Academia.eduAcademia.edu
Copyright by Jennifer Alane Tate 2002 The Dissertation Committee for Jennifer Alane Tate certifies that this is the approved version of the following dissertation: Systematics and Evolution of Tarasa Philippi (Malvaceae): An enigmatic Andean polyploid genus Committee: Beryl B. Simpson, Supervisor David M. Hillis Robert K. Jansen Donald A. Levin José L. Panero Systematics and Evolution of Tarasa Philippi (Malvaceae): An enigmatic Andean polyploid genus by Jennifer Alane Tate, B.S. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August, 2002 Acknowledgements This dissertation certainly would not have come to fruition without the assistance of many individuals. I would first like to thank my advisor, Beryl Simpson, for her continual support and guidance through the years. My committee members: Bob Jansen, Don Levin, José Panero, and David Hillis were each helpful at various stages of my graduate career. I would also like to thank Alan Lloyd for serving on my qualifying exam. The botany graduate students at UT were a major factor in my decision to join the program. My cohorts in the Simpson lab have provided an unparalleled stimulating environment to work in over the years. Megan Helfgott was unbelievably patient with me as a newcomer to the lab. She was ever encouraging and never laughed at my ignorance in molecular ways. Martín Timaná, my Andean brother, translated many Spanish documents for me and was a wonderful travel companion during two trips to South America. Heidi Meudt and Mauricio López Langenbach were likewise a great pair to travel with in Chile. Heidi’s enthusiasm for the natural world is infectious. Mauricio (an honorary member of the Simpson lab) translated Spanish and German documents and introduced me to the wonderful world of empanadas! Fellow GOBOGS gals Katie Hansen, Andrea Weeks, and Leah Larkin were always up for stimulating conversations over beer and offered many helpful suggestions. Sarah Simmons knows me better than most and is still my friend. Vaughan Symonds provided daily personal and professional support for which I am most grateful. Many other graduate students were a welcome source of knowledge and humor through the years, particularly Todd Barkman, Karen Clary, Jennifer iv Clevinger, Geoff Denny, Doug Goldman, Joshua McDill, Gani Padolina, Anneke Schulmann, Ruth Timme, and Brian Van den Heuvel. I have benefited from the wisdom and generosity of many systematists throughout my degree program. Mark Chase (Kew Gardens) sent DNA aliquot of Tarasa humilis. John La Duke (University of North Dakota) sent DNA, ITS sequences for the Malveae chapter, and lended advice for germinating mallow seeds. Javier Fuertes Aguilar (Real Jardin Botanico, Madrid) and Tracey Slotta (Virginia Polytechnic Institute) provided sequences for the Malveae chapter. Javier taught me to “just add water”. Derrick Zwickl provided much needed assistance with using the program Seq-gen and the use of his program Logreader. Zaiming Zhao taught me the invaluable skill of identifying pollen mother cells in chromosome squashes. Jonathan Wendel offered sequencing advice early in my study. Paul Fryxell provided his amazing Malvaceae specimen and literature collection, as well as his superior knowledge of the family many times. Many staff members at UT were instrumental in various ways during the dissertation process. I would particularly like to thank Theresa Barnes, Susan Cook, John Lucio, Sandy Monahan, Tamra Rogers, Dena Sutton, and Paul Ward. John Mendenhall took the SEM photos in Chapter 4. I would also like to thank the curators of the herbaria from which I borrowed specimens (AAU, B, BM, C, CAS, CONC, CORD, CTES, F, G, GB, GH, GOET, K, LPB, MEXU, MO, NY, OS, S, SGO, SI, TEX/LL, UC, UPS, US, USM), particularly those that allowed me to remove material for various studies. A special thanks is deserved to Tom Wendt for all his efforts. v I am particularly thankful that my family has always been encouraging of my desire to pursue a botanical career. Their support of my nerdy endeavors has not gone unnoticed. Funding for this project was provided by the National Science Foundation, Doctoral Dissertation Improvement Grant; Botanical Society of America, J.S. Karling Award; American Society of Plant Taxonomists, Graduate Student Research Award; Sigma Xi, Grants-in-Aid of Research; University of Texas at Austin, Institute of Latin American Studies, Faculty Sponsored Grant for Field Research in Latin America; University of Texas at Austin, Department of Botany, Graduate Student Research Award. I am also thankful for a University Continuing Fellowship that allowed me to make great progress on my dissertation. vi Systematics and Evolution of Tarasa Philippi (Malvaceae): An enigmatic Andean polyploid genus Publication No._____________ Jennifer Alane Tate, Ph.D. The University of Texas at Austin, 2002 Supervisor: Beryl B. Simpson This work represents a progression from a large scale molecular phylogeny to a species level study of breeding systems. A phylogenetic approach utilizing molecular sequence data was employed to evaluate the current infratribal circumscription and generic relationships within the tribe Malveae (subfamily Malvoideae, Malvaceae). The resulting ITS phylogeny indicates that many of the alliances as well as several genera are not monophyletic and suggests that the current classification needs revision. An in depth phylogenetic examination of one Malveae genus, Tarasa Philippi, and suggested close relatives, Nototriche Turcz. and Sphaeralcea St.-Hil, was also conducted using nuclear and chloroplast sequence data. The monophyly of Tarasa was rejected in both the nuclear and chloroplast trees. Surprisingly, the morphologically similar tetraploid species also did not form a single clade, which indicates that the tetraploids have been formed multiple times. Geographic and molecular data suggest that the tetraploid species may have been vii derived from multiple encounters between different sympatric diploid annual species. Although multiple origins of polyploidy in Tarasa is not a novel finding, the apparent morphological convergence of the tetraploid species is most intriguing particularly because they violate two traditional dogmas of polyploids: they are annuals and have smaller pollen grains than their diploid relatives. A study of the breeding systems and pollen characteristics for Tarasa diploid and tetraploid species also revealed unexpected findings. Pollen/ovule (p/o) ratios were used as an indirect measure of the degree of outcrossing versus selfing and greenhouse studies provided direct evidence of self-compatibility as well as autogamy in the plants. Tarasa species follow the predicted trend of low p/o ratios in autogamous species and high p/o ratios in xenogamous species. However, the overall positive correlation observed in Tarasa between p/o ratio and pollen size contradicts the expected negative relationship between these two factors. Statistically significant differences were detected between the tetraploids and diploid annuals and perennials for anther number per flower, number of grains per anther, p/o ratio, and pollen size. The tetraploid species occupy the highest elevation habitats in the Andes and have repeatedly adopted a floral morphology which is typical of autogamous species. viii Table of Contents List of Tables ........................................................................................................ xii List of Figures .................................................................................................... xviii Chapter 1: An introduction to the dissertation........................................................1 Chapter 2: Phylogenetic relationships within the Tribe Malveae (Malvoideae, Malvaceae) as inferred from ITS sequence data.............................................4 Abstract ...........................................................................................................4 Introduction.....................................................................................................4 Materials and Methods..................................................................................11 Taxon sampling....................................................................................11 DNA extraction and amplification.......................................................12 Sequence analysis ................................................................................18 Phylogenetic analysis...........................................................................18 Results...........................................................................................................19 Sequence characteristics and phylogenetic reconstruction ..................19 Discussion .....................................................................................................25 The traditional alliances (as well as several genera) are not monophyletic...............................................................................25 Alliances and genera of Clade A .........................................................27 Alliances and genera of Clade B..........................................................29 Conclusions...................................................................................................32 Chapter 3: Molecular systematics of the polyploid Andean genus Tarasa Philippi (Malvaceae)...................................................................................................33 Abstract .........................................................................................................33 Introduction...................................................................................................34 Taxonomic history ...............................................................................34 Chromosomes, geography, and morphology .......................................35 Systematic position ..............................................................................37 Materials and Methods..................................................................................40 ix Taxon sampling....................................................................................40 DNA extraction and amplification.......................................................41 Sequence analysis ................................................................................47 Phylogenetic reconstruction.................................................................48 Chromosome counts.............................................................................50 Results...........................................................................................................52 New chromosome counts.....................................................................52 Chloroplast sequence characteristics ...................................................52 Chloroplast phylogeny reconstruction .................................................55 ITS sequence characteristics ................................................................60 ITS phylogeny reconstruction..............................................................62 Discussion .....................................................................................................65 Taxon sampling....................................................................................65 Urocarpidium albiflorum is not a Tarasa............................................65 Chloroplast phylogeny .........................................................................66 ITS phylogeny......................................................................................70 Hypothesis testing and incongruent phylogenies.................................75 Recovering the organismal phylogeny: Gene trees versus species trees76 Chapter 4: Multiple origins of polyploidy and breeding system evolution in Tarasa (Malvaceae) ......................................................................................78 Abstract .........................................................................................................78 Introduction...................................................................................................79 Materials and Methods..................................................................................81 Pollen/Ovule ratios...............................................................................81 Self-compatibility in greenhouse grown plants ...................................84 Pollen characteristics ...........................................................................85 Results...........................................................................................................86 Pollen/ovule ratios ...............................................................................86 Self seed set..........................................................................................93 Pollen characteristics ...........................................................................94 Discussion ...................................................................................................100 x A shift in breeding system follows polyploidization in Tarasa.........100 Tarasa tetraploid pollen size contradicts breeding system and ploidy level expectations......................................................................103 Appendix A. Malveae ITS alignment ................................................................105 Appendix B. Tarasa and outgroups combined chloroplast data matrix ............126 Appendix C. Tarasa and outgroups ITS alignment ...........................................162 Literature cited .....................................................................................................172 Vita .....................................................................................................................183 xi List of Tables Table 2.1. Genera of the tribe Malveae (Malvoideae, Malvaceae), their alliance associations, haploid chromosome numbers and geographic distributions. Abbreviations for alliances are as follows: A = Abutilon, AN = Anoda, AS = Anisodontea, BK = Bakeridesia, BT = Batesimalva, F = Fryxellia, G = Gaya, H = Howittia, HE = Herissantia, K = Kearnemalvastrum, M = Malva, MA = Malope, MO=Modiola, MS = Malvastrum, N = Napaea, PG = Plagianthus, PH = Phymosia, R = Robinsonella, SC = Sidalcea, SD = Sida, SP = Sphaeralcea.........................................................................................6 Table 2.2. Historical classification of genera currently placed in tribe Malveae (subfamily Malvoideae, Malvaceae)...................................................9 Table 2.3. List of included taxa, voucher information (or GenBank accession number), and collection locality information. *Where two accession numbers occur, the first corresponds to the ITS1 sequence and the second to ITS2. JL indicates DNA provided by John La Duke (University of North Dakota), JFA was provided by Javier Fuertes Aguilar (Real Jardin Botanico, Madrid), and TBS indicates DNA provided by Tracey Bodo Slotta. ......................................................13 Table 2.4 Analysis of ITS regions for taxa included in this study. Length and GC content were calculated using MacClade v. 4.0 (Maddison and Maddison 2000). Pairwise divergence values and number of parsimony informative characters were found using PAUP* v.4.0b8 (Swofford 2002)................................................................................20 xii Table 2.5 Test for base composition bias of analyzed sequences (for entire data set including outgroups). Values given are mean base frequency, degrees of freedom (df), and P value (a value greater than 0.05 indicates that there is not a significant difference among the taxa in the data set). ......................................................................................20 Table 3.1 Tarasa as circumscribed (Krapovickas 1954, 1960, 1971; Bates 1965) and chromosome numbers. Ploidy level was inferred for species without previously published chromosome counts – see page 50 for details. ....................................................................................36 Table 3.2 Vouchers used in molecular analysis, their location and GenBank accession number. An asterisk indicates voucher for chromosome count. A letter designates separate populations sampled.................42 Table 3.3 List of primers used for PCR amplification and sequencing ............45 Table 3.4 Sequence statistics for species of Tarasa as calculated in MacClade (length and GC content) and PAUP* (pairwise divergence). ...........53 Table 3.5 Test for base composition bias of analyzed sequences (for entire data set including outgroups). Values given are mean base frequency, degrees of freedom (df), and P value (a value greater than 0.05 indicates that there is not a significant difference among the taxa in the data set). ......................................................................................54 xiii Table 3.6 Results from the Independent Length Difference (ILD) Test (Farris 1994) for the molecular regions sequenced (ITS, matK-3’trnK intron, psbA-trnH spacer, and trnT-trnL spacer). Data partitions were defined in PAUP* and tested for homogeneity. The null hypothesis (that the data partitions are homogenous) was rejected at the 0.05 level.....................................................................................54 Table 3.7 Results from constraint analyses using parametric bootstrapping on the ITS and chloroplast data sets. The first constraint forced all traditionally circumscribed Tarasa to monophyly; the second constraint was as the first but excluded the n=6 group of Tarasa machupicchensis, T. mandonii, and T. spiciformis; the third constraint forced monophyly of all tetraploids (chromosome number known and inferred based on morphology and geography – see text for details). The empirical tree length differences (=constrainedunconstrained) were compared to a distribution of tree length differences generated from 100 simulated data sets. The null hypothesis (that the constraint tree is the true tree) was rejected when the observed tree length difference was greater than 95% of the simulated tree length differences. *For the chloroplast unconstrained tree, gaps were coded as missing. .....................................................59 Table 3.8 Results of three incongruence tests as conducted in PAUP*. All tests compared the strict consensus of the most parsimonious ITS trees and the strict consensus of the most parsimonious chloroplast trees. The null hypothesis that the data fit either tree equally well was rejected at the 0.05 level. ...........................................................60 xiv Table 3.9 Hypothesized relationships for tetraploid species of Tarasa (chromosomally known and inferred) based on nuclear (paternal parent) and chloroplast (maternal) phylogeny reconstructions. An asterisk indicates a tetraploid for which the chromosome number was inferred. Hypotheses are based on the most closely related diploid species to the tetraploid in each phylogeny. .....................................69 Table 3.10 Areas of sympatry between diploid species of Tarasa that are potential tetraploid parents (see Table 3.9). Perennial species are indicated by an asterisk. n/a indicates no apparent areas of overlap in geographic distribution based on mapping of 1400 herbarium specimen localities. ...........................................................................71 Table 4.1 Typical attributes of polyploid taxa as compared to Tarasa polyploids..........................................................................................79 Table 4.2 Vouchers used in pollen/ovule ratio analysis....................................83 Table 4.3. Results of pollen/ovule ratio analysis for species of Tarasa. An asterisk indicates inferred chromosome number on the basis of morphology and geographic distribution (see text for explanation). Means and standard deviations (in parentheses) are given for number of grains per anther, number of anthers per flower, and number of ovules per flower. Breeding system was determined by comparing the empirical log p/o ratios to values reported by Cruden (1977) (X = xenogamy, FX = facultative xenogamy, FA = facultative autogamy, and OA = obligate autogamy) – see text for details..........................88 xv Table 4.4 Means and standard deviations (in parentheses) of anther number per flower, number of grains per anther, and pollen/ovule ratio for ploidy level and habit categories in Tarasa (see Table 4.3 for details). Significance levels as detected by ANOVA are also given for these categories. .........................................................................................92 Table 4.5 P-values for mean anther number per flower, number of grains per anther, and P/O ratio as determined by Fisher’s PLSD and Bonferroni/Dunn post hoc ANOVA for diploid (2n=10 only shown) and tetraploid (2n=20) species of Tarasa. Calculated P values were the same for each test. Significant differences are indicated as follows: * indicates a p-value significant under Fisher’s PLSD at the 0.05 level, ** indicates a p-value significant under Bonferroni/Dunn at the 0.05 level, *** indicates significant difference under both tests (0.05 level). .......................................................................................93 Table 4.6 Self seed set in greenhouse grown individuals of Tarasa. Plants were grown in the greenhouse at The University of Texas at Austin. The number of fully mature seeds per schizocarp was counted for fifty schizocarps on a single plant. Autogamous seed set is the proportion of mature seeds produced to the number of carpels present. Standard deviations are given in parentheses. An asterisk indicates an inferred chromosome number on the basis of morphology and geographic distribution (see text for details). ........94 xvi Table 4.7 Results of pollen measurements utilizing light microscopy. Twentyfive grains were measured per individual; when possible 2 or more individuals were sampled to represent a species. An asterisk inidicates an inferred chromosome number based on morphology and geographic distribution (see text for details). Values given are the mean and standard deviation for the polar and equatorial axis, and the approximate number of apertures.........................................95 Table 4.8 Means and standard deviations for pollen grain size (polar and equatorial diameters) for species of Tarasa studied. P values from ANOVA are given for the categories of ploidy level and ploidy level and habit for all taxa (chromosome number inferred) or chromosomally known taxa only. .....................................................97 Table 4.9 Significance levels for mean pollen diameter (polar axis) as determined by Fisher’s PLSD and Bonferroni/Dunn post hoc ANOVA for diploid (2n=10 only shown) and tetraploid (2n=20) species of Tarasa. Calculated P values were the same for each test. Significant differences are indicated as follows: * indicates a pvalue significant under Fisher’s PLSD at the 0.05 level, ** indicates a p-value significant under Bonferroni/Dunn at the 0.05 level, *** indicates significant difference under both tests (0.05 level). ..........99 xvii List of Figures Figure 2.1 One of 53 most parsimonious trees based on ITS sequence data [length=2992, CI= 0.2920 (excluding autapomorphies), RI= 0.6562, and RC=0.2112]. Branch lengths are shown above the branches. Alliance groupings are shown at right. .............................................21 Figure 2.2 The strict consensus of 53 most parsimonious trees based on ITS sequence data. Bootstrap support (above 50) for 100 replicates is indicated below the nodes.................................................................22 Figure 2.3 Clade A from one most parsimonious tree (see Figure 2.1). Branch lengths are shown above the branches and bootstrap support (above 50) for 100 replicates is given below. Genera are colored according to their alliance associations which also correspond to the bars on the right. ..................................................................................................23 Figure 2.4 Clade B from one most parsimonious tree (see Figure 2.1). Branch lengths are shown above the branches and bootstrap support (above 50) for 100 replicates is given below. Genera are colored according to their alliance associations which also correspond to the bars on the right. ..................................................................................................24 Figure 3.1 Distribution of Tarasa in the Americas. The map was generated using the program DIVA-GIS (Hijmans et. al 2002). Localities are based on label information from approximately 1400 herbarium specimens. Diploid (2n=10) species are indicated by red dots; tetraploid (2n=20) species are indicated by yellow dots...................38 xviii Figure 3.2 One of 15 most parsimonious trees based on chloroplast sequence data (length=619, CI=0.713, RI=0.873, RC=0.735). Branch lengths are given above the branches. Dashed branches collapse in the strict consensus. Diploid (2n=10) perennial species of Tarasa are shown in blue, diploid annual species are shown in red, and tetraploid annuals are shown in green. The 2n=12 group is shown in orange. An asterisk following a taxon name indicates inferred ploidy level (see page 50 for details). Letters following taxon names indicate a separate population sampled. ............................................................57 Figure 3.3 Strict consensus of 15 most parsimonious trees based on chloroplast sequence data. Bootstrap support (above 50) for 100 replicates is shown below the branches. Diploid (2n=10) perennial species of Tarasa are shown in blue, diploid annual species are shown in red, and tetraploid annuals are shown in green. The 2n=12 group is shown in orange. An asterisk following a taxon name indicates inferred ploidy level (see page 50 for details). Letters following taxon names indicate a separate population sampled. ......................58 xix Figure 3.4 One of 7 most parsimonious trees based on ITS sequence data (length=348, CI=0.6084, RI=0.8360, RC=0.5677). Branch lengths are shown above the branches. Dashed branches collapse in the strict consensus. Diploid (2n=10) perennial species of Tarasa are shown in blue, diploid annual species are shown in red, and tetraploid annuals are shown in green. The 2n=12 group is shown in orange. An asterisk following a taxon name indicates inferred ploidy level (see page 50 for details). Letters following taxon names indicate a separate population sampled; a number following the name indicates clone number............................................................63 Figure 3.5 Strict consensus of 7 most parsimonious trees based on ITS sequence data. Bootstrap support (above 50) for 100 replicates is shown below the branches. Diploid (2n=10) perennial species of Tarasa are shown in blue, diploid annual species are shown in red, and tetraploid annuals are shown in green. The 2n=12 group is shown in orange. An asterisk following a taxon name indicates inferred ploidy level (see page 50 for details). Letters following taxon names indicate a separate population sampled; a number following the name indicates clone number............................................................64 Figure 4.1 Histogram of mean number of anthers per flower for all species of Tarasa analyzed. ...............................................................................90 Figure 4.2 Histogram depicting mean number of grains per anther for all species of Tarasa analyzed. ..............................................................91 Figure 4.3 Histogram of mean pollen/ovule ratio for all species of Tarasa analyzed. ...........................................................................................91 xx Figure 4.4 Scanning electron micrographs of pollen grains for 6 species of Tarasa (Malvaceae) demonstrating variation in grain size and spine size and morphology. Magnification and scale bars are given in the lower right corner of each panel. Panels A-C: Tetraploid annual species, panels D-E: Diploid perennials, panel F: Diploid annual. ..96 Figure 4.5 Histogram of mean pollen diameter (polar axis) in micrometers for the categories of diploid annual, diploid perennial, and tetraploid annual................................................................................................99 Figure 4.6 Relationship between surface area of pollen grain (polar axis) and pollen/ovule ratio for species of Tarasa studied (see Table 4.3). Tetraploid annual species are shown in red, diploid annuals in light blue, and diploid perennials in dark blue. Pearson correlation coefficients (r) for the tetraploids, diploid annuals, and diploid perennials are 0.519, -0.698, and 0.296, respectively.....................100 xxi Chapter 1: An introduction to the dissertation The purpose of this chapter is to serve as an overall introduction to the dissertation. This work represents a progression from a large scale molecular phylogeny to a species level study of breeding systems. As Chapters 2-4 are intended ultimately to be separate publications, they are constructed as such with an abstract, introduction, materials and methods, results, and discussion with a single literature cited compiled for all chapters. Chapter 2 involves a molecular phylogenetic analysis of the tribe Malveae (subfamily Malvoideae, Malvaceae) using sequence data from the nuclear ribosomal internal transcribed spacers (ITS). The phylogeny was reconstructed using newly generated sequences, sequences deposited in GenBank, and sequences generously provided by other Malvaceae workers (Javier Fuertes Aguilar, Tracey Bodo Slotta, and John La Duke). The tribe Malveae is the largest in the subfamily Malvoideae, containing approximately 75 genera (~1000 species). Various circumscriptions of the tribe have been published over the past 150 years. Since 1968, however, the genera within it have been assigned to twenty-one informal alliances on the basis of morphology and chromosome number. The ITS phylogeny indicates that many alliances and also several genera are not monophyletic. The basalmost lineage of the Malveae is occupied by the genus Howittia which is sister to two larger clades containing the remaining members of the tribe. According to the ITS phylogeny, chromosomal evolution appears to have been quite complex within the tribe as aneuploid and polyploid lineages commonly occur. Chapter 3 investigates in detail the systematics and evolution of one of the Malveae genera (Tarasa) and its relatives. Tarasa Philippi is a genus found in the high 1 Andes from central Peru to southern Chile and adjacent Argentina with two species disjunct in Mexico. The species exhibit a distinct geographic distribution that is concordant with ploidy level: the diploids are found in pockets around the Andes at midelevations (800-3000 m), while the tetraploids are widespread at the highest elevations (3000-4200 m). The tetraploid species of Tarasa are unusual in that they are annuals and have smaller morphological features than the diploids. Molecular phylogenies were reconstructed for most species of the genus and several purportedly allied genera using nuclear and chloroplast sequence data. The monophyly of Tarasa was rejected in both the nuclear and chloroplast phylogenies. Also surprising was the result that the tetraploid species did not form a monophyletic clade, which indicates that polyploidy has arisen multiple times within the genus. While the independent origin of polyploids within a genus is not unique to Tarasa, the apparent morphological convergence of the tetraploids subsequent to polyploidy is intriguing. Based on the sequence data, it appears that various combinations of the diploid annual species of Tarasa have formed these unusual tetraploids. The discoveries from Chapter 3 prompted a study of the breeding systems of Tarasa species, which is presented in Chapter 4. Pollen/ovule ratios have often been used as an indicator of the relative degree of outcrossing versus selfing in plants. For many plant taxa, a negative correlation has been found between pollen/ovule ratios and the degree of self-fertilization, pollen grain size, and stigmatic area relative to the pollen bearing area of the pollinator (Cruden 1977, 2000). Species of Tarasa follow this trend for breeding systems: the diploid perennials have the highest p/o ratios (xenogamous), followed by the diploid annuals (xenogamous to facultatively xenogamous), and the tetraploid annuals have the lowest p/o ratios (autogamous or facultatively xenogamous). All pairwise comparisons were found to be statistically significant. 2 Empirical data indicate that the tetraploids not only have fewer anthers per flower, but also have fewer pollen grains produced per anther. In the greenhouse, none of the diploid perennials (5 species studied) were self-compatible. Only one diploid annual species was available for study and it was autogamous, but the resulting progeny were weak (likely a result of inbreeding depression). All of the six tetraploid species studied were autogamous and produced vigorous offspring. Thus, in Tarasa the multiple origins of polyploidy have been accompanied by numerous shifts to an autogamous breeding system. An intriguing earlier finding suggested that Tarasa tetraploids have smaller pollen grains than the diploids (Tressens 1970). Because polyploidization is expected to increase cell size, polyploids typically have larger pollen and guard cells than their diploid relatives (Stebbins 1940). A thorough reexamination of pollen grain sizes for 27 of the 30 species using light microscopy confirmed that the tetraploids do in fact have smaller grains than the diploids. The difference in size is statistically significant between the tetraploids and diploid annuals and perennials. These data are also surprising since, unlike most plant groups, a positive correlation was found between pollen grain size and p/o ratio for the tetraploids and diploid perennials (although the diploid annuals exhibited a negative correlation). The unusual and recurring morphology exhibited by the tetraploids is quite intriguing (annual habit, inconspicuous white flowers with few anthers). Potential contributing factors during the evolution of these species are morphological adaptations to a high elevation habitat, a reduction in pollinator abundance at such altitudes, and adaptations that accompany a self-compatible breeding system. 3 Chapter 2: Phylogenetic relationships within the Tribe Malveae (Malvoideae, Malvaceae) as inferred from ITS sequence data ABSTRACT A molecular phylogenetic analysis of the tribe Malveae (subfamily Malvoideae, Malvaceae) was undertaken using the internal transcribed spacer region of the 18S-26S nuclear ribosomal repeat (ITS). This work represents the first exhaustive study to evaluate the infratribal circumscription and generic affinities using molecular sequence data. The ITS phylogeny indicates that the informal tribal alliances and several genera are not monophyletic. Two main clades were reconstructed in the phylogeny: one clade pertaining to the Abutilon, Bakeridesia, Batesimalva, Fryxellia, Gaya, Plagianthus, Robinsonella, and Sida alliances, and a second large clade containing genera from the Anisodontea, Callirhoe, Kearnemalvastrum, Malva, Malvastrum, Modiola, Napaea, Phymosia, Sphaeralcea, and Sidalcea alliances. INTRODUCTION In recent years, morphological and molecular evidence have shown that many of the traditional families of the Malvales are not monophyletic (Judd and Manchester 1997; Alverson et al. 1998, 1999; Bayer et al. 1999). As a result, an expanded Malvaceae has been proposed which is comprised of the subfamilies Bombacoideae (formerly Bombacaceae), Sterculioideae (Sterculiaceae), Malvoideae (Malvaceae), and Tiliodeae (Tiliaceae) (Bayer et al. 1999). Subfamily Malvoideae has consistently been supported as a monophyletic group on the basis of both morphological and molecular data (Judd and Manchester 1997, Alverson et al. 1999, Bayer et al. 1999). Although no classification for the Malvoideae has yet been offered, I will here refer to this group as most recently 4 circumscribed: composed of the tribes Dechaschistieae, Gossypieae, Hibisceae, Malvavisceae, and Malveae (Fryxell 1988). As considered in the present study, the tribe Malveae includes approximately 75 genera (~1000 species) which encompass the majority of the morphological and taxonomic diversity within the family (Table 2.1) (Fryxell 1997). Traditionally, members of the Malveae have been characterized by a combination of several morphological characters: schizocarpic fruits (sometimes a capsule), mericarps numbering 3 to over 20 and equal to the number of free styles, antheriferous apex of the staminal column, and the absence of lysigenous cavities (“gossypol glands”) (Fryxell 1988). The genera of the Malveae exhibit a broader geographic distribution and exploit a wider variety of habitats than the other malvaceous tribes. While most of the other tribes are restricted to tropical and subtropical zones of both hemispheres, more than 15 of the 75 Malveae genera have mostly temperate distributions. However, some of the largest genera of the tribe (Abutilon, Sida, Nototriche) have tropical distributions (Table 2.1). The genera currently considered members of the tribe Malveae have not always been placed in this tribe. Table 2.2 provides a synopsis of the major infratribal classification schemes, beginning with Bentham and Hooker (1862), for the tribe Malveae and for the genera currently considered members of the Malveae. Bentham and Hooker divided the tribe into four subtribes on the basis of carpel arrangement and ovule number and position: Abutilinae, Malopinae, Malvinae, and Sidinae (as Abutileae, Eumalveae, Malopeae, and Sideae). Schumann (1890) reassigned three genera (Malope, Kitaibelia, Palaua) to a separate tribe Malopeae due to the irregular arrangement of their carpels into superimposed verticils (i.e., not in single whorl). The remaining genera of the Malveae were placed into one of three subtribes (Abutilinae, Malvinae, or Sidinae [Schumann 1890]) based on carpel morphology. This classification was followed by 5 Table 2.1. Genera of the tribe Malveae (Malvoideae, Malvaceae), their alliance associations, haploid chromosome numbers and geographic distributions. Abbreviations for alliances are as follows: A = Abutilon, AN = Anoda, AS = Anisodontea, BK = Bakeridesia, BT = Batesimalva, F = Fryxellia, G = Gaya, H = Howittia, HE = Herissantia, K = Kearnemalvastrum, M = Malva, MA = Malope, MO=Modiola, MS = Malvastrum, N = Napaea, PG = Plagianthus, PH = Phymosia, R = Robinsonella, SC = Sidalcea, SD = Sida, SP = Sphaeralcea. GENUS ALLIANCE HAPLOID DISTRIBUTION NUMBER Abutilon Mill. A Acaulimalva Krapov. Akrosida Fryxell & Fuertes Alcea L. Allosidastrum (Hochr.) Krapov., Fryxell & D.M. Bates Allowissadula D.M. Bates Althaea L. Anisodontea Presl Anoda Cav. SP SD M SD A M AS AN 7, 8, 14, 16, 18, 21, 36 5 NA 21 7 Pantropical Andes Brazil Mediterranean to C Asia Neotropics Asterotrichion Klotzsch Bakeridesia Hochr. Bastardia H.B.K. Bastardiastrum (Rose) D.M. Bates Bastardiopsis (K. Schum.) Hassl. Batesimalva Fryxell Billieturnera Fryxell Briquetia Hochr. Callirhoe Nutt. PG BK A A 8 14, 21, 25, 35, 42 22 13, 14, 15, 18, 30, 45 NA 15 7, 14 15 A 14 S Am BT A BT SC Calyculogygas Krapov. Calyptraemalva Krapov. Corynabutilon (K. Schum.) Kearney Cristaria Cav. Dendrosida Fryxell Dirhamphis Krapov. SP SP A 12, 16 8 7 14, 15, 21, 28, 30, 34, 35, 42, 56 5 NA 8 Mexico S Texas to NE Mexico Mexico, S Am C United States to NE Mexico Uruguay Brazil Temperate Chile & Argentina G SD BT 6, 12 21 7, 15 Chile, also S Peru S Mexico, N South America W Mexico, Bolivia/Paraguay 6 Texas, Mexico Europe, Middle East, C Asia S Africa S US, Mexico, S Am Tasmania Mexico, C Am Neotropics W Mexico Eremalche Greene SP 10, 20 Fryxellia D. M. Bates Fuertesimalva Fryxell Gaya H.B.K. F SP G 8 5, 10, 15 6, 12 Gynatrix Alef. Herissantia Medik. Hochreutinera Krapov. Hoheria A. Cunn Horsfordia A. Gray PG HE A PG BT NA 6, 7 7 21 15 Howittia F. Muell. Iliamna Greene H PH NA 33 Kearnemalvastrum D. M. Bates Kitaibelia Willd. Krapovickasia Fryxell K 16 MA SD 21, 22 8 Lavatera L. –Malva L. M 7, 18, 20, 21, 22, 42, 56 Lawrencia Hook. Lecanophora Speg. Malacothamnus Greene PG G PH NA 6, 12,18 6, 17 Malope L. Malvastrum A. Gray Malvella Jaub. & Spach MA MS SD 22, 25 6, 12, 18, 24 16? Meximalva Fryxell Modiola Moench Modiolastrum K. Schum. Monteiroa Krapov. Napaea L. Navaea Webb & Berthelot Neobaclea Hochr. Neobrittonia Hochr. Nototriche Turcz. Palaua Cav. Periptera DC. Phymosia Ham. SD MO SP SP N M A PH SP SP AN PH 8 9 5, 15, 50 10 15 21, 22? 8 16 5, 10, 15, 20 5 13 17 Plagianthus J.R. & G. Forst. Pseudabutilon R.E. Fr. PG A 21 8, 16 7 S California, N Baja California W Texas, N Mexico Andes, Mexico Neotropics (Mexico, West Indies, Bolivia) Tasmania, S/SE Australia Neotropics Mexico, Paraguay/Argentina New Zealand SW US, N Mexico, Baja California SE Australia W US & Canada, Illinois/Virginia Mexico to Costa Rica, Columbia E Europe SW Texas & NE Mexico, S Am Mediterranean, California/Baja California, Australia Australia Temperate Argentina California/Baja California & Chile Mediterranean N Am & S Am W US & Mexico, S Am, Mediterranean S Texas to C Mexico Pantropical and subtropical S Am S Brazil, N Argentina E United States Macaronesia Temperate Argentina Mexico to Panama Andes Coastal Peru & Chile W Mexico Mexico, Guatemala, Carribean New Zealand US to Argentina Rhynchosida Fryxell SD 8 Robinsonella Rose & Baker f. Sida L. (outliers) Sida L. s.s. Sidalcea A. Gray Sidasodes Fryxell & Fuertes Sidastrum Baker f. Sphaeralcea St.-Hil. R SD SD SC SD SD SP Tarasa Phil. (incl. Urocarpidium) Tetrasida Ulbr. Wissadula Medik. SP 16 8, 16 7, 14, 28 10, 20, 30 5 16 5, 10, 15, 25 5, 6, 10 SD A NA 7 8 S Texas & N Mexico, Bolivia & Argentina Mexico to Costa Rica Pantropical Pantropical W United States and NW Mexico Colombia, Eucador, Peru Mexico & West Indies to Argentina Temperate N & S Am Andes, Mexico Ecuador & Peru Neotropics Table 2.2. Historical classification of genera currently placed in tribe Malveae (subfamily Malvoideae, Malvaceae) Bentham and Hooker 1862 Tribe Malveae Schumann Edlin Kearney Hutchinson 1890 1935 1949/1951a 1967 Tribe Malveae Tribe Malveae Tribe Malveae Tribe Malveae Subtribe Subtribe Subtribe Subtribe Abutilinae Subtribe Abutilinae Abutilinae Abutilinae Corynabutilinae Subtribe Subtribe Subtribe Subtribe Malopinae Subtribe Malvinae Malvinae Malvinae Corynabutilinae Subtribe Subtribe Subtribe Malvinae Subtribe Malvinae Tribe Abutileae Sidinae Sidinae Subtribe Sidinae Subtribe Sidinae Subtribe Abutilinae Subtribe Sidinae Tribe Malopeae Tribe Malopeae Tribe Malopeae Tribe Malopeae Bates 1968 Tribe Malveae Bates and Blanchard 1970 Tribe Malveae Fryxell 1988, pro parte Tribe Malveae Abutilon alliance Abutilon alliance Abutilon alliance Anisodontea alliance Anisodontea alliance Anisodontea alliance Anoda alliance Anoda alliance Anoda alliance Gaya alliance Howittia alliance Kearnemalvastrum alliance Malacothamnus alliance Bakeridesia alliance Callirhoe alliance Bakeridesia alliance Batesimalva alliance Gaya alliance Fryxellia alliance Howittia alliance Gaya alliance Malope alliance Malva alliance 9 Kearnemalvastrum alliance Malacothamnus alliance Malvastrum alliance Malope alliance Plagianthus alliance Sidalcea alliance Sphaeralcea alliance Malva alliance Malvastrum alliance Napaea alliance Plagianthus alliance Sidalcea alliance Sphaeralcea alliance Herrisantia alliance Howittia alliance Kearnemalvastrum alliance Malope alliance Malva alliance Malvastrum alliance Modiola alliance Napaea alliance Phymosia alliance Plagianthus alliance Robinsonella alliance Sida alliance Sidalcea alliance Sphaeralcea alliance Edlin (1935) and slightly modified by Kearney (1949, 1951) who erected a fourth subtribe Corynabutilinae. In 1967, Hutchinson further restructured the family and tribes by creating Abutileae (composed of subtribes Abutilinae and Sidinae), Malopeae, and Malveae (subtribes Corynabutilinae and Malvinae). The tribe Abutileae was created to accommodate genera with decurrent stigmas, while genera with apical stigmas remained in the Malveae. In both tribes, the subtribes were distinguished by ovule number and position. Bates (1968) completely revised the classification scheme by eliminating the subtribes and, instead, created thirteen informal alliances within a single tribe Malveae. These generic alliances were based on morphology and chromosome number that were thought to reflect better phylogenetic affinities (Bates 1968). Bates and Blanchard (1970) subsequently expanded this classification scheme to include sixteen alliances. The most recent classification for the Malveae (in which palynological and comparative morphology were also considered) was proposed by Fryxell (1988). Although only Mexican genera were treated in this publication, several new alliances were created. The major changes involved removing several genera from the Abutilon alliance and creating three new alliances (Herrisantia, Robinsonella, and Sida), segregating Modiola from the Sphaeralcea alliance into its own alliance, reassigning Callirhoe to the Sidalcea alliance, renaming the Malacothamnus alliance as the Phymosia alliance, and creating two new alliances for the newly described genera Batesimalva and Fryxellia. For the current study, I have followed the taxonomy of Fryxell (1988) and have treated the non-Mexican genera as in Bates and Blanchard (1970). Recent molecular studies of the Malvales and the Malvoideae (as Malvaceae s. str.) have provided preliminary evidence for phylogenetic relationships within the subfamily as well as the tribe Malveae. The tribe Gossypieae was found to be sister to the Malveae based on rbcL and atpB (Bayer et al. 1999) and ndhF (Alverson et al. 1999) 10 sequence data. However, a chloroplast DNA based phylogeny using RFLPs (La Duke and Doebley 1995) placed the Malveae in a clade sister to the remaining tribes of the family. Although La Duke and Doebley’s study did not support monophyly of the Malveae alliances, it did indicate two major clades: one associated with the Abutilon and Sida alliances and the other with the remaining alliances. A recent study (Fuertes Aguilar et al. in press) based on ITS sequence data examined the phylogenetic relationships of the Abutilon and Sida generic alliances. Although the sampling was not exhaustive, neither alliance was supported as monophyletic (Fuertes Aguilar et al. in press). Previous studies have demonstrated that sufficient variation exists in ITS to resolve phylogenetic relationships within and between genera in the Malvaceae s. str. (Seelanan et al. 1997) and particularly in the Malveae (Ray 1995; Andreasen and Baldwin 2001; Whittall et al. 2000; Fuertes Aguilar et al. in press; and Chapter 3). However, several of these studies have also revealed genera which are not monophyletic as currently circumscribed. Among these are the Abutilon-Sida complex (Fuertes Aguilar et al. in press) and the Malva-Lavatera group (Ray 1995). The main purpose of this study was to reconstruct a phylogeny that would provide a framework for a discussion of the diversity among Malveae genera. The traditional alliances and generic relationships are here evaluated in the most comprehensive molecular-based phylogeny of the Malveae to date. MATERIALS AND METHODS Taxon sampling Sixty-three genera representing twenty of the twenty-one infratribal alliances (Bates and Blanchard 1970, Fryxell 1988) were included. Table 2.3 lists the taxa included, their voucher and location or GenBank accession number if previously 11 published. When possible, two or more species of the same genus were included. Gossypium and Thespesia (tribe Gossypieae) were the designated outgroups. DNA extraction and amplification Leaf material was collected in the field and dried in silica gel (Chase and Hills 1991) or sampled from herbarium specimens. In some cases, seeds removed from herbarium specimens or collected in the field were grown in the greenhouse and fresh leaf material was used. Total genomic DNA was extracted from fresh material by the “rainforest” method of Scott and Playford (1996) or from herbarium material following the modified small scale CTAB protocol (Doyle and Doyle 1987) of Loockerman and Jansen (1996). The addition of a phenol extraction aided in obtaining clean DNA from recalcitrant species (especially from older herbarium specimens). The internal transcribed spacer (ITS) region of the 18S-25S nuclear ribosomal repeat was chosen for phylogeny reconstruction. The ITS region was amplified by the polymerase chain reaction (PCR) in a 50 uL cocktail consisting of 1x MasterAmp Tfl PCR buffer (Epicentre), 2.5 µM MgCl2, 0.8 µM DNTPs, 0.05 µM DMSO, 0.5 unit TFL polymerase (Epicentre) and 0.4 µM forward and reverse primers. Amplification primers used were 7A (A. Plovanovich and J. Panero unpublished) and 4 (White et al. 1990) or for ITS 1 and ITS 2 separately, primers 7A and 2 (Kim and Jansen 1994) and primers 3 (Kim and Jansen 1994) and 4, respectively. After an initial denaturing step at 95° for 5 minutes (“hot start”), the reactions were held at 72° while polymerase was added to each reaction. Amplification of the ITS proceeded at 94° for 3 min, 46-52° for 1 min., 72° for 1 min., followed by 35 cycles of 94° 1 minute, 46-52° 1 minute, 72° for 45 sec. + 3 sec/cyc. with a final 7-15 minute extension at 72°. 12 Amplification products were Table 2.3. List of included taxa, voucher information (or GenBank accession number), and collection locality information. *Where two accession numbers occur, the first corresponds to the ITS1 sequence and the second to ITS2. JL indicates DNA provided by John La Duke (University of North Dakota), JFA was provided by Javier Fuertes Aguilar (Real Jardin Botanico, Madrid), and TBS indicates DNA provided by Tracey Bodo Slotta. Species Abutilon andrewsianum W. Fitzg. Abutilon pubistamineum Ulbr. Abutilon theophrasti Medik. Acaulimalva alismatifolia (K. Schum. & Hieron.) Krapov. Acaulimalva dryadifolia (Solms) Krapov. Alcea rosea Linn. Alcea rugosa Alef. Allosidastrum pyramidatum (Cav.) Krapov., Fryx., D.M. Bates Allowissadula holosericea (Scheele) D.M. Bates Anisodontea capensis (L.) D.M. Bates Anoda crenatiflora Orteg. Bakeridesia gloriosa D.M. Bates Bastardia bivalvis Kunth Bastardiastrum cinctum (Brandegee) D.M. Bates Bastardiopsis densiflora Hassl. Batesimalva violacea (Rose) Fryx. Billieturnera helleri (Rose ex Heller) Fryx. Briquetia sonorae Fryx. Briquetia spicata (Kunth) Fryx. Callirhoe digitata Nutt. Callirhoe involucrata A. Gray Calyculogygas uruguayensis Krapov. Voucher* Locality Johnson and Thomas MRS 351 (TEX) Australia - Queensland AJ251049/AJ274993 La Duke s.n. (GFND) USA - Minnesota – St. Paul Sagástegui A. et al. 15772 (TEX) Peru - Cajamarca - Cajamarca Lewis 37150 (TEX) AF303022 AJ251164/AJ251170 AJ274965/AJ274996 AJ274963/AJ274994 AJ251165/AJ251171 AJ251043/AJ274987 Panero et al. 5968 (TEX) Werling 293 (LL) Van Devender 98-522 (TEX) Arbo et al. 5902 (TEX) Powell and Powell 3632 ((TEX) JL Felger and Straub 85-1315 (TEX) Guillén and Roca 3557 (TEX) AJ304936 Tate s.n. (TEX) Krapovickas and Cristobal 16169 (LL) 13 Bolivia - La Paz - Inquisivi Mexico - Oaxaca - Tlacolula Mexico - Oaxaca - Tlacolula Mexico – Sonora – Mcpio. San Javier Argentina - Misiones - San Javier USA - Texas - Brewster county Mexico – Sonora (Cañon Nacapules) Bolivia – Santa Cruz – Velasco USA - Texas Uruguay - Lavalleja Corynabutilon vitifolium (Cav.) Kearney Cristaria andicola Gay Dendrosida breedlovei Fryx. Dendrosida wingfieldi Fryx. Dirhamphis sp. Eremalche exilis Greene Eremalche parryi Greene Fryxellia pygmaea (Correll) D.M. Bates Fuertesimalva jacens (S. Watson) Fryx. AJ274970/AJ275001 Tate et al. 97 (TEX) AJ251032/AJ274976 AJ251033/AJ274977 JL Morefield and McCarty 3395 (TEX) AJ304938 JL Koch and Fryxell 77326 (LL) Fuertesimalva limensis (L.) Fryx. Gaya atiquipana Krapov. Gaya calyptrata H.B. & K. Gossypium hirsutum Cav. Hochreutinera amplexifolia (DC.) Fryx. Hoheria sp. Tate and Timana 60 ((TEX) Tate et al. 106 (TEX) AJ251048/AJ274992 U12719 Rubio 1087 (TEX) JFA Horsfordia sp. Howittia trilocularis F. Muell. JL Craven s.n. (TEX) Iliamna bakeri (Jepson) Wiggins Iliamna lactibracteata Wiggins Iliamna remota Greene Iliamna rivularis Greene Kearnemalvastrum sp. Kearnemalvastrum lacteum (Aiton) D. M. Bates Kitaibelia vitifolia Willd. Krapovickasia physaloides (Presl) Fryx. Lavatera arborea L. Lavatera occidentalis S. Watson Lavatera trimestris L. Lecanophora chubutensis (Speg.) Rodrigo AF271166 AF271183 AF271196 AF271201 JL Calzada 21569 (TEX) AJ274972/AJ275003 AJ251047/AJ274991 AF303016 AJ251167/AJ251173 AF303027 Tate et al. 72 (TEX) 14 Chile - II Reg. de Antofagasta - El Loa USA - California - Inyo county Mexico - Mexico – Mcpio. Tenango de Arista Peru - Ancash - Yungay Peru – Arequipa - Caraveli Mexico - Queretaro - Mcpio. Landa Cultivated - Real Jardin Botanico, Madrid Cultivated - Australian National Botanic Garden, Canberra Mexico – Oaxaca – Mcpio. Santiago Argentina - Mendoza - Las Heras Lecanophora heterophylla (Cav.) Krapov. Malacothamnus chilensis (Gay) Krapov. Malacothamnus fasciculatus Greene Tate et al. 70 (TEX) Meudt and Lopez 028 (TEX) TBS Malope sp. Malva assurgentiflora (Kellogg) M.F. Ray Malva dendromorpha M.F. Ray Malva linnaei M.F. Ray Malva nicaensis All. Malva wigandii (Alef.) M.F. Ray Malvastrum amblyphyllum R.E. Fries Malvastrum americanum (L.) Torr. Malvastrum coromandelianum (L.) Garcke Malvella sagittifolia (A. Gray) Fryx. Meximalva filipes (A. Gray) Fryx. Modiola caroliniana (L.) G. Don Modiolastrum lateritium (Hook.) Krapov. Monteiroa glomerata (Hook. et Arn.) Krapov. JFA AF303032 AF303020 AF303015 AF303028/AF303029 AF303019 Krapovickas et al. 47237 (TEX) Nee 50549 (TEX) AJ274971/AJ275002 AJ251045/AJ274989 AJ251039/AJ274983 Tate et al. 50 (TEX) Tressens et al. 4592 (TEX) Krapovickas and Cristobal 43703 (TEX) AJ304940 AF303030 JFA Tate et al. 85 (TEX) Funk and Bernal H. 11289 (TEX) Tate et al. 102 (TEX) Tate et al. 103 (TEX) Tate et al. 105 (TEX) Torres and Ramirez 13674 (TEX) JL AJ274964/AJ274995 AJ251046/AJ274990 JL Napaea dioica Linn. Navaea phoenicea Webb & Berth. Neobrittonia acerifolia Hochr. Nototriche anthemidifolia A.W. Hill Nototriche flabellata A.W. Hill Nototriche pedicularifolia (Meyen) Hill Palaua camanensis R. Ferreyra & M. Chanco Palaua rhombifolia R. Grah. Periptera punicea DC. Phymosia umbellata (Cav.) Kearney Pseudabutilon umbellatum (L.) Fryx. Rhynchosida physocalyx (A. Gray) Frxy. Robinsonella sp. 15 Argentina - Mendoza - Las Heras Chile – Santiago – Prov. de Cordillera Rancho Santa Ana Botanical Garden 14242 Argentina – Formosa – Bermejo Bolivia – Santa Cruz – Warnes Mexico - Puebla Argentina - Misiones - Guaraní Brasil - Santa Catarina Argentina - Salta - Santa Victoria Bolivia - La Paz - Murillo Peru - Arequipa - Arequipa Peru - Arequipa - Islay Peru - Arequipa - Caraveli Mexico – Michoacán – Mcpio. Zitácuaro Sida abutifolia Mill. Sida aggregata Presl Sida fibulifera Lindl. Sida hermaphrodita (L.) Rusby Sida hookeriana Miq. Sida juissieana DC. Sida linifolia Cav. Sida longipes A. Gray Sida odorata Monteiro Sida oligandra K. Schum. Sida platycalyx Benth. Sida xantii A. Gray Sidalcea cusickii Piper Sidalcea hirsuta A. Gray Sidalcea multifida Greene Sidalcea stipularis J.T. Howell & True Sidasodes colombiana Fryx. & J. Fuertes Sidastrum paniculatum (L.) Fryx. Sphaeralcea angustifolia G. Don Sphaeralcea cordobensis Krapov. Sphaeralcea crispa Hook. ex Baker f. Sphaeralcea philippiana Krapov. Sphaeralcea wrightii A. Gray Tarasa albertii Phil. Tarasa humilis (Gill. ex Hook. et Arn.) Krapov. Tarasa machupicchensis Krapov. Tarasa mandonii (Baker) Kearney Tarasa operculata (Cav.) Krapov. Tarasa rhombifolia Krapov. Tarasa thyrsoidea Krapov. Tarasa trisecta (Griseb.) Krapov. Tetrasida chachapoyensis (Baker f.) Fryx. & J. Fuertes AJ274961/AJ251617 AJ274943/AJ251599 AJ251042/AJ274986 JFA JFA AJ251036/ AJ274980 AJ274959/AJ251613 AJ251030/AJ274974 AJ274960 AJ274966/AJ274997 AJ251041/AJ274985 AJ274946/AJ251602 AF196546 AJ304896 AJ304910 AJ304932 AJ274969/AJ275000 AJ251040/AJ274984 Tate et al. 51 (TEX) Tate et al. 79 (TEX) Tate et al. 77 (TEX) Tate et al. 71 (TEX) Tate et al. 53 (TEX) Tate et al. 74 (TEX) Tate et al. 69 (TEX) Timana and Tate 3771 (TEX) Beck 14510 (TEX) Tate and Timaná 62 (TEX) Tate and Symonds 109 (TEX) Tate et al. 107 (TEX) Tate et al. 91 (TEX) Campos and Diaz 2369 (TEX) 16 Mexico - San Luis Potosi Argentina - Cordoba Argentina - La Pampa - Caleu Caleu Argentina - Mendoza - Las Heras Mexico - Tamaulipas Argentina - Mendoza - Malargüe Chile - IX Reg. de Araucania Peru - Cuzco - Urubamba Bolivia - Cochabamba - Ayopaya Peru - Arequipa - Arequipa Peru - Cuzco - Urubamba Peru - Arequipa - Caraveli Argentina - Salta - Cafayate Peru - Cajamarca - San Ignacio Tetrasida weberbaueri (Ulbr.) Fryx. & J. Fuertes Thespesia lampas (Cav.) Dalzell ex Dalzell & A. Gibson Urocarpidium albiflorum Ulbr. Wissadula boliviana R.E. Fries Wissadula cruziana R.E. Fries Wissadula periplocifolia Griseb. Campos and Diaz 2367 (TEX) U56779 Peru - Cajamarca - San Ignacio Burandt 2340 (F) Nee 48628 (TEX) Nee 47523 (TEX) Hill and Horn 27076 (TEX) Peru - Moquegua Bolivia - Santa Cruz - Andrés Ibáñez Bolivia - Santa Cruz - Cordillera Guyana - Region IV - DemeraraMahaica district 17 separated on a 1% agarose gel, stained with ethidium bromide and visualized with UV on a transilluminator. PCR products were cleaned using Qiagen QIAquick spin columns following manufacturer’s instructions. Cycle sequencing was performed using Big Dye terminator chemistry. Centri-sep sephadex columns were used to remove residual salts and unincorporated nucleotides from the single-stranded products. Automated sequencing using the forward and reverse amplification primers was conducted on an ABI 3700 at the DNA Analysis Laboratory at the University of Texas at Austin. Sequence analysis The boundaries of ITS were determined by comparison to published Gossypium sequences. Complementary strands were edited using Sequencher (Gene Codes Corporation 1995). The sequences were aligned using Clustal X (Thompson et al. 1997) with manual adjustments as needed. Sequences were examined for angiosperm- conserved regions in ITS1 (Liu and Schardl 1994) and ITS2 (Hershkovitz and Zimmer 1996). These regions were used to align taxa and if sequences were found which did not maintain these regions, they were considered to be paralogous copies and were discarded from the phylogenetic analyses. Sequence length and GC content were calculated in MacClade 4.0 (Maddison and Maddison 2000). Pairwise divergence values and the presence of biased base composition were assessed using PAUP* (Swofford 2002). Phylogenetic analysis Because the 5.8S was not available for all sequences, the region was excluded from the phylogenetic analyses. Maximum parsimony was used as the optimality criterion in PAUP* version 4.0b10 (Swofford 2002). The data set was tested for hierarchical structure by evaluating 10000 randomly generated trees (Hillis and 18 Huelsenbeck 1992). For phylogeny reconstruction, an heuristic search was employed with 1000 random addition sequences, TBR branch swapping, ACCTRAN characterstate optimization and gaps coded as missing. To reduce the amount of time spent swapping on suboptimal trees, only 5 trees were held at each replicate. The best trees were then swapped to completion. Support for monophyly of the clades was determined by 100 bootstrap replicates (Felsenstein 1985). RESULTS Sequence characteristics and phylogenetic reconstruction One hundred sixteen sequences (65 of these new) were analyzed for Malveae taxa representing twenty (Herrisantia alliance not represented) of the twenty-one infratribal alliances (Appendix A). These sequences will be deposited in GenBank prior to publication. ITS1 length varied between taxa from 240 to 296 base pairs (bp), while ITS2 contained 184 to 232 bp in the included taxa. Mean GC content of ITS1 and ITS2 was 46.9 – 61.8% and 49.8 – 67.7%, respectively. Pairwise divergence between genera ranged from 0.021-0.213. The aligned region including ITS1 and ITS2 contained 622 characters: 137 characters were constant, 95 were autapomorphic, and 390 were parsimony informative. ITS1 contained 225 parsimony informative characters while ITS2 contained 165. Evaluating 10000 random trees returned a g1 statistic of -0.315 [critical value for 25 taxa and 500 informative characters = -0.08 (0.05 level) and –0.09 (0.01 level)] which indicates significant structure to the ITS data set (Hillis and Huelsenbeck 1992). An heuristic search as described above recovered 53 most parsimonious (MP) trees of length 2992 with a CI= 0.2920 (excluding autapomorphies), RI= 0.6562, and RC=0.2112. Figure 2.1 is one of these MP tree (that is similar to the majority rule tree) 19 and Figure 2.2 is the strict consensus of the most parsimonious trees. Figures 2.3 and 2.4 highlight the alliances and genera of clades A and B, respectively, on one most parsimonious tree (same as Fig. 2.1) (see discussion below). Table 2.4 Analysis of ITS regions for taxa included in this study. Length and GC content were calculated using MacClade v. 4.0 (Maddison and Maddison 2000). Pairwise divergence values and number of parsimony informative characters were found using PAUP* v.4.0b8 (Swofford 2002). Region ITS1 ITS2 Table 2.5 Length GC content Parsimony informative characters 240-296 46.9 – 61.8 % 225 184-232 49.8 – 67.7 % 165 Test for base composition bias of analyzed sequences (for entire data set including outgroups). Values given are mean base frequency, degrees of freedom (df), and P value (a value greater than 0.05 indicates that there is not a significant difference among the taxa in the data set). Region ITS A 0.21927 C 0.27938 20 G 0.27115 T 0.23020 df 372 P 0.990 10 7 3 1 5 14 9 27 22 19 13 34 10 12 18 31 3 34 55 45 16 3 0 6 9 21 8 7 40 9 12 11 4 16 27 4 11 10 8 3 7 29 16 12 6 1 12 9 16 Clade B 8 11 3 32 5 3 3 57 2 3 11 18 12 12 23 5 20 0 3 0 3 7 4 16 3 9 17 4 13 3 8 2 5 8 3 3 3 2 3 4 13 8 8 2 0 4 4 2 0 3 7 22 5 3 11 1 2 3 1 2 11 6 12 2 8 1 3 2 3 6 7 10 3 10 9 12 19 42 32 21 16 7 21 18 9 14 6 6 15 22 9 0 1 13 17 22 7 50 17 4 6 30 5 21 5 7 22 13 22 11 4 1 17 9 3 7 2 30 5 8 10 8 11 42 31 5 31 43 14 33 21 0 18 7 14 20 15 23 7 14 Clade A 6 1 28 6 8 8 9 15 13 40 12 6 28 21 31 14 32 60 41 19 12 9 14 17 16 14 9 18 62 15 28 8 21 24 35 13 18 5 9 15 25 105 50 52 Figure 2.1 Malva.nicaensis Malva.linnaei Lavatera.occidentalis Malva.assurgentea Malva.dendromorpha Malva.wigandii Lavatera.arborea Lavatera.trimestris Navaea.phoenicea Malope.sp. Kitaibela.vitifolia Alcea.rosea Alcea.rugosa Callirhoe.digitata Callirhoe.involucrata Napaea.dioica Anisodontea.capensis Malacothamnus.fasciculatus Phymosia.umbellata Iliamna.rivularis Iliamna.remota Palaua.rhombifolia Palaua.camanensis Urocarpidium.albiflorum Fuertesimalva.jacens Fuertesimalva.limensis Sidalcea.cusickii Sidalcea.multifida Sidalcea.hirsuta Sidalcea.stipularis Eremalche.exilis Eremalche.parryi Iliamna.bakeri Iliamna.latibracteata Malvastrum.americanum Malvastrum.amblyphyllum Malvastrum.coromandelianum Monteiroa.glomerata Modiolastrum.lateritium Modiola.caroliniana Calyculogygas.uruguayensis Kearnemalvastrum.sp. Kearnemalvastrum.lacteum Acaulimalva.dryadifolia Acaulimalva.alismatifolia Malacothamnus.chilensis Tarasa.mandonii Tarasa.machupicchensis Sphaeralcea.angustifolia Sphaeralcea.wrightii Sphaeralcea.crispa Sphaeralcea.philippiana Sphaeralcea.cordobensis Tarasa.operculata Tarasa.thyrsoidea Nototriche.flabellata Nototriche.anthemidifolia Nototriche.pedicularifolia Tarasa.trisecta Tarasa.rhombifolia Tarasa.humilis Tarasa.albertii Sidastrum.paniculatum Meximalva.filipes Sida.platycalyx Sida.fibulifera Anoda.crenatiflora Periptera.punicea Horsfordia.exsita Bakeridesia.gloriosa Bastardiastrum.cinctum Wissadula.cruziana Wissadula.boliviana Wissadula.periplocifolia Tetrasida.chachapoyensis Pseudabutilon.umbellatum Abutilon.pubistamineum Bastardia.bivalvis Bastardiopsis.densiflora Abutilon.Laduke Abutilon.andrewsianum Hochreutinera.amplexifolia Briquetia.sonorae Dirhamphis.sp. Gaya.calyptrata Gaya.atiquipana Billieturnera.helleri Robinsonella.sp. Sida.oligandra Fryxellia.pygmaea Dendrosida.breedlovei Dendrosida.wingfieldi Sida.abutifolia Sida.odorata Sida.linifolia Sida.aggregata Sida.xantii Sida.longipes Sida.jussieana Krapovickasia.physaloides Rhynchosida.physocalyx Neobrittonia.acerifolia Batesimalva.violacea Allowissadula.holosericea Tetrasida.weberbaueri Allosidastrum.pyramidatum Malvella.sagittifolia Corynabutilon.vitifolium Lecanophora.chubutensis Lecanophora.heterophylla Cristaria.andicola Sidasodes.colombiana Sida.hookeriana Hoheria.sp. Sida.hermaphrodita Howittia.trilocularis Gossypium.hirsutum Thespesia.lampas Malva Malope Malva Sidalcea Napaea Anisodontea Phymosia Sphaeralcea Sidalcea Sphaeralcea Phymosia Malvastrum Sphaeralcea Kearnemalvastrum Sphaeralcea Phymosia Sphaeralcea Sida Anoda Batesimalva Bakeridesia Abutilon Sida Abutilon Batesimalva Gaya Abutilon Robinsonella Sida Fryxellia Sida Phymosia Batesimalva Abutilon Sida Abutilon Gaya Sida Plagianthus Sida Howittia One of 53 most parsimonious trees based on ITS sequence data [length=2992, CI= 0.2920 (excluding autapomorphies), RI= 0.6562, and RC=0.2112]. Branch lengths are shown above the branches. Alliance groupings are shown at right. 21 95 96 99 100 100 100 77 72 75 94 100 100 100 99 92 98 94 100 93 76 100 91 84 87 68 96 63 100 100 93 98 90 62 79 100 100 73 99 72 100 68 76 99 100 99 99 66 84 71 100 100 100 74 100 82 . 88 100 57 100 52 58 100 51 84 75 100 96 73 51 100 100 77 100 53 99 51 100 Figure 2.2 83 Malva.nicaensis Malva.linnei Lavatera.occidentalis Malva.assurgentea Malva.dendromorpha Malva.wigandii Lavatera.arborea Lavatera.trimestris Navaea.phoenicea Malope.sp. Kitaibela.vitifolia Alcea.rosea Alcea.rugosa Callirhoe.digitata Callirhoe.involucrata Napaea.dioica Anisodontea.capensis Malacothamnus.fasciculatus Iliamna.rivularis Iliamna.remota Phymosia.umbellata Palaua.rhombifolia Palaua.camanensis Urocarpidium.albiflorum Fuertesimalva.jacens Fuertesimalva.limensis Sidalcea.cusickii Sidalcea.multifida Sidalcea.hirsuta Sidalcea.stipularis Eremalche.exilis Eremalche.parryi Iliamna.bakeri Iliamna.latibracteata Malvastrum.americanum Malvastrum.amblyphyllum Malvastrum.coromandelian Monteiroa.glomerata Modiolastrum.lateritium Modiola.caroliniana Calyculogygas.uruguayensis Kearnemalvastrum.sp. Kearnemalvastrum.lacteum Acaulimalva.dryadifolia Acaulimalva.alismatifolia Malacothamnus.chilensis Tarasa.mandonii Tarasa.machupicchensis Sphaeralcea.angustifolia Sphaeralcea.wrightii Sphaeralcea.crispa Sphaeralcea.philippiana Sphaeralcea.cordobensis Tarasa.operculata Tarasa.thyrsoidea Nototriche.flabellata Nototriche.anthemidifolia Nototriche.pedicularifolia Tarasa.trisecta Tarasa.rhombifolia Tarasa.humilis Tarasa.albertii Sidastrum.paniculatum Meximalva.filipes Sida.platycalyx Sida.fibulifera Anoda.crenatiflora Periptera.punicea Horsfordia.exsita Bakeridesia.gloriosa Bastardiastrum.cinctum Wissadula.cruziana Wissadula.boliviana Wissadula.periplocifolia Tetrasida.chachapoy Pseudabutilon.umbellatum Abutilon.pubistamineum Bastardia.bivalvis Bastardiopsis.densiflora Abutilon.Laduke Abutilon.andrewsianum Briquetia.sonorae Hochreutinera.amplexifolia Dirhamphis.sp. Gaya.calyptrata Gaya.atiquipana Billieturnera.helleri Robinsonella.sp. Sida.oligandra Fryxellia.pygmaea Dendrosida.breedlovei Dendrosida.wingfieldi Sida.aggregata Sida.xantii Sida.abutifolia Sida.odorata Sida.linifolia Sida.longipes Sida.jussieana Krapovickasia.physaloides Rhynchosida.physocalyx Neobrittonia.acerifolia Batesimalva.violacea Allowissadula.holosericea Tetrasida.weberbaueri Allosidastrum.pyramidatum Malvella.sagittifolia Corynabutilon.vitifolium Lecanophora.chubutensis Lecanophora.heterophylla Cristaria.andicola Sidasodes.colombiana Sida.hookeriana Hoheria.sp. Sida.hermaphrodita Howittia.trilocularis Gossypium.hirsutum Thespesia.lampas The strict consensus of 53 most parsimonious trees based on ITS sequence data. Bootstrap support (above 50) for 100 replicates is indicated below the nodes. 22 10 21 100 9 12 9 99 19 18 99 42 14 32 6 21 6 66 16 22 15 84 9 71 7 Clade B 0 22 100 1 13 6 74 17 17 100 4 30 5 21 5 22 17 100 13 22 3 11 9 82 7 7 8 57 4 2 1 30 88 100 5 42 100 31 10 52 43 100 8 5 11 31 14 58 43 33 8 6 28 6 100 1 21 0 18 51 14 96 9 13 51 14 7 73 7 75 20 15 8 84 15 23 40 12 41 100 9 100 6 19 100 12 77 9 28 21 31 17 14 14 100 14 32 16 53 60 18 8 62 21 99 15 28 24 35 13 51 9 5 18 83 15 100 25 105 49 50 Figure 2.3 Sidastrum.paniculatum Meximalva.filipes Sida.platycalyx Sida.fibulifera Anoda.crenatiflora Periptera.punicea Horsfordia.exsita Bakeridesia.gloriosa Bastardiastrum.cinctum Wissadula.cruziana Wissadula.boliviana Wissadula.periplocifolia Tetrasida.chachapoyensis Pseudabutilon.umbellatum Abutilon.pubistamineum Bastardia.bivalvis Bastardiopsis.densiflora Abutilon.Laduke Abutilon.andrewsianum Hochreutinera.amplexifolia Briquetia.sonorae Dirhamphis.sp. Gaya.calyptrata Gaya.atiquipana Billieturnera.helleri Robinsonella.sp. Sida.oligandra Fryxellia.pygmaea Dendrosida.breedlovei Dendrosida.wingfieldi Sida.abutifolia Sida.odorata Sida.linifolia Sida.aggregata Sida.xantii Sida.longipes Sida.jussieana Krapovickasia.physaloides Rhynchosida.physocalyx Neobrittonia.acerifolia Batesimalva.violacea Allowissadula.holosericea Tetrasida.weberbaueri Allosidastrum.pyramidatum Malvella.sagittifolia Corynabutilon.vitifolium Lecanophora.chubutensis Lecanophora.heterophylla Cristaria.andicola Sidasodes.colombiana Sida.hookeriana Hoheria.sp. Sida.hermaphrodita Howittia.trilocularis Gossypium.hirsutum Thespesia.lampas Sida Anoda Batesimalva Bakeridesia Abutilon Sida Abutilon Batesimalva Gaya Abutilon Robinsonella Sida Fryxellia Sida Phymosia Batesimalva Abutilon Sida Abutilon Gaya Sida Plagianthus Sida Howittia Clade A from one most parsimonious tree (see Figure 2.1). Branch lengths are shown above the branches and bootstrap support (above 50) for 100 replicates is given below. Genera are colored according to their alliance associations which also correspond to the bars on the right. 23 19 100 22 100 7 3 1 9 99 27 34 13 100 12 31 72 10 77 3 75 10 5 95 14 96 18 34 55 45 16 94 8 6 40 100 9 12 9 7 3 0 21 100 11 4 16 27 3 7 4 29 100 11 10 12 8 99 16 6 1 12 9 92 0 7 98 3 0 3 4 11 76 3 16 16 100 93 3 11 18 5 91 3 57 84 2 23 100 5 20 8 32 12 12 3 3 9 87 17 13 4 3 2 5 68 8 8 3 3 96 4 63 3 3 2 13 100 8 8 100 2 0 3 93 4 7 98 5 90 22 62 11 100 0 1 2 11 100 6 73 12 99 Clade A 3 3 76 8 1 100 68 3 1 2 2 72 2 6 7 7 99 Figure 2.4 4 2 3 79 10 3 Malva.nicaensis Malva.linnei Lavatera.occidentalis Malva.assurgentea Malva.dendromorpha Malva.wigandii Lavatera.arborea Lavatera.trimestris Navaea.phoenicea Malope.sp. Kitaibela.vitifolia Alcea.rosea Alcea.rugosa Callirhoe.digitata Callirhoe.involucrata Napaea.dioica Anisodontea.capensis Malacothamnus.fasciculatus Phymosia.umbellata Iliamna.rivularis Iliamna.remota Palaua.rhombifolia Palaua.camanensis Urocarpidium.albiflorum Fuertesimalva.jacens Fuertesimalva.limensis Sidalcea.cusickii Sidalcea.multifida Sidalcea.hirsuta Sidalcea.stipularis Eremalche.exilis Eremalche.parryi Iliamna.bakeri Iliamna.latibracteata Malvastrum.americanum Malvastrum.amblyphyllum Malvastrum.coromandelianum Monteiroa.glomerata Modiolastrum.lateritium Modiola.caroliniana Calyculogygas.uruguayensis Kearnemalvastrum.sp. Kearnemalvastrum.lacteum Acaulimalva.dryadifolia Acaulimalva.alismatifolia Malacothamnus.chilensis Tarasa.mandonii Tarasa.machupicchensis Sphaeralcea.angustifolia Sphaeralcea.wrightii Sphaeralcea.crispa Sphaeralcea.philippiana Sphaeralcea.cordobensis Tarasa.operculata Tarasa.thyrsoidea Nototriche.flabellata Nototriche.anthemidifolia Nototriche.pedicularifolia Tarasa.trisecta Tarasa.rhombifolia Tarasa.humilis Tarasa.albertii Malva Malope Malva Sidalcea Napaea Anisodontea Phymosia Sphaeralcea Sidalcea Sphaeralcea Phymosia Malvastrum Sphaeralcea Kearnemalvastrum Sphaeralcea Phymosia Sphaeralcea Clade B from one most parsimonious tree (see Figure 2.1). Branch lengths are shown above the branches and bootstrap support (above 50) for 100 replicates is given below. Genera are colored according to their alliance associations which also correspond to the bars on the right. 24 DISCUSSION The traditional alliances (as well as several genera) are not monophyletic Consistent with a previous chloroplast-based phylogeny (La Duke and Doebley 1995), the informal alliances of the Malveae are not monophyletic in the ITS phylogeny (Figs. 2.1, 2.3, 2.4). Figures 2.1, 2.3, and 2.4 illustrate the general distribution of the alliances on one most parsimonious tree. Overall, two main clades were reconstructed: one clade (hereafter referred to as Clade A) containing the Abutilon, Bakeridesia, Batesimalva, Fryxellia, Gaya, Plagianthus, Robinsonella, and Sida alliances; and a second large clade (Clade B) consisting of genera from the Anisodontea, Callirhoe, Kearnemalvastrum, Malva, Malvastrum, Modiola, Napaea, Phymosia, Sphaeralcea, and Sidalcea alliances. Although many more genera were included here, the structure of the ITS tree appears congruent with the cp-DNA tree of La Duke and Doebley (1995) in that two main clades were reconstructed. None of the historical classification schemes are reflected in the ITS phylogeny, however (Table 2.2). While some alliances are not monophyletic, only one alliance (Phymosia) appeared in the two main clades. Therefore, the alliances in general seem to indicate better generic affinities than the previous subtribal classifications. In this case, chromosome number and general geographic distribution seem to be more reliable indicators of phylogenetic relatedness than are some of the previously emphasized morphological characters (particularly those of the carpel). The tribe Malveae appears to be monophyletic, although sampling did not include three of the other four tribes in the Malvoideae. To place the tribe definitively within the family, sampling should include members of the tribes Dechaschistieae, Gossypieae, Hibisceae, and Malvavisceae. However, as the ITS alignment even within the tribe presented difficulties, the use of a more slowly evolving molecule for phylogeny 25 reconstruction would permit the inclusion of more distantly related taxa. Likewise, the high homoplasy levels (CI=0.2920 excluding uninformative characters, RC=0.2112) indicate that this marker may not be particularly well-suited for a tribal level phylogeny. However, homoplasy levels have been shown to increase when a large number of taxa are analyzed (Sanderson and Donoghue 1989). The basal-most lineage of the Malveae is occupied by Howittia, a monotypic genus from southeastern Australia. The systematic position of this genus has been questionable for some time. Bentham and Hooker (1862) first placed the genus in the subtribe Abutileae with other genera containing two to many ovules per carpel (e.g., Abutilon, Sphaeralcea, Modiola). Edlin (1935) proposed that perhaps this genus did not belong in the Malveae since it possesses morphological features rather atypical for the tribe (shrubby habit, staminal column antheriferous to the base, lack of stylar branches, and non-disarticulating fruits). Instead, the tribe Hibisceae was thought to house this unusual genus better (Edlin 1935). Bates (1968) placed Howittia in its own alliance within the Malveae and allied the genus to other genera in the Abutilon alliance. Since Howittia occupies a basal (or perhaps sister) lineage of the Malveae, it is particularly unfortunate that the chromosome number is unknown (Bates [1968] suggested a base chromosome number of 7 or 8 for the tribe). Several genera were also resolved as non-monophyletic in the ITS phylogeny: Abutilon, Iliamna, Lavatera, Malva, Malacothamnus, Sida, Tarasa, and Tetrasida. Previous phylogenetic studies of the Abutilon-Sida complex (Fuertes Aguilar et al. in press) and the Lavatera-Malva group (Ray 1995) similarly demonstrated a lack of monophyly for these four genera. The issue of non-monophyly for the remaining genera was unexpected. For the remainder of the discussion I will focus on the overall pattern of alliance and generic relatedness within clades A and B, respectively. 26 Alliances and genera of Clade A As previously mentioned, Clade A contains mostly members of the Sida and Abutilon alliances, along with genera from the Bakeridesia, Fryxellia, Gaya, Phymosia, and Robinsonella alliances (Figure 2.3). The Abutilon-Sida complex was the subject of a recent phylogenetic investigation using ITS (Fuertes Aguilar et al. in press) in which the two genera were found to be non-monophyletic. Sida (100 spp.) has long been recognized as a heterogeneous assemblage (Fryxell 1985). Attempts to create a more natural group have resulted in several segregate genera: Allosidastrum, Bastardiopsis, Billieturnera, Dendrosida, Krapovickasia, Malvella, Meximalva, Rhynchosida, Sidastrum, and Tetrasida. Consequently, it is not surprising that the remaining species of Sida as well as the entire Sida alliance (12 genera) still do not form a monophyletic group in this expanded ITS phylogeny (Figure 2.3). A “core” Sida clade was reconstructed, which consisted of Sida abutifolia (section Spinosae), S. aggregata (section Muticae), S. linifolia (section Stenindae), S. longipes (section Ellipticifoliae), S. jusseiana (section Nelavagae), S. xanti (section Cordifoliae) along with Dendrosida. Fryxell (1997) suggested Meximalva and Dendrosida were potential close relatives to Sida. In fact, both genera are closely related to species of Sida although they occur in separate clades. The remaining species of Sida are distributed throughout Clade A (Figure 2.3). Likewise, the 11 genera of the Abutilon alliance are scattered throughout clade A. The three species of Abutilon (200 spp.) included here also did not form a monophyletic group. The potential for non-monophyly appears high for alliances which are composed of many genera (e.g., Abutilon, Sida, Sphaeralcea). However, even a few of the smaller alliances are not monophyletic in the ITS phylogeny: Gaya alliance (3 genera), Batesimalva alliance (4 genera), and the Phymosia alliance (1 sp. in clade A, the other 3 in clade B). In particular, the placement of Neobrittonia of the Phymosia alliance (Fryxell 1988) sister to 27 Batesimalva was surprising, although the two share a chromosome number of n=16. Bates (1968) originally placed Neobrittonia amongst the other pluriovulate genera of the Abutilon alliance (e.g., Bakeridesia, Herissantia, Pseudabutilon, and Wissadula). One of the other genera resolved as non-monophyletic in the ITS phylogeny was Tetrasida. The genus currently contains four species (Fryxell and Fuertes Aguilar 1992) found in Peru and Ecuador. Two species were included here to represent the genus: T. chachapoyensis clusters with species of Wissadula, while T. weberbaueri is sister to Allowissadula holosericea. Krapovickas (1969) included the species now considered as Tetrasida in Abutilon section Tetrasida because he believed the condition of a fourmerous corolla (for which the genus was named) in the species was not sufficiently consistent to merit generic recognition (Krapovickas 1969). However, Fryxell and Fuertes Aguilar (1992) resurrected the genus including two species and later (Fryxell and Fuertes Aguilar 1997) described two new species. The most basal clade of Clade A contains a medley of taxa: Hoheria, Sidasodes colombiana, Sida hermaphrodita, and Sida hookeriana. The placement of Hoheria, a genus endemic to New Zealand, outside the remaining members of the Malveae seems logical in terms of its geographic distribution. Very few genera in the tribe (only members of the Plagianthus alliance and Howittia) are centered in the South Pacific region. The placement of Hoheria with these “divergent” taxa is more likely a reflection of the lack of sampling from Australia and New Zealand species, rather than a true phylogenetic affinity. In fact, the inclusion of the remaining members of this alliance provides additional resolution to the placement of this genus (Tate et al. in prep.). Also included in this clade is Sida hookeriana (section Hookerianae), a species from southwestern Australia (Fryxell 1985). The placement of this species near Hoheria is intriguing and its basal position in the phylogeny could be evidence of South Pacific 28 origin for the tribe. However, two American species are also included in this clade: Sidasodes colombiana (from the Andes of Colombia and Peru) and Sida hermaphrodita (section Pseudo-Napaea) from the eastern United States. Fryxell and Fuertes Aguilar (1992) noted the similarity of Sidasodes to Sida hermaphrodita on the basis of fruit morphology. However, these taxa were not thought to share other features. Sidasodes has a base chromosome number of x=5 which is common to members of the traditional Sphaeralcea alliance, but the former is not closely related to any genera of the latter. Instead, this species probably represents an aneuploid lineage of the clade. Alliances and genera of Clade B Clade B was resolved as a well-supported group (84% bootstrap support) composed of genera from the Anisodontea, Kearnemalvastrum, Malva, Malvastrum, Napaea, Phymosia, Sidalcea, and Sphaeralcea alliances (Figure 2.4). The clade contains mostly American taxa, with the exception of Alcea (Mediterranean to central Asia), Anisodontea (South Africa), Kitaibela (Europe), the Malva-Lavatera group (mainly north temperate areas), (Mediterranean). Navaea phoenicia (Canary Island endemic) and Malope Again, several of the alliances (Malva, Phymosia, Sidalcea, Sphaeralcea), as well as several genera (e.g., Iliamna, Malacothamnus, Tarasa) are not monophyletic in the ITS phylogeny. The three genera with multiverticillar carpels (Kitaibela, Malope, and Palaua) that were once placed in a separate tribe Malopeae were all members of clade B (Figure 2.4). However, these three genera did not form a monophyletic group, which implies that this unusual morphological feature has evolved on three separate occasions. Bates (1968) placed Palaua in the Sphaeralcea alliance with the other x=5 genera, while retaining Kitaibela and Malope as the sole members of the Malope alliance. He also proposed that 29 the evolution of the carpels into superposed verticils in Palaua occurred independently from that of Malope and Kitaibela, an hypothesis which is supported here. One important finding within clade B is the sister relationship of Urocarpidium albiflorum to the Fuertesimalva species. Urocarpidium albiflorum, the type species of the genus, was placed in synonymy with Tarasa operculata due to its apically plumose awns on the mericarps (Fryxell 1996). The genus Fuertesimalva was created to accommodate the remaining species of Urocarpidium (Fryxell 1996). The results of the ITS phylogeny (and also chloroplast data, see Chapter 3), do not support the separation of U. albiflorum from the remaining species of Fuertesimalva nor its inclusion in Tarasa operculata and argue for the original generic composition and name. In fact, calyx and leaf vestiture seem to be a better indicator of phylogenetic relatedness for these species than the presence of apical ornamentation on the mericarps. For example, in Tarasa the calyx trichomes are stipitate stellate, whereas in Urocarpidium sensu lato, they are hirsute. The two genera also differ in mericarp morphology: Urocarpidium mericarps are indehiscent, glabrous, and typically laterally “ridged,” while Tarasa mericarps are dehiscent (at least partially), have stellate pubescence on the dorsal and apical surfaces, and the lateral walls may be smooth or reticulate. The occurrence of an apical awn on the mericarps of these genera appears to be a convergent character and is found in other cases as well (e.g., Tarasa species). The sister relationship of a South American coastal genus (Palaua) to an Andean genus (Fuertesimalva) is particularly interesting. Neither genus had been previously suggested to be closely related to the other. Because the genera occurring in the high Andes do not form a monophyletic clade (they are scattered within Clade A and Clade B), multiple independent colonizations of the Andes by several Malveae genera are inferred (e.g., Acaulimalva, Malvastrum, Nototriche, Sida, Sidasodes, and Tarasa). 30 Iliamna and Malacothamnus were both found to be not monophyletic (see discussion of M. chilensis under Tarasa). Two species of Iliamna (I. bakeri and I. lactebracteata) (x=33) which are endemic to northern California/southern Oregon are more closely related to Sidalcea (x=5) and Eremalche (x=5) which are distributed along the western coast of North America than to the remaining members of Iliamna. The other two species included here (I. rivularis, found in the Rocky Mountains of the United States and I. remota, found in Illinois, Indiana, and Virginia), cluster with Phymosia (Mexico and Caribbean) (x=17) and Malacothamnus fasciculatus (California) (x=17). Iliamna, Malacothamnus, Neobrittonia and Phymosia were grouped together in the Phymosia alliance by Fryxell (1988). The Iliamna/Malacothamnus/Phymosia group is currently being studied in greater detail (Slotta pers. comm.). Among the non-monophyletic genera was Tarasa (x=5), a high elevation Andean genus, which ranges from central Peru to southern Argentina and adjacent Chile, with 2 species disjunct in central Mexico (Krapovickas 1954). In the ITS phylogeny, Malacothamnus chilensis was placed sister to Tarasa machupicchensis and T. mandonii of Peru and Bolivia, respectively (a finding also corroborated by chloroplast data, see Chapter 3). Malacothmanus chilensis (x=6) is the only South American species (southern Chile) of a genus otherwise composed of x=17 North American species (Krapovickas 1952, Bates 1968, Bates and Blanchard 1970). Recent chromosome counts made during a systematic study of Tarasa revealed that T. machupicchensis and T. mandonii share this chromosome number of x=6 (see Chapter 3). Morphologically, these species also share a shrubby habit and relatively large flowers. Based on the unusual shared chromosome number, morphological evidence, and molecular phylogenetic results, these taxa merit recognition at the generic level (Tate in prep.). 31 Even with the removal of the x=6 species from Tarasa, the genus is still not monophyletic. Sphaeralcea (x=5), a North-South American temperate disjunct genus, is sister to a clade containing the remaining species of Tarasa and the ultra-high elevation (> 4000 m) Andean genus Nototriche (x=5). These three genera had been suggested to be close relatives based on gross morphology and mitotic chromosome morphology (Krapovickas 1960). The two North American Sphaeralcea species sampled cluster together, as do the two South American taxa included. The species of Nototriche are well-embedded within the Tarasa clade. Further sampling of these two genera is needed to resolve the relationship among the species. CONCLUSIONS Results from this study, like several previous phylogenetic works, suggest that the infratribal systematics and even generic boundaries of the Malveae need to be revised. Before formal proposals are made, however, the phylogenetic relationships recovered in the nuclear-based phylogeny should be compared to a chloroplast-based phylogeny. True phylogenetic relationships may be obscured in situations where polyploidy (allopolyploidy) and/or hybridization commonly occur (Doyle 1992, Wendel and Doyle 1998). The former at least appears to be a common speciation mechanism in many lineages of the Malveae. The extent of hybridization between lineages within the tribe remains untested to date. Future work which utilizes both nuclear and chloroplast molecular data and which focuses on the systematics of closely related genera should shed light on this issue. 32 Chapter 3: Molecular systematics of the polyploid Andean genus Tarasa Philippi (Malvaceae) ABSTRACT A molecular phylogenetic analysis of the Andean genus Tarasa (Malvaceae) and related genera yielded unexpected results regarding generic boundaries, the origins of polyploidy, and the morphological attributes of the polyploid taxa. As currently circumscribed, the 30 species of Tarasa (diploid and tetraploid) are morphologically characterized by their magenta, lilac, or white flowers displayed in axillary scorpioid cymes, apically aristate, completely dehiscent mericarps, and a base chromosome number of x=5. The species are found across a range of elevations (800-4200 m) from central Peru to southern Chile and adjacent Argentina, with two species disjunct in central Mexico. The tetraploid species occupy higher elevation habitats in the Andes than the diploids. Further, the tetraploids are unusual in that they are all annuals and have reduced floral morphologies (smaller flowers and fewer anthers) compared to the diploid species. Nuclear (ITS) and chloroplast (psbA-trnH and trnT-trnL spacers, matK-3’trnK intron) sequence data were used to reconstruct independent phylogenies to test monophyly of the genus, determine its sister group(s), and investigate the origin of the polyploid species. Neither the nuclear nor the chloroplast phylogeny supports monophyly of Tarasa as currently circumscribed. The high Andean genus Nototriche and the North/South American disjunct genus Sphaeralcea are placed within the Tarasa clade. Also, a clade consisting of the shrubby species Tarasa machupicchensis, T. mandonii, and T. spiciformis plus Malacothamnus chilensis (n=6) was placed outside of and sister to the remaining species of Tarasa and included genera. Chromosome counts have verified that these Tarasa species are n=6 and should not be considered part of Tarasa. Lastly, the 33 polyploid species of Tarasa do not form a monophyletic clade and thus have been generated multiple times. These findings suggest that the shared morphological features of the tetraploids are the result of convergent evolution and not shared ancestry. INTRODUCTION Taxonomic history The genus Tarasa was first described by Philippi in 1891 for a single species, Tarasa rahmeri Philippi, from Tarapacá, Chile. The genus (locally called ‘Tarasa’) was primarily distinguished from other mallows by its completely dehiscent and apically aristate mericarps. Philippi (1891) contrasted the genus with Cristaria with which it shares apical mericarp ornamentation, but in Cristaria these appendages are broad and wing-like. A second species, Tarasa albertii Philippi [as Tarassa alberti Philippi], from the Andes of southern Argentina was added in 1893. In 1949, Kearney transferred Sphaeralcea mandonii and Malva plumosa to Tarasa bringing the total number of species to four. During the interim between Philippi’s descriptions and Kearney’s publication and a few years thereafter, the remaining species now considered Tarasa were variously described as species of Malva, Malvastrum, or Sphaeralcea. In a 1954 synopsis of Tarasa, Krapovickas expanded the genus to include 24 species by proposing 13 new combinations and describing 8 new species. Since then, six additional species have been included in the genus (Bates 1965, Krapovickas 1960, 1965, 1970, 1979). As traditionally circumscribed, the species of Tarasa are characterized by axillary scorpioid cymes bearing lilac, magenta, or white flowers (except solitary in Tarasa humilis and umbellate in Tarasa umbellata and Tarasa reichei), apically aristate and completely dehiscent mericarps, and a base chromosome number of x=5 (Krapovickas 1954). Krapovickas (1960) created two sections within Tarasa (Table 3.1): section Umbellatae 34 containing the two species (T. umbellata and T. reichei) in southern Chile that have umbels and exserted anthers and stigmas, and section Tarasa composed of the remaining species. The latter was further divided into three informal groups that differed in habit, leaf morphology, and ploidy level. Chromosomes, geography, and morphology As part of his revision of the genus, Krapovickas (1954, 1960) conducted cytological studies which revealed the presence of both diploids (2n=10) and tetraploids (2n=20). These counts, combined with those made in this study total nineteen of the thirty species: nine of these are 2n=10, two are 2n=12, and eight are 2n=20 (Table 3.1). Polyploidy is particularly interesting in Tarasa because characters of the species violate two axioms of polyploid groups. First, polyploids are typically perennials (Stebbins 1940, 1950), however, the polyploid species of Tarasa are all annuals (Krapovickas 1954, 1960). Second, because polyploidization leads to increased cell size, the gross morphological features of polyploids described to date are larger than their diploid relatives (Gustafsson 1948, Stebbins 1940, 1950). Yet, the tetraploid species of Tarasa have an overall reduced morphology which includes smaller flowers with fewer anthers than the diploid species (Krapovickas 1960, 1971). In a palynological study, Tressens (1970) found the pollen of several tetraploid Tarasa species (range = 25-27 µm in diameter) to be generally smaller than that of most diploid pollen (range = 27.5-32.0 µm in diameter). Tetraploid pollen grains were found to have more apertures than diploid pollen grains (6-10 versus 3-5) and were ovoid in shape (versus spherical in diploid species) (Tressens 1970). 35 Table 3.1 Tarasa as circumscribed (Krapovickas 1954, 1960, 1971; Bates 1965) and chromosome numbers. Ploidy level was inferred for species without previously published chromosome counts – see page 50 for details. 2n 2n published inferred Circumscription of Tarasa Chromosome count reference SECTION TARASA DIPLOID PERENNIALS T. albertii Phil. T. capitata (Cav.) Bates T. humilis (Gillies ex Hook. et Arn.) Krapov. T. machupicchensis Krapov. T. mandonii (Baker) Kearney T. operculata (Cav.) Krapov. T. rhombifolia Krapov. T. spiciformis Krapov. T. thyrsoidea Krapov. 10 10 10 12 12 10 Krapovickas 1949 Krapovickas 1960 Krapovickas 1960 This chapter This chapter Krapovickas 1960 10 12 10 This chapter 10 10 Krapovickas 1954 Fernandez 1974 DIPLOID ANNUALS T. cardenasii Krapov. T. heterophylla (Gris.) Krapov. T. latearistata Krapov. T. meyeri Krapov. T. trisecta (Gris.) Krapov. 10 10 10 Krapovickas 1954 Krapovickas 1960 20 20 Krapovickas 1960 Krapovickas 1960 TETRAPLOID ANNUALS T. antofagastana (Phil.) Krapov. T. cerrateae Krapov. T. congestiflora (Johnston) Krapov. T. corrugata Krapov. T. geranioides (Cham. et Schl.) Krapov. T. marinii Krapov. T. martiniana Krapov. T. nototrichoides Krapov. T. odonellii Krapov. T. pediculata Krapov. T. tarapacana (Phil.) Krapov. T. tenella (Cav.) Krapov. T. tenuis Krapov. T. urbaniana (Ulbr.) Krapov. SECTION UMBELLATAE T. reichei (Phil.) Krapov. T. umbellata Krapov. 20 20 20 This chapter 20 20 20 20 Krapovickas 1954 20 20 20 20 20 Krapovickas 1960 Krapovickas 1960 Krapovickas 1954 Krapovickas 1960 10 10 36 In addition to these anomalous morphological features, the species of Tarasa exhibit a distinct relationship between ploidy level and geographic distribution (Figure 3.1). The diploid species, many of which have restricted distributions, occur at midelevations (between 800-3500 m) and form a discontinuous belt along both sides of the Andean Cordillera (Krapovickas 1960, 1971). The tetraploids occupy the interior of the diploid ring at higher elevations (2500-4200 m) and are usually weeds in disturbed or cultivated habitats of the central Andean altiplano (Krapovickas 1954, 1960, 1971). Areas historically subjected to disturbance typically have comparatively high occurrences of polyploidy, especially those affected by the advance and retreat of Pleistocene ice sheets (Stebbins 1950, Ehrendorfer 1980). Krapovickas (1971) suggested that the morphological plasticity and greater stress tolerance of the tetraploids allowed them to occupy new areas at higher altitudes that were previously not occupied by the genus. An origin for the polyploid species was not suggested nor whether they were auto- or allopolyploid derivatives (Krapovickas 1960, 1971). Systematic position Tarasa has been allied to other x=5 genera belonging to the Sphaeralcea alliance in the tribe Malveae. In particular, the genera Sphaeralcea A. St.-Hil., Nototriche Turcz. and Acaulimalva (Cav.) Krapov. were suggested to be close relatives (Krapovickas 1960, 1971). Sphaeralcea (40 species) occurs in temperate North and South America and has similar mericarp morphology to Tarasa (Krapovickas 1960, 1971). Nototriche is a distinctive Andean (Ecuador to Argentina) clade of approximately 100 perennial (rarely annual) acaulescent species usually found at altitudes above 4000 m (Fryxell 1997). A few tetraploid species of Tarasa share with Nototriche the unusual morphological character of a sheath formed by fused stipules, petiole, and peduncle (Krapovickas 1960). 37 Figure 3.1 Distribution of Tarasa in the Americas. The map was generated using the program DIVA-GIS (Hijmans et. al 2002). Localities are based on label information from approximately 1400 herbarium specimens. Diploid (2n=10) species are indicated by red dots; tetraploid (2n=20) species are indicated by yellow dots. 38 Acaulimalva is also an Andean genus (19 species) of acaulescent perennial herbs distributed at high elevations (2900-4800 m) from Venezuela and Colombia to Bolivia and northwestern Argentina (Krapovickas 1974, Fryxell 1997). Tarasa humilis, the only species in the genus with an acaulescent habit and solitary flowers, was suggested to be a link between either the perennial species of Nototriche or the genus Acaulimalva (Krapovickas 1960). In particular, Krapovickas (1971) noted that Sphaeralcea, Nototriche, and Tarasa have mitotic chromosomes of similar size and morphology which could indicate a close relationship among them. Urocarpidium albiflorum Ulbr., the type species of that genus, was placed in synonymy with Tarasa operculata due to the presence of an apically plumose awn on the mericarps (Fryxell 1996). The genus Fuertesimalva Fryxell was created to accommodate the remaining species of Urocarpidium (Fryxell 1996). Krapovickas (1949) earlier in a footnote had also suggested that Urocarpidium could be synonymous with Tarasa since both were separated from Malvastrum on the basis of apically aristate fruits (Ulbrich 1917). However, it is not clear from his remarks whether he was able personally to examine any specimens of Urocarpidium. Previous molecular-based phylogenies provided preliminary evidence for the systematic position of Tarasa. An earlier chloroplast DNA restriction site analysis of the Malvaceae s.s. placed Sphaeralcea and Tarasa as sister taxa (La Duke and Doebley 1995). However, neither Nototriche nor Acaulimalva were included in this study. Our recent and more inclusive ITS phylogeny of the tribe Malveae revealed surprising and complex relationships of Tarasa to its allies (Figures 2.1 and 2.4, previous chapter.). Unexpectedly, the genus was found not to be monophyletic due to the inclusion, in a single well-supported clade with Tarasa, of Malacothamnus chilensis (Gay) Krapov. and all species of Nototriche and Sphaeralcea sampled. Acaulimalva was not closely related 39 to this group, despite its similar geographic distribution, habit, and chromosome number. The placement of Malacothamnus chilensis sister to Tarasa machupicchensis, T. mandonii, and T. spiciformis was not anticipated, but is logical given its geographic distribution, shared chromosome number of n=6 (M. chilensis, Bates and Blanchard 1970; T. mandonii, A. Krapovickas pers. comm. and Table 3.1, T. machupicchensis, Table 3.1) and overall similar morphology to those Tarasa species. The remaining species of Malacothamnus have a chromosome number of n=17 and are confined to the western coast of North America from California to Baja California (Fryxell 1997). The species of Sphaeralcea sampled (both North and South American representatives) formed a monophyletic clade sister to the remaining species of Tarasa and Nototriche in that ITS phylogeny. The goals of this study were three-fold to: 1) assess further the monophyly of Tarasa as currently circumscribed using both nuclear and chloroplast sequence data, 2) determine the sister taxon to Tarasa, and 3) unravel the origins of the polyploid species of Tarasa. In this chapter, I examine in more detail the phylogenetic relationships within Tarasa and to the genera Nototriche and Sphaeralcea. Evidence is drawn from morphological and cytological data as well as nuclear and chloroplast-based phylogenies. MATERIALS AND METHODS Taxon sampling Outgroup choice was initially based on the suggested close relationship of Tarasa to Acaulimalva, Nototriche, and Sphaeralcea (Krapovickas 1960, 1971). Only the most closely related genera as determined from a larger ITS phylogeny of the tribe Malveae have been included here (see previous chapter). Twenty-seven of the thirty species of 40 Tarasa were included and when possible multiple populations of wide-ranging taxa were sampled (Table 3.2). DNA extraction and amplification Plant (leaf) material used in the molecular analyses was collected in the field and dried in silica gel (Chase and Hills 1991) or sampled from herbarium specimens. Alternatively, seeds removed from herbarium specimens or collected in the field were grown in the greenhouse and fresh leaf material from them was used. Total genomic DNA was extracted by the “rainforest” method of Scott and Playford (1996) or the modified CTAB protocol (Doyle and Doyle 1987) of Loockerman and Jansen (1996). The addition of a phenol extraction aided in obtaining clean DNA from recalcitrant species (especially from older herbarium specimens). Vouchered DNAs of two species were generously provided by Mark Chase at Kew Gardens (Tarasa humilis) and John La Duke at The University of North Dakota (Tarasa cerrateae). Voucher specimens and their locations are indicated in Table 3.2. Three non-coding regions were used to reconstruct a chloroplast-based phylogeny of the combined psbA-trnH spacer, trnT-trnL spacer, and the 3’ intergenic region between matK and trnK. Primer sequences and their references are listed in Table 3.3. Two primers (trnH2 and matK-M) were modified from previously published primers specifically for this project and were based on Gossypium and Tilia sequences for these regions, respectively. The program Primer3 (Rozen and Skaletsky 1997) aided in primer design. Because the trnT-trnL region was approximately 1400 bp in length, it was difficult to amplify for some taxa (especially those extracted from herbarium specimens) and to sequence reliably the entire fragment. Thus, an internal primer (Table 3.3) was 41 Table 3.2 Vouchers used in molecular analysis, their location and GenBank accession number. An asterisk indicates voucher for chromosome count. A letter designates separate populations sampled. Species Source/Voucher Locality Fuertesimalva jacens (S. Watson) P.A. Fryxell Fuertesimalva limensis (L.) P. A. Fryxell Malacothamnus chilensis (Gay) Krapov. Modiola caroliniana G. Don Modiolastrum lateritium (Hook.) Krapov. Monteiroa bullata (Ekman) Krapov. Nototriche anthemidifolia A. W. Hill Nototriche flabellata A. W. Hill Nototriche pedicularifolia (Meyen) A. W. Hill Sphaeralcea angustifolia G. Don Sphaeralcea cordobensis Krapov. Sphaeralcea crispa Hook. Sphaeralcea philippiana Krapov. Sphaeralcea wrightii A. Gray Tarasa albertii Phil. A Tarasa albertii Phil. B Koch and Fryxell 77326 (LL) Tate and Timana 60 (TEX) Meudt et al. HM-028 (TEX) Tate and Simmons 50 (TEX) Tressens et al. 23-XI-93 (TEX) Krapovickas and Cristobal 43703 (TEX) Tate et al. 85 (TEX) Funk and Bernal H. 11289 (TEX) Tate et al. 102 (TEX) Tate et al. 51 (TEX) Tate et al. 79 (TEX) Tate et al. 77 (TEX) Tate et al. 71 (TEX) Tate et al. 53 (TEX) Böcher et al. 978 (MO) Tate et al. 74 (TEX) MEXICO - Mexico - Tenango de Arista PERU - Ancash - Yungay CHILE - Santiago MEXICO - Puebla ARGENTINA - Misiones - Guaraní BRASIL - Santa Catarina ARGENTINA - Salta - Santa Victoria BOLIVIA - La Paz - Murillo PERU - Arequipa - Arequipa MEXICO - San Luis Potosi ARGENTINA - Cordoba ARGENTINA - La Pampa - Caleu Caleu ARGENTINA - Mendoza - Las Heras MEXICO - Tamaulipas ARGENTINA - Mendoza - Atuel Valley ARGENTINA - Mendoza - Malargüe 42 Table 3.2 continued Species Tarasa antofagastana (Phil.) Krapov. A Tarasa antofagastana (Phil.) Krapov. B Tarasa antofagastana (Phil.) Krapov. C Tarasa capitata (Cav.) Bates A Tarasa capitata (Cav.) Bates B Tarasa cardenasii Krapov. Tarasa cerrateae Krapov. Tarasa congestiflora (Johnston) Krapov. Tarasa corrugata Krapov. Tarasa geranioides (Cham. et Schl.) Krapov. Tarasa heterophylla (Gris.) Krapov. Tarasa humilis (Gillies ex Hook. et Arn.) Krapov. A Tarasa humilis (Gillies ex Hook. et Arn.) Krapov. B Tarasa latearistata Krapov. Tarasa machupicchensis Krapov. Tarasa mandonii (Baker) Kearney A Tarasa mandonii (Baker) Kearney B Tarasa marinii Krapov. Source/Voucher Krapovickas and Cristobal 46656 (TEX) Tate et al. 92 (TEX) Tate et al. 66 (TEX) Tate and Timana 63 (TEX) Candia 78 (LPB) Nee 44773 (TEX) Treacy 794 (NY) Ricardi et al. 189A (CONC) Tate and Symonds 110 (TEX) Rzedowski 31482 (NY) * Krapovickas et al. 18830 (LL) Chase 3965 (K) Tate et al. 69 (TEX) Nuñez 637 (MCNS) Timana and Tate 3771 (TEX) * Fortunato et al. 1893 (TEX) Beck and Seidel 14510 (TEX) * Tupayachi 986 (MO) 43 Locality ARGENTINA - Jujuy - Tumbaya ARGENTINA - Tucumán - Tafí MEXICO - Veracruz PERU - Arequipa - Arequipa BOLIVIA - Cochabamba - Quillacollo BOLIVIA – Santa Cruz - Vallegrande PERU - Arequipa - Coporaque CHILE - I Reg. de Tarapaca - Arica PERU - Cuzco - Calca MEXICO - Hidalgo - Tepeapulco BOLIVIA - Tarija - Tarija ENGLAND - Kew Gardens CHILE - IX Reg. de Araucania ARGENTINA - Salta - Cachi PERU - Cuzco - Urubamba BOLIVIA- La Paz BOLIVIA - Cochabamba - Ayopaya PERU - Cuzco - Urubamba Table 3.2 continued Species Tarasa meyeri Krapov. Tarasa nototrichoides Krapov. Tarasa odonellii Krapov. Tarasa operculata (Cav.) Krapov. A Tarasa operculata (Cav.) Krapov. B Tarasa pediculata Krapov. Tarasa rhombifolia Krapov. Tarasa spiciformis Krapov. Tarasa tarapacana (Phil.) Krapov. Tarasa tenella (Cav.) Krapov. A Tarasa tenella (Cav.) Krapov. B Tarasa tenuis Krapov. Tarasa thyrsoidea Krapov. A Tarasa thyrsoidea Krapov. B Tarasa trisecta (Gris.) Krapov. Tarasa urbaniana (Ulbr.) Krapov. Urocarpidium albiflorum Ulbr. Source/Voucher Krapovickas et al. 22022 (F) Menhofer X-1093 (LPB) * Zamora and Quiroga 19 (LPB) Dillon et al. 4790 (TEX) Tate and Timana 62 (TEX) Baumann 234 (CONC) Tate and Symonds 109 (TEX) Weberbauer 7512 (F) Krapovickas and Shinini 35752 (CTES) Krapovickas 47722 (TEX) Solomon and Moraes 13401 (MO) Aguilar s.n. (TEX) Dillon et al. 3243 (TEX) Tate et al. 107 (TEX) Tate et al. 91 (TEX) Leiva and Leiva 488 (F) Burandt 2340 (F) 44 Locality ARGENTINA - Salta - Cachi BOLIVIA - La Paz - F. Tamayo BOLIVIA - La Paz - Murillo PERU- Moquegua - Mariscal Nieto PERU - Arequipa - Arequipa CHILE – II Region – El Loa PERU - Cuzco - Urubamba PERU - Ayacucho - Huanta ARGENTINA - Jujuy - Humahuaca ARGENTINA - Jujuy - Humahuaca BOLIVIA - La Paz - Murillo Province PERU - Puno - Amantani PERU - Arequipa - Caraveli PERU - Arequipa - Caraveli ARGENTINA - Salta - Cafayate PERU - La Libertad - Otuzco PERU - Moquegua Table 3.3 List of primers used for PCR amplification and sequencing Region Primer name ITS 7A ITS 1A ITS (1) 2b ITS (2) 3 ITS 4 trnT-trnL spacer A trnT-trnL spacer B trnT-trnL spacer IF trnT-trnL spacer IR psbA-trnH spacer psbA psbA-trnH spacer trnH2 matK-3' trnK intron matKM matK-3' trnK intron trnK-2R Primer sequence (5'-3') Reference GAGTCATCAGCTCGCGTTGACTA GGAAGGAGAAGTCGTAACAAGG CTC GAT GGA ACA CGG GAT TCT GC GCA TCG ATG AAG AAC GCA GC TCC TCC GCT TAT TGA TAT GC CAT TAC AAA TGC GAT GCT CT TCT ACC GAT TTC GCC ATA TC GGA ATA CTC GAA CGG CCG TTC GAG TAT TCC GTT ATG CAT GAA CGT AAT GCT C CGC GCA TGG TGG ATT CAC AAT CC TCGACTTTCTGGGCTATC AACTAGTCGGATGGAGTAG A. Plovanovich and J. Panero unpublished Downie and Katz-Downie 1996 Based on Kim and Jansen 1994 Kim and Jansen 1994 White et al. 1990 Taberlet 1991 Taberlet 1991 This publication This publication Sang et al. 1997 This publication This publication Johnson and Soltis 1994 45 designed in a conserved region approximately 1000 bp from the 5’ end in order to amplify and sequence this region better. Likewise, some taxa were cloned (TOPO TA cloning kit, Invitrogen) for this same region when insufficient polymerase chain reaction (PCR) product was obtained for sequencing. Each chloroplast region was PCR amplified in a 50 uL cocktail consisting of 1x MasterAmp Tfl PCR buffer (Epicentre), 2.5 µM MgCl2, 0.8 µM DNTPs, 0.05 µM DMSO, 0.5 unit TFL polymerase (Epicentre) and 0.4 µM forward and reverse primers. After an intitial denaturing step at 95° for 5 minutes (“hot start”), the reactions were held at 72° while polymerase was added to each reaction. Amplification of each chloroplast region proceeded at 94° for 3 min, 46-52° for 1 min., 72° for 1 min., followed by 35 cycles of 94° 1 minute, 46-52° 1 minute, 72° for 45 sec. + 3 sec/cyc. with a final 7-15 minute extension at 72°. Amplification products were separated on a 1% agarose gel, stained with ethidium bromide and visualized with UV on a transilluminator. PCR products were cleaned using Qiagen QIAquick spin columns following manufacturer’s instructions. Cycle sequencing was performed using Big Dye terminator chemistry and either the forward or reverse primer. Centri-sep columns were used to remove residual salts and unincorporated nucleotides from the sequencing products. Automated sequencing was performed on an ABI 3700 at the DNA Analysis Laboratory at The University of Texas at Austin. The internal transcribed spacer (ITS) region of the 18S-25S nuclear ribosomal repeat was chosen for nuclear phylogeny reconstruction. Amplification and sequencing of the ITS region was conducted as for the chloroplast regions. Amplification primers used were 7A (A. Plovanovich and J. Panero unpublished) and 4 (White et al. 1990) or for ITS 1 and ITS 2 separately, primers 7A and 2b (Kim and Jansen 1994) and primers 3 (Kim and Jansen 1994) and 4, respectively. Primer sequences are given in Table 3.3. The ITS region was cloned (TOPO TA cloning kit, Invitrogen) for individuals in which 46 the directly sequenced PCR product contained polymorphic sites, i.e., where two discernible peaks appeared in the chromatogram. Colonies were screened for inserts using PCR and among these, 5-10 clones per reaction were selected for sequencing. Sequence analysis The boundaries of each target sequence were determined by comparison to published Gossypium (ITS, psbA-trnH, trnT-trnL) or Tilia (matK-3’trnK) sequences. BLAST (Altschul et al. 1990) searches in GenBank were conducted to detect potential contaminant sequences. Where multiple populations or accessions of the same taxon had identical sequences (for ITS or chloroplast regions), only one sequence was used in the analyses. Complementary strands were edited using Sequencher (Gene Codes Corporation 1995). The sequences were aligned using Clustal X (Thompson et al. 1997) with manual adjustments as needed. Sequence length and GC content were calculated in MacClade 4.0 (Maddison and Maddison 2000). Pairwise divergence values and base composition (biased) were assessed using PAUP* (Swofford 2002). Although the ITS spacers are not protein coding regions, they are still constrained to maintain a particular secondary structure for proper processing (Baldwin et al. 1995). Nucleotide substitutions or insertion-deletion events which may alter the expected secondary structure can be used as evidence of non-functional copies (Buckler and Holtsford 1996, Mayol and Rosello 2001). Likewise, an excess of observed nucleotide substitutions (particularly in conserved regions) in copies would indicate that nuclear repeats exist which are not under selection (Li 1983, Mayol and Rosello 2001). Therefore, cloned ITS sequences were examined in an attempt to identify non-functional or divergent paralogues. Sequences were evaluated for angiosperm-conserved regions within ITS1, 5.8S, and ITS2 (Liu and Schardl 1994, Hershkovitz and Zimmer 1996, 47 Mayol and Rossello 2001). If cloned sequences contained deviant nucleotide substitutions in any of these conserved areas and/or if they contained an excess of nucleotide substitutions overall (relative to the remainder of the data set and/or as compared to the directly sequenced product), then they were considered to be paralogous copies and were discarded from further analyses. The program GeneConv (Sawyer 1999) was used to test for potential recombination of ITS sequences between taxa (Smith 1999, Posada and Crandall 2001). The cloned ITS data set was examined using the default settings (returning only significant global fragments). Phylogenetic reconstruction Two data sets (ITS and all chloroplast regions combined) were analyzed separately under the parsimony optimality criterion of PAUP* v. 4.0b10 (Swofford 2002). The Independent Length Difference Test (ILD) of Farris (1994), which is implemented in PAUP* as the Partition Homogeneity Test, was first conducted to test for homogeneity among data partitions. For the chloroplast data set, three partitions were defined: matK-3’trnK intron, psbA-trnH spacer, and trnT-trnL spacer. A second test compared each chloroplast region (pairwise). Finally, a test combining ITS and all chloroplast regions examined two partitions (ITS and all chloroplast regions combined). Because different numbers of sequences were available for the two data sets, the number of ITS clones included were trimmed to mirror the species relationships recovered in initial analyses of the chloroplast phylogeny (thus creating a molecular phylogeny representative of a maternal lineage). For all ILD tests, 100 replications were performed. Heuristic searches were employed with TBR branch swapping, ACCTRAN character optimization and gaps coded as missing. 48 Additional tests were conducted in PAUP* to assess the apparent incongruence of the chloroplast and ITS phylogenies (reviewed in Mason-Gamer and Kellogg 1996 and Johnson and Soltis 1998). The compare-2, Templeton, and Kishino-Hasegawa tests were conducted to test the null hypothesis that the data sets are congruent and that the observed differences in the phylogenies are due to chance. For all three tests, the strict consensus tree (either ITS or chloroplast) was designated as the constraint for the rival data set. Each data set was tested for hierarchical structure by evaluating 10,000 randomly generated trees and comparing the calculated g1 to critical values (Hillis and Huelsenbeck 1992). Modiola and Modiolastrum were the designated outgroups in each analysis. For phylogeny reconstruction under parsimony, an heuristic search was employed with 1000 random addition replicates, TBR branch swapping, ACCTRAN character-state optimization and gaps coded as missing (ITS) or recoded as binary characters (combined chloroplast data matrix). Branch lengths of zero were collapsed. Support for monophyly of the clades was determined by 100 bootstrap replications (Felsenstein 1985). The likelihood ratio test (Goldman 1993, Yang 1996, Huelsenbeck and Rannala 1997) was conducted to determine the model of evolution that best describes each data set. Likelihood scores were calculated for the most parsimonious trees generated from an heuristic search (1000 RAR, TBR branch swapping, ACCTRAN optimization in effect, gaps treated as missing) in PAUP* for five increasingly complex models: Jukes-Cantor, HKY-85, GTR, GTR+G, and GTR+G+I . Pairwise values [(more complex model - less complex model)*2] were compared to a Chi square distribution. The best model (GTR+G+I) as determined by the likelihood ratio test was then used in the constraint analyses and simulations. 49 Initital phylogenetic analyses resulted in unexpected relationships. In order to test alternative hypotheses of evolution in Tarasa, parametric bootstrapping (Hillis et al. 1996) was also conducted as follows: 1) all traditionally circumscribed species of Tarasa were constrained to monophyly, 2) as 1, except excluding T. machupicchensis, T. mandonii, and T. spiciformis (n=6 group), and 3) all known and suspected Tarasa tetraploids constrained to monophyly. Chromosome number was inferred for species of Tarasa lacking direct counts based on habit, geographic distribution, and floral morphology. All perennials were considered diploid (2n=10) (excluding the n=6 group). Annuals with a restricted geographic range, petal length greater than 3 mm, and anthers numbering more than 30 were considered diploid (2n=10). Annuals with a wide geographic range, petal length less than 3 mm, and anthers fewer than 20 were considered tetraploid (2n=20). The single “best” constraint tree was then used as the model tree in SeqGen (Rambaut and Grassly 1997). Zero branch lengths were added to the model tree (before simulations in SeqGen) using the “Resolve tree” function in TreeEdit (Rambaut and Charleston 2001). One hundred data sets were simulated in SeqGen (Rambaut and Grassly 1997) using the model constraint tree and likelihood parameters. Each dataset was then analyzed in PAUP* (with and without the appropriate constraint) employing heuristic searches with 500 random addition sequences, TBR branch swapping, and gaps coded as missing. Tree scores with and without the constraint were compared to the best empirical unconstrained and constrained phylogenies. Chromosome counts Material used to conduct chromosome counts included personal collections, plants grown from seeds harvested from herbarium specimens, or gifts (Krapovickas). Permission was obtained from herbaria for judicious removal of seeds from specimens. 50 Seeds were considered mature if "full" and "healthy looking" (not collapsed). Seeds were soaked in a 10% bleach solution for 10 minutes followed by 10 minutes in sterile water. After soaking, the seed coats were nicked with a clean razor blade. For each species 3-4 seeds were placed in a petri dish with sterile water. The petri dish was wrapped with parafilm, and placed in a lighted chamber (85° day/70° night) until germination. Seeds from herbarium specimens up to 25 years old germinated and produced vigorous individuals. When seedlings had completely emerged from the seed coats, they were transplanted to a 2 1/2" plastic pot with a 3:1:1 mix of Scott's Metro Mix 500:fine sand:coarse granite. The soil was thoroughly moistened and the pots placed in a domed flat in the same lighted chamber. After the second set of true leaves emerged, the plants were weaned from the high humidity environment by gradually exposing them to open air. After several weeks in the 2 1/2" pots, the plants were transplanted to 4" clay pots. Plants were watered daily to every other day and were given a weekly treatment of commercial fertilizer. A young inflorescence was removed from an individual plant and placed in 3:1 (absolute ethanol:glacial acetic acid) for 24 hours. The buds were then transferred to 70% ethanol and kept at 4° C until counts were conducted. A range of buds was examined for the correct stage of meiosis. The anther mass was teased out of the buds and placed on a clean microscope slide. A drop of the DNA-binding flourochrome DAPI (4’, 6-diamidino-2-phenylindole) was placed on the slide and the anther mass was macerated with the blunt end of a glass rod for 2-3 minutes. A cover slip was placed on top and pressure was applied to spread out the chromosomes. Under UV on an Olympus BX60 light microscope, a rapid low power scan (at 200x) was first conducted to ensure that the cells were at the correct stage. Digital images were captured with an Optronics Magnafire S60800 at high power (1000x). 51 RESULTS New chromosome counts Haploid chromosome counts were made for four species of Tarasa and are included in Table 3.1: Tarasa thyrsoidea n=5, T. geranioides n=10, T. machupicchensis n=6, T. mandonii n=6. Chloroplast sequence characteristics Sequences of the three chloroplast regions (matK-3’trnK, psbA-trnH, trnT-trnL) were obtained for 27 of the 30 species of Tarasa (multiple populations sampled for 8 species), 5 species of Sphaeralcea, 3 species of Nototriche, 2 species of Fuertesimalva, and 1 species each of Urocarpidium, Malacothamnus, Modiola, and Modiolastrum (53 sequences in total), except that only a portion of the trnT-trnL intergenic spacer was sequenced for two species of Tarasa (T. cardenasii and T. congestiflora) and one species of Nototriche (N. flabellata) (Appendix B). These sequences will be deposited in GenBank prior to publication. Sequence statistics for each region [only for species of Tarasa] are given in Table 3.4. The matK-3’trnK region sequenced for species of Tarasa included approximately 774 base pairs (509 bp of the matK exon and 265 bp of the intron). This region had the lowest pairwise divergence values (0-2.2% within Tarasa) but the greatest mean GC content (33.3%) of the three chloroplast regions sequenced. Variation within the matK-3’trnK region consisted entirely of nucleotide substitutions. The trnT-trnL intergenic spacer was the longest of the three regions sequenced, varying from 1261 to 1500 bp. This region had pairwise divergence values ranging from 0-4.4% (within Tarasa) and a mean GC content of 21.1%. Both nucleotide substitutions and insertion-deletion events were sources of variation within the trnT-trnL region. A total of 52 Table 3.4 Sequence statistics for species of Tarasa as calculated in MacClade (length and GC content) and PAUP* (pairwise divergence). Region ITS 1 5.8S ITS 2 matK-3’trnK intron psbA-trnH spacer trnT-trnL spacer Length 287-294 bp 164 bp 227-229 bp 774 bp 475-545 bp 1261-1500 bp Mean GC content Pairwise divergence 52.9% 0 – 0.095 54.3% 0 57.1% 0 – 0.092 33.3% 0 – 0.022 20.9% 0 – 0.089 21.1% 0 – 0.047 ten indels from this region were re-coded as binary characters. The psbA-trnH intergenic spacer varied from 475 to 545 bp in length within Tarasa. This spacer had the lowest mean GC content (20.9%), but the greatest pairwise divergence values (0-8.9%) among the three chloroplast regions sequenced. Variation within the psbA-trnH spacer consisted of nucleotide substitutions, indels, and a 30 bp inversion which was excluded from the phylogenetic analyses (see below). Three insertion-deletion events were re-coded as binary characters. The aligned data matrix of the three chloroplast regions contained 3331 base pairs. The majority of the sequence variation among taxa was in the form of nucleotide substitutions, although a total of 13 (3 in psbA-trnH and 10 in trnT-trnL) insertiondeletion (indels) events were coded as binary characters. A 30 bp perfect (no internal nucleotide substitutions) inversion in the psbA-trnH spacer was omitted from the analyses as it was found to occur homoplastically (as determined by mapping of the inversion onto the phylogeny). No significant biases in base composition were detected in the chloroplast data set (Table 3.5). The calculated g1 value for 10,000 randomly generated trees using the chloroplast data matrix was –1.0705 [critical g1 values for 25 53 Table 3.5 Test for base composition bias of analyzed sequences (for entire data set including outgroups). Values given are mean base frequency, degrees of freedom (df), and P value (a value greater than 0.05 indicates that there is not a significant difference among the taxa in the data set). Region ITS matK-3’trnK intron psbA-trnH spacer trnT-trnL spacer Table 3.6 A 0.17504 0.32057 0.36859 0.41458 C 0.29006 0.13570 0.07962 0.09909 G 0.27989 0.19728 0.12893 0.11440 T 0.25501 0.34644 0.42286 0.37193 df 153 126 126 126 P 1.00 1.00 1.00 0.12 Results from the Independent Length Difference (ILD) Test (Farris 1994) for the molecular regions sequenced (ITS, matK-3’trnK intron, psbA-trnH spacer, and trnT-trnL spacer). Data partitions were defined in PAUP* and tested for homogeneity. The null hypothesis (that the data partitions are homogenous) was rejected at the 0.05 level. Comparison matK-psbA-trnT matK-psbA psbA-trnT matK-trnT ITS-all chloroplast regions P 0.02 0.20 0.27 0.03 0.01 Reject the null? Yes No No Yes Yes taxa and 250 variable characters are -0.09 (p=0.01), -0.08 (p=0.05)] (Hillis and Huelsenbeck 1992). The results of the ILD test for both the nuclear and chloroplast regions are compiled in Table 3.6. The null hypothesis (that the data partitions were homogenous) could not be rejected only for the matK-psbA (p=0.20) and psbA-trnT comparison (p=0.27). The remaining analyses detected significant heterogeneity between the data 54 partitions (matK-psbA-trnT, p=0.02; matK-trnT, p=0.03; ITS-all chloroplast, p=0.01). Although significant heterogeneity was detected in the three chloroplast regions, when analyzed separately each region did not produce radically conflicting phylogenies. Therefore, the three regions were combined for phylogenetic analyses. The ITS and chloroplast data sets were analyzed separately. The results for the three topological incongruence tests (Compare-2, Templeton test, and Kishino-Hasegawa test) are compiled in Table 3.8. The null hypothesis for the Compare-2 test (that the difference in tree lengths is what would be expected from random data) could not be rejected (p=0.18). The Templeton and Kishino-Hasegawa tests rejected the null hypothesis (that the data fit either tree equally well) of the ITS data fitting as well as the chloroplast data onto the chloroplast phylogeny, p<0.0001 for both tests. However, the null could not be rejected for both tests when the chloroplast data was constrained to fit the ITS phylogeny (p=0.8236 and p=0.7946, respectively). Chloroplast phylogeny reconstruction Under parsimony, 238 characters in the combined chloroplast matrix were informative (gaps coded as binary characters), 2775 characters were constant and 287 were variable but not parsimony-informative. The matK-trnK intron contributed 31 parsimony informative characters, the psbA-trnH spacer contained 64, and the trnT-trnL intergenic region had 157 parsimony informative characters. An heuristic search as previously described resulted in 15 most parsimonious trees of 619 steps. The consistency index (CI) excluding uninformative characters was 0.713, the retention index (RI) was 0.873, and the rescaled consistency index (RC) was 0.734. Figure 3.2 is one of the 15 most parsimonious trees (with the best likelihood score) and Figure 3.3 is the strict consensus of these 15 trees. 55 For the chloroplast data set, constraining all traditionally circumscribed Tarasa species to monophyly resulted in a single most parsimonious (MP) tree of length 675 (Table 3.7). Excluding Tarasa mandonii, T. machupicchensis, and T. spiciformis from this constraint yielded 18 MP trees of length 639. Finally, constraining the tetraploid species of Tarasa to form a monophyletic clade resulted in 2 MP trees of length 648. The log likelihood scores for the best unconstrained tree was -8221.76602; the scores for the three constraints were -8477.16295, -8321.25021, and -8368.71974, respectively. Each chloroplast-based constraint tree was rejected as statistically different from the empirical tree (p<0.001). 56 Figure 3.2 One of 15 most parsimonious trees based on chloroplast sequence data (length=619, CI=0.713, RI=0.873, RC=0.735). Branch lengths are given above the branches. Dashed branches collapse in the strict consensus. Diploid (2n=10) perennial species of Tarasa are shown in blue, diploid annual species are shown in red, and tetraploid annuals are shown in green. The 2n=12 group is shown in orange. An asterisk following a taxon name indicates inferred ploidy level (see page 50 for details). Letters following taxon names indicate a separate population sampled. 57 Figure 3.3 Strict consensus of 15 most parsimonious trees based on chloroplast sequence data. Bootstrap support (above 50) for 100 replicates is shown below the branches. Diploid (2n=10) perennial species of Tarasa are shown in blue, diploid annual species are shown in red, and tetraploid annuals are shown in green. The 2n=12 group is shown in orange. An asterisk following a taxon name indicates inferred ploidy level (see page 50 for details). Letters following taxon names indicate a separate population sampled. 58 Table 3.7 Results from constraint analyses using parametric bootstrapping on the ITS and chloroplast data sets. The first constraint forced all traditionally circumscribed Tarasa to monophyly; the second constraint was as the first but excluded the n=6 group of Tarasa machupicchensis, T. mandonii, and T. spiciformis; the third constraint forced monophyly of all tetraploids (chromosome number known and inferred based on morphology and geography – see text for details). The empirical tree length differences (=constrained-unconstrained) were compared to a distribution of tree length differences generated from 100 simulated data sets. The null hypothesis (that the constraint tree is the true tree) was rejected when the observed tree length difference was greater than 95% of the simulated tree length differences. *For the chloroplast unconstrained tree, gaps were coded as missing. Dataset Description Chloroplast Tree length Number MP trees Reject the null? Likelihood score of best tree ITS Tree length Number MP trees Reject the null? Likelihood score of best tree No constraints All Tarasa 619* 2 675 1 Yes (p<0.001) -8477.16295 Tarasa (except All tetraploids n=6 group) (known and suspected) 639 648 18 2 Yes (p<0.001) Yes (p<0.001) -8321.25021 -8368.71974 374 10 Yes (p<0.001) -3231.85298 362 82 Yes (p<0.001) -3178.10681 -8221.76602 348 7 -3148.67849 59 366 26 Yes (p<0.001) -3241.67284 Table 3.8 Results of three incongruence tests as conducted in PAUP*. All tests compared the strict consensus of the most parsimonious ITS trees and the strict consensus of the most parsimonious chloroplast trees. The null hypothesis that the data fit either tree equally well was rejected at the 0.05 level. Test Compare-2 test Templeton test Data set Chloroplast ITS Chloroplast Kishino-Hasegawa ITS Chloroplast Constraint P ITS strict consensus tree 0.13 Chloroplast strict consensus tree <0.0001 ITS strict consensus tree 0.8236 Chloroplast strict consensus tree <0.0001 ITS strict consensus tree 0.7946 ITS sequence characteristics ITS sequences (ITS1, 5.8S, and ITS2) were obtained for the previously mentioned taxa (Appendix C). Amplification of the ITS region yielded a single product in each case as revealed by gel electrophoresis. No intraspecific ITS variation was evident for the following taxa: Tarasa albertii, T. capitata, T. humilis, T. operculata, T. tenella, and T. thyrsoidea. The three populations of Tarasa antofagastana surveyed for this study possessed differing ITS sequences and, therefore, all were retained for the phylogenetic analyses. Variation within the ITS region consisted of nucleotide substitutions and small indels (1-4 bp in length). Sequence statistics for species of Tarasa are compiled in Table 3.4. Within Tarasa, ITS1 sequence length varied from 286-294 base pairs and ITS2 from 227-229 bp. The 5.8S was invariable in length within Tarasa and the outgroups at 164 bp. Mean GC content in ITS1, 5.8S, and ITS2 were 52.9%, 54.3%, and 57.1%, respectively. Pairwise divergence values between species of Tarasa were 0-9.5% for ITS1, 0% for 5.8S, and 0-9.2% for ITS2. The data set (including outgroups) was not 60 found to contain significantly biased base composition among the taxa (p=1.00) (Table 3.5). The calculated g1 value for 10,000 randomly generated trees from ITS data matrix was –0.508 [critical g1 value for 25 taxa and 100 variable characters = -0.12 (p=0.01), 0.10 (p=0.05)] (Hillis and Huelsenbeck 1992). Seventeen taxa of Tarasa contained polymorphic sites (nucleotide positions in which 2 or more peaks were apparent in the chromatogram) in the directly sequenced ITS products, while twelve Tarasa taxa did not contain any polymorphisms in the ITS region. Polymorphic sites were present in diploid annuals and perennials as well as many tetraploid annual species. Conspecific individuals typically had the same number of polymorphic sites, although they varied as to position in the alignment (e.g., as in Tarasa operculata and Tarasa thyrsoidea). The three South American species of Sphaeralcea included in this study all contained polymorphisms in the ITS, while the two North American species had homogenous repeats. Two of the three Nototriche species sequenced contained polymorphisms in this region. After analyzing the cloned ITS sequences for changes in conserved regions, several sequences were discarded. The observed changes included nucleotide substitutions or single base-pair deletions in the angiosperm-conserved regions of ITS1 and ITS2, and the 5.8S (Liu and Schardl 1994, Hershkovitz and Zimmer 1996, Buckler and Holtsford 1996, Mayol and Rosselló 2001). Nucleotide substitutions were usually from G→A or C→T. In some cases, cloned sequences contained nucleotide substitutions that were not apparent in the original, directly sequenced products. These sequences were also removed before phylogenetic analyses were conducted. Typically, sequences with deviations in one conserved region also had excess changes in the other regions. After initial phylogenetic analyses were conducted, if clones from the same individual clustered together in the ITS phylogeny, then only a single clone was retained for the 61 remaining analyses (e.g., T. marinii, T. meyeri, T. rhombifolia, T. tenella, T. tenuis, T. urbaniana). Therefore, in most cases, from the 5-10 clones sequenced for each individual only two were considered functional copies (although three sequences were retained for Tarasa geranioides). No recombination events were apparent (i.e., no significant global fragments were detected) among the ITS sequences as determined by GeneConv (Sawyer 1999). ITS phylogeny reconstruction The aligned length of the ITS region was 703 characters: 516 characters were constant, 59 were parsimony uninformative, and 128 were parsimony informative. The ITS 1 region was the most variable with 75 parsimony informative characters, while ITS 2 contained 51 and the 5.8S had only 2. Parsimony searches as described above recovered 7 most parsimonious (MP) trees of 348 steps, with a consistency index (excluding uninformative characters) of 0.608, a retention index of 0.836, and a rescaled consistency index of 0.568. Figure 3.4 is one of these MP trees (with the best likelihood score) and Figure 3.5 is the strict consensus. Table 3.7 compares the results from the unconstrained and constrained phylogenetic analyses. Constraining all traditionally circumscribed Tarasa to monophyly resulted in 10 most parsimonious (MP) trees of length 374. Excluding Tarasa mandonii, T. machupicchensis, and T. spiciformis from this constraint yielded 82 MP trees of 362 steps. Finally, constraining the known and suspected tetraploid species of Tarasa to a monophyletic clade resulted in 26 MP trees of length 366. The log likelihood score for the best unconstrained tree was -3148.67849, while the scores for the three constraints were -3231.85298, -3178.10681, and -3241.67284, respectively. For all three tests, the null hypothesis (that the constraint tree was the true tree) was rejected (p<0.001). 62 Figure 3.4 One of 7 most parsimonious trees based on ITS sequence data (length=348, CI=0.6084, RI=0.8360, RC=0.5677). Branch lengths are shown above the branches. Dashed branches collapse in the strict consensus. Diploid (2n=10) perennial species of Tarasa are shown in blue, diploid annual species are shown in red, and tetraploid annuals are shown in green. The 2n=12 group is shown in orange. An asterisk following a taxon name indicates inferred ploidy level (see page 50 for details). Letters following taxon names indicate a separate population sampled; a number following the name indicates clone number. 63 Figure 3.5 Strict consensus of 7 most parsimonious trees based on ITS sequence data. Bootstrap support (above 50) for 100 replicates is shown below the branches. Diploid (2n=10) perennial species of Tarasa are shown in blue, diploid annual species are shown in red, and tetraploid annuals are shown in green. The 2n=12 group is shown in orange. An asterisk following a taxon name indicates inferred ploidy level (see page 50 for details). Letters following taxon names indicate a separate population sampled; a number following the name indicates clone number. 64 DISCUSSION Taxon sampling Regrettably, each of the three species of Tarasa lacking from the phylogenetic study are known only from their type specimens and were not found during the two collecting trips made to South America. The type localities of Tarasa reichei and Tarasa umbellata in southern Chile were discovered to be converted to pine and eucalyptus plantations (pers. obs.). The type of Tarasa martiniana, the third species not sampled, was collected in northern Chile in mid-March 1968. During the ultimate collecting trip to South America, we collected in that region in early February 2000. As the summer rains were delayed that year and the species is an annual, it is likely that we were merely too early to collect it. Urocarpidium albiflorum is not a Tarasa Both the ITS and chloroplast phylogenies support the placement of Urocarpidium albiflorum with species of Fuertesimalva and not with Tarasa, as proposed by Fryxell (1996). The presence of a prominent apical awn on the mericarps of U. albiflorum and species of Tarasa is a convergent morphological character. Tarasa species and Urocarpidium albiflorum/Fuertesimalva species are markedly different in other morphological characteristics, most notably mericarp pubescence (stellate pubescent in the former and glabrous in the latter) and calyx and leaf pubescence (stellate stipitate in Tarasa and hirsute in U. albiflorum/Fuertesimalva species). It is uncertain if Urocarpidium merits recognition as a monotypic genus sister to Fuertesimalva. Further phylogenetic investigation of the Fuertesimalva species is warranted. 65 Chloroplast phylogeny As previously discussed in Chapter 2, Tarasa was found not to be monophyletic in the ITS phylogeny of the tribe Malveae, a finding which is corroborated by the chloroplast-based phylogeny (Figures 3.2 and 3.3). The n=6 group composed of Tarasa machupicchensis, T. mandonii, T. spiciformis, and Malacothamnus chilensis is placed basal to the clade containing the other species of Tarasa, as well as Nototriche and Sphaeralcea. As the n=6 group possesses both a distinct chromosome number and overall morphology, a new genus will be created to accommodate these species (Tate in prep). Even with the removal of the n=6 group, Tarasa remains a non-monophyletic assemblage. Interestingly, in the chloroplast phylogeny (Figures 3.2 and 3.3), several Argentinian species of Tarasa cluster with the South American species of Sphaeralcea. Two of these Tarasa species, T. albertii and T. humilis, most closely resemble Sphaeralcea in terms of morphology and geographic distribution. In South America, Sphaeralcea is restricted to Chile and Argentina at elevations up to 3000 m. Although not currently sympatric (both Tarasa species are found at higher elevations in the Andes than Sphaeralcea species), these two species occupy the southern-most range of the genus (Figure 3.1). The other taxa belonging to this “southern” clade in the chloroplast phylogeny are Tarasa trisecta (a diploid annual) from northwestern Argentina and Tarasa tenuis (a tetraploid annual) from southern Peru. These two species are sister taxa in both the ITS and chloroplast phylogeny, which may account for the anomalous placement of a Peruvian taxon in an otherwise Argentinian clade. In any case, it appears that these lineages have experienced gene flow at some time in Argentina through a maternal parent. 66 The monophyly of Tarasa is further violated by the placement of Nototriche in the chloroplast phylogeny. In the strict consensus (Figure 3.3), Nototriche forms a wellsupported clade as part of a larger clade containing Tarasa rhombifolia (perennial from Cuzco, Peru), T. marinii (annual from Cuzco, Peru), T. congestiflora (annual from Arequipa, Peru), and T. pediculata (annual from northern Chile). Because primarily Peruvian taxa appear to be most closely related to Nototriche (in both the nuclear and chloroplast trees), Peru could have been an important center of gene flow and/or speciation among these taxa. The three perennial species of Nototriche included were from varying geographic regions (Argentina, Bolivia, and Peru). Unfortunately, no annual species of Nototriche were available for this study; these may prove essential for further unraveling the relationship between these two high elevation genera. The species of Tarasa that share with Nototriche the unusual morphological feature of fused stipules, petiole, and peduncle are T. marinii, T. nototrichoides, T. odonellii, and T. urbaniana. As these four species do not form a monophyletic clade, this character appears to have arisen multiple times. One of the most surprising results from phylogeny reconstruction was the nonmonophyly of the tetraploid species. This outcome was unexpected, particularly because of their unusual and shared morphological features of white or lilac flowers, petals 1-3 (rarely 6-7) mm in length, fewer than 20 anthers, and highly lobed leaves. The phylogeny suggests that the tetraploids have been formed multiple times with recurrent evolution toward a similar morphology. The results of the parametric bootstrapping (constraint #3) in particular lend support to this conclusion. The chloroplast sequence data have been somewhat informative as to the potential maternal parent (or lineage) of the Tarasa tetraploids (Table 3.9). For example, the tetraploid Tarasa antofagastana was placed near to Tarasa meyeri (diploid annual) and Tarasa latearistata (suspected diploid 67 annual) in the phylogeny. The sequences for these species are strikingly similar, especially when one considers that almost 3 kb of the chloroplast was sequenced. This result suggests that Tarasa antofagastana is a recent polyploid. Surprisingly, the three populations of Tarasa antofagastana sampled did not cluster together in the chloroplast phylogeny. The closest population geographically (T. antofagastanaB from Tucuman, Argentina) to the diploid annuals was the most closely related to it and, in fact, that population was identical to Tarasa meyeri for the three chloroplast regions sequenced. The other two populations (Mexico and Jujuy, Argentina) sampled have apparently accumulated only 1 or 2 more nucleotide substitutions, respectively. Based on the chloroplast phylogeny results, Tarasa trisecta is a potential parent of Tarasa tenuis, as is Tarasa cardenasii a potential parent of T. odonellii. The pattern of diploid parent- tetraploid derivative is not as clear for the other Tarasa tetraploid species, however. If we assume that the most closely related diploid species in the chloroplast phylogeny is the maternal parent for the tetraploid of interest (Brochmann et al. 1996, Ge et al. 1999, Popp and Oxelman 2001), then the same diploid taxon would be implicated for the origin of different tetraploids (Table 3.9). An allopolyploid origin for the tetraploids is strengthened if the geographic distribution of the diploids is also considered (Figure 3.1). Table 3.10 indicates the geographic areas where the diploids (perennials and annuals) are sympatric (based on mapping of herbarium specimens). The data indicate that in several localities (particularly in southern Bolivia and adjacent Argentina) different diploids are sympatric, which may have provided the opportunity for gene exchange. Unfortunately, however, crossing data is not currently available for these species. 68 Table 3.9 Hypothesized relationships for tetraploid species of Tarasa (chromosomally known and inferred) based on nuclear (paternal parent) and chloroplast (maternal) phylogeny reconstructions. An asterisk indicates a tetraploid for which the chromosome number was inferred. Hypotheses are based on the most closely related diploid species to the tetraploid in each phylogeny. Tetraploid species T. antofagastana T. cerrateae T. congestiflora* T. corrugata* T. geranioides T. marinii* T. nototrichoides * T. odonellii T. pediculata* T. tarapacana T. tenella T. tenuis T. urbaniana Chloroplast phylogeny T. meyeri (diploid annual) T. capitata (diploid perennial) T. rhombifolia (diploid? perennial) T. cardenasii (diploid annual) T. cardenasii (diploid annual) T. rhombifolia (diploid? perennial) T. meyeri (diploid annual) T. cardenasii (diploid annual) T. rhombifolia (diploid? perennial) T. capitata (diploid perennial) T. meyeri (diploid annual) T. trisecta (diploid annual) T. capitata (diploid perennial) 69 ITS phylogeny T. heterophylla (diploid annual) T. cardenasii (diploid annual) T. rhombifolia (diploid? perennial) T. cardenasii (diploid annual) T. latearistata (diploid? annual) T. rhombifolia (diploid? perennial) ? ? T. cardenasii (diploid annual) T. cardenasii (diploid annual) ? T. trisecta (diploid annual) T. cardenasii (diploid annual) The placement of the diploid perennial Tarasa capitata within a clade of annual diploids and tetraploids was surprising since the majority of the diploid perennial species occupy more basal positions in the Tarasa clade. This species is widespread along the eastern Cordillera of the Andes from Peru to Argentina and may be a taxon from which the diploid annuals were ultimately derived. An evolutionary trend from perennial to annual habit is common in many groups (Grant 1981), although reversals to a perennial habit have been documented (e.g., Barrett et al. 1996). Given the relatively large number of autapomorphies on the Tarasa capitata branch in the chloroplast phylogeny (Figure 3.2), this taxon is likely much older than the diploid or tetraploid annuals. ITS phylogeny In the ITS phylogeny (Figures 3.4 and 3.5), the n=6 group forms a well-supported clade basal to Nototriche, Sphaeralcea, and the remaining species of Tarasa. Sphaeralcea forms a monophyletic clade separate from the remaining species of Tarasa. However, the next branch in the ITS tree contains Tarasa albertii and T. humilis. On the basis of morphology, these two species are clearly sister taxa and are distinct from other species of Tarasa as well as Sphaeralcea. Inspection of the seven most parsimonious ITS phylogenies reveals a single nucleotide substitution which places various species of Tarasa sister to a strongly supported Nototriche clade. These species include Tarasa tenuis and Tarasa trisecta (sister taxa as previously mentioned), Tarasa marinii (annual) and Tarasa rhombifolia (perennial) both from eastern Peru (Cuzco), and Tarasa congestiflora (annual) from southern Peru (Arequipa). In the strict consensus of the ITS trees (Figure 3.5), the species of Nototriche are a monophyletic group in an otherwise unresolved clade 70 Table 3.10 Areas of sympatry between diploid species of Tarasa that are potential tetraploid parents (see Table 3.9). Perennial species are indicated by an asterisk. n/a indicates no apparent areas of overlap in geographic distribution based on mapping of 1400 herbarium specimen localities. Tarasa capitata* Tarasa cardenasii Tarasa heterophylla Tarasa latearistata Tarasa capitata* -- Tarasa cardenasii N. Bolivia Tarasa heterophylla S. Bolivia NW Argentina Tarasa latearistata S. Bolivia NW Argentina -- S. Bolivia -- S. Bolivia S. Bolivia -- Tarasa meyeri Tarasa trisecta Tarasa rhombifolia* 71 Tarasa meyeri S. Bolivia NW Argentina C Argentina (Cordoba) S. Bolivia S. Bolivia S. Bolivia NW Argentina -- Tarasa trisecta NW Argentina Tarasa rhombifolia* Cuzco, Peru n/a n/a n/a n/a n/a n/a NW Argentina -- n/a n/a -- containing most species of Tarasa. Again, additional sampling from Nototriche would likely aid in determining the origins of this unusual genus. One of the most notable features of the ITS phylogeny is the fact that ITS clones from the same individual do not cluster together. For example, the two diploid perennials Tarasa operculata and Tarasa thyrsoidea have ITS copies which are more closely related to each other (paralogs) than to ITS copies from the same species (orthologs). Tarasa operculata is found along the coast from central Peru to northern Chile at elevations between 1000-3000 m, while Tarasa thyrsoidea is endemic to a few coastal lomas in Peru (elevation <500 m). The two species are often mistaken for one another, but differ in several morphological characters. The former has conspicuous stipules and bracteoles several mm in length and white flowers with purple nectar guides densely arranged in axillary cymes, while the latter has vestigial stipules and reduced “papery” bracteoles and lavender flowers ‘spread out’ along the axis of the cyme. The pattern recovered in the ITS phylogeny for these two species is a classic example of gene divergence predating speciation (Li 1997). As such, one of the pairs of sequences represents a paralogous copy of the ITS. Further molecular analysis of the nuclear ribosomal repeats would be needed to determine which is the dominant copy. A more complicated scenario exists for the tetraploid species, however. The presence of multiple ITS types (and polymorphisms in the directly sequenced products) indicates that hybridization and/or allopolyploidization events have occurred. Given the low sequence diversity among the species (0-5.6%) and the relatively young geological area that the species inhabit (the high Andes), these events have most likely been recent. Concerted evolution is expected to homogenize repeats belonging to gene families (Zimmer et al. 1980). However, this process may fail to homogenize the nuclear ribosomal repeats when 1) hybridization (or allopolyploidization) is recent, 2) when the 72 parents of the hybrid have repeats located at different loci and interlocus concerted evolution fails, or 3) when a hybrid is asexual (Baldwin et al. 1995, Sang et al. 1995, O’Kane, Jr. et al. 1996, Fuertes Aguilar et al. 1999). In the case of Tarasa, not all tetraploids possess multiple ITS copies (e.g., Tarasa antofagastana A, T. congestiflora, T. corrugata, T. nototrichoides, T. odonellii, T. pediculata). Presumably, these taxa either have ITS repeats which are already homogenized or they are autotetraploids. Given the contrasting species relationships which are recovered in the nuclear and chloroplast phylogenies, the former seems a more plausible explanation. For the taxa which still possess multiple, seemingly functional, ITS types (e.g., Tarasa antofagastana B and C, T. cerrateae, T. geranioides, T. latearistata, T. tarapacana), concerted evolution has failed or has not had sufficient time to homogenize the repeats. The placement of the Tarasa antofagastana B and C population clones appears logical as they cluster with conspecific clones (albeit from separate populations) or with geographically proximal taxa (T. antofagastanaC2 from Mexico with T. geranioides1 also from Mexico). The two cloned sequences from Tarasa cerrateae are members of the same clade, which might indicate that concerted evolution is currently working to homogenize the copies. Tarasa geranioides is the only species for which three presumably functional ITS clones were recovered. Each of these three sequences maintain the conserved regions in ITS1 and ITS2, as well as the 5.8S. One copy (T. geranioides1) clusters with Tarasa antofagastanaC2 with which it is geographically close. Another copy (T. geranioides2) clusters with Tarasa odonellii, a closely related taxon in the chloroplast phylogeny, and the third copy is sister to Tarasa latearistata1 (a suspected diploid). The latter taxon is the only diploid (chromosome number inferred based on morphology) with multiple ITS types that did not cluster together in the phylogeny. The second copy (T. latearistata2) is sister to Tarasa meyeri, to which it is closely related in the chloroplast 73 phylogeny. Although morphology would indicate that this species is diploid, it could very well be a hybrid or an allopolyploid. Tarasa tarapacana, a known tetraploid, similarly did not have clones that clustered together. One copy (T. tarapacana1) is placed in a clade with several other tetraploids and the diploid Tarasa meyeri, while the other copy (T. tarapacana2) is placed in a clade consisting only of tetraploids. As a biparentally inherited marker, one would expect that recent hybrids or allopolyploids would possess two ITS types and that their phylogenetic placement would indicate parental origins (i.e., one copy would cluster with the maternal parent and the other copy with the paternal parent). Likewise, when nuclear and chloroplast phylogenies are incongruent, hybrid or polyploid origins may be inferred from the biparental and maternal trees, respectively (Kim and Jansen 1994, Wendel and Doyle 1998). In this group of species, however, the data seem to indicate that each diploid species (particularly the annuals) may have been repeatedly involved in the formation of a different tetraploid. For example, Tarasa meyeri is a potential maternal parent of the tetraploid Tarasa antofagastana (Table 3.9) based on the chloroplast sequence data. In the nuclear ITS phylogeny, the most closely related diploid is Tarasa heterophylla, which fruit morphology would also support as a parent. In that same ITS clade, however, are other tetraploids (e.g., T. cerrateae, T. geranioides) which may also have been derived from T. heterophylla (or T. latearistata). Further support to this hypothesis is given by the current geographic distribution of the diploid species. In multiple locations, particularly in northwestern Argentina and southern Bolivia, different diploid annuals are sympatric. Since the tetraploids occupy a much wider geographic range than the diploids, the molecular data seem to be more informative as to parental origins than is the current geographic distribution. Complicating matters further is the observation that the Tarasa tetraploids are morphologically more similar to each other than they are to the 74 diploid species. Consequently, they do not display the classic pattern of morphological intermediacy between parental species. Again, although the origins for all of the tetraploid species are still not definitively known, the molecular data has revealed the extensive reticulate evolution that has occurred within this group. Hypothesis testing and incongruent phylogenies Because unexpected phylogenetic results arose from the chloroplast and ITS data sets, statistical tests to assess the reliability of the hypotheses were conducted. Parametric bootstrapping was performed to test alternative a priori hypotheses of monophyly for Tarasa as currently circumscribed, Tarasa without the n=6 group, and the tetraploids forming a monophyletic clade. For both the chloroplast and ITS data sets, and for each constraint, the results were highly significant (p<0.001) that the recovered trees consisting of the non-monophyletic groups are reliable (Table 3.7), thus strengthening the conclusions drawn from these phylogenetic estimates. Additional tests to evaluate the seemingly incongruent chloroplast and ITS trees were also conducted (Table 3.8). The compare-2 results indicate that the difference in the chloroplast and ITS topologies is no greater than expected by chance. The results of the Templeton and Kishino-Hasegawa tests indicate that the chloroplast data fit onto the ITS phylogeny as well as the ITS data, but that the reverse case is not true (the ITS data do not fit onto the chloroplast tree). This asymmetry indicates that some evolutionary process has produced these topologies (Doyle 1992, Wendel and Doyle 1998). Given the accumulated geographical, morphological, and cytological information, reticulation seems to have been a major factor in shaping the evolution of these species. 75 Recovering the organismal phylogeny: Gene trees versus species trees When using molecular sequence data to reconstruct phylogenies, it is important to remember that the resulting hypothesis of relationships reflects the history of the DNA molecule (or more precisely, the particular region of the molecule utilized) and not necessarily the history of the organisms under study (Doyle 1992). Certain evolutionary processes, such as lineage sorting, hybridization/introgression, and gene duplication may obscure true species relationships (Doyle 1992, Rieseberg and Wendel 1993, Wendel and Doyle 1998). Current methods of phylogenetic reconstruction enforce bifurcating trees and, as a result, reticulate events may not be apparent without supportive evidence. Concerted evolution may also distort species relationships, as was found in Gossypium (Wendel et al. 1995). The Gossypium allotetraploids have ITS sequences which have been homogenized toward one parental copy or the other. As a result, the ITS phylogeny was not concordant with known species relationships based on other data (Wendel et al. 1995). Thus, caution must be exercised when interpreting molecular phylogenies. In particular, when seeking explanations for incongruent trees (from multiple data sources) or unexpected phylogenetic results, an approach which considers geography, morphology, and cytology is necessary. In the case of Tarasa, the molecular phylogenies interpreted along with morphological and geographical data indicate a complex evolutionary history which has involved repeated allopolyploidization. The seemingly recent evolution of these species may have been associated with the final uplift of the Andean Cordillera during the Pleistocene. As evidence, the most basal lineages of the genus are occupied by lower elevation species and the most derived positions are occupied by the highest elevation species (including Nototriche which is only found above 4000 m). The current geographic distribution of the diploid annual species indicates that northwestern 76 Argentina and Bolivia have been areas of sympatry where allopolyploidization events may have occurred. The phylogenetic, geographic, and morphological data point to recurrent encounters among these species which have resulted in these unusual polyploid species. 77 Chapter 4: Multiple origins of polyploidy and breeding system evolution in Tarasa (Malvaceae) ABSTRACT A previous molecular phylogenetic investigation of the genus Tarasa Philippi (Malvaceae) revealed multiple origins of polyploidy and morphological convergence of the tetraploid species. Breeding systems for diploid and tetraploid species were inferred using pollen/ovule (p/o) ratios and/or measured directly in greenhouse grown plants. The diploid perennial species exhibited the highest p/o ratios (xenogamous), followed by the diploid annuals (xenogamous to facultatively xenogamous), and the tetraploid annuals with the lowest p/o ratios (autogamous or facultatively xenogamous). The tetraploid annuals had a significantly lower p/o ratio than the diploid annuals and perennials when all taxa were considered. None of the diploid perennial species grown in the greenhouse were self-compatible, whereas all of the tetraploid annuals were autogamous. Only one diploid annual was available for study in the greenhouse, and it produced self-seed although the resulting progeny were weak (likely the result of inbreeding depression). Not only do the tetraploid species have fewer anthers per flower, but they also produce fewer pollen grains per anther as compared to both the diploid annuals and perennials. Pollen diameters (as measured under light microscopy) of the tetraploids were also compared to the diploid species. Contrary to a central tenet of polyploidy, the tetraploid species of Tarasa have significantly smaller pollen grains than both the diploid annuals and perennials. This size difference also contradicts Cruden’s (1977) finding of a negative correlation between pollen/ovule ratio and pollen size. When all species of Tarasa are considered, the overall correlation between these two variables is also 78 positive. The tetraploid species of Tarasa occupy the highest elevation habitats in the Andes. Their unusual and shared morphology was likely influenced by adaptations to the harsh high altitude habitats, a reduction in pollinators at such altitudes, and adaptations that accompany an autogamous breeding system. INTRODUCTION Following polyploidization, many plant taxa undergo alterations in morphological and reproductive features. Likewise polyploidy is often correlated with habit and habitat. Table 4.1 lists the characters most often associated with polyploidy and compares them to the tetraploid species of the genus Tarasa (Malvaceae). For example, polyploids often occupy a wider geographic range than their diploid relatives and are frequently found in disturbed or marginal habitats (Ehrendorfer 1980). Polyploidy is common at high latitudes and altitudes (Löve and Löve 1949, Diers 1961, Löve and Löve 1974, Stebbins 1984) and in previously glaciated areas, particularly those affected by the advance and retreat cycles during the Pleistocene (Ehrendorfer 1980). Many polyploids are perennial in habit, which may confer the ability to delay reproductive efforts in the absence of a suitable mate (Stebbins 1940). Similarly, a breakdown of self-incompatibility Table 4.1 Typical attributes of polyploid taxa as compared to Tarasa polyploids POLYPLOID FEATURES Occupy marginal or disturbed habitats over a greater area Perennial habit Self-compatible → Autogamous Larger cell size compared to diploids (pollen and guard cells) TARASA TETRAPLOIDS Occupy highest elevations in the Andes in disturbed habitats Annual habit Autogamous Smaller cell size compared to diploids (pollen, fide Tressens 1970) 79 mechanisms often accompanies polyploidization (Stebbins 1950, 1957, Levin 1983, Richards 1997, Soltis and Soltis 2000, Rosquist 2001, but see Cook and Soltis 1999). Because chromosome doubling is expected to increase cell size, polyploids should have larger cells (as exemplified by pollen grains and guard cells) than their diploid relatives (Stebbins 1940, 1950). As Table 4.1 outlines, the tetraploid species of Tarasa contradict two of the main dogmas associated with polyploids: they are annuals and several species possess smaller pollen grains than the diploids (Tressens 1970). Polyploids often also display a myriad of other phenotypic and physiological differences relative to their progenitors including changes in enzyme phenotype, hormone levels, secondary chemistry, and meiotic/mitotic rates (Stebbins 1950, Tal 1980, Levin 1983, Ramsey and Schemske 1998, Otto and Whitton 2000). A molecular phylogenetic analysis of Tarasa (Malvaceae) and related genera revealed that the tetraploid species have been formed multiple times (Chapter 3). The polyphyly of the tetraploids was particularly unexpected because of their strikingly similar and unusual morphologies. Typically, Tarasa tetraploids are sprawling to erect annuals (up to 0.5 m in height) with white or pale lavender colored flowers, petals 1-3 mm in length, 5-20 anthers, and highly lobed leaves. Conversely, the diploid species are easily distinguished from one another. They are annuals (up to 1 m) or perennials (up to 1.5 m) typically with lavender or magenta colored flowers, petals 5-10 mm in length, anthers numbering 30-100, and shallowly divided leaves. Molecular and geographic data indicate that the polyploids are most likely the result of hybridization (followed by polyploidization) between various sympatric diploid annual species. Although previous phylogenetic investigations have demonstrated that multiple origins are common for a particular polyploid species (Doyle et al. 1990, Brochmann et al. 1992, Wallace and Jansen 1995, Cook et al. 1998, Doyle et al. 1999, Segraves et al. 1999, Soltis and Soltis 80 1999, Sharbel and Mitchell-Olds 2001), multiple occurrences in Tarasa are particularly interesting due to the recurring evolution of several morphological features. The unusual and shared morphology of the Tarasa tetraploids is therefore apparently the result of convergent evolution and not a reflection of common ancestry. One explanation for the recurrent morphological similarity of the tetraploids could be a switch from outcrossing to autogamy in the high elevation habitats that the tetraploids occupy. Pollen/ovule (p/o) ratios have traditionally been used as an indicator of the relative degree of outcrossing versus selfing in plants (Cruden 1977). In many unrelated plant taxa, pollen/ovule ratios have been shown to be negatively correlated with selffertilization, pollen size, and the ratio of the stigmatic area to the pollen-bearing area on the pollinator (Cruden 1977, Cruden 2000, Cruden and Miller-Ward 1981). The two main objectives for this study were to 1) infer breeding system indirectly from pollen/ovule ratios and directly from greenhouse studies and 2) examine pollen size and morphology for the diploid and tetraploid species to determine if pollen size relationships hold across all polyploids and if a correlation exists with breeding system. MATERIALS AND METHODS Pollen/Ovule ratios To determine pollen grains per flower, the most mature, unopened bud on an inflorescence was removed from a selected herbarium specimen (Table 4.2 lists the vouchers). When possible, two or more individuals from separate populations were sampled to account for geographic variability. For each individual, the numbers of anthers and styles in a single flower were recorded. The total number of pollen grains in an anther was directly counted for three anthers per flower. Because the time to anther maturity varies along the staminal column, one anther was selected from each of the top, 81 middle, and bottom of the column. Each anther was macerated in 10 µL of lactophenolaniline blue (Kearns and Inouye 1993) in a 0.5 µL “PCR” tube and then vortexed for 30 seconds. The pollen/lactophenol mixture was placed on a microscope slide and all grains in that anther were counted at 200x magnification on a Leitz microscope. In the case that the anthers had dehisced before the bud opened, the occurrence was noted and a younger bud was selected from the same specimen. To calculate P/O ratios, the number of grains per anther was averaged for the three anthers. The mean number of grains per anther was then multiplied by the total number of anthers in that flower. The total number of grains was then divided by the number of styles because in Tarasa the carpels are uniovulate and equal to the number of styles. Pollen/ovule ratios were also log transformed in order to compare them to Cruden’s (1977) extensive breeding system data set. Chromosome number was inferred for species of Tarasa for which direct counts were not available. All perennial species were considered to be diploid (2n=10), except Tarasa spiciformis which is considered 2n=12 on the basis of similar morphology to Tarasa machupicchensis and T. mandonii (both 2n=12). Annuals with magenta or purple petals longer than 3 mm, anthers numbering more than 30, and a restricted geographic distribution were considered diploid (2n=10). Annuals with white or pale lavender flowers, petal length less than 3 mm, anthers fewer than 30, and a wide geographic distribution were assumed to be tetraploid (2n=20). For statistical analyses, species of Tarasa were grouped according to ploidy level or habit and ploidy level. Single-factor ANOVA was conducted to test for significance of mean anther number, mean number of grains per anther, and mean pollen/ovule ratio. For each category, two groups were evaluated: only species with known chromosome 82 Table 4.2 Vouchers used in pollen/ovule ratio analysis Species Tarasa albertii Tarasa albertii Tarasa antofagastana Tarasa antofagastana Tarasa antofagastana Tarasa antofagastana Tarasa antofagastana Tarasa capitata Tarasa capitata Tarasa capitata Tarasa cardenasii Tarasa cardenasii Tarasa cerrateae Tarasa cerrateae Tarasa congestiflora Tarasa congestiflora Tarasa corrugata Tarasa corrugata Tarasa geranioides Tarasa heterophylla Tarasa heterophylla Tarasa humilis Tarasa humilis Tarasa latearistata Tarasa machupicchensis Tarasa machupicchensis Tarasa mandonii Tarasa mandonii Tarasa mandonii Tarasa marinii Tarasa meyeri Tarasa meyeri Tarasa nototrichoides Voucher and location Bartlett 19452 (US) Tate et al. 74 (TEX) Tate et al. 66 (TEX) Pisano & Venturelli 1945 (SGO) Krapovickas & Shinini 30755 (F) Semper 433 (NY) Tate et al. 92 (TEX) Tate et al. 63 (TEX) Lewis 35295 (MO) Cabrera 22629 (CTES) Ehrich 462 (US) Nee 44773 (NY) Chanco 40 (TEX) Chanco 29 (TEX) Pennell 13168 (NY) Arroyo 84-578A (CONC) Nunez 7485 (MO) Tate et al. 110 (TEX) Hinton et al. 8326 (LL) Bastion 863 (US) Kiesling 3731 (MO) Ruiz Leal 24662 (CTES) Tate et al. 69 (TEX) Fiebrig 3096 (US) Timana & Tate 3771 (TEX) Chavez Alfaro 3453 (MO) Fortunato et al. 1893 (F) Luteyn & Dorr 13790 (TEX) Cardenas 3112 (US) Vargas 5067 (CAS) Krapovickas et al. 22021 (GH) Krapovickas & Seijo 47841 (TEX) Feuerer 10570 (CTES) 83 Table 4.2 continued Species Tarasa nototrichoides Tarasa odonellii Tarasa odonellii Tarasa operculata Tarasa operculata Tarasa pediculata Tarasa pediculata Tarasa rhombifolia Tarasa spiciformis Tarasa tarapacana Tarasa tarapacana Tarasa tarapacana Tarasa tenella Tarasa tenella Tarasa tenuis Tarasa tenuis Tarasa thyrsoidea Tarasa thyrsoidea Tarasa trisecta Tarasa trisecta Tarasa urbaniana Tarasa urbaniana Voucher and location Franken 338 (LPB) Krapovickas 22029 (CTES) Pierotti 1038 (NY) Tate & Timana 62 (TEX) Tate et al. 95 (TEX) Teillier 4103 (SGO) Belmonte 97052 (CONC) Tate et al. 109 (TEX) Stock & Horton s.n. (F) Matthei & Rodriguez 258 (CONC) Venturi 8733 (US) Tate et al. 80 (TEX) Krapovickas & Seijo 47838 (TEX) Matthei & Rodriguez 219 (CONC) Lopez 5546 (CTES) Vargas 9263 (MO) Ferreyra 5553 (TEX) Tate et al. 107 (TEX) Tate et al. 91 (TEX) Venturi 4302 (US) Leiva & Leiva 488 (TEX) Krach 8410 (NY) number and all species with chromosome number known and inferred. Two post-hoc ANOVA tests were also performed: Fisher’s PLSD (a less stringent test) and Bonferroni/Dunn (a more conservative test). Self-compatibility in greenhouse grown plants Plants were grown in the greenhouse at The University of Texas at Austin from seed collected in the field or sampled from herbarium specimens. Among the species studied were five diploid perennials (Tarasa albertii, T. capitata, T. humilis, T. operculata, and T. thyrsoidea), one diploid annual (Tarasa trisecta), and six tetraploid 84 annuals (Tarasa antofagastana, T. geranioides, T. odonellii, T. tarapacana, T. tenella, T. urbaniana). Plants were allowed to self pollinate without any mechanical manipulation. If the plants did not produce selfed seeds, the flowers were manually pollinated with self and outcross pollen (in this case from plants from the same parent). Diploid flowers were emasculated before the bud opened, but attempts to emasculate buds of some tetraploids proved unsuccessful as the minute flowers were extremely sensitive to disturbance (the flowers did not mature/open after handling). The number of fully mature seeds per schizocarp was counted for fifty fruits on a single plant. Mean seed set was calculated as the proportion of mature seeds produced relative to the total possible. Pollen characteristics The same individuals used for pollen/ovule ratios were examined for several pollen morphological characteristics (Table 4.2). The traditional acetolysis method (Erdtman 1960) for preparing pollen proved too harsh for Tarasa grains, as was bleaching in a weak (10%) solution for a short period of time. Instead, the grains were washed for 15 minutes in 800 µL acetone to remove any residual pollenkitt. After the grains settled to the bottom of the tube, the acetone was decanted and the grains allowed to air-dry overnight. Pollen grains were stored in 80% ethanol until studied. A drop of pollen/ethanol mixture was placed on a slide and the ethanol allowed to evaporate. The grains were mounted in glycerin jelly with acid fuschin stain (Kearns and Inouye 1993). Slides were rendered permanent by sealing the edge of the cover slip with clear fingernail polish. Using light microscopy, twenty-five grains per individual were evaluated for shape, size, aperture number, and other gross morphological features. The measurements of the grains excluded the spines and were recorded for both polar and equatorial 85 diameters. Pollen diameter measurements (polar axis) were used to calculate surface area and these data were plotted against log pollen/ovule ratio (Cruden 1977, Cruden and Miller-Ward 1981). A subset of taxa was selected for a scanning electron microscopy (SEM) study to represent the morphological diversity among the species. SEM preparation consisted of placing a droplet of pollen/ethanol suspension on a conductive carbon tab (EM Sciences) mounted on an SEM stub and allowing the ethanol to evaporate (at 60º C) . The samples were sputter coated on a Ladd Benchtop Sputter Coater with 60/40 Ag/Pd target at 2.5 kV (20mA) for 75 seconds (coating thickness of 15 nm). Grains were examined on a Philips 515 scanning electron microscope at 13 kV, bias set to 2, spot size of 40 nm, and a working distance of 30 mm (tilt approximately 15º). Digital images were captured with a SEMICAPS 2000 system and exported as tif files. RESULTS Pollen/ovule ratios A total of 80 individuals representing 27 of the 30 species of Tarasa were evaluated for pollen/ovule ratios. The three species not sampled are only known from the type specimens and no other specimens were available for study. Table 4.3 summarizes the mean number of anthers, mean number of pollen grains per anther, mean number of ovules, and mean pollen/ovule ratio for each species studied. Graphical representations of each of these factors are shown in Figures 4.1-4.3. Table 4.4 compiles the mean and standard deviations for anther number, number of grains per anther, and P/O ratio for the ploidy level and habit categories. The results of the ANOVA are also given in Table 4.4 for these categories. ANOVA detected significant differences for mean anther number, mean number of grains per anther, and mean pollen/ovule ratio for the category of ploidy 86 level as well as when ploidy level and habit were considered (P<0.0001 in each case). Table 4.5 gives the results from the post-hoc ANOVA Fisher’s PLSD and Bonferroni/Dunn tests. Mean anther number per flower varied greatly between the 2n=20 tetraploid (520) and the 2n=10 diploid (24-102) species (Table 4.3). For chromosome number both known and inferred, the difference in anther number was significant under both Fisher’s PLSD and Bonferroni/Dunn between diploid (2n=10) annuals and perennials (p=0.0032, and p=0.0022, chromosome number known and inferred, respectively), diploid annuals and tetraploids (p=0.0039 and p=0.0004, respectively), and diploid perennials and tetraploids (p<0.0001 for both categories). Mean number of grains per anther was not significantly different between diploid annuals and diploid perennials. When the chromosomally known diploid annuals and tetraploid annuals were compared, the differences were significant under Fisher’s PLSD only (p=0.0117). When all taxa were included, the mean number of grains per anther was significantly different under both tests (p=0.0005). The diploid perennials and tetraploid annuals significantly differed in number of grains per anther in both categories for both tests (p=0.0002 chromosomally known, p<0.0001 all taxa). For mean pollen/ovule ratio, a significant difference was detected between the diploid annuals and perennials only under Fisher’s PLSD test: p=0.0349 and p=0.0434 for chromosome number known and inferred, respectively. When p/o ratios were compared between the diploid annuals and the tetraploids, a significant difference was found only when all taxa were considered and only under Fisher’s PLSD (p=0.0123). When only the chromosomally known taxa were tested, the difference was not significant under either test (p=0.0511). However, a significant difference was detected between the 87 Table 4.3. Results of pollen/ovule ratio analysis for species of Tarasa. An asterisk indicates inferred chromosome number on the basis of morphology and geographic distribution (see text for explanation). Means and standard deviations (in parentheses) are given for number of grains per anther, number of anthers per flower, and number of ovules per flower. Breeding system was determined by comparing the empirical log p/o ratios to values reported by Cruden (1977) (X = xenogamy, FX = facultative xenogamy, FA = facultative autogamy, and OA = obligate autogamy) – see text for details. Species T. cardenasii T. heterophylla T. latearistata T. meyeri T. trisecta T. albertii T. capitata T. humilis T. operculata T. rhombifolia* T. thyrsoidea T. machupicchensis T. mandonii T. spiciformis* T. antofagastana Individuals 2n sampled 2 2 1 2 2 2 3 2 2 1 2 2 3 1 5 10 10 10 10 10 10 10 10 10 10 10 12 12 12 20 Habit Flower color Petal Length (mm) Number of grains/anther Number of anthers/flower Annual Annual Annual Annual Annual Perennial Perennial Perennial Perennial Perennial Perennial Perennial Perennial Perennial Annual Lilac Lilac Lilac Lilac Lilac Magenta Lilac Magenta White Lilac Lilac Rose-pink Rose-pink Rose-pink White 2-3 5-7 7-8 8-10 5-7 10-15 5-15 8-10 8-10 9-10 10 12-15 20-30 10-15 3-4 143.50 (8.25) 305.33 (60.81) 348.00 258.17 (5.42) 382.50 (20.03) 309.83 (47.85) 350.00 (111.66) 322.50 (18.15) 376.17 (156.27) 265.33 441.50 (20.98) 275.67 (19.80) 510.33 (62.49) 330.00 102.20 (43.29) 24 (2) 38 (2) 40 30 (0) 60 (0) 55 (4) 47 (13) 69 (2) 76 (8) 40 102 (9) 72 (5) 67 (7) 60 15 (4) 88 Number Mean P/O of ratio ovules/flower 10 (1) 9 (1) 10 12 (1) 9 (1) 10 (0) 13 (3) 12 (0) 11 (1) 10 13 (1) 9 (3) 8 (1) 10 10 (2) 337.23 1272.22 1392.00 673.48 2086.36 1704.08 1265.38 1840.94 2722.73 1061.33 3584.98 2190.02 4459.87 1980.00 155.43 Log P/O ratio Breeding system 2.53 3.10 3.14 2.83 3.32 3.23 3.10 3.27 3.44 3.03 3.55 3.65 3.30 3.34 2.19 FX X X FX X X X X X X X X X X OA Table 4.3 Species T. cerrateae T. congestiflora* T. corrugata* T. geranioides T. marinii* T. nototrichoides T. odonellii T. pediculata* T. tarapacana T. tenella T. tenuis T. urbaniana continued Individuals 2n sampled 2 2 2 1 1 2 2 2 3 2 2 2 20 20 20 20 20 20 20 20 20 20 20 20 Habit Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Flower Petal color Length (mm) White White Pink White White White White White White White Lilac White Number of Number of grains/anther anthers/flower 1.5-2 159.00 (37.24) 2.5-3 70.50 (14.38) 2.5-3 123.83 (69.53) 1.5-2 32.00 6-7 245.67 1-2 227.33 (51.38) 2-3 59.50 (9.19) 2-3 62.50 (6.84) 1.5-2 136.33 (37.55) 1.5-2 110.17 (47.38) 6-7 198.83 (100.17) 1.5-2 92.50 (86.03) 89 10 (0) 10 (0) 17 (5) 5 20 5 (0) 5 (0) 10 (1) 9 (1) 8 (4) 19 (5) 7 (3) Number Mean P/O of ratio ovules/flower 10 (3) 8 (0) 7 (1) 9 8 9 (1) 10 (2) 9 (1) 8 (0) 10 (1) 8 (1) 8 (1) 159.00 88.13 291.89 17.78 614.17 126.30 31.32 69.85 159.06 86.97 490.46 86.33 Log P/O ratio Breeding system 2.20 1.95 2.47 1.25 2.79 2.10 1.50 1.84 2.20 1.94 2.69 1.94 OA OA FA/FX OA FA/FX OA OA OA OA OA FA/FX OA diploid perennials and tetraploid annuals for both categories and under both post-hoc tests (p=0.0002 for chromosomally known, p<0.0001 for all taxa). According to Cruden (1977), a log transformed pollen/ovule score of 3.59-3.71 indicates xenogamy, 2.76-2.86 indicates facultative xenogamy, 2.09-2.21 indicates facultative autogamy, and a score of 1.38-2.21 indicates obligate autogamy. The scores for Tarasa suggest that the diploid annuals (log p/o 2.53-3.32) are facultatively xenogamous to xenogamous, the diploid perennials (log p/o 3.03-3.55) are xenogamous, and the tetraploid annuals (log p/o 1.25-2.79) are obligately autogamous, facultatively autogamous, or facultatively xenogamous. Mean number of anthers per flower 90 80 70 60 50 40 30 20 10 0 2n=20 Annuals 2n=10 Annuals 2n=10 Perennials 2n=12 Perennials Chromosome number and habit Figure 4.1 Histogram of mean number of anthers per flower for all species of Tarasa analyzed. 90 500 Mean number of grains per anther 400 300 200 100 0 2n=20 Annuals 2n=10 Annuals 2n=10 Perennials 2n=12 Perennials Chromosome number and habit Figure 4.2 Histogram depicting mean number of grains per anther for all species of Tarasa analyzed. 4500 4000 Mean pollen/ovule ratio 3500 3000 2500 2000 1500 1000 500 0 2n=20 Annuals 2n=10 Annuals 2n=10 Perennials 2n=12 Perennials Chromosome number and habit Figure 4.3 Histogram of mean pollen/ovule ratio for all species of Tarasa analyzed. 91 Table 4.4 Means and standard deviations (in parentheses) of anther number per flower, number of grains per anther, and pollen/ovule ratio for ploidy level and habit categories in Tarasa (see Table 4.3 for details). Significance levels as detected by ANOVA are also given for these categories. Category Mean anther number Mean number of grains per flower per anther Mean P/O ratio Log P/O ratio 3.06 3.31 3.46 2.26 ALL TAXA 2n=10 annuals 2n=10 perennials 2n=12 perennials 2n=20 annuals ANOVA Ploidy level Ploidy level and habit 38 (14) 65 (23) 66 (6) 11 (5) 287.500 (93.005) 344.222 (60.656) 372.000 (122.839) 124.643 ( 66.695) 1152.258 (677.848) 2029.907 (955.277) 2876.630 (1375.141) 182.822 (179.837) F=30.012 ,P<0.0001 F=32.957, P<0.0001 F=24.012, P<0.0001 F=16.819, P<0.0001 F=22.241, P<0.0001 F=18.557, P<0.0001 38 (16) 70 (21) 70 (4) 10 (5) 272.375 (100.040) 360.000 (52.266) 393.000 (165.930) 111.316 (53.416) 1092.323 (767.261) 2223.622 (926.958) 3324.945 (1605.026) 148.294 (149.129) F=17.926, P<0.0001 F=24.490, P<0.0001 F=18.076, P<0.0001 F=14.441, P=0.0001 F= 15.071, P=0.0002 F=14.588, P=0.0001 KNOWN PLOIDY LEVEL ONLY 2n=10 annuals 2n=10 perennials 2n=12 perennials 2n=20 annuals ANOVA Ploidy level Ploidy level and habit 92 3.04 3.35 3.52 2.17 Table 4.5 P-values for mean anther number per flower, number of grains per anther, and P/O ratio as determined by Fisher’s PLSD and Bonferroni/Dunn post hoc ANOVA for diploid (2n=10 only shown) and tetraploid (2n=20) species of Tarasa. Calculated P values were the same for each test. Significant differences are indicated as follows: * indicates a p-value significant under Fisher’s PLSD at the 0.05 level, ** indicates a p-value significant under Bonferroni/Dunn at the 0.05 level, *** indicates significant difference under both tests (0.05 level). Comparison ALL TAXA diploid annuals, diploid perennials diploid annuals, tetraploid annuals diploid perennials, tetraploid annuals KNOWN PLOIDY LEVEL ONLY diploid annuals, diploid perennials diploid annuals, tetraploid annuals diploid perennials, tetraploid annuals Anther number per flower Number of grains per anther P/O ratio P=0.0022*** P=0.0004*** P<0.0001*** P=0.2364 P=0.0005*** P<0.0001*** P=0.0434* P=0.0123* P<0.0001*** P=0.0032*** P=0.0039*** P<0.0001*** P=0.1271 P=0.0117* P=0.0002*** P=0.0349* P=0.0511 P=0.0002*** Self seed set Table 4.6 summarizes the results from self seed set for species of Tarasa grown in the greenhouse. None of the diploid perennial species (Tarasa albertii, T. capitata, T. humilis, T. operculata, and T. thyrsoidea) were found to be self-compatible. The tetraploid annuals were all autogamous, but to varying degrees as represented by mean seed set (0.53-0.87). 93 Table 4.6 Self seed set in greenhouse grown individuals of Tarasa. Plants were grown in the greenhouse at The University of Texas at Austin. The number of fully mature seeds per schizocarp was counted for fifty schizocarps on a single plant. Autogamous seed set is the proportion of mature seeds produced to the number of carpels present. Standard deviations are given in parentheses. An asterisk indicates an inferred chromosome number on the basis of morphology and geographic distribution (see text for details). Species Tarasa trisecta Tarasa machupicchensis Tarasa antofagastana Tarasa geranioides Tarasa nototrichoides* Tarasa odonellii Tarasa tarapacana Tarasa tenella Tarasa urbaniana Species Tarasa albertii Tarasa capitata Tarasa humilis Tarasa operculata Tarasa thyrsoidea 2n Habit 10 Annual 12 Perennial 20 Annual 20 Annual 20 Annual 20 Annual 20 Annual 20 Annual 20 Annual 2n Habit 10 10 10 10 10 Perennial Perennial Perennial Perennial Perennial Autogamous seed set 0.42 (0.20) 0.71 (0.25) 0.70 (0.23) 0.75 (0.20) 0.53 (0.23) 0.66 (0.24) 0.87 (0.14) 0.85 (0.20) 0.63 (0.26) Seed set from manual self-pollinations 0 0 0 0 0 Pollen characteristics Table 4.7 lists the results of pollen characterization utilizing light microscopy. All grains within Tarasa were spherical to sub-spherical in shape with dimorphic spines. The larger spines are positioned on basal cushions, both of which are variable in size between the species (Figure 4.4). The small spines are scattered between the larger 94 Table 4.7 Results of pollen measurements utilizing light microscopy. Twenty-five grains were measured per individual; when possible 2 or more individuals were sampled to represent a species. An asterisk inidicates an inferred chromosome number based on morphology and geographic distribution (see text for details). Values given are the mean and standard deviation for the polar and equatorial axis, and the approximate number of apertures. Species 2n Habit Polar axis (µm) T. cardenasii T. heterophylla T. latearistata T. meyeri T. trisecta T. albertii T. capitata T. humilis T. operculata T. rhombifolia* T. thyrsoidea T. machupicchensis T. mandonii T. spiciformis* T. antofagastana T. cerrateae T. congestiflora* T. corrugata* T. geranioides T. marinii* T. nototrichoides T. odonellii T. pediculata* T. tarapacana T. tenella T. tenuis T. urbaniana 10 10 10 10 10 10 10 10 10 10 10 12 12 12 20 20 20 20 20 20 20 20 20 20 20 20 20 Annual Annual Annual Annual Annual Perennial Perennial Perennial Perennial Perennial Perennial Perennial Perennial Perennial Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual 41.55 (0.01) 36.15 (0.64) 38.88 (2.01) 40.22 (1.21) 38.43 (1.03) 37.93 (0.24) 39.90 (1.61) 39.61 (0.97) 42.49 (4.52) 38.15 (2.21) 39.12 (6.44) 40.19 (3.10) 39.90 (1.67) 33.31 (2.11) 38.57 (1.20) 34.34 (1.67) 32.99 (1.07) 38.06 (0.43) 35.26 (1.58) 40.08 (1.32) 32.44 (2.88) 35.16 (2.10) 34.46 (5.32) 37.99 (0.50) 35.43 (0.04) 37.98 (2.80) 37.73 (3.01) 95 Equatorial axis (µm) 44.73 (1.51) 39.04 (0.27) 40.89 (1.76) 42.88 (1.01) 41.91 (2.70) 40.65 (1.27) 42.13 (2.18) 42.96 (1.00) 45.21 (4.21) 40.67 (2.00) 41.65 (7.52) 43.37 (3.51) 43.13 (2.85) 36.00 40.76 (1.78) 37.16 (2.67) 36.30 (0.83) 40.17 (1.37) 38.88 (2.06) 44.00 (2.83) 36.52 (1.95) 38.42 (2.49) 37.11 (5.11) 40.51 (0.06) 38.66 (0.09) 40.81 (3.27) 40.34 (3.60) Number of apertures ~6 ~7 4 4 3-4 3-4 ~5 3-4 3-4 ~5 3-4 3-4 3-4 3-4 6-8 ~6 4-5 ~6 ~8 ~6 ~6 ~8 ~6 ~6 ~8 ~6 8 Figure 4.4 Scanning electron micrographs of pollen grains for 6 species of Tarasa (Malvaceae) demonstrating variation in grain size and spine size and morphology. Magnification and scale bars are given in the lower right corner of each panel. Panels A-C: Tetraploid annual species, panels D-E: Diploid perennials, panel F: Diploid annual. 96 Table 4.8 Means and standard deviations for pollen grain size (polar and equatorial diameters) for species of Tarasa studied. P values from ANOVA are given for the categories of ploidy level and ploidy level and habit for all taxa (chromosome number inferred) or chromosomally known taxa only. Mean polar diameter (µm) Mean equatorial diameter (µm) 39.046 (2.027) 39.533 (1.645) 36.192 (2.351) 41.890 (2.131) 42.212 (1.714) 39.203 (2.182) ALL TAXA Diploid annual Diploid perennial Tetraploid annual ANOVA Ploidy level F= 5.479, P=0.0110 F= 4.699, P=0.0190 Ploidy level and habit F= 3.558, P=0.0300 F= 3.026, P=0.0501 KNOWN ONLY Diploid annual Diploid perennial Tetraploid annual 39.087 (2.339) 39.810 (1.676) 36.557 (1.662) 42.140 (2.375) 42.520 (1.720) 39.442 (1.349) ANOVA Ploidy level F= 7.157, P=0.0060 F=8.611 , P=0.0029 Ploidy level and habit F= 4.707, P=0.0165 F= 5.462, P=0.0097 spines and are barely visible with the light microscope. Figure 4.4 illustrates the gross morphological differences among some of the species. Differences in aperture (all colporate) number were also apparent (Table 4.7), although the precise number was at times difficult to assess since the apertures also seem to vary in size. When the number of apertures was 3-4, the colpi were equatorially distributed on the grain. Pollen with 5 or more apertures present had the colpi spirally arranged around the grain. Pollen sizes were variable both within and between species of Tarasa (Table 4.7). Within a species, the pollen grain size typically varied only a few micrometers, with a few exceptions (e.g., Tarasa thyrsoidea and T. pediculata). The mean polar diameter 97 ranged in the diploid (2n=10) annual taxa from 36.15-41.55 µm, the diploid perennials from 37.93-42.49 µm, and the tetraploid annual species from 32.44-40.08 µm. Figure 4.5 is a histogram of the mean pollen diameter (polar axis) for these three categories. Significant differences were detected by ANOVA for mean pollen grain size (both polar and equatorial diameters) for the ploidy level and ploidy level and habit categories (Table 4.8). These values were significant when all taxa were considered (e.g., ploidy level: polar diameter P=0.0110, equatorial diameter P=0.0190), as well as when only the chromosomally known taxa were included (e.g., ploidy level: polar diameter P=0.0060; equatorial diameter P=0.0029). Post-hoc ANOVA tests revealed significant differences between some of the categories (Table 4.9). When chromosomally known and all taxa were evaluated, Fisher’s PLSD detected significant difference between diploid annuals and tetraploid annuals for polar diameter (p=0.0339 known, p=0.0301 all taxa) and equatorial diameter (p=0.0183, known and p=0.0390 all). A significant difference was detected under Fisher’s PLSD between the diploid perennials and the tetraploids for polar diameter (p=0.0057 known, p=0.0083 all taxa) and equatorial diameter (p=0.0054 known, p=0.0155 all). Bonferroni/Dunn returned a significant difference only for the difference between diploid perennials and the tetraploids for the chromosomally known only category (p=0.0057 polar diameter, p=0.0054 equatorial diameter). Figure 4.6 depicts the relationship between log surface area (pollen size) and log pollen/ovule ratio for the species of Tarasa studied. Correlation coefficients for the tetraploids, diploid annuals, and diploid perennials were 0.6224, -0.6031, and 0.2454, respectively. 98 Table 4.9 Significance levels for mean pollen diameter (polar axis) as determined by Fisher’s PLSD and Bonferroni/Dunn post hoc ANOVA for diploid (2n=10 only shown) and tetraploid (2n=20) species of Tarasa. Calculated P values were the same for each test. Significant differences are indicated as follows: * indicates a p-value significant under Fisher’s PLSD at the 0.05 level, ** indicates a p-value significant under Bonferroni/Dunn at the 0.05 level, *** indicates significant difference under both tests (0.05 level). Comparison Mean polar diameter Mean equatorial diameter ALL TAXA diploid annuals, diploid perennials P=0.7347 diploid annuals, tetraploid annuals P=0.0301* diploid perennials, tetraploid annuals P=0.0083* P=0.8218 P=0.0390* P=0.0155* KNOWN PLOIDY LEVEL ONLY diploid annuals, diploid perennials P=0.5521 P=0.7382 diploid annuals, tetraploid annuals P=0.0339* P=0.0183* diploid perennials, tetraploid annuals P=0.0057*** P=0.0054*** Mean pollen (polar) diameter (µm) 45 40 35 30 2n=10 annuals 2n=10 perennials 2n=20 annuals Ploidy level and habit Figure 4.5 Histogram of mean pollen diameter (polar axis) in micrometers for the categories of diploid annual, diploid perennial, and tetraploid annual. 99 Figure 4.6 Relationship between surface area of pollen grain (polar axis) and pollen/ovule ratio for species of Tarasa studied (see Table 4.3). Tetraploid annual species are shown in red, diploid annuals in light blue, and diploid perennials in dark blue. Pearson correlation coefficients (r) for the tetraploids, diploid annuals, and diploid perennials are 0.519, -0.698, and 0.296, respectively. DISCUSSION A shift in breeding system follows polyploidization in Tarasa Following polyploidization, a shift from an outcrossing to a selfing breeding system has been empirically shown in many taxa (Stebbins 1950, Grant 1981, Levin 1983, Richards 1997, Ramsey and Schemske 1998, but see Cook and Soltis 1999). The tetraploid species of Tarasa follow this expectation and have each independently evolved a morphology typical of autogamous plants yet atypical for polyploids. This shift to 100 autogamy in Tarasa has repeatedly involved an overall reduction in floral morphology that includes smaller petals, fewer anthers per flower, and fewer grains produced by each anther (Tables 4.4 and 4.5). Consequently, the difference in pollen/ovule ratios between the diploids and tetraploids is striking (Figure 4.3). The best phylogenetic estimate for the species indicates that the tetraploids were formed multiple times (Chapter 3) and were likely derived from hybridization events between different pairs of diploid annuals. The diploid annuals possess floral morphologies that appear to promote outcrossing (Table 4.3), including relatively large lavender petals (> 5 mm) with nectar guides, many anthers, and the stigmas exserted several millimeters beyond the anther mass. The pollen/ovule ratios indicate that the diploid annuals may be facultatively xenogamous (Table 4.3 and 4.4). They do appear to possess “leaky” self-incompatibility (only represented by one species in the greenhouse), although apparently with the consequence of inbreeding depression. Polyploidy is expected to buffer the effects of deleterious alleles arising from inbreeding (Stebbins 1957, Charlesworth and Charlesworth 1987, 1995). Not surprisingly, the tetraploids do not appear as susceptible to inbreeding depression as the diploid annuals, since vigorous individuals were grown from autogamous seed (data not shown). Considered together, the phylogenetic and reproductive data indicate that the “selfing” tetraploid morphology has recurrently evolved from predominantly outcrossing diploids. In the evolutionary history of the Tarasa species, a shift from a perennial to an annual habit likely occurred first and was followed by increased self-compatibility in the diploid annuals. After the formation of the tetraploid species, autogamy then became the predominate breeding system and those morphological features typical of autogamous taxa (inconspicuous flowers, few anthers and few grains produced per anther) evolved. Other phylogenetically based studies have documented the rather labile nature of plant breeding systems (reviewed in Weller and 101 Sakai 1999). For example, a few other studies have detected multiple origins of selfing within a genus, particularly in Eichhornia (Barrett 1995) and Gilia (Barrett et al. 1996). However, the tetraploid species of Tarasa represent a particularly interesting case due to the extensive nature of their convergent morphology and because they do not fit the archetypal polyploid pattern. Plants found at high elevations are typically smaller in stature and floral features than plants growing at lower elevation (Clausen et al. 1940). The reduction in floral features in Tarasa tetraploids is not surprising in this regard but the size difference between diploids and tetraploids is maintained in the greenhouse. Many factors have likely contributed to the evolution of this unusual and recurring floral form exhibited by the tetraploid species of Tarasa [inconspicuous white or lavender flowers, petals less than 3 mm (but 6-7 mm in 2 species) in length, and anthers numbering 5-20]. The novel genetic combinations (resulting from allopolyploidization) appear to have allowed the tetraploids to exploit higher elevation habitats in the high Andes that were not previously occupied by the diploid species. Consequently, morphological adaptations to the high altitude habitats would have had a selective advantage. In particular, because the tetraploids are annuals, a breeding system/morphology which offers reproductive assurance in an environment where pollinators are scarce and the growing season is short would be essential. Polyploidy is particularly common among taxa found at high latitudes and high altitudes (Löve and Löve 1949, Diers 1961, Löve and Löve 1974, Stebbins 1984). Arroyo et al. (1981, 1982, 1985) and Arroyo and Squeo (1990) in a series of community studies of the high Chilean Andes demonstrated a relationship between breeding system and pollinator abundance (frequent autogamy at high elevations where pollinators are scarce). Abiotic factors in particular were shown to influence the latter (Arroyo et al. 1981 1982, 1983). Low pollinator abundance may have been a pre102 existing element in shaping the tetraploid morphology subsequent to invasion of the high elevation habitats. However, a phylogenetic component may have also contributed to the plasticity of the floral characters observed in the tetraploids (conferred by the diploid annuals). Tarasa tetraploid pollen size contradicts breeding system and ploidy level expectations The data presented here for pollen size in Tarasa contradict previous findings for both a negative correlation between pollen/ovule ratios and pollen size (Cruden and Miller-Ward 1981, Mione and Anderson 1992, Cruden 2000) and a positive correlation between ploidy level and pollen size (Stebbins 1940, 1950). In an autogamous breeding system, fewer pollen grains are produced and these are typically larger than in outcrossing relatives (Cruden and Miller-Ward 1981, Cruden 2000). This relationship has been attributed to a trade-off in sexual allocation between size and number (Charnov 1982, Queller 1984) and/or to floral morphological characters, in particular, style length and stigmatic depth (Cruden and Lyon 1985, Cruden 2000 and references therein). In Tarasa, the tetraploids possess an autogamous breeding system where fewer pollen grains are produced per anther, but the pollen grains are significantly smaller than the diploids where xenogamy is favored (p=0.003 under Bonferroni/Dunn) (Table 4.9 and Figure 4.6). When habit and ploidy level are considered among the species, the tetraploids are not significantly different in pollen size from the diploid annuals under the more conservative post-hoc ANOVA (Bonferroni/Dunn p= 0.0399 chromosomally known only, p=0.0301 all taxa), but are significantly smaller than the diploid perennials (p=0.0057 known, p=0.0083 all taxa). Interestingly, regression analysis indicates a positive relationship between pollen size (as surface area) and pollen/ovule ratio for the tetraploids (r=0.519) 103 and diploid perennials (r=0.296), but the diploid annuals exhibit the expected negative correlation between the two variables (r=-0.698). Since the tetraploids have smaller flowers (thus shorter styles) than the diploid annuals and perennials, a structural component also likely contributes to the smaller pollen found in the tetraploids. Chromosome drawings by Krapovickas (1960) indicate that the tetraploid chromosomes are not smaller in size than the diploids. Attributing pollen size to a single factor does not seem appropriate for most plant species, especially in the case of Tarasa. Interrelated environmental and genetic factors have likely contributed to the unexpected patterns observed here. Among the most important considerations are 1) the tetraploids are primarily autogamous and are derived from primarily xenogamous diploid annuals, and 2) the former have undergone a morphological reduction in all floral characters probably as a reponse to a combination of a shift in breeding system and to the harsh environment of the high Andes. 104 Appendix A. Malveae ITS alignment ITS1 (1-355), ITS2 (356-623) Abutilon.andrewsianum Abutilon.pubistamineum Abutilon.sp. Acaulimalva.alismatifolia Acaulimalva.dryadifolia Alcea.rosea Alcea.rugosa Allosidastrum.pyramidatum Allowissadula.holosericea Anisodontea.capensis Anoda.crenatiflora Bakeridesia.gloriosa Bastardia.bivalvis Bastardiastrum.cinctum Bastardiopsis.densiflora Batesimalva.violacea Billieturnera.helleri Briquetia.sonorae Callirhoe.digitata Callirhoe.involucrata Calyculogygas.uruguayensis Corynabutilon.vitifolium Cristaria.andicola Dendrosida.breedlovei Dendrosida.wingfieldi Dirhamphis sp. Eremalche.exilis Eremalche.parryi Fryxellia.pygmaea Fuertesimalva.jacens Fuertesimalva.limensis Gaya.atiquipana Gaya.calyptrata Gossypium.hirsutum Hochreutinera.amplexifolia Hoheria sp. Horsfordia.exsita Howittia.trilocularis Iliamna.bakeri2 Iliamna.latibrac.2B Iliamna.remota Iliamna.rivularis Kearnemalvastrum.lacteum Kearnemalvastrum.sp 10 GTCGAAACCT GTCGAAACCT -TCGAAACCT -TCGAAACCT -TCGAAACCT -TCGAAACCT ?????????? GTCGAAACCT GTCGAAAGCT GTCGAAACCT GTCGAAACCT GTCGAAACCT GTCGAAACCT GTCGAAACCT GTCGAAACCT GTCGAAACCT GTCGAAACCT GTCGAAACCT -TCGAAACCT -TCAAAACCT -TCGAAACCT GTCGAAACCT -TCGAAACCT GTCGAAAGCT GTCGAAACCT GTCGAAACCT -TCGAAACCT -TCGAAACCT GTCGAAACCT -TCGAAACCT -TCGAAACCT GTCGAAACCT GTCGAAAGCT GTCGAAACCT GTCGAAACCT GTCGAAACCT GTCGAAACCT GTCGAAACCT -TCGAAACCT -TCGAAATCC -TCGAAACCT -TCGAAACCT GTCGAAACCT -TCGAAACCT 20 30 GCCT-AGCAG A-AC--GACC GCCT-AGCAG C-ACATGACC GCCT-AGCAG A-AC--GACC GCCT-AGCAG A-AC--GACC GCCT-AGCAG A-AC--GACC GCCT-AGCAG A-AT--GACC ?????AGCAG A-AT--GACC GCCT-AGCAG A-AC--GACC GCCT-AGCAA ATAC--GACC GCCT-AGCAG A-AC--GACC GCCT-AGCAG A-AC--GACC GCCC-AGCAG A-AC--GACC GCCT-AGCAG A-AC--GACC GCCT-AGCAG A-AC--GACC GCCT-AGCAG A-AC--GACC GCCT-AGCAG A-AC--GACC GCCC-AGCAG A-AC--GACC GCCT-AGCAG A-AC--GACC GCCT-AGCAG A-AC--GACC GCCT-AGCAG A-AC--GACC GCCT-AGCAG A-AC--GACC GCCT-AGCAG A-AC--GACC GCCT-AGCAG A-AC--GACC GCCT-AGCAG A-AC--GACC GCCT-AGCAG A-AC--GACC GCCT-AGCAG A-AC--GACC GCCT-AGCAG A-AY--GACC GCCT-AGCAG A-AT--GACC GCCT-AGCAG A-AT--GACC GCCT-AGCAG A-AC--GACC GCCT-AGCAG A-AC--GACC GCCT-AGCAG A-AC--GACC GCCT-AGCAG A-AC--GACC GCCT-AGCAG A-AC--GACC GCCT-AGCAG A-AC--GACC GCCT-AGCAG A-AC--GACC GCCT-AGCAG A-AC--GACC GCCT-AGCAG A-AC--GACC GCCT-AGCAG A-AC--AACC GCCT-AGCAG A-AC--GACC GCCT-AGCAG A-AT--GACC GCCT-AGCAG A-AT--GACC GCCT-AGCAG A-AT--GACC GCCT-AGCAG A-AT--GACC 105 40 CGT-GAATGT CGT-GAATGT CGT-GAATGC CGT-GAACGT CGT-GAACGT CGT-GAATGT CGT-GAATGT CGT-GAACAA CCG-GAACAA CGT-GAACGT CGC-GAACGT CGT-GAATGT CGT-GAACGT CGC-GAATGT CGC-GAATGT CGT-GAACGT CGT-GAATGT CGT-GAATGT TGT-GAACGT TGT-GAACGT CGT-GAACGT CGT-GAACAT CGA-GAACGT CGT-GAATGC CGT-GAATGC CGT-GAATGT CGT-GAAYGT CGT-GAATGT CGT-GAACGT CGT-GAACGT CGT-GAACGT TGT-GAATGC CGT-GAATGC CGC-GAACGC CGT-GAATGT CGC-GAACGT CGT-GAATGT CGT-GAACGC CGT-GAACGT AGT-GAACGT CGT-GAACGT CGT-GAACGT CGT-GAACAT CGT-GAACAT 50 60 GTTATCATAC AA--AACACC GTTATCATAC AA--AACACC GTTATCATAC AA--AACACC GATATAAAAC AA--CTCAAC TATATAAAAC AA--CTCAAC GATATCAAAC AA--TCGAAT GATATCAAAC AA--TCGAAT GTTATCATAC AA--AACAGC GTTATCAAAC AA--AACAAC GATATCAAAC AA--CTCAAC GTTATCATAC AA--AACAGC GTTATCATAC AA--AACATC GTTATTATAC AA--ATCACC GTTATCATAC AA--AACACC GTTATCATAC AA--AACACC GTTATCAAAC AA--AACAAC GTTACCATAC AA--AACAAC GTTACCAAAC AA--AACAAC GTTATCAAAC AA--CTAAAC GTTATCAAAC AA--CTAAAC GATATCAAAC AA--CTAAAC GTTAATAAAC AA--AACAAC GTTATAAAAC AA--CTCCTC GTTATCAAAC AA--AACAGC GTTATCAAAC AA--AACAGC GTTACCAAAC AA--AACAAC GATATCAAAC AA--CWAAAC GATATCAAAC AA--CAAAAC GTTATCGTAC AA--AACAAC GATATCAAAC AA--CTCAAC GATATCAAAC AA--CTCAAC GTTATCATAC AA--AACAAC GTTATCATAC AA--AACAAC GTTG-CAAAC AA--CACC-G GTTACCAAAC AA--AACAAC GTTATCAAAC AA--CTCCAC GTTATCATAC AA--AACATC GTTATCAAAC AA---TAA-GATATCAAAC AA--CAAAAC GATATCAAAC AA--CAAAAC GATATTGAAC AA--CTCAAC GATATTGAAC AA--CTCAAC GATATCAAAC AA--CTCAAC GATATCAAAC AA--CTCAAC 70 --GAGAGAG--GAGAGGG--GAGAGGG--GAGGGGG--GAGGGGG--GAGGGGGG --GAGGGGG--GAGGGGG--GAGGGGG--GAGGGGG--GAGAGTG--GGGAGGG--GAGGGGG--GATAGGG--GAGAGAG--GAGGGGG--GAGAGGG--GAGTGGG--GAGGAGG--GAGGAGG--GAGGGGG--GAGGGGG--GAGGAGGGAGAGAGGG--GAGAGGG--GAGTGGG--GAGGGGG--GAGGGGG--GAGGGGG--GAGGGGG--GAGGGGG--GAGAGGG--GAGAGGG--GAGGTGG--GAGTGGG--GAGGGG-A --GAGAGGA--GAGGGC---GAGGGGG--GAGGGGG--GAGGGGG--GAGGGGG--GAGGGGG--GAGGGGG- 75 TGCGG TGCGG TGCGG TGCGG TGCGG TGAGG TGAGG CGCGG AGCAG CGCGG TGAGG TGCGG TGCGG TGAGG TGCGG CGAGG CGCGG CGCGG TGTGG TGTGG CGCGG CGCGG TGCGG TGCGG TGCGG CGCGG CGCGG CGCGG CGCGG CGTAG CGTAG CGTTG CGTTG TGCGG CGCGG GGCGG TGCGG CGCGG CGCGG CGCGG TGCGG TGCGG CGCGG CGCGG Kitaibela.vitifolia Krapovickasia.physaloides Lavatera.arborea Lavatera.occidentalis Lavatera.trimestris Lecanophora.chubutensis Lecanophora.heterophylla Malacothamnus.chilensis Malacothamnus.fasciculatus Malope sp. Malva.assurgentea Malva.dendromorpha Malva.linnei Malva.nicaensis Malva.wigandii Malvastrum.amblyphyllum Malvastrum.americanum Malvastrum.coromandelianum Malvella.sagittifolia Meximalva.filipes Modiola.caroliniana Modiolastrum.lateritium Monteiroa.glomerata Napaea.dioica Navaea.phoenicea Neobrittonia.acerifolia Nototriche.anthemidifolia Nototriche.flabellata Nototriche.pedicularifolia Palaua.camanensis Palaua.rhombifolia Periptera.punicea Phymosia.umbellata Pseudabutilon.umbellatum Rhynchosida.physocalyx Robinsonella sp. Sida.abutifolia Sida.aggregata Sida.fibulifera Sida.hermaphrodita Sida.hookeriana Sida.jussieana Sida.linifolia Sida.longipes Sida.odorata Sida.oligandra Sida.platycalyx Sida.xantii Sidalcea.cusickii Sidalcea.hirsuta Sidalcea.multifida Sidalcea.stipularis Sidasodes.colombiana Sidastrum.paniculatum GTCGAAACCT GTCGAAACCT ?????????? -------CCT ---------GTCGAAACCT GTCAAAACCT -TCGAAACCT -TCGAAACCT GTCGAAACCT GTCGAAACCT ------------------GTCGAAACCT ---------GTCGAAACCT GTCGAAACCT GTCGAAACCT GTCGAAACCT GTCGAAACCT -TCGAAACCT -TCGAAACCT -TCGAAACCT GTCGAAACCT GTCAAAACCT -TCGAAACCT -TCGAAACCT -TCGAAACCT -TCGAAACCT -TCGAAACCT -TCGAAACCT GTCGAAACCT -TCGAAACCT GTCGAAAC-T GTCGAAACCT GTCGAAACCT GTCGAAACCT GTCGAAACCT GTCGAAACCT GTCGAACCCT GTCGAAACCT GTCGAAACCT GTCGAAACCT GTCGAAACCT ???GAAACCT GTCGAAACCT GTCGAAACCT GTCGAAACCT -TCAAAACCT -TCAAAACCT -TCAAAACCT -TCGAAACCT GTCGAAACCT GTCGAAACCG GCCT-AGCAG GCCT-AGCAG ?????????? GC-A-AGCAG ---------GCCT-AGCAG GCCT-AGCAG GCCT-AGCAG GCCTAAGCAG GCCT-AGCAG GCCA-AGCAG ----------CCT-AGCAG GCCT-AGCAG ---------GCCT-AGCAG GCCT-AGCAG GCCT-AGCAG GCCT-AGCAG GCCT-AGCAG GCCT-AGCAG GCCT-AGCAG GCCT-AGCAG GCCT-AGCAG GCCT-AGCAA GCCT-AGCAG GCCT-AGCAG GCCT-AGCAG GCCT-AGCAG GC?T-AGCAG GCCT-AGCAG GCCT-AGCAG GCCT-AGCAG GCCT-AGCAG GCCT-AGCAG GCCT-AGCAG GCCT-AGCAG GCTT-AGCAG GCAT-AGCAG GCCT-AGCAG GCCT-AGCAG GCCT-AGCAG GCCT-AGCAG GCCT-AGCAG GCCT-AGCAG GCCT-AGCAG GCAT-AGCAG GCCT-AGCAG GCCT-AGCAG GCCT-AGCAG GCCT-AGCAG GCCT-AGCAG GCCT-AGCAG TCCT-AGCAG A-AT--GACC A-AC--GACC ?????????? A-AC--GACC ---C--GACC A-AC--GACC A-AC--GACC A-AC--GACC A-AT--GACC A-AT--GACC A-AC--GACC ---------A-AC--GACC A-AC--GACC ---------A-AC--GACC A-AC--GACC A-AC--GACC A-AC--AACC A-AC--GACC A-AC--GACC A-AC--GACC A-AC--GACC A-AC--GACC A-AC--GACC A-AC--GACC A-AY--G-CC A-AC--GACC AAAC--GACC A-AC--GACC A-AC---ACC A-AC--GACC A-AC--GACC A-AC--AACC A-AC--GACC A-AC--GACC A-AC--GACC A-AC--GACC A-AC--GACC ATAC--GCCG A-AC--GACC ATAC--GACC A-AC--GACC A-AC--GACC A-AC--GACC A-AC--GACC A-AT--GACC ATAC--GACC A-AT--GACC A-AT--GACC A-AT--GACC A-GA--GACC ATAC--GACC ---C--GACC 106 CGT-GAACGT CGC-GAACGT ???-?AACGT CGC-GAACGT CGC-GAACGT CGC-GAACGT CGT-GAACGT CGT-GAACGT CGT-GAACGT CGC-GAACGT CGC-GAACGT -----AACGT CGC-GAACGT CGC-GAACGT -----AACGT CGT-GAACGT CGC-GAACGT CGT-GAACGT CGT-GAACGT TGT-GAATGT CGT-GAACGT CGT-GAACGT TGT-GAACAT CGT-GAACGT CGT-GAACGT CGC-GAACGT TGT-GAACGT TGT-GAACGT TGT-GAACGT CGT-GAACGT CGT-GAACGT CGT-GAATGT CGT-GAACGT CGT--AATGT CGT-GAACGT AGC-GAATGT CGT-GAATGC CGT-GAATGT TGT--AATGT CGC-CAACGT CGC-GAACGT CGT-?AATGT TGT-GAATGT CGT-GCATGT TGT-GAATGT CGC-GAACGT TGT-?AATGT CGT-GAATGT CGT-GAACAT CGT-GAACGT CGT-GAACAT CGT-GAACAT CGC-GAACGT TGT-GAATGT GATATCAAAC GTTATCATAC GATGTCAAAC GTTATCGAAC GATATCGAAC GTTATCAAAC GTTATCAAAC GATATCATAC GATATCAAAC GATATCAAAC GTTATCGAAC GTTATCGACC GTTATCGAAC GTTATCGAAC GATTTCAAAC GATATCAAAC GATATCAAAC GATATCAAAC GTTATCAAAC GTTATCATAC GATATCAAAC GATATCAAAC GATATCAAAC GATATCAAAC GATATCAAAC GTTATCAAAC GATATCAAAC GATATCAAAC GATATCAAAC GATATAAAAC GATATCAAAC GTTATCATAC GTTATCAAAC GTTATCATAC GTTATCATAC GTTATCATAC GTTATCATAC GTTATCATAC GTTATCATAC GTTATCAACC GTTATCAAAC GTTATCATAC GTTATCATAC GTTATCATAC GTTATCATAC GTTATCAAAC GTTATCATAC GTTATCATAC GATATCAAAC GATATCAAAC GATATCAAAC GATATCAAAC GTTATCAAAC GTTATCATAC AA--TTGAAC AA--AACAAC ACAACCAGTC AA--CCGATC ACAAACAATC AA--CTCCGC AA--CTTTGC AA--CTCCAC AA--CAAAAC TA----GA-C AA--CCGATC AA--CCGATC AA--CCGATC AA--CCGATC AA--CCGA?C AA--CTAATC AA--CTAATC AA--CTAATC AA--AACAAC AA--AAACAC AA--CTAAAC AA--CTAAAC AA--CTAAAC AA--CAAAAC ----TAAATAA--AACAAC AA--CCCCAC AA--CCCCAC AA--CCCCAC AA--CTCAAC AA--CTCAAC AA--AACATC AA--CTCAAC AA--AACACC AA--AACAAC AA--AACAAC AA--AAAAAC AA--AAAATAA--AACCAC AA--CTCCAC AA--CTCCAC AA--AACAAC AA--AACAAC AA--AACAAC AA--AACAAC AA--AACATC AA--AACCAC AA--AAAATC AA--CAAACT AA--CAAACT AA--CAAACT AA--TAAACT AA--CTCCAC AA--AA-ATC --GAGGGGG--GAGAGGG--GAGGGG---GAGGGGG--GGGGGGG--GAGGAGG--GAGGGGG--GAGGGGG--GAGGGGG--GAGGGGG--GAGGGGG--GAGGGGG--GAGGGGG--GAGGGGG--GAGGGGG--GTTGGGG--GTGGGGG--GTGGGGG--GAGGGGG--GAGAGGG--GAGGGGG--GAGGGGG--GAGGKGG--GAGGGGG--GAGGTGG--GGGGGGG--GGGGGGG--GGGGGGG--GGGGGGG--GAAGGGGG --GAAGGGG--GAGAGGG--GAGGAGG--GAGGGGG--GAGAGGG--TGGAGGG--GAGAGGG--GAGAGGG--GAGAGGG--CAGGGG-A --GAGGGG-A --GACAGGG--GAGATGG--GAGAGGG--GACAGGG--GAGAGGG--GAGAGGG--GAGAGGG--GAGGGGG--GAGGGGA--GAGGGGG--GAGGGGG--GAGGGGG--GAGAGGG- TGAGG CGCGG TGCGG TGCGG TGAGG TGCGG TGCGG CGCGG CGTGG CGCGG TGCGG TGCGG TGCGG TGCGG CGAGG TGCGG TGCGG TGCGG AGCGG CGCGG CGCGG CGCGG CGCGG CGCTG TGCGG TGAGG CGCGG CGCGG CGCGG CGCGG CGAGG TGCGG TGTGG TGCGG CGCGG TGCGG TGCGG TGCGG GGCGG CGCGG GGCGG TGCGG TGCGG TGCGG TACGG AGAGG GGCGG TGCGG TGCGG TGAGG TACGG CGTGG CGCGG CGCGG Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.philippiana Sphaeralcea.wrightii Tarasa.albertii Tarasa.humilis Tarasa.machupicchensis Tarasa.mandonii Tarasa.operculata Tarasa.rhombifolia Tarasa.thyrsoidea Tarasa.trisecta Tetrasida.chachapoyensis Tetrasida.weberbaueri Thespesia.lampas Urocarpidium.albiflorum Wissadula.boliviana Wissadula.cruziana Wissadula.periplocifolia -TCGAAACCT -TCGAAACCT -TCGAAACCT -TCGAAACCT -TCGAAACCT -TCGAAACCT -TCGAAACCT -TCGAAACCT -TCGAAACCT -TCGAAACCT -TCGAAACCT -TCGAAACCT -TCGAAACCT GTCGAAACCT GTCGAAACCT -TCGAAACCC -TCGAAACCT GTCGAAACCT GTCGAAACCT GTCGAAACCT GCCT-AGCAG GCCT--GCAG GCCT-AGCAG GCCT--GCAG GCCT-AGCAG GCCT-AGCAG GCCT-AGCAG GCCT-AGCAG GCCT-AGCAG GCCT-AGCAG GCCT-AGCAG GCCT-AGCAG GCCT--GCAG GCCT-AGCAG GCCT-AGCAG GCCC-CGCAG GCCT-AGCAG GCCT-AGCAG GCCT-AGCAG GCCT-AGCAG A-AC--GACC A-AC--GACC A-AC--GACC A-AC--GACC A-AC--GACC A-AC--GACC A-AT--GACC A-AC--GACC A-AC--GACC A-AC--GACC A-AC--GACC A-AY--GACC A-AC--GACC A-AC--GACC A-AT--GACC A-AC--GACC A-AC--GACC A-AC--GACC A-AC--GACC A-AC--GACC CGT-GAACGT CGT-GAACAT CGT-GAACAT CGT-GAACAT CGT-GAACGT CGT-GAACGT CGT-GAACGT CGT-GAACGT CGT-GAACGT TGT-GAACGT TGT-GAACGT TGT-GAACRT TGT-GAACGT CGT-GAACGT TGT-GAACGT CGCGGAACGC CGT-GAACGT CGC-GAACGT CGC-GAACGT TGT-GAATGT GATATCAAAC GATATCAAAC GATATCAAAC GATATCAAAC GATATCAAAC GATATCAAAC GATATCAAAC GATATCAAAC GATATCAAAC GATATMAAAC GATATCAAAC GATATCAAAC GATATCAAAC GTTATCATAC GTTATCAAAC GTTG-CACAC GATATAAAAC GTTATCATAC GTTATCATAC GTTATCATAC AA--CTCCAC AA--CTCCAC AA--CTCCAC AA--CTCCAC AA--CTCCAC AA--CTACAC AA--CTACAC AA--CTCCAC AA--CTCCAC AA--CCTCAC AA--CCCCAC AA--CCTCAC AA--CCCCAC AA--AATACC AA--AACAAC GA--CACC-G AA--CTCAAC AA--AACACC AA--AACACC AA--AACACC --GAGGGGG--GAGGGGG--GAGGGGG--GAGGGGG--GAGGGGG--GGGGGGG--GGGGGGG--GAGGGGG--GAGGGGG--GGGGGGG--GGGGGGG--GGGGGGG--GGGGGGG--GAGAGGG--GAGGGGG--GGGGCGG--GAGGGGG--GAGAGGG--GAGAGGG--GAGAKGG- TGCGG CGCGG CGCGG CGCGG TGCGG CGCGG CGCGG CGCGG CGCGG CAYGG TGCGG C?CGG YGCGG TGCGG AGCGG CGCGG CGTAA TGCGG TGCGG TGCGG Abutilon.andrewsianum Abutilon.pubistamineum Abutilon.sp. Acaulimalva.alismatifolia Acaulimalva.dryadifolia Alcea.rosea Alcea.rugosa Allosidastrum.pyramidatum Allowissadula.holosericea Anisodontea.capensis Anoda.crenatiflora Bakeridesia.gloriosa Bastardia.bivalvis Bastardiastrum.cinctum Bastardiopsis.densiflora Batesimalva.violacea Billieturnera.helleri Briquetia.sonorae Callirhoe.digitata Callirhoe.involucrata Calyculogygas.uruguayensis Corynabutilon.vitifolium Cristaria.andicola Dendrosida.breedlovei Dendrosida.wingfieldi Dirhamphis sp. Eremalche.exilis Eremalche.parryi Fryxellia.pygmaea Fuertesimalva.jacens Fuertesimalva.limensis Gaya.atiquipana 85 ATG-CAATAT TTG-CAATAT ATG-CAATAT ATG-CATCCT ATG-CATCCT ATG-CATCTT ATG-CATCTT ATG-CAATCT ATG-CAATCC ATG-CATCCT GTG-CAATCT ATG-CAATCT GTG-CAATGT ATG-CAATCT GTG-CAATGT ATG-MAATCT ATG-CAATCT ATG-CAATCT ATG-CATCCT ATG-CATCTT ACG-CATCCT ATG-CAATAT ATG-CAACTT ACG-CAATCT ACG-CAATCT ATG-CAATCT ATG-CATCAT ATG-CATCAT ATG-CAATGT ATG-CATCCT ATG-CATTCT GTG-CAGAAA 95 105 TG-CCCC--A ACCCC-TCTC TG-TCCC--A ACCCC-TCTC TG-CCCC--A ACCCC-TCT? TG-CCCC--A AACCC-CCTC TG-CCCC--A AACCC-CCTT TG-CCCC--A AACCC-CCTC TG-CCCC--A AACCC-CCTC TG-CCCC--A ACCCC-TCTC TTGCCCC--A ACCCC-TCTC TG-CCCC--A AACCC-CCTC TGCTCCC--A A-CCCCTCTC TG-CCCC--A ACCCC-TCTC TG-CCCCC-A ACCTC-TCTC TG-CCCC--A ACCCC-TCTC TG-CCCCC-A ATCCC-TCTC TG-CACC--A ACCTC-CCTC TG-CCCC--A ACTCC-TCTC TG-CCCC--A ACCCC-TCTC TG-CCCC--A AACCC-CCTC -G-CCCC--A AACCC-CCTC TG-CGCCT-A AACCC-CCTC TG-CCCC--A AACCC-CCTC TG-CCCC--A AACCC-CCTC TG-CGCCG-A ATCCC-TCTC TG-CCCC--A ATCCC-TCTC TG-CCCC--A ACCCC-TCTC TG-CCCC--A AACCC-TCTC TG-CCCC--A AACCC-TCTC TG-CCCC--A ACCCC-TCTC TG-CACC--A AACCC-CCTC TG-CACC--A AACCC-CCTC TG-CCCC--A ACCTT-TCTC 115 ---GATGCCT ---GATGCCT C--GATGCCT ---GATGCCT ---GATGCCT ---GTTGCCT ---GTTGCCT ---GATGCCT ---GACGCCT ---GATGCCT ---GGTGCCT ---GGTGCCT ---GATGTCT ---GGTGCCT ---GATGTCT ---GGTGTCT ---GATGCCT ---GATGCAT ---GATGCCT ---GATGCCT ---GATGCCT ---GAACCCT ---GGTGTCA ---GATGCCT ---GATGCCT ---GATGCAT ---GATGCCT ---GATGCCT GATGATGCCT ---GATGCCT ---GATGCCT ---GACGCCT 125 TGG---TG-T TTGT--TGTG TGC---TG-C TGGCGGTGTG TGGCGGTGTG AGG---TGTG AGG---TGTG CTG---AGTG TGG---CTGG TGG---TGTG TGT---TGTG TG----TTGT TGG---TC-T TGG---TGTG TG----GTGT CGG-----TG TGG---TTTG TGG---TTCG TCG---TTTG TCG---TTTG TGG---TGTG CGG---TGTG CGG---TTTG CTG---AATG CTG---AATG TGG---TTCG TGG---CGTG TGG---CGTG TGT---CGTG TGG---TGTG TGG---TGTG CT----TTCG 135 GTTTGGTC-T CTTTGCTC-T GTTTGGTC-T CTT-GGCT-C CTT-GGCT-C CTT-GGCC-T CTT-GGCC-T CTT-GGGT-C ----GGTC-T CTT-TGCC-T TGT-GGCT-T GTTTGTTC-C GTTTGGTC-T CTT-GCCA-C GTTTGGTC-T CGTCGGTC-T TTT-GGTC-T TTT-GGTG-T CTT-GGCC-T CTT-GGCC-T CTT-GGCC-T CTT-GGCC-T CTT-GTCC-T CTT-GGTC-T CTT-GGTC-T TTT-GGTG-T CTT-GACC-A CTT-GACC-G CTT-GGTC-T CTT-GGCT-CTT-GGCT-GTTCGGTC-T 145 T-GCCTC--A T-GCATC--A T-GCCTC--A T-GCCCC--A T-GCCCC--A T-TCCCC--A T-TCCCC--A T-GCCTC--A T-GCC-C--A T-TCCCC--A T-GCCTT--C T-GTCTC--C T-GCCTC--A T-GTCTY--C T-GCCTC--A T-GCCTCTCA T-GGCTG--A A-GCCTC--A T-TCACC--A T-TCACC--A T-TCACC--A T-GCCTC--A C-GCCTC--A T-GGCTC--A T-GGCTC--A A-GCCTC--A T-GCACA--A T-GCACA--A T-TGCTT--C ------------------T-GCCTC--A 150 GCCCTCCCTTCCTCCGTCCGTTCGTTCGTCCTGCATTCCGTCCTACCCACCCGCCCA ACCCA TCCGCTCCTCCCTCCGTCCGTCCGTCC-TCCTTCTCTCTCTCCCTCCGTTCGGCCA--------TTCC- 107 Gaya.calyptrata Gossypium.hirsutum Hochreutinera.amplexifolia Hoheria sp. Horsfordia.exsita Howittia.trilocularis Iliamna.bakeri2 Iliamna.latibrac.2B Iliamna.remota Iliamna.rivularis Kearnemalvastrum.lacteum Kearnemalvastrum.sp Kitaibela.vitifolia Krapovickasia.physaloides Lavatera.arborea Lavatera.occidentalis Lavatera.trimestris Lecanophora.chubutensis Lecanophora.heterophylla Malacothamnus.chilensis Malacothamnus.fasciculatus Malope sp. Malva.assurgentea Malva.dendromorpha Malva.linnei Malva.nicaensis Malva.wigandii Malvastrum.amblyphyllum Malvastrum.americanum Malvastrum.coromandelianum Malvella.sagittifolia Meximalva.filipes Modiola.caroliniana Modiolastrum.lateritium Monteiroa.glomerata Napaea.dioica Navaea.phoenicea Neobrittonia.acerifolia Nototriche.anthemidifolia Nototriche.flabellata Nototriche.pedicularifolia Palaua.camanensis Palaua.rhombifolia Periptera.punicea Phymosia.umbellata Pseudabutilon.umbellatum Rhynchosida.physocalyx Robinsonella sp. Sida.abutifolia Sida.aggregata Sida.fibulifera Sida.hermaphrodita Sida.hookeriana Sida.jussieana GTG-CAGAAA GTG-CATCCT ATG-CAATCT ATGGCAATCA ATG-CAATCT ACG-CATCCT ATG-CATCCT ATG-CATCCC AAG-CATACT AAG-CATACT ATG-CATCCT ATG-CATCCT ATG-CATCCT ACG-CAATCT ATG-CATCCG ATG-CATCCT ATG-CA?CCG ACG-CAACAT ATG-CAACTA ATG-CATCCT ATG-CATCCT ATG-CATCCA ATG-CATCCT ATG-CATCCT ATG-CATCCT ATG-CGTCCT ATG-CATCCT TTG-TATCCTTG-CATCCTTG-CATC-AAC-GAATCC GTG-CAATCT ATG-CATCCT ATG-CATCCT ATG-CATCCT ATG-CATCCT ATG-CATCCT ATG-CAATCT ATG-CATCTT ATG-CATCTT ATG-CATCTT ATG-CA-CCT ATG-CATCCT GTG-CATTTG ATG-CATCCT ATG-CAATCT ACG-CAATCT GTG-CAATCT AAC-GAATCT ATG-CAATCT GTG-CAATCA ATG-CAATCT ATG-CAATCT ACG-CAATCT TG-CCCC--A CG-CCTC-TC TG-CCCC--A TG-CCCCC-A TG-CCCC--A TG-CACC-TC TG-CCCC--A TG-CCCC--A TG-CCCC--A TG-CCCC--A TG-CCCC--A TG-CCCC--A TG-CCCC--A TG-CCCCC-TG-CCCC--G TG-CCCC--G TG-CCCC--G TG-CACC--A TG-CGCC--G TG-CCCC--A TG-CCCC--A TG-CCCC--A TG-CCCC--G TG-CCCC--G TG-CCCC--G TG-CCCC--G TG-CCCC--G ---------A ---------A ---------A TG-CCCC--A TG-CCCCC-T TG-CACCC-A TG-CACCC-A TG-CCCC--A TG-CCCCC-A TG-CACC--A TG-CACC--G TG-CCCC--A TG-CCCC--A TG-CCCC--A TG-CACC--A TG-CACC--A TTGTCCC--A TG-CCCC--A TG-CCCC--A TG-CCCCC-TG-CCCC--A TG-CCCC--A TG-CCCC--A TG-CCCC--T TG-CCCCC-A TG-CCCCC-A TG-CCCC--A ACCTT-TCTC GCCAC-CC-C ACCCC-TCTC AATCC-CCTC AACCC-TCTC G-TAC-CCTC AACCC-CCTC AACCC-CCTC AACCC-CCTC AACCC-CCTC AACCC-CCTC AACCC-CCTC AACCC-CCTC ACCCC-TCTC AACCC-CCTC AGCCC-CCTC AACCC-CCTC AACCC-CCTC AGCCC-CCTAACCC-CCTC AACCC-CCTM AACTC-CCTC AGCCC-CCTC AACCC-CCTC AGCCC-CCTC AGCCC-CCTC AACCC-CCTC AACCC-CCTC AACCC-CCTC AACCC-CCTC AACCC-CCTC ACCCCCTCTC AACCC-CCTC AACCC-CCTC AACCC-CCTC AACCC-CCTC AACCC-CCTC ACCCC-CCTC AACCC-CCTC AACCC-CCTC AACCC-CCTC AACCC-CCTC AACCC-CCTC ATCCCCTCCC CACCC-CCTC AACCC-TCTC ACCCC-TCTC ACCCT-TCCG ATCCC-TCTC ACCCC-TCTC ACCCC-TCTC AGCCC-CCTC AACCC-CCTC ATCCC-TCTC 108 ---GACGCCT ---CGTGTCT ---GATGCAT ---GACGCCT ---GGTGCCT ---TATGCCG ---GATGTCT ---GATGTCT ---GATGCCT ---GATGCCT ---GATGCCT ---GATGCCT ---GTTGCCT ---GATGCCC ---GATGCCT ---GATGCCT ---GATGCCT ---GACGTCT ---GATGTCT ---GATGCCT ---GATGCCT ---GATGCCT ---GATGCCT ---GATGCCT ---GATGCCT ---GATGCCT ---GACGCCT ---GATGCCT ---GGTGCCT ---GATGCCT ---GATGCCT ---GATGCCT ---GATGCCT ---GATGCCT ---GATGCCT ---GATGCCT ---GATGCCT ---GATGTCT ---GGTGCCT ---GGTGCCT ---GGTGCCT ---GGTGCCT ---GGTGCCT ---GGTGCCT ---GTTGCCT ---GATGCCT ---GATGCCC ---TATGCCT ---GATGCCT ---GATGCCT ---GATGCCT ---GACGCCT ---GACGCCC ---GATGCCT CT----TTCG CGG---AGCG TGG---TTCG TGG---TGAG TGT---TG-T CGG---AGTT TGG---TGTG TGG---TGTG TGG---TGTG TGG---TGTG TGG---TGTG TGG---TGTG TGG---TGTG CGG---CGTG TGG---CGTG CGG---CGCG TGG---TGCG CGG---TTTG CAG---TTTG TGG---TGTG TGG---ACTG TGG---TGTG CGG---CGCG CGG---CGCG CGG---CGCG CGG---CGCG CGG---TGCG TGG---TGTG TGG---TGTG TGG---TGTG TGC---TGTG TGG---TGTG TGG---TGTG TGG---TGTG TGG---TGTG TGG---TGTG AAG---TGTG CGG-----TG TGG---TGTG TGG---TGTG TGG---TGTG TGG---TGTG TGG---TGTG TGT---TGTTGG---TGTG TGG---TGGC CGG---CGTG TG----GTTT TGG---TGTG TGG---TGTG TGC---TGTG TGG---TGTG TGG---TGTG TGC---AGTG GTTTGGTC-T GCC-AGTC-T TTT-GGTG-T CCT-GGCT-T GTTTGTTC-C CTT-GGCT-T CTT-GCCC-T CTT-GCCC-A TTT-GGCT-T TTT-GGCT-T CTT-GGCT-C CTT-GGCT-C CTT-GGCC-T CTT-GGTC-C CCC-TGCC-T CCG-AGCC-T CCC-GGCC-T CTT-GGCC-T CTT-GGCC-T CTT-GCCT-T CTT-GGCT-T CGC-AGAGCC CCG-AGCC-T CCA-AGCC-T CCG-A-CC-T CCG-AGCC-T CCT-AGCC-T CTT-GCCC-T CTT-GGCC-T CTT-GCCC-T CTT-GACC-T CTT-GGTC-T CTT-GGCC-T CTT-GGCC-T CTT-GGCC-T CTT-GGCC-T CCT-AGCC-T CGTCGGTC-T CTT-GCCT-T CTT-GTCT-T CTT-GTCT-T CTT-GGTT-T CTT-GGTT-T GTTTGTTC-C CTT-GGCT-T GTTTGGTC-T TTT-GG-T-G GATTGGTC-C TTT-GGTC-T CTT-GGTC-T CTT-GGTC-T TCC-GGCT-T CCT-GGCC-T ATT-GGTC-T T-GCCTC--A CGTCGTCC-C A-GCCTC--A G-GCCTC--A T-GTCTC--C T-GCCTC--C T-GCACC--A T-GCACC--A T-GTCCC--A T-GTCCC--A T-GCCCC--A T-GCCC---A T-TCCCC--A T-GCCTC--A T-GCCAC--A T-GCCGC--A T-GCCAC--A C-GCCTC--A T-GCCTC--A T-GCCCC--A T-GCCCC--A CGGCCGC--A T-GCCGC--A T-GCCGC--A T-GCCGC--A T-GCCGC--A C-GCCGC--A T-GCACC--A T-GCACC--A T-GCACC--A T-GCCTC--A T-GTAGC--A T-TCACC--A T-TCACC--A T-GCACC--A T-TCCCC--A T-GCCAC--A T-GCTTCTCA T-GTACC--A T-GTACC--A T-GTACC--A T-GCACC--A T-GCTCT--C G-GTCTC--C T-GCCCC--A T-GCCTC--A T-GC-TC--A T-GCCTC--T-GGCCC--A T-GCCCC--A T-GCATC--A T-GC-TC--A T-GCCTC--A T-GACTC--A TCCCTTTGTTCCCCCTACCCCTTATCCGTCCGACCGACCGTCCGTCCGTTCG-CTCTACGTCCGTACG-CCC-CCCTCCGTCCGTCCGTCCGTCCGTCCGTCCGTCCGTCTGTCTGTCCGTCCCTCTCTCCGTCCGTCCGTTCGTTCGTCCCTCCTTCCTTCCTGCCTT GCCTT TCC-TCCGAACC-CTCCTCCTCTCTCCCTCT-TCACCTCATGCC- Sida.linifolia Sida.longipes Sida.odorata Sida.oligandra Sida.platycalyx Sida.xantii Sidalcea.cusickii Sidalcea.hirsuta Sidalcea.multifida Sidalcea.stipularis Sidasodes.colombiana Sidastrum.paniculatum Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.philippiana Sphaeralcea.wrightii Tarasa.albertii Tarasa.humilis Tarasa.machupicchensis Tarasa.mandonii Tarasa.operculata Tarasa.rhombifolia Tarasa.thyrsoidea Tarasa.trisecta Tetrasida.chachapoyensis Tetrasida.weberbaueri Thespesia.lampas Urocarpidium.albiflorum Wissadula.boliviana Wissadula.cruziana Wissadula.periplocifolia ACC-GAATCT ACG-CAATCT TTG-CAATCT GTG-CAATAT ATG-CAATCA ATG-CATTCC ATG-CATCAT ATG-CATCAT ATG-CATCAT ATG-CATCAT ACG-CATCAC GTC-CAATCT ATG-CATCTT ATG-CATCYT ATG-CATCCT ATG-CATCCT ATG-CATCTT ATG-CATCCT ATG-CATCCT ATG-CATCCT ATG-CATCCT ATG-CAACTT ATG-CATCTT ATG-CATCTT ATG-CATC-T ACG-CAATCT ACG-CAATCT GCG-CATCCC ATG-CATCAT ATG-CAATCT ACG-CAATCT ACG-CAATCT TG-CCCC--A TG-CCCC--A TG-CCCC--A TG-CCCC--TG-CCCC--T TG-CCCC--A TG-CTCT--A TG-CTCC--A TG-CTCT--A TG-CTCC--A TG-CCCC--A TG-CCCCC-T TG-CCCC--A TG-CCCC--A TG-CCCC--A TG-CCCC--A TG-CCCC--A TG-CCCC--G TG-CCCC--G TG-CCCC--A TG-CCCC--A TG-CCCC--G TG-CCCC--A TG-CCCC--G TG-CCCC--A TG-CACC--A TG-CCCC--A CG-CCTC-TC TG-CACC--A TG-CCCC--A TG-CCCC--A TG-CCCC--A ATACC-TCTC ATCTC-TCTC ATCCC-TCCC ------TCTC ACCCC-TCTC ACCCC-TCTC AACCC-CCTT AACCC-CCTT AACCC-CCTT ATCCC-CCTT AACCC-CCTC ACCCC-TCTC AACCC-CCTC AACCC-CCTC AACCC-CCTT AACCC-CCTC AACCC-CCTC AACCC-CCTC AACCC-CCTC AACCC-CCTC AACCC-CCTC AACCC-CCTC AACCC-CCTC AACCC-CCTC AACCC-CCTC ACCCC-TCTC ACCCC-TCTC GTCTC-CCTC AACCC-CCTT ACCCC-TCTC ACCCC-TCTC ACCCC-TCTC ---GATGCCT ---GCTGCCT ---GATGCCT ---GATGCTG ---GATGCCT ---GAAGCCT A--GATGCCT A--GATGCCT A--GATGCCT A--GATGCCC ---GATGCCT ---GATGCCT ---GTTGCCT ---GGTGCCT ---GGTGCCT ---GGTGCCT ---GGTGCCT ---GATGCCT ---GATGCCT ---GATGCCT ---GATGCCT ---GGTGCCT ---GGTGCCT ---GGTGCCT ---GGTGCCT ---GTAGCCT ---GATGCCT ---AGCGTCT ---GATGTCT ---GAAGCCT ---GAAGCCT ---GTAGCCT TGG---TGCG TGG---TGTG TGG---TGTG AGG---AGTG TGC---TGTG TGC---TGTG TGG---TGTG TGG---TGTG TGG---TGTG TGG---TGTG TGG---TGTG TGG---TGTG TGG---TGTG TGG---TGTG TGG---TGTG TGG---TGTG TGG---TGTG TGG---TGTG TGG---TGTG TGG---TGTG TGG---TGTG TGG---TGTG TGG---CGTG TGG---TGTG TGG---TGTG TGG---AGTG TGG---TTTG CGG---AGCG TAG---TTTG ACA---AGTG ACA---AGTG TGG---AGTG GTT-GGTC-T GTT-GGTC-T CTT-GGTC-T CTT-GATC-T CTT-GGTC-T CTT-GGTC-T CTT-GCCC-T CTT-GCCC-T CTT-GCCC-T CTT-GCCC-T -TA-AGCT-T CTT-GGTC-T CTT-GCCC-T CTT-GCCT-T CTT-GCCT-T CTT-GCCT-T CTT-GCCT-T CTT-GCCT-T CTT-GCCT-T CTT-GCCT-T CTT-GCCT-T CTT-GCCT-T CTT-GTCT-T CTT-GTCT-T CTT-GTCT-T TTT-GGTC-C CTG-GGGT-C ATC-GGTC-C CTT-GGCT-T TTT-TGTT-C TTT-TGTT-C TTT-GGTC-C TT-CCTC--A T-GCCTC--A T-GCCTC--G T-GCGCC--C G-GCCTC--A T-GCCTC--A T-ACACC--A T-ACACC--A T-ACACC--A T-GCCCCC-A T-GCCTC--A T-GCCGC--A T-GCCCC--A T-GCCCC--A T-GCCCC--A T-GCCCC--A T-GCCCC--A T-GCCCC--A T-GCCCC--A T-ACCCC--A T-ACCCC--A T-GCCYC--A T-GCCCC--A T-GCCYC--A T-GCCCC--A T-GTATC--A TTGCCTC--A CGTCG----C-GC-----A T-GCATC--A T-GCATC--A T-GTATC--A TCTCTCTCTCTCCTCCC TCTCTCTCTGCGTGCGTGCGTGCGTCCATCTCTCCATCCATCCATCCATCCATCCGTCCGTCCGTCCGTCCTTCCTTCCTTCCTACCCTCAT----TGC-ACCCACCCACCC- Abutilon.andrewsianum Abutilon.pubistamineum Abutilon.sp. Acaulimalva.alismatifolia Acaulimalva.dryadifolia Alcea.rosea Alcea.rugosa Allosidastrum.pyramidatum Allowissadula.holosericea Anisodontea.capensis Anoda.crenatiflora Bakeridesia.gloriosa Bastardia.bivalvis Bastardiastrum.cinctum Bastardiopsis.densiflora Batesimalva.violacea Billieturnera.helleri Briquetia.sonorae Callirhoe.digitata Callirhoe.involucrata 160 170 ACCTC----- GTGA-GGGTG CCCTC----- GTGA-TGGTG ACCTT----- GTGA-GGGTG TCCTT----- GTGC-GGGTG TCCTT----- GTGC-GGGTG TTCTT----- GGGC-GGGTG TTCTT----- GGGC-GGGTG CCCTT----- GAGA-TGATG CCCCT----- GGGA-GGGTG CTCTT----- GGGC-GGGTG CCACTC---- GTGG-GGGCG CCTC------ GTGA-GGGTG C-TGT----- G-----GATG TCCCTC---- GCGA-GGGCG CC-TC----- GTGT-GGATG ACCTT----- AGGT-TTGTG CTCCT----- --GA-GGGTG CGGTC----- GGGA-AGGTG CTTTT----- GGGC-GGGTG CTTTT----- GGGC-GGGTG 180 AGTTG-CAAA--TG-CAAAGTTG-CAAAGATA-CCAAGATA-CCAAGATT-ACAAGATT-ACAAGATG-CCACGCTG-CCAAGATG-ATAAGATG--CAAGATG-CCAAGTTG-CAAAGATG-CCAAGTTG-CAAAGAGGCCGAAGATG-CCAAGATG-CTAATAGG-TCTATAGG-TCT- 190 GTCCCA-TCC GCTCCA-TCC TTCCCA-TCC GGTCTT-GTC GGTCTT-GTC GGTCTT-GTT GGTCTT-GTT GTTCTA-GCC GTTCCA-GCA GGTCTT-GTC GTTCCA-TCC GTTCCA-ACC GTTCCA-TCC GTTCCA-TCC GTTCCA-TCC GT-CCC-GTC GTTCCA-TCC CTTCCA-ACC GGCCTT-GTC GGCCTT-GTC 200 AC--TCCAAAC--TACAAAC--TCCAAACACTCCAAACACTCCAAGCACTC--AGCACTC--AAC--TCTGAAC--ACCGAACACTCCAAGC--TACAGAC--TCCAAAC--CCCAAAC--TCCA-AC--TCCAAAC--TCCAAAG--TCCAAGC--TCCAAG-A-TCTAGG-A-TCTAG- 210 -GG-CAAAA-GG-CAAAA-GG-CAAAA-GG-CAAAAA -GG-CAAAAA -GG-TAAAA-GG-TAAAA-GG-CAAAAC -GG-CAAAAC -GG-CAAAA-GG-CAAAAA -GG-CAAAA-GG-CAAAAGGG-CAAAA-GG-CAAAA-GG-CAAAA-GG-CAAAA-GG-CAAAA-GG-CAAAA-GG-CAAAA- 220 CCAA-CAA-C TCAA-CAA-C CCAA-CAA-C CGAA-CAA-C CGAA-CAA-C TGAA-CAA-C TGAA-CAA-C CGAA-CAA-C CGAA-CAA-C CGAA-CAA-C CAAA-CAAAC CCAA-CAAAC CTAA-CAA-C CCAA-CAAAC CCAA-CAA-C CCAA-CAA-C CCAA-CAA-C CCAA-CAA-C CGAA-CAA-C TAAA-CAA-C 225 CCCCCCC-CCCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC-CCC-CCCCCCC-CCCCCCCCCCCCCCCCCCCCCCCC- 109 Calyculogygas.uruguayensis Corynabutilon.vitifolium Cristaria.andicola Dendrosida.breedlovei Dendrosida.wingfieldi Dirhamphis sp. Eremalche.exilis Eremalche.parryi Fryxellia.pygmaea Fuertesimalva.jacens Fuertesimalva.limensis Gaya.atiquipana Gaya.calyptrata Gossypium.hirsutum Hochreutinera.amplexifolia Hoheria sp. Horsfordia.exsita Howittia.trilocularis Iliamna.bakeri2 Iliamna.latibrac.2B Iliamna.remota Iliamna.rivularis Kearnemalvastrum.lacteum Kearnemalvastrum.sp Kitaibela.vitifolia Krapovickasia.physaloides Lavatera.arborea Lavatera.occidentalis Lavatera.trimestris Lecanophora.chubutensis Lecanophora.heterophylla Malacothamnus.chilensis Malacothamnus.fasciculatus Malope sp. Malva.assurgentea Malva.dendromorpha Malva.linnei Malva.nicaensis Malva.wigandii Malvastrum.amblyphyllum Malvastrum.americanum Malvastrum.coromandelianum Malvella.sagittifolia Meximalva.filipes Modiola.caroliniana Modiolastrum.lateritium Monteiroa.glomerata Napaea.dioica Navaea.phoenicea Neobrittonia.acerifolia Nototriche.anthemidifolia Nototriche.flabellata Nototriche.pedicularifolia Palaua.camanensis CTCTT----CCCTC----CCCTT----GC-TC--GAG CC-TC--GAG CCGTC----TTCTTT---TTCTTT---CCCTCC---------------------CCGTC----CCGTC----CCCGTC---CGGTC----CCCTC----CCTGT----CCCTCT-GTG CTCTTT---CTCTTT---CTATTT---CTATTTT--CCCTT----CCCTT----CTGTT----CCCTC----CCCTC----TCCTC----CCCTC----CCCTC----CCCAT----CTCTC----CTCTT----CCCTC----TCCTC----TCCTC----TCCTC----TCCTC----CCCTC----CTCTTT---ACCTTT---CTCTTT---TCCTA----CCCT-----CTCTT----CTCTT----CTCTT----CTCTT----CCCTT----ACCTTT---CTCTC----CTCTC----CTCTC----CTCTT----- GGGC-GGGTG TGGA-GGGTG GGGA-CGGTG AGGG--TGTG AGGG--TGTG GGGA-AGGTG GGGC-GGGTG GGGC-GGGTG GGGG-GGGTG -------------------TGGGGGGTG -TG--GGGTG GGGTGGGGTG GGGA-AGGTG GGGC-GGGTG -TGA-GGGTG GGGT-GGGTG GGGC-GGGTT GTGC-GGGTG GGGC-GGATG GGGC-GGATG GGGC-GGGTG GGGC-GGGTG GGGC-GGGTG GGGT-GCGTG GGGC-GGGTG GGGC-GGGTG GGGC-GGGTG GGGA-CGGTG GGGA-CGGTG TGGC-GGTTG GGGC-GGGTG TTGC-GGGTG GGGC-GGGTG GGGC-GGGTG GGGC-GGGTG GGGC-GGGTG GGGC-GGGTG GGGC-GGGTG GGGC-GGGTG GGGT-GGGTG GAGA-GGATG -GGA-TTTTG GGGT-GGGTG GGGC-GGGTG GGGC-GGGTG GGGC-GGGTG GGGC-AGGTG AGGA-GGGCG GAGC-GGTTG GAGC-GGTTG GAGC-GGTTG GGGA-GGGTG AGATG-CCAAGATG-CCA-GTGG-CCATGAT--CA-TGATA-CAAAGATG-CTAAGATG-CCCAGATG-CACAGGTA-GAA------------------AGACC-CAAAGACC-CAAAGATG-CC-G AGATG-CTAAGATG-CC-AGATG-CCAGG-TG-CCGAGATG-CCTAGATG-CCTAGATG-CCTAGATG-CCTAGATA-CCAAGATA-CCAAGATG-ACAAGATG-CC-TGACG----G TCCCG----CGACG----AGACG-CC-G AGACG-CC-G AGATG-CCAAGATG-CCAAGTTG----TCCCG----TCCTG----TCCCG----TCCCG----TGACG----AGATG-CCAAGATG-CCAAGTTG-CCAATGTG--ATAGATG-CAATGATG-GCATGATG-CCATGATG-CGAAGATG-ACATGATA----AGAGG-CGGAGATG-CAAAGATG-CAAAGATG-CAAAGATG-CAAA 110 GGTCTT-GTC GGTCCG-GTC GGTCTT-GTC GTTCCA-ACC GTTCCA-ACC CTTCCA-ACC GGTCAT-GTC GGYCAT-GTC GTTCCA-ACC ----TT-GTC ----TT-GTC GCTCCA-TCC GCTCCA-TCC GGATCA-ACC CTTCCA-ACC GGTCT-TGCC GTKTCA-TCC AGCCTC-GCT GGTCTT-GTC GGTCTT-GTC GGTTTA-TAC GGTCTT-TAC GGTCTT-GTC GGTCTT-GTC GGTCTT-GTC GGTTCA-ATC GGTTTC-GGC GGTTTC-GTC GGTCTC-GTC GGCCTT-GTC GGCCTT-GTC GGTCTT-GTC GGTCTT-GTC GGTTTT-GTC GGTTTC-GTC GGTTTC-GTC GGTTTC-GTC GGTTTC-GTC GGCTTC-GTC GGTCTC-GTC GGTCTC-GTC GGTCTC-GTC GGCCTC-GTC GTT-GA-TCC GGTCTA-GTC GGTCTT-GTC GTTCTT-GTC GGTCTT-GTC GGTTTT-GTC GGTCCC-GTC G--CTT-GTC G--CTT-GTC G-TCTT-GTC GGTCTT-GTC AC--TCCAAAC--TCTGAAC--TCCGAAC--TC-GAAC--TCTGAGC--TCCAAA ACAC-CCAAACAC-CCAAGC--TCCAAA ACACTCCAAACACTCCAAGC--TGAGATC--TGAGATC--TTCGAGC--TCCAAA AC--ACCAAAC--TCCAATC--TCCAAACACTCCTAACACTCCAAACACTCCAATCACTCCAAACACTCCAAACACTCCAAACACTCTTAAC--TCCGTACGCTCCAAGCGCTCCGAGCGCTCCAAAC--TCCGAAC--TCCGAACACTTCAAACACTCCAGACACT-ATAGCGCTCCGAGCGCCCCGAGCGCTCCGAGTGCTCCGAACGCTCCGAACAATCCAAAAACTCCAAACATTCCAAAC--TTCA-AC--TC-AAAC--TCCGAAC--TCCGAATACTCCAAACACTC-A-ACACTCCAAGT--TCCAA---CCCTGA---CCCTGA---CACTGAACATTCCAA- -GG-CAAAA-GG-CAAAA-GG-CAAAA-GA-CAAAA-GA-CAAAA--G-CAAAA-GG-CAAAA-GG-CAAAAAGG-CAAAA-GG-CAAA--GG-CAAA--GG-CAAAA-GG-CAAAA-GG-CAAAG--G-CAAAA-GG-CAAAA-GG-CAAAA-GG-CAGAAA -GG-CAAAA-GG-CAAAA-GG-CAAAA-GG-CAAAA-GG-CAAAA-GG-CAAAA-GG-CAAAA-GG-CAAAA-GG-CAAAA-GG-CAAAA-GG-CAAAA-GG-CAAAA-GG-CACAA-GG-CAAAA-GG-CAAAA-GG-TCAAA-GG-CAAAA-GG-CAAAA-GG-CAAAA-GG-CAAAA-GG-CAAAA-GG-CAAAA-GG-CAAAA-GG-CAAAAGGG-CAAAA-GG-CAAAA-GG-CAAAA-GG-CAAAA-GG-CTAAA-GG-CAAAA-GG-CAAAA-GG-CAGAA-GG-CAAAA-GG-CAAAA-GG-CAAAA-GG-CAAAA- CGAA-CAA-C CGAA-CAA-C CGAA-CAA-C CCAA-CAA-C CCAA-CAA-C CCAA-CAA-C CGAA-CAA-C CGAA-CAA-C CCAA-CAA-C CGAA-CAA-C TGAA-CAA-C CCAA-CAA-C CCAA-CAA-C CGAA-CAAAC CCAA-CAA-C CGAA-CAA-C CCAA-CAAAC CCAA-CAA-C CGAA-CAA-C CGGA-CAA-C CCAA-CAA-C CCAA-CAA-C CGAA-CAA-C CGAA-CAA-C TGAA-CAA-C CAAA-CAAAC CGAA-CAA-C CGAA-CAA-C CGAA-CAA-C CGAA-CAA-C CGAA-CAA-C CAAA-CAA-C CCAA-CAA-C CGAA-CAA-C CGAA-CAA-C CGAA-CAA-C CGAA-CAA-C CGAA-CAA-C CGAA-CAA-C TGAA-CAAAC CGAA-CAAAC CAAA-CAAAC CGAA-CAA-C CCAA-CAA-C CGAA-CAA-C CGAA-CAA-C CGAA-CAA-C TGAA-CAA-C CGAA-CAA-C CCAA-CAA-C TGAA-CAA-C TGAA-CAA-C TGAA-CAA-C CGAA-CAA-C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC-CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC-CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC- Palaua.rhombifolia Periptera.punicea Phymosia.umbellata Pseudabutilon.umbellatum Rhynchosida.physocalyx Robinsonella sp. Sida.abutifolia Sida.aggregata Sida.fibulifera Sida.hermaphrodita Sida.hookeriana Sida.jussieana Sida.linifolia Sida.longipes Sida.odorata Sida.oligandra Sida.platycalyx Sida.xantii Sidalcea.cusickii Sidalcea.hirsuta Sidalcea.multifida Sidalcea.stipularis Sidasodes.colombiana Sidastrum.paniculatum Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.philippiana Sphaeralcea.wrightii Tarasa.albertii Tarasa.humilis Tarasa.machupicchensis Tarasa.mandonii Tarasa.operculata Tarasa.rhombifolia Tarasa.thyrsoidea Tarasa.trisecta Tetrasida.chachapoyensis Tetrasida.weberbaueri Thespesia.lampas Urocarpidium.albiflorum Wissadula.boliviana Wissadula.cruziana Wissadula.periplocifolia CTCTT----CTCTCTT--CTCTT----CACTC----CCCTC----CCCTC----CC-TCCCTAG CC-TC--GAG CCCAC----CTC------CCCTCA---CC-TC----CC-TC--GAG CC-TT--GAG CC-TC--TAG CCATC----CCCT-----CC-TT--GAC CTCTTTT--GTCTTTT--CTCTTTT--CTCTTT---CCCTT----CCCTA----CTCTC----CTCTC----CTCTTTTT-CTCTTTTT-CTCTC----YTCTC----CTCTT----CTCTC----CTCTC----CTCTC----CTCTC----CTCTC----CTCTT----CC-TC----CCCCT----------------------CC-TC----YC-TY----CC-TC----- GGGA-GGGTG GAGC---GTG GGGC-AGGTG ATGA-GGGTG GGGT-GCGTG TATA-GGGTG AGAGGGTGTG AGAGGGTGTA AGGA-CGGTG GGGC-GGGTG GGGC-AGGGG -GGG-GTGTG AGGG--TGTG AGGG----TG AGGG--TGTG CGGA--GGTG AGGA-CGGTG AGGG--CGTG GGGC-GGGTG GGGC-GTGTG GGGC-GGGTG GGGC-GGGTG GGGT---GTG -GGA-TTTTG GGGC-GGTTG GGGC-GGTTG GGGC-GGTTG GGGC-GGTTG GAGC-GGTTG GCGC-GGTTG GGGC-GGTTG GGGC-GGTTG GGGC-GGTTG GAGC-GGTTG GAGC-GGTTG GAGC-GGTTG GAGC-GGTTG GTGA-GGGTC GGGA-GGGTG ------------------GTGA-GGATC GTGA-GGATC GTGA-GGGTC TGATG-CAAA AGATG-CCAAGATG-CCAAGATG-CCAAGATG-CC-AGATG-CTATGATA-CAATGATA-CAAAAATG-CCAAGATG-CCAAGATG-CCAAGATG-CATTGATA-AAATGATA-CAAG TGATA-CAAAGATG-CC-G AAATG-CCATGATA-CAAAGATG-CTTAGATG-CTTAGATG-CTTAGATG-CATAGATG-CCAAGATG-CCAAGTTG-CAAAGATG-CAAARATG-CAAAGATG-CAAAGTTG-CAAAGATG-CAAAGATG-CAAAGATG-CCAAGATG-CCAAGATG-CAAGGATG-CAAAGATG-CAAAGATG-CAAAGATG-TCAAGATG-CCA-------------G--AAAGATG-TCAAGATG-TCAAGATT-TCA- AGTCTT-GTC GTTCCA-TCC GGTCAT-GTC GTTCCA-TCC GGTTCA-ATC GTTCCA-GCC GTTCCA-ACC CTTCCA-AAC GTTCAA-TCC GGTCTT-GCC GGTCTT-GCC GTTCCA-TTC GTTCCA-ACC G-TCCA-ACC GTTCCA-ACC GTTCCC-GCC GTTCAA-TCC GTTCCA-AAC GGTCTT-GTC GGTCTT-GTC GGTCTT-GTC GGTCTT-GTC GGTCTT-GGT GTTCGA-TCC GGTCTT-GTC GGTCTT-GTC GGTCTT-GTC GGTCTT-GTC TGTCTC-GTC GGTCTT-GTC GGTCTT-GTC GGTCTT-GTC GGTCTT-GTC GGTCTT-GTC CGTCTT-GTC GGTCTT-GTC GGCCTT-GTC GCTCGA-TCC GTTCCA-GCA GGTCCG-ACC -GTCTT-GTC GTTCCA-TCC GTTCCA-TCC GTTCAA-TCC ACATTCCAGAC--TTCAAACACTCCAAGC--TCCAAAC--TCCGTAC--TTCAAAC--CCCAAAC--CCCAAAC--TCCAAAC--TCCAAAC--TCCAACC--TTCCGA AC--ACCAAAC--TCCAAAC--CCCAAAC--TCCGAAC--TCCAAAC--CCCAAACACTYTAAACACTCTAAACACTCTAAACACTCCA-GT--GT-ATAC--TCCAAACACTCCAAACACTCCAAACACTCCAAACACTCCAAACACTCCAAACATTCTAAACACTATAAACACTTCAAACACTTCAAACATTCCAA----TCCAAACATTCCAA----TCCAAAC--TCGAAAC--ACCGATC--TCCGGAC--TCCAAAC--TCTTAAC--TCTTAAC--TTGAA- -GG-CAAAA-GG-CAAAA-GG-CAAAA-GG-CAAAA-GG-CAAAA-GG-CAAAA-GA-CAAAA-GA-CAAAA-GG-CAAAA-GG-CAAAA-GG-CAAAA-GG-C-AAA-GA-CAAAA-GA-CAAAA-GA-CAAAA-GGTCAAAA-GG-CAAAA-GA-CAAAA-GG-CAAAA-GG-CAAAA-GG-CAAAA-GG-CACAA-GG-CAAAA-GG-CAAAA-GG-CAAAA-GG-CAAAA-GG-CAAAA-GG-CAAAA-GG-CAAAA-GG-CAAAA-GG-CAAAA-GG-CAAAA-GG-CAAAA-GG-CAAAA-GG-CAAAA-GG-CAAAA-GG-CAAAA-GG-CAAAA-GG-CAAAAC -GG-CGAAA-GG-CAAAAA -GG-CAAAA-GG-CAAAA-GG-CAAGA- CGAA-CAA-C CTAA-CAAAC CAAA-CAA-C CCAA-CAA-C CAAA-CAAAC CCAA-CAA-C CCAA-CAA-C CCAA-CAA-C CCAA-CAAAC CGAA-CAA-C CGAA-CAA-C CCAAACAA-C CCAA-CAA-C CCAA-CAA-C CCAA-CAA-C CAAA-CAA-C CCAA-CAA-C CCAA-CAA-C TAAA-CAA-C TAAA-CAA-C TAAA-CAA-C TGAA-CAA-C CGAA-CAA-C CCAA-CAA-C CGAA-CAA-C CGAA-CAA-C CGAA-CAA-C CGAA-CAA-C CGAA-CAA-C CGAA-CAA-C CAAA-CAA-C CGAA-CAA-C CGAA-CAA-C TGAA-CAA-C TGAA-CAA-C TGAA-CAA-C TCAA-CAA-C CCAA-CAAAC CGAA-CAA-C CGGA-CAAAC CGAA-CAA-C CCAA-CAAAC CCAA-CAAAC CCAA-CAAAC CCCCCCC-CCCCCCCCCCC-CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC-CCCCCCCCCCCCCCC-CCC-CCC-- Abutilon.andrewsianum Abutilon.pubistamineum Abutilon.sp. Acaulimalva.alismatifolia Acaulimalva.dryadifolia Alcea.rosea Alcea.rugosa Allosidastrum.pyramidatum 235 245 GGC-GCGAAT TGCGCCAAGG GGC-GCGAAT TGCGTCAAGG GGC-GCGAAT TGCGCCAAGG GGC-GCGAAT CGCGCCAAGG GGC-GCGAAT CGCGCCAAGG GGC-GCGAAT TGCGTCAAGG GGC-GCGAAT TGCGTCAAGG GGC-GTGAAT TGCGCCAAGG 255 AATT---TAA AATT---TAA AAAT---TAA AAT--AAAAA AAT--AAAAA AATT--AAAA AATT--AAAA AATT--AAAA 265 ATG-AAAAGA ATG-AAAAGA ATG-AAAAGA ATG-AAAAGA ATG-AAAAGA ATG-AAAAGA ATG-AAAAGA TTG--AAAGA 275 GT-GC-ACGT GT-GC-ACGT GT-GC-AACG GT-GC-ACGT GT-GC-ACGT GT-GC-ACGT GT-GC-ACGT GG-GC-ACGA 285 -TACT-GTCG -TACT-GTCG TTACT-GTCT CTGCT-GTTG CTGCT-GTTG CTACT-GTCA CTACT-GTCA -TACT-GCTG 295 CCGACCC-GT CCGACCC-GT CCGACCC-GT CCGTCCC-GT CCGTCCC-GT TCGTCCC-GT TCGTCCC-GT CCTACCC-GT 300 T-TGC T-CGC T-CGC G-CGC A-CGC A-TGC A-TGC T-TGC 111 Allowissadula.holosericea Anisodontea.capensis Anoda.crenatiflora Bakeridesia.gloriosa Bastardia.bivalvis Bastardiastrum.cinctum Bastardiopsis.densiflora Batesimalva.violacea Billieturnera.helleri Briquetia.sonorae Callirhoe.digitata Callirhoe.involucrata Calyculogygas.uruguayensis Corynabutilon.vitifolium Cristaria.andicola Dendrosida.breedlovei Dendrosida.wingfieldi Dirhamphis sp. Eremalche.exilis Eremalche.parryi Fryxellia.pygmaea Fuertesimalva.jacens Fuertesimalva.limensis Gaya.atiquipana Gaya.calyptrata Gossypium.hirsutum Hochreutinera.amplexifolia Hoheria sp. Horsfordia.exsita Howittia.trilocularis Iliamna.bakeri2 Iliamna.latibrac.2B Iliamna.remota Iliamna.rivularis Kearnemalvastrum.lacteum Kearnemalvastrum.sp Kitaibela.vitifolia Krapovickasia.physaloides Lavatera.arborea Lavatera.occidentalis Lavatera.trimestris Lecanophora.chubutensis Lecanophora.heterophylla Malacothamnus.chilensis Malacothamnus.fasciculatus Malope sp. Malva.assurgentea Malva.dendromorpha Malva.linnei Malva.nicaensis Malva.wigandii Malvastrum.amblyphyllum Malvastrum.americanum Malvastrum.coromandelianum GGC-GCGAAT GGC-GCGAAT GGC-GCGAAT GGC-GCGAAT GGC-GCGAAT GGC-GCGAAT GGC-GCGAAT GGC-GCGAAT GGC-GCGAAT GGC-GCGAAT GGC-GTGAAT GGC-GTGAAT GGC-GCGAAT GGCGGCGAAT GGC-GCGAAT GGC-GCGAAT GGC-GCGAAT GGC-GCGAAT GGC-GTGAAT GGC-GTGAAT GGC-GCGAAT GGC-GCGAAT GGC-GCGAAT GGC-GCGAAT GGC-GTGAAT GGC-GCGAAT GGC-GCGAAT GGC-GTGAAT GGC-GCGAAT GGC-GCGAAT GGC-GCGAAT GGC-GCGAAT GGC-GTGAAT GGC-GTGAAT GGC-GCGAAT GGC-GCGAAT GGC-GCGAAT GGC-GCGAAT GGC-GCGAAT GGC-GCGAAT GGC-GCGAAT GGC-GCGAAT GGC-GCGAAT GGC-GCGAAT GGC-GTGAAT GGC-GCGAAT GGC-GCGAAT GGC-GCGAAT GGC-GCGAAT GGC-GCGAAT GGC-GCGAAC GGC-GCGAAT GGC-GCGAAT GGC-GTGAAT CGCGCCAAGG TGCGCCAAGG CGTGCCAAGG TGCGCCAAGG TGCGCCAAGG TGCGCCAAGG CGCGCCAAGG CGCGCCAAGG TGCGCCAAGG TGCGCCAAGG TACGCCAAGG TACGCCAAGG TGCGCCAAGG TGCGCCAAGG TGCGCCAAGG TGCGCCAAGG TGCGCCAAGG TGCGCCAAGG TGCGCCAAGG TGCGCCAAGG TGCGCCAAGG TGCGCCAAGG TGCGCCAAGG TGCGCCAAGG TGCGCCAAGG CGCGCCAAGG TGCGCCAAGG CGCGCCAAGG TGCGCCAAGG CGCGCCAAGG TGCGCCAAGG TGCGCCAAGG TGCGCCAAGG TGCGCCAAGG TGCGCCAAGG TGCGCCAAGG TGCGTCAAGG TGCGCCAAGG CGCGTCAAGG CGCGTCAAGG CGCGTCAAGG TGCGCCAAGG CGCGCCAAGG TGCGCCAAGG TGCGCCAAGG AGCGTCAAGG CGCGTCAAGG CGCGTCAAGG CGCGTCAAGG CGCGTCAAGG CGCGTCAAGG TGCGCCAAGG TGCGCCAAGG TGCGCCAAGG AATT---AAA AAT--AAAAA AAAT--TGAA AAAT---TTA AATT---GAA AATT---TAA AATT---TAA AAAT--AAAA AATT---AAA AATC---AAA AATT-ATAAA AATT-ATAAA AATAAAAAAA AAT---AAAA AAT--AAAAA AATT---ATA AATT----TA AATT---AAA AAT-ATAAAA AAT-ATAAAA AATT---AAA AAT--AAAAA AAT--AAAAA AATT---AAA AATT---AAA AATC---GAA AATT---GAA AAC--AAGAA AACT---TAA AACT---ATA AAT-AAAAAA AAT-AAAAAA AATAAAAAAA AATAAAAAAA AAT--AAAAA AAT--AAAAA AATT-AAAAA AATT---GAA AAT--AAAAT AAT--AAGAA AAT--AAAAA AAT--AATAA AAT--AAAAA AATT-GAAAA AATTACAAAA AAT---AAAA AAT--AAAAA AAT--AAAAA AAT--AAAAA AAT--AAAAA AAT--AAAAA AATAAAAAAA AAT-AAAAAA AAT--AAAAA 112 ATG-AAAAGA ATG-AAAAGA TTG--AAAGA ATG-AAAAGA ATA-AAAAGA ATG-AAAAGA ATG-AAAAGA ATG-AAAAGA ACT-AAAAGA ATG-AAAAGA ATG-AAAAGA ATG-AAAAGA ATG-AAAAGA ATG-AAAAGA TTG-AAAAAA ATG-AAAGGA ATG-AAAGGA ATG-AAAAGA ATG-AAAAGA ATG-AAAAGA ATG-AATAGA ATG-AAAAGA ATG-AAAAGA ATA-AAAAGA ATA-AAAAGA ACG-AAAGAA ATG-AAAAGA ATG-AAAGAA ATG-AAAAGA ATG-AAAAGG ATG-AAAAGA ATTGAAAAGA ATG-AAAAGA ATG-AAAAGA ATG-AAAAGA CTG-AAAAGA -TG-AAAAGA ATG-AAAAGA ATG--AAAGA ATG-AAAAGA ATG--AAAGA TTG-AAAGAG TTG-AAAAAG ATG-AAAAGA ATG-AAAAGA ATG--AAAGA ATG-AAAAGA ATG-AAAAGA ATT-AAAAGA ATG-AAAAGA ATG-AAAAGA AATGAAAAGA ATG-AAAAGA ATG-AAAAGA GT-GC-ACGT GT-GC-ACGT GG-GC-ACGT GG-GC-ACGT GT-GC-ACGT GG-GC-ACGY GT-GC-ACGT GG-GC-ACGT GG-GC-ACGG GG-GC-ACGT GT-GC-ACGT GT-GC-ACGT GT-GC-ACGT GG-GC-ACGT GG-GC-ACGT GG-GC-ACGT GG-GC-ACGT GG-GC-ACGT GT-GC-ACGT GT-GC-ACGT GG-GC-ACGT GT-GC-ACGT GT-GC-ACGT GG-GC-ACGT GG-GC-ACAG GGGGC-ACGT GG-GC-ACGT GG-GC-ACGT GG-GC-ACGT GC-GC-ACCT GT-GC-ACGT GT-GT-ATGT GT-GC-ATGT GT-GC-ACGT GT-TC-ACGT GT-TC-ACGT GT-GC-ACGT GG-GC-GTGT GT-GC-ATGT GT-GC-GTGT GT-GC-ATGT GG-GC-ACGT GG-GC-ACGT GT-GC-ACGT GT-GC-ACGT GT-GC-ACGT GT-GC-GTGT GC-GC-GTGT GT-GC-GTGT GT-GC-GTGT GT-GC-GTGT GT-GC-ACGT GT-TC-ACGT GT-GC-AAGT -TACT-GTCG CTTCT-GTCA -CACT-GTCG -TACT-GTCG -CACT-GTCG --ACT-GTCG -CACT-GTCC C-ACT-GATG -CACT-CTTG -TACT-GTTG CTATT-ATCA CTATT-ATCA CTGCT-GTCG -TGCT-GTCG ATGCT-GTTG -TACT-GTCG -TACT-GTCG -TACT-GTTG CTGCT-GTCG CTGCT-GTCG -TATT-GCCG CTGCT-GCCG CTGCT-GCCG -CACT-GATG CCACT-GATG CTTCT-GTCG -TACT-GTTG TCGCT-GTCG -CACT-GTCG CTGCT-GTCG CTACT-GTCG CTATT-GTCG CTACT-GTTG CTACT-GTTG CTGCT-GTCG CTGTT-GTCG CTACT-GTCG -TACT-GGCG TTCGTTGTTTTCGTTGTCTTCGTTGTCG TTGCT-GTCG TTGTT-GTCG TTGCT-GTCG CTGCT-GTTG TTGCC-GTCC TTCGTTGTCTTCGTTGTCG TTCGTTGTCTTCGTATCATTCGTTGTCG TTGCT-GTCG CTGCT-GCCA CTGCT-GCTG CCTACCC-GT CCGTCCC-GT CCGTCCC-GT CCGACCC-GT TCAACCC-GT TCGACCC-GT TCAACCC-GT CCAACCC-GT CCA-CCC-GT TCAACCC-GT CC-TACC-GT CCGTACC-GT CCATCCC-GT TCGACCC-GT ACGACCC-GT CCATCCC-GT CCATCCC-GT TCAACCC-GT CCGTCCC-GT CCGTCCC-GT CCGACCC-GT TCGTCCC-GT TCSTCCC-GT CCAACCC-GT CCAACCC-GT CCGCACC-GT TCAACCC-GT CCGTCCC-GT CCAACCC-GT TCGCACT-GT CCGTCCC-GT CCGTCCC-GT CCGTCCC-GT CCGTCCC-GT CCGTCCC-GT CCGTCCC-GT TCGTCC--GT CCAGCCC-GT ---TCCC----------GT CAC------ACGACCC-GT ACGACCC-GT ACGTCCC-GT CCGTCCC-GT ACGTCCC-GT --------GT TCG--------------GT --------GT TCC------CCGTCCC-GT CCGTCCC-GT CCGTCCC-GT C-CGC A-CGC T-CGC T-CGC T-CGC T-CGC C-CGC C-CGC T-CGC T-CGC A-TGC A-TGT A-CGC C-CGC C-CGC C-TGC C-TGC T-CGC A-CGC A-CGC C-CGC T-CGC T-CGC A-CGT C-CGC T-CGC T-TGC A-CGC T-CGC T-CGC A-CGC A-CGC A-CGC A-CGC A-CGC A-CGC A-CGC C-CTG ----A-T-----C-CGC C-CGC A-CGC A-CGC G-CGC A-T-----A-T-A-T-----C-CGC G-TGC T-CGC Malvella.sagittifolia Meximalva.filipes Modiola.caroliniana Modiolastrum.lateritium Monteiroa.glomerata Napaea.dioica Navaea.phoenicea Neobrittonia.acerifolia Nototriche.anthemidifolia Nototriche.flabellata Nototriche.pedicularifolia Palaua.camanensis Palaua.rhombifolia Periptera.punicea Phymosia.umbellata Pseudabutilon.umbellatum Rhynchosida.physocalyx Robinsonella sp. Sida.abutifolia Sida.aggregata Sida.fibulifera Sida.hermaphrodita Sida.hookeriana Sida.jussieana Sida.linifolia Sida.longipes Sida.odorata Sida.oligandra Sida.platycalyx Sida.xantii Sidalcea.cusickii Sidalcea.hirsuta Sidalcea.multifida Sidalcea.stipularis Sidasodes.colombiana Sidastrum.paniculatum Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.philippiana Sphaeralcea.wrightii Tarasa.albertii Tarasa.humilis Tarasa.machupicchensis Tarasa.mandonii Tarasa.operculata Tarasa.rhombifolia Tarasa.thyrsoidea Tarasa.trisecta Tetrasida.chachapoyensis Tetrasida.weberbaueri Thespesia.lampas Urocarpidium.albiflorum Wissadula.boliviana GGC-GCGAAT GGC-GCGAAT GGC-GCGAAT GGC-GCGAAT GGC-GTGAAT GGC-GCGAAT GGC-GCGAAT GGC-GTGAAT GGC-GTGAAT GGC-GTGAAT GGC-GTGAAT GGC-GTGAAT GGC-GCGAAT GGC-GCGAAT GGC-GTGAAT GGC-GCGAAT GGC-GCGAAT GGC-GTGAAT GGC-GCGAAT GGC-GCGAAT GGC-GCGAAT GGC-GTGAAT GGC-GTGAAT GGC-GTGAAT GGC-GTGAAT GGC-GCGAAT GGC-GTGAAT GGC-GTTAAT GGC-GCGAAT GGC-GCGAAT GGC-GTGAAT GGC-GTGAAT GGC-GTGAAT GGC-GTGAAA GGC-GTGAAT GGC-GCGAAT GGC-GTGAAT GGC-GTGAAT GGC-GTGAAT GGC-GTGAAT GGC-GTGAAT GGC-GTGAAT GGC-GTGAAT GGC-GCGAAT GGC-GCGAAT GGC-GTGAAT GGC-GTGAAT GGC-GTGAAT GGC-GTGAAT GGC-GTGAAT GGC-GCGAAT GGC-GCGAAT GGC-GCGAAT GGC-GCGAAT AGCGCCAAGG TGCGCCAAGG TGCGCCAAGG TGCGCCAAGG TGCGCCAAGG TGCGACATCG TGCGTCAAGG CGCGCCAAGG TGCGCCAAGG TGCGCCAAGG TGCGCCAAGG TGCGCCAAGG TGCGCCAAGG TGCGCCAAGG TGCGCCAAGG TGCGCGAAGG TGCGCCAAGG CGCGCCAAGG -GCGCCAAGG TGCGCCAAGG TGCGCCAAGG TGCGCCAAGG CGCGCCAAGG TGCGCCAAGG TGCGCCAAGG TGCGCCAAGG TGCGCCAAGG CGCGCCAAGG TGCGCCAAGG TGCGCCAAGG TGCGCCAAGG TGCGCCAAGG TGCGCCAAGG CACGCCAAGT TGCGCCAAGG TGCGCCAAGG TGCGCCAAGG TGCGCCAAGG TACGCCAAGG TACGCCAAGG TGCGCCAAGG TGCGCCAAGG TGCGCCAAGG TGCGCCAAGG TGCGCCAAGG TGCGCCAAGG TGCGCCAAGG TGCGCCAAGG TGCGCCAAGG TGCGCCAAGG CGCGCCAAGG CGCGCCAAGG TGCGCCAAGG TGCGCCAAGG AATC---AAA AACT--ATAA AAT--AAAAA AAT--AAAAA AATAAAAAAA AAT--AAAAA AAT--AAAAA AAAT--AAAA AATT-GAAAA AATT-GAAAA AATT-GAAAA AATA-ATAAA AATA-ATAAA AAAT---TGA AATTAAAATA AATC---TAA AATT---GAA AATT---AAA AATT---TTA AATT---ATA AACT--ATAA AAC--AAATA AAC--AAGAA AATT---TAA AATT---ATA AATT---ATA AATT---ATA AATT---AAA AACT--ATAA AATT-AT-TA A-TT-AAAAA A-TT-AAAAA A-TT-AAAAA AAT--AAAAA AAT--AAGAA AACT--ATAA ATTT-GAAAA ATTT-GAAAA ATTT-GAAAA ATTT-GAAAA ATTT-TAAAA AATT-AAAAA AATT-AAAAA AATT-GAAAA AATT-GAAAA AATT-GAAAA AATT-GAAAA AATT-GAAAA AATT-GAAAA AATT---AAA AATT---GAA AATC---GAA AATT-AAAAA AATT----AA 113 ATG-AAAAGA -TG-AAAAGA ATG-AAAAGA ATG-AAAAGA ATG-AAAAGA ATG-AAAAGA ATG--AAAGA ATG-AAAAGA ATG-AAAAGA ATG-AAAAGA ATG-AAAAGA ATG-AAAAGA ATG-AAAAGA ATG-AAAAGA ATG-MAAAGA AAT-AAAAGA ATG-AAAAGA ATG-AAAAGA ATC-AAAGGA ATA-AAAGGA -TG-AAAAGA ATG-AAAGAA ATG-AAAGAA ATG-AAAAGG ATG-AAAGGA ATG-AAAAGA ATG-AAAGGA ATG-AAAAGA -TG-AAAAGA TTT-AAAGGA ATG-AAAAGA ATG-AAAAGA ATG-AAAAGA ATG-AAAAGA ATG-GAAAAA ATG-AAAAGA ATG-AAAAGA ATG-AAAAGA ATG-AAAAGA ATG-AAAAGA ATG-AAAAGA ATG-AAAAGA ATG-AAAAGA ATG-AAAAGA ATG-AAAAGA ATG-AAAAGA -TG-AAAAGA ATG-AAAAGA ATG-AAAAGA ATT-AAAAGA ATG-AAAAGA AAGAAAAAGG ATG--AAAGA AAA-AAAAGA GG-GC-ACGA GG-GT-GCGA GT-GC-ACGT GT-GC-ACGT GT-GC-ACGT GT-GC-ATGT GT-GC-ATGT GG-GC-ACGT GT-GC-ATGT GT-GC-ATGT GT-GC-ATGT GT-GC-ACGT GT-GC-ACGT GG-GC-ACGT GT-GC-ACGT GA-GC-ACGT GG-GC-GTGT GT-GC-ACGT GG-GC-ACGT GG-GC-ACGT GT-GC-GCGC GG-GC-ACGT GG-GC-ACGT GT-GC-ACGT GG-GC-ACGT GG-GC-ACGT GG-GC-ACGT GG-GC-ACTT GG-GC-ACGT GG-GC-ACGT GT-GC-ACAT GT-GC-ACAT GT-GC-ACAT GT-AC-ATGT GG-GCTACGT GG-GC-ACGA GT-GC-ACGT GT-GC-ACGT GT-GC-ACGT GT-GC-ACGT GT-GC-ACGT GT-GC-ACGT GT-GC-ACGT GT-GC-ACGT GT-GC-ACGT GT-GC-ACGT GT-GC-AYGT GT-GC-ACKT GT-GC-ACGT GG-GC-ACGC GT-GC-ACGT GGGGC-ACGT GT-GC-ACGT GG-GC-ACGT -TCCC-CTCG -TACT-GTCG CAGCT-GTCG CTGCT-GTCG CTGCT-GTCA CTGCT-ATCA TTACTTGTCG C-ACT-GTCG -TGCT-GTTG -TGCT-GTTG -TGCT-GTTG TTGCT-GTCG TTGCT-GTCT -CACT-GTCG CTGCT-GTTG -TACT-GTCG -TACT-GGCG -T-CT-GTCG -TATT-GTTG -TACT-GTCG -TATT-GTCG TTCGT-GTCG TTCGT-GTCG -TACT-GTCA -TACT-GTCG --CGT-GTCG -TACT-GTCG -TGCT-GTCG -TATT-GTCG -TACT-GTCA CTACT-GTTG CTAYT-GTTG CTACT-GTTG CTATT-GCCA TTCGT-GTCG -TACT-GTCG TTGCT-GTCG TTGCT-GTTG TTGCT-GTCG TTGCT-GTCG TTGCT-GTCG TTGCT-GTCG TTGCT-GTCG TTGCT-GTCA TTGCT-GTCA -TGY?-GTCG -TGCT-GTTG -TGYT-GTCG -TGCT-GTTG -TACT-GTCG -TACT-GTCG CTCCC-GTCG CTGCT-GTCG -TACT-CTCG CATACCC-GT CCGACTC-GT CCGTCCC-GT CCGTCCC-GT TCGTCCC-GT CCGTCCC-GT C-C------CCAACCC-GT CCGTCCC-GT CCGTCCC-GT CCGTCCC-GT CCATCCC-GT CCATCCC-GT TCGTCCC-GT TCGTCCC-GT CCGACCC-GT CCGGCCC-GT CCGACCC-GT CCAACCC-GT CCATCCC-GT TCAACCC-GT CCGTCCC-GT CCGTCCC-GT GCAACCC-GT CCAACCC-GT CCAACCC-GT CCAACCC-GT TTGACCC-GT CCGGCCC-GT CCATCCC-GT CCGTCCC-GT CCGTCCC-GT TCRTCCC-GT TCATCCC-GT CCATACC-GT CCGACCCAGT TCGTCCC-GT CCATCCC-GT CCATCCC-GT CCATCCC-GT TCGTCCC-GT CCGTCCC-GT CCRTCCC-GT ACGTCCC-GT ACGTCCC-GT TCGTCCC-GT CCGTCCC-GT TYGCCCC-GT CCATCCC-GT CCGACCC-GT CCTACCC-GT CCGCACC-GC TCATCCC-GT CCAACCC-GT C-CGC T-CGC A-CGC A-CGC A-CAC A-CGC ----C-CGC A-CGC A-CGC A-CGC A-CGC A-CGC T-TGC A-CGC T-CGC C-CGC T-CGC T-CGC C-CGC TTCGC A-CGC A-CGC C-CGC C-CGC T-CGC C-TGC T-TGC T-CGC C-CGC G-CGC T-CGC G-CGY A-CGC A-CGC T-AGC A-CGC A-CGC A-CGC A-CGC A-CGC A-CGC A-CGC A-CGC A-CGC A-CGC A-CGC A-CGC A-CGC T-CGC T-CGC C-CGC T-CGC T-CGC Wissadula.cruziana Wissadula.periplocifolia GGC-GCGAAT TGCGCCAAGG AATT----AA AAA-AAAAGA GG-GC-ACGT -TACT-CTCG CCAACCC-GT T-CGC GGC-GCGAAT TGCGCCAAGG AATT---AAA ATG-AAAAGA GG-GC-ACGT -TACT-GTCG CCGACCC-GT T-CGC Abutilon.andrewsianum Abutilon.pubistamineum Abutilon.sp. Acaulimalva.alismatifolia Acaulimalva.dryadifolia Alcea.rosea Alcea.rugosa Allosidastrum.pyramidatum Allowissadula.holosericea Anisodontea.capensis Anoda.crenatiflora Bakeridesia.gloriosa Bastardia.bivalvis Bastardiastrum.cinctum Bastardiopsis.densiflora Batesimalva.violacea Billieturnera.helleri Briquetia.sonorae Callirhoe.digitata Callirhoe.involucrata Calyculogygas.uruguayensis Corynabutilon.vitifolium Cristaria.andicola Dendrosida.breedlovei Dendrosida.wingfieldi Dirhamphis sp. Eremalche.exilis Eremalche.parryi Fryxellia.pygmaea Fuertesimalva.jacens Fuertesimalva.limensis Gaya.atiquipana Gaya.calyptrata Gossypium.hirsutum Hochreutinera.amplexifolia Hoheria sp. Horsfordia.exsita Howittia.trilocularis Iliamna.bakeri2 Iliamna.latibrac.2B Iliamna.remota Iliamna.rivularis Kearnemalvastrum.lacteum Kearnemalvastrum.sp Kitaibela.vitifolia Krapovickasia.physaloides Lavatera.arborea Lavatera.occidentalis Lavatera.trimestris Lecanophora.chubutensis 310 320 GGTGT-TCGT --GC-GGGAG GGTGT-TTGT --GC-GGGAG GGTGT-TTGT --GA-GGGAG GGTGT-TTGT --GT-GACAG GGTGT-TTGT --GT-GACAG GGTGT-TTGT --GT-GGCAG GGTGT-TTGT --GT-GGCAG GGTGT-CTGT --GC-GACAG GGTGT-GTGT --GC-GGTAG GGTGT-CTGT --GT-GGCAG GGTGTACTGT --GC-GGGAG GGTGT-TTGT --GC-GGGAG GGTGT-TTGT --GC-GGGAG GGTGT-ATGT --GC-GGCAG GGAGT-TTGT --GC-GGGAG GGTGT-GCGT --GC-RTCAG GGTGT-TTGT --GC-GGGAG GGTGT-TTGT --GC-GGCAG GGTGT-MTGT --GT-GGTAT GGTGT-CTGT --GT-GGTAT GGTGT-CTGT --GT-GGCAG GGTGT-TTGT --GC-GGCAG GGTGA-TCGT --GC-GGCAC GGTGT-ATGT --GA-GGCGG GGTGT-ATGT --GA-GGCGG GGTGT-TTGT --GC-GGCAG GGTGT-ATGT --GT-GGCAT GGTGT-ATGT --GT-GGCAT GGTGT-TTGT --GC-GGTGG GGTGT-CTGT --GC-GGTAG GGTGT-CTGT --GC-GGTAG GGTGT-TTGT --GC-TGTAG GGTGT-TTGT --GC-AGTAG GGTGT-CGAT --GC-TTCAG GGTGT-TTGC --GC-GGCAG GGTGT-ACGT --GC-AGCAG GGTGT-TTGT --GC-GGGAG GGTGT-CCGT --GC-GACAG GGTGT-CTGT --GT-GGTAG GGCGT-CTGT --GT-GGCAG GGTGT-CTGT --GT-GGCAG GGTGT-CTGT --GT-GGCAG GGTGT-CTGT --GT-GGCAG GGTGT-CTGT --GT-GGCAG GGTGT-CTGT --GT-GGCAG CTTAA-CTGT CCGTCGGCAG ---------- -----GGCAG ---------- -----GGCAG ---------- -----GGCAG GGTGA-TCGT --GC-GACGC 330 TTTC---GCT TGTC---GCT TGTC---GCT CGAT---GTT CGAT---GTT TGAT---GCT TGAC---GCT TATC---GTT TATC---GTT TGAC---GTT CGTC---GCT TGTC---GCT TGTC---GTT TGTC---GCT TGTC---GCT TGTC---RCT TGTC---GCT TGTC---GAT TGAT---GCT TGAT---GCT TGAC---GCT TGTC---GTT AGAC---GAT TGAC---GCT TGAC---GCT TGTC---GAT AGAT---GTT AGAC---GTT TGAC---GTT TGAC---GTT TGAC---GTT TGAC---GCT TGAC---GCT TGAT---GTT TGTC---GAT TGGC---GCT TGTC---GTT AGGG---GTG AGAC---GCT TGGC---GCT TGAT---GTT TGAT---GTT CGAC---GCT CGAC---GTT TGAC---GCT TGAC---GCC CGAG---GAT CGAG---GGC CGAG---GAT TGAC---GAT 114 340 G-CTACTTTT G-CTACTTTT G-TTACTTTT G-TTACTTTT G-TTACTTTT G-TTACTTTT G-TTACTTTT G-CCACTTTT G-CCACTTCT G-TTACTTTT G-CTTCTTTT G-CTTCCTCT G-ACACTT-T G-CTTCTTTT G-TTACTTTT G-CTRCTTTT G-CC-CTTCT G-CTACTTTT G-TTACTTTT G-TTACTTTT G-TTACTTTT G-CAACTTTT G-CTACTTTT G-CTACCTTT G-CTACCTTT G-CTACTTTT G-TTACTTTT G-TTACTTTT G-CTACTTTT G-TTACTTTT G-TTACTTTT G-CCGCTTTT G-CCACTTTT G-TT-CTCTT G-CTACTTTT G-CTACTCTT G-CTTCTTTT G-CTGCCTTG-TTACTTTT G-TTACTTTT G-TTACTTTT G-TTACTTTT G-TTACTTTT G-TTACTTTT G-TTACTTTT GCC-ACTTCT G-TTACTTTT G-TCGCTCTC G-TCACTTTT GCC-ACTTTT 350 GTCGTGAAAGTCGTGAATGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTGAATGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTTAAAGTCGCGAAAGTCGCGAAAGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTCAAAGTCGTTATAGTCGTTAAAGTCGCAAAAT GTCGTGAAAGTCGTGAAAGTCGTGAAAGTTGTGAAAGTCGTAAAAGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTGAAAA GTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTTAAT- 360 A-TACATCGT A-TAC---GT A-TACATCGT A-TACATCGT A-TACATCGT --TACATCGT A-TAC---GT A-TA---TGT ATACG----T A-TA---CGT A-TAC---GT A-TATATCGT A-TAAATCGT A-TATATCGT A-TACATCGT A-TACATCGT A-AACATCGT A-TACATCGT A-TATATTGT A-TATATTGT A-TACATCGT A-TAC---GT A-TACATCGT ACAC----GT A-------GT A-TACATCGT A-TACATTGT A-TACATTGT A-TACATCGT C-TACATCGT C-TACATCGT A-TACATCGT A-TAC---GT A-TAC---GT A-TACATCGT A-TACATCGT A-TATATCGT A-TACATCGT A-TACATCGT A-TACATCGT A-TTTATTGT A-TTTATTGT A-TACATCGT A-TACATCGT --T--A-CGT A-TAC---GT A-TA---CGT A-TAC---GT A-TAAATCGT A-TACATCGT 370 CGCCCCC--A CGCCCCC--A TGCCCCC--A CGCCCCCT-A CGCCCC-T-A CGCCCCA--A CGCCCCA--A CGCCCCC--C CGCCCCC--A CGCCCCC--A CGCCCCC--A CGCCCCC--A CGCCCCA--A CGCCCCC--A CGCCCCC--A CGCCCCC--A CGCCCCC--A CGCCCCA--A TGCCCAC--A TGCCCAC--A CGCCCCC--A CGCCCCCCAG CGCCCCC--A CGCCCCC--A CGCCCCC--A CGCCCCA--A CGCCCCC--A CGCCCCC--A CGCCCCC--A CGCCCCCA-A CGCCCCCA-A CGTCCCC--T CGCCCCC--T CGCCCCC--A CGCCCCA--A CGCCCCC--A CGCCCCC--A CGCCCCC--A TGCCCCC--A CGCCCCC--A CGCCCC---A CGCCCC---A CGCCCCC--A CGCCCCC--A CGCCCCC--A CGTCCAC--A TGCCCCC--A CGCCCCC--G TGCCCCC--A CGCCCCCC-A 375 TCAAA CCAAA TCAAA TCAAA TCAAA TCAAA TCAAA TCAAT CCAAT TCAAA TCAAA TCAAA TCAAA TCAAA TCAAA TCAAA TCAAA TCAAA TCAAA TCAAA TCAAA TCAAA TCAAG TCCAT TCCAT TCAAA TTAAA TTAAA TCAAA TCAAA TCAAA TCAAA TCAAA TCCAA TCAAA TCAAA TCTTA CCCAA TTAAA TTAAA TCAAA TCAAA TCAAA TCAAA TCAAA --AAA TCAAA TCAAA TCAAT TCAAT Lecanophora.heterophylla Malacothamnus.chilensis Malacothamnus.fasciculatus Malope sp. Malva.assurgentea Malva.dendromorpha Malva.linnei Malva.nicaensis Malva.wigandii Malvastrum.amblyphyllum Malvastrum.americanum Malvastrum.coromandelianum Malvella.sagittifolia Meximalva.filipes Modiola.caroliniana Modiolastrum.lateritium Monteiroa.glomerata Napaea.dioica Navaea.phoenicea Neobrittonia.acerifolia Nototriche.anthemidifolia Nototriche.flabellata Nototriche.pedicularifolia Palaua.camanensis Palaua.rhombifolia Periptera.punicea Phymosia.umbellata Pseudabutilon.umbellatum Rhynchosida.physocalyx Robinsonella sp. Sida.abutifolia Sida.aggregata Sida.fibulifera Sida.hermaphrodita Sida.hookeriana Sida.jussieana Sida.linifolia Sida.longipes Sida.odorata Sida.oligandra Sida.platycalyx Sida.xantii Sidalcea.cusickii Sidalcea.hirsuta Sidalcea.multifida Sidalcea.stipularis Sidasodes.colombiana Sidastrum.paniculatum Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.philippiana Sphaeralcea.wrightii Tarasa.albertii GGTGA-TCGT GGTGT-CTGT GGTGT-CTGT GGTGT-CTGT ---------------------------------------------GGTGT-CTGT GGTGT-CTGT GGTGT-ATGC GGTGT-CTAT GGTGT-TTGT GGTGT-CTGT GGTGT-CTGT GGTGT-CCGC GGTGT-CTGT ---------GGTGT-ACGT GGTGT-CTGT GGTGT-CTGT GGTGT-CTGT GGGTT-TTGT GGGTT-TTGT GGTGT-ATGT GGTGT-ATGT GGTGT-TTGT GGTGT-AAGT GGTGT-TTGT GGTGT-ATGT GGTGT-ATGT GGTGT-TTGT GGTGT-ACGT GGTGT-ACGT GGTGT-TTGT GGTGT-ATGT GGTGT-GTGT GGTGT-ATGT GGTGT-CAGT GGTGT-TTGT GGTGT-ATGT GGTGT-ATGT GGTGT-ATGT GGTGT-ATGT GGTGT-TTGT GGTGC-TCGT GGTGT-TTGT GGTGT-CTGT GGTGT-CTGT GGTGT-CTGT GGTGT-CTGT GGTGT-CTGT GGTGT-CTGT --TT-GACAG --GC-GGCAG --GT-GGCAG --GT-GGCGG -----GGCAG -----GGCAA -----GGCAG -----GGCAG -----GGCAG --GT-GGCAG --GT-GGCAG --GT-GGCAG --GC-GATGG --GC-GGCAG --GT-GGCAG --GT-GGCAG --GT-GGCAG --GT-GGCAG -----GGCAG --GC-GGCAG --GC-GACAG --GC-GACAG --GC-GACAG --GA-GGCAG --GA-GGCAG --GC-GGGAG --GT-GGCAG --GC-GAGAG --CG-GGCAG --GC-GGCAG --GC-AGCAG --TA-GGCAG --TC-GACAG --GC-AGCAG --GC-AGCAG --GA-GGCAG --GT-GGCAG --GA-GGCAG --GA-GGCAG --TC-GGCAG --GC-GGCAG --GA-GGCAG --GT-GGCAG --GT-GGCAG --GT-GGCAG --GT-GGTAG --GT-GACAG --GC-GGCAG --GC-GGCAG --GT-GGCAG --GT-GGCAG --GT-GGCAG --GC-GGCAG --GC-GGCAG CGAC---GGT TGAC---GTT TGAC---GCT CGAC---GGT CGAG---GGC CAAA---CAC CGAG---GGC CGAG---GGC CGAG---GAT TGAC---GCT TGAC---GCT TGAC---GTT TGTC---GTT TGTTCTAGTT TGAC---GCT TGGC---GCT TGAC---GTT TGAC---GCT TGAG---GAT CGTC---GCT TGAT----TT TGAT----TT TGAT----TT TGAC---GTT TGAT---GTT TGTC---GCT TGAC---GCT TGTC---GCT TGAC---GCC TGTC---GCT TGAC---GTT TGAC---GAT TGTC---GCT CGGC---GCT TGGC---GCT TGAC---GCT TGGC---GTT TGAC---GCT TGGC---GCT TGAT---GCT TGTC---GCT TGAC---GTT TGAT---GTT TGAT---GTT TGAT---GTT TGAT---GTT TGAC---GTT TGTC--AGTT TGAC---GTT TGAC---GTT TGAC---GTT TGAC---GTT TGAC---GTT TGAT---GTT 115 G-CTACTTTT ----ACTTTT G-TTACTTTT G-TTACTTCT G-TCGCTCTC G-TCACTCTC G-TCACTCTC G-TCACTCTC G-TCACTCTA G-TTACTTTT G-TTACTTTT G-TTACTTTT G-TCACTTTT GCC-ACTTTT G-TTACTTTT G-TTACTTTT G-TTACTTTT G-TTACTTTT G-TTACTTTT G-CTTCTTTT G-TTACTTTT G-TTACTTTT G-TTACTTTT G-CTACTTTT G-TTACTTTT G-CTTCTTCT G-TTACTTTT G-CTACTTTT GCC-ACTTCT G-CTACTTTT G-CTACCTTT G-CTACCTTT GCTTTCTTTT G-TTACTTTT G-CTACTCTT G-CTACTTTT G-CTACCTTT G-CTACTTTT G-CTACCTTT G-CCACCTTT G-CTACTTTT G-CTACCTTT G-TTACTTTT G-TTACTTTT G-TTACTTTT G-ATACTTTT G-CTACTTTT GCC-ACTTTT G-TTACTTTT G-TTACTTTT G-TTACTTTT G-TTACTTTT G-TTACTTTT G-TTACTTTT GTCGTTAAAGTCGTGAAAGTCGTGAAAGTCGTGAAAA GTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTAAAAGT-GTAAAAGTCGTAAATGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTKAAAGTCGTGAAAGTCGTTAAAGTCGTGAAAGTCGTGAAAGTCGTGAATGTCGTGAATGTCGTGAATGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTGAATGTCGTCAAAGTCGTGAATGTTGTTAAAGACGTGAATGTCGTGAATGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTTAAAA GTCGTAAATGTCGTGAAAGTCGTGATAGTCGTGATAGTCGTGATAGTCGTGAAAGTCGTGAAA- A-TACATTGT A-TACATCGT A-TACATCGT A-TAA--CGT A-TAAATCGT A-TAAATCGT A-TTAATCGT A-TTC---GT A-TAAATCGT A-TACATCGT A-TACATCGT A-TAC---GT A-TAC---GT A-TA---TGT A-TACATCGT A-TACATCGT A-TACATCGT A-TAC---GT A-TAC---GT A-TACATCGT A-TACATCGT A-TACATCGT A-TACATCGT A-TACATCGT A-TACATCGT G-TATATCGT A-TACATCGT GATA----CG A-TAC----T T-TATATCGT A-TA---CGT A-TA---CGT A-TAC----T A-TAC---GT A-TAC---GT T-AA---CGT A-TA---CGT A-TA---CGT A-TA---CGT A-AAC---GT A-TT---CGT A-AA---CGT A-TACATCGT A-TACATTGT A-TACATCGT A-TACATTGT A-TAC---GT A-TAT---GT A-TACATCGT A-TACATCGT A-TACATCGT A-TACATCGT A-TACATCGT A-TACATCGT CGCCCCC--A CGCCCCC--A CGCCCCC--A TGCCCCC--A CGCCCCC--G CGCCCCC--G CGCCCCC--G CGCCCCC--G CGCCCCC--G CGCCCCC--A CGCCCCC--A CGCCCCC--A CGCCCCC--A CGCCCCC--A CGCCCCC--A CGCCCCC--A CGCCCCC--A CGCCCCC--A TGCCCCC--A CGCCCCC--A CGCCCCC--A CGCCCCC--A TGCCCCC--A CGCCCCC--A CGCCCCC--A CGCCCCC--A CGCCCAT--A TCGCCCC--A CGTC-CC--A CGCCCCC--A CGCCCCC--A CGCCCCC--A CGCCCCC--A CGCCCCC--A CGCCCCC--A CGCCCCA--A CGCCCCC--A CGCCCCC--A CGCCCCC--A CGCCCAC--A CGCCCCC--A CGCCCCC--A CGCCCCC--A CGCCCCC--A CGCCCCC--A TGCCCCC--A CGCCCCC--C CGCCCCC--A CGCCCCC--A CGCCCCC--A CGCCCCC--A CGCCCCC--A CGCCCCC--A CGCCCCC--A CCAAT TCAAA TCAAT CCAAA TCAAA TCAAA TCAAA TCAAA TCAAA TCATA TCAAA TCAAA TCAAT CTAAA TCAAA TCAAA TCAAA TCAAA TCAAA TCAAA TCAAA TCAAA TCAAA TCAAA TCAAA TCAAA TCAAA TCTAC CAAAA TCAGA TCAAA TCAAA CCAAA TCAAA TCAAA TCTAA TCAAA TCAAA TCAAA TCAAA CCAAA TCAAG ATAAA ATAAA ATAAA ATAAA TCAAA CTAAA TCAAA TCAAG TCAAG TCAAG TCAAA TCAAA Tarasa.humilis Tarasa.machupicchensis Tarasa.mandonii Tarasa.operculata Tarasa.rhombifolia Tarasa.thyrsoidea Tarasa.trisecta Tetrasida.chachapoyensis Tetrasida.weberbaueri Thespesia.lampas Urocarpidium.albiflorum Wissadula.boliviana Wissadula.cruziana Wissadula.periplocifolia GGTGT-CTGT GGTGT-CTGT GGTGT-CTGT GGTGT-YTGT GGTGT-CTGT GGTGT-CTGT GGTGT-TTGT GGTGT-ATGT GGTGT-GTGT GGTGC-CGGT GGTGT-CTGT GGTGT-ATGT GGTGT-ATGT GGTGT-ATGT --GC-GGCAG --GT-GGCAG --GT-GGCAG --RC-GACAG --GC-GACAG --GC-GACAG --GC-GACAG --GC-GGGAG --GC-GGTAG --GC-TTCGG --GC-GGCAG --GC-GGGAG --GC-GGGAG --GC-GGTAG CGAT---GTT TGAC-----TGAC---GTT TGAT---GTT TGAT---GTT TGAT---GTT TGAT---GTT TGTC---GCT TACC---GTT GGAC---GAC CAAC---GCT TGTC---GCT TGTC---GCT TGTC---GCT G-TTACTTTT G-TTACTTTT G-TTACTTTT G-TTACTTTT G-WTACTTTT G-TTACTTTT G-TTACTTTT G-CTTCTCTT G-CTACTTCT G-TC-CTCCG G-TTACTTTT G-CTTCTTTT G-CTTCTTTT G-CTTCTTTT GTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTTAAAGTCGTGAAAGTCGCAAAAT GTCGTGAAAGTCGTGAAAGTCGTGAAAGTCGTGAAA- A-TACATCGT A-TACATCGT A-TACATCGT A-TACATCGT A-TACATCGT A-TACATTGT A-TACATCGT A-TACATCGT --TACATCGT AATACATCGT A-TACATCGT A-TACATCGT A-TACATCGT A-TACATCGT CGCCCCC--A CGCCCCC--A CGCCCCC--A CGCCCCC--A CGCCCCC--A CGCCCCC--A CGCCCCC--A CGCCCCC--A CGCCCCC--A CGCCCCC--C CGCCCCCA-A CGCCCCC--A CGCCCCC--A CGCCCCC--A TCAAA TCAAA TCCAA TCAAC TCAAA TCAAC TCAAA TCAAA CCAAA TCCAA TCAAA TCAAA TCAAA TCAAA Abutilon.andrewsianum Abutilon.pubistamineum Abutilon.sp. Acaulimalva.alismatifolia Acaulimalva.dryadifolia Alcea.rosea Alcea.rugosa Allosidastrum.pyramidatum Allowissadula.holosericea Anisodontea.capensis Anoda.crenatiflora Bakeridesia.gloriosa Bastardia.bivalvis Bastardiastrum.cinctum Bastardiopsis.densiflora Batesimalva.violacea Billieturnera.helleri Briquetia.sonorae Callirhoe.digitata Callirhoe.involucrata Calyculogygas.uruguayensis Corynabutilon.vitifolium Cristaria.andicola Dendrosida.breedlovei Dendrosida.wingfieldi Dirhamphis sp. Eremalche.exilis Eremalche.parryi Fryxellia.pygmaea Fuertesimalva.jacens Fuertesimalva.limensis Gaya.atiquipana Gaya.calyptrata Gossypium.hirsutum Hochreutinera.amplexifolia Hoheria sp. Horsfordia.exsita Howittia.trilocularis 385 395 CCTCGAG-T- --TTA--TTC CCTCGAG-C- ---TA--TTCCTCGAG-C- --TTA--TTC CCCTGAG-C- ---CC--TCG CCCTGAG-C- ---CC--TCG CCCTAAG-C- ---CA--TCG CCCTAAG-C- ---CC--TCG CTCTGAG-T- ---CT-ATTG CCCCGTG-T- ---CT--TAC CTCTGAG-C- ---CC--TTG CC-CGAG-C- --AAT--TTA CC-CGAG-C- --TCT--TCC CCTCGAG-C- ---TT-ACCC CCCGAGCTC- ------TTTC CCTCGAG-C- --TTA--CTC CCCCGAG-C- ---CT--TCG TCTCGAG-C- ---TC-TTAT CCTCGAG-T- ---CT--TTC CCTTTAG-C- ---CC--TCG CCTTTAG-C- ---CC--TCG CCCTTGG-C- ---CC--TCG CCCTGAG-C- ---CC-TCGG CCCTAAG-C- ---CC--CAG CCTCAAG-C- ---CT--TTT CCTCAAG-C- ---CT--TTT CCTCGAG-T- ---CT--TTC ACCTAAGAC- ---CC--TCG ACCTAAGAC- ---CC--TCG CCTTGAG-C- ---CC-TTGG TC-TCAG-C- ---CC--TCC TC-TCAG-C- ---CC--TCC CCTCGAG-C- ---CT--CTC CCTCGAG-C- ---CT--CTC CCATGAG-C- ---CCTCGAG CCTCGAG-T- ---CT--TTC CCCCGAG-C- ---CA-C-GG CC-CGAG-C- --TGT--TTY CCTGTAG-C- ---CCTCGTG 405 AGC-TCAGGT GGC-TAAGGT GGC-TCAGGT AGC-TACGGT GGC-TACGGT CGC-TACGGT CGC-TACGGT GC--TAAGGT AGC-ACAACG GGC-TACGGT TGC-TCGGGA GGT-TCAGGT GGC-TCAGGT GGC-TCAGGT GGC-TCAGGT GGC-TCAGTT GGC-TCAGGT GGC-TCAGTT GGT-TATGGA GGT-TATGGA GGC-TACGGT G---TCAGGG AGC-TAAGGT GGC-AAATGA GGC-AAATGA GGC-TCAGTT GTC-TAAGGT GTC-TAAGGT GCA--CAGGT GGC-TGCG-T GGC-TGCG-T GGC-TCAGGT GGC-TCAGGT C---CTCGGT GGC-TCAGTT GC--TACGGG GGC-TCGACA A---TACGGT 415 -CAAAT--TG -CAA-T--TG -CAAAT--TG -TGAATATTG -TGAATATTG -TGCAT--TG -TGCAT--TG -CAATT--TG TTGTAT--TG -TGCAC--TG -CGTTT--TG -CAATT--TG -CAGTTT-TG -CAATA--TG -CAGTT--TG -TGGAT--TG -CAAAT--TG -T-TAT--TG -TGAAT--TG -CAAAC--TG -TGAAC--TG -TGAACG-TG -TGAAG--TG -GGAAG--TG -GGAAG--TG -T-TAT--TG -TATAG--TG -TATAG--TG -CGAAG--TG -TGAAC--TG -TGAAC--TG -GAAAC--TG -GAAAC--TG -TGGAC--CG -T-TAT--TG GTGGAG--TG -CGATT--TG -TGAGG--TG 425 AGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGAG-C-GGA TGGG-C-GGA TGAG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-CATGA TGGG-T-GGA TGGG-C-GGA TGGG-C-GGA TGAG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA CGGG-C-GGA TGAG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-T-GGA 435 AATTGGCTTC AATTGGCTTC AATTGGCTTC AATTGGCCTC AATTGGCCTC AATTGGCCTC AATTGGCCTC AATTGGCTTC AATTGGCTTC AATTGGCCTC AACTGGCTTC AATTGGCTTC AATTGGCTTC AATTGGCTTC AATTGGCTTC AATTGGCTTC AATTGGCTTC GAATGGCTTC AATTGGCCTC AATTGGCCTC AATTGGCCTC AATTGGCTTC AATTGGCTTC AATTGCCTTC AATTGGCTTC GAATGGCTTC AACTGGCCTC AACTGGCCTC AATTGGCTTC AATTGGCCTC AATTGGCCTC AATTGGCTTC AATTGGCTTC AATTGGCCTC GAATGGCTTC AATTGGCTTC AATTGGCCTC AATTGGCTTC 445 CCGTGCGCTC CCGTGCGCTC CCGTGTGCTC CCGTGCGCTC CCGTGCGCTC CCTTGTGCTC CCGTGTGCTC CCGTGTGCTC CCGTGTGCTC CCGTGCGCTC CCGTGTGCTC CCGTGCGCTC CCCTGCGCTC CCGTGCGCTC CCGTGCGCTC CCGTGCGCTC CCGTGCGCTC CCGTGCGCTC CCGTGTGCTC CCGTGTGCTC CCGTGCGCTC CCGTGTGCTC CCGTGCGCTC CCGTGCGCTC CCGTGCGCTC CCGCGCGCTC CCGTGTGYTC CCGTGTGCTC CCGTGCGCTC CCGTGCGCTC CCGTGCGCTC CCGTGCGCTC CCGTGCGCTC CCGTGCGCTC CCGTGCGCTC CCGTGCGCTC CCGTGAGCTM CCGTGTGCTT 450 ATCGC ACCGT ACCGT ACCGC ACCGC ACCGC ACCGC ACTGC ACCGC ACCGC ACCGC ACCGC ACCGT ACCGC ACCGT ACTGC ACCGC ACCGC ATCGC ATCGC ACCGC A-CGC ACCGC ATCGC GCCGC ACCGC ATCGT ATCGT ACCGC ACCGC ACCGC ATCGC ATCGC ACAGC ACCGC ACCGC ACCGC GTTGC 116 Iliamna.bakeri2 Iliamna.latibrac.2B Iliamna.remota Iliamna.rivularis Kearnemalvastrum.lacteum Kearnemalvastrum.sp Kitaibela.vitifolia Krapovickasia.physaloides Lavatera.arborea Lavatera.occidentalis Lavatera.trimestris Lecanophora.chubutensis Lecanophora.heterophylla Malacothamnus.chilensis Malacothamnus.fasciculatus Malope sp. Malva.assurgentea Malva.dendromorpha Malva.linnei Malva.nicaensis Malva.wigandii Malvastrum.amblyphyllum Malvastrum.americanum Malvastrum.coromandelianum Malvella.sagittifolia Meximalva.filipes Modiola.caroliniana Modiolastrum.lateritium Monteiroa.glomerata Napaea.dioica Navaea.phoenicea Neobrittonia.acerifolia Nototriche.anthemidifolia Nototriche.flabellata Nototriche.pedicularifolia Palaua.camanensis Palaua.rhombifolia Periptera.punicea Phymosia.umbellata Pseudabutilon.umbellatum Rhynchosida.physocalyx Robinsonella sp. Sida.abutifolia Sida.aggregata Sida.fibulifera Sida.hermaphrodita Sida.hookeriana Sida.jussieana Sida.linifolia Sida.longipes Sida.odorata Sida.oligandra Sida.platycalyx Sida.xantii CCCTAAG-CCCCTAAG-CCATTGAG-CCACTGAG-CCCCTGAG-CCCCTGAG-CCCCTGAGC-CCTCGAG-CCCACGAG-CCCCCGAG-CCCTCGAG-CCCCTGAG-CCCTTGAG-CACCTAAG-CCCCTGAG-CCCATAAC-CCCCCGAG-CCCCCGAG-CCCCCGAG-CCCCCGAG-CCCCCGAG-CCCCTAAG-CCCCTAAG-CCCCTAAG-CC--TTAC-CCCTCGAG-CCCCTGAG-CCCCTTAT-CCCCTGAG-CCCCTGAG-CCCCTGAG-CCCCCGAG-CCCATTAT-CCCATTAG-CCCATTAG-CCCCTCAG-CCCCTCAG-CCCCT-AG-CCCTTAAG-CC CGTCGAG-CCCTCGAG-CCCTCGAG-CCCTCAAG-CCCTCAAA-CCCTCTAG-CCTCCAAG-CCCCCAAG-CCCCTGGG-CCCTCAAG-CCCTCAAG-CC--------CCTCGAA-CCCTCGAG-CCCTCAAG-C- ---CC--TCG ---CC--TCG ---CC--TTG ---CC--TCG ---CC--TCG ---CC--TCG ---CC--TTG ---CT--AAG ---CC--TCG ---CC--TCG ---CC--TCG ---CC--TAG ---CC--CAG ---CC--TTG ---CC--TCG ---CA--TCG ---CC--TCG ---CC--TAG ---CC--TCG ---CC--TCG ---CC--TCG ---CC--TTG ---CC--TCG ---CC--TCG ---CT-AAGG ---CT--AAA ---CC--TCG ---CC--TCG ---CC--TCG ---CC--TCG ---CC--TTG ---CT--TTC ---CC--TCG ---CC--TCG ---CC--TCG ---CC--TAG ---CC--TCG --AAT--TTC TAACC--TTG --TCA--TTG ---CT--AAG ---CT--GTG ---CT--TTG ---CT--TTG ---CT--AAA ---CA-CG----CA-CT-G ---CC-TT-C ---CT--TTG ---CT--TTG ------------CT-TTT---CT--AAA ---CT--TTG GGC-TATGGT GGC-TACGGT GGC-TACGGT GGC-TACGGT GGC-TACGGT GGC-TACGGT GCG-TACGGT TGC-TCGGGT GGC-CAAGAT GGC-CGGGAT GGC-CACGAT GGC-CAAGGT GGC-CAAGGC GGC-TACGGT GGC-TACGGT GGC-TATGGT GGC-CGGGAT GGC-CGGGAT GGC-CGGGAT GGC-CGGGAT GGC-CGGGAT GGC-TACGGT GGC-TACGGT GCG-TACGGT GT--TTAGTT AGC-TCGAGA GGC-TACGGT GGC-TACGGT GGC-AACGGT GG--TACGGA GGC-TACGGT GGC-CGGGTG GGC-AACGGT GGC-AACGGT GGC-AACGGT GGC-TACGGT GGC-TACGGT TGC-TCAGGG GGC-TACGGT GGC-TCAGGT TGC-TCGGGT GGC-TCAGGT GGC-AAATGT GGA-AAAGGT AGC-TCGGGT GG-CTATGGG GC--TATGGG GGC-TCAGAT TGC-GAAGGT GGC-AAAGAG --C-TCAG-T GGC-TCAGTG AGC-TCGGGT GGC-AAAGGT 117 -TGAAT--TG -TGAAC--TG -TGTAA--TG -TGTAA--TC -TGAAC--TG -TGAAC--TA -TGCAC--TG -CGAAG--CG -TGATG--TG -CGACG--CG -TGATG--CG -TGAAG--CG -CGAAG--TG -TGAAT--TG -TGAAW--TG -TGAAG--TG -CGACG--CG -TGACG--CG -CGACG--CG -CGACG--CG -TGATG--CG -TGAAT--TG -TGAAT--TG -TGAAT--TG -TGTAC--TG -TGAAC--TG -TGAAC--TG -TGAAC--TG -TGAAT--TG -TGAAC--TG -TGATG--TG -TGAAT--CG -TTAAC--TG -TTAAC--TG -TTAAY--TG -TGAAT--TG -TGAAT--TG -CTATC--TG -TTAAC---G -CAATT--TG -CGAAG--CG -CGAAA--TG -GGAAG--TG -GGAAA--TG -TGAAA--TG -TGGAG--TG ATGGAG--TG -AGAAG--TG -GAAAG--TG -GGAAG--TG -GAAATG-TG -TTAAA--TG -TGAAA--TG -GGAAG--TG TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA CGGG-C-GGA CGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA CGGG-C-GGA CGGG-C-GGA CGGG-C-GGA CGGG-C-GGA CGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGGGC-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA AGGG-C-GGA TGGG-C-GGA TGTGGC-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TTGG-C-GGA AACTGGCCTC AACTGGCCAC AAATGGCCTC AATTGTCCTC AATTGGCCTC AATTGGCCTC AATTGGCCTC AACTGGCTTC AATTGACCTC AATTGGCCTC AATTGGCCTC AACTGGCTTC AATTGGCTTC AATTGGCCTC AATTGGCCTC AATTGGCCTC AATTGGCCTC AATTGGCCTC AATTGGCCTC AATTGGCCTC AATTGGCCTC AATTGGCCTC AACTGGCCTC AACTGGCCTC AATTGGCTTC AATTGGTTTC AACTGGCCTC AACTGGCCTC AACTGGCCTC AATTGGCCTC AATTGGCCTC AATTGGCTTC AATTGGTCTC AATTGGTCTC AATTGGCCTC AATTGGCCTC AATTGGCCTC AATTGGCTTC AATTGGCCTC AATTGGCTTC AACTGGCTTC AATTGGCTTC AATTGGCTTC AATTGGCTTC AATTGGCTTC AATTGGCTTC AATTGGCCTC AATTGGCTTC AATTGGCTTC AATTGGCTTC AACTGGCTTC AATTGGTTTC AATTGGCTTC AATTGGCTTC CCGTGCGCTC CCGTGCGCTC CCGTGTGCTC CCGTGTGCTC CCGTGCGCTC CCGTGCGCTC CCGTGTGCTT CCGTGCGCTC CCGTGCGCTC CCGTGCGCTC CCGTGCGCTC CCGTGCGCTC CCGTGCGCTC CCGTGCGCTA CCGTGCGCTC CCGTGCGCTC CCGTGCGCTC CCGTGCGCTC CCGTGCGCAC CCGTGCGCAC CCGTGCGCTC CCGTGCGCTC CCGTGCGCTC CCGTGCGCTC CCGTGTGCTC CCGTGCGCTC CCGTGCGCTC CCGTGCGCTC CCGTGCGCTC CCGTGTGCTC CCGTGCGCTC CCGTGCGCTC CCGTGCGCTC CCGTGCGCTC CCGTGCGCTC CCGTGAGCTC CCGTGCGCTC CCGTGTGCTC CCGTGAGCTC CCGTGTGCTC CCGTGCGCTC CCGTGCGATC CCGTGTGCTC CCGTGAGCTC CCGTGCGCTC CCGTGCGCTC CCGTGCGCTC CCGTGTGCTC CCGTGCGCTC CCGTGCGCTC CCGTGTGCTC CCGTGCGCTC CCGTGCGCTC CCGTGAGCTC ACCGC ACCGC ACCGC ACCGC ACCGC ACCGC ACCGC ACTGC ACCGC ACCGC ACCGC ACCGC AACGC ACCGC ACCGC ACCGC ACCGC ACCGC ACCGC ACCGC ACCGC ACCGC ACCGC ACCGC ACCGC ACCGC ACCGC ACCGC ACCGC ACCGC ACCGC ACCGC ACCGC ACCGC ACCGC ACCGC ACCGC ACCGC ATCGC ATCGC ACCGC ATATC ACCGC AC-GC ACC-ACCGA-CGC ACCGC ACCGC ACCGC ACCGC ACCGC ACCCACCGC Sidalcea.cusickii Sidalcea.hirsuta Sidalcea.multifida Sidalcea.stipularis Sidasodes.colombiana Sidastrum.paniculatum Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.philippiana Sphaeralcea.wrightii Tarasa.albertii Tarasa.humilis Tarasa.machupicchensis Tarasa.mandonii Tarasa.operculata Tarasa.rhombifolia Tarasa.thyrsoidea Tarasa.trisecta Tetrasida.chachapoyensis Tetrasida.weberbaueri Thespesia.lampas Urocarpidium.albiflorum Wissadula.boliviana Wissadula.cruziana Wissadula.periplocifolia TCCTAAG-CTCCTAAG-CTCCTAAG-CCTC--------------CCCT-GAG-CCCATTAG-TCCATTAG-TCCATTAG-TCCATTAG-TCCATTAG-TCCATTAG-CCCATTAG-CCCCTAAG-CCCCTWAG-CCCATTAG-CCCATTAG-CCCATTAG-CCCATTAG-CCCC-GAG-CCCCCGGG-TCCC------CCCTCAG-T-CCTGAG-C-CCTGAG-CACC-GAG-C- ---CC--TAG ---CC--TAG ---CC--TAG ------------CC--TCG ---CT--AAA ---CC--TCG ---CT--TCG ---CT--TYG ---CT--TCG ---CC--TCG ---CC--TCG ---CC--TCG ---CC--TTG ---CC--TTG ---CC--TCG ---CC--TCG ---CC--TCG ---CC--TCG ---TC-TTTT ---CT--TAC ------------CC--TCG ---TC-TTTG ---TC-TTTR ---TC-TTTT GGC-TATGGT GGC-TATTGT GGC-TATGGT ----TAAGGT GG--TACGGG AGC-TGAGAT GGC-TACGGT GGC-TATGGT GGC-TATGGT GGC-TATGGT GGC-TATGGT TGC-TACGGT TGC-TATGGT GGC-TACGGT GGC-TATGGT GGC-AAYAGT GGC-AACGGT GGC-AACAGT GGC-AACGGT GGC-TAAGGT GGC-TCAGGT ------CGGT GGC-TGCGGT TAC-TTAGGT TRC-TTAGGT TGC-TCAGGT -TTAGT--TG -TTAGT--TG -TTAGT--TG -TTAAC--TG -TGTAG--TG -GGAAC--TG -TGAAC--TC -TGAAC--TG -TGAAC--TG -TGAAC--TG -TGAAC--TG -TGAAT--TG -TGATT--TG -TGAAT--TG -TGAAT--TG -TGAAC--TG -TGARC--TG -TGAAC--TG -TGAAY--TG -CATTT--GG -TGAAG--TG -TGGAC--TG -TGAAC--TG -CATTT--TG -CATTT--TG -CATTA--TG TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA AGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA YGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA CGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA TGGG-C-GGA AATTGGTCTC AATTGGCCTC AATTGGTCTC AATTGGCCTC AATTGGCTTC AATTGGTTTC AATTGGCCTC AATTGGCCTC AATTGGCCTC AATTGGCCTC AATTGGCCTC AATTGGCCTC AATTGGCCTC AATTGGCCTC AATTGGCCTC AATTGGCCTC AATTGGCCTC AATTGGCCTC AATTGGCCTC AATTGGCTTC AATTGGCTTC AATTGGCCTC AATTGGCCTC AATTGGCTTC AATTGGCTTC AATTGGCTTC CCGTGTGCTC CCGTGTGCTC CCGTGTGCTC CCGTGTGCTC CCGTGCGCTC CCGTGCGCTC CCGTGCGCTC CCGTGCGCTC CCGTGCGCTC CCGTGCGCTC CCGTGCGCTC CCGTGCGCTC CCGTGCGCTC CCGTGCGCTC CCGTGCGCTC CCGTGTGCTC CCGTGCGCTC CCGTGYGCTC CCGTGCGCTC CCGTGCGCTC CCGTGCGCTC CCGCGCGCTC CCGTGCGCTC CCGTGCGCTC CCGTGCGCTC CCGTGCGCTC ACCGC ACCGC ACCGC ATCGC A-CGC ACCGC ACCGC ACCGC ACCGC ACCGC ACCGC ACCGC ACCGC ACCGC ACCGC ACCGC ACCGC ACCGC ACCGC ACCGC ACCGC GGTGC ACCGC AAGGC AMGGC ACCGC Abutilon.andrewsianum Abutilon.pubistamineum Abutilon.sp. Acaulimalva.alismatifolia Acaulimalva.dryadifolia Alcea.rosea Alcea.rugosa Allosidastrum.pyramidatum Allowissadula.holosericea Anisodontea.capensis Anoda.crenatiflora Bakeridesia.gloriosa Bastardia.bivalvis Bastardiastrum.cinctum Bastardiopsis.densiflora Batesimalva.violacea Billieturnera.helleri Briquetia.sonorae Callirhoe.digitata Callirhoe.involucrata Calyculogygas.uruguayensis Corynabutilon.vitifolium Cristaria.andicola Dendrosida.breedlovei Dendrosida.wingfieldi 460 470 GT-GCGGTTG GCCT-AAA-A GC-TCGGTTG GCCT-AAA-A GC-GCGGCTG GCCT-AAA-A TC-GCGGTTG GCCT-AAAATC-GCGGTTG GCCT-AAAATC-ATGGTTG GCCT-AAAATC-ATGGTTG GCCT-AAAACT-GCGGTTG GCCT-AAA-A TC-GCGGTTG GCCT-AAA-A TC-GCGGTTG GCCT-AAAATC-GCG-TTG GCCT-AAA-A TC-GCGGTTG GCCT-AAA-A GC-ACGGTTA GCCT-AAA-A TC-GCGGTTG GCCT-AAA-A GC-CCGGTTA GCCT-AAA-A TT-GCGGTTG GCCT-AAAATC-GCGGTTG GCCT-AAA-A TC-GCGGTTG GCCT-AAA-A TC-GCGGTTG GCCT-AAA-TC-GCGGTTG GCCT-AAA-TC-GCGGTTG GCCT-AAAATC-GCGGTTG GCCT-AAA-A TC-GCGGTTG GCCT-AAAATC-GCGGTTG GCCC-AAA-TC-GCG-TTG GCCC-AAA-- 480 AT-GAGTCTT AT-GAGTCTT AT-GAGTTTT TA-GAGTCCT TA-GAGTCCT TTTG-GTCCT TTTG-GTCCT AT-GAGTCCT AT-GAGTCCT TT-GAGTCCT TC-GAGTCTT AC-GAGTCTT AT-GTGTCTT AY-GAGTCTA AT-GAGTCTT AC-GAGTCCT AT-GAGTCAT AT-GAGTCTT TTCGGATCCT TTTGGGTCCT TT-GAGTCCT TC-GAGTCCT TC-GGGTCTT TATAAGTCCT TATAAGTCCT 490 C-GGCGATGA C-GGCGATGA C-GGCGATGA C-GGCGATTA C-GGCGATTA C-GGCGATGA C-GGCGATGA C-GGCGATGA CCGGCGATGA C-GGCGATGA C-GGCGATTA C-GGCAATTT C-GGCGATGA C-GGCGATTT C-GGCGATGA C-GGCGAACA C-GGCGATAA C-GGCGATGA T-GGCGATGT ?-GGCGATGT C-GGCGATGA C-GGCGATGA C-GGCTATGA C-GGCGATAA C-GGCGAT-A 500 AG-TGCC-GC AG-TGCG-AC AG-TGCC-GC AG-TGCC-GC AG-TGCC-GC AT-TGCC-GC AT-TGCC-GC AG-TGCC-GC AC-TGCC-GC AG-TGCC-GC CG-TGCC-GC AG-TGCC-GC AG-TGCC-GC AG-TGCC-GC AG-TGCC-GC AG-TGCT-GC AG-TGCC-AC AG-TGCC-GC AG-TGTC-GC AG-TGTC-GC AG-TGCC-GC AG-TGCC-GC AG-CGCC-GC CG-TGCC-GC AG-TGCC-GC 510 GACAA-TCGG GACAA-TCGG AACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-ACGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACGA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAAATCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG 520 TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAAATGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC 525 TT--T TT--T TT--T TT--T TT--T TTAAT TTAAT TT--A TA--T TT--T AT--C AT--T TT--T AT--C TT--T TC--T TT--G TT--C TT--T TT--T TT--T TT--T TT--T TC--T TC--T 118 Dirhamphis sp. Eremalche.exilis Eremalche.parryi Fryxellia.pygmaea Fuertesimalva.jacens Fuertesimalva.limensis Gaya.atiquipana Gaya.calyptrata Gossypium.hirsutum Hochreutinera.amplexifolia Hoheria sp. Horsfordia.exsita Howittia.trilocularis Iliamna.bakeri2 Iliamna.latibrac.2B Iliamna.remota Iliamna.rivularis Kearnemalvastrum.lacteum Kearnemalvastrum.sp Kitaibela.vitifolia Krapovickasia.physaloides Lavatera.arborea Lavatera.occidentalis Lavatera.trimestris Lecanophora.chubutensis Lecanophora.heterophylla Malacothamnus.chilensis Malacothamnus.fasciculatus Malope sp. Malva.assurgentea Malva.dendromorpha Malva.linnei Malva.nicaensis Malva.wigandii Malvastrum.amblyphyllum Malvastrum.americanum Malvastrum.coromandelianum Malvella.sagittifolia Meximalva.filipes Modiola.caroliniana Modiolastrum.lateritium Monteiroa.glomerata Napaea.dioica Navaea.phoenicea Neobrittonia.acerifolia Nototriche.anthemidifolia Nototriche.flabellata Nototriche.pedicularifolia Palaua.camanensis Palaua.rhombifolia Periptera.punicea Phymosia.umbellata Pseudabutilon.umbellatum Rhynchosida.physocalyx TC-GCGGTTG TC-GCGGTTG TC-GCGGTTG TC-GCGGTTG TC-GCGGTTG TC-GCGGTTG TC-GCGGTTG TC-GCGGTTG CA-GCGGTTG TC-GCGGTTG TC-GCGGTTG TT-GCGGTTG TA-GCGGTTG TC-GCGGTTG TC-GCGGTTG TT-GCGGTTG TT-GCGGTTG TC-GCGGTTG TC-GCGGTTG ACACGCGGTT T--GCGGTTG TC-GCGGTTG TC-GCGGTTG TC-GCGGTTG TC-GCGGTTG TC-GCGGTTG TC-GCGGCTG TC-GCGGTTG TTCGCGGTTG TC-GCGGTTG TC-GCGGTTG TC-GCGGTTG TC-GCGGTTG TC-GCGGTTG TC-GCGGTTG TC-GCGGTTG TC-GCGGTTG TC-ACGGTTG TC-GCG-TTG TC-GCGGTTG TC-GCGGTTG TC-GCGGTTG TT-GCGGTTG TC-GCGGTTG TC-GCGGTTG TC-GCGGTTG TC-GCGGTTG TC-GCGGTTG TC-GCGGTTG TC-GCGGTTG CC-GCGGTTG TC-GTGGTTG TC-GCGGTTG TC-GCG-TTG GCCT-AAA-A GCCT-AAAAGCCT-AAAAGCCT-AAA-GCCT-AAAAGCCT-AAAAGCCT-AAA-A GCCT-AAA-A GCCT-AAA-T GCCT-AAA-A GCAT-AAA-A GCCT-AAA-G GCCT-AAA-A GCCT-AAAAGCCT-AAAAGCCT-AAAAGCCT-AAAAGCCT-AAAAGCCT-AAAAGGCCAAAAAGCCTTAAAAGTCT-AAA-GTCT-AAA-GTCT-AAA-GCCT-AAAAGCCT-AAAAGCCT-AAAAGCCT-AAAAGCCT-AAA-GTCT-AAA-GTCT-AAA-GTCC-AAA-GTCT-AAA-GTCT-AAA-GCCT-AAAAGCCT-AAA-GCCT-AAAAGCCT-AAA-A GCCT-AAAAGCCT-AAAAGCCT-AAAAGCCT-AAAAGCCT-AAAAGTCT-AAA-GCCT-AAAGGCCT-AAAAGCCT-AAAAGCCT-AAAAGCCT-AAAAGCCT-AAAAGCCC-AAA-A GCCT-AAAAGCCT-AAA-A GCCT-AAAA- AT-GAGTCTT TT-GAGTCCT TT-GAGTCCT TACGAGTCCT TT-GAGTCCT TT-GAGTCCT AT-GAGTCTT TT-GAGTCTT TC-GAGTCCT AT-GAGTCTT TC-GAGTCAT AT-GAGTCTT TC-GAGTCTT TT-GAGTCCT TT-GAGTCCT TT-GAGTCCT TT-GAGTCCT TT-GAGTCCT TT-GAGTCCT TCTGAGCGAT AT-GAGTCTT TTCGAGTCCT TTCGAGTCCT TTCGAGTCCT TC-GAGTCCT TC-GAGTCCT TT-GAGTCCT TC-GAGTCCT TCTGAGTCCT TTCTAGTCCT TTCGAGTCCT TTCGAGTCCT TTCGAGTCCT TTCGAGTCCT TT-GAGTCCT TTTGAGTCCT TC-GAGTCCT TT-GAATCCT AT-GAGTCTT TT-GAGTCCT TT-GAGTCCT TT-GAGTCCT TT-GAGTCCT TTTGAGTCCT AT-GAGTCCT TC-GAGTCCT TC-GAGTCTT TM-GAGTCCT TT-GAGTCCT TT-GAGTCCT AT-GAGTCTA TT-GATTCCT AT-GAGTCTT AT-GAGTCTT 119 C-GGCGATGA C-GGCGATGA C-GGCGATGA C-GGCGATGA C-GGCGATGA C-GGCGATGA C-GGCGATCA C-GGCGATCA C-GACGACAT C-GGCGATGA C-GGCGATAA T-GGCGATTT C-GACGATGG C-GGCGATGA C-GACGATGA C-TGTAATGA C-GGTAATGA C-GGCGATGA C-GGCGATGA T-GGATGACG C-GGCGATGA C-GGCGATGA C-GGCGATGG C-GGCGATGA C-GGCGATGA C-GGCGATGA C-GGCGATGA C-GGCTATGA A-GGCGATGA C-GGCGATGG C-GGCGATGA C-GGCGATGA C-GGCGATGA C-GGCGATGA C-GGCGATGA C-GGCGATGA C-GGCGATGA C-GGCGATAA C-GGCGA-AA C-GGCGATGA C-GGCGATGA C-GGCGATGA C-GGCGATGA T-GGCGA--C-GGCGAACA C-GGCGATGA C-GGCGATGA C-GGCGATGA C-GGCGATGA C-GGCGATGA T-GGCGATTA C-AGCGATGA C-GGCGATGA C-GGCGATGA AG-TGCC-GC AG-TGCC-GC AG-TGCC-GC AG-TGCC-GC AG-TGCC-GC AG-TGCC-GC AG-TGCC-GC AG-TGCC-GC CA-TCGTCGC AG-TGCC-GC TG-TGCC-GC AG-TGCC-GC TA-ACATCGC AG-TGCC-GC AG-TGCC-GC AG-TGCC-GC GG-TGCC-GC AAGTGCC-GC AG-TGCC-GC ---TCCC-GC AG-CGCC-GC AG-TGCC-GC AG-CGCC-GC AG-TGCC-GC AG-CGCC-GC AG-TGCC-GC AG-TGCC-GC AG-TGCC-AC AGGCGCC-GC AG-CGCC-GC AG-CGCC-GC AG-------AG-CGCC-GC AG-CGCC-GC AG-TGCC-GC AG-TGCC-GC AG-TGCC-GC AG-TGCC-AA CG-TGCC-GC AG-TGCC-GC AG-TGTC-GC AG-TGCC-GC AG-TGCC-GC AT-TGCC-GC AG-TGCC-GC AG-TGYC-GC AG-TGCC-GC AG-TGCC-GC AG-TGCC-GC AG-TGCC-GC AG-TGCC-GC AG-TGCC-GC AG-TGCC-GC AG-CGCC-GC GACGA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACGA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACGA-TCGC GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACGC-TCGG GACAA-TCGG GACAA-CCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACGA-TCGG GACGA-TCGG ---------GACGA-TCGG GACGA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GGCAA-TCGG GACAA-TCGG TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGTAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGTAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGTGAA--TGGGAA-CGC TGGGAA-TGC TGGGAA-CGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAT-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-CGC TGGGAA-CGC ---------TGGGAA-CGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-CGC TT--C TT--C TT--C TC--T TT--T TT--T TT--T TT--T TG--C TT--C TG--T AT--T CT--A TT--T TT--T ATT-T TTT-T TT--T TT--T TT--C TC--C CT--T CT--T TT--T TT--T TG--T TT--T AT--T TC--T CT--T CT--T ----CT--T TT--T TT--T TA--T TT--T TT--A TT--T TT--T TT--T TT--T TT--T TT--T TC--T TT--T TT--T TT--T TT--T TT--T AT--C TT--A TT--T TC--C Robinsonella sp. Sida.abutifolia Sida.aggregata Sida.fibulifera Sida.hermaphrodita Sida.hookeriana Sida.jussieana Sida.linifolia Sida.longipes Sida.odorata Sida.oligandra Sida.platycalyx Sida.xantii Sidalcea.cusickii Sidalcea.hirsuta Sidalcea.multifida Sidalcea.stipularis Sidasodes.colombiana Sidastrum.paniculatum Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.philippiana Sphaeralcea.wrightii Tarasa.albertii Tarasa.humilis Tarasa.machupicchensis Tarasa.mandonii Tarasa.operculata Tarasa.rhombifolia Tarasa.thyrsoidea Tarasa.trisecta Tetrasida.chachapoyensis Tetrasida.weberbaueri Thespesia.lampas Urocarpidium.albiflorum Wissadula.boliviana Wissadula.cruziana Wissadula.periplocifolia TC-GCGGTTG TT-GCG-TTG TC-GCCGTTG TC-GCGGTTG TC-GCG-TTG TC-GCGGTTG TC-GTGGTTG TC-GCGGTTG TC-GCGGTTG TC-GCG-TTG TC-GCG-TTG TC-GCGGTTG TC-GCG-TTG TC-GCGGTTG TC-GYGGTTG TC-GCGGTTG TC-GTGGTTG TC-GCGGTTG TC---GGTTG TC-GCGGTTG TC-GCGGTTG TC-GCGGTTG TC-GCGGTTG TC-GCGGTTG TC-GCGGTTG TC-GCGGTTG TC-GCGGTTG TC-GCGGTTG TC-ACGGTTG TC-GCGGTTG TC-ACGGTTG TC-GCGGTTG TT-GCGGTTG TC-GCGGTTG TA-CCGGTTG TC-GCGGTTG TC-GCGGTTT TC-GCGGTTT TC-GCGGTTG GCCT-AAA-A GCCC-AAA-GCCC-AAA-GCCT-AAAAGCAT-AAA-A GCAT-AAA-A GCCT-AAA-T GCCC-AAA-GCCC-AAA-GCCC-AAA-GCCT-AAA-A GCCT-AAAAGCCC-AAA-GCCT-AAAAGCTT-AAAAGCCT-AAAAGCTT-AAAAGCCT-AAA-GCCT-AAAAGCCT-AAAAGCCT-AAAAGCCT-AAAAGCCT-AAAAGCCT-AAAAGCCT-AAAAGCCT-AAAAGCCT-AAAAGCCT-AAAAGCCT-AAAAGCCT-AAAAGCCT-AAAAGCCT-AAAAGCCT-AAA-A GCCT-AAA-A GCCT-AAA-T GCCT-AAAAGCCT-AAA-A GCCT-AAA-A GCCT-AAA-A AT-GAGTCCT TATAAGACCT TATAAGTCCT AA-GAGTCCT TC-GAGTCAT TC-GAGTCAT AT-GAGTCCT TATAAGTCCT TATAAGTCCT TATAAGTC-T -T-GAGTCCT AA-GAGTCTT TGTAAGTCCT TT-GAGTCCT TT-GAGTCCT TT-GAGTCCT TT-GAGTCCT TTTGAGTCTT AT-GAGTCTT TT-GAGTCCT TT-GAGTCCT TT-GAGTCCT TT-GAGTCCT TT-GAGTCCT TT-GAGTCCT TT-GAGTCCT TT-GAGTCCT TT-GAGTCCT TC-GAGTCCT TC-GAGTCCT TC-GAGTCCT TC-GAGTCCT AC-GAGTCTT AT-GAGTCCT TC-GAGTCCT TT-GAGTCCT AC-GAGTCTT AC-GAGTCTT AC-GAGTCTT C-GGCGATGA C-GGCGATAA C-GGCGATGA C-GGCGATAA C-GGCGATAA C-GGCGATAA C-GGCGATGA C-GGCGATGA C-GGCGATGA C-GGCGATGA C-GGCGATTA C-GGCGATAA C-GGCTGAGA C-GGCGATGA C-GGCGTTGA C-GGCGATGA T-GGCGATGA C-GGCGATGA C-GGCGA-AA C-GGCGATGA C-GGCGAKKA C-GGCGATCA C-GGCGATSA C-GGCGATGA C-GGCGATGA C-GGCGATGA C-GGCGATGA C-GGCGATGA C-GGCGATGA C-GGCGATGA C-GGCGATGA C-GGCGATGA C-GGCGAATA C-GGCGATGA C-GAAGACGG C-GGCGATGA C-GGCGAATA C-GGYGAATA C-GGCGAATA AG-TGCC-GC AG-TGCC-GC AG-TGCC-GC AG-TGCC-GC AG-TGCC-GC AG-TGCC-GC AG-TGCC-GC AG-TGTC-GC AG-TGCC-GC AG-TGCC-GC AG-TGCC-GC TG-TGCC-GC AT-TGCC-GC AG-TGCC-GC AG-TGCC-GC AG-TGCC-GC AG-TGCC-GC GG-TGCC-TC CG-TGCC-GC AG-TGCC-GC AG-TGCC-RC AG-TGCY-GC AG-TGCC-GC AG-TGCC-GC AG-CGCC-GC AG-TGCC-AC AG-TGCC-GC AG-TGCC-GC AG-TGCC-GC AG-TGCC-GC AG-TGCC-GC AG-TGCC-GC AG-TGCC-GC AG-TGCC-GC CA-TCGTCAC AG-TGCC-GC AG-TGCC-AC AG-TGCC-AC AG-TGCC-GC GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACGA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACGA-TCGG GACGA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG GACAA-TCGG TGGGAA-TGC TGGGAA-TGC TGGGAA-CGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-CGC TGGGAA-TGC TGGGAA-CGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAT-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAT-TGC TGGGAT-TGC TGGGAA-TGC TGGGAT-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGTGA-CGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TGGGAA-TGC TT--T TT--T TT--T TT--T TG--T TG--T TT--T TT--T TA--T TT--T TT--C TT--T TT--T TT--T TT--T TT--T TT--T TT--T TT--T TT--T TT--T TT--T TT--T TT--T TT--T TT--A TT--T TT--T TT--T TT--C TT--T TT--T TC--T TT--T CATCC TT--T TT--T TT--T TT--T Abutilon.andrewsianum Abutilon.pubistamineum Abutilon.sp. Acaulimalva.alismatifolia Acaulimalva.dryadifolia Alcea.rosea Alcea.rugosa Allosidastrum.pyramidatum Allowissadula.holosericea Anisodontea.capensis Anoda.crenatiflora Bakeridesia.gloriosa Bastardia.bivalvis 535 545 CAGCT-GCCT CG-TTCGAAG CTGCT-GTCT CG-TTCGAAG CAGCT-GCCT CG-TTCGAAG TAGCT-GCCT CG-TTCGTAG TAGCT-GCCT CG-TTCGTAG AAGCT-GCCT CG-TTAGTTA AAGCT-GCCT CG-TTAGTTA TGGCT-GCCT C-TTTCGAAG CAGCT-GCCT CG-TTCGAAG TAGCT-GCCT CG-TTCGAAG AAGCA-GCCT CG-TTCGAAG GAGCT-GCCT CG-TTCGAAG TTGCT-GCCT CG-TTCGAAG 555 TCGTGTGC-G TCGTGTGC-G TTGTGTGT-G TCGTGTGC-G TCGTGTGCTG TCGTGTGT-G TCGTGTGT-G TTGTGTGC-A TCGTGTGC-G TCGTGCGC-G TCGCGTGT-G TCGCGTGT-G TCGTGTGT-G 565 CTCGTCGATT CTCGTCGATT CTCGTCGATT CTCGTTGATT CTCGTTGATT CTCGTTGATT CTCGTTGATT CTCGTCGATT CTCGTCGATT CTCGTTGATT CTCGTCGAGT CTCGTCGAAT CTCGTCGATT 575 ---TGGA-CC ---TTGA-CC ---CGAA-CC ---AGGA-CC ---AGGA-CC ---TGGA-CC ---TGGA-CC ---CTGA-TC ---CGGA-TC ---AGGA-CT ---TGGA-CC ---CGGA-CC ---CTGA-CC 585 -CTAT-GACC -CTAT-GACC -CTAT-GACC -CTCT-GACC -CTCT-GACC -CTTTTGACC -CTTTTGACC TCT---GACC -TTAT-GACC GTTCT-GACC -CCGT-GACC -CTAT-GACC -CTAT-GACC 595 CTTTT-GGCA CTCTT-GGCA CTTTT-GGCA CTTTTTGGCA CTCTTTGGCA CTTTT-GGCA CTTTT-GGCA CTTTT-GGCA CTTTCGTGCA CTTTTTGGCA CTTATT-GCA CTCTT-TGCA CATTT-GGCA 600 TCACA TCACA TCACA TCGCA TCGCA TCACT TCACT TCGCA TCGCA TCGCA TCGCA TCACA TCACA 120 Bastardiastrum.cinctum Bastardiopsis.densiflora Batesimalva.violacea Billieturnera.helleri Briquetia.sonorae Callirhoe.digitata Callirhoe.involucrata Calyculogygas.uruguayensis Corynabutilon.vitifolium Cristaria.andicola Dendrosida.breedlovei Dendrosida.wingfieldi Dirhamphis sp. Eremalche.exilis Eremalche.parryi Fryxellia.pygmaea Fuertesimalva.jacens Fuertesimalva.limensis Gaya.atiquipana Gaya.calyptrata Gossypium.hirsutum Hochreutinera.amplexifolia Hoheria sp. Horsfordia.exsita Howittia.trilocularis Iliamna.bakeri2 Iliamna.latibrac.2B Iliamna.remota Iliamna.rivularis Kearnemalvastrum.lacteum Kearnemalvastrum.sp Kitaibela.vitifolia Krapovickasia.physaloides Lavatera.arborea Lavatera.occidentalis Lavatera.trimestris Lecanophora.chubutensis Lecanophora.heterophylla Malacothamnus.chilensis Malacothamnus.fasciculatus Malope sp. Malva.assurgentea Malva.dendromorpha Malva.linnei Malva.nicaensis Malva.wigandii Malvastrum.amblyphyllum Malvastrum.americanum Malvastrum.coromandelianum Malvella.sagittifolia Meximalva.filipes Modiola.caroliniana Modiolastrum.lateritium Monteiroa.glomerata CAGCT-GCCT TTGCT-GCCT CAGCT-GCCT TAGCT-GCCT AAGCT-GCCT TAGCA-GCCT TAG?A-GCCT TGGCA-ACCT CAGCT-GCCT TAGCT-GYCT CAGCT-GTCT CAGCT-GTCT AAGCT-GCCT TAGCT-GCCT TAGCT-GCCT TGGCT-GCCT TAGCT-GCCT TAGCT-GCCT CAGCT-GCCT CAGCT-GCCT AAGCA-ACCT AAGCT-GCCT CAGCT-GCCT CAGCT-GCCT GAGCT-TCCA TTGCT-GCCT TTGCT-GCCT AAGCT-GCCT AAGCT-GCCT TAGCT-GCCT TAGCT-GCCT AAACT-GCCT AAGCT-GCCT CGGCT-GCCT TGGCT-GCCT TGGCT-GCCT TAGCT-GCCT TAGCT-GCCT TAGCT-GCCT TAGCT-GCCT TAGCT-GCCT TGGCT-GCCT TGGCT-GCCT ---------TGGCT-GCCT TGGCT-GCCT TAGCT-GCCT TAGCT-GCCT TAGCT-GCCT AAGCA-GCCT CGGCT-GCCT TAGCA-GCCT TAGCA-GCCT TAGCA-GCCT CG-TTCGAAG CG-TTCGAAG CG-TTCGAAG CG-TTCGTAG CG-TTCGAAG CG-TTTGTAG CG-TTTGTAG CG-TTCGGAG CG-TTCGAAG CG-TTCGTAG CG-TTCGAAG CG-TTCGAAG CG-TTCGAAG CG-TTCGGAG CG-TTCGGAG CG-TTCGAAG CG-TTCGGAG CG-TTCGGAG CG-TTCGAAG CG-TTCGAAG CG-TTCGGAG CG-TTCGAAG CG-TTCGAAG CG-TTCGAAG CG-TTCGGAG CG-TTCGGTG CG-TTCGGAG CG-TTCGGAG CG-TTCGGAG CG-TTCGGAG CG-TTCGGAG CG-TCA--TA CG-TTCGAAG CG-TACGGAG CG-TTCGGAG CG-TACGGAG CG-TTCGTAG CG-TTCGTAG CG-TACGAAG CG-TACGGAG CG-TTCGGAG CG-TTCGGAG CG-TTCGGAG ---------CG-TTCGGAG CG-TTCGGAG CG-TTCGGAG CG-TTCGGAG CG-TTCGGAG CG-TTCGTAG CG-TTCGAAG CG-TTCGGAG CG-TTCGGAG CG-TTCGGAG TCGCGTGT-G TCGTGTGT-G TCGTGAGT-G TCGTGTGC-G TCGTGTGC-G TCGTGCTT-G TCGTGTTT-G TCGTGTGC-G TCGTGTGC-T TCGTGTGT-G TCGTGGGT-A TCGTGGGT-A TCGYGTGC-G TCGTGTGT-G TCGTGTGT-G TCGTGTGT-G TCGTGTGC-G TCGTGTGC-G TCGTGTGT-G TCGTGTGT-G TCGTGCGC-G TCGTGTGC-G TCGTGTGC-G TCGCGTGT-G TCGCATGT-G TCGTGTGC-G TCGTGTGT-G TTGTGTGC-A TTGTGTGC-A TCGTGTGC-G TCGTGTGC-G TCGTCGG--TCGCGTGC-G TCGCGTGC-C TCGCGCGC-G TCGCGCGC-G TCGTGTGC-G TCGTGTGC-G TCGTGTGT-G TCGTGTGC-G TCGCGTGT-G TCGCGCGC-G TCGCGCGC-G TCGCGCGC-G TCGCGCGC-G TCGCGCGC-G TCGTGTGC-A TCGTGTGC-G TCGCGTGC-T TCTTGTGC-A TCGTGTGC-G TCGTGTGT-G TCGTGTGC-G TCGTGTGC-G 121 CTCGTCGATT CTCGTCGATT CTCGCTGATT CTCGACGATT TTCGTCGATT CACGTTGATT CTCGTTGATT CTCGTTGATT CTCGTCGATT CTTGTTGATCTCGTCGATT CTCGTCGATT TTCGTCGATC CTCGTTGATT CTCGTTGATT CTCGTCGATT CTCGTTGATT CTCGTTGATT CTCGTCAAAT CTCGTCCAAT TCCGTCGATC TTCGTCGATT CTCGTCGATT CTCGTCGAAT CTCGTTGGTG CTCGTTGATT CTCGTTGATT CTCGTTTATT CTCGTTGATT CTCGTTGATT CTCGTTGATT -TCGTTCCGG CTCGTCGATT CTCGTTGATC TTCGTCGATC CTCGTTGATC CTCGTCGATT CTCGTCGATT CTCGTTGATT CTCGTTGATT CTCGTTGATT TTCGTCGATC CTCGTCGATC CTCGTCGATC CTCGTCGATC CTCGTCGATC CTCGTTGATT CTCGTTGATT CTCGTTGATT CTCGTCGATT CTCGTTGATT CTCGTTGATT CTCGTTGATT CTCGTTGATT ---TGGA-CC ---TTGA-CA ---TGGA-CC ---AGGA-CC ---AGAA-CA ---AGGA-TC ---AGGA-TC ---AGGA-CC ---TGGA-CC ---CGGA-CC ---CGGA-TC ---CGGA-TC ---AGAA-CA ---AGGA-CC ---AGGA-CC ---CGGA-TC ---AGGA--T ---AGGA--T ---AAGA-CA ---AGGA-CA ---GAGA-GA ---AGAA-CA ---TGGA-CC ---TGGA-CC ---AGGA-CC ---AGGA-CC ---AGGA-CC ---AGGA-CC ---AGGA-CC ---AGGA-CC ---AGGA-CC TCCAAAAGCT ---TGGA-CC ---GGGA-CG ---GGGA-CG ---GGGA-AG ---CGGA-CC ---CGGA-CC ---AGGA-CC ---AGGA-CA ---GGGA-AC ---GGGA-CG ---GGGA-CG ---GGGA-CG ---GGGA-CG ---GGGA-CG ---AGGA-CC ---AGGA-CC ---AGGA-CC ---AGGA-TC ---TAGA-CC ---AGGA-CC ---AGGA-CC ---AGGA-CC -CTCA-GACC -CTAT-GACC -CTAT-GACC -TTAT-GACC -TCAT-GACC -CTCT-GACC -CTTT-GACC -CTCT-GACC -CTAT-GACC -CTCT-GACC -TTGT-GACC -TTGT-GACC -TTAT-GACC -GTCT-TACC -CTCT-TACC -TTAT-TACC -CTCT-GACC -CTCT-GACC -TTAT-GACC -TTAT-GACC -TCGGTGGTA -TCAT-GACC -CTTT-GACC -CYAT-GACC -TTG--GACC -CTCT-GACC -CTCT-GACC -TGTT-GACC -TGCT-GACC -CTCT-GACC -CTCT-GACC CTCGATGACC -CTTACGACC -CTCTTGACC -CTTTCGACC -CTCTTGACC -TTCA-GACC -TTTT-GACC -CTCT-GACC -CTCT-GAAC -CTTCTGACC -CTTTCGACC -CTTTCAACC -CTTTCGACC -CTTTCGACC -CTTTCGACC -CTCT-GACC -CTTT-GACC -CTGT-GACC -CTAT-GACC -CCAT-GACC -CTCT-GACC -CTCT-GACC -CTCT-GACC CTTTT-TGCA CTTTT-GGCA C-TGTTGGCA CTTCT-GGCA CTTTT-TGCA CTTTT-GGCA ?TTTT-GGCA CTTTTTGGCA CTTTT-GGCA CTTAT-GGCA CTT----GCA CTTTT--GCA CCTTTTTGCA CTTTT-GGCA CTTTT-GGCA CCATTTCGCA CTTTTTGGCA CTTTTTGGCA CTGTT-AGCA CTGTT-AGCA A--TGCTGCA CTTTTT-GCA CTTCTT-GCA CTCTT-TGCA CTTTT-GGCA CTTTTTGGCA CTTTTTGGCA CTTTCTGGCT CTTTCTGGCT CTTTTTGGCA CTTTTTGGCA CTTTT-GGCA CTTTT-GGCA CTTCTCGGCA CTTTAAGGCA TTTC-CGGCA CTTTT-GGCA CTTTT-GGCA CTTTTTGGCA CTTTTTGGCA CTCTTTGGCA CTTTAAGGCA CTTTAAGGCA CCTTAAGGCA CCTTAAGGCA CTTTTAGGCA CTTCTTGGCA CTTCTTGGCA CTTCTTGGCA CTTTT-GGCA CTTTCTGGCA CTTTTTGGCA CTTTTTGGCA CTTTTTGGCA TCGCA TCACA TCGCA TCACA TCACA TCATA TCATA CCGCA TCGCA TCGCT TCGCC TCGCC TCACA CCGAA CCGAA TTGCA TCGCA TCGCA TCTAA TCAAA A-GCA TCACA CCGCA TCGCA TCGCA TCGCA TTGCA TCGCA TCGCA TTGCA TCGCA TCGCA TCGCA TCGCA TCGCG TCGCA CCGCA TCGCA TCACA TCGCA TTGCA TCGCG TCGTG TCGCG TCGCG TCGCG TCACA TCACA TCACA TCAAA TCACA CCGCA CCGCA TCGCA Napaea.dioica Navaea.phoenicea Neobrittonia.acerifolia Nototriche.anthemidifolia Nototriche.flabellata Nototriche.pedicularifolia Palaua.camanensis Palaua.rhombifolia Periptera.punicea Phymosia.umbellata Pseudabutilon.umbellatum Rhynchosida.physocalyx Robinsonella sp. Sida.abutifolia Sida.aggregata Sida.fibulifera Sida.hermaphrodita Sida.hookeriana Sida.jussieana Sida.linifolia Sida.longipes Sida.odorata Sida.oligandra Sida.platycalyx Sida.xantii Sidalcea.cusickii Sidalcea.hirsuta Sidalcea.multifida Sidalcea.stipularis Sidasodes.colombiana Sidastrum.paniculatum Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.philippiana Sphaeralcea.wrightii Tarasa.albertii Tarasa.humilis Tarasa.machupicchensis Tarasa.mandonii Tarasa.operculata Tarasa.rhombifolia Tarasa.thyrsoidea Tarasa.trisecta Tetrasida.chachapoyensis Tetrasida.weberbaueri Thespesia.lampas Urocarpidium.albiflorum Wissadula.boliviana Wissadula.cruziana Wissadula.periplocifolia TAGCA-GCCT TAGCT-GCCT TA?CT-GCCT TAGCT-GCCT TAGCT-GCCT TAGCT-GCCT TAGCT-GCCT TAGCT-GCCT CAGCT-GCCT TAGCT-GCCT CAGCT-GCCT GAGCT-GCCT CAGCT-GCCT CAGCT-GCCT CAGCT-GCCT CAGCT-GCCT CAGCT-GCCT CAGCT-GCCT TAGCT-GCCT CAGTT-GCCT TAGCT-GCCT CAGCT-GCCT TAGCT-GCCT CAGCT-GCCT GAGCT-GCCT TAGCT-GTCT TAGCT-GTCT TAGCT-GTCT TAGCT-GTCT ATGCT-GCCT CGGCT-GCCT TAGCT-GCCT TAGCT-GCCT TAGCT-GCCT TAGCT-GCCT TAGCT-GCCT TAGCT-GCCT TAGCT-GCCT TAGCT-GCCT TAGCT-GCCT TAGCT-GCCT TAGCT-GCCT TAGCT-GCCT TAGCT-GCCT TTGCT-GCCT TAGCT-GCCT ATCGGCCGCC TAGCT-GCCT CTGCT-GTCT CTGCT-GTCT TTGCT-GCCT 610 CG-TTCGTAG CG-TTCGGAG CG-TTCGGAG CG-TTCGGAG CG-TTCGGAG CG-TTCGGAG CG-TTCGTAG CG-TTCGGAG CG-TTTGAAG CG-TTCGAAG CG-TTCGAAG CG-TTCGAAG CG-TTCGTAG C-TTTCGAAG C-TTTCGAAG CG-TTCGAAG CG-TTCGAAG CG-TTCGAAG CG-TTCGTAG C-TCTCGGAG CG-TTCGAAG C-TTTCGAAG CG-TTCGAAG CG-TGCGAAG C-TTTCGAAG CT-TTCGGAG CT-TTCGGAG CT-TTCGGAG CG-TTCGGAG CG-TTGGAAG CG-TTCGAAG CG-TTCGGAG CG-TTCGGAG CG-TTCGGAG CG-TTCGGAG CG-TTCGGAG CG-TTCGGAG CG-TTCGGAG CG-TTCGAAG CG-TTCGAAG CG-TTTGTAG CG-TTCGGAG CG-TTTGTAG CG-TTCGGAG CG-TTCGAAG CG-TTCGAAG TCGTTCGGAG CG-TTCGGAG CG-TTCGAAG CG-TTCGAAG CG-TTCGAAG TCGTGTGC-G TCGCGTGT-G TCGTGAGC-G TCGTGTGT-G TCGTGTGT-G TCGTGTGT-G TCGTGTGC-G TCGTGTGC-G TCGCGTGT-G TCGTGTGC-A TCGTGTGC-G TCGCGTGC-G TCGTGTGT-G TCGTGTGT-G TCGTGTGT-G TCGTGTGC-G TCGTGTGC-G TCGTGTGC-G TCGCGCAC-G TCGTGCGT-G TCGTGTGT-G TCGTGTGT-G TCGTGTGT-G TCGTGTGC-G TCGCGTGT-A TCGTGTGC-T TCGTGTGC-T TCGTGTGC-T TCGTGTGC-T TCGTGCGC-G TCGTGTGC-G TCGTGTGC-A TCGTGTKC-A TCGTGTYC-A TCGTGTTC-A TCGTGTGC-A TCGTGTGC-G TCGTGTTC-G TCGTGTGT-G TCGTGTGT-G TCGTGYRT-G TCGTGTGT-G TCGTGYGT-G TCGTGTGT-G TCGTGCGT-G TCGTGTGC-G TCGTGCAC-G TCGTGTGC-T TCGTGTGT-G TCGTGTGT-G TTGTGCGT-G 620 122 CTCGTTGATT CTCGTTGATT CTCGTCGATC CTCGTTGATT CTCGTTGATT CTCGTTGATT CTCGTTGATT CTCGTTGATT CTCGTCGAAT CTCGTTGATT CTCGTCGAAT CTCGTCGATT CTCGTCGATT CTCGTCGAAT CTCGTCGATT CTCGTCGATT CTCGTCGATT CTCGTCGATC CTCGTCGATT CTCGTCGATT CTCGTTGATT CTCGTCGATT CTCGTCGGTT CTCGTCGATT CTCGTCGATT CTCGTTGATW CTCGTTGATT CTCGTTGATT CTCGTTGATT CTCGTCGATT CTCGTTGATT CTCGTCGATT CTMGYTGATT CTCGTYGATT CTCGYTGATT CTCGTCGATT CTCGTTGATT CTCGTTGATT CTCGTTGATT CTCGTTGATT CTCGTTGATT CTCGTTGATT CTCGTTGATT CTCGTTGAAT CTCGTCGAAT CTCGTCGATT TTCGTCGATC CTCGTTGATT CTCGTCGAAT CTCGTCGAAT CTCGTCGAAT ---AGGA-TC ---GGGA-CA G--GGGA-CC ---AGGA-CC ---AGGA-CC ---AGGA-CC ---AGGA-CC ---AGGA-CC ---TGGA-CC ---AGGA-CC ---TTGA-CC ---TGGA-CC ---AAGA-CC ---CGGA-TC ---CGGA-TC ---TGGA-CC ---TGGA-CC ---TGGA-CC ---CGGA-TC ---CGGA-TT ---CGGA-TC ---CGGA-TC ----GGA-CC ---CCGA-CC ---CGGA-TG ---AGGA-CC ---AGGA-CC ---AGGA-MC ---AGGA-CC ---CGG--CC ---TAGA-CC ---AGGA-CC ---AGGA-CC ---AGGA-CC ---AGGA-CC ---AGGA-CC ---AGGA-CA ---AGGA-CA ---AGGA-CC ---AGGA-CC ---AGGA-CC ---AGGA-CC ---AGGA-CC ---AGGA-CC ---TGGA-CC ---CGGA-TC ---GGGA-CC ---AGGA--C ---TGGA-CC ---TGGA-CC ---CGGA-CC -CTCT-GACC -CTTTTGACC -CTTT-GACC -CTTT-GACC -CTTT-GACC -CTTT-GACC -CTTT-GACC -CTTT-GACC -CTAA-GACC -CTCT-GACC -CTAT-GACC -CT-ACGACC -CTAT-GACC -TTAT-GACC -TTAT-GACC -CTAT-GACC -CTTATGACC -CTTT-GACC -CT-ACGACC -TTAT-GACC -TTAT-GACC -TTAT-GACC -CCAT-GACC -CT-ACGACC -TTAT-GACC -CTTTTGACC -CTTT-GACC -CTTTTGACC -CTCT-GACC -CTTT-GACC -CCAT-GACC -CTCT-GACC -CTCT-GACC -CTCT-GACC -CTCT-GACC -CTCT-GACC -CTCT-GACC -CTCT-GACC -CTCT-GACC -CTCT-GACC -CTYT-GACC -CTCT-GACC -CTCT-GACC -CTTT-GACC -CCAT-GACC -TTAT-GACC -TC---GACC -CTCT-GACC -CTAT-GACC -CTAT-GACC -CTA--GACC CTTTTTGGCA CTTTT---CA CTATC-GGCA CTTTTTGGCA CTTTTTGGSA CTTTTTGGCA CTTTT-GGCA CTTTT-GGCA CTTTTT-GCA CTTTTTGGCA CTTTT-GGCA CTTTT-GGCA CTTTC-GGCA CTTTT-GGCA CTTCT-GGCA CTTTT-GCAC CTTGTT-GCA CTTTAT-GCA -TAAT-GGCA TTT-C-GCGA CTTTT-GGCA CTTTT-GGCA CTTTC-GGCA CTTTA-GGCA CTTTT-GGCA CTTTTTGGCA CTTTTTGGCA CTTTTTGGCA CTTTATGGCA CTTTTTGGCA CTTTC-GGCA CTTTTTGGCA CTTTTTGGCA CTTTTTGGCA CTTTTTGGCA CTTTTTGGCA CTTTTTGGCA CTTTTTGGCA CTTTTTGGCA CTTTTTGGCA CTTTT-GGCA CTTTTTGGCA CTTTT-GGCA CTTTTTGGCA CTTTT-CGCA CTCTTT-GCA CTCTC-GGTA CTTTTTGGCA CTTTT-GGCA CTTTT-GGCA CTTTT-GGCG CCGCA TCGCA TCG-TCACA TCACA TCCCA TCGCA TCGCA ACGCA TCGCA TCGCA TCGCA TTGCA TCGTA TCGCA GCACA TCGCA TCGCA TCGCA TCGCA TCGCA TCGCA TCGCA TCACA TCGCA TCGCA TCGCA TCGCA TCACA TCGAA TCACA TTGCA TCTCA TCTCA TCTCA TTGCA TCGCA TCGCA TCGCA TCGCA TCACA TCACT TCACA TCACA TCGCA TCGCA CCGCG TCGCA -CACA -CACA TCACA Abutilon.andrewsianum Abutilon.pubistamineum Abutilon.sp. Acaulimalva.alismatifolia Acaulimalva.dryadifolia Alcea.rosea Alcea.rugosa Allosidastrum.pyramidatum Allowissadula.holosericea Anisodontea.capensis Anoda.crenatiflora Bakeridesia.gloriosa Bastardia.bivalvis Bastardiastrum.cinctum Bastardiopsis.densiflora Batesimalva.violacea Billieturnera.helleri Briquetia.sonorae Callirhoe.digitata Callirhoe.involucrata Calyculogygas.uruguayensis Corynabutilon.vitifolium Cristaria.andicola Dendrosida.breedlovei Dendrosida.wingfieldi Dirhamphis sp. Eremalche.exilis Eremalche.parryi Fryxellia.pygmaea Fuertesimalva.jacens Fuertesimalva.limensis Gaya.atiquipana Gaya.calyptrata Gossypium.hirsutum Hochreutinera.amplexifolia Hoheria sp. Horsfordia.exsita Howittia.trilocularis Iliamna.bakeri2 Iliamna.latibrac.2B Iliamna.remota Iliamna.rivularis Kearnemalvastrum.lacteum Kearnemalvastrum.sp Kitaibela.vitifolia Krapovickasia.physaloides Lavatera.arborea Lavatera.occidentalis Lavatera.trimestris Lecanophora.chubutensis Lecanophora.heterophylla Malacothamnus.chilensis Malacothamnus.fasciculatus Malope sp. A-TGTTGG-A-TGATGG-A-TGTTGG-A-CGTCGA-A-CGTCGA-A-TGTCGA-A-TGTCGA-A-TGACGG---TGACGG-A-AGTCGA-A-CGTCGG-A-CGTTGG-A-TGTTGG-A-CGTTGA-A-TGTTGG-A-TGTTGG-G-TGTTGG-A-TGTTGT-A-TGTTGA-A-TTTTGT-A-CGTCGA-A-TGTCGG-C-TGTCGG-A-TGCCGG-A-TGCCGG-A-TGGTGT-A-TGTCGA-A-TGTCGA-A-TAACGG-A-CGTCGA-A-CRTCGA-C-CATTGG-C-AATTGG-A-CCTCGT-A-TGTTGT-A-CGTCGG-A-TGTCGG-A-GGACGG-A-CGTAG--A-CGTCG--A-TGTCG--A-TGTCG--A-CGTCGA-A-C------A-TGTCGA-A-CGTCGTGG A-CGTCGA-A-CGTCGA-A-CGTCGA-A-CGTCGG-A-CRTCGG-A-TGTTGA-A-TGTCGA-A-CGTCGA-- TGCTC-GCATGCT--GCATGCTC-GCATGCTC-GCATGCTC-GCATGCTC-GCATGCTC-GCATGCCA-GCGTGCTC-GCATGCTC-GCATGCTC-GCATGCTC-GCATGCTC-GCATGCTC-GCATGCTC-GCATGCTC-RCATGCCC-GCATGCTC-GCATGCTC-GCATGCTC-GCATGCTC-GCATGCT--GCATGCTCTGCATGCCA-GCATGCCA-GCATGCTC-GCATGCTC-GCATGCTC-GCATGCTC-GCATGCTC-GCATGCTC-GCATGCTC-GCATGC----CATCGGAGTCGT TGCTC-GCATGATC-GCATGCTC-GCATGCTC-GCA------------------------------------TGCTC-GCA---------TCCTCAACGTGCTC-GCATGCTC-GCATGCTC-GCATGCTC-GCTTGCTC-GCATGCTC-GCATGCTC-GCATGCTC-GCATGCTC-GCA- TCG TCG --TCG TCG TCG TCG --TCG TCG CTC TCG TCG TCG TCG TCG TCG ATG T-TCG TCG TCG TCG TCG TCG ATG TCG T-TCG TCG TCG TCG TCG GCG ATG TCG TCG TCG --------TCG ----TCG TCG TCG ACG TCG TCG TCG TCG TCG 123 Malva.assurgentea Malva.dendromorpha Malva.linnei Malva.nicaensis Malva.wigandii Malvastrum.amblyphyllum Malvastrum.americanum Malvastrum.coromandelianum Malvella.sagittifolia Meximalva.filipes Modiola.caroliniana Modiolastrum.lateritium Monteiroa.glomerata Napaea.dioica Navaea.phoenicea Neobrittonia.acerifolia Nototriche.anthemidifolia Nototriche.flabellata Nototriche.pedicularifolia Palaua.camanensis Palaua.rhombifolia Periptera.punicea Phymosia.umbellata Pseudabutilon.umbellatum Rhynchosida.physocalyx Robinsonella sp. Sida.abutifolia Sida.aggregata Sida.fibulifera Sida.hermaphrodita Sida.hookeriana Sida.jussieana Sida.linifolia Sida.longipes Sida.odorata Sida.oligandra Sida.platycalyx Sida.xantii Sidalcea.cusickii Sidalcea.hirsuta Sidalcea.multifida Sidalcea.stipularis Sidasodes.colombiana Sidastrum.paniculatum Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.philippiana Sphaeralcea.wrightii Tarasa.albertii Tarasa.humilis Tarasa.machupicchensis Tarasa.mandonii Tarasa.operculata A-CGTCGA-A-CATCGA-A-CGTCGA-A-CGTCGA-A-CGTCGA-A-CGTCGA-A-CGTCGA-A-CATCGA-T-ATATGG-A-TGTTGG-A-AGTCGA-A-CGTCGA-A-CGTCGA-A-CGTCGA-A-TGTGCA----------A-AGTAGA-A-AGTAGA-A-AGTAGA-T-TGTCGA-A-CGTCGG-A-TGTTCG-A-TGTTG--A-TGTCGG-A-CGTCGTGG A-TGTCGA-A-TTACGG-G-TGACGG-A-CGGTGG-A-CGTCCG-A-CGTCGG-A-TGACGG-A-TGACGA-A-CGACGG-A-TGACGG-A-TGACGG-A-TGATGG-A-TGACGG-T-TGTTGA-T-TGTTGA-T-TGTTGA-A-TGTTGA-A-CTTTGG-A-TGTTGG-A-CGTCAA-A-TGTCGA-A-TGTCGA-A-TGTCGA-A-CGTCAA-A-CGTCGA-A-CGTCGA-A-TGTTGA-A-TGTTGA-A-CGTAGA-- TGCTC-GCATGCTC-GCATGCTC-GCATGCTC-GCATCGTC-GCATGCTC-GCATGCTC-GCATGCT--GCATGC---GCATGC----CATGCTC-GCATGCTC-GCATGCTC-GCATGCT--GCATGCGCT--A---------TGCTC-GCATGCTC-GCATGCTC-GCATGCTC-GCATGCTC-GCATGCTC-GCA---------TGCT--GCATGCTC-GCATGCTC-GCATGC?---CATGCT--GCATGCT--GCAGTAAT-GCATGCT--GCATGC?C---ATGC?---CATGC?---CATGCTC-GCAA TGCT--GCATGCT--GCATGCT--GCATGCTT-GCATGCTT-GCATGCTG-GCATGCTT-GCATGC----CATGC----CATGCTC-GCATGCTC-GCATGCTC-GCATGCTC-GCWTGCTC-GCATGCTC-GCATGCTC-GCATGCTC-GCATGCTC-GCATGCTC-GCA- TCG TCG TGC TCG TAC TCG TCG TCG TCG TCG TCG TCG TCG TCG TC--TCG TCG TCG TCG TCG TCG --TCG TCG TCG TCG TCG --TCG TCG TCG TCG TCG TCG TCG TCG TCG --T-T-T-TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG 124 Tarasa.rhombifolia Tarasa.thyrsoidea Tarasa.trisecta Tetrasida.chachapoyensis Tetrasida.weberbaueri Thespesia.lampas Urocarpidium.albiflorum Wissadula.boliviana Wissadula.cruziana Wissadula.periplocifolia A-AGTCGA-A-CGTAGA-A-WGTCGA-AATGTTGA---TGACGG-A-GGACGG-A-CGTCGA-A-TGTTGG-A-TGTTGG-AATGGTGA-- TGCTC-GCATGCTC-GCATGCTC-GCATGCTC-GCATGCTC-GCATGCTC-GCATGCTC-GCATGCTC-GCATGCTC-GCATGCTC-GCT- TCG TTG TCG TCG TCG --TCG TCG TCG TCG 125 Appendix B. Tarasa and outgroups combined chloroplast data matrix matK-3’trnK (1-779), psbA-trnH (780-1437), trnT-trnL (1438-3291) Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana 10 T----CCTTC -TAATCCTTC TAAATCCTTC ----TCCTTC TAAATCCTTC TAAATCCTTC TAAATCCTTC TAAATCCTTC TAAATCCTTC TAAATCCTTC ???ATCCTTC ----TCCTTC TAAATCCTTC ----TCCTTC TAAATCCTTC TAAATCCTTC TAAATCCTTC TAAATCCTTC TAAATCCTTC TAAATCCTTC TAAATCCTTC TAAATCCTTC TAAATCCTTC TAAATCCTTC T----CCTTC TAAATCCTTC TAAATCCTTC TAGTTACTTC -------TTC TAAATCCTTC TAAATCCTTC TAAATCCTTC TAAATCCTTC TAAATCCTTC TAAATCCTTC ----TCCTTC TAAATCCTTC T--------TAAATCCTTC TAAATCCTTC ---------C TAAATCCTTC T----CCTTC 20 AGTGGTACGG AGTGGT-CGG AGTGGTACGG AGTGGTACGG AGTGGTACGG AGTGGTACGG AGTGGTACGG AGTGGTACGG AGTGGTACGG AGTGGTACGG AGTGGTACGG AGTGGTACGG AGTGGTACGG AGTGGTACGG AGTGGTACGG AGTGGTACGG AGTGGTACGG AGTGGTACGG AGTGGTACGG AGTGGTACGG AGTGGTACGG AGTGGTACGG AGTGGTACGG AGTGGTACGG AG?GG???GG AGTGGTACGG AGTGGTACGG AGTGGTACGG AGTGGTACGG AGTGGTACGG AGTGGTACGG AGTGGTACGG AGTGGTACGG AGTGGTACGG AGTGGTACGG AGTGGTACGG AGTGGTACGG -------CGG AGTGGTACGG AGTGGTACGG AGTGGTACGG AGTGGTACGG AGTGGTACGG 30 GGTCAAATGC GGTCAAATGC AGTCAAATGC AGTCAAATGC AGTCAAATGC AGTCAAATGC AGTCAAATGC AGTCAAATGC AGTCAAATGC AGTCAAATGC AGTCAAATGC AGTCAAATGC AGTCAAATGC GGTCAAATGC GGTCAAATGC GGTCAAATGC GGTCAAATGC AGTCAAATGC AGTCAAATGC AGTCAAATGC AGTCAAATGC AGTCAAATGC AGTCAAATGC AGTCAAATGC AGTCAAATGC AGTCAAATGC AGTCAAATGC AGTCAAATGC AGTCAAATGC AGTCAAATGC AGTCAAATGC AGTCAAATGC AGTCAAATGC AGTCAAATGC AGTCAAATGC AGTCAAATGC AGTCAAATGC AGTCAAATGC AGTCAAATGC AGTCAAATGC AGTCAAATGC AGTCAAATGC AGTCAAATGC 40 TAGAAAATTC TAGAAAATTC TAGAAAATTC TAGAAAATTC TAGAAAATTC TAGAAAATTC TAGAAAATTC TAGAAAATTC TAGAAAATTC TAGAAAATTC TAGAAAATTC TAGAAAATTC TAGAAAATTC TAGAAAATTC TAGAAAATTC TAGAAAATTC TAGAAAATTC TAGAAAATTC TAGAAAATTC TAGAAAATTC TAGAAAATTC TAGAAAATTC TAGAAAATTC TAGAAAATTC TAGAAAATTC TAGAAAATTC TAGAAAATTC TAGAAAATTC TAGAAAATTC TAGAAAATTC TAGAAAATTC TAGAAAATTC TAGAAAATTC TAGAAAATTC TAGAAAATTC TAGAAAATTC TAGAAAATTC TAGAAAATTC TAGAAAATTC TAGAAAATTC TAGAAAATTC TAGAAAATTC TAGAAAATTC 126 50 ATTTATAATA ATTTATAATA ATTTATAATA ATTTATAATA ATTTATAATA TTTTATAATA TTTTATAATA TTTTATAATA TTTTATAATA TTTTATAATA TTTTATAATA TTTTATAATA TTTTATAATA ATTTATAATA ATTTATAATA ATTTATAATA ATTTATAATA TTTTATAATA TTTTATAATA TTTTATAATA TTTTATAATA TTTTATAATA TTTTATAATA TTTTATAATA TTTTATAATA TTTTATAATA TTTTATAATA TTTTATAATA TTTTATAATA TTTTATAATA TTTTATAATA TTTTATAATA TTTTATAATA TTTTATAATA TTTTATAATA TTTTATAATA TTTTATAATA TTTTATAATA TTTTATAATA TTTTATAATA TTTTATAATA TTTTATAATA TTTTATAATA 60 GATAATGCTA GATAATGCTA GATAATGCTA GATAATGCTA GATAATGCTA GATAATGCTA GATAATGCTA GATAATGCTA GATAATGCTA GATAATGCTA GATAATGCTA GATAATGCTA GATAATGCTA GATAATGCTA GATAATGCTA GATAATGCTA GATAATGCTA GATAATGCTA GATAATGCTA GATAATGCTA GATAATGCTA GATAATGCTA GATAATGCTA GATAATGCTA GATAATGCTA GATAATGCTA GATAATGCTA GATAATGCTA GATAATGCTA GATAATGCTA GATAATGCTA GATAATGCTA GATAATGCTA GATAATGCTA GATAATGCTA GATAATGCTA GATAATGCTA GATAATGCTA GATAATGCTA GATAATGCTA GATAATGCTA GATAATGCTA GATAATGCTA 70 TGAAGACGTT TGAAGACGTT TGAAGACGTT TGAAGACGTT TGAAGACGT? TGAAGACGTT TGAAGACGTT TGAAGACGTT TGAAGACGTT TGAAGACGTT TGAAGACGTT TGAAGACGTT TGAAGACGTT TGAAGACGTT TGAAGACGTT TGAAGACGTT TGAAGACGTT TGAAGACGTT TGAAGACGTT TGAAGACGTT TGAAGACGTT TGAAGACGTT TGAAGACGTT TGAAGACGTT TGAAGACGTT TGAAGACGTT TGAAGACGTT TGAAGACGTT TGAAGACGTT TGAAGACGTT TGAAGACGTT TGAAGACGTT TGAAGACGTT TGAAGACGTT TGAAGACGTT TGAAGACGTT TGAAGACGTT TGAAGACGTT TGAAGACGTT TGAAGACGTT TGAAGACGTT TGAAGACGTT TGAAGACGTT 80 GGATACAAGA GGATACAAGA GGATACAAGA GGATACAAGA GGATACAAGA GGATACAAGA GGATACAAGA GGATACAAGA GGATACAAGA GGATACAAGA GGATACAAGA GGATACAAGA GGATACAAGA GGATACAAGA GGATACAAGA GGATACAAGA GGATACAAGA GGATACAAGA GGATACGAGA GGATACGAGA GGATACGAGA GGATACAAGA GGATACAAGA GGATACAAGA GGATACAAGA GGATACAAGA GGATACAAGA GGATACAAGA GGATACAAGA GGATACGAGA GGATACAAGA GGATACGAGA GGATACGAGA GGATACAAGA GGATACAAGA GGATACAAGA GGATACAAGA GGATACAAGA GGATACAAGA GGATACAAGA GGATACAAGA GGATACAAGA GGATACAAGA Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana 90 ATTCCAATTA ATTCCAATTA ATTCCAATTA ATTCCAATAA ATTCCA?TAA ATTCCAATTA ATTCCAATTA ATTCCAATTA ATTCCAATTA ATTCCAATTA ATTCCAATTA ATTCCAATTA ATTCCAATTA ATTCCAATTA ATTCCAATTA ATTCCAATTA ATTCCAATTA ATTCCAATTA ATTCCAATTA ATTCCAATTA ATTCCAATTA ATTCCAATTA ATTCCAATTA ATTCCAATTA ATTCCAATTA ATTCCAATTA ATTCCAATTA ATTCCAATTA ATTCCAATTA ATTCCAATTA ATTCCAATTA ATTCCAATTA ATTCCAATTA ATTCCAATTA ATTCCAATTA ATTCCAATTA ATTCCAATTA ATTCCAATTA ATTCCAATTA ATTCCAATTA ATTCCAATTA ATTCCAATTA ATTCCAATTA 100 110 120 TTTCTCTTAT TGGATCATTG TCTAAGGAAA TTTCTCTTAT TGGATCATTG TCTAAGGAAA TTTCTCTTAT TGCATCATTG TCTAAGGCAA TTTCTCTTAT TGGATCATTG TCTAAGGCAA TTTCTCTTAT TGGATCATTG TCTAAGGCAA TTTCTCTTAT TGGATCATTG TCTAAGGCAA TTTCTCTTAT TGGATCATTG TCTAAGGCAA TTTCTCTTAT TGGATCATTG TCTAAGGCAA TTTCTCTTAT TGGATCATTG TCTAAGGCAA TTTCTCTTAT TGGATCATTG TCTAAGGCAA TTTCTCTTAT TGGATCATTG TCTAAGGCAA TTTCTCTTAT TGGATCATTG TCTAAGGCAA TTTCTCTTAT TGGATCATTG TCTAAGGCAA TTTCTCTTAT TGGATCATTG TCTAAGGCAA TTTCTCTTAT TGGATCATTG TCTAAGGCAA TTTCTCTTAT TGGATCATTG TCTAAGGCAA TTTCTCTTAT TGGATCATTG TCTAAGGCAA TTTCTCTTAT TGGATCATTG TCTAAGGCAA TTTCTCTTAT TGGATCATTG TCTAAGGCAA TTTCTCTTAT TGGATCATTG TCTAAGGCAA TTTCTCTTAT TGGATCATTG TCTAAGGCAA TTTCTCTTAT TGGATCATTG TCTAAGGCAA TTTCTCTTAT TGGATCATTG TCTAAGGCAA TTTCTCTTAT TGGATCATTG TCTAAGGCAA TTTCTCTTAT TGGATCATTG TCTAAGGCAA TTTCTCTTAT TGGATCATTG TCTAAGGCAA TTTCTCTTAT TGGATCATTG TCTAAGGCAA TTTCTCTTAT TGGATCATTG TCTAAGGCAA TTTCTCTTAT TGGATCATTG TCTAAGGCAA TTTCTCTTAT TGGATCATTG TCTAAGGCAA TTTCTCTTAT TGGATCATTG TCTAAGGCAA TTTCTCTTAT TGGATCATTG TCTAAGGCAA TTTCTCTTAT TGGATCATTG TCTAAGGCAA TTTCTCTTAT TGGATCATTG TCTAAGGCAA TTTCTCTTAT TGGATCATTG TCTAAGGCAA TTTCTCTTAT TGGATCATTG TCTAAGGCAA TTTCTCTTAT TGGATCATTG TCTAAGGCAA TTTCTCTTAT TGGATCATTG TCTAAGGCAA TTTCTCTTAT TGGATCATTG TCTAAGGCAA TTTCTCTTAT TGGATCATTG TCTAAGGCAA TTTCTCTTAT TGGATCATTG TCTAAGGCAA TTTCTCTTAT TGGATCATTG TCTAAGGCAA TTTCTCTTAT TGGATCATTG TCTAAGGCAA 130 AATTTTGTAA AATTTTGTAA AATTTTGTAA AATTTTGTAA AATTTTGTAA AATTTTGTAA AATTTTGTAA AATTTTGTAA AATTTTGTAA AATTTTGTAA AATTTTGTAA AATTTTGTAA AATTTTGTAA AATTTTGTAA AATTTTGTAA AATTTTGTAA AATTTTGTAA AATTTTGTAA AATTTTGTAA AATTTTGTAA AATTTTGTAA AATTTTGTAA AATTTTGTAA AATTTTGTAA AATTTTGTAA AATTTTGTAA AATTTTGTAA AATTTTGTAA AATTTTGTAA AATTTTGTAA AATTTTGTAA AATTTTGTAA AATTTTGTAA AATTTTGTAA AATTTTGTAA AATTTTGTAA AATTTTGTAA AATTTTGTAA AATTTTGTAA AATTTTGTAA AATTTTGTAA AATTTTGTAA AATTTTGTAA 140 CACATTAGGG CACATTAGGG CACATTAGGG CACATTAGGG CACATTAGGG CACATTAGGG CACATTAGGG CACATTAGGG CACATTAGGG CACATTAGGG CACATTAGGG CACATTAGGG CACATTAGGG CACATTAGGG CACATTAGGG CACATTAGGG CACATTAGGG CACATTAGGG CACATTAGGG CACATTAGGG CACATTAGGG CACATTAGGG CACATTAGGG CACATTAGGG CACATTAGGG CACATTAGGG CACATTAGGG CACATTAGGG CACATTAGGA CACATTAGGG CACATTAGGG CACATTAGGG CACATTAGGG CACATTAGGG CACATTAGGG CACATTAGGG CACATTAGGG CACATTAGGG CACATTAGGG CACATTAGGG CACATTAGGG CACATTAGGG CACATTAGGG 150 CATCCCATTA CATCCCATTA CATCCCATTA CATCCCATTA CATCCCATTA CATCCCATTA CATCCCATTA CATCCCATTA CATCCCATTA CATCCCATTA CATCCCATTA CATCCCATTA CATCCCATTA CATCCCATTA CATCCTATTA CATCCTATTA CATCCTATTA CATCCCATTA CATCCCATTA CATCCCATTA CATCCCATTA CATCCCATTA CATCCCATTA CATCCCATTA CATCCCATTA CATCCCATTA CATCCCATTA CATCCCATTA CATCCCATTA CATCCCATTA CATCCCATTA CATCCCATTA CATCCCATTA CATCCCATTA CATCCCATTA CATCCCATTA CATCCCATTA CATCCCATTA CATCCCATTA CATCCCATTA CATCCCATTA CATCCCATTA CATCCCATTA 160 GTAAGCCGAC GTAAGCCGAC GTAAGCCGAC GTAAGCCGAT GTAAGCCGAT GTAAGCCGAC GTAAGCCGAC GTAAGCCGAC GTAAGCCGAC GTAAGCCGAC GTAAGCCGAC GTAAGCCGAC GTAAGCCGAC GTAAGCCTAC GTAAGCCGAC GTAAGCCGAC GTAAGCCGAC GTAAGCCGAC GTAAGCCGAC GTAAGCCGAC GTAAGCCGAC GTAAGCCGAC GTAAGCCGAC GTAAGCCGAC GTAAGCCGAC GTAAGCCGAC GTAAGCCGAC GTAAGCCGAC GTAAGCCGAC GTAAGCCGAC GTAAGCCGAC GTAAGCCGAC GTAAGCCGAC GTAAGCCGAC GTAAGCCGAC GTAAGCCGAC GTAAGCCGAC GTAAGCCGAC GTAAGCCGAC GTAAGCCGAC GTAAGCCGAC GTAAGCCGAC GTAAGCCGAC Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis 170 GTGGGCCGAT GTGGGCCGAT GTGGGCCGAT GTGGGCCGAT GTGGGCCGAT GTGGGCCGAT GTGGGCCGAT 180 190 200 TCCTCCGATT CTGATATTAT TGACCGATTT TCCTCCGATT CTGATATTAT TGACCGATTT TCCTCCGATT CTGATATTAT TGACCGATTT TCCTCCGATT CTGATATTAT TGACCGATTT TCCTCCGATT CTGATATTAT TGACCGATTT TCCTCCGATT CTGATATTAT TGACCGATTT TCCTCCGATT CTGATATTAT TGACCGATTT 210 GTGCGTATAT GTGCGTATAT GTGCGTATAT GTGCGTATAT GTGCGTATAT GTGCGTATAT GTGCGTATAT 220 GCAGAAATCT GCAGAAATCT GCAGAAATCT GCAGAAATCT GCAGAAATCT GCAGAAATCT GCAGAAATCT 230 TTCTCATTAT TTCTCATTAT TTCTCATTAT TTCTCATTAT TTCTCATTAT TTCTCATTAT TTCTCATTAT 240 CACAGTGGAT CACAGTGGAT CACAGTGGAT CACAGTGGAT CACAGTGGAT CACAGTGGAT CACAGTGGAT 127 Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana GTGGGCCGAT GTGGGCCGAT GTGGGCCGAT GTGGGCCGAT GTGGGCCGAT GTGGGCCGAT GTGGGCCGAT GTGGGCCGAT GTGGGCCGAT GTGGGCCGAT GTGGGCCGAT GTGGGCCGAT GTGGGCCGAT GTGGGCCGAT GTGGGCCGAT GTGGGCCGAT GTGGGCCGAT GTGGGCCGAT GTGGGCCGAT GTGGGCCGAT GTGGGCCGAT GTGGGCCGAT GTGGGCCGAT GTGGGCCGAT GTGGGCCGAT GTGGGCCGAT GTGGGCCGAT GTGGGCCGAT GTGGGCCGAT GTGGGCCGAT GTGGGCCGAT GTGGGCCGAT GTGGGCCGAT GTGGGCCGAT GTGGGCCGAT GTGGGCCGAT TCCTCCGATT TCCTCCGATT TCCTCCGATT TCCTCCGATT TCCTCCGATT TCCTCCGATT TCCTCCGATT TCCTCCGATT TCCTCCGATT TCCTCCGATT TCCTCCGATT TCCTCCGATT TCCTCCGATT TCCTCCGATT TCCTCCGATT TCCTCCGATT TCCTCCGATT TCCTCCGATT TCCTCCGATT TCCTCCGATT TCCTCCGATT TCCTCCGATT TCCTCCGATT TCCTCCGATT TCCTCCGATT TCCTCCGATT TCCTCCGATT TCCTCCGATT TCCTCCGATT TCCTCCGATT TCCTCCGATT TCCTCCGATT TCCTCCGATT TCCTCCGATT TCCTCCGATT TCCTCCGATT CTGATATTAT CTGATATTAT CTGATATTAT CTGATATTAT CTGATATTAT CTGATATTAT CTGATATTAT CTGATATTAT CTGATATTAT CTGATATTAT CTGATATTAT CTGATATTAT CTGATATTAT CTGATATTAT CTGATATTAT CTGATATTAT CTGATATTAT CTGATATTAT CTGATATTAT CTGATATTAT CTGATATTAT CTGATATTAT CTGATATTAT CTGATATTAT CTGATATTAT CTGATATTAT CTGATATTAT CTGATATTAT CTGATATTAT CTGATATTAT CTGATATTAT CTGATATTAT CTGATATTAT CTGATATTAT CTGATATTAT CTGATATTAT TGACCGATTT TGACCGATTT TGACCGATTT TGACCGATTT TGACCGATTT TGACCGATTT TGACCGATTT TGACCGATTT TGACCGATTT TGACCGATTT TGACCGATTT TGACCGATTT TGACCGATTT TGACCGATTT TGACCGATTT TGACCGATTT TGACCGATTT TGACCGATTT TGACCGATTT TGACCGATTT TGACCGATTT TGACCGATTT TGACCGATTT TGACCGATTT TGACCGATTT TGACCGATTT TGACCGATTT TGACCGATTT TGACCGATTT TGACCGATTT TGACCGATTT TGACCGATTT TGACCGATTT TGACCGATTT TGACCGATTT TGACCGATTT GTGCGTATAT GTGCGTATAT GTGCGTATAT GTGCGTATAT GTGCGTATAT GTGCGTATAT GTGCGTATAT GTGCGTATAT GTGCGTATAT GTGCGTATAT GTGCGTATAT GTGCGTATAT GTGCGTATAT GTGCGTATAT GTGCGTATAT GTGCGTATAT GTGCGTATAT GTGCGTATAT GTGCGTATAT GTGCGTATAT GTGCGTATAT GTGCGTATAT GTGCGTATAT GTGCGTATAT GTGCGTATAT GTGCGTATAT GTGCGTATAT GTGCGTATAT GTGCGTATAT GTGCGTATAT GTGCGTATAT GTGCGTATAT GTGCGTATAT GTGCGTATAT GTGCGTATAT GTGCGTATAT GCAGAAATCT GCAGAAATCT GCAGAAATCT GCAGAAATCT GCAGAAATCT GCAGAAATCT GCAGAAATCT GCAGAAATCT GCAGAAATCT GCAGAAATCT GCAGAAATCT GCAGAAATCT GCAGAAATCT GCAGAAATCT GCAGAAATCT GTAGAAATCT GCAGAAATCT GCAGAAATCT GCAGAAATCT GCAGAAATCT GCAGAAATCT GCAGAAATCT GCAGAAATCT GCAGAAATCT GCAGAAATCT GCAGAAATCT GTAGAAATCT GCAGAAATCT GCAGAAATCT GCAGAAATCT GCAGAAATCT GCAGAAATCT GCAGAAATCT GCAGAAATCT GCAGAAATCT GCAGAAATCT TTCTCATTAT TTCTCATTAT TTCTCATTAT TTCTCATTAT TTCTCATTAT TTCTCATTAT TTCTCATTAT TTCTCATTAT TTCTCATTAT TTCTCATTAT TTCTCATTAT TTCTCATTAT TTCTCATTAT TTCTCATTAT TTCTCATTAT TTCTCATTAT TTCTCATTAT TTCTCATTAT TTCTCATTAT TTCTCATTAT TTCTCATTAT TTCTCATTAT TTCTCATTAT TTCTCATTAT TTCTCATTAT TTCTCATTAT TTCTCATTAT TTCTCATTAT TTCTCATTAT TTCTCATTAT TTCTCATTAT TTCTCATTAT TTCTCATTAT TTCTCATTAT TTCTCATTAT TTCTCATTAT CACAGTGGAT CACAGTGGAT CACAGTGGAT CACAGTGGAT CACAGTGGAT CACAGTGGAT CACAGTGGAT CACAGTGGAT CACAGTGGAT CACAGTGGAT CACAGTGGAT CACAGTGGAT CACAGTGGAT CACAGTGGAT CACAGTGGAT CACAGTGGAT CACAGTGGAT CACAGTGGAT CACAGTGGAT CACAGTGGAT CACAGTGGAT CACAGTGGAT CACAGTGGAT CACAGTGGAT CACAGTGGAT CACAGTGGAT CACAGTGGAT CACAGTGGAT CACAGTGGAT CACAGTGGAT CACAGTGGAT CACAGTGGAT CACAGTGGAT CACAGTGGAT CACAGTGGAT CACAGTGGAT Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii 250 CTTCAAAAAA CTTCAAAAAA CTTCAAAAAA CTTCAAAAAA CTTCAAAAAA CTTCAAAAAA CTTCAAAAAA CTTCAAAAAA CTTCAAAAAA CTTCAAAAAA CTTCAAAAAA CTTCAAAAAA CTTCAAAAAA CTTCAAAAAA CTTCAAAAAA CTTCAAAAAA 260 270 280 AAAGAGTTTG TATCGAATAA AATATATACT AAAGAGTTTG TATCGAATAA AATATATACT AAAAAGTTTG TATCGAATAA AATATATACT AAAAAGTTTG TATCGAATAA AATATATACT AAA-AGTTTG TATCGAATAA AATATATACT AAAGAGTTTG TATCGAATAA AATATATACT AAAGAGTTTG TATCGAATAA AATATATACT AAAGAGTTTG TATCGAATAA AATATATACT AAAGAGTTTG TATCGAATAA AATATATACT AAAGAGTTTG TATCGAATAA AATATATACT AAAGAGTTTG TATCGAATAA AATATATACT AAAGAGTTTG TATCGAATAA AATATATACT AAAGAGTTTG TATCGAATAA AATATATACT AAAGAGTTTG TATCGAATAA AATATATACT AAAGAGTTTG TATCGAATAA AATATATACT AAAGAGTTTG TATCGAATAA AATATATACT 290 TCGGTTTTCT TCGGTTTTCT TCGGTTTTCT TCGGTTTTCT TCGGTTTTCT TCGGTTTTCT TCGGTTTTCT TCGGTTTTCT TCGGTTTTCT TCGGTTTTCT TCGGTTTTCT TCGGTTTTCT TCGGTTTTCT TCGGTTTTCT TCGGTTTTCT TCGGTTTTCT 300 TGTGTTAAAA TGTGTTAAAA TGTGTTAAAA TGTGTTAAAA TGTGTTAAAA TGTGTTAAAA TGTGTTAAAA TGTGTTAAAA TGTGTTAAAA TGTGTTAAAA TGTGTTAAAA TGTGTTAAAA TGTGTTAAAA TGTGTTAAAA TGTGTTAAAA TGTGTTAAAA 310 CTTTGGCCCG CTTTGGCCCG CTTTGGCCCG CTTTGGCCCG CTTTGGCCCG CTTTGGCCCG CTTTGGCCCG CTTTGGCCCG CTTTGGCCCG CTTTGGCCCG CTTTGGCCCG CTTTGGCCCG CTTTGGCCCG CTTTGGCCCG CTTTGGCCCG CTTTGGCCCG 320 TAAACACAAA TAAACACAAA TAAACACAAA TAAACACAAA TAAACACAAA TAAACACAAA TAAACACAAA TAAACACAAA TAAACACAAA TAAACACAAA TAAACACAAA TAAACACAAA TAAACACAAA TAAACACAAA TAAACACAAA TAAACACAAA 128 Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana CTTCAAAAAA CTTCAAAAAA CTTCAAAAAA CTTCAAAAAA CTTCAAAAAA CTTCAAAAAA CTTCAAAAAA CTTCAAAAAA CTTCAAAAAA CTTCAAAAAA CTTCAAAAAA CTTCAAAAAA CTTCAAAAAA CTTCAAAA?A CTTCAAAAAA CTTCAAAAAA CTTCAAAAAA CTTCAAAAAA CTTCAAAAAA CTTCAAAAAA CTTCAAAAAA CTTCAAAAAA CTTCAAAAAA CTTCAAAAAA CTTCAAAAAA CTTCAAAAAA CTTCAAAAAA AAAGAGTTTG AAAGAGTTTG AAAGAGTTTG AAAGAGTTTG AAAGAGTTTG AAAGAGTTTG AAAGAGTTTG AAAGAGTTTG AAAGAGTTTG AAAGAGTTTG AAAGAGTTTG AAAGAGTTTG AAAGAGTTTG AAAGAGTTTG AAAGAGTTTG AAAGAGTTTG AAAGAGTTTG AAAGAGTTTG AAAGAGTTTG AAAGAGTTTG AAAGAGTTTG AAAGAGTTTG AAAGAGTTTG AAAGAGTTTG AAAGAGTTTG AAAGAGTTTG AAAGAGTTTG TATCGAATAA TATCGAATAA TATCGAATAA TATCGAATAA TATCGAATAA TATCGAATAA TATCGAATAA TATCGAATAA TATCGAATAA TATCGAATAA TATCGAATAA TATCGAATAA TATCGAATAA TATCGAATAA TATCGAATAA TATCGAATAA TATCGAATAA TATCGAATAA TATCGAATAA TATCGAATAA TATCGAATAA TATCGAATAA TATCGAATAA TATCGAATAA TATCGAATAA TATCGAATAA TATCGAATAA AATATATACT AATATATACT AATATATACT AATATATACT AATATATACT AATATATACT AATATATACT AATATATACT AATATATACT AATATATACT AATATATACT AATATATACT AATATATACT AATATATACT AATATATACT AATATATACT AATATATACT AATATATACT AATATATACT AATATATACT AATATATACT AATATATACT AATATATACT AATATATACT AATATATACT AATATATACT AATATATACT TCGGTTTTCT TCGGTTTTCT TCGGTTTTCT TCGGTTTTCT TCGGTTTTCT TCGGTTTTCT TCGGTTTTCT TCGGTTTTCT TCGGTTTTCT TCGGTTTTCT TCGGTTTTCT TCGGTTTTCT TCGGTTTTCT TCGGTTTTCT TCGGTTTTCT TCGGTTTTCT TCGGTTTTCT TCGGTTTTCT TCGGTTTTCT TCGGTTTTCT TCGGTTTTCT TCGGTTTTCT TCGGTTTTCT TCGGTTTTCT TCGGTTTTCT TCGGTTTTCT TCGGTTTTCT TGTGTTAAAA TGTGTTAAAA TGTGTTAAAA TGTGTTAAAA TGTGTTAAAA TGTGTTAAAA TGTGTTAAAA TGTGTTAAAA TGTGTTAAAA TGTGTTAAAA TGTGTTAAAA TGTGTTAAAA TGTGTTAAAA TGTGTTAAAA TGTGTTAAAA TGTGTTAAAA TGTGTTAAAA TGTGTTAAAA TGTGTTAAAA TGTGTTAAAA TGTGTTAAAA TGTGTTAAAA TGTGTTAAAA TGTGTTAAAA TGTGTTAAAA TGTGTTAAAA TGTGTTAAAA CTTTGGCCCG CTTTGGCCCG CTTTGGCCCG CTTTGGCCCG CTTTGGCCCG CTTTGGCCCG CTTTGGCCCG CTTTGGCCCG CTTTGGCCCG CTTTGGCCCG CTTTGGCCCG CTTTGGCCCG CTTTGGCCCG CTTTGGCCCG CTTTGGCCCG CTTTGGCCCG CTTTGGCCCG CTTTGGCCCG CTTTGGCCCG CTTTGGCCCG CTTTGGCCCG CTTTGGCCCG CTTTGGCCCG CTTTGGCCCG CTTTGGCCCG CTTTGGCCCG CTTTGGCCCG TAAACACAAA TAAACACAAA TAAACACAAA TAAACACAAA TAAACACAAA TAAACACAAA TAAACACAAA TAAACACAAA TAAACACAAA TAAACACAAA TAAACACAAA TAAACACAAA TAAACACAAA TAAACACAAA TAAACACAAA TAAACACAAA TAAACACAAA TAAACACAAA TAAACACAAA TAAACACAAA TAAACACAAA TAAACACAAA TAAACACAAA TAAACACAAA TAAACACAAA TAAACACAAA TAAACACAAA Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora 330 AGTACTGTAC AGTACTGTAC AGTACTGTAC AGTACTGTAC AGTACTGTAC AGTACTGTAC AGTACTGTAC AGTACTGTAC AGTACTGTAC AGTACTGTAC AGTACTGTAC AGTACTGTAC AGTACTGTAC AGTACTGTAC AGTACTGTAC AGTACTGTAC AGTACTGTAC AGTACTGTAC AGTACTGTAC AGTACTGTAC AGTACTGTAC AGTACTGTAC AGTACTGTAC AGTACTGTAC AGTACTGTAC 340 350 360 GTGCTTTTTT GAAAAGATTA GGTTCGGAAT GTGCTTTTTT GAAAAGATTA GGTTCGGAAT GTGCTTTTTT GAAAAGATTA GGTTCGGAAT GTGCTTTTTT GAAAAGATTA GGTTCGGAAT GTGCTTTTTT GAAAAGATTA GGTTCGGAAT GTGCTTTTTT GAAAAGATTA GGTTCGGAAT GTGCTTTTTT GAAAAGATTA GGTTCGGAAT GTGCTTTTTT GAAAAGATTA GGTTCGGAAT GTGCTTTTTT GAAAAGATTA GGTTCGGAAT GTGCTTTTTT GAAAAGATTA GGTTCGGAAT GTGCTTTTTT GAAAAGATTA GGTTCGGAAT GTGCTTTTTT GAAAAGATTA GGTTCGGAAT GTGCTTTTTT GAAAAGATTA GGTTCGGAAT GTGCTTTTTT GAAAAGATTA GGTTCGGAAT GTGCTTTTTT GAAAAGATTA GGTTCGGAAT GTGCTTTTTT GAAAAGATTA GGTTCGGAAT GTGCTTTTTT GAAAAGATTA GGTTCGGAAT GTGCTTTTTT GAAAAGATTA GGTTCGGAAT GTGCTTTTTT GAAAAGATTA GGTTCGGAAT GTGCTTTTTT GAAAAGATTA GGTTCGGAAT GTGCTTTTTT GAAAAGATTA GGTTCGGAAT GTGCTTTTTT GAAAAGATTA GGTTCGGAAT GTGCTTTTTT GAAAAGATTA GGTTCGGAAT GTGCTTTTTT GAAAAGATTA GGTTCGGAAT GTGCTTTTTT GAAAAGATTA GGTTCGGAAT 370 TTTTGGAAGA TTTTGGAAGA TTTTGGAAGA TTTTGGAAGA TTTTGGAAGA TTTTGGAAGA TTTTGGAAGA TTTTGGAAGA TTTTGGAAGA TTTTGGAAGA TTTTGGAAGA TTTTGGAAGA TTTTGGAAGA TTTTGGAAGA TTTTGGAAGA TTTTGGAAGA TTTTGGAAGA TTTTGGAAGA TTTTGGAAGA TTTTGGAAGA TTTTGGAAGA TTTTGGAAGA TTTTGGAAGA TTTTGGAAGA TTTTGGAAGA 380 ATTCTTTACG ATTCTTTACG ATTCTTTACG ATTCTTTACG ATTCTTTACG ATTCTTTACG ATTCTTTACG ATTCTTTACG ATTCTTTACG ATTCTTTACG ATTCTTTACG ATTCTTTACG ATTCTTTACG ATTCTTTACG ATTCTTTACG ATTCTTTACG ATTCTTTACG ATTCTTTACG ATTCTTTACG ATTCTTTACG ATTCTTTACG ATTCTTTACG ATTCTTTACG ATTCTTTACG ATTCTTTACA 390 GAAACGGAAG GAAACGGAAG GAAACGGAAG GAAACGGAAG GAAACGGAAG GAAACGGAAG GAAACGGAAG GAAACGGAAG GAAACGGAAG GAAACGGAAG GAAACGGAAG GAAACGGAAG GAAACGGAAG GAAACGGAAG GAAACGGAAG GAAACGGAAG GAAACGGAAG GAAACGGAAG GAAACGGAAG GAAACGGAAG GAAACGGAAG GAAACGGAAG GAAACGGAAG GAAACGGAAG GAAACGGAAG 400 AAAACCATGT AAGACCATGT AAGATCATGT AAGACCATGT AAGACCATGT AAGACCATGT AAGACCATGT AAGACCATGT AAGACCATGT AAGACCATGT AAGACCATGT AAGACCATGT AAGACCATGT AAGACCATGT AAGACCATGT AAGACCATGT AAGACCATGT AAGACCATGT AAGACCATGT AAGACCATGT AAGACCATGT AAGACCATGT AAGACCATGT AAGACCATGT AAGACCATGT 129 Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana AGTACTGTAC AGTACTGTAC AGTACTGTAC AGTACTGTAC AGTACTGTAC AGTACTGTAC AGTACTGTAC AGTACTGTAC AGTACTGTAC AGTACTGTAC AGTACTGTAC AGTACTGTAC AGTACTGTAC AGTACTGTAC AGTACTGTAC AGTACTGTAC AGTACTGTAC AGTACTGTAC GTGCTTTTTT GTGCTTTTTT GTGCTTTTTT GTGCTTTTTT GTGCTTTTTT GTGCTTTTTT GTGCTTTTTT GTGCTTTTTT GTGCTTTTTT GTGCTTTTTT GTGCTTTTTT GTGCTTTTTT GTGCTTTTTT GTGCTTTTTT GTGCTTTTTT GTGCTTTTTT GTGCTTTTTT GTGCTTTTTT GAAAAGATTA GAAAAGATTA GAAAAGATTA GAAAAGATTA GAAAAGATTA GAAAAGATTA GAAAAGATTA GAAAAGATTA GAAAAGATTA GAAAAGATTA GAAAAGATTA GAAAAGATTA GAAAAGATTA GAAAAGATTA GAAAAGATTA GAAAAGATTA GAAAAGATTA GAAAAGATTA GGTTCGGAAT GGTTCGGAAT GGTTCGGAAT GGTTCGGAAT GGTTCGGAAT GGTTCGGAAT GGTTCGGAAT GGTTCGGAAT GGTTCGGAAT GGTTCGGAAT GGTTCGGAAT GATTCGGAAT GGTTCGGAAT GGTTCGGAAT GGTTCGGAAT GGTTCGGAAT GGTTCGGAAT GGTTCGGAAT TTTTGGAAGA TTTTGGAAGA TTTTGGAAGA TTTTGGAAGA TTTTGGAAGA TTTTGGAAGA TTTTGGAAGA TTTTGGAAGA TTTTGGAAGA TTTTGGAAGA TTTTGGAAGA TTTTGGAAGA TTTTGGAAGA TTTTGGAAGA TTTTGGAAGA TTTTGGAAGA TTTTGGAAGA TTTTGGAAGA ATTCTTTACG ATTCTTTACG ATTCTTTACG ATTCTTTACG ATTCTTTACG ATTCTTTACG ATTCTTTACG ATTCTTTACG ATTCTTTACG ATTCTTTACG ATTCTTTACA ATTCTTTACG ATTCTTTACG ATTCTTTACG ATTCTTTACG ATTCTTTACG ATTCTTTACG ATTCTTTACG GAAACGGAAG GAAACGGAAG GAAACGGAAG GAAACGGAAG GAAACGGAAG GAAACGGAAG GAAACGGAAG GAAACGGAAG GAAACGGAAG GAAACGGAAG GAAACGGAAG GAAACGGAAG GAAACGGAAG GAAACGGAAG GAAACGGAAG GAAACGGAAG GAAACGGAAG GAAACGGAAG AAGACCATGT AAGACCATGT AAGACCATGT AAGACCATGT AAGACCATGT AAGACCATGT AAGACCATGT AAGACCATGT AAGACCATGT AAGACCATGT AAGACCATGT AAGACCATGT AAGACCATGT AAGACCATGT AAGACCATGT AAGACCATGT AAGACCATGT AAGACCATGT Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii 410 TTTTTCTTTG TTTTTCTTTG TTTTTCTTTG TTTTTCTTTG TTTTTCTTTG TTTTTCTTTG TTTTTCTTTG TTTTTCTTTG TTTTTCTTTG TTTTTCTTTG TTTTTCTTTG TTTTTCTTTG TTTTTCTTTG TTTTTCTTTG TTTTTCTTTG TTTTTCTTTG TTTTTCTTTG TTTTTCTTTG TTTTTCTTTG TTTTTCTTTG TTTTTCTTTG TTTTTCTTTG TTTTTCTTTG TTTTTCTTTG TTTTTCTTTG TTTTTCTTTG TTTTTCTTTG TTTTTCTTTG TTTTTCTTTG TTTTTCTTTG TTTTTCTTTG TTTTTCTTTG TTTTTCTTTG TTTTTCTTTG 420 430 440 ATCTTCCCAA GAGGTTTTTT TGCTTTGCGA ATCTTCCCAA GAGGTTTTTT TGCTTTGCGA ATCTTCCCAA GAGGTTTTTT TGCTTTGCGA ATCTTTCCAA GAGGGTTTTT TGCTTTGCGA ATCTTTCCAA GAGGGTTTTT TGCTTTGCGA ATCTTCCCAA AAGGTTTTTT TACTTTGCGA ATCTTCCCAA AAGGTTTTTT TACTTTGCGA ATCTTCCCAA AAGGTTTTTT TACTTTGCGA ATCTTCCCAA AAGGTTTTTT TACTTTGCGA ATCTTCCCAA AAGGTTTTTT TACTTTGCGA ATCTTTCAAA AAGGTTTTTT TACTTTGCGA ATCTTTCAAA AAGGTTTTTT TACTTTGCGA ATCTTTCAAA AAGGTTTTTT TACTTTGCGA ATCTTCCCAA GAGGTTTTTT TGCTTTGCGA ATCTTCCCAA GAGGTTTTTT TGCTTTGCGA ATCTTCCCAA GAGGTTTTTT TGCTTTGCGA ATCTTCCCAA GAGGTTTTTT TGCTTTGCGA ATCTTCCCAA AAGGTTTTTT TACTTTGCGA ATCTTCCCAA AAGGTTTTTT TACTTTGCGA ATCTTCCCAA AAGGTTTTTT TACTTTGCGA ATCTTCCCAA AAGGTTTTTT TACTTTGCGA ATCTTCCCAA AAGGTTTTTT TACTTTGCGA ATCTTCCCAA AAGGTTTTTT TACTTTGCGA ATCTTCCCAA AAGGTTTTTT TACTTTGCGA ATCTTCCCAA AAGGTTTTTT TACTTTGCGA ATCTTCCCAA AAGGTTTTTT TACTTTGCGA ATCTTCCCAA AAGGTTTTTT TACTTTGCGA ATCTTCCCAA AAGGTTTTTT TACTTTGCGA ATCTTCCCAA AAGGTTTTTT TACTTTGCGA ATCTTCCCAA AAGGTTTTTT TACTTTGCGA ATCTTCCCAA AAGGTTTTTT TACTTTGCGA ATCTTCCCAA AAGGTTTTTT TACTTTGCGA ATCTTCCCAA AAGGTTTTTT TACTTTGCGA ATCTTCCCAA AAGGTTTTTT TACTTTGCGA 450 AAGTTCTATC AAGTTCTATC AAGTTCTATC AAGTTCTATC AAGTTCTATC AAGTTCTATC AAGTTCTATC AAGTTCTATC AAGTTCTATC AAGTTCTATC AAGTTCTATC AAGTTCTATC AAGTTCTATC AAGTTCTATC AAGTTCTATC AAGTTCTATC AAGTTCTATC AAGTTCTATC AAGTTCTATC AAGTTCTATC AAGTTCTATC AAGTTCTATC AAGTTCTATC AAGTTCTATC AAGTTCTATC AAGTTCTATC AAGTTCTATC AAGTTCTATC AAGTTCTATC AAGTTCTATC AAGTTCTATC AAGTTCTATC AAGTTCTATC AAGTTCTATC 460 GGGGACGAAT GGGGACGAAT GGGGACGAAT GGGGACGAAT GGGGACGAAT GGGGACGAAT GGGGACGAAT GGGGACGAAT GGGGACGAAT GGGGACGAAT GGGGACGAAT GGGGACGAAT GGGGACGAAT GGGGACGAAT GGGGACGAAT GGGGACGAAT GGGGACGAAT GGGGACGAAT GGGGACGAAT GGGGACGAAT GGGGACGAAT GGGGACGAAT GGGGACGAAT GGGGACGAAT GGGGACGAAT GGGGACGAAT GGGGACGAAT GGGGACGAAT GGGGACGAAT GGGGACGAAT GGGGACGAAT GGGGACGAAT GGGGACGAAT GGGGACGAAT 470 TTGGTATTTG TTGGTATTTG TTGGTATTTG TTGGTATTTG TTGGTATTTG TTGGTATTTG TTGGTATTTG TTGGTATTTG TTGGTATTTG TTGGTATTTG TTGGTATTTG TTGGTATTTG TTGGTATTTG TTGGTATTTG TTGGTATTTG TTGGTATTTG TTGGTATTTG TTGGTATTTG TTGGTATTTG TTGGTATTTG TTGGTATTTG TTGGTATTTG TTGGTATTTG TTGGTATTTG TTGGTATTTG TTGGTATTTG TTGGTATTTG TTGGTATTTG TTGGTATTTG TTGGTATTTG TTGGTATTTG TTGGTATTTG TTGGTATTTG TTGGTATTTG 480 GATATTATTT GATATTATTT GATATTATTT GATATTATTT GATATTATTT GATATTATTT GATATTATTT GATATTATTT GATATTATTT GATATTATTT GATATTATTT GATATTATTT GATATTATTT GATATTATTT GATATTATTT GATATTATTT GATATTATTT GATATTATTT GATATTATTT GATATTATTT GATATTATTT GATATTATTT GATATTATTT GATATTATTT GATATTATTT GATATTATTT GATATTATTT GATATTATTT GATATTATTT GATATTATTT GATATTATTT GATATTATTT GATATTATTT GATATTATTT 130 Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana TTTTTCTTTG TTTTTCTTTG TTTTTCTTTG TTTTTCTTTG TTTTTCTTTG TTTTTCTTTG TTTTTCTTTG TTTTTCTTTG TTTTTCTTTG ATCTTCCCAA ATCTTCCCAA ATCTTCCCAA ATCTTCCCAA ATCTTCCCAA ATCTTCCCAA ATCTTCCCAA ATCTTCCCAA ATCTTCCCAA AAGGTTTTTT AAGGTTTTTT AAGGTTTTTT AAGGTTTTTT AAGGTTTTTT AAGGTTTTTT AAGGTTTTTT AAGGTTTTTT AAGGTTTTTT TACTTTGCGA TACTTTGCGA TACTTTGCGA TACTTTGCGA TACTTTGCGA TACTTTGCGA TACTTTGCGA TACTTTGCGA TACTTTGCGA AAGTTCTATC AAGTTCTATC AAGTTCTATC AAGTTCTATC AAGTTCTATC AAGTTCTATC AAGTTCTATC AAGTTCTATC AAGTTCTATC GGGGACGAAT GGGGACGAAT GGGGACGAAT GGGGACGAAT GGGGACGAAT GGGGACGAAT GGGGACGAAT GGGGACGAAT GGGGACGAAT TTGGTATTTG TTGGTATTTG TTGGTATTTG TTGGTATTTG TTGGTATTTG TTGGTATTTG TTGGTATTTG TTGGTATTTG TTGGTATTTG GATATTATTT GATATTATTT GATATTATTT GATATTATTT GATATTATTT GATATTATTT GATATTATTT GATATTATTT GATATTATTT Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana 490 GTATCAATGC GTATCAATGC GTATCAATGC GTATCAATGC GTATCAATGC GTATCAATGC GTATCAATGC GTATCAATGC GTATCAATGC GTATCAATGC GTATCAATGC GTATCAATGC GTATCAATGC GTATCAATGC GTATCAATGC GTATCAATGC GTATCAATGC GTATCAATGC GTATCAATGC GTATCAATGC GTATCAATGC GTATCAATGC GTATCAATGC GTATCAATGC GTATCAATGC GTATCAATGC GTATCAATGC GTATCAATGC GTATCAATGC GTATCAATGC GTATCAATGC GTATCAATGC GTATCAATGC GTATCAATGC GGATCAATGC GTATCAATGC GTATCAATGC GTATCAATGC GTATCAATGC GTATCAATGC GTATCAATGC GTATCAATGC GTATCAATGC 500 510 TCTGGTCAAT CATGAATGAT TCTGGTCAAT CATGAATGAT TCTGGTCAAT CATGAATGAT TCTGGTCAAT CATGAATGAT TCTGGTCAAT CATGAATGAT TCTGGTCAAT CATGACTGAT TCTGGTCAAT CATGACTGAT TCTGGTCAAT CATGACTGAT TCTGGTCAAT CATGACTGAT TCTGGTCAAT CATGACTGAT TCTGGTCAAT CATGACTGAT TCTGGTCAAT CATGACTGAT TCTGGTCAAT CATGACTGAT TCTGGTCAAT CATGAATGAT TCTGGTCAAG CATGAATGAT TCTGGTCAAG CATGAATGAT TCTGGTCAAG CATGAATGAT TCTGGTCAAT CATGACTGAT TCTGGTCAAT CATGACTGAT TCTGGTCAAT CATGACTGAT TCTGGTCAAT CATGACTGAT TCTGGTCAAT CATGACTGAT TCTGGTCAAT CATGACTGAT TCTGGTCAAT CATGACTGAT TCTGGTCAAT CATGACTGAT TCTGGTCAAT CATGACTGAT TCTGGTCAAT CATGACTGAT TCTGGTCAAT CATGACTGAT TCTGGTCAAT CATGACTGAT TCTGGTCAAT CATGACTGAT TCTGGTCAAT CATGACTGAT TCTGGTCAAT CATGACTGAT TCTGGTCAAT CATGACTGAT TCTGGTCAAT CATGACTGAT TCTGGTCAAT CATGACTGAT TCTGGTCAAT CATGACTGAT TCTGGTCAAT CATGACTGAT TCTGGTCAAT CATGACTGAT TCTGGTCAAT CATGACTGAT TCTGGTCAAT CATGACTGAT TCTGGTCAAT CATGACTGAT TCTGGTCAAT CATGACTGAT TCTGGTCAAT CATGACTGAT 520 TGGTTATAAA TGGTTATAAA TGGTTATAAA TGGTTATAAA TGGTTATAAA TGGTTATGAA TGGTTATGAA TGGTTATGAA TGGTTATGAA TGGTTATGAA TGGTTATGAA TGGTTATGAA TGGTTATGAA TGGTTATAAA TGGTTATAAA TGGTTATAAA TGGTTATAAA TGGTTATGAA TGGTTATGAA TGGTTATGAA TGGTTATGAA TGGTTATGAA TGGTTATGAA TGGTTATGAA TGGTTATGAA TGGTTATGAA TGGTTATGAA TGGTTATGAA TGGTTATGAA TGGTTATGAA TGGTTATGAA TGGTTATGAA TGGTTATGAA TGGTTATGAA TGGTTATGAA TGGTTATGAA TGGTTATGAA TGGTTATGAA TGGTTATGAA TGGTTATGAA TGGTTATGAA TGGTTATGAA TGGTTATGAA 530 ATTATGTAAA ATTATGTAAA ATTATGTAAA ATTATGTAAA ATTATGTAAA ATTATGTAAA ATTATGTAAA ATTATGTAAA ATTATGTAAA ATTATGTAAA ATTATGTAAA ATTATGTAAA ATTATGTAAA ATTATGTAAA ATTATGTAAA ATTATGTAAA ATTATGTAAA ATTATGTAAA ATTATGTAAA ATTATGTAAA ATTATGTAAA ATTATGTAAA ATTATGTAAA ATTATGTAAA ATTATGTAAA ATTATGTAAA ATTATGTAAA ATTATGTAAA ATTATGTAAA ATTATGTAAA ATTATGTAAA ATTATGTAAA ATTATGTAAA ATTATGTAAA ATTATGTAAA ATTATGTAAA ATTATGTAAA ATTATGTAAA ATTATGTAAA ATTATGTAAA ATTATGTAAA ATTATGTAAA ATTATGTAAA 540 TTCAATTTAA TTCAATTTAA TTCAATTAAA TTCAATTAAA TTCCATTAAA TTCAATTAAA TTCAATTAAA TTCAATTAAA TTCAATTAAA TTCAATTAAA TTCAATTAAA TTCAATTAAA TTCAATTAAA TTCAATTAAA TTCAATTAAA TTCAATTAAA TTCAATTAAA TTCAATTAAA TTCAATTAAA TTCAATTAAA TTCAATTAAA TTCAATTAAA TTCAATTAAA TTCAATTAAA TTCAATTAAA TTCAATTAAA TTCAATTAAA TTCAATTAAA TTCAATTAAA TTCAATTAAA TTCAATTAAA TTCAATTAAA TTCAATTAAA TTCAATTAAA TTCAATTAAA TTCAATTAAA TTCAATTAAA TTCAATTAAA TTCAATTAAA TTCAATTAAA TTCAATTAAA TTCAATTAAA TTCAATTAAA 550 ATAATAA--ATAATAA--ATAATAA--ATAATAAGAA ATAATAAGAA ATAATAA--ATAATAA--ATAATAA--ATAATAA--ATAATAA--ATAATAA--ATAATAA--ATAATAA--ATAATAA--ATAATAA--ATAATAA--ATAATAA--ATAATAA--ATAATAA--ATAATAA--ATAATAA--ATAATAA--ATAATAA--ATAATAA--ATAATAA--ATAATAA--ATAATAA--ATAATAA--ATAATAA--ATAATAA--ATAATAA--ATAATAA--ATAATAA--ATAATAA--ATAATAA--ATAATAA--ATAATAA--ATAATAA--ATAATAA--ATAATAA--ATAATAA--ATAATAA--ATAATAA--- 560 --AATAAAAA --AATAAAAA --AATCAAAA AAAAAAAAAAAAAAAAAAA --AATCAAAA --AATCAAAA --AATCAAAA --AATCAAAA --AATCAAAA --AATAAAAA --AATAAAAA --AATAAAAA --AATAAAAA --AATAAAAA --AATAAAAA --AATAAAAA --AATCAAAA --AATCAAAA --AATCAAAA --AATCAAAA --AATCAAAA --AATCAAAA --AATCAAAA --AATCAAAA --AATCAAAA --AATCAAAA --AATCAAAA --AATAAAAA --AATCAAAA --AATCAAAA --AATCAAAA --AATCAAAA --AATCAAAA --AATCAAAA --AATCAAAA --AATAAAAA --AATCAAAA --AATCAAAA --AATCAAAA --AATCAAAA --AATCAAAA --AATCAAAA 131 Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana 570 TGAGAATTTT TGAGAATTTT TGAGAATTTT TGAGAATTTT TGAGAATTTT TGAGAATTTT TGAGAATTTT TGAGAATTTT TGAGAATTTT TGAGAATTTT TGAGAATTTT TGAGAATTTT TGAGAATTTT TGAGAATTTT TGAGAATTTT TGAGAATTTT TGAGAATTTT TGAGAATTTT TGAGAATTTT TGAGAATTTT TGAGAATTTT TGAGAATTTT TGAGAATTTT TGAGAATTTT TGAGAATTTT TGAGAATTTT TGAGAATTTT TGAGAATTTT TGAGAATTTT TGAGAATTTT TGAGAATTTT TGAGAATTTT TGAGAATTTT TGAGAATTTT TGAGAATTTT TGAGAATTTT TGAGAATTTT TGAGAATTTT TGAGAATTTT TGAGAATTTT TGAGAATTTT TGAGAATTTT TGAGAATTTT 580 590 TCCGAAATGA TGAAGAGATA TCCGAAATGA TGAAGAGATA TTCGAAATGA TCAAGAGATA TTCGAAATGA TGAAGAGATA TTCGAAATGA TGAAGAGATA TCCGAAATGA TGAAGAGATA TCCGAAATGA TGAAGAGATA TCCGAAATGA TGAAGAGATA TCCGAAATGA TGAAGAGATA TCCGAAATGA TGAAGAGATA TCCGAAATGA TGAAGAGATA TCCGAAATGA TGAAGAGATA TCCGAAATGA TGAAGAGATA TCCGAAATGA TGAAGAGATA TCGGAAATGA TGAAGAGATA TCGGAAATGA TGAAGAGATA TCCGAAATGA TGAAGAGATA TCCGAAATGA TGAAGAGATA TCCGAAATGA TGAAGAGATA TCCGAAATGA TGAAGAGATA TCCGAAATGA TGAAGAGATA TCCGAAATGA TGAAGAGATA TCCGAAATGA TGAAGAGATA TCCGAAATGA TGAAGAGATA TCCGAAATGA TGAAGAGATA TCCGAAATGA TGAAGAGATA TCCGAAATGA TGAAGAGATA TCCGAAATGA TGAAGAGATA TCCGAAATGA TGAAGAGATA TCCGAAATGA TGAAGAGATA TCCGAAATGA TGAAGAGATA TCCGAAATGA TGAAGAGATA TCCGAAATGA TGAAGAGATA TCCGAAATGA TGAAGAGATA TCCGAAATGA TGAAGAGATA TCCGAAATGA TGAAGAGATA TCCGAAATGA TGAAGAGATA TCCGAAATGA TGAAGAGATA TCCGAAATGA TGAAGAGATA TCCGAAATGA TGAAGA?ATA TCCGAAATGA TGAAGAGATA TCCGAAATGA TGAAGAAATA TCCGAAATGA TGAAGAGATA 600 ACAAACGAAT ACAAACGAAT ACAAACGAAT ACAAACGAAT ACAAACGAAT ACAAACGAAT ACAAACGAAT ACAAACGAAT ACAAACGAAT ACAAACGAAT ACAAACGCAT ACAAACGCAT ACAAACGCAT ACAAACGAAT ACAAACGAAT ACAAACGAAT ACAAACGAAT ACAAACGAAT ACAAACGAAT ACAAACGAAT ACAAACGAAT ACAAACGAAT ACAAACGAAT ACAAACGAAT ACAAATGAAT ACAAACGAAT ACAAACGAAT ACAAACGAAT ACAAACGAAT ACAAACGAAT ACAAACGAAT ACAAACGAAT ACAAACGAAT ACAAACGAAT ACAAACGCAT ACAAATGAAT ACAAACTAAT ACAAACGAAT ACAAACGAAT ACAAACGAAT ACAAACGAAT ACAAACGAAT ACAAACGAAT 610 TTATTTATTT TTATTTATTT TTATTTATTT TTATTTATTT TTCTTTATTT TTATTTATTT TTATTTATTT TTATTTATTT TTATTTATTT TTATTTATTT TTTTTTATTT TTTTTTATTT TTTTTTATTT TTATTTATTT TTATTTATTT TTATTTATTT TTATTTATTT TTATTTATTT TTATTTATTT TTATTTATTT TTATTTATTT TTATTTATTT TTATTTATTT TTATTTATTT TTATTTATTT TTATTTATTT TTATTTATTT TTATTTATTT TTATTTATTT TTATTTATTT TTATTTATTT TTATTTATTT TTATTTATTT TTATTTATTT TTTTTTTATT TTATTTATTT TTTTTTATTT TTATTTATTT TTATTTATTT TTATTTATTT TTTTTAATTT TTATTTATTT TTATTTATTT 620 CTAGTATTAA CTAGTATTAA CTAGTATTAA CTAGTATTAA CTAGTATTAA CTAGTATTAA CTAGTATTAA CTAGTATTAA CTAGTATTAA CTAGTATTAA CTAGTATTAA CTAGTATTAA CTAGTATTAA CTAGTATTAA CTAGTATTAA CTAGTATTAA CTAGTATTAA CTAGTATTAA CTAGTATTAA CTAGTATTAA CTAGTATTAA CTAGTATTAA CTAGTATTAA CTAGTATTAA CTAGTATTAA CTAGTATTAA CTAGTATTAA CTAGTATTAA CTAGTATTAA CTAGTATTAA CTAGTATTAA CTAGTATTAA CTAGTATTAA CTAGTATTAA CTAGTATTAA CTAGTATTAA CTAGTATTAA CTAGTATTAA CTAGTATTAA CTAGTATTAA CTAGTATTAA CTAGTATTAA CTAGTATTAA 630 ATGTTCATGC ATGTTCATGC ATGTTCATGC ATGTTCATGC ATGTTCATGC ATGTTCATGC ATGTTCATGC ATGTTCATGC ATGTTCATGC ATGTTCATGC ATGTTCATGC ATGTTCATGC ATGTTCATGC ATGTTCATGC ATGTTCATGC ATGTTCATGC ATGTTCATGC ATGTTCATGC ATGTTCATGC ATGTTCATGC ATGTTCATGC ATGTTCATGC ATGTTCATGC ATGTTCATGC ATGTTCATGC ATGTTCATGC ATGTTCATGC ATGTTCATGC ATGTTCATGC ATGTTCATGC ATGTTCATGC ATGTTCATGC ATGTTCATGC ATGTTCATGC ATGTTCATGC ATGTTCATGC ATGTTCATGC ATGTTCATGC ATGTTCATGC ATGTTCATGC ATGTTCATGC ATGTTCATGC ATGTTCATGC 640 AGTAAGAATA AGTAAGAATA AGTAAGAATA AGTAAGAATA AGTAAGAATA AGTAAGAATA AGTAAGAATA AGTAAGAATA AGTAAGAATA AGTAAGAATA AGTAAGAATA AGTAAGAATA AGTAAGAATA AGTAAGAATA AGTAAGAATA AGTAAGAATA AGTAAGAATA AGTAAGAATA AGTAAGAATA AGTAAGAATA AGTAAGAATA AGTAAGAATA AGTAAGAATA AGTAAGAATA AGTAAGAATA AGTAAGAATA AGTAAGAATA AGTAAGAATA AGTAAGAATA AGTAAGAATA AGTAAGAATA AGTAAGAATA AGTAAGAATA AGTAAGAATA AGTAAGAATA AGTAAGAATA AGTAAGAATA AGTAAGAATA AGTAAGAATA AGTAAGAATA AGTAAGAATA AGTAAGAATA AGTAAGAATA Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis 650 AGAGGGGATT AGAGGGGATT AGAGGGGATT AGAGGGGATT AGAGGGGATT AGAGGGGATT AGAGGGGATT 660 670 680 GGCCGAGTAT TCCACCTTTT TTCGAGTCCT GGCCGAGTAT TCCACTTTTT TTCGAGTCCT GGCCGAGTAT TCCACTTTTT TTCGAGTCCT GGCCGAGTAT TCCACTTTTT TTCGAGTCCT GGCCGAGTAT TCCACTTTTT TTCGAGTCCT GGCCGAGTAT TCCACTTTTT TTCGAGTCCT GGCCGAGTAT TCCACTTTTT TTCGAGTCCT 690 GTTTAGGGAA GTTTAGGGAA GTTTAGGGAA GTTTAGGGAA G?TTAGGGAA GTTTAGGGAA GTTTAGGGAA 700 TAAATAGGGT TAAATAGGGT TAAACAGGGT TAAACAGGGT TAAACAGGGT TAAACAGGGT TAAACAGGGT 710 TTTAGATGTA TTTAGATGTA TTTAGATGTA TTTAGATGTA TTTAGATGTA TTTAGATGTA TTTAGATGTA 720 TACATAGAGA TACATAGAGA TACATAGAGA TACATAGAGA TACATAGAGA TACATAGAGA TACATAGAGA 132 Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana AGAGGGGATT AGAGGGGATT AGAGGGGATT AGAGGGGATT AGAGGGGATT AGAGGGGATT AGAGGGGATT AGAGGGGATT AGAGGGGATT AGAGGGGATT AGAGGGGATT AGAGGGGATT AGAGGGGATT AGAGGGGATT AGAGGGGATG AGAGGGGATG AGAGGGGATG AGAGGGGATT AGAGGGGATT AGAGGGGATT AGAGGGGATT AGAGGGGATT AGAGGGGATT AGAGGGGATT AGAGGGGATT AGAGGGGATT AGAGGGGATG AGAGGGGATT AGAGGGGATT AGAGGGGATT AGAGGGGATT AGAGGGGATT AGAGGGGATT AGAGGGGATT AGAGGGGATT AGAGGGGATT GGCCGAGTAT GGCCGAGTAT GGCCGAGTAT GGCCGAGTAT GGCCGAGTAT GGCCGAGTAT GGCCGAGTAT GGCCGAGTAT GGCTGAGTAT GGCCGAGTAT GGCCGAGTAT GGCCGAGTAT GGCCGAGTAT GGCCGAGTAT GGCCGAGTAT GGCCGAGTAT GGCCGAGTAT GGCCGAGTAT GGCCGAGTAT GGCCGAGTAT GGCCGAGTAT GGCCGAGTAT GGCCGAGTAT GGCCGAGTAT GGCCGAGTAT GGCCGAGTAT GGCCGAGTAT GGCCGAGTAT GGCCGAGTAT GGCCGAGTAT GGCCGAGTAT GGCCGAGTAT GGCCGAGTAT GGCCGAGTAT GGCCGAGTAT GGCCGAGTAT TCCACTTTTT TCCACTTTTT TCCACTTTTT TCCACTTTTT TCCACTTTTT TCCACTTTTT TCCACTTTTT TCCACTTTTT TCCACTTTTT TCCACTTTTT TCCACTTTTT TCCACTTTTT TCCACTTTTT TCCACTTTTT TCCACTTTTT TCCACTTTTT TCCACTTTTT TCCACTTTTT TCCACTTTTT TCCACTTTTT TCCACTTTTT TCCACTTTTT TCCACTTTTT TCCACTTTTT TCCACTTTTT TCCACTTTTT TCCACTTTTT TCCACTTTTT TCCACTTTTT TCCACTTTTT TCCACTTTTT TCCACTTTTT TCCACTTTTT TCCACTTTTT TCCACTTTTT TCCACTTTTT TTCGAGTCCT TTCGAGTCCT TTCGAGTCCT TTCGAGTCCT TTCGAGTCCT TTCGAGTCCT TTCGAGTCCT TTCGAGTCCT TTCGAGTCCT TTCGAGTCCT TTCGAGTCCT TTCGAGTCCT TTCGAGTCCT TTCGAGTCCT TTCGAGTCCT TTCGAGTCCT TTCGAGTCCT TTCGAGTCCT TTCGAGTCCT TTCGAGTCCT TTCGAGTCCT TTCGAGTCCT TTCGAGTCCT TTCGAGTCCT TTCGAGTCCT TTCGAGTCCT TTCGAGTCCT TTCGAGTCCT TTCGAGTCCT TTCGAGTCCT TTCGAGTCCT TTCGAGTCCT TTCGAGTCCT TTCGAGTCCT TTCGAGTCCT TTCGAGTCCT GTTTAGGGAA GTTTAGGGAA GTTTAGGGAA GTTTAGGGAA GTTTAGGGAA GTTTAGGGAA GTTTAGGGAA GTTTAGGGAA GTTTAGGGAA GTTTAGGGAA GTTTAGGGAA GTTTAGGGAA GTTTAGGGAA GTTTAGGGAA GTTTAGGGAA GTTTAGGGAA GTTTAGGGAA GTTTAGGGAA GTTTAGGGAA GTTTAGGGAA GTTTAGGGAA GTTTAGGGAA GTTTAGGGAA GTTTAGGGAA GTTTAGGGAA GTTTAGGGAA GTTTAGGGAA GTTTAGGGAA GTTTAGGGAA GTTTAGGGAA GTTTAGGGAA GTTTAGGGAA GTTTAGGGAA GTTTAGGGAA GTTTAGGGAA GTTTAGGGAA TAAACAGGGT TAAACAGGGT TAAACAGGGT TAAACAGGGT TAAACAGGGT TAAACAGGGT TAAACAGGGT TAAACAGGGT TAAACAGGGT TAAACAGGGT TAAACAGGGT TAAACAGGGT TAAACAGGGT TAAACAGGGT TAAACAGGGT TAAACAGGGT TAAACAGGGT TAAACAGGGT TAAACAGGGT TAAACAGGGT TAAACAGGGT TAAACAGGGT TAAACAGGGT TAAACAGGGT TAAACAGGGT TAAACAGGGT TAAACAGGGT TAAACAGGGT TAAACAGGGT TAAACAGGGT TAAACAGGGT TAAACAGGGT TAAACAGGGT TAAACAGGGT TAAACAGGGT TAAACAGGGT TTTAGATGTA TTTAGATGTA TTTAGATGTA TTTAGATGTA TTTAGATGTA TTTAGATGTA TTAAAATGTA TTTAGATGTA TTTAGATGTA TTTAGATGTA TTTAGATGTA TTTAGATGTA TTTAGATGTA TTTAGATGTA TTTAGATGTA TTTAGATGTA TTTAGATGTA TTTAGATGTA TTTAGATGTA TTAAAATGTA TTTAGATGTA TTTAGATGTA TTTAGATGTA TT?AAATGTA TTTAGATGTA TTTAGATGTA TTTAGATGTA TTTTGATGTA TTTAGATGTA TTTAGATGTA TTTAGATGTA TTTAGATGTA TTTAGATGTA TTTTGATGTA TTTAGATGTA TTTAGATGTA TACATAGAGA TACATAGAGA TACATAGAGA TACATAGAGA TACATAGAGA TACATAGAGA TACATAGAGA TACATAGAGA TACATAGAGA TACATAGAGA TACATAGAGA TACATAGAGA TACATAGAGA TACATAGAGA TACATAGAGA TACATAGAGA TACATAGAGA TACATAGAGA TACATAGAGA TACATAGAGA TACATAGAGA TACATAGAGA TACATAGAGA TACATAGAGA TACATAGAGA TACATAGAGA TACATAGAGA TACATAGAGA TACATAGAGA TACATAGAGA TACATAGAGA TACATAGAGA TACATAGAGA TACATAGAGA TACATAGAGA TACATAGAGA Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii 730 AAGCCGTGTG AAGCCGTGTG AAGCCGTGTG AAGCCGTGTG AAGCCGTGTG AAGCCGTGTG AAGCCGTGTG AAGCCGTGTG AAGCCGTGTG AAGCCGTGTG AAGCCGTGTG AAGCCGTGTG AAGCCGTGTG AAGCCGTGTG AAGCCGTGTG AAGCCGTGTG 740 750 CAATGAAAAA TGCAAGCACG CAATGAAAAA TGCAAGCACG CAATGAAAAA TGCAAGCACG CAATGAAAAA TGCAAGCACG CAATGAAAAA TGCAAGCACG CAATGAAAAA TGCAAGCACG CAATGAAAAA TGCAAGCACG CAATGAAAAA TGCAAGCACG CAATGAAAAA TGCAAGCACG CAATGAAAAA TGCAAGCACG CAATGAAAAA TGCAAGCACG CAATGAAAAA TGCAAGCACG CAATGAAAAA TGCAAGCACG CAATGAAAAA TGCAAGCACG CAATGAAAAA TGCAAGCACG CAATGAAAAA TGCAAGCACG 760 GTTTGGGGAG GTTTGGGGAG GTTTGGGGAG GTTTGGGGAG GTTTGGGGAG GTTTGGGGAG GTTTGGGGAG GTTTGGGGAG GTTTGGGGAG GTTTGGGGAG GTTTGGGGAG GTTTGGGGAG GTTTGGGGAG GTTTGGGGAG GTTTGGGGAG GTTTGGGGAG 770 GGATTTTTTA GGATTTTTTA GGATTTTTTA GGATTTTTTA AGATTTTTTA GGATTTTTTA GGATTTTTTA GGATTTTTTA GGATTTTTTA GGATTTTTTA GGATTTTTTA GGATTTTTTA GGATTTTTTA GGATTTTTTA GGATTTTTTA GGATTTTTTA 780 TTCTTTAACG TTCTTTAACG TTCTTTAACG TTCTTTAACG TTCTTTAACG TTCTTTAACG TTCTTTAACG TTCTTTAACG TTCTTTAACG TTCTTTAACG T-CTTTAACG TTCTTTAACG TTCTTTAACG TTCTTTAACA TTCTTTAACG TTCTTTAAC- 790 ACTTTGGTTT ACTTTGGTTT ACTTTGGTTT GCTTTGGTTT GCTTTGGTTT ACTTTGGTTT ACTTTGGTTT ACTTTGGTTT ACTTTGGTTT ACTTTGGTTT ACTTTGGTTT ACTTTGGTTT ACTTTGGTTT ACTTTGGTTT ACTTTGATTT ??TTTGGTTT 800 TAGTGTATAC TAGTGTATAC TAGTGTATAC TAGTGTATAC TAGTGTATAC TAGTGTATAC TAGTGTATAC TAGTGTATAC TAGTGTATAC TAGTGTATAC TAGTGTATAC TAGTGTATAC TAGTGTATAC TAGTGTATAC TAGTGTATAC TAGTGTATAC 133 Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana AAGCCGTGTG AAGCCGTGTG AAGCCGTGTG AAGCCGTGTG AAGCCGTGTG AAGCCGTGTG AAGCCGTGTG AAGCCGTGTG AAGCCGTGTG AAGCCGTGTG AAGCCGTGTG AAGCCGTGTG AAGCCGTGTG AAGCCGTGTG AAGCCGTGTG AAGCCGTGTG AAGCCGTGTG AAGCCGTGTG AAGCCGTGTG AAGCCGTGTG AAGCCGTGTG AAGCCGTGTG AAGCCGTGTG AAGCCGTGTG AAGCCGTGTG AAGCCGTGTG AAGCCGTGTG CAATGAAAAA CAATGAAAAA CAATGAAAAA CAATGAAAAA CAATGAAAAA CAATGAAAAA CAATGAAAAA CAATGAAAAA CAATGAAAAA CAATGAAAAA CAATGAAAAA CAATGAAAAA CAATGAAAAA CAATGAAAAA CAATGAAAAA CAATGAAAAA CAATGAAAAA CAATGAAAAA CAATGAAAAA CAATGAAAAA CAATGAAAAA CAATGAAAAA CAATGAAAAA CAATGAAAAA CAATGAAAAA CAATGAAAAA CAATGAAAAA TGCAAGCACG TGCAAGCACG TGCAAGCACG TGCAAGCACG TGCAAGCACG TGCAAGCACG TGCAAGCACG TGCAAGCACG TGCAAGCACG TGCAAGCACG TGCAAGCACG TGCAAGCACG TGCAAGCACG TGCAAGCACG TGCAAGCACG TGCAAGCACG TGCAAGCACG TGCAAGCACG TGCAAGCACG TGCAAGCACG TGCAAGCACG TGCAAGCACG TGCAAGCACG TGCAAGCACG TGCAAGCACG TGCAAGCACG TGCAAGCACG GTTTGGGGAG GTTTGGGGAG GTTTGGGGAG GTTTGGGGAG GTTTGGGGAG GTTTGGGGAG GTTTGGGGAG GTTTGGGGAG GTTTGGGGAG GTTTGGGGAG GTTTGGGGAG GTTTGGGGAG GTTTGGGGAG GTTTGGGGAG GTTTGGGGAG GTTTGGGGAG GTTTGGGGAG GTTTGGGGAG GTTTGGGGAG GTTTGGGGAG GTTTGGGGAG GTTTGGGGAG GTTTGGGGAG GTTTGGGGAG GTTTGGGGAG GTTTGGGGAG GTTTGGGGAG GGATTTTTTA GGATTTTTTA GGATTTTTTA GGATTTTTTA GGATTTTTTA GGATTTTTTA GGATTTTTTA GGATTTTTTA GGATTTTTTA GGATTTTTTA GGATTTTTTA GGATTTTTTA GGATTTTTTA GGATTTTTTA GGATTTTTTA GGATTTTTTA GGATTTTTTA GGATTTTTTA GGATTTTTTA GGATTTTTTA GGATTTTTTA GGATTTTTTA GGATTTTTTA GGATTTTTTA GGATTTTTTA GGATTTTTTA GGATTTTTTA TTCTTTAACG TTCTTTAACG TTCTTTAACG TTCTTTAACG TTCTTTAACG TTCTT-AACG TTCTTTAACG TTCTTTAACG TTCTTT---G TTCTTTAACG TTCTTTAACG TTCTTTAACG TTCTT----G TTCTTTAACG TTCTTTAACG TTCTTTAACG TTCTTTAACG TTCTTTAACG TTCTTTAACG TTCTTTAACG TTCTTTAACG TTCTTTAACG TTCTTTAACG TTCTTTAACG TTCTTTAACG TTCTTTAACG TTCTTTAACG ACTTTGGTTT ACTTTGGTTT ACTTTGGTTT ACTTTGGTTT ACTTTGGTTT ACTTTGGTTT ACTTTGGTTT ACTTTGGTTT ACTTTGGTTT ACTTTGGTTT ACTTTGGTTT ACTTTGGTTT ACTTTGGTTT ACTTTGGTTT ACTTTGGTTT ACTTTGGTTT ACTTTGGTTT ACTTTGGTTT ACTTTGGTTT ACTTTGGTTT ACTTTGGTTT ACTTTGGTTT ACTTTGGTTT ACTTTGGTTT ACTTTGGTTT ACTTTGGTTT ACTTTGGTTT TAGTGTATAC TAGTGTATAC TAGTGTATAC TAGTGTATAC TAGTGTATAC TAGTGTATAC TAGTGTATAC TAGTGTATAC TAGTGTATAC TAGTGTATAC TAGTGTATAC TAGTGTATAC TAGTGTATAC TAGTGTATAC TAGTGTATAC TAGTGTATAC TAGTGTATAC TAGTGTATAC TAGTGTATAC TAGTGTATAC TAGTGTATAC TAGTGTATAC TAGTGTATAC TAGTGTATAC TAGTGTATAC TAGTGTATAC TAGTGTATAC Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora 810 -GAGTTTTTG -GAGTTTTTG -GAGTTTTTG -GAGTTTTTG -GAGTTTTTG -GAGTTTTTG -GAGTTTTTG -GAGTTTTTG -GAGTTTTTG -GAGTTTTTG -GAGTTTTTG -GAGTTTTTG -GAGTTTTTG -GAGTTTTTG -GAGTTTTTG -GAGTTTTTG -GAGTTTTTG -GAGTTTTTG -GAGTTTTTG -GAGTTTTTG -GAGTTTTTG -GAGTTTTTG -GAGTTTTTG -GAGTTTTTG -GAGTTTTTG 820 830 AAAATAAAGG GGCAATATAT AAAATAAAGG AGCAATATAT AAAATAAAGG AGCAATATAT AAAATAAAGG AGCAATATAT AAAATAAAGG AGCAATATAT AAAATAAAGG AGCAATATAT AAAATAAAGG AGCAATATAT AAAATAAAGG AGCAATATAT AAAATAAAGG AGCAATATAT AAAATAAAGG AGCAATATAT AAAATAAAGG AGCAATATAT AAAATAAAGG AGCAATATAT AAAATAAAGG AGCAATATAT AAAATAAAGG AGCAATATAT AAAATAAAGG AGCAATATAT AAAATAAAGG AGCAATATAT AAAATAAAGG AGCAATATAT AAAATAAAGG AGCAATATAT AAAATAAAGG AGCAATATAT AAAATAAAGG AGCAATATAT AAAATAAAGG AGCAATATAT AAAATAAAGG AGCAATATAT AAAATAAAGG AGCAATATAT AAAATAAAGG AGCAATATAT AAAATAAAGG AGCAATATAT 840 TGCTCCTTTA TGCTCCTTTA TGCTCCTTTA TGCTCCTTTA TGCTCCTTTA TGCTCCTTTA TGCTCCTTTA TGCTCCTTTA TGCTCCTTTA TGCTCCTTTA TGCTCCTTTA TGCTCCTTTA TGCTCCTTTA TGCTCCTTTA TGCTCCTTTA TGCTCCTTTA TGCTCCTTTA TGCTCCTTTA TGCTCCTTTA TGCTCCTTTA TGCTCCTTTA TGCTCCTTTA TGCTCCTTTA TGCTCCTTTA TGCTCCTTTA 850 T--------T--------T--------T--------T--------T--------T--------T--------T--------T--------T--------T--------T--------T--------T--------T--------T--------T--------T--------T--------T--------TTTAGTTTAT TTTAGTTTAT TTTAGTTTAT T--------- 860 ---------T TTAG-----TTAGATTTAG TTCGATTTAG TTCGATTTAG TTAGATTTAG TTAGATTTAG TTAGATTTAG TTAGATTTAG TTAGATTTAG TTAGATTTAG TTAGATTTAG TTAGATTTAG TTCGATTTAG TTAGATTTAG TTAGATTTAG TTAGATTTAG TTAGATTTAG TTAGATTTAG TTAGATTTAG TTAGATTTAG TTAGATTTAG TTAGATTTAG TTAGATTTAG TTAGATTTAG 870 TAGTCTTTTT ---TCTTTTT TAGTCTTTTT TAGTCTTTTT TAGTCTTTTT TAGTCTTTTT TAGTCTTTTT TAGTCTTTTT TAGTCTTTTT TAGTCTTTTT TAGTCTTTTT TAGTCTTTTT TAGTCTTTTT TAGTCTTTTT TAGTCTTTTT TAGTCTTTTT TAGTCTTTTT TAGTCTTTTT TAGTCTTTTT TAGTCTTTTT TAGTCTTTTT TAGTCTTTTT TAGTCTTTTT TAGTCTTTTT TAGTCTTTTT 880 TTTT---CGT TTTT---CGT TTT----CGT TTT----CGT TTT----CGT TTTT---CGT TTTT---CGT TTTT---CGT TTTT---CGT TTTT---CGT TTTTT--CGT TTTTT--CGT TTTTT--CGT TTT----CGT TTT----CGT TTT----CGT TTT----CGT TTTTT--CGT TTTTT--CGT TTTTT--CGT TTTTT--CGT TTTTT--GGT TTTTTT-CGT TTTTTTTCGT TTTTTT-CGT 134 Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana -GAGTTTTTG -GAGTTTTTG -GAGTTTTTG -GAGTTTTTG -GAGTTTTTG -GAGTTTTTG -GAGTTTTTG CGAGTTTTTG -GAGTTTTTG -GAGTTTTTG -GAGTTTTTG -GAGTTTTTG -GAGTTTTTG -GAGTTTTTG -GAGTTTTTG -GAGTTTTTG -GAGTTTTTG -GAGTTTTTG AAAATAAAGG AAAATAAAGG AAAATAAAGG AAAATAAAGG AAAATAAAGG AAAATAAAGG AAAATAAAGG AAAATAAAGG AAAATAAAGG AAAATAAAGG AAAATAAAGG AAAATAAAGG AAAATAAAGG AAAATAAAGG AAAATAAAGG AAAATAAAGG AAAATAAAGG AAAATAAAGG AGCAATATAT AGCAATATAT AGCAATATAT AGCAATATAT AGCAATATAT AGCAATATAT AGCAATATAT AGCAATATAT AGCAATATAT AGCAATATAT AGCAATATAT AGCAATATAT AGCAATATAT AGCAATATAT AGCAATATAT AGCAATATAT AGCAATATAT AGCAATATAT TGCTCCTTTA TGCTCCTTTA TGCTCCTTTA TGCTCCTTTA TGCTCCTTTA TGCTCCTTTA TGCTCCTTTA TGCTCCTTTA TGCTCCTTTA TGCTCCTTTA TGCTCCTTTA TGCTCCTTTA TGCTCCTTTA TGCTCCTTTA TGCTCCTTTA TGCTCCTTTA TGCTCCTTTA TGCTCCTTTA TTTAGTTTAT T--------T--------T--------T--------T--------T--------T--------TTTAGTTTAT T--------T--------T--------TTTAGTTTAT TTTAGTTTAT T--------T--------T--------TTTAGTTTAT TTAGATTTAG TTAGATTTAG TTAGATTTAG TTAGATTTAG TTAGATTTAG TTAGATTTAG TTAGATTTAG TTAGATTTAG TTAGATTTAG TTAGATTTAG TTAGATTTAG TTAGATTTAG TTAGATTTAG TTAGATTTAG TTAGATTTAG TTAGATTTAG TTAGATTTAG TTAGATTTAG TAGTCTTTTT TAGTCTTTTT TAGTCTTTTT TAGTCTTTTT TAGTCTTTTT TAGTCTTTTT TAGTCTTTTT TAGTCTTTTT TAGTCTTTTT TAGTCTTTTT TAGTCTTTTT TAGTCTTTTT TAGTCTTTTT TAGTCTTTTT TAGTCTTTTT TAGTCTTTTT TAGTCTTTTT TAGTCTTTTT TTTTT--CGT TTTTT--CGT TTTTT--CGT TTTT---CGT TTTTT--CGT TTTTTT-CGT TTTTT--CGT TTTTT--CGT TTTTTT-CGT TTTT---CGT TTTTTT-CGT TTTT---CGT TTTTTT-CGT TTTTT--CGT TTT----CGT TTTT---CGT TTTT---CGT TTTTTT-CGT Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii 890 TACACTTTTT TACACTTTTT TACACTTTTT TACACTTTTT TACACTTTTT TACACTTTTT TACACTTTTT TACACTTTTT TACACTTTTT TACACTTTTT TACACTTTTT TACACTTTTT TACACTTTTT TACACTTTTT TACACTTTTT TACACTTTTT TACACTTTTT TACACTTTTT TACACTTTTT TACACTTTTT TACACTTTTT TACACTTTTT TACACTTTTT TACACTTTTT TACACTTTTT TACACTTTTT TACACTTTTT TACACTTTTT TACACTTTTT TACACTTTTT TACACTTTTT TACACTTTTT TACACTTTTT TACACTTTTT 900 910 TT-CTTTACA TTTATATA-TT-CTTTACA TTTATATA-TTTCTTTACA TTTATATA-TTTCTTTACA TTTATATA-TTTCTTTACA TTTATATA-TT-CTTTACA TTTATATA-TT-CTTTACA TTTATATA-TT-CTTTACA TTTATATA-TT-CTTTACA TTTATATA-TT-CTTTACA TTTATATA-TT-CTTTACA TTTATATA-TT-CTTTACA TTTATATA-TT-CTTTACA TTTATATA-TT-CTTTACA TTTATATA-TT-CTTTACA TTTATATA-TT-CTTTACA TTTATATA-TT-CTTTACA TTTATATA-TT-CTTTACA TTTATATA-TT-CTTTACA TTTATATA-TT-CTTTACA TTTATATA-TT-CTTTACA TTTATATA-TT-CTTTACA TTTAAATA-TT-CTTTACA TTTATATA-TT-CTTTACA TTTATATA-TT-CTTTACA TTTATATA-TT-CTTTACA TTTATATA-TT-CTTTACA TTTATATATA TT-CTTTACA TTTATATA-TT-CTTTACA TTTATATA-TT-CTTTACA TTTATATA-TT-CTTTACA TTTATATA-TT-CTTTACA TTTATATA-TT-CTTTACA TTTATATA-TT-CTTTACA TTTATATA-- 920 ----AGTTTG ----AGTTTG ----AGTTTG ----AGTTTG ----AGTTTG ----AGTTTG ----AGTTTG ----AGTTTG ----AGTTTG ----AGTTTG ----AGTTTG ----AGTTTG ----AGTTTG ----AGTTTG ----AGTTTG ----AGTTTG ----AGTTTG ----AGTTTG ----AGTTTG ----AGTTTG ----AGTTTG ----AGTTTG ----AGTTGG ----AGTTTG ----AGTTTG ----AGTTTG TATAAGTTTG ----AGTTTG ----AGTTTG ----AGTTTG ----AGTTTG ----AGTTTG ----AGTTTG ----AGTTTG 930 TTTTTTCTTT TTTTTTCTTT TTTTTTCTTT CTTTTTCTTT CTTTTTCTTT TTTTTTCTTT TTTTTTCTTT TTTTTTCTTT TTTTTTCTTT TTTTTTCTTT TTTTTTCTTT TTTTTTCTTT TTTTTTCTTT TTTTTTCTTT TTTTTTCTTT TTTTTTCTTT TTTTTTCTTT TTTTTTCTTT TTTTTTCTTT TTTTTTCTTT TTTTTTCTTT TTTTTTCTTT TTTTTTCTTT TTTTTTCTTT TTTTTTCTTT TTTTTTCTTT TTTTTTCTTT TTTTTTCTTT TTTTTTCTTT TTTTTTCTTT TTTTTTCTTT TTTTTTCTTT TTTTTTCTTT TTTTTTCTTT 940 ACTTTAACTT ACTTTAACTT ACTTTAACTT ACTTTAACTT ACTTTAACTT ACTTTAACTT ACTTTAACTT ACTTTAACTT ACTTTAACTT ACTTTAACCT ACTTTAACTT ACTTTAACTT ACTTTAACTT ACTTTAACTT ACTTTAACTT ACTTTAACTT ACTTTAACTT ACTTTAACTT ACTTTAACTT ACTTTAACTT ACTTTAACTT ACTTTAACTT ACTTTAACCT ACTTTAACTT ACTTTAACTT ACTTTAACTT ACTTTAACTT ACTTTAACTT ACTTTAACTT ACTTTAACTT ACTTTAACTT ACTTTAACTT ACTTTAACTT ACTTTAACTT 950 TTTTATTTTA TTTTATTTTA TTTTATTTTA TTTTATTTTA TTTTATTTTA TTTTATTTTA TTTTATTTTA TTTTATTTTA TTTTATTTTA TTTTATTTTA TTTTATTTTA TTTTATTTTA TTTTATTTTA TTTTATTTTA TTTTATTTTA TTTTATTTTA TTTTATTTTA TTTTATTTTA TTTTATTTTA TTTTATTTTA TTTTATTTTA TTTTATTTTA TTTTATTTTA TTTTATTTTA TTTTATTTTA TTTTATTTTA TTTTATTTTA TTTTATTTTA TTTTATTTTA TTTTATTTTA TTTTATTTTA TTTTATTTTA TTTTATTTTA TTTTATTTTA 960 CCTTATTTAT CCTTATTTAT CCTTATTTAT CCTTATTTAT CCTTATTTAT CTTTATTTAT CTTTATTTAT CTTTATTTAT CTTTATTTAT CTTTATTTAT CTTTATTTAT CTTTATTTAT CTTTATTTAT CCTTATTTAT CCTTATTTAT CCTTATTTAT CCTTATTTAT CTTTATTTAT CTTTATTTAT CTTTATTTAT CTTTATTTAT CTTTATTTAT CTTTATTTAT CTTTATTTAT CTTTATTTAT CTTTATTTAT CTTTATTTAT CTTTATTTAT CTTTATTTAT CTTTATTTAT CTTTATTTAT CTTTATTTAT CTTTATTTAT CTTTATTTAT 135 Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana TACACTTTTT TACACTTTTT TACACTTTTT TACACTTTTT TACACTTTTT TACACTTTTT TACACTTTTT TACACTTTTT TACACTTTTT TT-CTTTACA TT-CTTTACA TT-CTTTCCA TT-CTTTACA TT-CTTTACA TT-CTTTACA TT-CTTTACA TT-CTTTACA TT-CTTTACA TTTACATA-TTTATATA-TTTATATA-TTTATATA-TTTATATA-TTTATATA-TTTACATA-TTTATATA-TTTATATA-- ----AGTTTG ----AGTTTG ----AGTTTG ----AGTTTG ----AGTTTG ----AGTTTG ----AGTTTG ----AGTTTG ----AGTTTG TTTTTTCTTT TTTTTTCTTT TTTTTTCTTT TTTTTTCTTT TTTTTTCTTT TTTTTTCTTT TTTTTTCTTT TTTTTTCTTT TTTTTTCTTT ACTTTAACTT ACTTTAACTT ACTTTAACTT ACTTTAACTT ACTTTAACTT ACTTTAACTT ACTTTAACTT ACTTTAACTT ACTTTAACTT TTTTATTTTA TTTTATTTTA TTTTATTTTA TTTTATTTTA TTTTATTTTA TTTTATTTTA TTTTATTTTA TTTTATTTTA TTTTATTTTA CTTTATTTAT CTTTATTTAT CTTTATTTAT CTTTATTTAT CTTTATTTAT CTTTATTTAT CTTTATTTAT CTTTATTTAT CTTTATTTAT Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana 970 TT-------TT-------TT-------TT-------TT-------TT-------TT-------TT-------TT-------TT-------TT-------TT-------TT-------TT-------TT-------TT-------TT-TACCTTA TT-------TT-------TT-------TT-------TT-------TT-------TT-------TT-------TT-------TT-------TT-------TT-------TT-------TT-------TT-------TT-------TT-------TT-------TT-------TT-------TT-------TT-------TT-------TT-------TT-------TT-------- 980 -------CTT -------CTT -------CTT -------CTT -------CTT -------CTG -------CTG -------CTG -------CTG -------CTG -------CTT -------CTT -------CTT -------CTT -------CTT -------CTT TTTATTTCTT -------CTG -------CTG -------CTG -------CTG -------CTG -------CTG -------CTG -------CTG -------CTG -------CTG -------CTG -------CTG -------CTG -------CTG -------CTG -------CTG -------CTG -------CTG -------CTG -------CTG -------CTG -------CTG -------CTG -------CTG -------CTG -------CTG 990 ATTATCATAA ATTATCATAA ATTATCATAA ATTATCATAA ATTATCATAA ATTATCATAA ATTATCATAA ATTATCATAA ATTATCATAA ATTATCATAA ATTATCATAA ATTATCATAA ATTATCATAA ATTATCATAA ATTATCATAA ATTATCATAA ATTATCATAA ATTATCATAA ATTATCATAA ATTATCATAA ATTATCATAA GATTATCATA ATTATCATAA ATTTTGATAA ATTATCATAA ATTATCATAA ATTATCATAA ATTATCATAA ATTATCATAA ATTATCATAA ATTATCATAA ATTATCATAA ATTATCATAA ATTATCATAA ATTATCATAA ATTATCATAA ATTATCATAA ATTATCATAA ATTATCATAA ATTATCATAA ATTATCATAA ATTATCATAA ATTATCATAA 1000 GAAATCAAAA GAAATCAAAA GAAAT-AAAA GAAAT-AAAA GAAAT-AAAA GAAATCAAAA GAAATCAAAA GAAATCAAAA GAAATCAAAA GAAATCAAAA GAAATCAAAA GAAATCAAAA GAAATCAAAA GAAATCAAAA GAAATCAAAC GAAATCAAAC GAAATCAAAA GAAATCAAAA GAAATCAAAA GAAATCAAAA GAAATCAAAA A?AAATCAAA GAAATCAAAA GAAATCAAAA GAAATCAAAA GAAATCAAAA GAAATCAAAA GAAATCAAAA GAAATCAAAA GAAATCAAAA GAAATCAAAA GAAATCAAAA GAAATCAAAA GAAATCAAAA GAAATCAAAA GAAATCAAAA GAAATCAAAA GAAATCAAAA GAAATCAAAA GAAATCAAAA GAAATCAAAA GAAATCAAAA GAAATCAAAA 1010 AAA-----GG AAA-----GG AAA-----GG AAA-----GG AAA-----GG AAA-----GG AAA-----GG AAA-----GG AAA-----GG AAA-----GG AAAAAA--GG AAAAAAA-GG AAAAAAAAGG AAA-----GG AAA-----GG AAA-----GG AAA-----GG AAA-----GG AAA-----GG AAA-----GG AAA-----GG AAA?----GG AAA-----GG AAA-----GG AAA-----GG AAA-----GG AAA-----GG AAA-----GG AAA-----GG AAA-----GG AAA-----GG AAA-----GG AAA-----GG AAA-----GG AAA-----GG AAA-----GG AAA-----GG AAA-----GG AAA-----GG AAA-----GG AAA-----GG AAA-----GG AAA-----GG 1020 ATTTT-AAAT ATTTT-AAAT ATTTTT-AAT ATTTTT-AAT ATTTTT-AAT ATTTTTTAAT ATTTTTTAAT ATTTTTTAAT ATTTTTTAAT ATTTTTTAAT ATTTTTTAAT ATTTTTTAAT ATTTTTTAAT ATTTTT-AAT ATTTTT-AAT ATTTTT-AAT ATTTTT-AAT ATTTTTTAAT ATTTTTTAAT ATTTTTTAAT ATTTTTTAAT ?TTTTTTAAT ATTTTTTAAT ATTTTTTAAT ATTTTTTAAT ATTTTTTAAT ATTTTTTAAT ATTTTTTAAT ATTTTTTAAT ATTTTTTAAT ATTTTTTAAT ATTTTTTAAT ATTTTTTAAT ATTTTTTAAT ATTTTTTAAT ATTTTTTAAT ATTTTTTAAT ATTTTTTAAT ATTTTTTAAT ATTTTTTAAT ATTTTTTAAT ATTTTTTAAT ATTTTTTAAT 1030 GAGTTTTATT GAGTTTTATT GAGTTTGATT GAGTTTGATT GAGTTTGATT AAGTTTGATT AAGTTTGATT AAGTTTGATT AAGTTTGATT AAGTTTGATT AAGTTTGATT AAGTTTGATT AAGTTTGATT GAGTTTGATT GGGTTTGATT GGGTTTGATT GAGTTTGATT AAGTTTGATT AAGTTTGATT AAGTTTGATT AAGTTTGATT AAGTTTGATT AAGTTTGATT AAGTTTTATT AAGTTTGATT AAGTTTGATT AAGTTTGATT AAGTTTGATT AAGTTTGATT AAGTTTGATT AAGTTTGATT AAGTTTGATT AAGTTTGATT AAGTTTGATT AAGTTTGATT AAGTTTGATT AAGTTTTATT AAGTTTGATT AAGTTTGATT AAGTTTGATT AAGTTTGATT AAGTTTGATT AAGTTTGATT 1040 TCGTTTTATT TCGTTTTATT TCGTTTTATT TCGTTTTATT TCGTTTTATT TGGTTTTATT TGGTTTTATT TGGTTTTATT TGGTTTTATT TGGTTTTATT TGGTTTTATT TGGTTTTATT TGGTTTTATT TCGTTTTATT TCGTTTTATT TCGTTTTATT TCGTTTTATT TGGTTTTATT TGGTTTTATT TGGTTTTATT TGGTTTTATT TGGTTTTATT TGGTTTTATT TGGTTTTATT TGGTTTTATT TGGTTTTATT TGGTTTTATT TGGTTTTATT TGGTTTTATT TGGTTTTATT TGGTTTTATT TGGTTTTATT TGGTTTTATT TGGTTTTATT TGGTTTTATT TGGTTTTATT TGGTTTTATT TGGTTTTATT TGGTTTTATT TGGTTTTATT TGGTTTTATT TGGTTTTATT TGGTTTTATT 136 Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana 1050 TGGATTTGAC -GGATTTGAC -GGATTTGAC -GGATTTGAC -GGATTTGAC -GGATTTGAC -GGATTTGAC -GGATTTGAC -GGATTTGAC -GGATTTGAC -GGATTTGAC -GGATTTGAC -GGATTTGAC -GGATTTGAC -GGATTTGAC -GGATTTGAC -GGATTTGAC -GGATTTGAC -GGATTTGAC -GGATTTGAC -GGATTTGAC -GGATTTGAC -GGATTTGAC -GGATTTGAC -GGATTTGAC -GGATTTGAC -GGATTTGAC -GGATTTGAC -GGATTTGAC -GGATTTGAC -GGATTTGAC -GGATTTGAC -GGATTTGAC -GGATTTGAC -GGATTTGAC -GGATTTGAC -GGATTTGAC -GGATTTGAC -GGATTTGAC -GGATTTGAC -GGATTTGAC -GGATTTGAC -GGATTTGAC 1060 TTAATATTAT TTAGTATTAT TTAGTATTAT TTAGTATTAT TTAGTATTAT TTAGTATTAT TTAGTATTAT TTAGTATTAT TTAGTATTAT TTAGTATTAT TTAGTATTAT TTAGTATTAT TTAGTATTAT TTAGTATTAT TTAATATTAT TTAATATTAT TTAATATTAT TTAGTATTAT TTAGTATTAT TTAGTATTAT TTAGTATTAT TTAGTATTAA TTAGTATTAT TTAGTATTAT TTAGTATTAT TTAGTATTAT TTAGTATTAT TTAGTATTAT TTAGTATTAT TTAGTATTAT TTAGTATTAT TTAGTATTAT TTAGTATTAT TTAGTATTAT TTAGTATTAT TTAGTATTAT TTAGTATTAT TTAGTATTAT TTAGTATTAT TTAGTATTGT TTAGTATTAT TTAGTATTAT TTAGTATTAT 1070 ACGTTCGTTA ACGTTCGTTA ACGTTCGTTA ACGTTCGT-ACGTTCGT-ACGTTCGTTA ACGTTCGTTA ACGTTCGTTA ACGTTCGTTA ACGTTCGTTA ACGTTCGTTA ACGTTCGTTA ACGTTCGTTA ACGTTCGTTA ACGTTCGCTA ACGTTCGCTA ACGTTCGCTA ACGTTCGTTA ACGTTCGTTA ACGTTCGTTA ACGTTCGTTA ACGTTCGTTA ACGTTCGTTA ACGTTCGTTA ACGTTCGTTA ACGTTCGTTA ACGTTCGTTA ACGT?CGTTA ACGTCCGTTA ACGGTCGTTA ACGTTCGTTA ACGTTCGTTA ACGTTCGTTA ACGTTCGTTA ACGTTCGTTA ACGTTCGTTA ACGTTCGTTA ACGTTCGTTA ACGTTCGTTA ACGTTCGTTA ACGTTCGTTA ACGTTCGTTA ACGTTCGTTA 1080 TGTAAGAATT TGTAAGAATT TGTAATAATA ------------------TGTAATAATA TGTAATAATA TGTAATAATA TGTAATAATA TGTAATAATA TGTAATAATA TGTAATAATA TGTAATAATA TGTAATAATA TGTAATAATA TGTAATAATA TGTAATAATA TGTAATAATA TGTAATAATA TGTAATAATA TGTAATAATA ?GTAATAATA TGTAATAATA TGTAATAATA TGTAATAATA TGTAATAATA TGTAATAATA TGTAATAATA TGTAATAATA TGTAATAATA TGTAATAATA TGTAATAATA TGTAATAATA TGTAATAATA TGTAATAATA TGTAATAATA TGTAATAATA TGTAATAATA TGTAATAATG TGTAATAATA TGTAATAATA TGTAATAATA TGTAATAATA 1090 CGTTATGTAA CGTTATGTAA TA--A----------------------TATTA----TATTA----TATTA----TATTA----TATTA----TATTA----TATTA----TATTA----TATTA----TATTA----TATTA----TATTA----TATTA----TATTA----TATTA----TATTA----TATTA----TATTA----TATTA----TATTA---TA TATTA----TATTA----TATTA----TATTA----TATTA----TATTA----TATTA----TATTA----TATTA----TATTA----TATTA---TA TATTA----TATTA----TATTA----TATTA----TATTA----TATTA----TATTA----- 1100 TAATAT---TAATATACGT ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------CGTTATGTAA ------------------------------------------------------------------------------------------CGTTATGTAA ---------------------------------------------------------------- 1110 -AATATATTA TATTATATAT ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------TAATATATTA ------------------------------------------------------------------------------------------TAATATATTA ---------------------------------------------------------------- 1120 TATATTAACTAACGTAACTATATTAAC------------------TATATTAACTATATTAACTATATTAACTATATTAACTATATTAACTATATTAACTATATTAACTATATTAACTATATTAACT TATATTAACTATATTAACTATATTAACTATATTAACTATATTAACTATATTAACTATATTAAC?A?ATTAACTATATTAACTATATTAACTATATTAACTATATTAACTATATTAACTATATTAACTATATTAACTATATTAACTATATTAACTATATTAACTATATTAACTATATTAACTATATTAACTATATTAACTATATTAACTATATTAACTATATTAACTATATTAACTATATTAACTATATTAACTATATTAAC- Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis 1130 ---------------------------------------------------------------- 1140 ---------------------------------------------------------------- 1150 ---------------------------------------------------------------- 1160 --AAATTTTT --GAATTTTT --GAATTTTT --------------------GAATTTTT --GAATTTTT 1170 TT------AA TT------AA T------AAA ------------------TT------AA TT------AA 1180 AA--TATAAA AA--TATAAA AA--TAAAAA ------------------AA--TATAAA AA--TATAAA 1190 AAAAA----AAAAA----AAAAA----------------------AAAAA----AAAA------ 1200 --------GT --------GT --------GT -----AAAGT -----AAAGT --------GT --------GT 137 Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana ------------------------------------------------------ATTAACGAAT ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ------------------------------------------------------TTTTTTAAAA ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ------------------------------------------------------TATAAAAATA ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- --GAATTTTT --GAATTTTT --GAATTTTT --GAATTTTT --GAATTTTT --GAATTTTT ACGAATTTTT --GAATTTTT --GAATTTTT --GAATTTTT --GAATTTTT --GAATTTTT --GAATTTTT --GAATTTTT --GAATTTTT --GAATTTTT --GAATTTTT --GAATTTTT --GAATTTTT --GAATTTTT --GAATTTTT --GAATTTTT --GAATTTTT --GAATTTTT --GAATTTTT --GAATTTTT --GAATTTTT --GAATTTTT --GAATTTTT --GAATTTTT --GAATTTTT --GAATTTTT --GAATTTTT --GAATTTTT --GAATTTTT --GAATTTTT TT------AA TT------AA TT------AA T-------AA --------AA --------AA TT------AA TTTTT---AA TTTTT---ATTTT----AA TT------AA TT------AA TT------AA TT------AA TT------AA TT------AA TT------AA TT------AA TT------AA TTAATTTTAA TT------AA TT------AA TT------AA TT------AA TT------AA TT------AA T-------AA TTTTT---AA TT------AA TT------AA TT------AA TT------AA TT------AA TTT-----AA TTT-----AA TT------AA AA--TATAAA AA--TATAAA AA--TATAAA AAA-TATAAA AAAATATAAA AAAATATAAA AA--TATAAA ----TATAAA ----TATAAA ----TATAAA AA--TATAAA AA--TATAAA AA--TATAAA AA--TATAAA AA--TATAAA AA--TATAAA AA--TATAAA AA--TATAAA AA--TATAAA AA--TATAAA AA--TATAAA AA--TATAAA AA--TATAAA AA--TATAAA AA--TATAAA AA--TATAAA AAA-TATAAA ----TATAAA AA--TATAAA AA--TATAAA AA--TATAAA AA--TATAAA AA--TATAAA A---TATAAA A---TATAAA AA--TATAAA AAAA-----AAAAA----AAAA-----AAAA-----AAAA-----AAAA-----AAAAAAA--AAAAA----AAAAA----AAAAA----AAA------AAAAA----AAAAA----AAAAA----AAAAA----AAAA-----AAAAA----AAAA-----AAAAAAA--AAAAA----AAAAA----AAAA-----AAAAA----AAAA-----AAAAA----AAAAA----AAAA-----AATAAAA--AAAA-----AAAA-----AAAAA----AAAAA----AAAA-----AATAAAAAAA AAAA-----AATAAA---- --------GT --------GT --------GT --------GT --------GT --------GT --------GT --------GT --------GT --------GT --------GT --------GT --------GT --------GT --------GT --------GT --------GT --------GT --------GT --------GT --------GT --------GT --------GT --------GT --------GT --------GT --------GT AAAGTAAAAT --------GT --------GT --------GT --------GT --------GT --------GT --------GT --------GT Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii 1210 AAAAAAGTTC AAAAAAGTTC AAAAAAGTTC AAAAAAGTTC AAAAAAGTTC AAAAAAGTTG AAAAAAGTTG AAAAAAGTTG AAAAAAGTTG AAAAAAGTTG AAA------AAA------AAA------AAAAAAGTTC AAAAAAGTTC AAAAAAGTTC 1220 TTACCAATCT TTACCAATCT TTACCATTCT TTACCAATTT TTACCAATTT TTACCAATCT TTACCAATCT TTACCAATCT TTACCAATCT TTACCAATCT ---------------------------T TTACCAATCT TTACCAATCT TTACCAATCT 1230 TTTGTAACGT TTTGTAACGT TTTGTAAAGT TTTGTAAAGT TTTGTAAAGT TTTGTAAAGT TTTGTAAAGT TTTGTAAAGT TTTGTAAAGT TTTGTAAAGT ---------------------TTAAA-TTTGTAAAGT TTTGTAAAGT TTTGTAAAGT 1240 TTTTATTTTTTTTATTTTTTTTATTTTTTTTATTTTTTTTATTTTTTTTTTTTTT TTTTTTTTTTTTTTTTTTTTTTTTTT-TTTTTTT-----------T ---------T ---------T TTTTATTTTTTTTATTTTTTTTATTTT- 1250 -AGAGTCAAA -AGAGTCAAA -AGAGTAAAA -AG?GTAAAA -AGAGTAAAA -AGAGTAAAA -AGAGTAAAA -AGAGTAAAA -AGAGTAAAA -AGAGTAAAA TAGAGTAAAA TAGAGTAAAA TAGAGTAAAA -AGAGTAAAA -AGAGTAAAA -AGAGTAAAA 1260 ATAAATAAAA ATAAATAAAA ATAAATACAA ATAAATAAAA ATAAATAAAA ATAAAGAAAA ATAAAGAAAA ATAAAGAAAA ATAAAGAAAA ATAAAGAAAA ATAAAGAAAA ATAAAGAAAA ATAAAGAAAA ATAAATAAAA ATAAATAAAA ATAAATAAAA 1270 AGAAAAGATA AGAAAAGATA AGAAAAGATA AG?AAAGATA AGAAAAGATA AGAAACGATA AGAAAAGATA AGAAAAGATA AGAAACGATA AGAAAAGATA AGAAAAGATA AGAAAAGATA AGAAAAGATA AGAAAAGATA AGAAAAGAGA AGAAAAGAGA 1280 GAGATTGGAA GAGATTGGAA GAGATTGGAA GAGATTGGAA GAGATTGGAA GAGATTGGAA GAGATTGGAA GAGATTGGAA GAGATTGGAA GAGATTGGAA GAGATTGGAA GAGATTGGAA GAGATTGGAA GAGATTGGAA GAGATTGGAA GAGATTGGAA 138 Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana AAAAAAGTTC AAAAAAGTTG AAAAAAGTTC AAAAAAGTTC AAAAAAGTTC AAAAAAGTTC AAAAAAGTTC AAAAAAGTTC AAA------AAAAAAGTTC AAAAAAGTTC AAAAAAGTTC AAAAAAGTTG AAAAAAGTTC AAA------AAAAAAGTTC AAAAAAGTTC AAAAAAGTTC AAAAAAGTTC AAA------AAA------AAAAAAGTTC AAAAAAGTTC AAAAAGGTTG AAAAAAGTTC AAAAAAGTTG AAAAAAGTTC TTACCAATCT TTACCAATCT TTACCAATCT TTACCAATCT TTACCAATCT TTACCAAT?T TTACCAATCT TTACCAATCT ---------TTACCAATCT TTACCAATCT TTACCAATCT TTACCAATTT TTACCAATCT ---------TTACCAATCT TTACCAATCT TTACCAATCTTACCAATCT ------------------TTACCAATCT TTACCAATCT TTACCAATCT TTACCAATCT TTACCAATCT TTACCAATCT TTTGTAAAGT TTTGTAAAGT TTTGTAAAGT TTTGTAAAGT TTTGTAAAGT TTTGTAAAGT TTTGTAAAGT TTTGTAAAGT ---------TTTGTAAAGT TTTGTAAAGT TTTGTAAAGT TTTGTAAAGT TTTGTAAAGT ---------TTTGTAAAGT TTTGTAAAGT ---------TTTGTAAAGT ------------------TTTGTAAAGT TTTGTAAAGT TTTGTAAAGT TTTGTAAAGT TTTGTAAAGT TTTGTAAAGT TTTTATTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT-TTTTTTTTTT TTTTTTTTTTTTTTTTTT---------T TTTTTTTTTT TTTTTTTTTTTTTTTTTTT TTTTTTTT-TTTTTTTT----------T TTTTTTTT-TTTTTTTTT---------TTTTTTTTT---------T ---------T TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT-TTTTTTTTTT TTTTTTTT-- -AGAGTAAAA -AGAGTAAAA -AGAGTAAAA -AGAGTAAAA -AGAGTAAAA -AGAGTAAAA -AGAGTAAAA -AGAGTAAAA TAGAGTAAAA TAGAGTAAAA -AGAGTAAAA -AGAGTAAAA -AG?GTAAAA -AGAGTAAAA TAGAGTAAAA -AGAGTAAAA -AGAGTAAAA ----------AG?GTAAAA TAGAGTAAAA TAGAGTAAAA -AGAGTAAAA -AGAGTAAAA -AGAGTAAAA -AGAGTAAAA -AGAGTAAAA -AGAGTAAAA ATAAATAAAA ATAAAGAAAA ATAAAGAAAA ATAAAGAAAA ATAAAGAAAA ATAAAGAAAA ATAAAGAAAA ATAAAGAAAA ATAAAGAAAA ATAAAGAAAA ATAAAGAAAA ATAAAGAAAA ATAAAGAAAATAAAGAAAA ATAAAGAAAA ATAAAGAAAA ATAAAGAAAA ---------AGAAAGAAAA ATAAAGAAAA ATAAAGAAAA ATAAAGAAAA ATAAAGAAAA ATAAAGAAAA ATAAAGAAAA ATAAAGAAAA ATAAAGAAAA AGAAAAGAGA AGAAAAGATA AGAAAAGATA AGAAAAGATA AGAAAAGATA AGAAAAGATA AGAAAAGATA AGAAAAGATA AGAAAAGATA AGAAAAGATA AGAAAAGATA AGAAAAGATA ---------------GATA AGAAAAGATA AGAAAAGATA AGAAAAGATA ---------AGAAAAGATA AGAAAAGATA AGAAAAGATA AGAAAAGATA AGAAAAGATA AGAAAAGATA AGAAAAGATA AGAAAAGATA AGAAAAGATA GAGATTGGAA GAGATTGGAA GAGATTGGAA GAGATTGGAA GAGATTGGAA GAGATTGGAA GAGATTGGAA GAGATTGGAA GAGATTGGAA GAGATTGGAA GAGATTGGAA GAGATTGGAA ----TTGGAA GAGATTGGAA GAGATTGGAA GAGATTGGAA GAGATTGGAA ---------GAGATTGGAA GAGATTGGAA GAGATTGGAA GAGATTGGAA GAGATTGGAA GAGATTGGAA GAGATTGGAA TAGATTGGAA GAGATTGGAA Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora 1290 TTTTCTATAT TTTTCTATAT TTTTCTATAT TTTTCTATAT TTTTCTATAT TTTTCTATAT TTTTCTATAT TTTTCTATAT TTTTATATAT TTTTCTATAT TTTTCTATAT TTTTCTATAT TTTTCTATAT TTTTCTATAT TTTTCTATAT TTTTCTATAT TTTTCTATAT TTTTCTATAT TTTTCTATAT TTTTCTATAT TTTTCTATAT TTTTCTATAT TTTTCTATAT TTTTCTATAT TTTTCTATAT 1300 ATCTTA---ATCTTA---ATCTTA---ATCTTA---ATCTTA---ATCTTA---ATCTTA---ATCTTA---ATCTTA---ATCTTA---ATCTTA---ATCTTA---ATCTTAATAT ATCTTA---ATCTTA---ATCTTA---ATCTTA---ATCTTA---ATCTTA---ATCTTA---ATCTTA---ATCTTA---ATCTTA---ATCTTA---ATCTTA---- 1310 ----TCTCAG ----TCTCAG ----TCTCAG ----TCTCAG ----TCTCAG ----TCTCAG ----TCTCAG ----TCTCAG ----TCTCAG ----TCTCAG ----TCTCAG ----TCTCAG CTTATCTCAG ----TCTCAG ----TCTCAG ----TCTCAG ----TCTCAG ----TCTCAG ----TCTCAG ----TCTCAG ----TCTCAG ----TCTCAG ----TCTCAG ----TCTCAG ----TCTCAG 1320 AAATAAGAGA AAATAAGAGA AAATAAGAGA AAATAAGAGA AAATAAGAGA AAATACGAGA AAATACGAGA AAATACGAGA AAATACGAGA AAATACGAGA AAATACGAGA AAATACGAGA AAATACGAGA AAATAAGAGA AAATAAGAGA AAATAAGAGA AAATAAGAGA AAATACGAGA AAATACGAGA AAATACGAGA AAATACGAGA AAATACGAGA AAATACGAGA AAATACGAGA AAATACGAGA 1330 AAAAACTAAT AAAAACTAAT AAAAACTAAT AAAAACTAAT AAAAACTAAT AAAAACGAAT AAAAACGAAT AAAAACGAAT AAAAACGAAT AAAAACGAAT AAAAACGAAT AAAAACGAAT AAAAACGAAT AAAAACTAAT AAAAACTAAT AAAAACTAAT AAAAACTAAT AAAAACGAAT AAAAACGAAT AAAAACGAAT AAAAACGAAT AAAAACGAAT AAAAACGAAT AAAAACGAAT AAAAACGAAT 1340 GATGAATGAT GATGAATGAT GATGAATGAT GATGAATGAT GATGAATGAT GATGAATGAT GATGAATGAT GATGAATGAT GATGAATGAT GATGAATGAT GATGAATGAT GATGAATGAT GATGAATGAT GATGAATGAT GATGAATGAT GATGAATGAT GATGAATGAT GATGAATGAT GATGAATGAT GATGAATGAT GATGAATGAT GATGAATGAT GATGAATGAT GATGAATGAT GATGAATGAT 1350 AGAAATTAAT AGAAATTAAT AGAAATTGAT AGAAATTGAT AGAAATTGAT AGAAATTGAG AGAAATTGAG AGAAATTGAG AGAAATTGAG AGAAATTGAG AGAAATTGAG AGAAATTGAG AGAAATTGAG AGAAATTTAT AGAAATTGAT AGAAATTGAT AGAAATTGAT AGAAATTGAG AGAAATTGAG AGAAATTGAG AGAAATTGAG AGAAATTGAG AGAAATTGAG AGAAATTGAG AGAAATTGAG 1360 ATATTTGAAA ATATTTGAAA ATATTTGAAA ATATTTGAAA ATATTTGAAA ATATTTGAAA ATATTTGAAA ATATTTGAAA ATATTTGAAA ATATTTGAAA ATATTTGAAA ATATTTGAAA ATATTTGAAA ATATTTGAAA ATATTTGAAA ATATTTGAAA ATATTTGAAA ATATTTGAAA ATATTTGAAA ATATTTGAAA ATATTTGAAA ATATTTGAAA ATATTTGAAA ATATTTGAAA ATATTTGAAA 139 Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana TTTTCTATAT TTTTCTATAT TTTTCTATAT TTTTCTATAT TTTTCTATAT TTTTCTATAT TTTTCTATAT TTTTCTATAT ---TCTATAT TTTTCTATAT TTTTCTATAT TTTTCTATAT TTTTCTATAT TTTTCTATAT TTTTCTATAT TTTTCTATAT TTTTCTATAT TTTTCTATAT ATCTTA---ATCTTA---ATCTTA---ATCTTA---ATCTTA---ATCTTA---ATCTTA---ATCTTA---ATCTTA---ATCTTA---ATCTTA---ATCTTA---ATCTTA---ATCTTA---ATCTTA---ATCTTA---ATCTTA---ATCTTA---- ----TCTCAG ----TCTCAG ----TCTCAG ----TCTCAG ----TCTCAG ----TCTCAG ----TCTCAG ----TCTCAG ----TCTCAG ----TCTCAG ----TCTCAG ----TCTCAG ----TCTCAG ----TCTCAG ----TCTCAG ----TCTCAG ----TCTCAG ----TCTCAG AAATACGAGA CAATACGAGA AAATACGAGA AAATACGAGA AAATACGAGA AAATAC?AGA AAATACGAGA AAATACGAGA AAATACGAGA AAATACGAGA AAATACGAGA AAATACGAGA AAATACGAGA AAATACGAGA AAATACGAGA AAATACGAGA AAATACGAGA AAATACGAGA AAAAACGAAT AAAAACGAAT AAAAACGAAT AAAAACGAAT AAAAACGAAT AAAAACGAAT AAAAACGAAT AAAAACGAAT AAAAACGAAT AAAAACGAAT AAAAACGAAT AAAAACGAAT AAAAACGAAT AAAAACGAAT AAAAACGAAT AAAAAC---AAAAACGAAT AAAAACGAAT GATGAATGAT GATGAATGAT GATGAATGAT GATGAATGAT GATGAATGAT GATGAATGAT GATGAATGAT GATGAATGAT GATGAATGAT GATGAATGAT GATGAATGAT GATGAATGAT GATGAATGAT GATGAATGAT GATGAATGGT ---GAATGAT GATGAATGAT GATGAATGAT AGAAATTGAG AGAAATTGAG AGAAATTGAG AGAAATTGAG AGAAATTGAG AGAAATTGA? AGAAATTGAG AGAAATTGAG AGAAATTGAG AGAAATTGAG AGAAATTGAG AGAAATTGAG AGAAATTGAG AGAAATTGAG AGAAATTGAG AGAAATTGAG AGAAATTGAG AGAAATTGAG ATATTTGAAA ATATTTGAAA ATATTTGAAA ATATTTGAAA ATATTTGAAA ATATTTGAAA ATATTTGAAA ATATTTGAAA ATATTTGAAA ATATTTGAAA ATATTTGAAA ATATTTGAAA ATATTTGAAA ATATTTGAAA ATATTTGAAA ATATTTGAAA ATATTTGAAA ATATTTGAAA Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii 1370 TATTTAAA-C TATTTAAA-C TATTTAAA-C TATTTAAA-C TATTTAAA-C TTTTTAAA-C TTTTTAAA-C TTTTTAAA-C TTTTTAAA-C TTTTTAAA-C TTTTTAAA-C TTTTTAAA-C TTTTTAAC-C TATTTAAA-C TATTTAAA-C TATTTAAA-C TATTTAAA-C TTTTTAAA-C TTTTTAAA-C TTTTTAAA-C TTTTTAAA-C TTTTTAAA-C TTTTTAAA-C TTTTTAAA-C TTTTTAAA-C TTTTTAAA-C TTTTTAAAAC TTTTTAAA-C TTTTTAAA-C TTTTTAAA-C TTTTTAAA-C TTTTTAAA-C TTTTTAAA-C TTTTTAAA-C 1380 AATCAAAAAA AATCAAAAAA AATAAAAAAA AATAAAAAAA AATAAAAAAA AATAAAAAAA AATAAAAAAA AATAAAAAAA AATAAAAAAA AATAAAAAAA AATAAAAAAA AATAAAAAAA AATAAAAAAA AATAAAAAAA AATAAAAAAA AATAAAAAAA AATCAAAAGA AATAAAAAAA AATAAAAAAA AATAAAAAAA AATAAAAAAA AATAAAAAAA AATAAAAAAA AATAAAAAAA AATAAAAAAA AATAAAAAAA AATAAAAAAA AATAAAAAAA AATAAAAAAA AATAAAAAAA AATAAAAAAA AATAAAAAAA AATAAAAAAA AATAAAAAAA 1390 AA-TACTATA AA-TACTATA ---TAC------TAGTATA ---TAGTATA A------ATA A--TACTATA A--TACTATA AA-TACTATA--TACTATA AA-TACTATA AA-TACTATA AA-TACTATA A--TACTATA A--TACTATA A--TACTATA A--TACTATA A--TACTATA AA-TACTATA AAATACTATA AAATACTATA AAATACTATA AA-TACTATA A--TACTATA A--TAC?AT? A--TACTATA AA-TACTATA AA-TACTATA A--TACTATT AAATACTATA AAATACTATA AAATACTATA AA-TACTATA AAATACTATA 1400 CTATTCAAAA CTAT--------------CTATA----CTATA----CTAT-----CTAT-----CTAT--------------CTAT-----CTATTATAAA CTATT----CTAT-----GTAT-----GTAT-----GTAT-----GTATATAATA CTAT-----CTATT----CTATT----CTATT----CTATT----CTATT----CTATT----CTATT----CTATT----CTATT----CTAT-----ATAGTAG--CTATT----CTATT----CTATT----CTAT-----CTATT----- 1410 AAAA--------------------------------------------------------------------------------------AGAGGGAAAA ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 1420 ----TACTAT ---------------------------------------------------------------------------------AAAATACTAT ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 1430 ACTA-TATAG ------ATAG -----TATAG --GTATATAG --GTATATAG -----TATAG -----TATAG -----TATAG -----TATAG -----TATAG ACTATTATAA ------ATAA -----TATAA ------ATAG ------ATAG ------ATAG --GTATATAG -----TATAG ------ATAG ------ATAG ------ATAG ------ATAG ------ATAG ------ATAG ------ATAA ------ATAG ------ATAG -----TATAG ------ATAG ------ATAG ------ATAA ------ATAG -----TATAG ------ATAG 1440 TAGAGGGTCA TAGAGGGTCA TAGAGGGTCA TAGAGGGTCA TAGAGGGTCA TAGAGGGTCA TAGAGGGTCA TAGAGGGTCA TAGAGGGTCA TAGAGGGTCA AAGAGGG--AAGAGGGTCA AAGAGGGTCA TAGAGGGTCA TAGAGGGTCA TAGAGGGTCA TAGAGGGTCA TAGAGGGTCA TAGAGGGTCA TAGAGGGTCA TAGAGGGTCA TAGAGGGTCA TAGAGGG--TAGAGGGTCA TAGAGGG--TAGAGGGTCA TAGAGGGTCA TA?AGGGTCA TAGAGGGTCA TAGAGGGTCA TAGAGGGTCA TAGAGGGTCA TAGAGGGTCA TAGAGGGTCA 140 Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana TTTTTAAA-C TTTTTAAA-C TTTTTAAA-C TTTTTAAA-C TTTTTAAA-C TTTTTAAA-C TTTTTAAA-C TTTTTAAA-C TTTTTAAA-C AATAAAAAAA AATAAAAAAA AATAAAAAAA AATAAAAAAA AATAAAAAAA AATAAAAAAA AATAAAAAAA AATAAAAAAA AATAAAAAAA A--TACTATA A--TACTATA AA-TACTATA AA-TACTATA AAATACTATA A--TACTATA A--TACTATA A--TACTATAA-TACTATA CTATT----CTATT----CTATA----CTATT----CTAT-----CTATT----CTATT-------------CTATT----- ---------------------------------------------------------------------------------- ---------------------------------------------------------------------------------- ------ATAG ------ATAA -----TATAA ------ATAG -----TATAG ------ATAG ------ATAG -----TATAG ------ATAG TAGAGGGTCA TAGAGGGTCA TAGAGGGTCA TAGAGGGTCA TAGAGGGTCA TAGAGGGTCA TAGAGGGTCA TAGAGGGTCA TAGAGGGTCA Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana 1450 AATAATAGAA AATAATAGAA AATAATAGAA AATAATAGAA AATAATAGAA AATAATAGAA AATAATAGAA AATAATAGAA AATAATAGAA AATAATAGAA ---------AATAATAGAA AATAATCGAA AATAATAGAA AATAATAGAA AATAATAGAA AATAATAGGA AATAATAGAA AATAATAGAA AATAATAGAA AATAATAGAA AATAATAGAA ---------AATAATAGAA ---------AATAATAGAA AATAATAGAA AATAATAGAA AATAATAGAA AATAATAGAA AATAATAGAA AATAATAGAA AATAATAGAA AATAATAGAA AATAATAGAA AATAATAGAA AATAATAGAA AATAATAGAA AATAATAGAA AATAATAGAA AATAATAGAA AATAATAGAA AATAATAGAA 1460 ATTTTGTATC ATTTTGTATC ATTTTGTATC ATTTTGTATC ATTTTGTATC ATTTTGTATC ATTTTGTATC ATTTTGTATC ATTTTGTATC ATTTTGT?TC ---------ATTTTGT?TC ATTTTGTATC ATTTTGTATC ATTTTGTATC ATTTTGTATC ATTTTGTATC ATTTTGTATC ATTTTGTATC ATTTTGTATC ATTTTGTATC ATTTTGTATC ---------ATTTTGTATC ---------ATTTTGTATC ATTTTGTATC ATTTTGTATC ATTTTGTATC ATTTTGTATC ATTTTGTATC ATTTTGTATC ATTTTGTATC ATTTTGTATC ATTTTGTATC ATTTTGTATC ATTTTGTATC ATTTTGTATC ATTTTGTATC ATTTTGTATC ATTTTGTATC ATTTTGTATC ATTTTGTATC 1470 CATATAAATT CATATAAATT CATAGAAATT CATAGAAATT CATAGAAATT CATAGAAATT CATAGAAATT CATAGAAATT CATAGAAATT CATAGAAATT ---------CATAGAAATT CATAGAAATT CATAGAGATT CA-AGAAATT CATAGAAATT CATAGAAATT CATAGAAATT CATAGAAATT CATAGAAATT CATAGAAATT CATAGAAATT ---------CATAGAAATT ---------CATAGAAATT CATAGAAATT CATAGAAATT CATAGAAATT CATAGAAATT CATAGAAATT CATAGAAATT CATAGAAATT CATAGAAATT CATAGAAATT CATAGAAATT CATAGAAATT CATAGAAATT CATAGAAATT CATAGAAATT CATAGAAATT CATAGAAATT CATAGAAATT 1480 CAGCAAACTA CAGCAAACTA CAGCAAACTA CAGCAAACTA CAGCAAACTA CAGCAAACTA CAGCAAACTA CAGCAAACTA CAGCAAACTA CAGCAAACTA ---------CAGCAAACTA CAGCAAACTA CAGCAAACTA CAGCAAACTA CAGCAAACTA CAGCAAACTA CAGCAAACTA CATCAAACTA CATCAAACTA CATCAAACTA CATCAAACTA ---------CATCAAACTA ---------CATCAAACTA CATCAAACTA CATCAAACTA CAGCAAACTA CATCAAACTA CAGCAGACTA CATCAAACTA CATCAAACTA CATCAAACTA CAGCAAACTA CAGCAAACTA CAGCAAACTA CATCAAACTA CATCAAACTA CAGCAAACTA CAGCAAACTA CAGCAAACTA CATCAAACTA 1490 TTACGATCTT TTACGATCTT TTACAATCTT TTACGATCTT TTACGATCTT TTACGATCTT TTACGATCTT TTACGATCTT TTACGATCTT TTACGATCTT ---------TTACGATCTT TTACGATCTT TTACGATCTT TTACGATCTT TTACGATCTT TTACGATCTT TTACGATCTT TTACGATCTT TTACGATCTT TTACGATCTT TTACGATCTT ---------TTACGATCTT ---------TTACGATCTT TTACGATCTT TTACGATCTT TTACGATCTT TTACGATCTT TTACGATCTT TTACGATCTT TTACGATCTT TTACGATCTT TTACGATCTT TTACGATCTT TTACGATCTT TTACGATCTT TTACGATCTT TTACGATCTT TTACGATCTT TTACGATCTT TTACGATCTT 1500 ATCTATTAAC ATCTATTAAC ATCTATTAAC ATCTATTAAC ATCTATTAAC ATCTATTAAC ATCTATTAAC ATCTATTAAC ATCTATTAAC ATCTATTAAC ---------ATCTATTAAC ATCTATTAAC ATCTATTAAC ATCTATTAAC ATCTATTAAC ATCTATTAAC ATCTATTAAC ATCTATTAAC ATCTATTAAC ATCTATTAAC ATCTATTAAC ---------ATCTATTAAC ---------ATCTATTAAC ATCTATTAAC ATCTATTAAC ATCTATTAAC ATCTATTAAC ATCTATTAAC ATCTATTAAC ATCTATTAAC ATCTATTAAC ATCTATTAAC ATCTATTAAC ATCTATTAAC ATCTATTAAC ATCTATTAAC ATCTATTAAC ATCTATTAAC ATCTATTAAC ATCTATTAAC 1510 TATCTATTAG TATCTATTAG TATCTATTAG TATCTATTAG TATCTATTAG TATCTATTAG TATCTATTAG TATCTATTGG TATCTATTAG TATCTATTAG ---------TATCTATTAG TATCTATTAG TATCTATTAG TATCTATTAG TATCTATTAG TATCTATTAG TATCTATTAG TATCTATTAG TATCTATTAG TATCTATTAG TATCTATTAG ---------TATCTATTAG ---------TATCTATTAG TATCTATTAG TATCTATTAG TATCTATTAG TATCTATTAG TATCTATTAG TATCTATTAG TATCTATTAG TATCTATTAG AATTTATTAG TATCTATTAG TATCTATTAG TATCTATTAG TATCTATTAG TATCTATTAG AATCTATTAG TATCTATTAG TATCTATTAG 1520 TTATTCATAA TTATTCATAA TTATTCATAA TTATTCATAA TTATTCATAA TTATTCATAA TTATTCATAA TTATTCATAA TTATTCATAA TTATTCATAA ---------TTATTCATAA TTATTCATAA TTATTCATAA TTATTCATAA TTATTCATAA TTATTCATAA TTATTCATAA TTATTCATAA TTATTCATAA TTATTCATAA TTATTCATAA ---------TTATTCATAA ---------TTATTCATAA TTATTCATAA TTATCCATAA TTATTCATAA TTATTCATAA TTATTCATAA TTATTCATAA TTATTCATAA TTATTCATAA TTATTCATAA TTATTCATAA TTATTCATAA TTATTCATAA TTATTCATAA TTATTCATAA TTATTCATAA TTATTCATAA TTATTCATAA 141 Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana 1530 CTACTATGAA CTACTATGAA CTACTATGAA CTACTATGAA CTACTATGAA CTACTATGAA CTACTATGAA CTACTATGAA CTACTATGAA CTACTATGAA ---------CTACTATGAA CTACTATGAA CTACTATGAA CTACTATGAA CTACTATGAA CTACTATGAA CTACTATGAA CTACTATGAA CTACTATGAA CTACTATGAA CTACTATGAA ---------CTACTATGAA ---------CTACTATGAA CTACTATGAA CTACTATGAA CTACTATGAA CTACTATGGA CTACTATGAA CTACTATGAA CTACTATGAA CTACTATGAA CTACTATGAA CTACTATGAA CTACTATGAA CTACTATGAA CTACTATGAA CTACTATGAA CTACTATGAA CTACTATGAA CTACTATGAA 1540 TTAT-----TTAT-----TTAT-----TTAT-----TTAT-----TTAT-----TTAT-----TTAT-----TTAT-----TTAT--------------TTAT-----TTAT-----TTAT-----TTATTAATAT TTATTAATAT TTAT-----TTAT-----TTAT-----TTAT-----TTAT-----TTAT--------------TTAT--------------TTAT-----TTAT-----TTAT-----TTAT-----TTAT-----TTAT-----TTAT-----TTAT-----TTAT-----TTAT-----TTAT-----TTAT-----TTAT-----TTAT-----TTAT-----TTAT-----TTAT-----TTAT------ 1550 ------------------------------------------------------------------------------------------------------------------------------GAATTATAGA GAATTATAGA ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 1560 --TAATATGA --TAATATGA -----------TAATATGA --TAATATGA --TAATATGA --TAATATGA --TAATATGA --TAATATGA --TAATATGA -----------TAATATGA --TAATATGA --TAATATGA ATTAATATGA ATTAATATGA --TAATATGA --TAATATGA --TAATATGA --TAATATGA --TAATATGA --TAATATGA -----------------------------TAATATGA --TAATATGA --TAATATGA --TAATATGA --TAATATGA --TAATATGA --TAATATGA --TAATATGA --TAATATGA --TAATATGA --TAATATGA --TAATATGA --TAATATGA --TAATATGA --TAATATGA --TAATATGA --TAATATGA --TAATATGA 1570 ATTATAGACT ATTATAGACT -----AGACT ATTATAGACT ATTATAGACT ATTATAGACT ATTATAGACT ATTATAGACT ATTATAGACT ATTATAGACT ---------ATTATAGACT ATTATAGACT ATTATAGACT ATTATAGACT ATTATAGACT ATTATAGACT ATTATAGACT ATTATAGACT ATTATAGACT ATTATAGACT ATTATAGACT ---------------------------ATTATAGACT ATTATAGACT ATTATAGACT ATTATAGACT ATTATAGACT ATTATAGACT ATTATAGACT ATTATAGACT ATTATAGACT ATTATAGACT ATTATAGACT ATTATAGACT ATTATAGACT ATTATAGACT ATTATAGACT ATTATAGACT ATTATAGACT ATTATAGACT 1580 AGAATTTAGA AGAATTTAGA AGAATTTAGA AGAATTTAGA AGAATTTAGA ACAATTTAGA ACAATTTAGA ACAATTTAGA ACAATTTAGA ACAATTTAGA ---------ACAATTTAGA ACAATTTAGA AGAATTTAGA AGAATTTAGA AGAATTTAGA AGAATTTAGA ACAATTTAGA ACAATTTAGA ACAATTTAGA ACAATTTAGA ACAATTTAGA ---------------------------ACAATTTAGA ACAATTTAGA ACAATTTAGA ACAATTTAGA ACAATTTAGA ACAATTTAGA ACAATTTAGA ACAATTTAGA ACAATTTAGA ACAATTTAGA ACAATTTAGA ACAATTTAGA ACAATTTAGA ACAATTTAGA ACAATTTAGA ACAATTTAGA ACAATTTAGA ACAATTTAGA 1590 AAAA-CTAGA AAAA-CTAGA AAAA-CTAGA AAAA-CTAGA AAAA-CTAGA AAAAACTAGA AAAAACTAGA AAAAACTAGA AAAAACTAGA AAAAACTAGA ---------AAAAACTAGA AAAAACTAGA AAAA-CTAGA AAAA-CTAGA AAAA-CTAGA AAAA-CTAGA AAAAACTAGA AAAAACTAGA AAAAACTAGA AAAAACTAGA AAAAACTAGA ---------------------------AAAAACTAGA AAAAACTAGA AAAAACTAGA AAAAACTAGA AAAAACTAGA AAAAACTAGA AAAAACTAGA AAAAACTAGA AAAAACTAGA AAAAACTAGA AAAAACTAGA AAAAACTAGA AAAAACTAGA AAAAACTAGA AAAAACTATA AAAAACTAGA AAAAACTATA AAAAACTAGA 1600 ATTTCTAATT ATTTCTAATT ATTTCTAATT ATTTCTAAGT ATTTCTAAGT ATTTCTAATT ATTTCTAATT ATTTCTAATT ATTTCTAATT ATTTCTAATT ---------ATTTCTAATT ATTTCTAATT ATTTCTAATT ATTTCTAATT ATTTCTAATT ATTTCTAATT ATTTCTAATT ATTTCGAATT ATTTCGAATT ATTTCGAATT ATTTCGAATT -----------T---A-----------ATTTCGAATT ATTTCGAATT ATTTCGAATT ATTTCTAATT ATTTCGAATT ATTTCTAATT ATTTCGAATT ATTTCGAATT ATTTCGAATT ATTTCTAATT ATTTCTAATT ATTTCGAATT ATTTCGAATT ATTTCGAATT ATTTCTAATT ATTTCTAATT ATTTCTAATT ATTTCGAATT Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis 1610 TTTAATGCCA TTTAATGCCA TTTAATGTCA TTTAATGCCA TTTAATGCCA TTTAATGCCA TTTAATGCCA 1620 TACTT-AATA TACTT-AATA TACTT-AATA TACTT-AATA TACTT-AATA TACTT-AATA TACTT-AATA 1630 TAACATATTT TAACATATTT TAACATATTT TAACATATTT TAACATATTT GAACATATTT GAACATATTT 1640 AATATAATAAATATAATAAATATAATAAATATAATAAATATAATAAATATAATAA AATATAATA- 1650 ---------------------------------------------TAATA-------------- 1660 ---------------------------------------------------------------- 1670 ---TATAATA ---TATAATA ---TATAATA ---TATAATA ---TATAATA ---TATAATA ---TATAATA 1680 ATGGTAGATT ATGGTAGATT ATAGTAGATT ATGGTAGATT ATGGTAGATT ATGGTAGATT ATGGTAGATT 142 Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana TTTAATGCCA TTTAATGCCA TTTAATGCCA ---------TTTAATGCCA TTTAATGCCA TTTAATGCCA TTTAATGCCA TTTAATGCCA TTTAATGCCA TTTAATGCCA TTTAATGCCA TTTAATGCCA TTTAATGCCA TTTAATGCCA ---------------------------TTTAATGCCA TTTAATGCCA TTTAATGCCA TTGAATGCCA TTTAATGCCA TTTAATGCCA TTTAATGCCA TTTAATGCCA TTTAATGCCA TTTAATGCCA TTTAATGCCA TTTAATGCCA TTTAATGCCA TTTAATGCCA TTTAATGCCA TTTAATGCCA TTTAATGCCA TTTAATGCCA TACTT-AATA TACTT-AATA TACTT-AATA ---------TGCTT-AATA TGCTT-AATA TACCTTAATA TACTT-AATA TACTTTAATA TACTT-AATA TACTT-AATA TACTT-AATA TACTT-AATA TACTT-AATA TACTT-AATA ---------------AATA ---------TACTT-AATA TACTT-AATA TACTT-AATA TACTT-AATA TACTT-AATA TGCTT-AATA TACTT-AATA TACTT-AATA TACTT-AATA TACTT-AATA TGCTT-AATA TGCTT-AATA TACTT-AATA TACTTTAATA TACTT-AATA TACTT-AATA TACCTTAATA TACTT-AATA GAACATATTT GAACATATTT GAACATATTT ---------GAACATATTT GAACATATTT TAACATATTT TAACATATTT TAACATATTT TAACATATTT GAACATATTT GAACATATTT GAACATATTT GAACATATTT GAACATATTT ---------GAACATATTT ---------GAACATATTT GAACATATTT GAACATATTT GAACATATTT GAACATATTT GAACATATTT GAACATATTT GAACATATTT GAACATATTT GAACATATTT GAACATATTT GAACATATTT GAACATATTT GAACATATTT GAACATATTT GAACATATTT GAACATATTT GAACATATTT AATATAATAAATATAATAA AATATAATAA ---------AATATAATAA AATATAATAA AATATAATAAATATAATAT AATATAATAT AATATAATAAATATAATAA AATATAATAA AATATAATAA AATATAATAA AATATAATAA ---------AATATAATAA ---------AATATAATAA AATATAATAA AATATAATAA AATATAATAA AATATAATAA AATATAATAA AATATAATAA AATATAATAA AATATAATAA AATATAATAA AATATAATAA AATATAATAA AATATAATAA AATATAATAA AATATAATAA AATATAATAA AATATAATAA AATATAATAA ---------TAATA----TAATA-------------TAATA----TAATA-------------ATAATAATGATAATAATG---------TAATA----TA-------TA-------TA-------TA----------------TA----------------TA-------TA-------TA-------TAATA----TA-------TAATA----TA-------TA-------TA-------TAATA----TAATA----TAATATATAA TA-------TA-------TAATA----TAATA----TAATA----TA-------- ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------TAATATAATA ------------------------------------------------------- ---TATAATA ---TATAATA ---TATAATA ------------TATAATA ---TATAATA ---TATAATA --ATATAATA --ATATAATA ---TATAATA ---TATAATA ---TATAATA ---TATAATA ---TATAATA ---TATAATA ------------TATAATA ------------TATAATA ---TATAATA ---TATAATA ---TATAATA ---TATAATA ---TATAATA ---TATAATA ---TATAATA ---TATAATA ---TCTAATA ---TATAATA ATATATAATA ---TATAATA ---TATAATA ---TATAATA ---TCTAATA ---TATAATA ---TATAATA ATGGTAGATT ATGGTAGATT ATGGTAGATT ---------ATGGTAGATT ATGGTAGATT ATGGTAGATT ATGGTAGATT ATGGTAGATT ATGGTAGATT ATGGTAGATT ATGGTAGATT ATGGTAGATT ATGGTAGATT ATGGTAGATT ---------ATGGTAGATT ---------ATGGTAGATT ATGGTAGATT ATGGTAGATT ATGGTAGATT ATGGTAGATT ATGGTAGATT ATGGTAGATT ATGGTAGATT ATGGTAGATT ATGGTAGATT ATGGTAGATT ATGGTAGATT ATGGTAGATT ATGGTAGATT ATGGTAGATT ATGGTAGATT ATGGTAGATT ATGGTAGATT Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii 1690 CAATCTAATG CAATCTAATA CAATCTAATA CAATCTAATA CAATCTAATA CAATCGAATA CAATCGAATA CAATCGAATA CAATCGAATA CAATCGAATA ---------CAATCGAATA CAATCGAATA CAATCTAATA CAATCTAATA CAATCTAATA 1700 TTCAATCTAA TTCAATCTAA TTCAATCTAA TTCAATCTAA TTCAATCTAA TTCAATCTAA TTCAATCTAA TTCAATCTAA TTCAATCTAA TTCAATCTAA ---------TTCAATTTAA TTCAATCTAA TTCAATCTAA TTCAATCTAA TTCAATCTAA 1710 ---------------------------TATTCAATCT TATTCAATCT ---------------------------------------------------------------------------------------------------- 1720 --TGTTGATA --TGTTGATA --TGTTGATA AATGTTGATA AATGTTGATA --TGTTGATA --TGTTGATA --TGTTGATA --TGTTGATA --TGTTGATA -----------TGTTGATA --TGTTGATA --TGTTGATA --TGTTGATA --TGTTGATA 1730 GAATATAATA GAATATAATA GAATAGAATA GAATATAATA GAATATAATA GAATATAATA GAATATAATA GAATATAATA GAATATAATA GAATATAATA ---------GAATATAATA GAATATAATA GAATATAATA GAATATAATA GAATATAAT- 1740 ATATAATTAA ATATAATTAA ATATAATTAA ATATAATTAA ATATAATTAA ATATAATTAA ATATAATTAA ATATAATTAA ATATAATTAA ATATAATTAA ---------ATATAATTAA ATATAATTAA ATATAATTAA ATATAATTAA ---------- 1750 TAATA----TAATA----GAATA----GAATA----GAATA----GAATATAATGAATATAATGAATATAATGAATATAATGAATATAAT---------GAATATAATT GAATATAATT GAATATAATGAATATAAT---------- 1760 -------TAA -------TAA -------TAA -------TAA -------TAA ------------------------------------------------------AAGAATATAA AAGAATATAA ---------------------------- 143 Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana CAATCTAATA CAATCGAATA CAATCGAATA CAATCGAATA CAATCGAATA CAATCGAATA ---------CAATCGAATA ---------CAATCGAATA CAATCGAATA CAATCGAATA CAATCGAATA CAATCGAATA CAATCGAATA CAATCGAATA CAATCGAATA CAATCGAATA CAATCGAATA CAATCGAATA CAATCGAATA CAATCGAATA CAATCGAATA CAATCGAATA CAATCGAATA CAATCGAATA CAATCGAATA TTCAATCTAA TTCAATCTAA TTCAATCTAA TTCAATCTAA TTCAATCTAA TTCAATCTAA ---------TTCAATCTAA ---------TTCAATCTAA TTCAATCTAA TTCAATCTAA TTCAATCTAA TTCAATCTAA TTCAATCTAA TTCAATCTAA TTCAATCTAA TTCAATCTAA TTCAATCTAA TTCAATCTAA TTCAATCTAA TTCAATCTAA TTCAATCTAA TTCAATCTAA TTCAATCTAA TTCAATCTAA TTCAATCTAA ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- --TGTTGATA --TGTTGATA --TGTTGATA --TGTTGATA --TGTTGATA --TGTTGATA -----------TGTTGATA -----------TGTTGATA --TGTTGATA --TGTTGATA --TGTTGATA --TGTTGATA --TGTTGATA --TGTTGATA --TGTTGATA --TGTTGATA --TGTTGATA --TGTTGATA --TGTTGATA --TGTTGATA --TGTTGATA --TGTTGATA --TGTTGATA --TGTTGATA --TGTTGATA GAATATAATA GAATATAATA GAATATAATA GAATATAATA GAATATAATA GAATATAATA ---------GAATATAATA ---------GAATATAATA GAATATAATA GAATATAATA GAATATAATA GAATATAATA GAATATAATA GAATATAATA GAATATAATA GAATATAATA GAATATAATA GAATATAATA GAATATAATA GAATATAATA GAATATAATA GAATATAATA GAATATAATA GAATATAATA GAATATAATA ATATAATTAA ATATAATTAA ATATAATTAA ATATAATTAA ATATAATTAA ATATAATTAA ---------ATATAATTAA ---------ATATAATTAA ATATAATTAA ATATAATTAA ATATAATTAA ATATAATTAA ATATAATTAA ATATAATTAA ATATAATTAA ATATAATTAA ATATAATTAA ---------ATATAATTAA ATATAATTAA ATATAATTAA ATATAATTAA ATATAATTAA ATATAATTAA ATATAATTAA GAATATAATGAATATAATGAATATAATT GAATATAATT GAATATAATT GAATATAATT ---------GAATATAATT ---------GAATATAATT GAATATAATT TAATATAATT GAATATAATGAATATAATT GAATATAATT GAATATAATT GAATATAATT GAATATAATT GAATATAATT --TTCTAATT GAATAGAATT GAATATAATT GAATATAATT GAATATAATTAATATAATT GAATATAATCAATATAATT ------------------AAGAATATAA AAGAATATAA AAGAATATAA AAGAATATAA ---------AAGAATATAA ---------AAGAATATAA AAGAATATAA AAGAATATAA ---------AAGAATATAA AAGAATATAA AAGAATATAA AAGAATATAA AAGAATATAA AAGAATATAA AAGAATATAA AAGAATATAA AAGAATATAA AAGAATATAA ---------AAGAATATAA ---------AAGAATATAA Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora 1770 TAATTCTATT TAATTCTATT TAATTCTATT TAATTCTATT TAATTCTATT -AATTCTCTT -AATTCTCTT -AATTCTCTT -AATTCTCTT -AATTCTCTT ---------TAATTATCTT TAATTCTCTT -AATTCTATT -AATTCTTAT -AATTCTTAT -AATTCTATT -AATTCTCTT TAATTCTCTT TAATTCTCTT TAATTCTCTT TAATTCTCTT ---------TAATTCTCTT ---------- 1780 TAAAATTTAA TAAAATTTAA TAAAATTTCA TAAAATTTCA TAAAATTTCA TAAAATTTCA TAAAATTTCA TAAAATTTCA TAAAATTTCA TAAAATTTCA ---------TAAAATTTCA TAAAATTTCA TAAAATTTCA TAAAATTTCA TAAAATTTCA TAAAATTTCA TAAAATTTCA TAAAATTTCA TAAAATTTCA TCAAATTTCA TAAAATTTCA ---------TAAAATTTCA ---------- 1790 AAAA-TTATT AAAA-TTATT AAAA-TTATT AAAA-TTATT AAAA-TTATT AAAA-TTATT AAAA-TTATT AAAA-TTATT AAAA-TTATT AAAA-TTATT ---------AAAA-TTATT AAAA-TTATT AAAA-TTATT AAAAATTATT AAAAATTATT AAAAATTATT AAAA-TTATT AAAA-TTATT AAAA-TTATT AAAA-TTATT AAAA-TTATT ---------AAAA-TTATT ---------- 1800 TTAATTATTT TTAATTATTT TTAATTATTT TTAATTATTT TTAATTATTT TTAATTATTT TTAATTATTT TTAATTATTT TTAATTATTT TTAATTATTT ---------TTAATTATTT TTAATTATTT TTAATTATTT TTAATTTTTT TTAATTTTTT TTAATTATTT TTAATTATTT TTAATTATTT TTAATTATTT TTAATTATTT TTAATTATTT ---------TTAATTATTT ---------- 1810 A--------A--------ACTTCTATTT ACTTCTATTT ACTTCTATTT AATTCTATTT AATTATATTT AATTATATTT AATTCTATTT AATTATATTT ---------AATTCTATTT AATTCTATTT AATTCTATTT AATTCTATTT AATTCTATTT AATTCTATTT AATTATATTT AATTCTATTT AATTCTATTT AATTCTATTT AATTCTATTT ---------AATTCTATTT ---------- 1820 ------------------GATTCTATTT G--------G--------------------------------------------------------------G--------G--------G--------------------------------------------G--------G--------G--------G-----------------G------------------ 1830 --------AT --------AT TATATTTGAT --------AT --------AT --------------------------------------------------------------AT --------AT --------AT --------------------------------------------AT --------AT --------AT --------AT -----------------AT ---------- 1840 TCTATTTT?A TCTATTTT?A TCTATTTT?A TATATTTT?A TATATTTT?A -------T?A -------T?A -------T?A -------T?A -------T?A --------?TCTATTTT?A TCTATTTT?A TATATTTT?A -------T?A -------T?A -------T?A -------T?A TCTATTTT?A TCTATTTT?A TCTATTTT?A TCTATTTT?A --------?TCTATTTT?A --------?- 144 Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana TAATTCTCTT TAATTCTCTT TAATTCTCTT -AATTCTCTT TAATTCTCTT TAATTCTCTT TAATTCTCTT TAATTCTCTT TAATTCTCTT TAATTCTCTT TAATTCTCTT TAATTCTCTT TAATTCTCTT TAATTCTCTT -AATTCTCTT TAATTCTCTT -AATTCTCTT TAATTCTCTT TAAAATTTCA TAAAATTTCA TAAAATTTCA TAAAATTTCA TCAAATTTCA TAAAATTTCA TCAAATTTCA TAAAATTTCA TAAAATTTCA TAAAATTTCA TAAAATTTCA TAAAATTTCA TAAAATTTCA TAAAATTTCA TAAAATTTCA TAAAATTTCA TAAAATTTCA TAAAATTTCA AAAA-TTATT AAAA-TTATT AAAA-TTATT AAAA-TTATT AAAA-TTATT AAAA-TTATT AAAA-TTATT AAAA-TTATT AAAA-TTATT AAAA-TTATT AAAA-TTATT AAAA-TTATT AAAA-TTATT AAAA-TTATT AAAA-TTATT AAAA-TTATT AAAA-TTATT AAAA-TTATT TTAATTATTT TTAATTATTT TTAATTATTT TTAATTATTT TTAATTATTT TTAATTATTT TTAATTATTT TTAATTATTT TTAATTATTT TTAATTATTT TTAATTATTT TTAATTATTT TTAATTATTT TTAATTATTT TTAATTATTT TTAATTATTT TTAATTATTT TTAATTATTT AATTCTATTT AATTCTATTT AATTCTATTT AATTATATTT AATTCTATTT AATTCTATTT AATTCTATTT AATTCTATTT AATTCTATTT AATTCTATTT AATTCTATTT AATTCTATTT AATTCTATTT AATTCTATTT AATTCTATTT AATTCTATTT AATTCTATTT AATTCTATTT G--------G--------G-----------------G--------G--------G--------G--------G--------G--------G--------G--------G--------G-----------------G-----------------G--------- --------AT --------AT --------AT -----------------AT --------AT --------AT --------AT --------AT --------AT --------AT --------AT --------AT --------AT -----------------AT -----------------AT TCTATTTT?A TCTATTTT?A TCTATTTT?A -------T?A TCTATTTT?A TCTATTTT?A TCTATTTT?A TCTATTTT?A TCTATTTT?A TCTATTTT?A TCTATTTT?A TCTATTTT?A TCTATTTT?A TCTATTTT?A -------T?A TCTATTTT?A -------T?A TCTATTTT?A Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii 1850 ATCATATTAA ATCATATTAA ATCATATTAA ATCATATTAA ATCATATTAA AGCATAGTCA ATCATAGTCA ATCATAGTCA ATCATAGTCA ATCATAGTCA ---------ATCATAGTCA ATCATAGTCA ATCATATTAA ATCATATTAA ATCATATTAA ATCATATTAA ATCATAGTCA ATCATAGTCA ATCATAGTCA ATCATAGTCA ATCATAGTCA ---------ATCATAGTCA ---------ATCATAGTCA ATCATAGTCA ATCATAGTCA ATCATAGTCA ATCATAGTCA ATCATAGTCA ATCATAGTCA ATCATAGTCA ATCATAGTCA 1860 AAATTAGATT AAATTAGATT AAATTAGATT AAATTAGATT AAATTAGATT AAATTAGATT AAATTAGATT AAATTAGATT AAATTAGATT AAATTAGATT ---------AAATTATATT AAATTATATT AAATTAGATT AAATTAGATT AAATTAGATT AAATTAGATT AAATTAGATT AAATTAGATT AAATTAGATT AAATTAGATT AAATTAGATT ---------AAATTAGATT ---------AAATTAGATT AAATTAGATT AAATTGGATT AAATTAGATT AAATTAGATT AAATTATATT AAATTAGATT AAATTAGATT AAATTAGATT 1870 TTAATTTAAT TTAATTTAAT TTAATTTAAT TTAATTTAAT TTAATTTAAT TTAATTTAAT TTAATTTAAT TTAATTTAAT TTAATTTAAT TTAATTTAAT ---------TTAATTTAAT TTAATTTAAT TTAATTTAAT TTAATTTAAT TTAATTTAAT TTAATTTAAT TTAATTTAAT TTAATTTAAT TTAATTTAAT TTAATTTAAT TTAATTTAAT ---------TTAATTTAAT ---------TTAATTTAAT TTAATTTAAT TTAATTTAAT TTAATTTAAT TTAATTTAAT TTAATTTAAT TTAATTTAAT TTAATTTAAT TTAATTTAAT 1880 CATAATATAT CATAACATAA CATAACA-AA CATAACATAA CATAACATAA CATAACATAA CATAACATAA CATAACATAA CATAACATAA CATAACATAA ---------CATAACATAA CATAACATAA CATAACATAA CATAACATAA CATAACATAA CATAACATAA CATAACATAA CATAACATAA CATAACATAA CATAACATAA CATAACATAA ---------CATAACATAA ---------CATAACATAA CATAACATAA CATAACATAA CATAACATAA CATAACATAA CATAACATAA CATAACATAA CATAACATAA CATAACATAA 1890 TAT------T TATA-TAATT TATA-TCATT TATA-TTATT TATA-TTATT TATA-TTATT TATA-TTATT TATA-TTATT TATA-TTATT TATA-TTATT ---------TATA-TTATT TATA-TTATT TATA-TTATT TATA-TTATT TATA-TTATT TATA-TTATT TATA-TTATT TATA-TTATT TATA-TTATT TATAATTATT TATA-TTATT ---------TATA-TTATT ---------TATA-TTATT TATA-TTATT TATA-TTATT TATA-TTATT TATA-TTATT TATA-TTATT TATA-TTATT TATA-TTATT TATA-TTATT 1900 AATATTATAA AATATTATAA AATATTATAA AATATTATAA AATATTATAA AATATTATAA AATATTATAA AATATTATAA AATATTATAA AATATTATAA ---------AATATTATAA AATATTATAA AATATTCTAA AATATTATAA AATATTATAA AATATTATAA AATATTATAA AATATTATAA AATATTATAA AATATTATAA AATATTATAA ---------AATATTATAA ---------AATATTATAA AATATTATAA AATATTATAA AATATTATAA AATATTATAA AATATTATAA AATATTATAA AATATTATAA AATATTATAA 1910 TTATTA?--TTATTA?--TTATTA?--TTATTA?--TTATTA?--TTATTA?--TTATTA?--TTATTA?--TTATTA?--TTATTA?--------?--TTATTA?--TTATTA?--TTATTA?--TTATTA?--TTATTA?--TTATTA?--TTATTA?--TTATTA?--TTATTA?--TTATTA?--TTATTA?--------?--TTATTA?--------?--TTATTA?--TTATTA?--TTATTA?--TTATTA?--TTATTA?--TTATTA?--TTATTA?--TTATAA?TTA TTATTA?--- 1920 ---------T ---------T ---------T ---------T ---------T ---TGTTCCA ---TGTTCCA ---TGTTCCA ---TGTTCCA ---TGTTCCA ------------TGTTCTA ---TGTTCTA ---------T ---------T ---------T ---TGTTATT ---TGTTCCA ---TGTTCTA ---TGTTCTA ---TGTTCTA ---TGTTCTA ------------TGTTCTA ------------TGTTCTA ---TGTTCTA ---TGTTCTA ---TGTTCCA ---TGTTCTA ---TGTTCTA ---TGTTCTA TTATGTTCTA ---TGTTCTA 145 Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana ATCATAGTCA ATCATAGTCA ATCATAGTCA ATCATAGTCA ATCATAGTCA ATCATAGTCA ATCATAGTCA ATCATAGTCA ATCATAGTCA AAATTAGATT AAATTAGATT AAATTATATT AAATTAGATT AAATTAGATT AAATTAGATT AAATTAGATT AAATTAGATT AAATTAGATT TTAATTTAAT TTAATTTAAT TTAATTTAAT TTAATTTAAT TTAATTTAAT TTAATTTAAT TTAATTTAAT TTAATTTAAT TTAATTTAAT CATAACATAA CATAACATAA CATAACATAA CATAACATAA CATAACATAA CATAACATAA CATAACATAA CATAACATAA CATAACATAA TATA-TTATT TATA-TTATT TATA-TTATT TATA-TTATT TATA-TTATT TATA-TTATT TATA-TTATT TATA-TTATT TATA-TTATT AATATTATAA AATATTATAA AATATTATAA AATATTATAA AATATTATAA AATATTATAA AATATTATAA AATATTATAA AATATTATAA TTATTA?--TTATTA?--TTATTA?--TTATTA?--TTATAA?TTA TTATTA?--TTATTA?--TTATTA?--TTATTA?--- ---TGTTCTA ---TGTTCTA ---TGTTCTA ---TGTTCTA TTATGTTCTA ---TGTTCCA ---TGTTCTA ---TGTTCCA ---TGTTCTA Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana 1930 GTTATATTTA GTTATATTTA GTTATATTTA GTTATATTTA GTTATATTTA ------TTTA ------TTTA ------TTTA ------TTTA ------TTTA ---------------TTTA ------TTTA GTTATATTTA GTTATATTTA GTTATATTTA GTTATATTTA ------TTTA ------TTTA ------TTTA ------TTTA ------TTTA ---------------TTTA ---------------TTTA ------TTTA ------TTTA ------TTTA ------TTTA ------TTTA ------TTTA ------TTTA ------TTTA ------TTTA ------TTTA ------TTTA ------TTTA ------TTTA ------TTTA ------TTTA ------TTTA ------TTTA 1940 TTCTATTAGA TTCTATTAGA TTCTATTAGT TTCTATCAGG TTCTATTAGT TTCTATTAGT TTCTATTAGT TTCTATTAGA TTCTATTAGT TTCTATTAGT ---------TTCTATTAGT TTCTATTAGT TTCTATTAGT TTCTATTAGT TTCTATTAGT TTCTATTAGT TTCTATTAGT TTCTATTAGT TTCTATTAGT TTCTATTAGT TTCTATTAGT ---------TTCTATTAGT ---------TTCTATTAGT TTCTATTAGT TTCTATTAGT TTCTATTAGT TTCTATTAGT TTCTATTAGT TTCTATTAGT TTCTATTAGT TTCTATTAGT TTCTATTAGT TTCTATTAGT TTCTATTAGT TTCTATTAGT TTCTATTAGT TTCTATTAGT TTCTATTAGT TTCTATTAGT TTCTATTAGT 1950 ATATTCTATATATTCTATATATTCTATATATTCTATATATTCTATATATTCTATATATTCTATATATTCTATT ATATTCTATATATTCTAT---------ATATTCTATATATTCTATT ATATTCCATATATTCTATT ATATTCTATT ATATTCTATATATTCTATATATTCTATATATTCTATATATTCTATATATTCTAT---------ATATTCTATA ---------ATATTCTATATATTCTATATATTCTATATATTCTATATATTCTATT ATATTCTATATATTCTATT ATATTCTATATATTCTATATATTCTATATATTCTATATATTCTATATATTCTATATATTCTATATATTCTATATATTCTATATATTCTATATATTCTAT- 1960 ---------------------------------------------------------------TATAA----------------------------------------TAGAATTAGA ---------TAGAATTAGA TAGAATTAGA ---------------------------------------------------------------------------------------------------------------------TATTCTATTA ---------TATTCTATTA ---------------------------------------------------------------------------------------------------- 1970 ------------------------------------------------------------------------------------------------------------ATATTCTATA ---------ATATTCTATA ATATTCTATA ---------------------------------------------------------------------------------------------------------------------GTATATTCTA ---------GTATATTCTA ---------------------------------------------------------------------------------------------------- 1980 ------------------------------------------------------------------------------------------------------------TATATTACTA ---------TATATTAGTA TATATTAGTA ---------------------------------------------------------------------------------------------------------------------T-----------------T------------------------------------------------------------------------------------------------------------ 1990 ------------------------------------------------------------------------------------------------------------TAATATAGTA ---------TAATCATAGT TAATCATAGT ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 2000 ------------------------------------------------------------------------------------------------------------TTCTTATAGT ---------AATATTCTAG AATATTCTAG ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 146 Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana 2010 ------------------------------------------------------------------------------------------------------------TATAATAAAA ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 2020 -------------------------TTA -------TTA -------TTA -------TTA -------TTA -------TTA -------TTA -------TTA ----------------TTA TTACTAA---------TTA -------TTA -------TTA -------TTA -------TTA -------TTA -------TTA -------TTA -------TTA ----------------TTA ----------------TTA -------TTA -------TTA -------TTA -------TTA -------TTA -------TTA -------TTA -------TTA -------TTA -------TTA -------TTA -------TTA -------TTA -------TTA -------TTA -------TTA -------TTA 2030 ------------------GAATTAGAAT GAATTAGAAT GAATTAGAAT GAATTAGAAT GAATTAGAAT GAA------T GAATTAGAAT GAATTAGAAT ---------GAATTAGAAT ---------GAATTAGAAT GAATTAGAAT GAATTAGAAT GAATTAGAAT GAATTAGAAT GAATTAGAAT GAATTAGAAT GAATTAGAAT GAATTAGAAT ---------GAATTAGAAT ---------GAATTAGAAT GAATTAGAAT GAATTAGAAT GAATTAGAGT GAATTAGAAT GAATTAGAAT GAATTAGAAT GAATTAGAAT GAATTAGAAT GAATTAGAAT GAATTAGAAT GAATTAGAAT GAATTAGAAT GAATTAGAAT GAATTATAAT GAATTAGAAT GAATTATAAT GAATTAGAAT 2040 -------ATA -------ATA ATTCTATATA ATTCTATATA ATTCTATATA ATTCTATATA ATTCTATATA ATTCTATATA ATTCTATATA ATTCTATATA ---------ATTCTATATA -TTCTATATA ATTCTATATA ATTCTATATA ATTCTATATA ATTCTATATA ATTCTATATA ATTCTATATA ATTCTATATA ATTCTATATA ATTCTATATA ---------ATTCTATATA ---------ATTCTATATA ATTCTATATA ATTCTATATA ATTCTATATA ATTCTATATA ATTCTATATA ATTCTATATA ATTCTATATA ATTCTATATA ATTCTATATA ATTCTATATA ATTCTATATA ATTCTATATA ATTCTATATA ATTCTATATA ATTCTATATA ATTCTATATA ATTCTATATA 2050 TAT--TAGTC TAT--TAGTA TAT--TAGTA TAT--TAGTA TAT--TAGTA TATAATACTA TATAATACTA TATAATACTA TAA--TACTA TATAATACTA ---------TAT--TACTA TAT--TACTA TAT--TAGTA TAT--TAGTA TAT--TAGTA TAT--TAGTA TATAATACTA TAA--TACTA TAT--TACTA TAT--TACTA TAT--TACTA ---------TAT--TACTA ---------TAT--TACTA TAT--TACTA TAT--TACTA TATAATACTA TAT--TACTA TAT--TACTA TAT--TACTA TAT--TACTA TAT--TACTA TAT--TACTA TAT--TACTA TAT--TACTA TAT--TACTA TAT--TACTA TATAATACTA TAT--TACTA TATAATACTA TAT--TACTA 2060 TAAT-ATAGT TAAT-ATAGT TATT-ATAGT TAAT-ATAGT TAAT-ATAGT TAAT-ATAGT TAAT-ATAGT TAAT-ATAGT TAAT-ATAGT TAAT-ATAGT ---------TAAT-ATAGT TAAT-ATAGT TAAT-ATAGT TAATCATAGT TAATCATAGT TAATCATAGT TAAT-ATAGT TAAT-ATAGT TAAT-ATAGT TAAT-ATAGT TAAT-ATAGT ---------TAAT-ATAGT ---------TAAT-ATAGT TAAT-ATAGT TAAT-ATAGT TAAT-ATAGT TAAT-ATAGT TAAT-ATAGT TAAT-ATAGT TAAT-ATAGT TAAT-ATAGT TAAT-ATAGT TAAT-AAAGT TAAT-ATAGT TAAT-ATAGT TAAT-ATAGT TAAT-ATAGT TAAT-ATAGT TAAT-ATAGT TAAT-ATAGT 2070 AATATTATAT AATAATATAT AATACTATAA AATATTATAA AATATTATAA ATTATTATAT ATTATTATAT ATTATTATAT ATTATTATAT ATTATTATAT ---------ATTCTTATAATTCTTATAAATATTA--AATATTCTAA AATATTCTAA AATATTCTAA ATTATTATAT ATTATTATAT ATTATTATAT ATTATTATAT ATTATTATAT ---------ATTATTATAT ---------ATTATTATAT ATTATTATAT ATTATTTTAT ATTATTATAT ATTATTATAT ATTATATTAT ATTATTATAT ATTATTATAT ATTATTATAT ATTATTATAT ATTATTATAT ATTATTATAATTATTATAT ATTATTATAT ATTATTATAT ATTATTATAT ATTATTATAT ATTATTATAT 2080 TATTA----TATATTATTA -TATAATATA -TATATTATA -TATAATATA T-TAT-AATA T-TAT-AATA T-TAT-AATA T-TAT-AATA T-TAT-AATA ----------GTTATAAGA -GTTATAAGA -----TACTA TATATTACTA TATATTACTA TATATTACTA T-TAT-AATA T-TAT-AATA T-TAT-AATA T-TAT-AATA T-TAT-AATA ---------T-TAT-AATA ---------T-TAT-AATA TTATAATATA T---T-AATA T-TAT-AATA T-TAT-AATA AGTTATAATA T-TAT-AATA T-TAT-AATA TTATAATATA TG--ATAATA T-TATAAATA -GTTATAATA T-TAT-AATA T-TAT-AATA T-TCTAATAT T-TATAATAA T-TCT-AATA T-TAT-AATA Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis 2090 ------------------TTATAAA--T--------T--------TA-------TA-------- 2100 ---------------------------------------------------------------- 2110 ------TACT ------TACT ---------------TACT ------TACT ----ATTACT ----ATTACT 2120 AATAGTACTC AATAGTACTC --TAGTACTC AATAGTACTC AATAGTACTC AATAGTACTC AATAGTACTC 2130 GACCTTTTTT GACCTTTTTT GACTTTTTTT GACTTTTTTT GACTTTTTTT GACTTTTTTT GACTTTTTTT 2140 TT-CTATTTT TT-CTATTTT TT-CTATTTT TTTCTATTTT TT-CTATTTT TTTCTATTTT TT-CTATTTT 2150 ATTTT----ATTTT----ATTTT----ATTTT----ATTTT----ATTTTTAATT ATTTTTAATT 2160 -----GAATT -----GAATT -----GAATT -----GAATT -----GAATT TTATTTAATT TTATTTAATT 147 Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana TA-------TA-------TA----------------AA-------AA-------TA-------TATTAT---TATTAT---TAATAT---TA-------TA-------TA-------TA-------TA----------------TA----------------TA-------AA-------TAGTATTATT TA-------TA-------TA-------TA-------TA-------AA-------TA-------TAGTATTATT TA-------TA-------TA-------AAT------TA-------TA-------TA-------- ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------TTTTTTATAA ---------------------------------------------------------------ATATTTATAA ---------------------------------------------------------------- ----ATTACT ----ATTACT ----ATTACT -------------ATTACT ----ATTACT -----TTACT ----ATTAGT ----ATTAGT ----ATTACT ----ATTACT ----AATACT ----AATACT ----AATACT ----AATACT -------------AATACT -------------AATACT ------TACT AAAAAATACT ----ATTACT ----AATACT ----ATTACT ----AATACT ----AATACT ------TACT ----ATTACT TATAATTACT ----ATTACT ----AATACT ----AATACT ------TACT ----ATTACT ----ATTACT ----AATACT AATAGTACTC AATAGTACTC AATAGTACTC ---------AATAGTACTC AATAGTACTC AATAGTACTC AATAGTACTC AATAGTACTC AATAGTACTC AATAGTACTC AATAGTACTC AATAGTACTC AATAGTACTC AATAGTACTC ---------AATAGTACTC ---------AATAGTACTC AATAGTACTC AATAGTACTC AATAGTACTC AATAGTACTC AATAGTACTC AATAGTACTC AATAGTACTC AATAGTACTC AATAGTACTC AATAGTACTC AATAGTACTC AATAGTACTC AATAGTACTC AATAGTACTC AATAGTACTC AATAGTACTC AATAGTACTC GACTTTTTTT GACTTTTTTT GACTTTTTTT ---------TACTTTTTTT TACTTTTTTT GACTTTTTTT GACTGTTTTT GACTGTTTTT GACTATTTTT GACTTTTTTT GACTTTTTTT GACTTTTTTT GACTTTTTTT GACTTTTTTT ---------GACTTTTTTT ---------GACTTTTTTT GACTTTTTTT GACTTTTTTT GACTTTTTTT GACTTTTTTT GACTTTTTTT GACTTTTTTT GACTTTTTTT GACTTTTTTT GACTTTTTTT AACTTTTTTT GACTTTTTTT GACTTTTTTT GACTTTTTTT GACTTTTTTT GACTTTTTTT GACTTTTTTT GACTTTTTTT TT-CTATTTT TTTCTATTTT TT-CTATTTT ---------T--CTATTTT TT-CTATTTT TT-CTATTTT TT-CTATTTT TT-CTATTTT TT-CTATTTT TT-CTATTTT T--CTATTTT T--CTATTTT T--CTATTTT TT-CTATTTT ---------T--CTATTTT ---------T--CTATTTT T--CTATTTT ---CTATTTT TT-CTATTTT TT-CTATTTT TT-CTATTTT ---CTATTTT T--CTATTTT T--CTATTTT TT-CTATTTT TT-CTATTTT TT-CTATTTT T--CTATTTT T--CTATTTT TTTCTATTTT TT-CTATTTT TTTCTATTTT T--CTATTTT ATTTTTAATT ATTTTTAATT ATTTTTAATT ---------CTTTTTCATT CTTTTTCATT ATTTT----ATTTT----ATTTTT---ATTTT----ATTTTTAATT ATTTTTAATT ATTTTTAATT ATTTTTAATT ATTTTTAATT ---------ATTTTTAATT ---------ATTTTAAATT ATTTTTAATT ATTTTTAATT ATTTTT---ATTTTTAATT CTTTTTCATT ATTTTTAATT ATTTTTAATT ATTTTTAATT ATTTTTAATT CTTTTTCATT CTTTTT---ATTATTAATT ATTTTTAATT ATTTTTAATT ATTTTTAATT ATTTTTAATT ATTTTTAATT TTATTTAATT TTATTTAATT TTATTTAATT ---------TTATTTAATT TTATTTAATT -----GAATT -----GAATT -----GAATT -----GAATT TTATTTAATT TTATTTAATT TTATTTAATT TTATTTAATT TTATTTAATT ---------TTATTTAATT ---------TTATTTAATT TTATTTAATT TTATTTAATT ------AATT TTATTTAATT TTATTTAATT TTATTTAATT TTATTTAATT TTATTTAATT TTATTTAATT TTATTTAATT --ATTTAATT TTATTTAATT TTATTTAATT TTATTTAATT TTATTTAATT TTATTTAATT TTATTTAATT Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii 2170 TGA-GTATAT TGA-GTATAT TTAAGTATAT TTA-GTATAT TTA-GTATAT TTA------TTA-GTATAT TTA-GTATAT TTA------TTA-GTATAT ---------TTA-GTATAT TTA-GTATAT TTA-GTATAT TGA-GTCTAT TGA-GTCTAT 2180 TTTCATTTTA TTTCATTTTA TTT------TTTCATTTTT TTTCATTTTT ---------TTTCATTTTA TTTCATTTTA ---------TTTCATTTTA ---------TAAAATATTA TAAAATTTTA TTTCATTTTA TTTCATTTTA TTTCATTTTA 2190 AGTATATTTT AGTATATTTT ---------AGTTTATTTT AGTCTATTTT -GTATATTTT AGTATATTTT AGTATATTTT -GTATATTTT AGTATATTTT ---------AGTATATTTT AGTATATTTT AGTATATTTT AGTATATTTT AGTATATTTT 2200 ACATTTAAAT ACATTTAAAT ACATTTTAAT ACATTTAAAT ACATTTAAAT -CATTTTAAG ACATTTAAAT ACATTTAAAT -CATTTTAAG ACATTTAAAT ---------ACATTTAAAT ACATTTAAAT ACATTTAAAT ACATTTAAAT ACATTTAAAT 2210 TATATAGATA TATATAGATA TATATAGATA TATATAGATA TATATAGATA TATATTTTTC TATATAGATA TATATAGATA TATATAGATA TATATAGATA ---------TATATAGATA TATATAGATA TATATAGATA TATATAGATA TATATAGATA 2220 ATTTTTTATATTTTTTATATTTTTTATATTTTTTATATTTTTTATATTCTAATTA ATTTTTTATATTTTTTATATTTTTTATATTTTTTAT---------ATTTTTTATATTTTTTATATTTTTTATATTTTTTATATTTTTTTTT 2230 -----AGATT -----AGATT -----AGATT -----AGATT -----AGATT TCTAGACTTA -----AGATT -----AGATT -----AGATT -----AGAAT --------------AGATT -----AGATT -----AGATT -----AGATT TTTATAGATT 2240 TAA------TAA------TAA------TAA------TAA------TAA------TAA------TAA------TAA------TAA---------------TAA------TAA------TAA------TAA------TAA------- 148 Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana TGA-GTATAT TTA-GTATAT TTA------TTA------TTA-GTATAT TTA-GTATAT ---------TTA-GTATAT ---------TTA-GTATAT TTA------TTA-GTATAT TTA-GTATAT TTA-GTATAT TTA-GTATAT TTA-GTATAT TTA-GTATAT TTA-GTATAT TTA-GTATAT TTA-GTATAA TTA-GTATAT TTA-GTATAT TTA-GTATAT TTA-GTATAT TTA------TTA-GTATAT TTA-GTATAT TTTCATTTTA TTTCATTTTA ------------------TTTCATTTTA TTTCATTTTA ---------TTTCATTTTA ---------TTTCATTTTA ---------TTTCATTTTA TTTCATTTTA TTTCATTTTA TAAAATTTTA TTTCATTTTA TTTCATTTTA TTTCATTTTA TTTCATTTTA TTTCATTTTA TAAAATTTTA TTTCATTTTA TTTCATTTTA TTTCATTTTA ---------TTTCATTTTA TTTCATTTTA AGTATATTTT AGTATATTTT -GTATATTTT -GTATATTTT AGTATATTTT AGTATATTTT ---------AGTATATTTT ---------AGTATATTTT -GTATATTTT AGTATATTTT AGTATATTTT AGTATATTTT AGTATATTTT AGTATATTTT AGTATATTTT AGTATATTTT AGTATATTTT AGTATATTTT AGTATATTTT AGTATATTTT AGTATATTTT AGTATATTTT -GTATATTTT AGTATATTTT AGTATATTTT ACATTTAAAT ACATTTAAAT ACATTTAAAT ACATTTAAAT ACATTTAAAT ACATTTAAAT ---------ACATTTAAAT ---------ACATTTAAAT ACATTTAAAT ACATTTAAAT ACATTTAAAT ACATTTAAAT ACATTTAAAT ACATTTAAAT ACATTTAAAT ACATTTAAAT ACATTTAAAT ACATTTAAAT ACATTTAAAT ACATTTAAAT ACATTTAAAT ACATTTAAAT ACATTTAAAT ACATTTAAAT ACATTTAAAT TATATAGATA TATATAGATA TATATAGATA TATATAGATA TATATAGATA TATATAGATA ---------TATATAGATA ---------TATATAGATA TATATAGATA TATATAGATA TATATAGATA TATATAGATA TATATAGATA TATATAGATA TATATAGATA TATATAGATA TATATAGATA TATATAGATA TATATAGATA TATATAGATA TATATAGATA TATATAGATA TATATAGATA TATATAGATA TATATAGATA ATTTTTTATATTTTTTATATTTTTTATATTTTTTATATTTTTTATATTTTTTAT---------ATTTTTTAT---------ATTTTTTATATTTTTTATATTTTTTATATTTTTTATATTTTTTATATTTTTTATATTTTTTATATTTAATTTT ATTTTTTATATTTTTTATATTTTTTATATTTTTTATATTTTTTATATTTTTTATATTTTTTATATTTTTTATATTTTTTATATTTTTTAT- -----AGATT -----AGATT -----AGATT -----AGATT -----AGATT -----AGATT --------------AGATT --------------AGATT -----AGATT -----AGATT -----AGATT -----AGATT -----AGATT -----AGATT T-TATAGATT -----AGATT -----AGATT -----AGATT -----AGATT -----AGATT -----AGATT -----AGATT -----AGAGT -----AGATT -----AGATT TAA------TAA------TAA------TAA------TAA------TAA---------------TAA---------------TAA------TAA------TAA------TAA------TAA------TAA------TAA------TAA------TAA------TAA------TAA------TAATTTAATC TAA------TAA------TAA------TAA------TAA------TAA------- Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora 2250 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 2260 ----------------------------------------------------------------------------------------------------------TGT -------TGT ------------------------------------------------------------------------------------------------------------- 2270 -TTTAATCGA -TTTAATCGA -TAAAATTGA -TTAAATCGA -TTAAATCGA TGTTAATGTA -TTTAATCGA -TTTAATCGA -TTTAATCGA -TTTAATCGA ---------ATTTAATCGA ATTTAATCGA -TTTAATCGA -TTTAATCGA -TTTAATCGA -TTTAATCGA -TTTAATCGA -TTTAATCGA -TTTAATCGA -TTTAATCGA -TTTAATCGA ----------TTTAATCGA ---------- 2280 TCGATTTAAT TCGATTTAAT TCGATTTAAT TCGATTTAAT TCGATTTAAT T--------TCGATTTAAT TCGATTTAAT TCGATTTAAT TCGATTTAAT ---------TCGATTTAAT TCGATTTAAT TCGATTTAAT TCGATTTAAT TCGATTTAAT TCGATTTAAT TCGATTTAAT TCGATTTAAT TCGATTTAAT TCGATTTAAT TCGATTTAAT ---------TCGATTTAAT ---------- 2290 AGATTAAA-AGATTAAA-AGATTAAATT AGATTAAA-AGATTAAA----------ACATTAAC-ACATTAAC-ACATTAAC-ACATTAAC----------ACATTAAA-ACATTAAA-AGATTAAA-AGATTAAA-AGATTAAA-AGATTAAA-ACATTAAC-ACATTAAA-ACATTAAA-ACATTAAA-ACATTAAA----------ACATTAAA----------- 2300 ------------------ATTTAATAGA ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 2310 -----TATAG -----TATAG TTAAATATAG -----TATAG -----TATAG --------------TAGAG -----TAGAG -----TAGAG -----TAGAG --------------TAGAG -----TAGAG -----TATAG -----TATAG -----TATAG -----TATAG -----TAGAG -----TAGAG -----TAGAG -----TAGAG -----TAGAG --------------TAGAG ---------- 2320 ATTCAATTTA ATTCAATTTA ATTCAATTTA ATTAAATTTA ATTAAATTTA ---------ATTCAATTTA ATTCAATTTA ATTCAATTTA ATTCAATTTA ---------ATTCAATTTA ATTCAATTTA ATTAAATTTA AGTAAATTTA AGTAAATTTA AGTAAATTTA ATTCAATTTA ATTCAATTTA ATTCAATTTA ATTCAATTTA ATTCAATTTA ---------ATTCAATTTA ---------- 149 Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana ---------------------------------------------------------------------------------------------------GATCGATTTA ------------------------------------------------------- ----------------------------------------------------TGT ---------------------------------------------ATACATTAAA ------------------------------------------------------- -TTTAATCGA -TTTAATCGA -TTTAATCGA -TTTAATCGA -TTTAATCGA ATTTAATCGA -TTTAATCGA -TTTAATCGA -TTTAATCGA -TTTAATCGA -TTTAATCGA ATTTAATCGA -TTTAATCGA -TTTAATCGA --TTAATCGA -TTTAATCGA -TTTAATCGA -TTTAATCGA TCGATTTAAT TCGATTTAAT TCGATTTAAT TCGATTTAAT TCGATTTAAT TCGATTTAAT TCGATTTAAT TCGATTTAAT TCGATTTAAT TCGATTTAAT TCGATTTAAT TCGATTTAAT TCGATTTAAT TCGATTTAAT TCGATTTAAT TCGATTTAAT TCGATTTAAT TCGATTTAAT ACATTAAA-ACATTAAA-ACATTAAA-ACATTAAC-ACATTAAA-ACATTAAA-ACATTAAA-ACATTAAA-ACATTAAA-ACATTAAA-ACATTAAA-ACATTAAA-ACATTAAA-ACATTAAA-ACATTACT-ACATTAAA-ACATTAAC-ACATTAAA-- ------------------------------------------------------------------------------------------------------------------------------------------------------------------- -----TAGAG -----TAGAG -----TAGAG -----TAGAG -----TAGAG -----TAGAG -----TAGAG -----TAGAG -----TAGAG -----TAGAG -----TAGAG -----TAGAG -----TAGAG -----TAGAG ------AGAG -----TAGAG -----TAGAG -----TAGAG ATTCAATTTA ATTCAATTTA ATTCAATTTA ATTCAATTTA ATTCAATTTA ATTCGATTTA ATTCAATTTA ATTCAATTTA ATTCAATTTA ATTCAATTTA ATTCAATTTA ATTCAATTTA ATTCAATTTA ATTCAATTTA A--------ATTCAATTTA ATTCAATTTA ATTCAATTTA Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii 2330 TTTCTATTTA TTTCTATTTA TTTCTATTTA TTTCTATTTA TTTCTATTTA ---------TTTCTATTTA TTTCTATTTA TTTCTATTTA TTTCTATTTA ---------TTTCTATTTA TTTCTATTTA TTTCTATTTA TTTCTATTTA TTTCTATTTA TTTCTATTTA TTTCTATTTA TTTCTATTTA TTTCTATTTA TTTCTATTTA TTTCTATTTA ---------TTTCTATTTA ---------TTTCTATTTA TTTCTATTTA TTTCTATTTA TTTCTATTTA TTTCTATTTA TTTCTATTTA TTTCTATTTA TTTCTATTTA TTTCTATTTA 2340 GTTTAGAGTT GTTTAGAGTT GTTTAGAGTT GTTTAGAGTT GTTTAGAGTT ---------GTTTAGAGTT GTTTAGAGTT GTTTAGAGTT GTTTAGAGTT ---------GTTTAGAGTT GTTTAGAGTT GTTTAGAGTT GTTTAGAGTT GTTTAGAGTT GTTTAGAGTT GTTTAGAGTT GTTTAGAGTT GTTTAGAGTT GTTTAGAGTT GTTTAGAGTT ---------GTTTAGAGTT ---------GTTTAGAGTT GTTTAGAGTT GTTTAGAGTT GTTTAGAGTT GTTTAGAGTT GTTTAGAGTT GTTTAGAGTT GTTTAGAGTT GTTTAGAGTT 2350 CTAAAT---CTAAAT---CTAAAT---CTAAAT---CTAAAT------------CTAAAT---CTAAAT---CTAAAT---CTAAAT------------CTAAAT---CTAAATTATT CTAAAT---CGAAAT---CGAAAT---CGAAAT---CTAAAT---CTAAAT---CTAAAT---CTAAAT---CTAAAT------------CTAAAT------------CTAAAT---CTAAAT---CTAAAT---CTAAAT---CTAAAT---CTAAAT---CTAAAT---CTAAAT---CTAAAT---- 2360 ------AGAG ------AGAG ------AGAG ------AGAG ------AGAG ---------------------------------------------------------------TAGTTTAGAG ------AGAG ------AGAG ------AGAG ------AGAG ---------------------------------------------------------------------------------------------------------------------------------------------------------- 2370 --ATAATTAG --ATAATTAG --ATAATTAG --ATAATTAG --ATAATTAG -----------------AG --------AG --------AG --------AG -----------------AG TTCTAAATAG --ATAATTAG --ATAATTAG --ATAATTAG --ATAATTAG --------AG --------AG --------AG --------AG --------AG -----------------AG -----------------AG --------AG --------AG --------AG --------AG --------AG --------AG --------AG --------AG 2380 AGTGAAAATC AGTGAAAATC AGTGAAAATC AGTGAAAATC AGTGAAAATC ---------AGTGAAAATC AGTGAAAATC AGTGAAAATC AGTGAAAATC ---------AGTGAAAATC AGTGAAAATC AGTGAAAATC AGTGAAAATA AGTGAAAATC AGTGAAAATC AGTGAAAATC AGTGAAAATC AGTGAAAATC AGTGAAAATC AGTGAAAATC ---------AGTGAAAATC ---------AGTGAAAATC AGTGAAAATC AGTGAAAATC AGTGAAAATC AGTGAAAATC AGTGAAAATC AGTGAAAATC AGTGAAAATC AGTGAAAATC 2390 TTTTTATGCA TTTTTATGCA TTTTTATGCA TTTTTATGCA TTTTTATGCA --------CA TTTTTATGCA CTTTTATGCA TTTTTATGCA TTTTTATGCA ---------TTTTTATGCA TTTTTATGCA TTTTTATGCA TTTTTATGCA TTTTTATGCA TTTTTATGCA TTTTTATGCA TTTTTATGCA TTTTTATGCA TTTTTATGCA TTTTTATGCA ---------TTTTTATGCA ---------TTTTTATGCA TTTTTATGCA TTTTTATGCA TTTTTATGCA TTTTTATGCA TTTTTATGCA TTTTTATGCA TTTTTATGCA TTTTTATGCA 2400 TTT------A TTT------A TTTACATTTA TTT------A TTT------A TTT------A TTT------A TTT------A TTT------A TTT------A ---------TTT------A TTT------A TTT------A TTT------A TTT------A TTT------A TTT------A TTT------A TTT------A TTT------A TTT------A ---------TTT------A ---------TTT------A TTT------A TTT------A TTT------A TTT------A TTT------A TTT------A TTT------A TTT------A 150 Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana TTTCTATTTA TTTCTATTTA TTTCTATTTA TTTCTATTTA TTTCTATTTA ---------TTTCTATTTA TTTCTATTTA TTTCTATTTA GTTTAGAGTT GTTTAGAGTT GTTTAGAGTT GTTTAGAGTT GTTTAGAGTT ---------GTTTAGAGTT GTTTAGAGTT GTTTAGAGTT CTAAAT---CTAAAT---CTAAAT---CTAAAT---CTAAAT------------CTAAAT---CTAAAT---CTAAAT---- ---------------------------------------------------------------------------------- --------AG --------AG --------AG --------AG --------AG -----------------AG --------AG --------AG AGTGAAAATC AGTGAAAATC AGTGAAAATC AGTGAAAATC AGTGAAAATC ---------AGTGAAAATC AGTGAAAATC AGTGAAAATC TTTTTATGCA TTTTTATGCA TTTTTATGCA TTTTTATGCA TTTTTATGCA ---------TTTTTATGCA TTTTTATGCA TTTTTATGCA TTT------A TTT------A TTT------A TTT------A TTT------A ---------TTT------A TTT------A TTT------A Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana 2410 TATAT-CATT TATAT-CATT TATATACATT TATATACATT TATATACATT TATAATGTAT TATATACATT TATATACATT TATATACATT TATATACATT ---------TATATACATT TATATACATT TATATACATT TATATACATT TATATACATT TATATACATT TATATACATT TATATACATT TATATACATT TATATACATT TATATACATT ---------TATATACATT ---------TATATACATT TATATACATT TATATACATT TATATACATT TATATACATT TATATACATT TATATACATT TATATACATT TATATACATT TATATACATT TATATACATT TATATACATT TATATACATT TATATACATT -----?CATT TATATACATT TATATACATT TATATACATT 2420 ATATAAATCA ATATAAATCA ATATAAATGA ATATAAATGA ATATAAATGA ATATAAATGATATAAATGA ATATAAATGG ATATAAATGA ATATAAATGA ---------ATATAAATGA ATATAAATGA ATATAAATGA ATATAAATGA ATATAAATGA ATCTAAATGA ATATAAATGA ATATAAATGA ATATAAATGA ATATAAATGA ATATAAATGA ---------ATATAAATGA ---------ATATAAATGA ATATAAATGA ATATAAATGA ATATAAATGA ATATAAATGA ATATAGATGA ATATAAATGA ATATAAATGA ATATAAATGA ATATAAATGA ATATAAATGA ATATAAATGA ATATAAATGA ATATAAATGA ATATAAATGA ATATAAATGA ATATAAATGA ATATAAATGA 2430 TACATTAACA TACATTAACA TACATTAACA TACATTAACA TACATTAACA --C------TACATTAACA TACATTAACA TACATTAACA TACATTAACA ---------TACATTAACA TACATTAACA TACATTAACA TACATTAACA TACATTAACA TACATTAACA TACATTAACA TACATTAACA TACATTAACA TACATTAACA TACATTAACA ---------TACATTAACA ---------TACATTAACA TACATTAACA TACATTAACA TACATTAACA TACATTAACA TACATTAACA TACATTAACA TACATTAACA TACATTAACA TACATTAACA TACATTAACA TACATTAACA TACATTAACA TACATTAACA TACATTA-CA TACATTAACA TACATTAACA TACATTAACA 2440 TTATAAGTCT TTATAAGTCT TTATAAGTCT TTATAAGTCT TTATAAGTCT ---------TTATAAGTCT TTATAAGTCT TTATAAGTCT TTATAAGTCT ---------TTATAAGTAT TTATAAGTCT TTTTAAGTCT TTATAAGTCT TTATAAGTCT TTATAAGTCT TTATAAGTCT TTATAAGTCT TTATAAGTCT TTATAAGTCT TTATAAGTCT ---------TTATAAGTCT ---------TTATAAGTCT TTATAAGTCT TTATAAGTCT TTATAAGTCT TTATAAGTCT TTATAAGTCT TTATAAGTCT TTATAAGTCT TTATAAGTCT TTATAAGTCT TTATAAGTCT TTATAAGTCT TTATAAGTCT TTATAAGTCT TTATAAGTCT TTATAAGTCT TTATAAGTCT TTATAAGTCT 2450 CGATAATTAG CGATAATTAG CGATAATTAG CGATAATTAG CGATAATTAG --ATAAAAAG AGATAATTAG AGATAATTAG AGATAATTAG AGATAATTAG ---------AGATAATTAG AGATAATTAG CGATAATTAG CGATAATTAG CGATAATTAG CGATAATTAG AGATAATTAG AGATAATTAG AGATAATTAG AGATAATTAG AGATAATTAG ---------AGATAATTAG ---------AGATAATTAG AGATAATTAG AGATAATTAG AGATAATTAG AGATAATTAG AGATAATTAG AGATAATTAG AGATAATTAG AGATAATTAG AGATAATTAG AGATAATTAG AGATAATTAG AGATAATTAG AGATAATTAG AGATAATTAG AGATAATTAG AGATAATTAG AGATAATTAG 2460 AATGAAACCC AATGAAACCC AATGAAACTC AATGAAACTC AATGAAACTC ATTTTCACTC AATGAAACTC AATGAAACTC AATGAAACTC AATGAAACTC ---------AATGAAACTC AATGAAACTC AATGAAACCC AATGAAACCC AATGAAACCC AATGAAACCC AATGAAACTC AATGAAACTC AATGAAACTC AATGAAACTC AATGAAACTC ---------AATGAAACTC ---------AATGAAACTC AATGAAACTC AATGAAACTC AATGAAACTC AATGAAACTC AATGAAACTC AATGAAACTC AATGAAACTC AATGAAACTC AATGAAACTC AATGAAACTC AATGAAACTC AATGAAACTC AATGAAACTC AATGAAACTC AATGAAACTC AATGAAACTC AATGAAACTC 2470 CTTTTAGA-CTTTTAGA-TTTTTAGACT TTTTTAGA-TTTTTAGA-TATTTAGA-TTTTTAGA-TTTTTAGA-TTTTTAGA-TTTTTAGA----------TTTTTAGA-TTTTTAGA-TTTTTAGA-TTTTTAGA-TTTTTAGA-TTTTTAGA-TTTTTAGA-TTTTTAGA-TTTTTAGA-TTTTTAGA-TTTTTAGA----------TTTTTAGA----------TTTTTAGA-TTTTTAGA-TTTTTAGA-TTTTTAGA-TTTTTAGA-TTTTTAGA-TTTTTAGA-TTTTTAGA-TTTTTAGA-TTTTTAGA-TTTTTAGA-TTTTTAGATA TTTTTAGA-TTTTTAGA-TTTTTAGA-TTTTTAGA-TTTTTAGA-TTTTTAGA-- 2480 ----CTAAAA ----CTAAAA TAGACTAAAA ----CTAAAA ----CTAAAA ----CTAAAA ----CTAAAA ----CTAAAA ----CTAAAA ----CTAAAA -------------CTAAAA ----CTAAAA ----CTAAAA ----CTCAAA ----CTCAAA ----CTAAAA ----CTAAAA ----CTAAAA ----CTAAAA ----CTAAAA ----CTAAAA -------------CTAAAA -------------CTAAAA ----CTAAAA ----CTAAAA ----CTAAAA ----CTAAAA ----CTAAAA ----CTAAAA ----CTAAAA ----CTAAAA ----CTAAAA ----CTAAAA GA--CTAAAA ----CTAAAA ----CTAAAA ----CTAAAA ----CTAAAA ----CTAAAA ----CTAAAA 151 Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana 2490 AATTCGAATT AATTCGAATT AATTCGAATT AATTCGAATT AATTCGAATT AATTCGAATT AATTCGAATT AATTCGAATT AATTCGAATT AATTCGAATT ---------AATTTGAATT AATTTGAATT AATTCGAATT AATTCGAATT AATTCGAATT AATTCGAATT AATTCGAATT AATTCGAATT AATTCGAATT AATTCGAATT AATTCGAATT ---------AATTCGAATT ---------AATTCGAATT AATTCGAATT AATTCGAATT AATTCGAATT AATTCGAATT AATTTGAATT AATTCGAATT AATTCGAATT AATTCGAATT AATTCGAATT AATTCGAATT AATTTGAATT AATTCGAATT AATTCGAATT AATTCGAATT AATTCGAATT AATTCGAATT AATTCGAATT 2500 ATCTTCGAAT ATCTTCGAAT ATCTTCGAAT ATCTTCGAAT ATCTTCGAAT ATCTTCGAAT ATCTTCGAAA ATCTTCGAAA ATCTTCGAAT ATCTTCGAAA ---------ATCTTCGAAT ATCTTCGAAT ATCTTCGAAT ATCTTCGAAT ATCTTCGAAT ATCTTCGAAT ATCTTCGAAA ATCTTCGAAT ATCTTCGAAT ATCTTCGAAT ATCTTCGAAT ---------ATCTTCGAAT ---------ATCTTCGAAT ATCTTCGAAT ATCTTCGAAT ATCTTCGAAA ATCTTCGAAT ATCTTCGAAT ATCTTCGAAT ATCTTCGAAT ATCTTCGAAT ATCTTCGAAT ATCTTCGAAT ATCTTCGAAA ATCTTCGAAT ATCTTCGAAT ATCTTCGAAA ATCTTCGAAT ATCTTCGAAA ATCTTCGAAT 2510 TCGAAAT--TCGAAAT--TCGAAAT--TCGAAAT--TCGAAAT--TCGAAATCGA TCGAAAT--TCGAAAT--TCGAAATCGA TCGAAAT-----------TCGAAATCGA TCGAAATCGA TCTAAAT--TCGAAAT--TCGAAAT--TCGAAAT--TCGAAAT--TCGAAATCGA TCGAAATCGA TCGAAATCGA TCGAAATCGA ---------TCGAAATCGA ---------TCGAAATCGA TCGAAATCGA TCGAGATCGA TCGAAAT--TCGAAATCGA TCGAAATCGA TCGAAATCGA TCGAAATCGA TCGAAATCGA TCGAAAT--TCGAAATCGA TCGAAAT--TCGAAATCGA TCGAAATCGA TCGAAAT--TCGAAAT--TCGAAAT--TCGAAATCGA 2520 ---AGAAATG ---AGAAATG ---AGAAATG ---AGAAATG ---AGAAATG AA------TG ---AGAAATG ---AGAAATG AA------TG ---AGAAATG ---------AATAGAAATG AATAGAAATG ---AGAAATG ---AGAAATG ---AGAAATG ---AGAAATG ---AGAAATG AATAGAAATG AATAGAAATG AATAGAAATG AA------TG ---------AA------TG ---------AATAGAAATG AATAGAAATG AATAGAAATG ---AGAAATG AATAGAAATG AATAGAAATG AATAGAAATG AATAGAAATG AA------TG ---AGAAATG AATAGAAATG ---AGAAATG AATAGAAATG AATAGAAATG ---AGAAATG ---AGAAATG ---AGAAATG AATAGAAATG 2530 AATGGAATAA AATGGAATAA AATGGAATAA AATGGAATAA AATGGAATAA AATGGAATAA AATGGAATAA AATGGAATAA AATGGAATAA AATGGAATAA ---------AATGGAATAA AATGGAATAA AATGGAATAA AATGGAATAA AATGGAATAA AATGGAATAG AATGGAATAA AATGGAATAA AATGGAATAA AATGGAATAA AATGGAATAA ---------AATGGAATAA ---------AATGGAATAA AATGGAATAA AATGGAATAA AATGGAATAA AATGGAATAA AATGGAATAA AATGGAATAA AATGGAATAA AATGGAATAA AATGGAATAA AATGGAATAA AA-------AATGGAATAA AATGGAATAA AATGGAATAA AATGGAATAA AATGGAATAA AATGGAATAA 2540 TTAGTTGTAG TTAGTTCTAG TTAGTTCTAG TTAGTTCTAG TTAGTTCTAG TTAGTTCTAG TTAGTTCTAG TTAGTTCTAG TTAGTTCTAG TTAGTTCTAG ---------TTAGTTCTAG TTAGTTCTAG TTAGTTCTAG TTAGTTCTAG TTAGTTCTAG TTAGTTCTAG TTAGTTCTAG TTAGTTCTAG TTAGTTCTAG TTAGTTCTAG TTAGTTCTAG ---------TTAGTTCTAG ---------TTAGTTCTAG TTAGTTCTAG TTAGTTCTAG TTAGTTCTAG TTAGTTCTAG TTAGTTCTAG TTAGTTCTAG TTAGTTCTAG TTAGTTCTAG TTAGTTCTAG TTAGTTCTAG ---------TTAGTTCTAG TTAGTTCTAG TTAGTTCTAG TTAGTTCTAG TTAGTTCTAG TTAGTTCTAG 2550 CTATTATA-CTATTATA-CTATTAAA-CTATTATA-CTATTATA-CTATTAAATCTATTAAATCTATTAAATCTATTAAATCTATTAAAT---------CTATTA---CTATTA---CTATTAACTCTATTAAATCTATTAAATCTATTAAATCTATTAAATCTATTA---CTATTA---CTATTA---CTATTA------------CTATTA------------CTATTA---CTATTA---CTATTA---CTATTAAATT CTATTA---CTATTA---CTATTA---CTATTA---CTATTA---CTATTAAATCTATTAAAT---------CTATTA---CTATTA---CTATTAAATA CTATTAAATCTATTAAATCTATTA---- 2560 ----------------------------------------------------------AATTAG ----AATTAG ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------AAATAATTAG ------------------------------------------------------------------------------------------ATTAGTTCTA ---------------------------- Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis 2570 ------------------------------------------------------TTCTAGCTAT 2580 ------------------------------------------------------TAAATAATTA 2590 ------------------------------------------------------GTTCTAGCTA 2600 -----------------------TAATT ------------------------AATT TTAAATAATT 2610 ------------------AGTTCTAGCT ------------------AGTTCTAGCT AGTTCTAGCT 2620 ------CTAT ------CTAT ATTATACTAT ------CTAT ------CTAT ATTAAACTAT ATTATACTAT 2630 AAAATAAATA AAAATAAATA AAAATTCATA AAAATTAATA AAAATTAATA AAAATAAATA AAAATAAATA 2640 ATTAATAATG ATTAATAATG A-------TG A-------TG A-------TG ATTAATAATG ATTAATAATG 152 Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana TTCTAGCTAT ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------TTCTAGCTAT ------------------------------------------------------------------------------------------GCTATTAAAT ---------------------------- TAAATAATTA -----------------------------------------------------------------------------AATTA -----AATTA ------------------------------------------------------------------------------------------TAAATAATTA ------------------------------------------------------------------------------------------AATTAGTTCT --------------AATTA ---------- GTTCTAGCTA ------------------------------------------------------------------------GTTCTAGCTA GTTCTAGCTA ------------------------------------------------------------------------------------------GTTCTAGCTA ------------------------------------------------------------------------------------------AGCTATTA----------GTTCTAGCTA ---------- TTAAATAATT ------AATT ------AATT ---------------------------------AATT ------AATT ------AATT TTAAATAATT TTAAATAATT ------------------------------------------------------------------------------------------TTAAATAATT ---------------------------------------------------AATT ------AATT ------------------------------------------AATT TTAAATAATT ---------- AGTTCTAGCT AGTTCTAGCT AGTTCTAGCT ---------------------------AGTTCTAGCT AGTTCTAACT AGTTCTAACT AGTTCTAGCT AGTTCTAGCT ------------------------------------------------------------------------------------------AGTTCTAGCT ---------------------------------------------AGTTCTAGCT AGTTCTAGCT ------------------------------------AGTTCTAGCT AGTTCTAGCT ---------- ATTATACTAT ATTATACTAT ATTATACTAT -------------TACTAT ----TACTAT ATTATACTAT ATTATACTAT ATTATACTAT ATTATACTAT ATTATACTAT ----TACTAT ----TACTAT ----TACTAT ----TACTAT -------------TACTAT -------------TACTAT ----TACTAT ----TACTAT ATTATACTAT ----TACTAT ----TACTAT ----TACTAT ----TACTAT ----TACTAT ATTATACTAT ATTATACTAT -------------TACTAT ----TACTAT ----TACTAT ATTATACTAT ATTATACTAT ----TACTAT AAAATAAATA AAAATAAATA AAAATAAATA ---------AAAATAAATA AAAATAAATA AAAATAAATA AAAATAAATA AAAATAAATA AAAATAAATA AAAATAAATA AAAATAAATA AAAATAAATA AAAATAAATA AAAATAAATA ---------AAAATAAATA ---------AAAATAAATA AAAATAAATA AAAATAAATA AAAATAAATA AAAATAAATA AAAATAAATA AAAATAAATA AAAATAAATA AAAATAAATA AAAATAAATA AAAATAAATA ---------AAAATAAATA AAAATAAATA AAAATAAATA AAAATAAATA AAAATAAATA AAAATAAATA Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii 2650 AATAAATTCA AATAAATTCA AATAAATTCA AATAAATTCA AATAAATTCA AATAAATTCA AATAAATTCA AATAAATTCA AATAAATTCA AATAAATTCA ---------AATAAATTCA AATAAATTCA AATAAATTCA AATAAATTCA AATAAATTCA 2660 ATTTGCATTT ATTTGCATTT ATTTGCATTT ATTTGCATTT ATTTGCATTT ATTTGCATTT ATTTGCATTT ATTTGCATTT ATTTGCATTT ATTTGCATTT ---------ATTTGCATTT ATTTGCATTT ATTTGCATTT ATTTGCATTT ATTTGCATTT 2670 TTATTTTTTT TTATTTTTTT TTCTTTTTTT TTCTTTTTTT TTATTTTTTT TTATTTTTTT TTATTTTTTT TTATTTTTTT TTATTTTTTT TTATTTTTTT ---------TTATTTTTTT TTATTTTTTT TTATTTTTTT TTATTTTTTT TTATTTTTTT 2680 –AGTTATCTT –AGTTATCTT –AGTTATCTT –AGTTATCTT –AGTTATCTT –AGTTATCTT –AGTTATCTT –AGTTATCTT –AGTTATCTT –AGTTATCTT ---------–AGTTATCTT –AGTTATCTT –AGTTATCTT –AGTTATCTT –AGTTATCTT 2690 A--------A--------A--------ATTTTCTTTT ATTTTCTTTT A--------A--------A--------A--------A-----------------A--------A--------A--------A--------A--------- 2700 ---------------------------TTTA-GTTAT TTTAGGTTAT ---------------------------------------------------------------------------------------------------- 2710 2720 ----TTATGG TTATA--------TTATGG TTATA--------TTATGGT TATCTTATT CTTATTATGG TTATCTTATT CTTATTATGG TTATCTTATT ----TTATGG TTATATCTTA ----TTATGG TTATATCTTA ----TTATGG TTATATCTTA ----TTATGG TTATATCTTA ----TTATGG TTATATCTTA ---------- -------------TTATGG TTATATCTTA ----TTATGG TTATATCTTA ----TTATGG TTATATCTTA ----TTATGG TTATATCTTA ----TTATGG TTATATCTTA 153 ATTAATAATG ATTAATAATG ATTAATAATG ---------ATTAATAATG ATTAATAATG ATTAATAATG ATTAATAATG ATTAATAATG ATTAATAATG ATTAATAATG ATTAATAATG ATTAATAATG ATTAATAATG ATTAATAATG ---------ATTAATAATG ---------ATTAATAATG ATTAATACTG ATTAATAATG ATTAATAATG ATTAATAATG ATTAATAATG ATTAATAATG ATTAATAATG ATTAATAATG ATTAATAATG ATTAATAATG ---------ATTAATAATG ATTAATAATG ATTAATAATG ATTAATAATG ATTAATAATG ATTAATAATG Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana AATAAATTCA AATAAATTCA AATAAATTCA AATAAATTCA AATAAATTCA AATAAATTCA ---------AATAAATTCA ---------AATAAATTCA AATAAATTCA AATAAATTCA AATAAATTCA AATAAATTCA AATAAATTCA AATAAATTCA AATAAATTCA AATAAATTCA AATAAATTCA AATAAATTCA ---------AATAAATTCA AATAAATTCA AATAAATTCA AATAAATTCA AATAAATTCA AATAAATTCA ATTTGCATTT ATTTGCATTT ATTTGCATTT ATTTGCATTT ATTTGCATTT ATTTGCATTT ---------ATTTGCATTT ---------ATTTGCATTT ATTTGCATTT ATTTGCATTT ATTTGCATTT ATTTGCATTC ATTTGCATTT ATTTGCATTT ATTTGCATTT ATTTGCATTT ATTTGCATTT ATTTGCATTT ---------ATTTGCATTT ATTTGCATTT ATTTGCATTT ATTTGCATTT ATTTGCATTT ATTTGCATTT TTATTTTTTT TTATTTTTTT TGATTTTTTT TGATTTTTTT TGATTTTTTT TTATTTTTTT ---------TTATTTTTTT ---------TTATTTTTTT TTATTTTTTT TTATTTTTTT TTATTTTTTT TGATTTTTTT TTATTTTTTT TGATTTTTTT TGATTTTTTT TTATTTTTTT TTATTTTTTT TTATTTTTTT ---------TTATTTTTTT TGATTTTTTT TTATTTTTTT TTATTTTTTT TTATTTTTTT TTATTTTTTT –AGTTATCTT –AGTTATCTT TAGTTATCTT TAGTTATCTT TAGTTATCTT –AGTTATCTT ---------–AGTTATCTT ---------–AGTTATCTT –AGTTATCTT –AGTTATCTT –AGTTATCTT TAGTTATCTT –AGTTATCTT TAGTTATCTT TAGTTATCTT –AGTTATCTT –AGTTATCTT –AGTTATCTT ---------–AGTTATCTT TAGTTATCTT –AGTTATCTT –AGTTATCTT –AGTTATCTT –AGTTATCTT A--------A--------A--------A--------A--------A-----------------A-----------------A--------A--------A--------A--------A--------A--------A--------A--------A--------A--------A-----------------A--------A--------A--------A--------A--------A--------- ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ----TTATGG ----TTATGG ----TTATGG ----TTATGG ----TTATGG ----TTATGG -------------TTATGG -------------TTATGG ----TTATGG ----TTATGG ----TTATGG ----TTATGG ----TTATGG ----TTATGG ----TTATGG ----TTATGG ----TTATGG ----TTATGG -------------TTATGG ----TTATGG ----TTATGG ----TTATGG ----TTATGG ----TTATGG TTATATCTTA TTATATCTTA TTATATCTTA TTATATCTTA TTATATCTTA TTATATCTTA ---------TTATATCTTA ---------TTATATCTTA TTATATCTTA TTATATCTTA TTAT-----TTATACCTTA TTATATCTTA TTATATCTTA TTATATCTTA TTATATCTTA TTATATCTTA TTAT--------------TTATATCTTA TTATATCTTA TTATATCTTA TTATATCTTA TTATATCTTA TTATATCTTA Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora 2730 ------------------ATGGTTATAATGGTTATAATGGTTATATTATGGTTATTATGGTTATTATGGTTATTATGGTTATTATGGTTA---------TTATGGTTAT TTATGGTTATTATGGTTATTATGGTTATTATGGTTATTATGGTTATTATGGTTATTATGGTTATTATGGTTATTATGGTTATTATGGTTA---------TTATGGTTA---------- 2740 ---------------------------------------------------------TATCTTA ---TATCTTA ---------------------------TTATATCTTA ------------------------------------------------TATCTTA ---TATCTTA ---TATCTTA ---TATCTTA ---------------------TATCTTA ---------- 2750 ------------------------------------------------------T TTATGGTTAT TTATGGTTAT ---------T ---------T ---------TTATGGTTAT ---------T ---------T ---------T ---------T ---------T TTATGGTTAT TTATGGTTAT TTATGGTTAT TTATGGTTAT ---------T ---------TTATGGTTAT ---------- 2760 -TAGGATAGT -TAGGATAGT -TAGGATAGT -TAGGATAGT -TAGGATAGT ATAGGATAGT ATAGGATAGT ATAGGATAGT ATAGGATAGT ATAGGATAGT ---------ATAGGATAGT ATAGGATAGT ATAGGATAGT ATAGGATAGT ATAGGATAGT ATAGGATAGT ATAGGATAGT ATAGGATAGT ATAGGATAGT ATAGGATAGT ATAGGATAGT ---------ATAGGATAGT ---------- 2770 CTAATAAAAG CTAATAAAAG CTAATAAAAG CTAATAAAAG CTAATAAAAG CTAATAAAAG CTAATAAAAG CTAATAAAAG CTAATAAAAG CTAATAAAAG ---------CTAATAAAAG CTAATAAAAG CTAATAAAAG CTAATAAAAG CTAATAAAAG CTAATAAAAG CTAATAAAAG CTAATAAAAG CTAATAAAAG CTAATAAAAG CTAATAAAAG ---------CTAATAAAAG ---------- 2780 GATAAGAATC GATAAGAATC GATAAGAATC GATAAGAATC GATAAGAATC GATAAGAATA GATAAGAATA GATAAGAATA GATAAGAATA GATAAGAATA ---------GATAAGAATA GATAAGAATA GATAAGAATA GATAAGAATC GATAAGAATC GATAAGAATC GATAAGAATA GATAAGAATA GATAAGAATA GATAAGAATA GATAAGAATA ---------GATAAGAATA ---------- 2790 AAAATGAAAT AAAATGAAAT AAAATAAAAT AAAATGAAAT AAAATGAAAT AAAATGAAAT AAAATGAAAT AAAATGAAAT AAAATGAAAT AAAATGAAAT ---------AAAATGAAAT AAAATGAAAT AAAATGAAAT AAAATGAAAT AAAATGAAAT AAAATGAAAT AAAATGAAAT AAAATGAAAT AAAATGAAAT AAAATGAAAT AAAATAAAAT ---------AAAATGAAAT ---------- 2800 TAAAGAAAAA TAAAGAAAAA TCAAGAAAAA TAAAGAAAAA TAAAGAAAAA TAAAGAAAAA TAAAGAAAAA TAAAGAAAAA TAAAGAAAAA TAAAGAAAAA ---------TAAATAAAAA TAAATAAA?A TAAAGAAAAA TAAAGAAAAA TAAAGAAAAA TAAAGAAAAA TAAAGAAAAA TAAAGAAAAA TAAAGAAAAA TAAAGAAAAA TAAAGAAAAA ---------TAAAGAAAAA ---------- 154 Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana TTATGGTTATTATGGTTATTATGGTTA---------TTATGGTTATTATGGTTATTATGGTTATTATGGTTATTATGGTTATTATGGTTA------------------TTATGGTTATTATGGTTATTATGGTTATTATGGTTATTATGGTTATTATGGTTA- ---TATCTTA ---TATCTTA ---------------------TATCTTA ------------TATCTTA ---TATCTTA ---TATCTTA -------------ATCTTA ------------TATCTTA ---TATCTTA ---TATCTTA ------------TATCTTA ---TATCTTA TTATGGTTAT TTATGGTTAT ---------T ---------TTATGGTTAT ---------T TTATGGTTAT TTATGGTTAT TTATGGTTAT ---------T TTATGGTTAT ---------TTATGGTTAT TTATGGTTAT TTATGGTTAT ---------T TTATGGTTAT TTATGGTTAT ATAGGATAGT ATAGGATAGT ATAGGATAGT ATAGGATAGT ATAGGATAGT ATAGGATAGT ATAGGATAGT ATAGGATAGT ATAGGATAGT ATAGGATAGT ATAGGATAGT ---------ATAGGATAGT ATAGGATAGT ATAGGATAGT ATAGGATAGT ATAGGATAGT ATAGGATAGT CTAATAAAAG CTAATAAAAG CTAATAAAAG CTAATAAAAG CTAATAGAAG CTAATAAAAG CTAATAAAAG CTAATAAAAG CTAATAAAAG CTAATAAAAG CTAATAAAAG ---------CTAATAAAAG CTAATAAAAG CTAATAAAAG CTAATAAAAG CTAATAAAAG CTAATAAAAG GATAAGAATA GATAAGAATA GATAAGAATA GATAAGAATA GATAAGAATA GATAAGAATA GATAAGAATA GATAAGAATA GATAAGAATA GATAAGAATA GATAAGAATA ---------GATAAGAATA GATAAGAATA GATAAGAATA GATAAGAATA GATAAGAATA GATAAGAATA AAAATGAAAT AAAATGAAAT AAAATGAAAT AAAATGAAAT AAAATGAAAT AAAATGAAAT AAAATGAAAT AAAATGAAAT AAAATGAAAT AAAATGAAAT AAAATGAAAT ---------AAAATGAAAT AAAATGAAAT AAAATGAAAT AAAATGAAAT AAAATGAAAT AAAATGAAAT TAAAGAAAAA TAAAGAAAAA TAAAGAAAAA TAAAGAAAAA TAAAGAAAAA TAAATAAAAA TAAAGAAAAA TAAAGAAAAA TAAAGAAAAA TAAAGAAAAA TAAATAAAAA ---------TAAAGAAAAA TAAAGAAAAA TAAAGAAAAA TAAAGAAAAA TAAAGAAAAA TAAAGAAAAA Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii 2810 AAGATACAAC AAGATACAAC AAGATGCAAC AAGATGCAAC AAGATGCAAC AAGATGCAAC AAGATGCAAC AAGATGCAAC AAGATGCAAC AAGATGCAAC ---------AAGATGCAAC AAGATGCAAC AAGATACAAC AAGATACAAC AAGATACAAC AAGATAGAAC AAGATGCAAC AAGATGCAAC AAGATGCAAC AAGATGCAAC AAGATGCAAC ---------AAGATGCAAC ---------AAGATGCAAC AAGATGCAAC AAGATGCAAC AAGATGCAAC AAGATGCAAC AAGATGCAAC AAGATGCAAC AAGATGCAAC AAGATGCAAC 2820 CCATAGAAAT CCATAGAAAT CCATAGAAAT CCATAGAAAT CCATAGAAAT CCATAGAAAT CCATAGAAAT CCATAGAAAT CCATAGAAAT CCATAGAAAT ---------CCATAGAAAT CCATAGAAAT CCATAGAAAT CCATAGAAAT CCATAGAAAT CCATAGAAAT CCATAGAAAT CCATAGAAAT CCATAGAAAT CCATAGAAAT CCATAGAAAT ---------CCATAGAAAT ---------CCATAGAAAT CCATAGAAAT CCATAGAAAT CCATAGAAAT CCATAGAAAT CCATAGAAAT CCATAGAAAT CCATAGAAAT CCATAGAAAT 2830 GAAATCCAGA GAAATCCAGA GAAATCCAGA GAAATCCAGA GAAATCCAGA GAAATCCAGA GAAATCCAGA GAAATCCAGA GAAATCCAGA GAAATCCAGA ---------GAAATCCAGA GAAATCCAGA GAAATCCAGA GAAATTCAGA GAAATTCAGA GAAATTCAGA GAAATCCAGA GAAATCCAGA GAAATCCAGA GAAATCCAGA GAAATCCAGA ---------GAAATCCAGA ---------GAAATCCAGA GAAATCCAGA GAAATCCAGA GAAATCCAGA GAAATCCAGA GAAATCCAGA GAAATCCAGA GAAATCCAGA GAAATCCAGA 2840 TCATAATGAG TCATAATGAG TCATAATGAG TCATAATCAG TCATAATCAG TCATAATGAG TCATAATGAG TCATAATGAG TCATAATGAG TCATAATGAG ---------TCATAATGAG TCATAATGAG TCATAATGAG TCATAATGAG TCATAATGAG TCATAATGAG TCATAATGAG TCATAATGAG TCATAATGAG TCATAATGAG TCATAATGAG ---------TCATAATGAG ---------TCATAATGAG TCATAATGAG TCATAATGAG TCATAATGAG TCATAATGAG TCATAATGAG TCATAATGAG TCATAATGAG TCATAATGAG 2850 AGACT----AGACTCTTTT AGACTCCTTT AGACTCCTTT AGACTCCTTT AGACTCCTTT AGACTCCTTT AGACTCCTTT AGACTCCTTT AGACTCCTTT ---------AGACTCCTTT AGACTCCTTT AGACTCCTTT AGACTCCTTT AGACTCCTTT AGACTCCTTT AGACTCCTTT AGACTCCTTT AGACTCCTTT AGACTCCTTT AGACTCCTTT ---------AGACTCCTTT ---------AGATTCCTTT AGACTCCTTT AGACTCCTTT AGACTCCTTT AGACTCCTTT AGACTCCTTT AGACTCCTTT AGACTCCTTT AGACTCCTTT 2860 CTTTTGTTTT GTTTTGTTTT CTTTTGTTTT CTTTTGTTTT CTTTTGTTTT CTTTTGTTTT CTTTTGTTTT CTTTTGTTTT CTTTTGTTTT CTTTTGTTT---------CTTTTGTTTT C?TCTGTTTT CTTTTGTTTT CTTTTGTTTT CTTTTGTTTCTTTTGTTTT CTTTTGTTTT CTTTTGTTTT CTTTTGTTTT CTTTTGTTTT CTTTTGTTTT ---------CTTTTGTTTT ---------CTTTTGTTTT CTTTTGTTTT CTTTTGTTTT CTTTTGTTTT CTTTTGTTTT CTTTTGTTTT CTTTTGTTTT CTTTTGTTTT CTTTTGTTTT 2870 CATTCAAAACATTCATAAA CATTCATAAA CATTCATAAA CATTCATAAA CATTCATAAA CATTCATAAA CATTCATAAA CATTCATAAA CATTCATAAA ---------CATTCATAAA CATTCATAAA CAT-CATAAA CATTCATAAA CATTCATAAA CATTCACAAA CATTCAT--CATTCATAAA CATTCATAAA CATTCATAAA CATTCATAAA ---------CATTCATAAA ---------CATTCAT--CATTCATAAA CATTCATAAA CATTCATAAA CATTCATAAA CATTCATAAA CATTCATAAA CATTCATAAA CATTCATAAA 2880 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 155 Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana AAGATGCAAC AAGATGCAAC ---------AAGATGCAAC AAGATGCAAC AAGATGCAAC AAGATGCAAC AAGATGCAAC AAGATGCAAC CCATAGAAAT CCATAGAAAT ---------CCATAGAAAT CCATAGAAAT CCATAGAAAT CCATAGAAAT CCATAGAAAT CCATAGAAAT GAAATCCAGA GAAATCCAGA ---ATCCAGA GAAATCCAGA GAAATCCAGA GAAATCCAGA GAAATCCAGA GAAATCCAGA GAAATCCAGA TCATAATGAG TCATAATGAG TCATAATGAG TCATAATGAG TCATAATGAG TCATAATGAG TCATAATGAG TCATAATGAG TCATAATGAG AGACTCCTTT AGACTCCTTT AGACTCCTTT AGACTCCTTT AGACTCCTTT AGACTCCTTT AGACTCCTTT AGACTCCTTT AGACTCCTTT CTTTTGTTTT CTTTTGTTTT CTTTTGTTTT CTTTTGTTTT CTTTTGTTTT CTTTTGTTTT CTTTTGTTTT CTTTTGTTTT CTTTTGTTTT CATTCATAAA CATTCATAAA CATTCATAAA CATTCATAAA CATTCATAAA CATTCATAAA CATTCATAAA CATTCATAAA CATTCATAAA TCTTTTGTTT ------------------------------------------------------------------------- Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana 2890 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------TCATTCATAA ------------------------------------------------------------------------- 2900 GGCGGAAGCT GGCGGAAGCT GGGGTCCATT GGCGGAAGCT GGCG------GGCGGAAGC -GGC------GGCGGAAGC -GGCGGAAGC -GGCGGAAG----------GGC------GGCGGAAGC -GGCGCCGTT -GGCGGAAGC -GGCG-----GGC---------------GGCGGAAGC -GGCGGAAGC -GGCGG----GGCG?CAGC ----------GGCGGAAGC ------------GAAAGGC -GGCGGAAGC -GGCGGAAGC -GGCGGAAGC -GGCGGAAGC -GGCGGAAGC -GGCGGAAGC -GGCG-----GGCGGAAGC AGGCGC----GGCGGAAGC -GGCGGAAGC -GGCGG----GGCG-----GGCGGAAGC -GGCGGAAGC -GGCGGCAGC -GGCG----- 2910 AAGA-----AAGT-----ACAAATGCGAAGAAAAAGA ---------TAGGAAAAAG ---------TAGGAAAAAG TAGGAAAAAG ---------------------------TAGG-----CGG------TAAGAAAAAG -----------GGAAAAAG ---------TAGG-----TAGG--------------T?GG--------------TAGGAAAAAG ---------G?-------TAGGAAAAAG TAGGAAAAAG TAGG-----TAGGAAAAAG TAGGAAAAAG TAGG--------------TAGGAAAAAG ---------TAGGAAAAAG TAGG-----------------------TAGGAAAAAG TAGG-----TAGG--------------- 2920 ---------------CCGT ------CCGT ATCGA-CCGT ---------AATCGACCGT ---------T AATCGACCGT AATCGACCGT ------CCGT ------CCGT ---------------CCGT ---------AATCGACCGT ---------AATCGACCGT ---------------CCGT ------CCGT ---------------CCGT ---------AATCGACCGT ---------------CCGT AATCGACCGT AATCGACCGT ------CCGT AGTCGACCGT AATCGACCGT ------CCGT ---------AATCGACCGT ---------AATCGACCGT ------CCGT ------------------AATCGACCGT ------CCGT ------------------- 2930 -CGAGTATTC TCGAGTATTC TCGAGTATTC TCGAGTATTC ---------TCGAGTATTC TCGAGTATTC TCGAGTATTC TCGAGTATTC TCGAGTATTC TCGAGTATTC ---AGTATTC TCGAGTATTC ---AGTATTC TCGAGTATTC -CGAGTATTC TCGAGTATTC --GAGTATTC TCGAGTATTC TCGAGTATTC -CGAGTATTC -CGAGTATTC -------TTC TCGAGTATTC ---------TCGAGTATTC TCGAGTATTC TCGAGTATTC TCGAGTATTC TCGAGTATTC TCGAGTATTC TCGAGTATTC -CGAGTATTC TCGAGTATTC TCGAGTATTC TCGAGTATTC TCGAGTATTC -----------GAG-ATTC TCGAGTATTC -CGAGTATTC -CGAGTATTC --GAGTATTC 2940 CACCAAATTG CACCAAATTG CACCAAATTG CACCAAATTG -ACCAAATTG CACAAAATTG CACCAAATTG CACCAAATTG CACAAAATTG CACCAAATTG CACCAAATTG CACCAAATTG CACCAAATTG CACCAAATTG CACCAAATTG CACCAAATTG CACCAAATTG CACCAAATTG CACCAAATTG CACCAAATTG CACCAAATTG CACCA?ATTG CACCAAATTG CACCAAATTG -------TTG CACCAAATTG CACCAAATTG CACCAAATTG CACCAAATTG CACCAAATTG CACCAAATTG CACCAAATTG CACCAAATTG CA-----TTG CACCAAATTG CACCAAATTG CACCAAATTG -----AATTG CACCAAATTG CACCAAATTG CACCAAATTG CACCAAATTG CACCAAATTG 2950 CCTGATAAAA CCTGATAAAA CCTGATAAAA CCTGATAAAA CCTGATAAAA CCTGATAAAA CCTGATAAAA CCTGATAAAA CCTGATAAAA CCTGATAAAA CCTGATAAAA CCTGATAAAA CCTGATAAAA CCTGATAAAA CCTGATAAAA CCTGATAAAA CCTGATAAAA CCTGATAAAA CCTGATAAAA CCTGATAAAA CCTGATAAAA CCTGATAAAA CCTGATAAAA CCTGATAAAA CCTGATAAAA CCTGATAAAA CCTGATAAAA CCTGATAAAA CCTGATAAAA CCTGATAAAA CCTGATAAAA CCTGATAAAA CCTGATAAAA CCTGATAAAA CCTGATAAAA CCTGATAAAA CCTGATAAAA CCTGATAAAA CCTGATAAAA CCTGATAAAA CCTGATAAAA CCTGATAAAA CCTGATAAAA 2960 CTGAGAATAA CTGAGAATAA CGGAGAGTAA CTGAGAGTAA CTGAGAGTAA CTTAGAGTAA CTTAGAGTAA CTTAGAGTAA CTTAGAGTAA CTTAGAGTAA CTTAGAGTAA CTTAGAGTAA CTTAGAGTAA CTGAGAGTAA CTGAGAGTAA CTGAGAGTAA CTGAGAGTAA CTTAGAGTAA CTTAGAGTAA CTTAGAGTAA CTTAGAGTAA CTTAGAGTAA CTTAGAGTAA CTTAGAGTAA CTTAGAGTAT CTTAGAGTAA CTTAGAGTAA CTTAGAGTAA CTTAGAGTAA CTTAGAGTAA CTTAGAGTAA CTTAGAGTAA CTTAGAGTAA CTTAGAGTAA CTGAGAGTAA CTTAGAGTAT CTTAGAGTAA CTTAGAGTAA CTTAGAGTAA CTTAGAGTAA CTGAGAGTAA CTTAGAGTAA CTTAGAGTAA 156 Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana 2970 T-AGGGGCAT T-AGGGGCAT TTAGGGGCAT T-AGGGGCAT T-AGGGGCAT T-AGGGGCAT T-AGGGGCAT T-AGGGGCAT T-AGGGGCAT T-AGGGGCAT T-AGGGGCAT T-AGGGGCAT T-AGGGGCAT T-AGGGGCAT T-AGGGGCAT T-AGGGGCAT T-AGGGGCAT T-AGGGGCAT T-AGGGGCAT T-AGGGGCAT T-AGGGGCAT T-AGGGGCAT T-AGGGGCAT T-AGGGGCAT ATAGGGGCAT T-AGGGGCAT T-AGGGGCAT T-AGGGGCAT T-AGGGGCAT T-AGGGGCAT T-AGGGGCAT T-AGGGGCAT T-AGGGGCCT T-AGGGGCAT T-AGGGGCAT ATAGGGGCAT T-AGGGGCAT T-AGGGGCAT T-AGGGGCCT T-AGGGGCAT T-AGGGGCAT T-AGGGGCAT T-AGGGGCAT 2980 ATATATGTTA ATATATGTTA ATATATGTTA ATATATGTTA ATATATGTTA ATATATGTTA ATATATGTTA ATATATGTTA ATATATGTTA ATATATGTTA ATATATGTTA ATATATGTTA ATATATGTTA ATATATGTTA ATATATGTTA ATATATGTTA ATATATGTTA ATATATGTTA ATATATGTTA ATATATGTTA ATATATGTTA ATATATGTTA ATATATGTTA ATATATGTTA ATATATGTTA ATATATGTTA ATATATGTTA ATATATGTTA ATATATGTTA ATATATGTTA ATATATGTTA ATATATGTTA ATATATGTTA ATATATGTTA ATATATGTTA ATATATGTTA ATATATGTTA ATATATGTTA ATATATGTTA ATATATGTTA ATATATGTTA ATATATGTTA ATATATGTTA 2990 TGGAATACCC TGGAATACCC TGGAATACCC TGGAATACCC TGGAATACCC TGGAATACCC TGGAATACCC TGGAATACCC TGGAATACCC TGGAATACCC TGGAATACCC TGGAATACCC TGGAATACCC TGGAATACCC TGGAATACCC TGGAATACCC TGGAATACCC TGGAATACCC TGGAATACCC TGGAATACCC TGGAATACCC TGGAATACCC TGGAATACCC TGGAATACCC TGGAATACCC TGGAATACCC TGGAATACCC TGGAATACCC TGGAATACCC TGGAATACCC TGGAATACCC TGGAATACCC TGGAATACCC TGGAATACCC TGGAATACCC TGGAATACCC TGGAATACCC TGGAATACCC TGGAATACCC TGGAATACCC TGGAATACCC TGGAATACCC TGGAATACCC 3000 ATCTATATTG ATCTATATTG ATCTATATTG ATCTATATTG ATCTATATTG ATCTATATTG ATCTATATTG ATCTATATTG ATCTATATTG ATCTATATTG ATCTATATTG ATCTATATTG ATCTATATTG ATCTATATTG ATCTATATTG ATCTATATTG ATCTATATTG ATCTATATTG ATCTATATTG ATCTATATTG ATCTATATTG ATCTATATTG ATCTATATTG ATCTATATTG ATCTATATTG ATCTATATTG ATCTATATTG ATCTATATTG ATCTATATTG ATCTATATTG ATCTATATTG ATCTATATTG ATCTATATTG ATCTATATTG ATCTATATTG ATCTATATTG ATCTATATTG ATCTATATTG ATCTATATTG ATCTATATTG ATCTATATTG ATCTATATTG ATCTATATTG 3010 AATTGCGAAT AATTGCGAAT AATTGCGAAT AATTGCGAAT AATTGCGAAT AATTGCGAAT AATTGCGAAT AATTGCGAAT AATTGCGAAT AATTGCGAAT AATTGCGAAT AATTGCGAAT AATTGCGAAT AATTGCGAAT AATTGCGAAT AATTGCGAAT AATTGCGAAT AATTGCGAAT AATTGCGAAT AATTGCGAAT AATTGCGAAT AATTGCGAAT AATTGCGAAT AATTGCGAAT AATTGCGAAT AATTGCGAAT AATTGCGAAT AATTGCGAAT AATTGCGAAT AATTGCGAAT AATTGCGAAT AATTGCGAAT AATTGCGAAT AATTGCGAAT AATTGCGAAT AATTGCGAAT AATTGCGAAT AATTGCGAAT AATTGCGAAT AATTGCGAAT AATTGCGAAT AATTGCGAAT AATTGCGAAT 3020 ACAGAAATGA ACAGAAATGA ACAGAAATGA ACAGAAATGA ACAGAAATGA ACAGAAATGA ACAGAAATGA ACAGAAATGA ACAGAAATGA ACAGAAATGA ACAGAAATGA ACAGAAATGA ACAGAAATGA ACAGAAATGA ACAGAAATGA ACAGAAATGA ACAGAAATGA ACAGAAATGA ACAGAAATGA ACAGAAATGA ACAGAAATGA ACAGAAATGA ACAGAAATGA ACAGAAATGA ACAGAAATGA ACAGAAATGA ACAGAAATGA ACAGAAATGA ACAGAAATGA ACAGAAATGA ATAGAAATGA ACAGAAATGA ACAGAAATGA ACAGAAATGA ACAGAAATGA ACAGAAATGA ACAGAAATGA ACAGAAATGA ACAGAAATGA ACAGAAATGA ACAGAAATGA ACAGAAATGA ACAGAAATGA 3030 TAAAATATTT TAAAATATTT TAAAATATTT TAAAATAGTT TAAAATATTT TAAAATATTT TAAAATATTT TAAAATATTT TAAAATATTT TAAAATATTT TAAAATATTT TAAAATATTT TAAAATATTT TAAAATATTT TAAAATATTT TAAAATATTT TAAAATATTT TAAAATATTT TAAAATATTT TAAAATATTT TAAAATATTT TAAAATATTT TAAAATATTT TAAAATATTT TAAAATATTT TAAAATATTT TAAAATATTT TAAAATATTT TAAAATATTT TAAAATATTT TAAAATATTT TAAAATATTT TAAAATATTT TAAAATATTT TAAAATATTT TAAAATATTT TAAAATATTT TAAAATATTT TAAAATATTT TAAAATATTT TAAAATATTT TAAAATATTT TAAAATATTT 3040 TCTGATTGGA TCTGATTGGA TCTGATTGGA TCTGATTGGA TCTGATTGGA TCTGATTGGA TCTGATTGGA TCTGATTGGA TCTGATTGGA TCTGATTGGA TCTGATTGGA TCTGATTGGA TCTGATTGGA TCTGATTGGA TCTGATTGGA TCTGATTGGA TCTGATTGGA TCTGATTGGA TCTGATTGGA TCTGATTGGA TCTGATTGGA TCTGATTGGA TCTGATTGGA TCTGATTGGA TCTGATTGGA TCTGATTGGA TCTGATTGGA TCTGATTGGA TCTGATTGGA TCTGATTGGA TCTGATTGGA TCTGATTGGA TCTGATTGGA TCTGATTGGA TCTGATTGGA TCTGATTGGA TCTGATTGGA TCTGATTGGA TCTGATTGGA TCTGATTGGA TCTGATTGGA TCTGATTGGA TCTGATTGGA Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis 3050 CCAAATAAAA CCAAATAAAA CCAAATAAAA CCAAATAAAA CCAAATAAAA CCAAATAAAA CCAAATAAAA 3060 ATAAATATGG ATAAATATGG ATAAATATGG ATAAATATGG ATAAATAGGG ATAAATATGG ATAAATATGG 3070 GTCTCCGATA GTCTCCGATA GTCTCCGATA GTCTCCGATA GTCTCCGATA GTCTCCGATA GTCTCCGATA 3080 GAGACGAAAG GAGACGAAAG GAGACAAAAG GAGACAAAAG GAGACAAAAG GAGACGAAAG GAGACGAAAG 3090 AAGATAAACA AAGATAAACA AAGATAAACA AAGATAAACA AAGATAAACA AAGATAAACA AAGATAAACA 3100 AACAAGAAAT AACAAGAAAT AACAAGAAAT AACAAGAAAT AACAAGAAAT AACAAGAAAT AACAAGAAAT 3110 AAAATAGGTA AAAATAGGTA AAAATAGGTA TAAATAGGTA AAAATAGGTA AAAATAGGTA AAAATAGGTA 3120 AAGACCCGTAAGACCCGTAAGACCCTTAAGACCCTTC AAGACCCTTC AAGACCCTTAAGACTCTT- 157 Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana CCAAATAAAA CCAAATAAAA CCAAATAAAA CCAAATCAAA CCAAATCAAA CCAAATCAAA CCAAATAAAA CCAAATAAAA CCAAATAAAA CCAAATAAAA CCAAATAAAA CCAAATAAAA CCAAATAAAA CCAAATAAAA CCAAATAAAA CCAAATAAAA CCAAATAAAA CCAAATCAAA CCAAATAAAA CCAAATAAAA CCAAATAAAA CCAAATAAAA CCAAATAAAA CCAAATCAAA CCAAATAAAA CCAAATAAAA CCAAATAAAA CCAAATAAAA CCAAATCAAA CCAAATCAAA CCAAATAAAA CCAAATAAAA CCAAATAAAA CCAAATAAAA CCAAATAAAA CCAAATAAAA ATAAATATGG ATAAATATGG ATAAATATGG ATAAATATGG ATAAATATGG ATAAATATGG ATAAATATGG ATAAATATGG ATAAATATGG ATAAATATGG ATAAATATGG ATAAATATGG ATAAATATGG ATAAATATGG ATAAATATGG ATAAATATGG ATAAATATGG ATAAATATGG AAAAATATGG ATAAATATGG ATAAATATGG ATAAATATGG ATAAATATGG ATAAATATGG ATAAATATGG ATAAATATGG ATAAATATGG ATAAATATGG ATAAATATGG ATAAATATGG ATAAATATGG ATAAATATGG ATAAATATGG ATAAATATGG ATAAATATGG ATAAATATGG GTCTCCGATA GTCTCCGATA GTCTCCGATA GTCTCCGATA GTCTCCGATA GTCTCCGATA GTCTCCGATA GTCTCCGATA GTCTCCGATA GTCTCCGATA GTCTCCGATA GTCTCCGATA GTCTCCGATA GTCTCCGATA GTCTCCGATA GTCTCCGATA GTCTCCGATA GTCTCCGATA GTCTCCGATA GTCTCCGATA GTCTCCGATA GTCTCCGATA GTCTCCGATA GTCTCCGATA GTCTCCGATA GTCTCCGATA GTCTCCGATA GTCTCCGATA GTCTCCGATA GTCTCCGATA GTCTCCGATA GTCTCCGATA GTCTCCGATA GTCTCCGATA GTCTCCGATA GTCTCCGATA GAGACGAAAG GAGACGAAAG GAGACGAAAG GAGACGAAAG GAGACGAAAG GAGACGAAAG GAGACGAAAG GAGACGAAAG GAGACGAAAG GAGACGAAAG GAGACGAAAG GAGACGAAAA GAGACGAAAA GAGACGAAAA GAGACGAAAA GAGACGAAAA GAGACGAAAA GAGACGAAAG GAGACGAAAA GAGACGAAAA GAGACGAAAA GAGACGAAAG GAGACGAAAA GAGACGAAAG GAGACGAAAA GAGACGAAAA GAGACGAAAA GAGACGAAAG GAGACGAAAG GAGACGAAAG GAGACGAAAA GAGACGAAAA GAGACGAAAG GACACGAAAG GAGACGAAAG GAGACGAAAA AAGATAAACA AAGATAAACA AAGATAAACA AAGATAAACA AAGATAAACA AAGATAAACA AAGATAAACA AAGATAAACA AAGATAAACA AAGATAAACA AAGATAAACA AAGATAAACA AAGATAAACA AAGATAAACA AAGATAAACA AAGAGAAACA AAGATAAACA AAGATAAACA AAGATAAACA AAGATAAACA AAGATAAACA AAGATAAACA AAGATAAACA AAGATAAACA AAGATAAACA AAGATAAACA AAGAGAAACA AAGATAAACA AAGATAAACA AAGATAAACA AAGATAAACA AAGATAAACA AAGATAAACA AAGATAAACA AAGATAAACA AAGATAAACA AACAAGAAAT AACAAGAAAT AACAAGAAAT AAAAAGAAAT AACAAGAAAT AACAAGAAAT AACAAGAAAT AACAAGAAAT AACAAGAAAT AACAAGAAAT AACAAGAAAT AACAAGAAAT AACAAGAAAT AACAAGAAAT AACAAGAAAT AACAAGAAAT AACAAGAAAT AACAAGAAAT AACAAGAAAT AACAAGAAAT AACAAGAAAT AACAAGAAAT AACAAGAAAT AACAAGAAAT AACAAGAAAT AACAAGAAAT AACAAGAAAT AACAAGAAAT AACAAGAAAT AACAAGAAAT AACAAGAAAT AACAAGAAAT AACAAGAAAT AACAAAAAAT AACAAGAAAT AACAAGAAAT AAAATAGGTA AAAATAGGTA AAAATAGGTA AAAATAGGTA AAAATAGGTA AAAATAGGTA AAAATAGGTA AAAATAGGTA AAAATAGGTA AAAATAGGTA AAAATAGGTA AAAATAGGTA AAAATAGGTA AAAATAGGTA AAAATAGGTA AAAATAGGTA AAAATAGGTA AAAATAGGTA AAAATAGGTA AAAATAGGTA AAAATAGGTA AAAATAGGTA AAAATAGGTA AAAATAGGTA AAAATAGGTA AAAATAGGTA AAAATAGGTA AAAATAGGTA AAAATAGGTA AAAATAGGTA AAAATAGGTA AAAATAGGTA AAAATAGGTA AAAATAGGTA AAAATAGGTA AAAATAGGTA AAGACTCTTAAGACCCTTAAGACTCTTAAGACCCTTAAGACCCTTAAGACCCTTAAGACCCGTAAGACCCGTAAGACCCGTAAGACCCGTAAGACTCTTAAGACCCTTAAGACCCTTAAGACCCTTAAGACCCTTAAGACCCTTAAGACCCTTAAGACCCTTAAGACCCTTAAGACCCTTAAGACCCTTAAGACCCTTAAGACCCTTAAGACCCTTAAGACCCTTAAGACCCTTAAGACCCTTAAGACCCTTAAGACCCTTAAGACCCTTAAGACCCTTAAGACCCTTAAGAC?CTTAAGACCCTTAAGACCCTTAAGACCCTT- Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii 3130 ---CAATATA ---CAATATA ---CAATATA ATTCAATATA ATTCAATATA ---CAATATA ---CAATATA ---CAATATA ---CAATATA ---CAATATA ---CAATATA ---CAATATA ---CAATATA ---CAATATA ---CAATATA ---CAATATA 3140 AGAATCAGTA AGAATCAGTA AGAATCAGTA AGAATCAGTA AGAATCAGTA AGAATCAGTA AGAATCAGTA AGAATCAGTA AGAATCAGTA AGAATCAGTA AGAATCAGTA AGAATCAGTA AGAATCAGTA AGAATCAGTA AGAATCCGTA AGAATCCGTA 3150 TTTATATCTA TTTATATCTA TTTATATCTA TTTATATCTA TTTATATCTA TTTATATCTA TTTATATCTA TTTATATCTA TTTATATCTA TTTATATCTA TTTATATCTA TTTATATCTA TTTATATCTA TTTAGATCTA TTTATATCTA TTTATATCTA 3160 CTAAATTCAA CTAAATTCAA CTAAATTCAA CTAAATTCAA CTAAATTCAA CTAAATGCAA CTAAATGCAA CTAAATGCAA CTAAATGCAA CTAAATGCAA CTAAATGCAA CTAAATGCAA CTAAATGCAA CTAAATTCAA CTAAATTCAA CTAAATTCAA 3170 CGGTTTCGCA CGGTTTCGCA CGGTTTCGCA CGGTTTCACA CGGTTTCACA CGGTTTCGCA CGGTTTCGCA CGGTTTCGCA CGGTTTCGCA CGGTTTCGCA CGGTTTCGCA CGGTTTCGCA CGGTTTCGCA CGGTTTCGCA AGGTTTCGCA AGGTTTCGCA 3180 TAAAAAGAAA TAAAAAGAAA TAAAAAGAAA TAAAAAGAAA TAAAAAGAAA TAAAAAGAAA TAAAAAGAAA TAAAAAGAAA TAAAAAGAAA TAAAAAGAAA TAAAAAGAAA TAAAAAGAAA TAAAAAGAAA TAAAAAGAAA TAAAAAGAAA TAAAAAGAAA 3190 GAAAA----GAAAA----ATAAA----ATAAA----ATAAA----GAAAA----GAAAA----GAAAA----GAAAA----GAAAA----GAAAA----GAAAA----GAAAA----ATAAATATAA A--------A--------- 3200 ---------------------------------------------------------------------------------------------------------------------TGAAAGAAAA ------------------- 158 Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana ---CAATATA ---CAATATA ---CAATATA ---CAATATA ---CAATATA ---CAATATA ---CAATATA ---CAATATA ---CAATATA ---CAATATA ---CAATATA ---CAATATA ---CAATATA ---CAATATA ---CAATATA ---CAATATA ---CAATATA ---CAATATA ---CAATATA ---CAATATA ---CAATATA ---CAATATA ---CAATATA ---CAATATA ---CAATATA ---CAATATA ---CAATATA AGAATCCGTA AGAATCAGTA AGAATCAGTA AGAATCAGTA AGAATCAGTA AGAATCCATA AGAATCAGTA AGAATCAGTA AGAATCAGTA AGAATCAGTA AGAATCAGTA AGAATCAGTA AGAATCAGTA AGAATCAGTA AGAATCAGTA AGAATCAGTA AGAATCAGTA AGAATCAGTA AGAATCAATA AGAATCAGTA AGAATCAGTA AGAATCAGTA AGAATCAGTA AGAATCAGTA AGAATCAATA AGAATCAGTA AGAATCAGTA TTTATATCTA TTTATATCTA TTTATATCTA TTTATATCTA TTTATATCTA TTTATATCTA TTTATATCTA TTTATATCTA TTTATATCTA TTTATATCTA TTTATATCTA TTTATATCTA TTTATATCTA TTTATATCTA TTTATATCTA TTTATATCTA TTTATATCTA TTTATATCTA TTTATATCTA TTTATATCTA TTTATATCTA TTTATATCTA TTTATATCTA TTTATATCTA TTTATATCTA TTTATATCTA TTTATATCTA CTAAATTCAA CTAAATGCAA CTAAATGCAA CTAAATGCAA CTAAATGCAA CTAAATGCAA CTAAATGCAA CTAAATGCAA CTAAATGCAA CTAAATGCAA CTAAATGCAA CTAAATGCAA CTAAATGCAA CTAAATGCAA CTAAATGCAA CTAAATGCAA CTAAATGCAA CTAAATGCAA CTAAATACAA CTAAATGCAA CTAAATGCAA CTAAATGCAA CTAAATGCAA CTAAATGCAA CTAAATGCAA CTAAATGCAA CTAAATGCAA AGGTTTCGCA CGGTTTCGCA CGGTTTCGCA CGGTTTCGCA CGGTTTCGCA CGGTTTCGCA CGGTTTCGCA CGGTTTCGCA CGGTTTCGCA CGGTTTCGCA CGGTTTCGCA CGGTTTCGCA CGGTTTCGCA CGGTTTCGCA CGGTTTCGCA CGGTTTCGCA CGGTTTCGCA CGGTTTCGCA CGGTTTCGCA CGGTTTCGCA CGGTTTCGCA CGGTTTCGCA CGGTTTCGCA CGGTTTCGCA CGGTTTCGCA CGGTTTCGCA CGGTTTCGCA TAAAAAGAAA TAAAAAGAAA TAAAAAGAAA TAAAAAGAAA TAAAAAGAAA TAAAAAGAAA TAAAAAGAAA TAAAAAGAAA TAAAAAGAAA TAAAAAGAAA TAAAAAGAAA TAAAAAGAAA TAAAAAGAAA TAAAAAGAAA TAAAAAGAAA TAAAAAGAAA TAAAAAGAAA TAAAAAGAAA TAAAAAGAAA TAAAAAGAAA TAAAAAGAAA TAAAAAGAAA TAAAAAGAAA TAAAAAGAAA TAAAAAGAAA TAAAAAGAAA TAAAAAGAAA ATAAATA-AA GAAAA----GAAAA----GAAAA----GAAAA----GAAAA----GAAAA----GAAAA----GAAAA----GAAAA----GAAAA----GAAAA----GAAAA----GAAAA----GAAAA----GAAAA----GAAAA----GAAAA----GAAAA----GAAAA----GAAAA----GAAAA----GAAAA----GAAAA----GAAAA----GAAAA----GAAAA----- TGAAAGAAAA ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora 3210 TAAACAAATG TAAACAAATG TAAATAAATG --------TA --------TA TAAACAAATG TAAACAAATG TAAACAAATG TAAACAAATG TAAACAAATG TAAACAAATG TAAACAAATG TAAACAAATG TAAACAAATG TAAACAAATG TAAACAAATG TAAACAAATG TAAACAAATG TAAACAAATG TAAACAAATG TAAACAAATG TAAACAAATG TAAACAAATG TAAACAAATG TAAACAAATG 3220 AAAGAAAGGG AAAGAAAGGG AAAGAAAGGG AAAGAAAGGG AAAGAAAGGG AAAGAAAGGG AAAGAAAGGG AAAGAAAGGG AAAGAAAGGG AAAGAAAGGG AAAGAAACGG AAAGAAACGG AAAGAAACGG AAAGAAAGGG AAAGAAAGGG AAAGAAAGGG AAAGAAAGGG AAAGAAAGGG AAAGAAAGGG AAAGAAAGGG AAAGAAAGGG AAAGAAAGGG AAAGAAAGGG AAAGAAAGGG AAAGAAAGGG 3230 GAAAGGAGGG GAAAGGAGGG GAAAGGAGGG GAAAGGAGGG GAAAGGAGGG GAAAGGAGGG GAAAGGAGGG GAAAGGAGGG GAAAGGAGGG GAAAGGAGGG GAAAGGAGGG GAAAGGAGGG GAAAGGAGGG GAAAGGAGGG GAAAGGAGGG GAAAGGAGGG GAAGGGAGGG GAAAGGAGGG GAAAGGAGGG GAAAGGAGGG GAAAGGAGGG GAAAGGAGGG GAAAGGAGGG GAAAGGAGGG GAAAGGAGGG 3240 AGA?AAGGTA AGA?AAGGTA AGA?AAGGTA AGA?AAGGTA AGA?AAGGTA AGA?-----AGA?-----AGA?-----AGA?-----AGA?-----AGA?-----AGA?-----AGA?-----AGA?AAGGTA AGA?AAGGTA AGA?AAGGTA AGA?AAGGTA AGA?-----AGA?-----AGA?-----AGA?-----AGA?-----AGA?-----AGA?-----AGA?------ 3250 GACGGAAGGG GACGGAAGGG GACGGAAGGG GACGGAAGGG GACGGAAGGG GACGGAAGGG GACGGAAGGG GACGGAAGGG GACGGAAGGG GACGGAAGGG GGCGGAAGGG GACGGAAGGG GACGGAAGGG GACGGAAGGG GACGGAAGGG GACGGAAGGG GACGGAAGGG GACGGAAGGG GACGGAAGGG GACGGAAGGG GACGGAAGGG GACGGAAGGG GACGGAAGGG GACGGAAGGG GACGGAAGGG 3260 ----CATCC----CATCC----CATCC----CATCC----CATCC----CATCC----CATCC----CATCC----CATCC----CATCC----CATCCCGGGCATCCCGGGCATCC----CATCC----CATCC----CATCC----CATCC----CATCC----CATCC----CATCC----CATCC----CATCC----CATCC----CATCC----CATCC- 3270 TAAC-GAGAT TAAC-GAGAT TAAC-GAGAT TAAC-GAGAT TAAC-GAGAT TAAC-GAGAT TAAC-GAGAT TAAC-GAGAT TAAC-GAGAT TAACTGAGAT TAAC-GAGAT TAAC-GAGAT TAAC-GAGAT TAAC-GAGAT TAAC-GAGAT TAAC-GAGAT TAAC-GAGAT TAAC-GAGAT TAAC-GAGAT TAAC-GAGAT TAAC-GAGAT TAAC-GAGAT TAAC-GAGAT TAAC-GAGAT TAAC-GAGAT 3280 CCTAATCTCA CCTAATCTCA CCTAATCTCA CCCA?TCTCA CCTAATCTCA CCTAATCTCA CCTAATCTCA CCTAATCTCA CCTAATCTCA CCTAATCTCA CCTAATCTCA CCTAATCTCA CCTAATCTCA CCTAATCTCA CCTAATCTCA CCTAATCTCA CCTAATCTCA CCTAATCTCA CCTAATCTCA CCTAATCTCA CCTAATCTCA CCTAATCTCA CCTAATCTCA CCTA-TCTCA CCTAATCTCA 159 Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana TAAACAAATG TAAACAAATG TAAACAAATG TAAACAAATG TAAACAAATG TAAACAAATG TAAACAAATG TAAACAAATG TAAACAAATG TAAACAAATG TAAACAAATG TAAACAAATG TAAACAAATG TAAACAAATG TAAACAAATG TAAACAAATG TAAACAAATG TAAACAAATG AAAGAAAGGG AAAGAAAGGG AAAGAAAGGG AAAGAAAGGG AAAGAAAGGG AAAGAAACGG AAAGAAAGGG AAAGAAAGGG AAAGAAAGGG AAAGAAAGGG AAAGAAAGGG AAAGAAAGGG AAAGAAAGGG AAAGAAAGGG AAAGAAAGGG AAAGAAAGGG AAAGAAAGGG AAAGAAAGGG Modiolastrum.lateritium Modiola.caroliniana Urocarpidium.albiflorum Fuertesimalva.limensis Fuertesimalva.jacens Sphaeralcea.angustifolia Sphaeralcea.cordobensis Sphaeralcea.crispa Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.pedicularifolia Nototriche.anthemidifolia Malacothamnus chilensis Tarasa.machupicchensis Tarasa.mandonii Tarasa.spiciformis Tarasa.albertii Tarasa.antofagastanaA Tarasa.antofagastanaC Tarasa.antofagastanaB Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonellii 3290 AGACACAAAG AGACACAAAG AGACACAAAG AT?CGCAGA? AAACACAAAG AGACACAAAG AGACACAAAG AGACACAAAG -GACACAAAG AGACACAAAG AGACACAAAG AGACACAAAG AGACACAAAG AGACACAAAG AGACACAAAG AGACACAAAG AGACACAAAG AGACACAAAG AGACACAAAG AGACACAAAG AGACACAAAG AGACACAAAG AGACACAAAG AGACACAAAG AGACACAAAG AGACACAAAG AGACACAAAG AGACACAAAG AGACACAAAG AGACACAAAG AGACACAAAG AGACACAAAG AGACACAAAG AGACACAAAG G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G GAAAGGAGGG GAAAGGAGGG GAAAGGAGGG GAAAGGAGGG GAAAGGAGGG GAAAGGAGGG GAAAGGAGGG GAAAGGAGGG GAAAGGAGGG GAAAGGAGGG GAAAGGAGGG GAAAGGAGGG GAAAGGAGGG GAAAGGAGGG GAAAGGAGGG GAAAGGAGGG GAAAGGAGGG GAAAGGAGGG AGA?-----AGA?-----AGA?-----AGA?-----AGA?-----AGA?-----AGA?-----AGA?-----AGA?-----AGA?-----AGA?-----AGA?-----AGA?-----AGA?-----AGA?-----AGA?-----AGA?-----AGA?------ 160 GACGGAAGGG GACGGAAGGG GACGGAAGGG GACGGAAGGG GACGGAAGGG GACGGAAGGG GACGGAAGGG GACGGAAGGG GACGGAAGGG GACGGAAGGG GACGGAAGGG GACGGAAGGG GACAGAAGGG GACGGAAGGG GACGGAAGGG GACGGAAGGG GACGGAAGGG GACGGAAGGG ----CATCC----CATCC----CATCC----CATCC----CATCC----CATCC----CATCC----CATCC----CATCC----CATCC----CATCC----CATCC----CATCC----CATCC----CATCC----CATCC----CATCC----CATCC- TAAC-GAGAT TAAC-GAGAT TAAC-GAGAT TAAC-GAGAT TAAC-GAGAT TAAC-GAGAT TAAC-GAGAT TAAC-GAGAT TAAC-GAGAT TAAC-GAGAT TAAC-GAGAT TAAC-GAGAT TAAG-GAGAT TAAC-GGGAT TAAC-GAGAT TAAC-GAGAT TAAC-GAGAT TAAG-GAGAT CCTAATCTCA CCTAATCTCA CCTAATCTCA CCTAATCTCA CCTAATCTCA CCTAATCTCA CCTAATCTCA CCTAATCTCA CCTAATCTCA CCTAATCTCA CCTAATCTCA CCTAATCTCA CCTAATCTCA CCTAATCTCA CCTAATCTCA CCTAATCTCA CCTAATCTCA CCTAATCTCA Tarasa.operculata Tarasa.pediculata Tarasa.rhombifolia Tarasa.tarapacana Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea Tarasa.trisecta Tarasa.urbaniana AGACACAAAG AGACACAAAG AGACACAAAG AGACACAAAG AGACACAAAG AGACACAAAG AGACACAAAG AGACACAAAG AGACACAAAG G G G G G G G G G 161 Appendix C. Tarasa and outgroups ITS alignment ITS1 (1-304), 5.8S (305-468), ITS2 (469-703) Fuertesimalva.limensis Fuertesimalva.jacens Urocarpidium.albiflorum Modiola.caroliniana Modiolastrum.lateritium Sphaeralcea.angustifolia Sphaeralcea.crispa Sphaeralcea.cordobensis Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.anthemidifolia Nototriche.pedicularifolia Malacothamnus.chilensis Tarasa.albertii Tarasa.antofagastanaB Tarasa.antofagastanaC1 Tarasa.antofagastanaA2 Tarasa.antofagastanaC2 Tarasa.antofagastanaA1 Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei1 Tarasa.cerratei2 Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides1 Tarasa.geranioides2 Tarasa.geranioides3 Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata1 Tarasa.latearistata2 Tarasa.machupicchensis Tarasa.mandonii Tarasa.marinii 10 20 TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA CCT-GCAGAA CCTAGCAGAA CCT-GCAGAA CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA 30 -CGACCCGTG -CGACCCGTG -CGACCCGTG -CGACCCGTG -CGACCCGTG -CGACCCGTG -CGACCCGTG -CGACCCGTG -CGACCCGTG -CGACCCGTG -CGACCTGTG -YG-CCTGTG ACGACCTGTG -CGACCCGTG -CGACCCGTG -CGACCTGTG -CGACCTGTG -CGACCTGTG -CGACCTGTG -CGACCTGTG -CGACCTGTG -CGACCTGTG -CGACCCGTG -CGACCTGTG -CGACCTGTG -CGACCTGTG -CGACCTGTG -CGACCCGCG -CGACCCGTG -CGACCTGTG -TGACCCGTG -CGACCCGTG -CGACCTGTG -CGACCCGTG -CGACCCGTG -CGACCTGTG 40 AACGTGATAT AACGTGATAT AACGTGATAT AACGTGATAT AACGTGATAT AACGTGATAT AACATGATAT AACATGATAT AACGTGATAT AACATGATAT AACGTGATAT AACGTGATAT AACGTGATAT AACGTGATAT AACGTGATAT AACGTGATAT AACGTGATAT AACGTGATAT AACGTGATAT AACGTGATAT AACGTGATAT AACGTGATAT AACGTGATAT AACGTGATAT AACGTGATAT AACGTGATAT AACGTGATAT AACGTGATAT AACGTGATAT AACGTGATAT AACGTGATAT AACGTGATAT AACGTGATAT AACGTGATAT AACGTGATAT AACGTGATAT 162 50 CAAACAACTC CAAACAACTC AAAACAACTC CAAACAACTA CAAACAACTA CAAACAACTC CAAACAACTC CAAACAACTC CAAACAACTC CAAACAACTC CAAACAACCC CAAACAACCC CAAACAACCC CATACAACTC CAAACAACTA CAAACAACCC CAAACAACCC CAAACAACCC CAAACAACCC CAAACAACCC AAAACAACCC CAAACAACCC CAAACAACCC CAAACAACCC CAAACAACCC TAAACAACCC CAAACAACCC CAAACAACCC CAAACAACCC CAAACAACCC CAAACAACTA CAAACAACCC AAAACAACTC CAAACAACTC CAAACAACTC CAAACAACCC 60 AACGAGGGGG AACGAGGGGG AACGAGGGGG AACGAGGGGG AACGAGGGGG CACGAGGGGG CACGAGGGGG CACGAGGGGG CACGAGGGGG CACGAGGGGG CACGGGGGGG CACGGGGGGG CACGGGGGGG CACGAGGGGG CACGGGGGGG CGCGGGGGGG CACGGGGGGG CACGGGGGGG CACGGGGGGG CGCGGGGGGG CACGGGGGGG CACGGGGGGG CACGGGGGGG CACGGGGGGG CACGGGGGGG CACGGGGGGG CACGGGGGGG CACGGGGGGG CACGGGGGGG CACGGGGGGG CACGGGGGGG CACGGGGGGG CACGGGGGGG CACGAGGGGG CACGAGGGGG CACGGGGGGG 70 -CGTAGATGC -CGTAGATGC -CGTAAATGC -CGCGGATGC -CGCGGATGC -TGCGGATGC -CGCGGATGC -CGCGGATGC -TGCGGATGC -CGCGGATGC -CGCGGATGC -CGCGGATGC -CGCGGATGC -CGCGGATGC -CGCGGATGC -CGCGGACGC -CGCGGATGC -CGCGGATGC -CGCGGATGC -CGCGGACGC -CGCGGATGC -CGCGGATGC -TGTGGATGC -CGCGGATGC -CGCGGGTGC -CGTGGATGC GCGCGGATGC -CGCGGATGC -CGTGGATGC -YGCGGAYGC -CGCGGATGC -CGTGGATGC -CGCGGATGC -CGCGGATGC -CGCGGATGC -YGCGGATGC 80 ATTCTTGCAC ATCCTTGCAC ATCATTGCAC ATCCTTGCAC ATCCTTGCAC ATCTTTGCCC ATCCTTGCCC ATCYTTGCCC ATCTTTGCCC ATCCTTGCCC ATCTTTGCCC ATCTTTGCCC ATCTTTGCCC ATCCTTGCCC ATCCTTGCCC ATCTTTGCCC ATCTTTGCCC ATCTTTGCCC ATCTTTGCCC ATCTTTGCCC ATCTTTGCCC ATCTTTGCCC ATCTTTGCCC ATCTTTGCCC ATCTTTGCCC ATCTTTGCCC ATCTTTGCCC ATCTTTGCCC ATCTTTGCCC ATCTTTGCCC ATCCTTGCCC ATCTTTGCCC ATCTTTGCCC ATCCTTGCCC ATCCTTGCCC ATCTTTGCCC Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonelli Tarasa.operculata1 Tarasa.operculata2 Tarasa.pediculata Tarasa.rhombifolia Tarasa.spiciformis Tarasa.tarapacana1 Tarasa.tarapacana2 Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea2 Tarasa.thyrsoidea1 Tarasa.trisecta Tarasa.urbaniana Fuertesimalva.limensis Fuertesimalva.jacens Urocarpidium.albiflorum Modiola.caroliniana Modiolastrum.lateritium Sphaeralcea.angustifolia Sphaeralcea.crispa Sphaeralcea.cordobensis Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.anthemidifolia Nototriche.pedicularifolia Malacothamnus.chilensis Tarasa.albertii Tarasa.antofagastanaB Tarasa.antofagastanaC1 Tarasa.antofagastanaA2 Tarasa.antofagastanaC2 Tarasa.antofagastanaA1 Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei1 Tarasa.cerratei2 Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides1 Tarasa.geranioides2 Tarasa.geranioides3 Tarasa.heterophylla Tarasa.humilis TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACTTG TCGAAACCTG TCGAAACCTG TCGAAACCTG TCGAAACCTG CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA CCTAGCAGAA 90 100 C-AAACCCCC C-AAACCCCC C-AAACCCCC CCAAACCCCC CCAAACCCCC C-AAACCCCC C-AAACCCCC C-AAACCCCC C-AAACCCCC C-AAACCCCC C-AAACCCCC C-AAACCCCC C-AAACCCCC C-AAACCCCC C-GAACCCCC C-AAACCCCC C-AAACCCCC C-AAACCCCC C-AAACCCCC C-AAACCCCC C-AAACCCCC C-AAACCCCC C-AAACCCCC C-AAACCCCC C-AAACCCCC C-AAACCCCC C-AAACCCCC C-AGACCCCC C-AAACCCCC C-AAACCCCC C-GAACCCCC TCGATGCCTT TCGATGCCTT TTGATGTCTT TCGATGCCTT TCGATGCCTT TCGTTGCCTT TTGGTGCCTT TCGGTGCCTT TCGGTGCCTT TCGGTGCCTT TCGGTGCCTT TCGGTGCCTT TCGGTGCCTT TCGATGCCTT TCGATGCCTT TCGGTGCCTT CCGGTGCCTT TCGGTGCCTT TCGGTGCCTT TCGGTGCCTT TCGGTGCCTT TCCGTGCCTT TCGGTGCCTT TCGGTGCCTT TCGGTGCCTT TCGCTGCCTT TCGGTGCCTT TCGGTGCCTT TCGGTGCCTT TCGGTGCCTT TCGATGCCTT -CGACCTGTG -CGACCTGTG -CGACCCGCG -CGACCTGTG -CGACCTGTG -CGACCTGTG -CGACCTGTG -CGACCCGTG -CGACCTGTG -CGACCTGTG -CGACCTGTG -CGACCTGTG -CGACCTGTG -TGACCTGTG -CGACCTGTG -TGACCTGTG AACGTGATAT AACGTGATAT AACGTGATAT AACGTGATAT AACGTGATAT AACGTGATAT AACGTGATAT AACGTGATAT AACGTGATAT AACGTGATAT AACGTGATAT AACGTGATAT AACATGATAT AACGTGATAT AACGTGATAT AACGTGATAT 110 GG---TGTGC GG---TGTGC AG---TTTGC GG---TGTGC GG---TGTGC GG---TGTGC GG---TGTGC GG---TGTGC GG---TGTGC GG---TGTGC GG---TGTGC GG---TGTGC GG---TGTGC GG---TGTGC GG---TGTGC GG---TGTGC GG---TGTGC GG---TGTGC GG---TGTGC GG---TGTGC GG---TGTGC GG---TGTGC GG---TGTGC GG---TGTGC GG---TGTGC TG---TGTGC GG---TGTGC GG---TGTGC GG---TGTGC GG---TGTGC GG---TGTGC 120 TTGGCTTTGT TTGGCT---TTGGCTTCGC TTGGCCTTTC TTGGCCTTTC TTGCCCTTGC TTGCCTTTGC TTGCCTTTGC TTGCCTTTGC TTGCCTTTGC TTGTCTTTGT TTGCCTTTGT TTGTCTTTGT TTGCCTTTGC TTGCCTTTGC TTGTCTTTGC TTGTCTTTGC TTGTCTTTGC TTGTCTTTGC TTGTCTTTGC TTGTCTTTGC TTGTCTTTGC TTGTCTTTGC TTGTCTTTGC TTGTCTTTGC TTGTCTTTGC TTGTCTTTGC TTGTCTTTGC TTGTCTTTGC TTGTCTTTGC TTGCCTTTGC 163 AAAACAACTC AAAACAACCC CAAACAACCC AAAACAACCT CAAACAACCT CAAACAACCC CAAACAACCC CAAACAACTC AAAACAACCC CAAACAACCC AAAACAACCC CAAACAACCC CAAACAACCT CAAACAACCT CAAACAACCC CAAACAACCC 130 CAC-A----------------------ACC-ATCCGC ACC-ATCCGC CCC-ATCCAC CCC-ATCCAC CCC-ATCCAC CCC-ATCCAC CCC-ATCCAC ACC-ATCCTC ACC-ATCCTC ACC-ATCCTC CCC-ATCCGC CCC-ATCCGY CCC-ATCCTC CCC-ATCCTC CCC-ATCCTC CCC-ATCCTC CCC-ATCCTC CCC-ATCCTC CCC-ATCCTC CCC-ATCCTC CCC-ATCCTC CCC-ATCCTC CCC-ATCCTC CCC-ATCCTC GCC-ATCCTC CCC-ATCCTC CCC-ATCCTC CCC-ATCCGC CACGGGGGGG CACGGGGGGG CACGGGGGGG CACGGGGGGG CACGGGGGGG CACGGGGGGG CACGGGGGGG CACGAGGGGG CACGGGGGGG CACGGGGGGG CACGGGGGGG CACGGGGGGG CACGGGGGGG CACGGGGGGG CACGGGGGGG CACGGGGGGG 140 ---------------------------TCTT---GGG TCTT---GGG TCTC---GGG TCTTTTTGGG TCTC---GGG TCTC---GAG TCTTTTTGGG TCTC---GAG TCTC---GAG TCTC---GAG TCTC---TGG TCTC---GCG TCTC---GAG TCTC---GAG TCTC---GAG TCTC---GAG TCTC---GAG TCTC---GAG TCTC---GAG TCTC---GAG TCTC---GAG TCTC---GAG TCTC---GAG TCTC---GAG TCTC---GAG TCTC---GAG TCTC---GAG TCTT---GGG -CGCGGATGC -CGAGGATGC -CGCGGATGC GCACGGATGC -CGTGGATGC -CGCGGATGC -TGCGGATGC -TGCGGATGC -TGCGGATGC -CGCGGATGC -CGCGGATGC -CGCGGATGC -CGTGGATGC -CACGGATGC -YGCGGATGC -CGCGGATGC 150 --------------------------AT TGGGTGTGAT CGGGTGTGAT CGGTTGAGTT CGGTTGARAT CGGTTGAGAT CGGTTGAGTT CGGTTGAGAT CGGTTGAGAT CGGTTGAGAT CGGTTGAGAT CGGTTGAGAT CGGTTGAGAT CGGTTGAGTT CGGTTGAGTT CGGTTGAGTT CGGTTGAGTT CGGTTGAGTT CGGATGAGAT TGGTTGAGTT CGGTTGAGTT CGGTTGAGTT CGGTTGAGAT CGGTTGAGTT CGGTTGAGTT CGGTTGAGAT CGGTTGAGTT CGGTTGAGTT CGGTTGAGAT ATCTTTGCCC ATCTTTGCCC ATCTTTGCCC ATCTTTGCCC AACTTTGCTC ATCTTTGCCC ATCTTTGCCC ATCCTTGCCC ATCTTTGCCC ATCTTTGCCC ATCTTTGCCC ATCTTTGTCC ATCTTTGCCC ATCTTTGCCC ATC-TTGCCC ATCTTTGCCC 160 -----------------TT GCGAAGTCTT GGCAGGTCTA GCCAGGTCTT GCAAGGTCTT GCAAGGTCTT GCAAGGTCTT GCAATGTCTC GCAAGGTCTT GCAAGCT--T GCAAG--CTT GCAAG-TCTT GCCAGGTCTT GCAAGGTCTT GCAAGGTCTA GCAAGGTCTA GCAAGGTCTA GCAAGGTCTA GCAAGGTCTA GCAAGGTCTT GCAAGGTCTA GCAAGGTCTA GCAAGGTCTA GCAAGGTCTT GCAAGGTCTA GCAAGGTCTA GCAAGGTCCT GCAAGGTCTA GYAAGGTCTA GCAAGGTCTT Tarasa.latearistata1 Tarasa.latearistata2 Tarasa.machupicchensis Tarasa.mandonii Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonelli Tarasa.operculata1 Tarasa.operculata2 Tarasa.pediculata Tarasa.rhombifolia Tarasa.spiciformis Tarasa.tarapacana1 Tarasa.tarapacana2 Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea2 Tarasa.thyrsoidea1 Tarasa.trisecta Tarasa.urbaniana C-AAACCCCC C-AAACCCCC C-AAACCCCC C-AAACCCCC C-AAACCCCC C-AAACCCCC C-AAACCCCC C-AGACCCCC C-GAACCCCC C-GAACCCCC C-AAACCCCC C-AAACCCCC C-AAACCCCC C-AAACCCCC C-AAACCCCC C-AAACCCCC C-AAACCCCC C-GAACCCCC C-GAACCCCC C-AAACCCCC C-AAACCCCC 170 Fuertesimalva.limensis Fuertesimalva.jacens Urocarpidium.albiflorum Modiola.caroliniana Modiolastrum.lateritium Sphaeralcea.angustifolia Sphaeralcea.crispa Sphaeralcea.cordobensis Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.anthemidifolia Nototriche.pedicularifolia Malacothamnus.chilensis Tarasa.albertii Tarasa.antofagastanaB Tarasa.antofagastanaC1 Tarasa.antofagastanaA2 Tarasa.antofagastanaC2 Tarasa.antofagastanaA1 Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei1 Tarasa.cerratei2 Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides1 Tarasa.geranioides2 ------CTCC GTCACACTCC GTCAC--TCC GTCAC--TCC GTCAC--TCC GTCACACTCC GTCACACTCC GTCACACTCC GTCACACTCC GTCACACTCC GTC---CCCT GTC---CCCT GTC---CACT GTCACACTTC GTCACATTCT GTC----TCC GTC----TCC GTC----TCC GTC----TCC GTC----TCC GTC----TCC GTC----TCC GTC----TCC GTC----TCC GTC----TCC GTC----TCC GTC----TCC GCC----TCC TCGGTGCCTT TCGGTGCCTT TCGATGCCTT TCGATGCCTT TCGGTGCCTT TCGGTGCCTT TCGGTGCCTT TCGGTGCCTT TCGGTGCCTT TCGGTGCCTT TCGGTGCCTT TCGGTGCCTT TCGATGCTTT TCGGTGCCTT TCGGTGCCTT TCGGTGCCTT TCGGTGCCTT TCGGTGCCTT TCGGTGCCTT TCGGTGCCTT TCGGTGCCTT 180 AAGGCAAA-AAGGCAAA-AAGGCAAAAA GAGGCAAAAGAGGCAAAAAAGGCAAAAAAGGCAAAAAAGGCAAAAAAGGCAAAAAAGGCAAAAGAGGCAAAAGAGGCAAAAGAGGCAAAAAAGGCAAAAAAGGCAAAAAAGGCAAAAAAGGCAAAAAAGGCAAAAAAGGCAAAAAAGGCAAAAAAGGCAAAAAAGGCAAAAAAGGCAAAAAAGGCAAAAAAGGCAAAAAAGGCAAAAAAGGCAAAAAAGGCAAAA- GG---TGTGC GG---TGTGC GG---TGTGC GG---TGTGC GG---TGTGC GG---TGTGC GG---TGTGC GG---TGTGC GG---TGTGC GG---TGTGC GG---TGTGC GG---CGTGC GG---TGTGC GG---TGTGC GG---TGTGC GG---TGTGC GG---TGTGC GG---TGTGC GG---TGTGC GG---TGTGC GG---TGTGC TTGTCTTTGC TTGTCTTTGC TTGCCTTTAC TTGCCTTTAC TTGTCTTTGC TTGTCTTTGC TTGTCTTTGC TTGTCTTTGC TTGCCTTTGC TTGTCTTTGC TTGTCTTTGC TTGTCTTTGC TTGCCTTTAC TTGTCTTTGC TTGCTTTTGC TTGTCTTTGC TGGTCTTTGC TTGTCTTTGC TTGTCTTTGC TTGTCTTTGC TTGTCTTTGC 190 TGAACAACCC CGAACAACCC CGAACAACCC CGAACAACCC CGAACAACCC CGAACAACCC CGAACAACCC CGAACAACCC CGAACAACCC CGAACAACCC TGAACAACCC TGAACAACCC TGAACAACCC CAAACAACCC CGAACAACCC TGAACAACCC TGAACAACCC TGAACAACCC TGAACAACCC TGAACAACCC TGAACAACCC TGAACAACCC TGAACAACCC TGAACAACCC TGAACAACCC TGAACAACCC TGAACAACCC TGAACAACCC 200 CCGGCGCGAA CCGGCGCGAA CCGGCGCGAA CCGGCGCGAA CCGGCGCGAA CCGGCGTGAA CCGGCGTGAA CCGGCGTGAA CCGGCGTGAA CCGGCGTGAA CCGGCGTGAA CCGGCGTGAA CCGGCGTGAA CCGGCGCGAA CCGGCGTGAA CCGGCGTGAA CCGGCGTGAA CCGGCGTGAA CCGGCGTGAA CCGGCGTGAA CCGGCGTGAA CCGGCGTGAA CCGGCGTGAA CCGGCGTGAA CCGGCGTGAA CCGGCGTGAA CCGGCGTGAA CCGGCGTGAA 164 CCC-ATCCTC CCC-ATCCTC CCC-ATCCGC CCC-ATCCGC CCC-ATCCAC CCC-ATCCTC CCCCATCCTC GCC-ATCCTC CTC-ATCCTC CCC-ATCCTC CCC-ATCCTC CCC-ATCCTC CCC-ATCCGC CCC-ATCCTC CCC-ATCCTC CCC-ATCCTC CCC-ATCCTC CCC-ATCCTC CTC-ATCCTC CCC-ATCCTC CCC-ATCCTC 210 TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG TTACGCCAAG TTGCGCCAAG TTGCGCCAAG TTACGCCAAG TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG TCTC---GAG TCTC---GAG TCTC---GGG TCTC---GGG TCTC---GAG TCTA---GAG TCTC---GAG TCTC---GAG TCTC---GAG TCTC---GAG TCTC---GAG TCTC---GAG TCTC---GGG TCTC---GGG TCTC---GAG TCTC---GAG TCTC---GAG TCTC---GAG TCTC---GAG TCTT---GAG TCTC---GAG 220 GAATAAAAAA GAATAAAAAA GAATTAAAAA GAATAAAAAA GAATAAAAAA GATTTGAAAA GATTTGAAAA GATTTGAAAA GATTTTAAAA GATTTGAAAA GAATTGAAAA GAATTGAAAA GAATTGAAAA GAATTGAAAA GAATTAAAAA GAATTGAAAA GAATTGAAAA GAATTGAAAA GAATTGAAAA GAATTGAAAA GAATTGAAAA GAATTAAAAA GAATTGAAAA GAATTGAAAA GAATTGAAAA GAATTGAAAA GAATTGAAAA GAATTGAAAA CGGTTGAGTT CGGATGAGAT CGGTTGAGAT CGGTTGAGAT CGGTTGAGAT CGGATGAGAT CGGATGAGAT CGGTTGAGAT CGGTTGAGAT CGGTTGAGAT CGGTTGAGTT CGGTTGGGAT CGGTTGAGAT CGGATGAGAT CGGTTGAGTT CGGATGAGAT CGGTTGAGAT CGGTTGAGAT CGGTTGAGAT CGGTTGAGAT CGGTTGAGTT 230 -TGAAAAGAG -TGAAAAGAG ATGAAAAGAG -TGAAAAGAG -TGAAAAGAG ATGAAAAGAG ATGAAAAGAG ATGAAAAGAG ATGAAAAGAG ATGAAAAGAG ATGAAAAGAG ATGAAAAGAG ATGAAAAGAG ATGAAAAGAG ATGAAAAGAG -TGGAAAGAG -TGAAAAGAG -TGAAAAGAG -TGAAAAGAG -TGGAAAGAG -TGAAAAGAG -TGAAAAGAG -TGAAAAGAG -TGAAAAGAG ATGAAAAGAG -TGAAAAGAG -TGAAAAGAG ATGAAAAGAG GCAAGGTCTG GCAAGGTCCT GCCAGGTCTT GCCAGGTCTT GCAACGTCTT GCAAGGTCCT GCAAGGTCTT GCAAGGTCCT GCAAGGTCTT GCAAGGTCTT GCAAGGTCTA GCAACGTCTT GCCAGGTCTT GCAAGGTCTT GCAAGGTGTA GCAAGGTCTT GCGAGGCCTT GCAAGGTCTT GCAAGGTCTT GCAAGGCCTT GCAAGGTCTA 240 TGCACGTCTG TGCACGTCTG TGCACGTCTG TGCACGTCAG TGCACGTCTG TGCACGTTTG TGCACGTTTG TGCACGTTTG TGCACGTTTG TGCACGTTTG TGCATGT-TG TGCATGT-TG TGCATGT-TG TGCACGTTTG TGCACGTTTG TGCACGT-TG TGCACGT-TG TGCACGT-TG TGCACGT-TA TGCACGT-TG TGCACGT-TG TGCACGT-TG TGCGCGT-TG TGCGTGT-TG TGCACGT-TG TGCACGT-TG TGCATGT-TA TGCACGT-TG Tarasa.geranioides3 Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata1 Tarasa.latearistata2 Tarasa.machupicchensis Tarasa.mandonii Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonelli Tarasa.operculata1 Tarasa.operculata2 Tarasa.pediculata Tarasa.rhombifolia Tarasa.spiciformis Tarasa.tarapacana1 Tarasa.tarapacana2 Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea2 Tarasa.thyrsoidea1 Tarasa.trisecta Tarasa.urbaniana GTC----TCC GTC----TCC GTCACACTAT GTC----TCC GTC----TCC GTCACACTTC GTCACACTTC GTC----TCC GTC----TCC GTC----TCC GCC----TCC GTCACATTCC GTCACATTCC GTC----TCC GTC----TCC GTCACACTTC GTC----TCC GTC----TCC GTC----TCC CTC----TCC GTCACATTCC GTCACATTCC GTC----TCC GTC----TCC 250 Fuertesimalva.limensis Fuertesimalva.jacens Urocarpidium.albiflorum Modiola.caroliniana Modiolastrum.lateritium Sphaeralcea.angustifolia Sphaeralcea.crispa Sphaeralcea.cordobensis Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.anthemidifolia Nototriche.pedicularifolia Malacothamnus.chilensis Tarasa.albertii Tarasa.antofagastanaB Tarasa.antofagastanaC1 Tarasa.antofagastanaA2 Tarasa.antofagastanaC2 Tarasa.antofagastanaA1 Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei1 Tarasa.cerratei2 Tarasa.congestiflora CTGCCGTCST CTGCCGTCGT CTGTCGTCAT CTGTCGCCGT CTGTCGCCGT CTGTCGTCGT CTGTCGCCAT CTGTTGCCAT CTGTCGTCGT CTGTCGCCAT CTGTTGCCGT CTGTTGCCGT CTGTTGCCGT CTGTCGACGT CTGTCGCCGT CTGTTGCCAT TTGTTGCCAT TTGTTGCCAT CTGTTGCCAT CTGTTGCCAT CTGTTGCCAT CTGTTGCCAT CTGTTGCCAT CTGTTGCCAT CTGTTGCCGT AAGGCAAAAAAGGCTAAAAAGGCAAAAAAGGCAAAAAAGGCAAAAAAGGCAAAAAAGGCAAAAAAGGCAAAAAAGGCCAAAAAGGCAAAAAAGGCAAAAAAGGCAAAAAAGGCAAAAAAGGCAAAAAAGGCAAAAAAGGCAAAAAAGGCAAAAAAGGCAAAAAAGGCAAAAAAGGCAAAAAAGGCAAAAAAGGCAAAAAAGGCAAAAAAGGCAAAA260 CCCGTTCGCG CCCGTTCGCG CCCGTTCGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG TGAACAACCC TGAACAACCC CAAACAACCC TGAACAACCC TGAACAACCC CGAACAACCC CGAACAACCC TGAACAACCC TGAACAACCC TGAACAACCC TGAACAACCC TGAACAACCC TGAACAACCC TGAACAACCC TGAACAACCC CGAACAACCC TGAACAACCC TGAACAACCC TGAACAACCC TGAACAACCC TGATCAACCC CGAACAACCC TCAACAACCC TGAACAACCC CCGGCGTGAA CCGGCGTGAA CCGGCGTGAA CCGGCGTGAA CCGGCGTGAA CCGGCGCGAA CCGGCGCGAA CCGGCGCGAA CCGGCGTGAA CCGGCGTGAA CCGGCGTGAA CCGGCGTGAA CCGGCGTGAA CCGGCGTGAA CCGGCGTGAA CCGGCGCGAA CCGGCGTGAA CCGGCGTGAA CCGGCGTGAA CCGGCGTGAA CCGGCGTGAA CCGGCGTGAA CCGGCGTGAA CCGGCGTGAA 270 GTGTCTGTGC GTGTCTGTGC GTGTCTGTGC GTGTCTGTGT GTGTCTGTGT GTGTCTGTGC GTGTCTGTGT GTGTCTGTGT GTGTCTGTGC GTGTCTGTGT GTGTCTGTGC GTGTCTGTGC GTGTCTGTGC GTGTCTGTGC GTGTCTGTGC GTGTCTGTGC GTGTATGTGC GTGTATGTGC GTGTCTGTGC GTGTCTGTGC GTGTCTGTGC GTGTCTGTGC GTGTCTGTGC GTGTCTGTGC GTGACTGAGC 280 GGTAGTGACG GGTAGTGACG GGCAGCAACG GGCAGTGACG GGCAGTGGCG GGCAGTGACG GGCAGTGACG GGCAGTGACG GGCAGTGACG GGCAGTGACG GACAGTGATGACAGTGATGACAGTGATGGCAGTGACG GGCAGTGATG GACAGTGATG GACAGTGATG GACAGTGATG GACAGTGATG GACAGTGATG GACAGTGATG GACAGTGATG GACAGTGATG GACAGTGATG GACAGTGATG 165 TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG TTGCGCCAAG 290 TTGTTACTTT TTGTTACTTT CTGTTACTTT CTGTTACTTT CTGTTACTTT TTGTTACTTT TTGTTACTTT TTGTTACTTT TTGTTACTTT TTGTTACTTT TTGTTACTTT TTGTTACTTT TTGTTACTTT TT---ACTTT TTGTTACTTT TTGTTACTTT TTGTTACTTT TTGTTACTTT TTGTTACTTT TTGTTACTTT TTGTTACTTT TTGTTACTTT TTGTTACTTT TTGTTACTTT TTGTTACTTT GAATTGAAAA GAATTGAAAA GAATTAAAAA GAATTGAAAA GAATTGAAAA GAATTGAAAA GAATTGAAAA GAATTGAAAA GAATTGAAAA GAATTAAAAA GAATTGAAAA GAATTGAAAA GAATTGAAAA GAATTGAAAA GAATTGAAAA GAATTGAAAA GAATTGAAAA GAATTGAAAA GAATTAAAAA GAATTGAAAA GAATTGAAAA GAATTGAAAA GAATTGAAAA GAATTGAAAA 300 TGTCGTCAAA TGTCGTGAAA TGTCGTGAAA TGTCGTGAAA TGTCGTGAAA TGTCGTGAAA TGTCGTGATA TGTCGTGATA TGTCGTGAAA TGTCGTGATA TGTCGTGAAA TGTCGTGAAA TGTCGTGAAA TGTCGTGAAA TGTCGTGAAA TGTCGTGAAA TGTCGTGAAA TGTCGTGAAA TGTCGTGAAA TGTCGTGAAA TGTCGTGAAA TGTCGTGAAA TGTCGTGAAA TGTCGTGAAA TGTCGTGAAA -TGAAAAGAG -TGAAAAGAG ATGAAAAGAG -TGAAAAGAG -TGAAAAGAG ATGAAAAGAG ATGAAAAGAG ATGAAAAGAG -TGAAAAGAG -TGAAAAGAG ATGAAAAGAG ATGAAAAGAG ATGAAAAGAG -TGAAAAGAG -TGAAAAGAG ATGAAAAGAG -TGAAAAGAG -TGAAAAGAG -TGAAAAGAG ATGAAAAGAG ATGAAAAGAG ATGAAAAGAG ATGAAAAGAG -TGAAAAGAG 310 CTACAAAACG CTACAAAACG ATACAAAACG ATACAAAACG ATACAAAACG ATACAAAACG ATACAAAACG ATACAAAACG ATACAAAACG ATACAAAACG ATACAAAACG ATACAAAACG ATACAAAACG ATACAAAACG ATACAAAACG ATACAAAACG ATACAAAACG ATACAAAACG ATACAAAACG ATACAAAACG ATACAAAACG ATACAAAACG ATACAAAACG ATACAAAACG ATACAAAACG TGCGCGT-TG TGCACGT-TG TGCACGTTTG TGCGCGT-TG TGCACGT-TG TGCACGTTTG TGCACGTTTG TGCACGT-TG TGCACGT-TG TGCACGT-TG TGCACGT-TG TGCACGT-TG TGCACGT-TG TGCACGT-TA TGCATGT-TG TGCACGTTTG TGCACGT-TG TGCACGT-TG TGCACGT-TG TGCACGT-TG TGCACTT-TG TGCACGT-TG TGCACGT-TG TGCACGT-TG 320 ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA Tarasa.corrugata Tarasa.geranioides1 Tarasa.geranioides2 Tarasa.geranioides3 Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata1 Tarasa.latearistata2 Tarasa.machupicchensis Tarasa.mandonii Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonelli Tarasa.operculata1 Tarasa.operculata2 Tarasa.pediculata Tarasa.rhombifolia Tarasa.spiciformis Tarasa.tarapacana1 Tarasa.tarapacana2 Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea2 Tarasa.thyrsoidea1 Tarasa.trisecta Tarasa.urbaniana CTGTTGCCAT CTGTTGCCAT TTGTTGCCGT CTGTTGCCAT CTGTTGCCAT CTGTCGCCRT CTGTTGCCAT CTGTTGCCAT CTGTCAACGT CTGTCAACGT CTGTTGCCGT CTGTTGCCAT CTGTTGCCAT TTGTTGCCGT TTGTCGTCGT CTGTCGTCGT CTGTTGCCAT CTGTTGCCGT CTGTCAACGT CTGTTGCCAT CTGTTGCCAT CTGTTGCCAT CTGTTGCCAT CTGTCGTTGT TTGTCGTCGC CTGTTGCCAT CTGTTGCCAT 330 Fuertesimalva.limensis Fuertesimalva.jacens Urocarpidium.albiflorum Modiola.caroliniana Modiolastrum.lateritium Sphaeralcea.angustifolia Sphaeralcea.crispa Sphaeralcea.cordobensis Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.anthemidifolia Nototriche.pedicularifolia Malacothamnus.chilensis Tarasa.albertii Tarasa.antofagastanaB Tarasa.antofagastanaC1 Tarasa.antofagastanaA2 Tarasa.antofagastanaC2 Tarasa.antofagastanaA1 Tarasa.capitata Tarasa.cardenasii ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG CCCGTACGCG 340 CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC GTGTCTGTGC GTGTCTGTGC GTGTATGTGC GTGTCTGTGC GTGTMTGTGC GTGTCTGTGC GTGTCTGTGC GTGTCTGTGC GTGTCTGTGT GTGTCTGTGT GTGACAGTGC GTGTCTGTGC GTGTCTGTGC GTGTATGTGC GTGTCTGTGC GTGTTTGTAC GTGTCTGTGC GTGTCTGTGC GTGTCTGTGT GTGTCTGTGC GTGTTTGTGC GTGTTTGTGC GTGTCTGTGC GTGTCTGTGC GTGTCTGTGC GTGTTTGTGC GTGTCTGTGC GACAGTGATG GACAGTGATG GACAGTGATG GACAGTGATG GACAGTGATG GGCAGCGATG GACAGTGATG GACAGTGATG GGCAGTGACG GGCAGTGACG GACAGTGATG GACAGTGATG GACAGTGATG GACAGTGATG GACAGTGATG GACAGTGATG GACAGTGATG GACAGTGATG GGCAGTGACG GACAGTGATG GACAGTGATG GACAGTGATG GACAGTGATG GACAGTGATG GACAGTGATG GACAGTGATG GACAGTGATG 350 ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG 360 AACGTAGCGA AACGTAGCGA AACGTAGCGA AACGTAGCGA AACGCAGCGA AACGTAGCGA AACGTAGCGA AACGCAGCGA AACGTAGCGA AACGCAGCGA AACGTAGCGA AACGTAGCGA AACGTAGCGA AACGTAGCGA AACGTAGCGA AACGTAGCGA AACGTAGCGA AACGTAGCGA AACGTAGCGA AACGTAGCGA AACGTAGCGA AACGTAGCGA 166 TTGTTACTTT TTGTTACTTT ATGTTACTTT TTGTTACTTT TTGTTACTTT TTGTTACTTT TTGTTACTTT CTGTTACTTT TT---ACTTT TTGTTACTTT TTGTTACTTT TTGTTACTTT TTGTTACTTT TTGTTACTTT TTGTTACTTT TTGTTACTTT TTGTTACTTT TTGTTACTTT TTGTTACTTT TTGTTACTTT TTGTTACTTT TTGTTACTTT TTGTTACTTT TTGTTACTTT TTGTTACTTT TTGTTACTTT TTGTTACTTT 370 AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC TGTCGTGAAA TGTCGTGAAA TGTCGTGAAA TGTCGTGAAA TGTCGTGAAA TGTCGTGAAA TGTCGTGAAA TGTCGTGAAA TGTCGTGAAA TGTCGTGAAA TGTCGTGAAA TGTCGTGAAA TGTCGTGAAA TGTCGTGAAA TGTCGTGAAA TGTCGTGAAA TGTCGTGAAA TGTCGTGAAA TGTCGTGAAA TGTCGTAAAA TGTCGTGAAA TGTCGTGAAA TGTCGTGAAA TGTCGTGAAA -GTCGTGAAA TGTCGTGAAA TGTCGTGAAA 380 TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA ATACAAAACG ATACAAAACG ATAAAAAACG ATACAAAACG ATACAAAACG ATACAAAACG ATACAAAACG ATACAAAACG ATACAAAACG ATACAAAACG ATACAAAACG ATACAAAACG ATACAAAACG ATAAAAAACG ATACAAAACG ATACAAAACG ATACAAAACG ATACAAAACG ATACAAAACG TTACAAAACG ATACAAAACG ATACAAAACG ATACAAAACG ATACAAAACG ATACAAAACG ATACAAAACG ATACAAAACG 390 TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC ACTNTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA ACTCTCGGCA 400 CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGT-AACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA Tarasa.cerratei1 Tarasa.cerratei2 Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides1 Tarasa.geranioides2 Tarasa.geranioides3 Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata1 Tarasa.latearistata2 Tarasa.machupicchensis Tarasa.mandonii Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonelli Tarasa.operculata1 Tarasa.operculata2 Tarasa.pediculata Tarasa.rhombifolia Tarasa.spiciformis Tarasa.tarapacana1 Tarasa.tarapacana2 Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea2 Tarasa.thyrsoidea1 Tarasa.trisecta Tarasa.urbaniana ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT ACGGATATCT 410 Fuertesimalva.limensis Fuertesimalva.jacens Urocarpidium.albiflorum Modiola.caroliniana Modiolastrum.lateritium Sphaeralcea.angustifolia Sphaeralcea.crispa Sphaeralcea.cordobensis Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.anthemidifolia Nototriche.pedicularifolia Malacothamnus.chilensis Tarasa.albertii Tarasa.antofagastanaB Tarasa.antofagastanaC1 Tarasa.antofagastanaA2 Tarasa.antofagastanaC2 TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC CGGCTCTCGC 420 GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG ATCGATGAAG AACGTAGCGA AACGTAGCGA AACGTAGCGA AACGTAGCGA AACGTAGCGA AACGTAGCGA AACGTAGCGA AACGTAGCGA AACGTAGCGA AACGTAGCGA AACGTAGCGA AACGTAGCGA AACGTAGCGA AACGTAGCGA AACGTAGCGA AACGTAGCGA AACGTAGCGA AACGTAGCGA AACGTAGCGA AACGTAGCGA AACGTAGCGA AACGCAGCGA AACGTAGCGA AACGTAGCGA AACGTAGCGA AACGTAGCGA AACGTAGCGA AACGTAGCGA AACGTAGCGA AACGTAGCGA 430 TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA 440 GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC 167 AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC AATGCGATAC 450 CGAGGGCACG CGAGGGCACG CGAGGGCACG CGAGGGCACG CGAGGGCACG CGAGGGCACG TGAGGGCACG TGAGGGCACG CGAGGGCACG TGAGGGCACG CGAGGGCACG CGAGGGCACG CGAGGGCACG CGAGGGCACG CGAGGGCACG CGAGGGCACG CGAGGGCACG CGAGGGCACG CGAGGGCACG TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA TTGGTGTGAA 460 TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC TTGCAGAATC 470 TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA CCGTGAACCA 480 CGTCGCCCCC CGTCGCCCCC CGTCGCCCCC CGTCGCCCCC CGTCGCCCCC CGTCGCCCCC CGTCGCCCCC CGTCGCCCCC CGTCGCCCCC CGTCGCCCCC CGTCGCCCCC CGTCGCCCCC CGTTGCCCCC CGTCGCCCCC CGTCGCCCCC CGTCGCCCCC CGTCGCCCCC CGTCGCCCCC CGTCGCCCCC Tarasa.antofagastanaA1 Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei1 Tarasa.cerratei2 Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides1 Tarasa.geranioides2 Tarasa.geranioides3 Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata1 Tarasa.latearistata2 Tarasa.machupicchensis Tarasa.mandonii Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonelli Tarasa.operculata1 Tarasa.operculata2 Tarasa.pediculata Tarasa.rhombifolia Tarasa.spiciformis Tarasa.tarapacana1 Tarasa.tarapacana2 Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea2 Tarasa.thyrsoidea1 Tarasa.trisecta Tarasa.urbaniana TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT TCGAGTCTTT 490 Fuertesimalva.limensis Fuertesimalva.jacens Urocarpidium.albiflorum Modiola.caroliniana Modiolastrum.lateritium Sphaeralcea.angustifolia Sphaeralcea.crispa Sphaeralcea.cordobensis Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.anthemidifolia Nototriche.pedicularifolia Malacothamnus.chilensis Tarasa.albertii Tarasa.antofagastanaB -AATCAAATC -AATCAAATC -AATCAAACC --ATCAAACC --ATCAAACC --ATCAAACC --ATCAAGCC --ATCAAGCC --ATCAAACC --ATCAAGCC --ATCAAACC --ATCAAACC --ATCAAACC --ATCAAAAC --ATCAAACC --ATCAAACC GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT GAACGCAAGT 500 -TCAGCCCTC -TCAGCCCTC CTCAGTCCTC CTGAGCCCTC CTTATCCCTC ATTAGTCCTC ATTAGTCTTY ATTAGTCTTC ATTAGTCCTC ATTAGTCTTC ATTAGCCCTC ATTATCCCTC ATTAGCCCTC CTAAGCCCTT ATTAGCCCTC ATTAGCCCTC TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA TGCGCCCCAA GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC GCCATTAGGC 510 CGGCTGCG-T CGGCTGCG-T GGGCTGCGGT GGGCTACGGT GGGCTACGGT GGGCTACGGT GGGCTATGGT GGGCTATGGT GGGCTATGGT GGGCTATGGT GGGCAACGGT GGGCAACGGT GGGCAACGGT GGGCTACGGT GTGCTACGGT GGGCAACGGT 520 TGAAC--TGT TGAAC--TGT TGAAC--TGT TGAAC--TGT TGAAC--TGT TGAAC--TCT TGAAC--TGT TGAAC--TGT TGAAC--TGT TGAAC--TGY TTAAC--TGT TTAAC--TGT TTAAY--TGT TGAAT--TGT TGAAT--TGT TGAGC--TGT 168 CGAGGGCACG CGAGGGCACG CGAGGGCACG CGAGGGCACG CGAGGGCACG CGAGGGCACG CGAGGGCACG CGAGGGCACG CGAGGGCACG CGAGGGCACG CGAGGGCACG CGAGGGCACG CGAGGGCACG CGAGGGCACG CGAGGGCACG CGAGGGCACG CGAGGGCACG CGAGGGCACG CGAGGGCACG CGAGGGCACG CGAGGGCACG CGAGGGCACG CGAGGGCACG CGAGGGCACG CGAGGGCACG CGAGGGCACG CGAGGGCACG CGAGGGCACG CGAGGGCACG CGAGGGCACG CGAGGGCACG CGAGGGCACG CGAGGGCACG 530 GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAC GGGCGGAAAC GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG TCTGCCTGGG 540 TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGTCTCCCG TGGTCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT TGTCACGCAT 550 TGCGCTCACC TGCGCTCACC TGCGCTCACC TGCGCTCACC TGCGCTCACC TGCGCTCACC TGCGCTCACC TGCGCTCACC TGCGCTCACC TGCGCTCACC TGCGCTCACC TGCGCTCACC TGCGCTCACC TGCGCTAACC TGCGCTCACC TGCGCTCACC CGTCGCCCCC CGTCGCCCCCGTCGCCCCC CGTCGCCCCC CGTCGCCCCC CGTCGCCCCC CGTCGCCCCC CGTCGCCCCC CGTCGCCCCC CGTCGCCCCC CGTCGCCCCC CGTCGCCCCC CGTCGCCCCC CGTCGCCCAC CGTCGCCCCC CGTCGCCCCC CGTCGCCCCC CGTCGCCCAC CGTCGCCCCC CGTCGCCCCC CGTCGCCCCC CGTCGCCCCC CGTCGCCCCC CGTCGCCCCC CGTCGCCCCC CGTCGCCCCC CGTCGCCCCC CGTCGCCCCC CGTCGCCCCC TGTCGCCCCCGTCGCCCCC CGTCGCCCCC CGTCGCCCCC 560 GCTCGCGGTT GCTCGCGGTT GCTCGCGGTT GCTCGCGGTT GCTCGCGGTT GCTCGCGGTT GCTCGCGGTT GCTCGCGGTT GCTCGCGGTT GCTCGCGGTT GCTCGCGGTT GCTCGCGGTT GCTCGCGGTT GCTCGCGGCT GCTCGCGGTT GCTCGCGGTT Tarasa.antofagastanaC1 Tarasa.antofagastanaA2 Tarasa.antofagastanaC2 Tarasa.antofagastanaA1 Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei1 Tarasa.cerratei2 Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides1 Tarasa.geranioides2 Tarasa.geranioides3 Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata1 Tarasa.latearistata2 Tarasa.machupicchensis Tarasa.mandonii Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonelli Tarasa.operculata1 Tarasa.operculata2 Tarasa.pediculata Tarasa.rhombifolia Tarasa.spiciformis Tarasa.tarapacana1 Tarasa.tarapacana2 Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea2 Tarasa.thyrsoidea1 Tarasa.trisecta Tarasa.urbaniana --ATCAAACC --ATCAAACC --ATCAAACC --ATCAAACC --ATCAAACC --ATTAAACC --ATCAAACC --ATCAAACC --ATCAAACC --ATCAAACC --ATCAAACC --ATCAAACC --ATCAAACC --ATCAAACC --ATCAAACC --ATCAAACC --ATCAAACC --ATCAAACC --ATCCAACC --CTCAAACC --ATCAAACC --ATCAAACC --ATCAAACC --ATCAACCC --ATCAACCC --ATCAAACC --ATCAAACC --ATCAAACC --ATCAAACC --ATCAAACC --ATCAAACC --ATCAAACC --ATCAACCC --ATCAACCC --ATCAAACC --ATCAAACC 570 Fuertesimalva.limensis Fuertesimalva.jacens Urocarpidium.albiflorum Modiola.caroliniana Modiolastrum.lateritium Sphaeralcea.angustifolia Sphaeralcea.crispa Sphaeralcea.cordobensis Sphaeralcea.wrightii Sphaeralcea.philippiana Nototriche.flabellata Nototriche.anthemidifolia Nototriche.pedicularifolia GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GTTAGCCCTC GTTAGCCCTC GTTAGCCCTC ATTAGCCCTC ATTAGCCTTT ATTAGCCCTC ATTAGCCCTC ATTAGCCCTC ATTAGCCCCC TTTAGCCCTC TTTAGCCCTC ATTAGCCCTC ATTAGCCCTC RTTAGCCCTC ATTAGCCCTC ATTAGCCCTC ATTAGCCCTC CTAAGCCCTT CTWAGCCCTT ATTAGCCCTC ATTAGCCCTC ATTAGCCCTC ATTAGCCCTC ATTAGCCCTC ATTAGCCCTC TTTAGCCCTC ATTAGCCCTC CTAAGCCCTT ATTAGCCCTC TTTAGCCCTC ATTAGCCCTC ATTAGCCCTC ATTAGCCCTC ATTTGCCCTC ATTAGCCCTC TTTAGCCCTC 580 TGAGTCCTCG TGAGTCCTCG TGAGTCCTCG TGAGTCCTCG TGAGTCCTCG TGAGTCCTCG TGAGTCCTCG TGAGTCCTCG TGAGTCCTCG TGAGTCCTCG CGAGTCTTCG CGAGTCCTCG MGAGTCCTCG GGGCAACGGT GGGCAACGGT GGGCAACGGT GGGCAACGGT GGGCAACGGT GGGCAACGGT GGGCAACGGT GGGAAACGGT GGGCAACGGT GGGCAACGGT GGGCAACGGT GGGCAGCGGT GGGCAACGGT GGGCAACGGT GTGCTATGGT GGGCAACGGT GGGCAACGGT GGGCTACGGT GGGCTATGGT GGGCAACGGT GGGCAACGGT GGGCAACGGT GGGCAGCGGT GGGCAACAGT GGGCAATAGT GGGCAACGGT GGGCAACGGT GGGCTACGGT GGGCAACGGT GGGCAACGGT GGGCAACGGT GGGCAACGGT GGGCAATAGT GGGCAACAGT GGGCAACGGT GGGCAACGGT TGAGC--TGT TGAGC--TGT TGAAC--TGT TGAGC--TGT TGAAT--TGT TGAAC--TGT TGAGT--TGT TGAGT--TGT TGAAA--TGT TGAAC--TGT TGAAC--TGT TGAAT--TGT TGAGT--TGT TGAGC--TGT TGATT--TGT TGAGT--TGT TGAAC--TGT TGAAT--TGT TGAAT--TGT TGAAC--TGT TGAAC--TGT GGAAC--TGT TGAAT--TGT TGAAC--TGT TGAAC--TGT TGAAC--TGT TGAAC--TGT TGAAT--TGT TGAAC--TGT TGAAC--TGT GGAAC--TGT TGAAC--TGT TGAAC--TGT TGAAC--TGT TGAAY--TGT TGAAC--TGT 590 GCGATGAAGT GCGATGAAGT GCGATGAAGT GCGATGAAGT GCGATGAAGT GCGATGAAGT GCGATCAAGT GCGAKKAAGT GCGATGAAGT GCGATSAAGT GCGATGAAGT GCGATGAAGT GCGATGAAGT 600 GCCGCGACAA GCCGCGACAA GCCGCGACAA GCCGCGACAA GTCGCGACAA GCCGCGACAA GCYGCGACAA GCCRCGACAA GCCGCGACAA GCCGCGACAA GCCGCGACAA GYCGCGACAA GCCGCGACAA 169 GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT GGGCGGAAAT 610 TCGGTGGGAA TCGGTGGGAA TCGGTGGGAA TCGGTGGGAA TCGGTGGGAA TCGGTGGGAA TCGGTGGGAA TCGGTGGGAA TCGGTGGGAA TCGGTGGGAA TCGGTGGGAA TCGGTGGGAA TCGGTGGGAA TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG TGGCCTCCCG 620 TGCTTTTAGC TGCTTTTAGC TGCTTTTAGC TGCTTTTAGC TGCTTTTAGC TGCTTTTAGC TGCTTTTAGC TGCTTTTAGC TGCTTTTAGC TGCTTTTAGC TGCTTTTAGC TGCTTTTAGC TGCTTTTAGC TGCGCTCACC TGCGCTCACC TGCGCTCACC TGCGCTCACC TGCGCTCACC TGCGCTCACC TGCGCTCACC TGCGCTCACC TGCGCTCACC TGCGCTCACC TGCGCTCACC TGCGCTCACC TGCGCTCACC TGCGCTCACC TGCGCTCACC TGCGCTCACC TGCGCTCACC TGCGCTCACC TGCGCTCACC TGCGCTCACC TGCGCTCACC TGCGCTCACC TGCGCTCACC TGTGCTCATC TGCGCTCACC TGCGCTCACC TGCGCTCACC TGCGCTCACC TGCGCTCACC TGCGCTCACC TGCGCTCACC TGCGCTCACC TGCGCTCACC TGTGCTCACC TGCGCTCACC TGCGCTCACC 630 TGCCTCGTTC TGCCTCGTTC TGCCTCGTTC AGCCTCGTTC AGCCTCGTTC TGCCTCGTTC TGCCTCGTTC TGCCTCGTTC TGCCTCGTTC TGCCTCGTTC TGCCTCGTTC TGCCTCGTTC TGCCTCGTTC GCTCGCGGTT GCTCGCGGTT GCTCGCGGTT GCTCGCGGTT GCTCGCGGTT GCTCACGGTT GCTCGCGGTT GCTCGCGGTT GCTCGCGGTT GCTCGCGGTT GCTCGCGGTT GCCCGCGGTT GCTCGCGGTT GCTCGCGGTT GCTCGCGGTT GCTCGCGGTT GCTCGCGGTT GCTCGCGGTT GCTCGCGGTT GCTCGCGGTT GCTCGCGGTT GCTCGCGGTT GCCCGCGGTT GCTCACGGTT GCTCACGGTT GCTCGCGGTT GCTCGCGGTT GCTCGCGGTT GCTCGCGGTT GCTCGCGGTT GCTCGCGGTT CCTCGCGGTT GCTCACGGTT GCTCACGGTT GCTCGCGGTT GCTCGCGGTT 640 GGAGTCGTGT GGAGTCGTGT GGAGTCGTGT GGAGTCGTGT GGAGTCGTGT GGAGTCGTGT GGAGTCGTGT GGAGTCGTGT GGAGTCGTGT GGAGTCGTGT GGAGTCGTGT GGAGTCGTGT GGAGTCGTGT Malacothamnus.chilensis Tarasa.albertii Tarasa.antofagastanaB Tarasa.antofagastanaC1 Tarasa.antofagastanaA2 Tarasa.antofagastanaC2 Tarasa.antofagastanaA1 Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei1 Tarasa.cerratei2 Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides1 Tarasa.geranioides2 Tarasa.geranioides3 Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata1 Tarasa.latearistata2 Tarasa.machupicchensis Tarasa.mandonii Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonelli Tarasa.operculata1 Tarasa.operculata2 Tarasa.pediculata Tarasa.rhombifolia Tarasa.spiciformis Tarasa.tarapacana1 Tarasa.tarapacana2 Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea2 Tarasa.thyrsoidea1 Tarasa.trisecta Tarasa.urbaniana GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAGAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT GGCCTAAAAT 650 Fuertesimalva.limensis Fuertesimalva.jacens Urocarpidium.albiflorum Modiola.caroliniana Modiolastrum.lateritium Sphaeralcea.angustifolia Sphaeralcea.crispa Sphaeralcea.cordobensis Sphaeralcea.wrightii Sphaeralcea.philippiana GC-GCTCGTT GC-GCTCGTT GC-TCTCGTT GT-GCTCGTT GC-GCTCGTT GC-ACTCGTC YC-ACTCGTY KC-ACTMGYT GC-ACTCGTC TC-ACTCGYT TGAGTCCTCG TGAGTCCTCG TGAGTCCTCG TGAGTCCTCG TGAGTCCTCG TGAGTCCTCG TGAGTCCTCG CGAGTCCTCG TGAGTCCTCG TGAGTCCTCG TGAGTCCTCG CGAGTCCTCG TGAGTCCTCG TGAGTCCTCG CGAGTCCTCG TGAGTCCTCG TGAGTCCTCG TGAGTCCTCG TGAGTCCTCG CGAGTCCTCG TGAGTCCTCG TGAGTCCTCG TGAGTCCTCG CGAGTCCTCG CGAGTCCTCG CGAGTCCTCG CGAGTCCTCG CGAATCCTCG TGAGTCCTCG CGAGTCCTCG TGAGTCCTCG CGAGTCCTCG TGAGTCCTCG CGAGTCCTCG CGAGTCCTCG CGAGTCCTCG CGAGTCCTCG CGAGTCCTCG TGAGTCCTCG 660 GATT-AGGAT GATT-AGGAT GATT-AGGAC GATT-AGGAC GATT-AGGAC GATT-AGGAC GATT-AGGAC GATT-AGGAC GATT-AGGAC GATT-AGGAC GCGATGAAGT GCGATGAAGC GCGATGAAGT GCGATGAAGT GCGATGAAGT GCGATGAAGT GCGATGAAGT GCGATGAAGT GCGATGAAGT GCGATGAAGT GCGATGAAGT GCGATGAAGT GCGATGAAGT GCGATGAAGT GCGATGAAGT GCGATGAAGT GCGATGAAGT GCGATGAAGT GCGATGAAGT GCGATGAAGT GCGATGAAGT GCGATGAAGT GCGATGAAGT GCGATGAAGT GCGATGAAGT GCGATGAAGT GCGATGAAGT GCGATGAAGT GCGATGAAGT GCGATGAAGT GCGATGAAGT GCGATGAAGT GCGATGAAGT GCGATGAAGT GCGATGAAGT GCGATGAAGT GCGATGAAGT GCGATGAAGT GCGATGAAGT GCCGCGACAA GCCGCGACAA GCCGCGACAA GCCGCGACAA GCCGCGACAA GCCACGACAA GCCGCGACAA GCCGCGACAA GCCGCGACAA GCCGCGACAA GCCGCGACAA GCCGCGACAA GCCGCGACAA GCCGCGACAA GCCGCGACAA GCCGCGACAA GCCGCGACAA GCCACGACAA GCCGCGACAA GCCGCGACAA GCCGCGACAA GCCGCGACAA GCCGCGACAA GCCGCGACAA GTCGCGACAA GCCGCGACAA GCCGCGACAA GCCGCGACAA GCCGCGACAA GCCGCGACAA GCCGCGACAA GCCGCGACAA GCCGCGACAA GCCGCGACAA GCCGCGACAA GCCGCGACAA GCCGCGACAA GCCGCGACAA GCCGCGACAA 670 C-TCTGACCC C-TCTGACCC C-TCTGACCC CCTCTGACCC CCTCTGACCC CCTCTGACCC CCTCTGACCC CCTCTGACCC CCTCTGACCC CCTCTGACCC 680 TTTTT-GGCA TTTTT-GGCA TTTTT-GGCA TTTTT-GGCA TTTTT-GGCA TTTTT-GGCA TTTTT-GGCA TTTTT-GGCA TTTTT-GGCA TTTTT-GGCA 170 TCGGTGGGAT TCGGTGGGAA TCGGTGGGAA TCGGTGGGAA TCGGTGGGAA TCGGTGGGAA TCGGTGGGAA TCGGTGGGAA TCGGTGGGAA TCGGTGGGAA TCGGTGGGAA TCGGTGGGAA TCGGTGGGAA TCGGTGGGAA TCGGTGGGAA TCGGTGGGAA TCGGTGGGAA TCGGTGGGAA TCGGTGGGAA TCGGTGGGAA TCGGTGGGAT TCGGTGGGAT TCGGTGGGAA TCGGTGGGAA TCGGTGGGAA TCGGTGGGAA TCGGTGGGAA TCGGTGGGAA TCGGTGGGAA TCGGTGGGAT TCGGTGGGAT TCGGTGGGAA TCGGTGGGAA TCGGTGGGAA TCGGTGGGAA TCGGTGGGAA TCGGTGGGAA TCGGTGGGAA TCGGTGGGAA 690 TCGCAACRTC TCGCAACGTC TCGCAACGTC CCGCAAAGTC CCGCAACGTC TTGCAACGTC TCTCAATGTC TCTCAATGTC TTGCAACGTC TCTCAATGTC TGCTTTTAGC TGCTTTTAGC TGCTTTGAGC TGCTTTGAGC TGCTTTGAGC TGCTTTGAGC TGCTTTGAGC YGCTTTTAGC TGCTTTGAGC TGCTTTGAGC TGCTTTCAGC TGCTTTTAGC TGCTTTGAGC TGCTTTGAGC TGCTTTTAGC TGCTTTGAGC TGCTTTGAGC TGCTTATAGC TGCTTTGAGC TGCTTTTAGC TGCTTTTAGC TGCTTTTAGC TGCTTTTAGC TGCTTTTAGC TGCTTTTAGC TGCTTTTAGC TGCTTTTAGC TGCTTTTAGC TGCTTTGAGC TGCTTCTAGC TGCTTTTAGC TGCTTTTAGC TGCTTTGAGC TGCTTTTAGC TGCTTTTAGC TGCTTTTAGC TGCTTTTAGC TGCTTTTAGC TGCTTTGAGC TGCCTCGTAC TGCCTCGTTC TGCCTCGTTC TGCCTCGTTC TGCCTCGTTC TGCCTCGTTC TGCCTCGTTC TGCCTCGTTC TGCCTCGTTC TGCCTCGTTC TGCCTCGTTC TGCCTCGTTC TGCCTCGTTC TGACTCTTTC TGCCTCGTTC TGCCTCGTTC TGCCTCGTTC TGCCTCGTTC TGCCTCGTTC TGCCTCGTTC TGCCTCGTTC TGCCTCGTTC TGCCTCGTTC TGCCTCGTTC TGCCTCGTTC TGCCTCGTTC TGCCTCGTTT TGCCTCGTTT TGCCTCGTTC TGCCTCGTTC TGCCTCGTTC TGCCTCGTTC TGCCTCGTTC TGCCTCGTTC TGCCTCGTTC TGCCTCGTTT TGCCTCGTTT TGCCTCGTTC TGCCTCGTTC 700 GATGCTCGCA GATGCTCGCA GATGCTCGCA GATGCTCGCA GATGCTCGCA AATGCTCGCA GATGCTCGCA GATGCTCGCA AATGCTCGCA GATGCTCGCW TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG GAAGTCGTGT GGAGTCGTGT GTAGTCGTGC GTAGTCGTGC GTAGTCGTGC GTAGTCGTGT GTAGTCGTGC GGAGTCGTGC GTAGTCGTGC GTAGTCGTGT GTAGTCGTGC GGAGTCGTGT GTAGTCGTGT GTAGTCGTGT GGAGTCGTGC GTAGTCGTGC GTAGTCGTGC GGAGTCGTGT GTAGTCGTGC GGAGTCGTGC GAAGTCGTGT GAAGTCGTGT GGAGTCGTGC GGAGTCGTGC GTAGTCGTGC GGAGTCGTGC GTAGTCGTGC GTAGTCGTGT GTAGTCGTGT GGAGTCGTGT GAAGTCGTGT GGAGTCGTGC GTAGTCGTGT GTAGTCGTGT GGAGTCGTGT GTAGTCGTGT GTAGTCGTGC GGAGTCGTGT GTAGTCGTGT Nototriche.flabellata Nototriche.anthemidifolia Nototriche.pedicularifolia Malacothamnus.chilensis Tarasa.albertii Tarasa.antofagastanaB Tarasa.antofagastanaC1 Tarasa.antofagastanaA2 Tarasa.antofagastanaC2 Tarasa.antofagastanaA1 Tarasa.capitata Tarasa.cardenasii Tarasa.cerratei1 Tarasa.cerratei2 Tarasa.congestiflora Tarasa.corrugata Tarasa.geranioides1 Tarasa.geranioides2 Tarasa.geranioides3 Tarasa.heterophylla Tarasa.humilis Tarasa.latearistata1 Tarasa.latearistata2 Tarasa.machupicchensis Tarasa.mandonii Tarasa.marinii Tarasa.meyeri Tarasa.nototrichoides Tarasa.odonelli Tarasa.operculata1 Tarasa.operculata2 Tarasa.pediculata Tarasa.rhombifolia Tarasa.spiciformis Tarasa.tarapacana1 Tarasa.tarapacana2 Tarasa.tenella Tarasa.tenuis Tarasa.thyrsoidea2 Tarasa.thyrsoidea1 Tarasa.trisecta Tarasa.urbaniana GT-GCTCGTT GT-GCTCGTT GT-GCTCGTT GT-GCTCGTT GC-GCTCGTT GT-GCTCGTT GT-GCTCGTT GT-GCTCGTT GT-GCTCGTT GT-GCTCGTT GT-GCTCGTT GT-GCTCGTT GT-GCTCGTT GT-GCTCGTT GT-GCTCGTT GT-GCTCGTT GT-GCTCGTT GT-GCTCGTT GT-GGTCGTT GT-GCTCGTT TC-GCTCGTT GT-GGTCGTT GT-GCTCGTT GT-GCTCGTT GT-GCTCGTT GT-GCTCGTT GT-GCTCGTT GT-GCTCGTT GT-GCTCGTT AT-GCTCGTT GT-GCTCGTT GT-GCTCGTT GT-GCTCGTT GT-GCTCGTT GT-GCTCGTT GT-GCTCGTT GT-GCTCGTT GT-GCTCGTT GT-GCTCGTT GT-GCTCGTT GT-GCTCGTT GT-GCTCGTT GATT-AGGAC GATT-AGGAC GATT-AGGAC GATT-AGGAC GATT-AGGAC GATT-AGGAC GATTT-GGAC GATT-AGGAC GATTT-GGAC GATT-AGGAC GATT-AGGAC GATT-AGGAC GATTT-GGAC GATTT-GGAC GATT-AGGAC GATT-AGGAC GATT-AGGAC GATTTAGGAC GATTT-GGAC GATT-AGGAC GATT-AGGAC GATTT-GGAC GATT-AGGAC GATT-AGGAC GATT-AGGAC GATT-AGGAC GATT-AGGAC GATT-AGGAC GATTTAGGAC GATT-AGGAC GATT-AGGAC GATT-AGGAC GATT-AGGAC GATT-AGGAC GATT-AGGAC GATT-AGGAC GATT-AGGAC GAAT-AGGAC GATT-AGGAC GATT-AGGAC GAAT-AGGAC GATT-AGGAC CCTTTGACCC CCTTTGACCC CCTTTGACCC CCTCTGACCC ACTCTGACCC CCTCTGACCC CCTCTGACCC CCTCTGACCC CCTCTGACCC CCTCTGACCC CCTCTGACCC CCTCTGACCC CCTCTGACCC CCTCTGACCC CCTTTGACCC CCTCTGACCC CCTCTGACCC CCTCTGACCC CCTCTGACCC CCTCTGACCC ACTCTGACCC CCTCTGACCC CCTCTGACCC CCTCTGACCC CCTCTGACCC CCTCCGACCC TCTCTGACCC CCTCTGACCC CCTCTGACCC CCTTTGACCC CCTCTGACCC CCTCTGACCC CCTCTGGCCC CCTCTGACCC CCTCTGACCC CCTCTGACCC CCTCTGACCC CCTTTGACCC CCTCTGACCC CCTCTGACCC CCTTTGACCC CCTTTGACCC TTTTT-GGSA TTTTT-GGCA TTTTT-GGCA TTTTT-GGCA TTTTT-GGCA TTTTT-GGCA TTTTT-GGCA TTTTT-GGCA TTTTT-GGCA TTTTT-GGCA TTTTT-GGCA TTTTT-GGCA TTTTT-GGCA TTTTT-GGCA TTTTT-GGCA TTTTT-GGCA TTTTT-GGCA TTTCA-GGCA TTTTT-GGCA TTTTT-GGCA TTTTT-GGCA TTTTT-GGCA TTTTT-GGCA TTTTT-GGCA TTTTT-GGCA TTTTTTGGCA TTTTT-GGCA TTTTT-GGCA TTTCA-GGCA TTTT--GGCA TTTT--GGCA TTTTT-GGCA TTTTT-GGCA TTTTT-GGCA TTTTT-GGCA TTTTT-GGCA TTTTT-GGCA TTTTT-GGCA TTTT--GGCA TTTT--GGCA TTTTT-GGCA TTTTT-GGCA 171 TCACAAAGTA TCACAAAGTA TCCCAAAGTA TCACAATGTT TCGCAACGTC TCACAAAGTC TCACAAAGTC TCACAAAGTC TCACAAAGTC TCACAAAGTC TCACAAAGTC TCACAAAGTC TCACAAAGTC TCACAAAGTC TCACTAAGTC TCACAAAGTC TCACAAAGTC TCACAATGTC TCACAAAGTC TCACAAAGTC TCGCAACGTC TCACAAAGTC TCACAAAGTC TCGCAATGTT TCGCAATGTT TCACTAAGTC TCACAAAGTC TCACAAAGTC TCACAATGTC TCACAACGTA TCACAACGTA TCACAAAGTC TCACTAAGTC TCGCAATGTT TCACAAAGTC TCACAAAGTC TCACAAAGTC TCACAATGTC TCACAACGTA TCACAACGTA TCACAAWGTC TCACAAAGTC GATGCTCGCA GATGCTCGCA GATGCTCGCA GATGCTCGCA GATGCTCGCA GATGCTCGCA GATGCTCGCA GATGCTCGCA GATGCTCGCA GATGCTCGCA GATGCTCGCA GATGCTCGCA GATGCTCGCA GATGCTCGCA GATGCTCGCA GATGCTCGCA GATGCTCGCA GATGCTCGCA GATGCTCGCA GATGCTCGCA GATGCTCGCA GATGCTCGCA GATGCTCGCA GATGCTCGCA GATGCTCGCA GATGCTCGCA GATGCTCGCA GATGCTCGCA GATGCTCGCA GATGCTCGCA GATGCTCGCA GATGCTCGCA GATGCTCGCA GATGCTCGCA GATGCTCGCA GATGCTCGCA GATGCTCGCA GATGCTCGCA GATGCTCGCA GATGCTCGCA GATGCTCGCA GATGCTCGCA TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TCG TTG TCG TCG Literature cited Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic Local Alignment Search Tool. Journal of Molecular Biology 215:403-410. Alverson, W. S., B. A. Whitlock, R. Nyffeler, C. Bayer, and D. A. Baum. 1999. Phylogeny of the core Malvales: Evidence from ndhF sequence data. American Journal of Botany 86:1474-1486. Alverson, W. S., K. G. Karol, D. A. Baum, M. W. Chase, S. M. Swensen, R. McCourt, and K. J. Sytsma. 1998. Circumscription of the Malvales and relationships to other Rosidae: evidence from rbcL sequence data. American Journal of Botany 85:876-887. Andreasen, K. and B. G. Baldwin. 2001. Unequal evolutionary rates between annual and perennial lineages of checker mallows (Sidalcea, Malvaceae): Evidence from 18S-26S rDNA internal and external transcribed spacers. Molecular Biology and Evolution 18:936-944. Arroyo, M. T. K., J. Armesto, and C. Villagran. 1981. Plant phenological patterns in the high Andean cordillera of central Chile. Journal of Ecology 69:205-223. Arroyo, M. T. K., R. Primack, and J. Armesto. 1982. Community studies in pollination ecology in the high temperate Andes of central Chile. I. Pollination mechanisms and altitudinal variation. American Journal of Botany 69:82-97. Arroyo, M. T. K., J. Armesto, and R. Primack. 1983. Tendencias altitudinales y latitudinales en mechanismos de polinizacion en la zona andina de los Andes templados de Sudamerica. Revista Chilena de Historia Natural 56:159-180. Arroyo, M. T. K., J. Armesto, and R. Primack. 1985. Community studies in pollination ecology in the high temperate Andes of central Chile. II. Effect of temperature on visitation rates and pollination possibilities. Plant Systematics and Evolution 149:187-203. Arroyo, M. T. K. and F. Squeo. 1990. Relationship between plant breeding system and pollination. Pages 205-227 in Biological approaches and evolutionary trends in plants (S. Kawano, ed.) Academic Press, San Diego. 172 Baldwin, B. G., M. J. Sanderson, J. M. Porter, M. F. Wojciechowski, C. S. Campbell, and M. J. Donoghue. 1995. The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Annals of the Missouri Botanical Garden 82:247-277. Barrett, S. C. H. 1995. Mating-system evolution in flowering plants: micro- and macroevolutionary approaches. Acta Botanica Neerlandica 44:385-402. Barrett, S. C. H., L. D. Harder, and A. C. Worley. 1996. The comparative biology of pollination and mating in flowering plants. Philosophical Transactions of the Royal Society of London. B. 351:1271-1280. Bates, D. M. 1965. Notes on Urocarpidium Ulbrich and Tarasa Philippi. Gentes Herbarum 9:383-391. Bates, D. M. 1967. Chromosome numbers in the Malvales. I. Gentes Herbarum 10:39-46. Bates, D. M. 1968. Generic Relationships in the Malvaceae, Tribe Malveae. Gentes Herbarum 10:117-135. Bates, D. M. and O. J. Blanchard. 1970. Chromosome Numbers in the Malvales. II. New or otherwise noteworthy counts relevant to classification in the Malvaceae, Tribe Malveae. American Journal of Botany 57:927-934. Bayer, C., M. F. Fay, A. Bruijn, V. Savolainen, C. M. Morton, K. Kubitzki, W. S. Alverson, and M. W. Chase. 1999. Support for an expanded family concept of Malvaceae within a recircumscribed order Malvales: a combined analysis of plastid atpB and rbcL DNA sequences. Botanical Journal of the Linnean Society 129:267-303. Bentham, G. and J. D. Hooker. 1862. Malvaceae. Pages 195-213 in Genera Plantarum. Brochmann, C. and R. Elven. 1992. Ecological and genetic consequences of polyploidy in Arctic Draba (Brassicaceae). Evolutionary Trends in Plants 6:111-124. Brochmann, C., P. S. Soltis, and D. E. Soltis. 1992. Recurrent formation and polyphyly of Nordic polyploids in Draba (Brassicaceae). American Journal of Botany 79:673688. Brochmann, C., T. Nilsson, and T. M. Gabrielsen. 1996. A classic example of postglacial allopolyploid speciation re-examined using RAPD markers and nucleotide sequences: Saxifraga osloensis (Saxifragaceae). Symb. Bot. Ups. 31:75-89. Buckler, E. S., IV. and T. P. Holtsford. 1996. Zea systematics: Ribosomal ITS evidence. Molecular Biology and Evolution 13:612-622. 173 Charlesworth, D. and B. Charlesworth. 1987. Inbreeding depression and its evolutionary consequences. Annual Review of Ecology and Systematics 18:237-268. Charlesworth, D. and B. Charlesworth. 1995. Quantitative genetics in plants: The effect of the breeding system on genetic variability. Evolution 49:911-920. Charnov, E. L. 1982. The theory of sex allocation. Princeton University Press, Princeton. Chase, M. W. and H. H. Hills. 1991. Silica gel: an ideal material for field preservation of leaf samples for DNA studies. Taxon 40:215-220. Clausen, J., D. D. Keck, and W. M. Hiesey. 1940. Experimental studies on the nature of species. I. Effect of varied environments on western North American plants. Carnegie Institution of Washington Publication No. 520, Washington, DC. Cook, L. M. and P. S. Soltis. 1999. Mating systems of diploid and allotetraploid populations of Tragopogon (Asteraceae). I. Natural populations. Heredity 82:237244. Cook, L. M., P. S. Soltis, S. J. Brunsfeld, and D. E. Soltis. 1998. Multiple independent formations of Tragopogon tetraploids (Asteraceae): evidence from RAPD markers. Molecular Ecology 7:1293-1302. Cruden, R. W. 1977. Pollen-ovule ratios: A conservative indicator of breeding systems in flowering plants. Evolution 31:32-46. Cruden, R. W. 2000. Pollen grains: why so many? Plant Systematics and Evolution 222:143-165. Cruden, R. W. and D. L. Lyon. 1985. Correlations among stigma depth, style length, and pollen grain size: do they reflect function or phylogeny? Botanical Gazette 146:143-149. Cruden, R. W. and S. Miller-Ward. 1981. Pollen-ovule ratio, pollen size, and the ratio of stigmatic area to the pollen-bearing area of the pollinator: An hypothesis. Evolution 35:964-974. Diers, L. 1961. Der anteil an polyploiden in den vegetationsgurten der westkordillere Perus. Zeitschrift fur Botanik 49:437-488. Downie, S. R. and D. S. Katz-Downie. 1996. A molecular phylogeny of Apiaceae subfamily Apioideae: Evidence from nuclear ribosomal DNA internal transcribed spacer sequences. American Journal of Botany 83:234-251. Doyle, J. J. 1992. Gene trees and species trees: molecular systematics as one-character taxonomy. Systematic Botany 17:144-163. 174 Doyle, J. J. and J. L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19:11-15. Doyle, J. J., J. L. Doyle, and A. H. D. Brown. 1990. Analysis of a polyploid complex in Glycine with chloroplast and nuclear DNA. Australian Systematic Botany 3:12536. Doyle, J. J., J. L. Doyle, and A. H. D. Brown. 1999. Origins, colonization, and lineage recombination in a widespread perennial soybean polyploid complex. Proceedings of the National Academy of Sciences of the United States of America 96:1074110745. Edlin, H. L. 1935. A critical revision of certain taxonomic groups of the Malvales. The New Phytologist 34:1-20, 122-143. Ehrendorfer, F. 1980. Polyploidy and distribution. Pages 45-60 in Polyploidy: Biological relevance (W. H. Lewis, ed.) Plenum Press, New York. Erdtman, G. 1960. The acetolysis method. Tidskrift. 54:561-564. A revised description. Svensk Botanisk Farris, J. S., M. Källersjö, A. G. Kluge, and C. Bult. 1994. Testing significance of incongruence. Cladistics 10:315-319. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791. Fernandez, A. 1974. Recuentos cromosomicos en Malvaceas. Boletin de la Sociedad Argentina de Botanica 15:403-410. Fryxell, P. A. 1985. Sidus sidarum - V. The North and Central American species of Sida. Sida 11:62-91. Fryxell, P. A. 1988. Malvaceae of Mexico. Systematic Botany Monographs 25:1-255. Fryxell, P. A. 1996. Fuertesimalva, a new genus of neotropical Malvaceae. Sida 17:6976. Fryxell, P. A. 1997. The American genera of Malvaceae - II. Brittonia 49:204-269. Fryxell, P. A. and J. Fuertes Aguilar. 1992. A re-evaluation of the Abutilothamnus complex (Malvaceae) I. Two new species and two new genera, Sidasodes and Akrosida. Brittonia 44:436-447. Fuertes Aguilar, J., J. A. Rossello, and G. N. Feliner. 1999. Nuclear ribosomal DNA (nrDNA) concerted evolution in natural and artificial hybrids of Armeria (Plumbaginaceae). Molecular Ecology 8:1341-1346. 175 Fuertes Aguilar, J., M. F. Ray, J. Francisco-Ortega, A. Santos-Guerra, and R. K. Jansen. In press. Molecular evidence from chloroplast and nuclear markers for multiple colonizations of Lavatera (Malvaceae) in the Canary Islands. Ge, S., T. Sang, B.-R. Lu, and D.-Y. Hong. 1999. Phylogeny of rice genomes with emphasis on origins of allotetraploid species. Proceedings of the National Academy of Sciences of the United States of America 96:14400-14405. Goldman, N. 1993. Statistical tests of models of DNA substitution. Journal of Molecular Evolution 36:182-198. Grant, V. 1981. Plant Speciation, Second edition. Columbia University Press, New York. Gustafsson, A. 1948. Polyploidy, life-form, and vegetative reproduction. Hereditas 34:122. Hershkovitz, M. A. and E. A. Zimmer. 1996. Conservation patterns in angiosperm rDNA ITS2 sequences. Nucleic Acids Research 24:2857-2867. Hijmans, R. J., L. Guarino and E. Rojas, 2002. DIVA-GIS, version 2. A geographic information system for the analysis of biodiversity data. Manual. International Potato Center, Lima, Peru. Hillis, D. M. and J. P. Huelsenbeck. 1992. Signal, noise, and reliability in molecular phylogenetic analyses. Journal of Heredity 83:189-195. Hillis, D. M., B. K. Mable, and C. Moritz. 1996. Applications of molecular systematics: The state of the field and a look to the future. Pages 515-543 in Molecular Systematics (D. M. Hillis, C. Moritz, and B. K. Mable, eds.). Sinauer Associates, Inc., Sunderland, Massachusetts. Huelsenbeck, J. P. and J. J. Bull. 1996. A likelihood ratio test to detect conflicting phylogenetic signal. Systematic Biology 45:92-98. Huelsenbeck, J. P. and B. Rannala. 1997. Phylogenetic methods come of age: Testing hypotheses in an evolutionary context. Science 276:227-232. Hutchinson, J. 1967. Malvaceae. Pages 536-567 in The genera of flowering plants. Clarendon Press, Oxford. Johnson, L. A. and D. E. Soltis. 1994. matK DNA sequences and phylogenetic reconstruction in Saxifragaceae s. str. Systematic Botany 19:143-156. Johnson, L. A. and D. E. Soltis. 1998. Assessing congruence: empirical examples from molecular data. Pages 297-348 in Molecular Systematics of Plants II: DNA Sequencing (D. E. Soltis, P. S. Soltis, and J. J. Doyle, eds.). Kluwer Academic Publishers, Boston. 176 Judd, W. S. and S. R. Manchester. 1997. Circumscription of Malvaceae (Malvales) as determined by a preliminary cladistic analysis of morphological, anatomical, palynological, and chemical characters. Brittonia 49:384-405. Kearney, T. H. 1949. Malvaceae: A new subtribe and genus, and new combinations. Leaflets of Western Botany 5:189-191. Kearney, T. H. 1951a. The American genera of Malvaceae. American Midland Naturalist 46:93-131. Kearney, T. H. 1951b. The genus Malacothamnus Greene (Malvaceae). Leaflets of Western Botany 6:113-140. Kearns, C. A. and D. W. Inouye. 1993. Techniques for pollination biologists. University Press of Colorado, Niwot, Colorado. Kim, K.-J. and R. K. Jansen. 1994. Comparisons of phylogenetic hypotheses among different data sets in dwarf dandelions (Krigia, Asteraceae): additional information from internal transcribed spacer sequences of nuclear ribosomal DNA. Plant Systematics and Evolution 190:157-185. Krapovickas, A. 1949. Las especies de Sphaeralcea de Argentina y Uruguay. Lilloa 17:179-222. Krapovickas, A. 1952. Notas sobre Malvaceas. Boletin de la Sociedad Argentina de Botanica 4:187-191. Krapovickas, A. 1954. Sinopsis del genero Tarasa (Malvaceae). Boletin de la Sociedad Argentina de Botanica 5:113-143. Krapovickas, A. 1960. Poliploidia y area en el genero Tarasa. Lilloa 30:233-249. Krapovickas, A. 1965. Notas sobre Malvaceae III. Kurtziana 2:113-126. Krapovickas, A. 1969. Notas sobre el genero Abutilon Mill. (Malvaceae). I. La Seccion Tetrasida (Ulbr.) Krapov. Bonplandia 3:25-47. Krapovickas, A. 1970. Malvaceas nuevas Sudamericanas. Bonplandia 3:63-72. Krapovickas, A. 1971. Evolucion del genero Tarasa (Malvaceae). Pages 232-241 in Recientes Adelantos en Biologia (R. H. Mejia, and J. A. Moguilevsky, eds.). Bona, Buenos Aires. Krapovickas, A. 1974. Acaulimalva, nuevo genero de Malvaceas. Darwiniana 19:9-39. Krapovickas, A. 1979. Novedades sobre Tarasa (Malvaceae). Boletin de la Sociedad Botanica de La Libertad (S.B.L.) 6:43-49. 177 La Duke, J. C. and J. Doebley. 1995. A chloroplast DNA based phylogeny of the Malvaceae. Systematic Botany 20:259-271. Levin, D. A. 1983. Polyploidy and novelty in flowering plants. The American Naturalist 122:1-25. Lewis, W. H. 1980. Polyploidy in angiosperms: Dicotyledons. Pages 241-268 in Polyploidy: Biological relevance (W. H. Lewis, ed.) Plenum Press, New York. Li, W.-H. 1983. Evolution of duplicate genes and pseudogenes. Pages 14-37 in Evolution of Genes and Proteins (M. Nei, and R. K. Koehn, eds.). Sinauer Associates, Inc., Sunderland, Massachusetts. Li, W.-H. 1997. Molecular Evolution. Sinauer Associates, Inc., Sunderland, Massachusetts. Liu, J.-S. and C. L. Schardl. 1994. A conserved sequence in internal transcribed spacer 1 of plant nuclear rRNA genes. Plant Molecular Biology 26:775-778. Loockerman, D. J. and R. K. Jansen. 1996. The Use of Herbarium Material for DNA Studies. Pages 205-220 in Sampling the green world: innovative concepts of collection, preservation, and storage of plant diversity (T. F. Stuessy, and S. H. Sohmer, eds.). Columbia University Press, New York. Löve, A. and D. Löve. 1949. The geobotanical significance of polyploidy. I. Polyploidy and latitude. Portugaliae Acta Biologica. Serie A. :273-352. Löve, A. and D. Löve. 1974. Origin and evolution of the arctic and alpine floras. Pages 571-603 in Arctic and Alpine Environments (J. D. Ives, and R. G. Barry, eds.). Methuen & Co, Ltd., London. Maddison, D. R. and W. Maddison. 2000. MacClade 4: Analysis of phylogeny and character evolution, version 4.0. Sinauer Associates, Inc. Mason-Gamer, R. J. and E. A. Kellogg. 1996. Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Gramineae). Systematic Biology 45:524-545. Mayol, M. and J. A. Rossello. 2001. Why nuclear ribosomal DNA spacers (ITS) tell different stories in Quercus. Molecular Phylogenetics and Evolution 19:167-176. Mione, T. and G. J. Anderson. 1992. Pollen-ovule ratios and breeding system evolution in Solanum section Basarthrum (Solanaceae). American Journal of Botany 79:279-287. 178 O'Kane, S. L., , Jr., B. A. Schaal, and I. A. Al-Shehbaz. 1996. The origins of Arabidopsis suecia (Brassicaceae) as indicated by nuclear rDNA sequences. Systematic Botany 21:559-566. Otto, S. P. and J. Whitton. 2000. Polyploid incidence and evolution. Annual Review of Genetics 34:401-437. Philippi, R. A. 1891. Catalogus praevius plantarum in itinere ad Tarapaca a Friderico Philippi lectarum. Anales del Museo Nacional de Chile 2:7-10 (Malvaceae). Philippi, R. A. 1893. Plantas Nuevas Chilenas de la Familia de las Malvaceas. Anales de la Universidad de Chile 82:5-24; 305-325. Popp, M. and B. Oxelman. 2001. Inferring the history of the polyploid Silene aegaea (Caryophyllaceae) using plastid and homoeologous nuclear DNA sequences. Molecular Phylogenetics and Evolution 20:474-481. Posada, D. and K. A. Crandall. 2001. Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proceedings of the National Academy of Sciences, USA 98:13757-13762. Queller, D. C. 1984. Pollen-ovule ratios and hermaphrodite sexual allocation strategies. Evolution 38:1148-1151. Rambaut, A. and Charleston. 2001. TreeEdit. Phylogenetic Tree Editor v1.0 alpha 8. Available at http://evolve.zoo.ox.ac.uk:16080/software/. Rambaut, A. and N. C. Grassly. 1997. Seq-Gen: An application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. Comput. Applic. Biosci. 13:235-238. Ramsey, J. and D. W. Schemske. 1998. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annual Review of Ecology and Systematics 29:467-501. Ray, M. F. 1995. Systematics of Lavatera and Malva (Malvaceae, Malveae) - a new perspective. Plant Systematics and Evolution 198:29-53. Richards, A. J. 1997. Plant Breeding Systems, Second edition. Chapman and Hall, New York. Rieseberg, L. H. and J. F. Wendel. 1993. Introgression and its consequences in plants. Pages 70-109 in Hybrid Zones and the Evolutionary Process (R. G. Harrison, ed.) Oxford University Press, New York. Rosquist, G. 2001. Reproductive biology in diploid Anthericum ramosum and tetraploid A. liliago (Anthericaceae). Oikos 92:143-152. 179 Rozen, S. and H. J. Skaletsky. 1997. Primer3. Code available at genome.wi.mit.edu/genome_software/other/primer3.html http://www- Sang, T., D. J. Crawford, and T. F. Stuessy. 1995. Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution. Proceedings of the National Academy of Sciences, USA 92:6813-6817. Sawyer, S. A. 1999. GENECONV: A computer package for the statistical detection of gene conversion. Distributed by the author, Department of Mathematics, Washington University in St. Louis, available at http://www.math.wustl.edu/~sawyer. Schumann, K. 1890. Malvaceae. Pages 30-53 in Die naturlichen pflanzenfamilien Wilhelm Engelmann, Leipzig. Scott, K. D. and J. Playford. 1996. DNA extraction technique for PCR in rain forest plant species. Biotechniques 20:974-978. Seelanan, T., A. Schnabel, and J. Wendel. 1997. Congruence and consensus in the cotton tribe (Malvaceae). Systematic Botany 22:259-290. Segraves, K. A., J. N. Thompson, P. S. Soltis, and D. E. Soltis. 1999. Multiple origins of polyploidy and the geographic structure of Heuchera grossulariifolia. Molecular Ecology 8:253-262. Sharbel, T. F. and T. Mitchell-Olds. 2001. Recurrent polyploid origins and chloroplast phylogeography in the Arabis holboellii complex (Brassicaceae). Heredity 87:5968. Smith, J. M. 1999. The detection and measurement of recombination from sequence data. Genetics 153:1021-1027. Soltis, D. E. and P. S. Soltis. 1999. Polyploidy: Recurrent formation and genome evolution. Trends in Ecology and Evolution 14:348-352. Soltis, P. S. and D. E. Soltis. 2000. The role of genetic and genomic attributes in the success of polyploids. Proc. Natl. Acad. Sci. USA 97:7051-7057. Stebbins, G. L. 1940. The significance of polyploidy in plant evolution. The American Naturalist 74:54-66. Stebbins, G. L. 1950. Variation and evolution in plants. Columbia University Press, New York. Stebbins, G. L. 1957. Self fertilization and population variability in the higher plants. The American Naturalist 91:337-354. 180 Stebbins, G. L. 1984. Polyploidy and the distribution of the arctic-alpine flora: new evidence and a new approach. Botanica Helvetica 94:1-13. Swofford, D. L. 2002. PAUP*: Phylogenetic analysis using parsimony (and other methods), version 4.0b10. Sinauer Associates, Inc. Taberlet, P., L. Gielly, G. Pautou, and J. Bouvet. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology 17:1105-1109. Tal, M. 1980. Physiology of polyploids. Pages 61-75 in Polyploidy: Biological relevance (W. H. Lewis, ed.) Plenum Press, New York. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25:4876-4882. Tressens, S. G. 1970. Morfologia del polen y evolucion en Tarasa (Malvaceae). Bonplandia 3:73-100. Ulbrich, E. 1917. Malvaceae andinae novae vel criticae imprimis Weberbauerianae. II. Botanische Jahrbucher fur Systematik, Pflanzengeschichte und Pflanzengeographie, Beibl. 54, 117:48-78. Wallace, R. S. and R. K. Jansen. 1995. DNA evidence for multiple origins of intergeneric allopolyploids in annual Microseris (Asteraceae). Plant Systematics and Evolution 198:253-265. Weller, S. G. and A. K. Sakai. 1999. Using phylogenetic approaches for the analysis of plant breeding system evolution. Annual Review of Ecology and Systematics 30:167-199. 181 Wendel, J. F. and J. J. Doyle. 1998. Phylogenetic incongruence: window into genome history and molecular evolution. Pages 265-296 in Molecular Systematics of Plants II: DNA Sequencing (D. E. Soltis, P. S. Soltis, and J. J. Doyle, eds.). Kluwer Academic Publishers, Boston. Wendel, J. F., A. Schnabel, and T. Seelanan. 1995. Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proceedings of the National Academy of Sciences, USA 92:280-284. White, T. J., T. Bruns, S. Lee, and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics in PCR protocols. A guide to methods and applications (M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White, eds.). Academic Press, Inc., San Diego, CA. Whittall, J., A. Liston, S. Gisler, and R. J. Meinke. 2000. Detecting nucleotide additivity from direct sequences is a SNAP: An example from Sidalcea (Malvaceae). Plant Biology (Stuttgart) 2:211-217. Yang, Z. 1996. Maximum-likelihood models for combined analyses of multiple sequence data. Journal of Molecular Evolution 42:587-596. Zimmer, E. A., S. L. Martin, S. M. Beverley, Y. W. Kan, and A. C. Wilson. 1980. Rapid duplication and loss of genes coding for the alpha chains of hemoglobin. Proceedings of the National Academy of Sciences, USA 77:2158-2162. 182 Vita Jennifer Alane Tate was born April 25, 1972 in Charleston, Illinois to Ann Marie and Gary Wayne Tate. She graduated valedictorian from Auburn High School (Auburn, Illinois) in 1990 and earned a B.S. in Plant Biology from the University of Illinois at Urbana-Champaign in 1994. During her senior year, she studied abroad at the University College of North Wales at Bangor. After graduating, she worked for two years at the Illinois Natural History Survey as a herbarium assistant. She began the Ph.D. program at the University of Texas at Austin in August 1996. Permanent address: 2300 Broadmoor Drive, Apt. 47, Bryan, TX 77802 This dissertation was typed by the author. 183