributes to their progeny (Mut Zeki et al. 2018). The production performance of autumn oat genotypes can be evaluated according to precocity, winter resistance, plant height, panicle length, spike number per panicle, grain number and weight per panicle and the mass of 1000 grains. These plant characters are of vital importance to the selection of genotypes in both breeding and hybridization programs (Panayotova Galina et al., 2018). The diversification of production characters has also been attempted through the use of biotechnology in breeding programs. The value of regenerated plants obtained from mature embryos is assessed relative to the height of plants, the length of panicles, the number of spikes per panicle, the number of grains per panicle, the weight of grains per panicle and the weight of 1000 grains. In addition to the morphological features of productivity, it is also necessary to evaluate the quality properties such as the protein and fat contents. Regenerated plants may be higher, featuring longer panicles and larger grain number per panicle (Dyulgerova Boryana and Savova Todorka, 2017). Of the climate factors exerting a major influence on the panicle productivity, drought is 88 the most important. Due to genetic variability, some oat genotypes tolerate drought better than others. The data on valuable oat genotypes can be collated by different genetic variability assessments and measurements of the stress factor effect on the specific morphological character of the plant. One of the characters recommended for evaluation is the grain number per panicle, alongside the grain mass per panicle, i.e. the mass of 1000 grains. The stress factor sensitivity index and the tolerance index (Atefah Zaheri and Sohbat Bahraminejad, 2012) are the stability indicators which should be determined. The stability of panicle productivity can also be examined by comparing some hybrid populations with parental forms. Assessments of generational behaviour over a period of several years have been performed by studying the number of panicles per plant, the number of grains per panicle and the weight of grains per panicle. The combinatorial ability of progenitors has been found to be of paramount importance to the manifestation of certain characters and their response to environmental factors (Igor Pirez Valério et al., 2009). Relative to the character stability in autumn oats, correlations between specific characters can facilitate their determination and better comprehension. A number of studies conducted in Turkey used linear stability regressions and determinants as stability indices for oat character description. The characters examined were affected differently by the interaction between oat genotypes and the environment. The coefficients of correlation obtained for the characters studied differed according to environmental conditions. Furthermore, a correlation was found between the productivity Journal on Processing and Energy in Agriculture 23 (2019) 2 Madosa, Emilian et al./ Stability of Grain Number Per Panicle in a Collection of Autumn Oat (Avena Sativa L.) Genotypes and length of panicles, as well as between the panicle productivity and the grain number per panicle (Özgen, 1993). The oat panicle productivity can be improved by an in-depth knowledge of critical phenological phases. Some authors have recorded the grain number per panicle before and after anthesis. The characters specific to the pre-anthesis phase were in a positive linear correlation with the panicle productivity and the grain number per panicle. The post-anthesis characters were correlated with a decrease in the grain number per panicle and their weight relative to external factors (Finnan and Spink, 2017). Fertilization plays a very important role in achieving a larger grain number per panicle. The application of nitrogenous fertilizers and crop rotation contribute to an increase in the spike and grain numbers per panicle (Rubia Diana Mantai et al., 2018). Studies on the stability of the grain number per panicle in different oat varieties show that this character is more stable than other characters, which, in contrast, exert a greater influence on the panicle productivity. The interaction between oat genotypes and annual climatic conditions is of crucial importance to the panicle productivity, the percentage of grain chaff and the protein content (Dumlupinar Ziya et al., 2011). Upon comparing autumn and spring oats, it was found that grain production is higher in autumn oats on account of a larger spike number per panicle. Moreover, the fertility of spikelets is better, featuring two grains per spikelet. The productivity differences between autumn and spring oats are due to different grain numbers per panicle (Crampton et al., 1997). The present study is aimed at assessing the stability of the grain number per panicle in a collection of autumn oat genotypes. used in the experiment and the biological material analysed consisted of 73 genotypes of autumn oat, which were compared with the Romanian cultivar Florina. The experimental data were obtained by determining the grain number per panicle of each oat genotype under consideration. This method of assessing the stability of genotypes under different environmental conditions is based on the fact that different components of the genotype x environment interaction are linearly related and reflected in the characters of all the genotypes examined. The relative adaptability of a genotype to different environmental conditions is based on three parameters: the average genotype performance, the genotype response to different environmental conditions (the regression coefficient) and the stability of genotype performance (regression deviations). According to the “static” concept, the Type I stability occurs provided the genotype performance is constant across the environment conditions considered (the regression coefficient bi = 0). Therefore, the “dynamic” Type II stability occurs provided the genotype response to the environment is parallel to the mean response of all the genotypes under consideration. The type III stability occurs provided the deviation from the regression line is small (Annicchiarico, 2002; Bernardo, 2002). The following models were used for data processing in the present study: Finlay-Wilkinson, Hardwick-Wood, Muir and Wrike (Ciulca, 2006). For analyzing the genotype x environment interaction, a total of two components were taken into account: the heterogeneity of genetic variants and the imperfection of correlations. The relationship between the results of different methods for assessing the stability of the studied characters was established using the coefficient of concordance (Muir et al., 1992). RESULTS AND DISCUSSION MATHERIAL AND METHOD The present study was conducted under field conditions in Timisoara, Western Romania, over a period of three years (20152017). The first year of the experiment was characterised by favourable climate conditions. Rainfall was low in the spring of the second experimental year, whereas drought was prolonged in the third experimental year until early summer. Over the experimental period of three years, the temperatures recorded were close to the multi-year averages. A chernozemic soil was On the basis of the data presented in Table 1, it can be observed that the highest Type I stability was recorded in the following oat genotypes: 4451, Chamois, Penwin, Emperor and Thonson (Becker and Leon, 1988; Annicchiarico., 2002). The lowest Type I stability relative to the grain number per main panicle was recorded in the following oat lines and cultivars: 4492, PA 522-23, 4482, Barra and Fergushon. Table 1. Stability of the grain number/main panicle through (FINLAY-WILKINSON) the linear regression for the winter oat genotypes under consideration No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Genotype Florina (control) Norline Arlingthon Blamouth CI 1908 Cimarron Crater Earlygrain Excel Fergushon Fulwood Jefferson Le Conte Nortex Suergrain Average 47.17 44.71 36.34 33.16 29.45 28.47 34.64 29.93 42.72 44.88 44.94 43.29 29.84 37.82 48.07 Regression coefficient 1.476 0.459 0.823 0.587 0.515 0.883 1.148 0.333 1.779 2.169 0.666 1.006 0.214 1.086 1.165 Type I (rank) Journal on Processing and Energy in Agriculture 23 (2019) 2 54 17 28 22 19 34 43 14 66 69 25 36 8 41 45 Stability Type III (rank) 49 38 22 30 53 65 63 18 43 68 8 24 45 1 41 Type II (rank) 34 38,5 18 26 37 5 16 44 59 63 22 3 49 11 17 Regression constant o -14.29 25.61 2.06 8.72 8.01 -8.30 -13.18 16.04 -31.36 -45.43 17.19 1.39 20.92 -7.41 -0.43 Deviation from regression 61.10 37.31 10.31 24.02 69.65 148.96 118.04 4.63 49.60 297.41 2.44 12.33 50.89 0.01 44.88 89 Madosa, Emilian et al./ Stability of Grain Number Per Panicle in a Collection of Autumn Oat (Avena Sativa L.) Genotypes 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 90 Thonson Walken Compact Pennwin 2288 3378 834-4-1-3 3412 S Dak 40 3868 Cocker 41-51 4444 4451 4458 4472 4475 4476 4477 4478 4480 4482 4483 4484 4488 4492 5029 5032 Marrettos Anderson 8276 PA 522-7 PA 522-23 PA 621-3274 PA 724-2580 PA 725-2154 PA 725-4743 PA 725-4787 PA 725-6113 PA 822-818 ARK 0151-61 AR 104-18 Marys Quest Wodan Gospodarski 48 5183 Tripolis Krusevac Boer Algerian Mirabel Gerald Nuptiale Solva Valiant Barra Carrie Krypton Chamois Emperor 40.75 37.16 46.35 41.54 47.92 54.75 39.31 36.59 63.93 43.33 39.79 61.64 36.89 45.11 31.26 36.54 49.74 37.78 26.62 38.51 45.85 43.94 28.91 28.83 49.40 41.47 55.12 46.86 45.62 47.71 44.41 52.59 33.82 45.70 45.38 42.12 34.62 48.59 44.17 47.88 39.44 52.56 31.43 41.28 51.64 40.28 45.02 27.78 39.78 39.95 35.94 39.79 48.97 56.75 44.06 31.15 32.48 37.54 -0.160 1.021 1.251 0.128 0.623 1.623 0.667 -0.485 1.453 1.313 -0.195 2.063 -0.085 0.824 0.263 1.541 1.219 -0.225 0.854 0.411 2.317 1.653 0.826 0.542 2.831 1.010 1.711 1.619 1.566 1.598 2.428 2.168 0.840 0.723 1.086 0.410 0.250 0.935 1.321 1.221 0.534 1.635 0.232 1.046 1.317 1.607 1.663 1.058 1.265 1.526 0.200 0.633 1.148 2.289 0.881 0.272 0.091 0.130 5 38 48 3 23 61 26 18 53 50 6 67 1 29 12 56 46 9 32 16 71 63 30 21 73 37 65 60 57 58 72 68 31 27 42 15 11 35 52 47 20 62 10 39 51 59 64 40 49 55 7 24 44 70 33 13 2 4 26 17 20 37 55 7 27 51 5 50 42 14 32 35 19 66 23 58 71 11 67 57 13 2 56 73 44 9 39 64 15 21 6 4 62 69 33 48 10 29 12 3 28 61 52 16 47 72 60 54 36 25 40 46 31 59 70 34 69 1 27 62 25 53 21 73 33 29 70 60 66 14 46 38,5 19 71 7,5 40 67 56 12,5 32 72 2 58 52 41 42 68 61 12,5 20 10 43 47 4 31 24 35 54 48 6 30 50 57 9 28 36 51 23 15 64 7,5 45 65 55 47.41 -5.36 -5.76 36.21 21.97 -12.85 11.55 56.80 3.43 -11.35 47.91 -24.27 40.41 10.79 20.31 -27.63 -1.01 47.16 -8.94 21.38 -50.64 -24.90 -5.51 6.25 -68.50 -0.59 -16.14 -20.58 -19.57 -18.85 -56.71 -37.70 -1.14 15.59 0.16 25.06 24.23 9.64 -10.84 -2.96 17.21 -15.52 21.76 -2.27 -3.19 -26.61 -24.25 -16.26 -12.89 -23.62 27.60 13.44 1.15 -38.59 7.39 19.82 28.69 32.14 13.38 4.55 6.86 35.11 77.09 1.95 14.49 64.32 0.94 63.47 46.17 3.90 26.64 29.65 5.57 193.98 11.44 87.89 348.61 2.83 280.29 82.17 3.72 0.04 79.93 673.01 49.94 2.50 40.45 145.17 4.39 7.66 1.42 0.06 116.52 327.16 27.18 53.59 2.73 20.29 3.06 0.04 17.96 99.17 65.86 4.52 53.37 397.35 96.80 73.75 33.70 13.15 41.08 52.20 24.14 93.29 335.38 28.39 Journal on Processing and Energy in Agriculture 23 (2019) 2 Madosa, Emilian et al./ Stability of Grain Number Per Panicle in a Collection of Autumn Oat (Avena Sativa L.) Genotypes The highest Type II stability (the coefficients of regression close to 1) was recorded in the following oat cultivars and lines: Walken, 5029, Jefferson, PA 822-818 and Cimarron. The lowest dynamic stability was observed in the following genotypes: 3412, 4492, 4477, Cocker 41-51 and Thonson. The highest Type III stability was observed in the following genotypes: Nortex, 4488, Wodan, PA 725-2154 and S Dak 40. The genotypes 5029, 4478, Algerian, Chamois and PA 725-4787, with a reduced type III stability, exhibited significant differences in the grain number per main panicle during the three-year experimental period. Considering the low and insignificant values of the F test for the regression heterogeneity, it can be concluded that the regression model is suitable for studying the stability of this character and estimates adequately the performance of cultivars and lines over the three-year experimental period. It can also be argued that there are significant differences between the genotypes examined and experimental years relative to the average values of the grain number per main panicle across the oat genotypes under consideration (Table 2). Table 2. Linear regression analysis of variance (HARDWICK – WOOD) for the grain number/main panicle of the winter oat genotypes under consideration during 2001-2004 Source of variability Total Genotypes Years Genotype x years Regression heterogeneity Error SS 50714 13947 23963 16803 DF 218 72 2 144 MS F 193,72 11981 116,69 F = 2.65** F = 164.13** F = 1.59* 7481 72 103,90 5322 72 73,92 *; ** Significant at P ≤ 0.05 and P ≤ 0.01, respectively The lowest significant values of ecovalence and a high stability of the grain number per main panicle were recorded in the following genotypes: Nortex, Walken, PA 724-2580, Jefferson and 4484. High values of the ecological valence, indicating a marked instability of the character under different climatic conditions, were observed in the following cultivars: 4492, 4482, 3412, Fergushon and PA 52223. On balance, the high values of ecovalence obtained, or the reduced stability of this character, are associated with higher values of the grain number per main panicle. (Table 3) Table 3. Stability of grain number/main panicle through (WRIKE) the ecovalence values of the winter oat genotypes under consideration Ecov. Stab. F test No Genotype Average Ecov. vari. rank Florina 1 47.17 135.43 388.05 11.70** 37 (control) 2 Norline 44.71 133.46 53.21 1.85 36 3 Arlingthon 36.34 20.56 116.43 21.57** 6 4 Blamouth 33.16 80.04 68.55 4.71** 23 5 CI 1908 29.45 146.87 78.36 1.25 39 6 Cimarron 28.47 153.46 202.44 1.72 42 7 Crater 34.64 125.28 275.50 3.67* 31 8 Earlygrain 29.93 150.48 20.56 7.88** 40 9 Excel 42.72 248.92 544.39 20.95** 51 10 Fergushon 44.88 745.91 920.81 5.19** 70 11 Fulwood 44.94 38.96 74.13 59.58** 13 12 Jefferson 43.29 12.31 172.29 26.91** 4 13 Le Conte 29.84 253.60 32.98 0.30 52 14 Nortex 37.82 2.46 193.71 25335** 1 Journal on Processing and Energy in Agriculture 23 (2019) 2 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 Suergrain Thonson Walken Compact Pennwin 2288 3378 834-4-1-3 3412 S Dak 40 3868 Cocker 41-51 4444 4451 4458 4472 4475 4476 4477 4478 4480 4482 4483 4484 4488 4492 5029 5032 Marr. Ander. 8276 PA 522-7 PA 522-23 PA 621-3274 PA 724-2580 PA 725-2154 PA 725-4743 PA 725-4787 PA 725-6113 PA 822-818 48.07 53.78 245.05 9.92** 17 40.75 151.95 10.88 0.63 41 37.16 4.70 173.36 75.11** 2 46.35 27.61 260.45 74.87** 9 41.54 284.72 20.25 0.15 56 47.92 123.71 102.29 1.65 30 54.75 129.54 433.55 441.45** 34 39.31 50.95 80.21 10.07** 16 36.59 788.52 70.82 1.20 71 63.93 68.30 346.98 735.01** 20 43.33 95.65 314.72 8.92** 24 39.79 514.99 29.33 0.27 64 61.64 374.96 700.62 358.05** 59 36.89 412.81 14.50 0.09 61 45.11 39.82 126.28 7.52** 14 31.26 183.85 14.15 4.07* 44 36.54 290.05 486.74 4.02* 57 49.74 27.14 249.50 42.62** 8 37.78 580.71 52.27 0.19 65 26.62 355.60 294.04 0.69 58 38.51 116.57 29.19 19.60** 27 45.85 849.93 1021.52 6.29** 72 43.94 222.18 489.60 10.92** 49 28.91 13.62 113.96 60.13** 5 28.83 68.80 48.30 2019** 21 49.40 1190.98 1355.81 32.92** 73 41.47 673.04 503.95 0.50 68 55.12 216.09 505.71 19.25** 48 46.86 128.48 431.72 343.34** 33 45.62 145.49 422.56 19.89** 38 47.71 262.70 491.90 5.78** 53 44.41 674.08 970.03 440.17** 69 52.59 455.67 775.45 201.27** 63 33.82 9.87 116.40 163.12** 3 45.70 25.24 85.84 2534** 7 45.38 118.96 251.84 3.32* 28 42.12 441.54 191.14 0.17 62 34.62 212.00 23.82 0.75 47 48.59 54.97 170.38 5.36** 18 ARK 0151-61 44.17 36.58 287.82 209.65** 12 AR 104-18 47.88 36.31 254.80 24.11** 11 Marys Quest 39.44 74.38 48.31 30.55** 22 Wodan 52.56 132.39 438.76 21514** 35 Gospod. 48 31.43 211.47 17.83 0.99 46 5183 41.28 99.87 229.12 3.62* 26 Tripolis 51.64 98.80 317.51 8.64** 25 Krusevac 40.28 125.28 425.88 187.31** 32 Boer 45.02 197.86 480.85 17.02** 45 Algerian 27.78 398.45 382.33 0.92 60 Mirabel 39.78 119.87 311.07 5.43** 29 Gerald 39.95 164.74 419.33 10.37** 43 Nuptiale 35.94 243.71 23.43 0.39 50 Solva 39.79 57.45 72.27 9.99** 19 Valiant 48.97 48.30 236.94 10.53** 15 Barra 56.75 597.96 886.37 32.96** 66 Carrie 44.06 28.82 139.36 10.54** 10 Krypton 31.15 267.20 58.80 0.26 54 Chamois 32.48 606.56 169.06 0.01 67 Emperor 37,54 277,10 16,95 0,19 55 *; ** Significant at P ≤ 0.05 and P ≤ 0.01, respectively 91 Madosa, Emilian et al./ Stability of Grain Number Per Panicle in a Collection of Autumn Oat (Avena Sativa L.) Genotypes An analysis of the genotype x environment interaction (Table 4) showed that the highest stability of the grain number per main panicle, i.e. a low genotype x environment interaction, was recorded in the following genotypes: Nortex, Walken, Jefferson, PA 724-2580, 4484 and PA 725-2154. A high genotype x environment interaction, associated with a high instability of this character, was observed in the the genotypes 4492, 4482, 3412 and Fergushon. In this case, a total of 53.10 % of the genotype x environment interaction is due to the heterogeneity of variants. The heterogeneity of variants and imperfect correlations can be effectively used for assessing the stability of the grain number per main panicle. Relative to the variance heterogeneity, the most stable values of the grain number per panicle were recorded in the varieties Cimarron, Nortex, Suergrain and Valiant, as well as in the lines PA 725-4787 and 5183. There is a close concordance between the results of the four models used for assessing the stability of the grain number per main panicle. According to these models, the greatest stability of this character was recorded in the following genotypes: Nortex, Walken, PA 725-2154, Jefferson and Fulwood. A great instability was observed in the following cultivars and lines: 4482, 4492, Fergushon, Barra and PA 522-23. (Table 5) Table 4. Stability of the grain number/ main panicle through (MUIR) the heterogeneous variances (HV) and imperfect correlations (IC) for the winter oat genotypes under consideration during 2001-2004 SS SS SS No Genotype Average (HV) (%) (IC) (%) (GE) (%) 1 Florina (mt.) 47.17 85.42 0.96 97.39 1.24 182.81 1.09 2 Norline 44.71 116.98 1.31 64.84 0.82 181.82 1.08 3 Arlingthon 36.34 76.94 0.86 48.43 0.61 125.37 0.75 4 Blamouth 33.16 103.22 1.16 51.89 0.66 155.11 0.92 5 CI 1908 29.45 96.11 1.08 92.41 1.17 188.53 1.12 6 Cimarron 28.47 61.40 0.69 130.42 1.65 191.82 1.14 7 Crater 34.64 64.46 0.72 113.27 1.44 177.73 1.06 8 Earlygrain 29.93 165.85 1.86 24.49 0.31 190.33 1.13 9 Excel 42.72 134.45 1.51 105.11 1.33 239.55 1.43 10 Fergushon 44.88 303.73 3.40 184.33 2.34 488.06 2.90 11 Fulwood 44.94 99.04 1.11 35.53 0.45 134.57 0.80 12 Jefferson 43.29 63.81 0.72 57.45 0.73 121.26 0.72 13 Le Conte 29.84 142.58 1.60 99.31 1.26 241.89 1.44 14 Nortex 37.82 61.84 0.69 54.49 0.69 116.32 0.69 15 Suergrain 48.07 61.90 0.69 80.08 1.02 141.98 0.84 16 Thonson 40.75 192.67 2.16 149.90 1.90 342.57 2.04 17 Walken 37.16 63.88 0.71 53.76 0.68 117.44 0.70 18 Compact 46.35 62.99 0.71 65.91 0.84 128.90 0.77 19 Pennwin 41.54 166.56 1.87 90.89 1.15 257.45 1.53 20 2288 47.92 82.78 0.93 94.17 1.19 176.95 1.05 21 3378 54.75 97.76 1.10 82.11 1.04 179.86 1.07 22 834-4-1-3 39.31 94.90 1.06 45.67 0.58 140.57 0.84 23 3412 36.59 101.48 1.14 407.87 5.18 509.35 3.03 24 S Dak 40 63.93 76.00 0.85 73.24 0.93 149.24 0.89 25 3868 43.33 69.94 0.78 92.97 1.18 162.92 0.97 26 Cocker 41-51 39.79 148.59 1.67 224.00 2.84 372.59 2.22 27 4444 61.64 198.02 2.22 104.56 1.33 302.57 1.80 28 4451 36.89 181.26 2.03 140.24 1.78 321.50 1.91 29 4458 45.11 73.58 0.82 61.42 0.78 135.00 0.80 30 4472 31.26 182.28 2.04 24.74 0.31 207.01 1.23 31 4475 36.54 114.31 1.28 145.81 1.85 260.12 1.55 32 4476 49.74 62.17 0.70 66.50 0.84 128.66 0.77 33 4477 37.78 117.94 1.32 287.51 3.65 405.45 2.41 34 4478 26.62 66.77 0.75 226.12 2.87 282.89 1.74 35 4480 38.51 148.82 1.67 24.55 0.31 173.38 1.03 36 4482 45.85 356.70 4.00 183.36 2.33 540.95 3.21 37 4483 43.94 115.26 1.29 110.92 1.41 226.18 1.35 38 4484 28.91 77.87 0.87 44.03 0.56 121.90 0.73 39 4488 28.83 122.24 1.37 27.25 0.35 149.49 0.89 40 4492 49.40 547.44 6.14 158.14 2.01 705.58 4.20 41 5029 41.47 120.10 1.35 331.51 4.21 451.61 2.69 42 5032 55.12 120.70 1.35 102.43 1.30 223.14 1.33 43 Marr. Ander. 46.86 97.22 1.09 82.11 1.04 179.33 1.07 44 8276 45.62 94.61 1.06 93.23 1.18 187.84 1.12 45 PA 522-7 47.71 116.02 1.30 130.42 1.65 246.44 1.47 92 Journal on Processing and Energy in Agriculture 23 (2019) 2 Madosa, Emilian et al./ Stability of Grain Number Per Panicle in a Collection of Autumn Oat (Avena Sativa L.) Genotypes 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 PA 522-23 329.31 3.69 122.82 1.56 452.13 2.69 232.15 2.60 110.77 1.41 342.93 2.04 76.95 0.86 43.08 0.55 120.03 0.71 91.40 1.02 36.31 0.46 127.71 0.76 62.32 0.70 112.25 1.42 174.57 1.04 62.00 0.69 273.86 3.47 335.86 2.00 158.88 1.78 62.22 0.79 221.09 1.32 64.06 0.72 78.52 1.00 142.58 0.85 65.94 0.74 67.44 0.86 133.38 0.79 AR 104-18 62.54 0.70 70.71 0.90 133.25 0.79 Marys Quest 122.23 1.37 30.05 0.38 152.28 0.91 Wodan 99.22 1.11 82.01 1.04 181.29 1.08 Gospod. 48 172.32 1.93 48.50 0.62 220.82 1.31 5183 61.25 0,.69 103.78 1.32 165.03 0.98 Tripolis 70.42 0.79 94.02 1.19 164.49 0.98 Krusevac 95.45 1.07 82.19 1.04 177.73 1.06 Boer 112.37 1.26 101.65 1.29 214.02 1.27 Algerian 84.01 0.94 230.31 2.92 314.32 1.87 Mirabel 69.34 0.78 105.68 1.34 175.03 1.04 Gerald 93.70 1.05 103.76 1.32 197.46 1.18 Nuptiale 159.69 1.79 77.26 0.98 236.95 1.41 Solva 100.39 1.13 43.43 0.55 143.82 0.86 Valiant 61.50 0.69 77.74 0.99 139.24 0.83 Barra 286.21 3.21 127.86 1.62 414.07 2.46 Carrie 69.89 0.78 59.61 0.76 129.50 0.77 Krypton 111.53 1.25 137.17 1.74 248.69 1.48 Chamois 64.23 0.72 354.14 4.49 418.37 2.49 Emperor 174.56 1.96 79.08 1.00 253.64 1.51 TOTAL 8922.37 53.10 7881.05 46.90 16803.42 100.00 HV - Heterogenity variance; IC - Imperfect correlations; GE - Genotype x environment interaction; SS – Sum square PA 621-3274 PA 724-2580 PA 725-2154 PA 725-4743 PA 725-4787 PA 725-6113 PA 822-818 ARK 0151-61 44.41 52.59 33.82 45.70 45.38 42.12 34.62 48.59 44.17 47.88 39.44 52.56 31.43 41.28 51.64 40.28 45.02 27.78 39.78 39.95 35.94 39.79 48.97 56.75 44.06 31.15 32.48 37.54 Table 5. Concordance of ranks of different stability estimation models for the grain number/main panicle of the winter oat genotypes under consideration Ranks stability No. Genotype Average Amounts ranks SSR Type I Type II Type III Ecovalence 1 Florina (mt.) 47.17 54 34 49 37 174 676 2 Norline 44.71 17 38.5 38 36 129,5 342.25 3 Arlingthon 36.34 28 18 22 6 74 5476 4 Blamouth 33.16 22 26 30 23 101 2209 5 CI 1908 29.45 19 37 53 39 148 0 6 Cimarron 28.47 34 5 65 42 146 4 7 Crater 34.64 43 16 63 31 153 25 8 Earlygrain 29.93 14 44 18 40 116 1024 9 Excel 42.72 66 59 43 51 219 5041 10 Fergushon 44.88 69 63 68 70 270 14884 11 Fulwood 44.94 25 22 8 13 68 6400 12 Jefferson 43.29 36 3 24 4 67 6561 13 Le Conte 29.84 8 49 45 52 154 36 14 Nortex 37.82 41 11 1 1 54 8836 15 Suergrain 48.07 45 17 41 17 120 784 16 Thonson 40.75 5 69 26 41 141 49 17 Walken 37.16 38 1 17 2 58 8100 18 Compact 46.35 48 27 20 9 104 1936 19 Pennwin 41,.54 3 62 37 56 158 100 20 2288 47.92 23 25 55 30 133 225 21 3378 54.75 61 53 7 34 155 49 22 834-4-1-3 39.31 26 21 27 16 90 3364 23 3412 36.59 18 73 51 71 213 4225 24 S Dak 40 63.93 53 33 5 20 111 1369 25 3868 43.33 50 29 50 24 153 25 Journal on Processing and Energy in Agriculture 23 (2019) 2 93 Madosa, Emilian et al./ Stability of Grain Number Per Panicle in a Collection of Autumn Oat (Avena Sativa L.) Genotypes 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 Cocker 41-51 39.79 6 4444 61.64 67 4451 36.89 1 4458 45.11 29 4472 31.26 12 4475 36.54 56 4476 49.74 46 4477 37.78 9 4478 26.62 32 4480 38.51 16 4482 45.85 71 4483 43.94 63 4484 28.91 30 4488 28.83 21 4492 49.40 73 5029 41.47 37 5032 55.12 65 Marre. Ande. 46.86 60 8276 45.62 57 PA 522-7 47.71 58 PA 522-23 44.41 72 PA 621-3274 52.59 68 PA 724-2580 33.82 31 PA 725-2154 45.70 27 PA 725-4743 45.38 42 PA 725-4787 42.12 15 PA 725-6113 34.62 11 PA 822-818 48.59 35 ARK 0151-61 44.17 52 AR 104-18 47.88 47 Marys Quest 39.44 20 Wodan 52.56 62 Gospodarski 48 31.43 10 5183 41.28 39 Tripolis 51.64 51 Krusevac 40.28 59 Boer 45.02 64 Algerian 27.78 40 Mirabel 39.78 49 Gerald 39.95 55 Nuptiale 35.94 7 Solva 39.79 24 Valiant 48.97 44 Barra 56.75 70 Carrie 44.06 33 Krypton 31.15 13 Chamois 32.48 2 Emperor 37.54 4 Sum 2701 SSR – Regression sum square; χ2 =124.12***; 70 42 64 60 14 59 66 32 61 14 35 14 46 19 44 38,5 66 57 19 23 8 71 58 65 7,5 71 58 40 11 27 67 67 72 56 57 49 12,5 13 5 32 2 21 72 56 73 2 73 68 58 44 48 52 9 33 41 39 38 42 64 53 68 15 69 61 21 63 12,5 6 3 20 4 7 10 62 28 43 69 62 47 33 47 4 48 18 31 10 12 24 29 11 35 12 22 54 3 35 48 28 46 6 61 26 30 52 25 50 16 32 57 47 45 9 72 60 28 60 29 36 54 43 51 36 50 23 25 19 15 40 15 64 46 66 7,5 31 10 45 59 54 65 70 67 55 34 55 2701 2701 2701 χ20.1% =112,32; *** Significant at P ≤ 0.001 Relative to all the oat genotypes under consideration, the number of genotypes with a good stability of the grain number per panicle is small. The results obtained are consistent with the results of a study on the character stability in oats including 11 oat genotypes from India examined at six different locations. Of the 11 genotypes evaluated, only three had a good panicle stability, which was also tested according to the grain number per panicle (Uzma et al., 2017). The oat character stability can be assessed by examining a specific character over different periods of time and at different locations. Such combined studies are more selective, highlighting the genotypes with the highest 94 182 200 160 92 121 217,5 96 203 168,5 94 277 225 60,5 76 274 180 215 154 175 217 224 213 52,5 58 142 189 138 105 105 111 89 154 132 132 158 157 213 181 166 188 144 91 114 246 81,5 171 204 148 10804 1156 2704 144 3136 729 4830.25 2704 3025 420.25 2916 16641 5929 7656.25 5184 15876 1024 4489 36 729 4761 5776 4225 9120.25 8100 36 1681 100 1849 1849 1369 3481 36 256 256 100 81 4225 1089 324 1600 16 3249 1156 9604 4422.25 529 3136 0 223496 degree of adaptation to different stress conditions. A plant’s productivity-stability analysis aims to verify the plant’s response to the environmental-genotype interactions. Through such elaborate studies, it has been found that approximately two out of ten oat genotypes exhibit a good stability (Mushtaq et al., 2013). CONCLUSION The number of grains per panicle is a major component of plant productivity. The values of this character vary on an annual Journal on Processing and Energy in Agriculture 23 (2019) 2 Madosa, Emilian et al./ Stability of Grain Number Per Panicle in a Collection of Autumn Oat (Avena Sativa L.) Genotypes basis. The varieties Jefferson, Carrie and Florina, as well as the lines 4458, PA 725-4743 and PA 822-818, were found to exhibit a high dynamic stability associated with high values of the grain number per panicle. Oat genotypes with a low variability in the grain number per panicle under different environmental conditions, such as the Thomson, Penwin and Cocker 41-51 cultivars, are of great importance to breeding programs. Relative to all the processing models employed, the greatest stability of this character was recorded in the following genotypes: Nortex, Walken, PA 725-2154, Jefferson and Fulwood. REFERENCES Annicchiarico, P. (2002). Defining adaptation strategies and yield stability targets inbreeding programmes. In M.S. Kang, ed. Quantitative genetics, genomics, and plant breeding, Wallingford, UK,CABI;,365-383. Atefah, Z., Sohbat, B. (2012). Assessment of drought tolerance in oat (Avena sativa) genotypes, Annals of Biological Research, 3 (5), 2194-220. Becker, H.C., Leon, J. (1988). Stability analysis in plant breeding. Plant breed.,101, 1-23. Bernardo, R. (2002) Breeding for quantitative traits in Plants, Stemma Press, Woodbury, Minnesota. Ciulca, S. (2006). Metodologii de experimentare în agricultură şi biologie. Ed. Agroprint, Timişoara. Crampton, M.W., Moot D.J. , Martin R.J. (1997). Kernel weight distribution within oat (Avena sativa L.) panicles Proceedings Agronomy Society of N.Z., 27, 83-87. Dumlupinar, Z., Maral, H., Kara, R., Dokuyucu, T., Akkaya, A. (2011). Evaluation of turkish oat landraces based on grain yield, yield components and some quality traits, Turkish Journal of Field Crops, 16(2), 190-196. Dyulgerova, Boryana, Savova, Todorka (2017). Agronomic evaluation of regenerant oat (Avena sativa L.) lines, Bulgarian Journal of Crop Science, 54(4). Igor Pirez Valério, Irajá Félix de Carvalho, F., Costa de Oliveira, A., Lorencetti, C., Queiroz de Souza,V., Gonzáles da Silva, J.A., Harwig, I., Mallmann Schmidt,D.A., Bertan, I., Journal on Processing and Energy in Agriculture 23 (2019) 2 Ribeiro,G. (2009). Yield and combining ability stability in different oat populations Ciências Agrárias, Londrina, 30 (2), 331-346. Finnan, J. M., Spink, L. (2017). Identification of yield limiting phenological phases of oats to improve crop management, J.Agr,Crop.Sci., 155 (1), 1-17. Muir, W., Nyquist, W. E., Xu, S. (1992). Alternative partitioning of the genotype - by - environment interaction. Theor.Appl.Genet., 84, 193-200. Mushtaq, A., Gul Z., Razvi, S.M., Mir, S.D., Rather, M.A. (2013). Stability Properties of Certain Oats (Avena sativa L.) Genotypes for Major Grain Yielding Characteristics. International Journal of Plant Breeding and Genetics, 7, 182187. Mut, Zeki, Akay, H., Özge, E.K. (2018). Grain yield, quality traits and grain yield stability of local oat cultivars. Journal of Soil Science and Plant Nutrition, 18 (1), 269-281. Ozgen M. (1993). Environmental Adaptation and Stability Relationships between Grain Yield and some Agronomic Traits in Winter Oat, J.Agr,Crop.Sci. 70(2), 128-135. Panayotova, Galina, Savova, Todorka, Dyulgerova, Boryana (2018). Genetic diversity in different accessions of oat (Avena sativa L.). Agricultural Science And Technology, 7(1), 45 – 48. Rubia, Diana, Mantai, Gonzalez da Silva J.A., Ghisleni Arenhardt, E., Bruneslau Scremin, O.,Woschinski de Mamann, Angela Teresinha, Zancan Frantz, R., Valdiero A.C., Pretto, R., Ketzer Krysczun, I., (2018). Simulation of oat grain (Avena sativa) using its panicle components and nitrogen fertilizer, African Journal of Agricultural Research,. 11(40), 3975-3983. Uzma, M., Ishfaq, A., Mushtaq, A., Gul Z., Dar, Z.A., Rather, M.A., Ajaz, A. (2017). Lone Stability analysis for physiological traits, grain yield and its attributing parameters in oats (Avena sativa L.) in the Kashmir valley, Electronic Journal of Plant Breeding, 8(1), 59-62. Received: 20. 02. 2019. Accepted: 28. 03. 2019. 95