Academia.eduAcademia.edu
International Round Table «Highland Zone Exploitation in Southern Europe)) Brescia, 29 April - 1 May 1993 Edited by Paolo Biagi and John Nandris U nder the Patronage of the U.I.S .P.P. Mesolithic Cumrnission lstituto Italiano di Preistoria e Protostoria Dipartirncnto di Scienze Storico-Archeologiche e Orientalistiche. University of Venice Institute of Archaeology. University College. London Soprintendenza Archeologica della Lombardia lSSN 0390-6639 thern Europe» MUSEO C! V!CO Dl SC !E NZ E NAT URA Ll D l BRESC IA HIGHLAND ZONE EXPLOITATION IN SOUTHERN EUROPE edited by PAOLO BIAGI and JOHN NAN DRIS highland zone explclitation in southern MONOGRAFIE Dl «NATURA BRESC IANA» N. 20 - 1994 MONOGRAFIE DI <<NATURA BRESCIANA» 20-1994 MUSEO CIYICO Dl SCIENZE NATURALl Dl BRESCIA Via Ozanam 4 - 25128 Brescia (Jtalia) - - - - 0 - -- COMITATO Dl REDAZIONE Gaetano Barbato - Giuseppe Berruti - Pierfraneo Blesio - Pierandrea Brichetti Arturo Crescini - Adolfo Gallinari - Giampietro Marchesi - Paolo Mazzoldi lsmaele Pedrini- Dante Yailati- Eugenio Zanotti REDATTORI Pierfraneo Blesio - Dante Yailati SEGRETERIA Dl REDAZIONE Luisa Oliveni <<NATURA BRESCIANA» Direttore responsabile UGO VAGLIA Autorizzazione del Tribunale di Brescia n° 233 del IO.V.l965 Mosetti Tecniche Grafiche snc - Trieste 1994 CONTENTS EDITORIAL FOREWARD ...... CHARDON M. - L'exploitation de Ia haute montagne. l'utilisation des eaux et les changements de paysages dans Ia rcgion de !'Alpe d'Huez (Alpes. France) ..................................... ..................... .. page 7 » 9 NANORIS J. - The land of mountains in the island of languages: aspects of comparativc ethnoarchaeology in Daghestan and the Caucasus ........... ....................................................................... . :hetti oldi KACZANOWSKA M. and KozwwSKI J.K.- Environment and highland zone exploitation in the western Carpathians (VII-VI millenniurn BP) .......................................................... .................................... 21 )) THIEBAULT S. - L'exploitation des ha utes terres: l' exemple des Prealpes sudoccidentales Fran9aises. L'apport de l" anthracologie ................................................................ ........................................... .. 49 73 KüSTERH. - Highland and lowland exploitation in the Alps: the evidence from pollen data .............. .. )) 95 K.- The palynological record of human impact on highland zone ecosystem ........................ .. )) 107 WtcK L.- Vegetation development and human impact at the forest Iimit: palaeoecological Mudies in the Splügen Pass area (northern ltaly) ........................................................................................... .. )) 123 BIAGI P.. NISBET R. and ScAtFI: R.- Man and vegetation in the southern Alps: the Valcamonica-Valtrompia-Valsabbia watershed (northern ltaly) ....................................................................................... . )) 133 ÜEGGL ScAIFE R. and BIAGI P. - Pollen analy;is of the Rondeneto Mesolithic site and dating of peat accumulation in the Valcamonica region (northern ltaly) ..................... ................................................ . J.J. - Thc vegetation history of the northern Apennines during thc WATSON C., BRANCH N. and l ッキセ@ Holocene .............................................................. ................................. .......................................... . 143 )) 153 LowE J.J., BRANCH N. and WATSON C. - The chronology of human disturbance of the vegetation of the northern Apenni nes duri ng the Holocene ............................................................................ . )> 169 CASTELLETTI L., MASPERO A. e TOZZI C.- II popolamento della Valledel Scrchio (Toscana settentrionale) durante il Tardiglaciale Wlirrniano e I'Oiocene antico ........................................................ .. )) 189 BARKER G. - The exploitation of the Matese Mountain and upper Biferno Valley from prehi;toric times to the present day: environmcnt. economy and society................... .................. ............................ .. PERESANI M. - Flint exploitation at Epigravettian and Mesolithic sites on the Asiago Plateau (Venetian Prealps) ......................................................................................................................... .. 205 )) CREMASCHI M.• POGGIA I KELLER R.. ROTTOLl M. e Zuccou L. - II sito preistorico di 」。セ・イ@ Sasso in alta Val Biandino (Corno): mutarnenti ambientali c frequentazione antropica nclle Prealpi Lombarde durante I'Oiocene antico e medio ................................................................................ .. 221 235 NISBET R.- Aleuni aspetti dell'ambiente umano nelle Alpi Cozie fra quinto e quarto millennio BP .. . )) 259 DE LANFRANCHI F. - Pastoralisme et paysannerie a r aube de l'age du Bronze ............................... ..... .. )) 273 VUTIROPULOS N.- Evidence of Neolithic pastoralism in Greece on the lsland of Euboea ................... .. )) 297 )) 307 )) 317 BAKER P. - A preliminary assessment ofthe role ofhunting in early Medieval subsistence in the alpine, prealpine and lowland areas of northern ltaly on the basis of zoo-archaeological data ................. . Sm1MAAMAR H. - La conservation et lc stockage des viandes: techniques pastorales et gestion dc bien; alimentaires dans les soc ietes paysannes alpines (Valai s). Essai d ' interpretation zooethnoarcheologique ....................................................................... ................................................. . P. BlAGI and J. NANDRIS (eds.) Highland Zone Exploitation in Southern Europe MONOGRAF IE Dl «NATURA BRESC IANA», 20, 1994: 107-122 KLAUS OEGGL * THE PALYNOLOGICAL RECORD OF HUMAN IMPACT ON HIGHLAND ZONE ECOSYSTEMS SUMMARY - The palynological record ofhllm(/11 impac1 on highland セッョ・」ウケQュN@ A review ofthe palynological record of human impact on highland environments is given. Methodological problems concerning thc nature of the palynological record are 、ゥウ」オセ・N@ The chronological order of sites with anthropogenic influence shows that anthropogenic disturbance of the alpine regions starts in the Neolithic period. and is gradually displaced to lower regions. up to recent times. RIASSU TO - L'impallo (111/ropico nell'ecosislema alpino secondo i da/i palinologici. L'Autore fornisce un aggiomamento dei dati pollinici riguardanti l'impatto antropico nell'ecosistema alpino. Vengono discussi aleuni problemi metodologici riguardanti Ia natura dei dati stessi. L'ordinamento cronologico dei siti influenzati dall'antropizzazione dimostra ehe. nelle regioni alpine. i mutamenti antropogenici. ebbero inizio durante il Neolitico, e si distribuirono in seguito nei territori a quota piü bassa. INTRODUCTION The Alps hold a special position among the orobioms of the Earth. There is scarcely a mountain rangein the world, which is so fashioned by human interference as the Alps. Today's alpine Iandscape is the result of a lo ng-term economic use of the highlands. From the Palaeolithic up to the Neolithic periods onward hunter and gatherer societies frequented the timber-line ecotone and the a lpine patches. Late r thesenatural grasslands shaped the economic interests of agricultural commu nities. Foreconornic reasons it has tobe assumed that pasturing of the uplands already Started wi th the neolithization of the Alps. Earl y farming cultures were reliant on their own produce. Their fodder production was low. Driving the stockto pasture on the alpine grasslands liberates fodder production in the valley bottoms, and most of the area near the farm can then be tilled. The economic advantage is evident: if 100% of the animal stock is put on pastures during the summer, 27% more an imals can be wintered than without alpine pasture. Even if only 60% aredriven up to the high Iands, still l 8% more can be wintered (PENZ, 1978). Today the mostprofitable g razing grounds are located in the subalpine zone on potential woodland. Therefore anthropogenic interfe rence in the highlands is narrowly linked w ith timber-line fluctuations. lt is weil known that even specialists encounter difficult ies in the interpretation of alpine pollen diagrams. Forthis reasons some methodologica l aspects wi ll be * Institut für Botanik der l・ッー ャ 、Mfイ。 ョ コ・ョウMu ゥ カ・イセゥエャN@ Innsbruck -107 discussed, before a review of the palynological record of human impact in alpine regions is given, and a conclusion is drawn from the vegetation patterns in time and space. METHODOLOGICAL ASPECTS The timberline is a significant vegetation Iimit in mountain areas. Its physiognomy is delermined by several faclors: lopugraphy, macrudimate, site-cunditiuns, seed production, snow-cover dynamics, forest fires and human impact (STERN, 1983). A major fact in the development of the timberline is climate, respectively the abbreviation of the growing period with advancing altitude (LARCHER, 1963; TRANQUILLINI, 1976; 1979). There exist different hypotheses about the nature of the alpine timber-line under natural conditions without human disturbance. One opinion postulates a transition zone. This timberline ecotone varies from dense forest to a more and more open structured woodland, up to the tree-line, where individual trees could still exist. Another view says, that forests always reach their upper climatic Iimit in a dense stand. Above this acute vegetation Iimit the growth of individual groups of trees is possible (STERN, 1983). The comparison with mountain ranges without human impact provides evidence that several varieties of these two hypotheses are possible. An acute straight-lined Iimit, where the timber-line coincides with the tree-line, occurs only in mountains with favourable homogenous soil conditions. Already minor disturbances like avalanches are sufficient to open up the straight-lined Iimit. In most cases mosaic structures of dense forest, bushes and alpine grasslands are noticeable. The opening up of dense forest into individual stands is known from highlands with a strained water economy (mediterranean, arid areas). Even within the Alps all the formations of the timber-line mentioned above are observeable (KLöTZu, 1991 ). Above the timber-line evergreen needle-leaved or cold-deciduous shrublands, tall-forb formations, dwarf scrub, and alpine mats, expand according to relief, soil and microclimate. The last mentioned alpine mats, or so-called «Urwiesen», are important areas for grazing. Even before human interference, floods, avalanches and game are able to put enough nutrients into the root area to support stands with the character of natural pasture in the alpine regions, e.g. a forb-rich Trisetetum. In principle, no new plantcommunities are created with the penetration of prehistoric man into the high Iands. Some already existing and some new selection factors, like irrigation, pasture, fertilization, mowing, etc., become more effective. This causes a largescale expansion of existing nutrient-rich plant communities in alpine regions, which is in contrary to valley bottarn regions where new plant communities were created by the activity of man. On! y the basic species-combination becomes modified by stronger effecti ve selection factors (KLöTZLI, 1991). Many alpine plants respond to the anthropogenic selection factors mentioned above with an enhanced competitiveness. Tables l-4 present an overview ofthese alpine plant species. Now another aspect ofthe methods of palynology comes into question. How can the pollen of these alpine plant species be registered, and how representative is their occurrence as indicator species for human impact in highland pollen diagrams? Pollen recruitment in alpine tarns and mires represents a special case. Pollen deposition in a Sedimentation basin consists of a local, extra local, regional and extra regional component (TAUBER, 1965). The different 108 - alpine regions is ?ace. physiognomy is seed production, najor fact in the e growing period ine under natural one. This timber•odland, up to the ests always reach nit the growth of mountain ranges o hypotheses are tith the tree-line, . Already minor 1it. In most cases !. The opening up d water economy f the timber-line ublands, tall-forb :nd microclimate. for grazing. Even ugh nutrients into pine regions, e.g. th the penetration selection factors, 1is causes a largeions, which is in ed by the activity :ffective selection selection factors overview of these [ow can the pollen eir occurrence as ruitment in alpine ion basin consists 55). The different manifestation of these single components in a deposit depends essentially upon the area of the sedimentation basin (JANSSEN, 1973; JACOBSON and BRADSHAW, 1981 ). Lowland lakes and mires with a diameter <I 00 metres are characterized by the local and extra-local components, and therefore sites of such sizes are chosen for the reconstruction of local vegetational changes. On the contrary, in highland zones the regionalandextra-regional components dominate, according to wind direction (JocHIMSEN, 1986; KüTTEL, 1974; LANG, 1993). In consideration of the low pollen production of alpine plantcommunities, thesignificanceoftheextra-regional component should not be underrated (BoRTENSCHLAGER, 1992). Pollen analyses of firn snow profiles from alpine glaciers provide interesting data forthe annual extra-regional pollen component in alpine environments (BORTENSCHLAGER, 1967; 1970; AMBACH et al., 1969) . The annual pollen accumulation on a glacier surface can be equated with the amount of the extra-regional pollen component. BoRTENSCHLAGER ( 1970) found out that the mean annual pollen accumulation rate comes to470pollen grains cm2 in the Ötz valley. This is as much as theannua l pollen deposition of a forest tundra (BIRKS, 1973; HICKS, 1986). Due to the different manifestation of the pollen components, and the low pollen productivity ofthe local alpine flora, the relation between site size and pollen source area has only a restricted validity in high alpine regions. Therefore, the interpretation of highland pollen diagrams, especially percentage diagrams, has to be made with extra caution, because a knowledge mainly of the local vegetation record is needed for the evidence of vegetational changes in alpine environments. pollination mechanism pollen source area pollen representation Triserum flavescens, Dacryfis glomerara, Agrosris tenuis, Phleum alpinum. Poa alpina Rumex acerosa anemogamous (L) ,ER 0 Gramineae anemogamous (L),ER X Rwnex; Rtmlex acetosa- Typ Alchemilla vulgaris entomogamous L u Trifolium badium, Trifolium prarense, Trifolium repens Geraniwn sylvaricum, Heracleum sphondylium entomogamous L u entomogamous entomogamous X X (L).ER u Plwuago media entomogamous (L),ER X Campanula rhomboidafis, Phyreuma orbiculare Leomodon hispidus, Taraxacum officinale. Tragopagon major Chrysanthemum /eucathemu••1, enton1ogamous L u Alchemil!a-Typ; Rosaceae Trifolium. Papilionaceae Geraniltm Heraclewn-Typ, Umbe lli ferae Planrago, Plantaga major-Typ Campanulaceae entotnogamous L u C icho riaceae entomogamous L u Asteraceae taxon pollen-type Table I - Alpine plantspecies stimulated by irrigation, theirpollination mechani sm. pollen representation, ancl pollentypes: L=local. R=regional, ER=extra-regional sources; ()=minor component, Ü=overrepresented. U=underrepresented, x=no specification (particular items accorcling to B IRKS. 1973: BuRGA, 1984: JOCHIMSEN , 1986; KRAL. 197 1: S CHRÖTER, 1926). - 109 Tables 1-4 show all the alpine plant species which react positive to human interference. Their pollination mechanisms, place of origin (in the sense of local, extra-local, regional and extra-regional sources) and their pollen representation, are all shown. These data enable us to assess the validity of a palynological record of local vegetation changes in highland zones. Over-represented pollen types ofmainly extra-regional origin (such asGramineaeor Urticaceae) arebad indicators. Under-represented pollen-types from regional sources (such as Artemisia, Calluna, Caryophyllaceae, Chenopodiaceae, Cruciferae,Juniperus, Plantago, Ranunculaceae, and Rumex) are of limited value. A good indicator for human interference in alpine ecostems is the under-representation of pollen-types from local source areas, su<.:h as Asleraceae, Campanulaceae, Cichoriaceae, Ericaceae, Gentianaceae, Geranium, Ligust icum-type, Ligusticum mutellina, Liliaceae-type, Papilionaceae, Primulacae, Rosaceae, Saxifragaceae, Scrophulariaceae, Vaccinium and Valerianaceae. Since these entomogamous plant species are always under-represented in pollen diagrams, an increase of the counted pollen sum has tobe considered, in order to get more significant data for the reconstruction of the local alpine vegetation. Such local vegetation reconstruction is nearly impossible with the use of pollen analyses (i.e., percentage diagrams) alone (JocHIMSEN, 1972; L ANG, 1993). It requires the application of other palaeoecological methods, suchaspollen accumulation rates, macrofossil analyses etc. For that reason, in the following compilation only sites with pollen diagrams supported by at least one of these methods are taken into consideration. pollination mechanism pollen source area pollen representation Rwnex alpinus. Rumex arifolius Ur1ica dioica Chenopodium bonus-henricus Poa pralensis, Triselwn flavescens anemogamous anemogamous anemogamous anemogamous (L).ER ER ER ( L),ER 0 0 0 Chenopodiaceae Gramineae S!ellarianemorum Cerastium caespilosum Capsel/a bursa-pas/oris Primula elatior Alchemil/a subcrenala. A. vulgaris. A. hybrida Pimpinella sarifraga entomogamous (L},ER u Caryophyllaceac entomogamous entomogamous entomogamous R,ER L L,(ER) u Cruciferae Primulaceae u Alchemilla-type, entomogamous (L),ER u taxun Veronica chamaedrys Menlha lrmgifolia Veracrum album X pollen-type Rwnex Urtica. Urticaceae Rosaceae entomogamous entomogamous entomogamous L, L (L).ER X u X Pimpine/la major-type Chaeroph)·llumtype. Umbe lliferae Scrophulariaceae Lamlaceae Liliaceae-type Table 2 - Alpine plant species stimulated by fertilisation, their pollination mechanism. pollen representation, and pollen-types: L=local , R=regional. ER.fextra-regional sources: ()=minor component. O=o verrepresented. U=undeiTepresented, x=no specificatiol\'(particularitems according to BIRKS. 1973: BuRGA. 1984:JOCHIMSEN, 1986: KRAL, 1971: ScHRöTER. I '126). 110- nan interference. ·cal, regional and data enable us to highland zones. !ae or U rticaceae) 1ch as Artemisia, , Ranunculaceae, 1 alpine ecostems o as Asteraceae, >igusticum-type, セN@ Saxifragaceae, . plant species are Jen sum has to be · the local alpine the use of pollen ). It requires the ·ates, macrofossil pollen diagrams taxon pollination mechanism pollen source pollen イ・ー イセウ・ ョ area tatlon L,R X anemochor Jumperus sp. Chenupodiwn sp. anemogamous anemogamous ( L).ER 0 Rumex sp. Calluna vulgaris anemogamous anemogamous (L).ER (L).ER X X Empetrum sp. anemo- and entomogamous L u Boti)'Chiwn monolete spores Pteridophyta l1miperus Chcnopodiaceactype Rumex Ca/luna vulgaris Ericaceae Empetrum-type Arrrmisin セpM anemogamous X Artemisia Nardus stricta, Feslllca alpina C yperaccae Aconirwu, Anemone sp. ancmogamous (L).ER (L),ER LER L.(ER) 0 u u Gramineae X X ancmogamous entomogamous L Ericaceae Rawmcu/aceae Papaver sp. Certt•otium alpin um, Stellaria nemorum Arahis alpina, Cruci ferae Primuhr farinosa, P. imegrifolia, Primula ·ica, Urticaceac !nopodiaceae unineae ER.L u entomogamous R.ER u entomogamous L X viscosa. Soldanella sp. e, 1belliferae ·ophulariaceae mlaceae iaceae-type n representation. and t, O=overrepresented. RGA, 1984:JOCHIMSEN. Ranuncu laceac Papaver Caryophyllaccae Cerastium Cruciferac Primula farino.w - type. Primula hirswa-type. Soldanella Pri mulaceae entomogamous L u Sedum sp. Sempervivum sp. Saxifraga sp. Porenti/la sp. Alchemilla sp. entomogamous cntomogamous cntomogamous entomogamous L L L L.(ER) X X Set/um u u Oxytropis montana cntomogamous (L).ER u Polygala sp. X X Gentimw sp .. Gellliane/la sp. entomogamous entomogamous entomogamous entomogamous L L X X X X Potenti la-type AlchemillcHypc Rosaceae Oxytropis-typc Papillionaccac Polygala Valeriana sp. entomogamous L X Bartsia sp., Euphrasia ウセ@ .. Pedicu/aris sp.. Rhinantws sp. entomogilmous L,(ER) u ArctoslafJhylos sp .. Erica sp .. Rlzododendron sp.. Loiseleuna Daphne sp. ·yophyllaceae 1ciferae mulaceae hemi/la-type, saceae •1pinella ;or-type aeroplzyllwn- Cyperaceae Acmzilum·type, Anemone nemorosa-type. entomogamous entomogamous Biseule/la sp.. Draba sp. Thesium sp. nex pollen-type Pteridophytes procumbens, Vaccinium sp. 1llen-type M Pinguicula sp. entomogamous X Campanula thyrsoidea entomogamous L Achillea nana, A. moschata, Adenostyles sp .. Antemwria sp.. Arnica sp. Carlina sp .. Cirsiwn sp .. Gnaphalium sp.. Homogyne sp.. cntomogamous L.(ER) X u u Arctostaphy los. Vaccinirtm-type Ericaceae SeJnp(•rvi\-'rtm Saxtfranaceae Thesium Thymcleaccae Gentiane/la cnmpstris·t ypc Gentianaccae Va leriana Valerianaceac Bartsia-type 1 Euphra.ü a. Pediculari.\·, Rhinanthus . Scrophulariaceae Pinf,:uicula Ca111panttla CamfLanulaceae Achi lea-type Ade1wstyles-type Carlina. Cirsium, Cirsiwn-type, Senecio doronicum. S. alpimts. Homogyne-typc. S. uniflorus. S. incanus Homogyne Senecio-lypc Hieraciwn Allium, Crocus, Gagea, LloYdia serorina, Paradisia. Tofieldia. Verarrum. Colchicttm entomogamous entomogamous L (L).ER u X Astcraccae Cichoriaccac Allium-type, Paris-z.re- Crocus. Tofiel ia, Uoydia serotina Paradisia li/iastrum. Liliaceac-type Table 3 - Paslure weeds of alpine grasslands, their pollination mechanism, pollen representation, and pollen-types: L=local, R=regional. ER=extraregional sources: ()=minor component, Ü=overrepresented, U=underrepresented. x=no specification (particular items according to BtRKS. 1973: BuRGA, 1984; JOCHIMSEN. 1986: KRAL. 1971: SCHRÖTER. 1926). - II! THE PALYNOLOGICAL RECORD OF HUMAN IMPACT IN THE HIGHLAND ZONES OF THE ALPS The pollen diagram of a tarn on the Hirschbichl (21 50 m) in Osttirol is shown (figs. 1 and 2) as representative for vegetation development in the highland zone of the eastern Alps. As is known from the Western Alps, the primary succession starts with forb-rich dwarf-scrub communities, in which birch (Betula) and willow (Salix) were growing. These pioneercommunities are superseded by a birch-larch-woodland (Betula-Larix-woodland ) that turns eitht:r in tu a Lurix-Pinus cembru-wuud ur in a Pinus cembra-wuud (WELTEN, 1982; ZoLLERand BROMBACHER, 1984). In theory the succession in the Eastern Alps follows the same model, with the exception of a di stinct initial dwarf-scrub-phase, which has not yet been found by now (ÜEGGL and WAHLMÜLLER, 1993, SEIWALD, 1980). However, the Eastern and the Western Alps have in common the fact that coniferous trees were forming a woodland above 2000 metres from the mid-Preboreal (Chronozone sensu M ANGER UDet al., 1974) onwards (MARKGRAF, 1969; MüLLER, 1972; ÜEGGL and WAHLMüLLER, 1993; SEIWALD, 1980; WEGMüLLER, 1976; WELTEN, 1982; ZOLLER and BROM BACHER, 1984 ). Due to the immigration of spruce (Picea) differences began to exist between the vegetational development ofthe Eastern and Western Alps. At the end of the Boreal Chronozone, Picea-Larix-Pinus cembra woods are affected by the the expansion of spruce (Picea) in the Eastern Alps. Evidence of human interference is known from the earliest Holocene times. In the lnsubrian partofSwitzerland, ZoLLER ( 1960) explains the occurrence ofhemerophilous pollentypes (Artemisia, Campanulaceae, Cichoriaceae, Cruciferae, Epilobiumangustifolium, Humulus! Cannabis, Papilionaceae, Ranunculaceae, Rosaceae, Thalictrum, Vitis) in Preboreal charcoal layers by anthopogenic forest fires. ln particular, ZoLLER ( 1960) argues, that the absence of fire disturbance in earl ier layers s upports the idea that these charcoals are caused by mesolithic manmade fires. On the contrary KoFLER ( 1992) has done charcoal analyses accompanied by pollen analyses of two highland sites in the Trentino (northern Italy). These analyses show a permanent curve of charcoal particles from the Late-Glacial up to now. KoFLER ( 1992) supposes that the fire frequency is climatically modulated. Coincident with the establishment of pollination mechanism pollen source area Plantango sp. anemogamous (L),ER Papillionaceae Umbell iferae (Ligusticum mutelli1w !), entomogamous entomogamous (L),ER (L),ER u u Campanulaceae Compositae entomogamous L L u u taxon entomogamous pollen representation pollen-type Plantaga Papillionaceae Ligusticum-type, Ligusticum mutel/ina Umbelliferae Campanulaceae Cichoriaceae Asteraceae Table 4 - Forage plants of alpine grassland. their pollination mechanism. pollen representation, and pollen-types: L=local, R=regional. ER=extra-regional sources; ()=minor component. Ü=overrepresented , U=underrepresented. x=no specification (particular items according to BIRKS, 1973: B uRGA, 1984; Joc wMSEN, 1986; KRAL. 197 1: SCHRÖTER. 1926). 112- fE HIGHLAND セ@ ャ MARKGRAF, セN@ 1976; I969; == !:! ッオカ LNセoエ _l ! セ@ Zセ]@ -=- U.fiiPOI/d セ@ ,.. ;= セ :: セ@ ᄋA - - - ウ@ セB@ セ@ ' ..' ·---·--··- •. ' ..• """" セ@ ,__- -- ---:- t:--_ .' BGセs@ ! n1tJ j lll>iul" - -- -- ゥ セ d オwZャセ@ "'"''"'' 1:=-ljQ}IIS O!fDIJI:;) JI/IDIIIID:1/Iflt'l lllfiH . js ' ' L _t l - - GQA QTNOャセヲB@ BGM セ B、dョウ@ J "J エャ エャ Q@ ヲゥセiAjuG@ ャ Zャ エャヲセ セij -- セ@ O!fj/0:) セ@ ャヲ@エ - fJWitll-41rJ tllfJnrlllltJ dェヲャーセエ@ '''''UM エゥセuoLヲ --" エゥ ゥj@ - CPBLセ@ fOUfi!Jlllf-'f:J ·1 Of ii!Y-'Y "J flf'""S BGセm@ .,, .. ""'H 1 ... セ@ .... IDUDJ.IIfti#IIJo:) l fJI,IItfiO #OIIIIf:J ,;""'""'""1 -- セ]M@ O•I!W#Utt - セ エャ⦅オョイ@ ッセ、Cヲh@ "!lOS Nセエゥ [IH f.-..-::::. jス@ - f::t- f-- r--. = セ@ セ@ セM r,;m,:. セ@ セv@ -"" セ@ ..-.-....., セMNL@ ヲMセ@ D ll f>NO :) NB - t-- -_[ - - _-;.セML@ セ@ ""-, K - t-- - エョーゥセCj@ f-- -1--- """-Y 1------- セ@ - ad1 -:::- - セ@ セM - t- - - fVV セ@ セ@ \=r_ r--_- セ@ - 11_110} ... LセN@ SIPIJIO Ojrt6UIIJj IIJtiP IH 1116tj >i II ionaceae ·usricwn-type, ·usticum tellina 1belliferae mpanulaceae :horiaceae teraceae on, and pollen-types: O=overrepresented, RGA , l984;JOCHIMSEN. 111111!d (J;f.).'ll07 tntago .,,., セZ[@ lllt.lf rl/J_J lti.:IW" O.'lfJ. !- -- - - :- t-- ⦅ カ⦅@ r-セMZ@ ..:-< .:-- - - セャjaエ@ ""\ 1.,;:-- ..=:-, -- '""'n ヲャ[}エセ@ MZLNセ M セ@ セ@ セ@ IIIJIJO:) 11 /lfJIA t fiUJ W' dr f"<.'I W" .18 ヲャ woヲセhNZj@ ( w>l ''"' Fig. lnn,v セQ{ュmゥャ g セ@ セ@ .) セv@ '\.. Q セ@ セ@ ! セ@ セ@ ; セ@ セ@ セ@ i セ@ セ@ I -- t==:- t----=- セZ]@ g: & セMZ@ % - r-- -= """ g" セケ@ DWtf.t•IID -- N セN@ % - t-- :-::: r-- - - セ@ OJ#\I I)ZI)\IOJ\I j :=-- _- . - 1 "llljt 060JJIIIDS "l ddo セVャゥQjius@ J ":tl/11 o6liJ)/II OS -- セ@ セ@ -- ijuo セエ VセQj@ I I I.)IJ:IfltfJJ9 - -- - t- セ@ -=- 1-=- j Ilt! :-; -- r-- セ@ セ@ 1セ@ - r- Ulfiii/IJI!) 0/IIIIDPIDS ,,.,,.,",,.,., GBQセ H !:: セ@ .tl 111 li1 I- . Mセ@ -= r---- - --'"'"'" セANゥ[@ 1 .,-- iduセゥャヲ@ 11/lllll "j -"Uij"WD6DIIIIIIJ Oj&f&lliiDI OID/uCfJ •- !::::- ' i l < ! j_ セ@ ャヲ セ@ Afl Q セQPI@ >lien-type ! セ@ IO I }DJidlj ;tern Alps. At the ·ected by the the :ne times. In the rophilous pollenifolium, Humulus/ reboreal charcoal he absence of fire '( mesolithicmanlpanied by pollen analyses show a セ@ ( 1992) supposes establishment of セ@ "'"ftiDilO W ELTEN, 'icea) differences セ@ 0/JO,I, ,u hown (figs. I and astern Alps. As is rich dwarf-scrub . These pioneer•dland) that turns 1982; ZOLLER anu >ame model, with セョ@ found by now the Western Alps •ove 2000 metres セRPG]@ = セ LセNBG@ セ@ V 'v--1 _\ f. lllllllffilllllillllllll-1 セ@ セ@ -- lllfhm. 1_ セ@ I - Pollen percentage diagram for Hirschbichll, showing the relative frequencies ofthe pollen types found in the Iake deposits. The radiocarbon dates are shown as uncorrected 14C dates BP. *) correlated radiocarbon dates. -113 -vll ·(.tA bw:> fSUIUJa U:liJOd) S:ldA]U;JiiOd :l4l.JO S;JIJUanbaJj am,osqc aql aU!MOqs II4JiqqJSJIH JOj WP.JaC!P xnuu! U;J110d -; セ@ t; セ@ ッセオ セ@ '::':: ':: セ@ セ@ セ@ セ@ セ@ セZA@ セ@ セ@ セ@ セ@ セ@ セ@ セッオ@ "t セ@ セ@ セ@ セ@ セ@ セ@ セ@ セ@ .o ..a !;Zl セZ[@ -.j-;;., c; z;,;;.;:;: セ@ セ[Z Z@ セ@ 0 tゥ・ヲ c; ..o <D セ@ z "ll!:J (em) ooooooo0oo000oooo06o6o6606oo66o66o600o0o066600o 6 000 g 0 - ...., ... セ@ g; g Cl4-Jahrt BP <:> g g ..,. cn セMG@ ...... lpoz _:=:=] イセaゥョオウ@ セ@ セ@ セ@ sp . セ@ イセaゥョオウ@ vi,idis fi. Corylus - セ@ ᄋMセ@セ@ ゥヲィセ@ セ@ _ -__=_== セ@ };g;inus exc _r= セN⦅ セァ[ョオウ@ -v セ@ y..._.... セ@ セ@ I- - - -- ---セM ::::: - セ@ olnus fi. Pmvs c embro セ@ セᄋ」 ・ ッ ・@ -=-:--- セ@ セGャ LKZ[ッ@ セ@ flt.h edro oltissimo - セ@ jエセ I-- Mセ@ f'-- セ@ {セGj_ZIァ@ ...._ - セ セ@ __ セ@ _j イセ p\・ ・ 。@ _ セ@ セ@ - セ@ セ セ@ セ@ Pinus sp ftBelu/o sp f Cromineoe .......:= t--- ft.Artt'mis io 1------o セM セM セイ]MQ =- _ セ B[ZN セ@ - セL[NB QM __ _ r= _ - _ _ _ -+---+ t- - _ __ -I_ - V{ 73 27 . 1092 -1- - _ __ M __- Mセ@ Mセ セ@ __ = _ __ ' セ@ zセゥ」Zオュ@ セ@ セ@ エヲッセョ・」@ - セ@ BrossiCoceoe セ@ セィ[jア@ _ r. WeJampf.llJm セ@ コ コセエィオウ@ M セM -- - --- tf' - -t-- - -1- -- - -- - - - _ Cenfionoc•ae Soldo_nel/o t Yarnassia Piontogo lonceo lafa セ@ t Plonto(}o m ./m - セ 」・@ Hr;m(l/v1/cormobts セ@ Cosfon•o セ@ セZイ・ャゥッ@ - --, jオセャ。ョウ@ セ@ セBッイZ -- Zセ ョ@ セ@ SPorgonium セcケーオッ 」・。@ fエN _ - Boton•k IB HIRSCHSICH _:=: - Iセ j@ lllill セゥャ@ I N W hlmu ell·d - - 1- -- lillill@IIUIIII]イZゥセッサ。L lnflux- D•oorornm !_ e I= r-- _ ゥ ッ」・@ セ@ g・セヲZ「Gュ@ セ@ GヲjLWセ - 8oroglnoceae セ@ イ セ_エGZNocヲ・@ セァェャjoイ -= セ@ __ t- Mセ@ r セ@ {セエオ[ョ、ャッ@ I= セ@ セ@ h/C- / 0 F"-Rcsccec• -- -- セ@ 'r セ@ セッj_。[ヲ・B@ -- セM - セ P @。 Cichorioceoe セ@ セァ[サェ@ - --- -- 。・@ ca,yaf,hyllaceae セ@ セ ---t-- -f-- - --- セャゥjNLu@ _ - f----:_ _ __ M セ@ -- N⦅セ@ _ -- セ@ ヲZセ[G、オ・ t-- M セ@ _ j- - - _. _ セ@ _ _ _..:j-1-c:;,_ .- セ@ - -f-_ セ@ - - - ZN⦅@ セM セ Z セ ·- f- N[⦅Z 1--- dイケッーヲ・ゥ r- Pieodium セ@ Por,podivm セ@ セ@ セVWオ L ュ@ ・ GWjッ@ se i -rr pes (pollen grains/ coniferous forest the frequencies of charcoal particles rise and they decrease during periods of wetter climate. The palaeoecological investigation of a tarn neara mesolithic camp site on the Hirschbichl (Osttirol) provides additional data related to this topic. Palynological and plant macrofossil analyses ofthe Iake sediments make possible a detailed local vegetation recon struction. In the highlands of the Hirschbichl area the transition from alpine grassland to a Larix-Pinus cembra woodland takes place at 9370± 170 BP (VRI-1137). The woodland itselfhad an open structure, scince species of open habitats (Artemisia, Caryophyllaceae, Helianthemum, Thalictrum) and of tall-forb Formations (Apiaceae, Cichoriaceae, Rosaceae, Rumex, Senecio-type) arefrequent (figs. I and 2). During the Boreal Chronozone, spruce ( Picea) becomes a component of these woodlands. Throughout this chronozone spruce ( Picea) spreads at the altitude of the in vestigated site and becomes dominantat the beginning ofthe Atlantic. These results are confirmed by plant macrofossil analyses. An interesting factisthat the plant macrofossil diagram shows distinct increases in charcoal frequencies in two layers: at 310 cm and 290 cm depth (figs. 3a and 3b). The detailed palynological record of this event is as follows: in 310 cm a marked decrease of Pinus diploxylon-type occurs. In consequence the values of Ainus viridis, Betula, Juniperus, Larix and Pinus cembra rise. Pollen types of tall forb-fo rmati ons (Apiaceae, Epilobium, Geranium, Rumex) and alpine mat vegetation (Gentianaceae, Gramineae, Botrychium, Selaginella selaginoides) are frequent. One stratum above this, the values for the Pinus diploxylon-type rise again, and those for light demanding species decline. Taken together this is a reflection of an opening-up of the woodland by fire, followed by a complete secondary succession, starting with Ainus viridis, superseded by aBetu/a-Larix- Pinus cembra woodland, and finally by Larix-Pinus cembra woodland (ÜEGGL and W AHLMÜLLER, 1993). The crucial question is, whether this fire disturbance is natural or man-made. The answer is closely related to the stand oftimber at that time. Open forests support a grass- and herb-rich ground cover, contrary to dense forests. The pollen accumulation rates in the influx diagram show that the tree population (Ainus, Pinus, Pinus cembra, Picea) was growing exponentially during the early Holocene. This means that during the Preboreal not a ll niches ofthe ecosystem were occupied. Now, the nature of a plant community is characterized by competition. By the factor of interspecific competition between the climax tree-species of an area, the forest-line can be located. In the Hirschbichl profiles the First signs of interspecific competition between Picea and Pinus arevisible in the pollen accumulation rates during the Boreal Chronozone, but significant competition occurs only after 7900 BP. According to this, a dense forest at these altitudes can be expected at earliestat the beginning ofthe Atlantic. These results are confirmed by several others from of the Western Alps, where the sub-alpine forests become dense tree populations with increasing occurrence of Picea (BuRGA, 1980; WEGMÜLLER and LüTTER, 1991; WELTEN, 1982). Before the Atlantic, the woodland was open-structured at the site investigated on the Hirschbichl. These open woodlands, with a rich grass ground cover, prov ide enough favourable stands for game, and there is no necessity for burning. On the other band, if fire was a method used by mesolithic hunters and gatherers to influence the subalpine environment on the Hirschbichl, periodic burning would have been necessary to maintain an open structure of the subalpine forests. But, the investigation on the Hirschbichl shows that extensive fires occurred at such long intervals that a comple te succession to a mature forestcould take place after the disturbance. This makes it unlikely, that these fires were caused by man (ÜEGGL and W AHLMÜLLER, 1993). -115 The eldest evidences for human impact on alpine vegetation in the Eastern Alps is provided by the pollen diagrams from mires in the Ötz valley (north Tyrol). The mire on the «Rofenberg» (2760 m) is the highest so far located in the Eastern Alps. Human interference is visible in the increase of Papilionaceae, Plantago, Rosaceae, Trifolium and Umbelliferae (Ligusticum-type). BoRTENSCHLAGER (1993) considers this as the first sign of pasture in alpine regions. A radiocarbon date of this event is absent, but it is bio-stratigraphically correlated with another pollendiagram from the nearby Gurgier Alm, which places this vegetation change in neolithic times. The Gurgier Alm is situated at 2255 metres in the subalpine region of the Ötz valley.ln this pollen profile ofthe nearby bog, the innease in Ligusticum-type pollcn indicating pasture is chronologically defined by two radiocarbon-dates, i.e. 5450 BP and 3090 BP (VORREN et al., 1993). By interpolation of these data the rise of the Ligusticum-type can be located at 4600 BP. In the Lienzer Dolomiten, in the eastern Tyrol, human interference in the subalpine region is known from the Iron Age. In the Hirschbichl diagram, at 2150 metres, the rise in the pollen curves of Artemisia, Caryophyllaceae, Cichoriaceae, Gramineae, Plantago lanceolata, Rumex and Urticaceae indicates the presence of man. Additionally pollen of cultural plants as Cerealia, Castanea, Humulus/Cannahis, lugtans and Secale of regional origin occur (fig. 1). In the species composition of the subalpine forests a change is also recognizeable. The HIRSCHBICHL 1: 2140 a PLANT MACROFOSSIL DIAGRAM m a. s.l. I TREES & SHRUBS C ON1FEAS . セ@ ß o:Q e • <:. .. "' セ@ セ@ セ@ セ@ セ@ ] e .!! @セ c i セ@ セ@ ] セ@ :2 ᄋ セ@ セ@ ·; s ,c , j < セ@ t < 8WF セ@ ijj ' LNᄋMセ@ ....セ@ '"' "" ""I 9 110 セ@ セ@ • セ@ ." )10 "" I"'" lJQ セZ@ r· r- -セ@ I セ@ セ@ i .,..,!!. .,.!!. セ@ ;;; j ;g J! ;g rBCS FF ,., "" セ@ .!! .!! CSF セ@ セ@ セ@ !!. ii セ@ i • .l . .3 :l セ@ ·o セ@ セ@ BL セ@ J' WB セ@ ·2 :l N セ@ セ@ 3 ." s 3 • セ@ セ@ . セ@ N セ@ セ@ ...セ@ セ@ 0: s w ,c 0: 8 セ@ セ@ ,c N セ@ e ·< セ@ 8 セ@ 0: 0: N N ] 1! "ci セ@ E § E 8 , c 0: ᄋ セ@ J"' セ@ s s •セ@ L ' .,c セ@ > セ@ w l L r• i • L c: セ@ rr C' セ@ セ@ Fig. 3a - Plant macrofossil diagram for Hirschbichll showing the absolute frequencies (plant re mains per \00 ccm). 116- Eastern Alps is The mire on the 1an interference is md Umbelliferae f pasture in alpine ly correlated with ;etation change in region of the Ötz : pollen indicating 3P and 3090 BP icum-type can be ! J. in the subalpine res, the rise in the 11taga lancealata, of cultural plants origin occur (fig. cognizeable. The . セ@ e si:- .. 0: ::i: 0::: N s s , g セ@ " ..L I. ...• .. •"' セ@ gI V I セ@ c ::I a- ::I Z• セ@ •Z セ@ 1] > > L w S f R l<IO L l -セ@ セ@ r I FLSSSSLSOFF Rh Sp B !.<G l60 F · Legend: , I セ@ b CHARCOAL E E - Ir- !1111 MOSSES & FERNS i. E 'ti .li E 8 E HERBS & W ATERPLANTS a lA GRAM D values for spruce ( Picea) decline, and on the contrary larch (Larix) increases again. Larix decidua forms light stands of timber with grass in the ground cover. Therefore Larix forests are favoured for alpine pasture (ZOLLER and BROMBACHER, 1984). SEIWALD ( 1980) documents human interference in the subalpine regions of the Viiianderer Berg near Bressanone (south Tyrol, Italy). The Duramoor, located at 2080 metres, is the highest investigated site. At 4500 BP an increase of Plantaga alpina, Rumex and Urtica mark a disturbance of the vegetation. At 2000 BP the first pollen grains of Plantaga lancealata are found. A distinct clearance is proven at 1220±80 BP (VRI-552) and subsequently a rise Larix is identifiable. This developrm:nl is cunfirmed by the pollen diagram of the Schwarzsee (2033 m), where clearance is dated to 1550±75 BP (HV-8472). In a third profile from this area at 2050m altitude at the Malschötscher Hotter, indicators of pasture appear frequently from 2730±95 BP (HV -8464) onwards. At 2000 BP there is also a peak in larch ( Larix decidua). At the lowest-lying site, the Rinderplatz at 1780 metres, human impact starts with forest clearance in Roman Times. This disturbance is manifested palynologically by a fall in the pollen values of Picea and Pinus cembra, andin the contrasted rise in the curves of Larix and Juniperus. Pasture is indicated by Artemisia, Cichoraceae, Cruciferae, Plantaga alpina, P. lancealata, P. 1-..oo F llO - bud scale es . catkin scale • fruit L -leaf N • needle 0 • Oospore P -Periderm R • radic:eUae 210 :!90 l•no lOO Rh • rhizome )10 )20 )Jo I tJYO s . seed Sp • macrospore W •Wood ).10 ·emains per 100 ccm). Fig. 3b - Plant macrofossil diagram for Hirschbichl I showing the absolute frequ encies (plant remains per I 00 ccm). -117 major, Rumex, Umbelliferae and Urticaceae. From Roman times onwards, the occurrence of Calluna and Ericaceae characterizes the establishment of alpine heathland, wh ich expands from the Middle Ages onwards. In the Zillertaler Alpen, pollen analyses ofthe Waxeckalm mire ( 1875 m, H üTTEMANN and BORTENSCHLAGER, 1987) give evidences for a climatically controlled timber-line depression at 3450±90 BP (VRI-703). The high value for human indicators in this part ofthe diagram comes from extra-regional sources. Because of the low pollen production of the local vegetation they are registrated in a pronounced way. Nevertheless, local human clearance for alpine pasture was undertakenat 760±80 BP (VRJ-702) and expressed in aNAP-maximum with pasture;; indicators (HüTTEMANN and BoRTENSCHLAGER, 1987). In the Kühtai , a side-valley of the Inn in the northern Tyrol, palynological investigation of a mire near the Dortmunder Hütte (1880 m) shows vegetational changes accompanied by alpine pasture during Roman times. Within the subalpine forests, Picea is diminished and looses its dominant position, while Larix and Pinus cembra retain their Stands (HüTTEMANN and BoRTENSCHLAGER, 1987). From the Western Alps the oldest neolithic influences on highland vegetation are known from Graubünden (Switzerland). In a Iake above the timber-line, the Lai da Vons (1991 m), BuRGA (1980) noticed pollen grains of cultural indicators (Cerealia, Linum usitatissimum, Plantaga lanceolata, Seca/e) and charcoal particles at4770±90 BP (B-2641 ), butBuRGA ( 1980) has certain doubts about this early occurrence of human ind icators. He considers c limatic reasons as weil as human impact to be responsib!e. The otherpalynological records of man-induced vegetational changes in the San Bernadinoarea are younger. In the subalpine fen ofPale digl Urs, !ocated at 1834 metres, the first cultural indicators are found at 25 10±95 BP (UZ-200). From the same period come pollen grains of Cerealia, Humulus!Cannabis, Castanea, and lug/ans in the diagram from Alp Marsehol (20 I0 m). But in both cases the occurrences of these cultural plants in the subalpine zone is a manifestation of long distance transport. The only indication of human interference is a decrease of Picea pollen, but this Starts already at 4260±80 BP (B-3254) due to a climatic deterioration (BuRGA, 1980). Precise results for human activity in this area come from the investigations of H EJTZ ( 1975). In three diagrams the development of the highland environment in the Oberhalbstein is shown. Again the first traces of anthropogenic di sturbance are recorded in the highest-lying site, Stallerberg (2450 m). Bronze Age clearance at the timber-line is also registe red by a decrease in AP, and the increase of Compositae, Ericaceae, Plantago, Ranunculaceae and Umbelliferae. At the sametime the pollen concentration increases too. This clearance phase is confirmed by the diagram from Bivio (2136 m), where the increase in species of alpine pastures is radiocarbon dated to 3160± I 00 BP (B-2346). In the lower subalpine region in the diagram from Sur( 1780 m), the firstalpine pasture is documented from thelron Age. The AP (eg. Picea) retreat, and Campanulaceae, Compositae, Plantago, Rosaceae, Ranunculaceae and Umbelliferae start to rise. ZoLLERand BROMBACHER ( 1984) describe in detail the palynological record of farming near St. Moritz. In the diagram from «Chavalus» ( 1800 m) two phases of utilization are identified palynostratigraphically. In the late Bronze Age (before 2020±40 BP; B-4230) alpine pasture is indicated by the selective deforestation of spruce (Picea) and green alder (Alnus viridis). By that means larch (Larix decidua) is indirectly promoted . Among the NAP pollen Umbelliferae 118- he occurrence of , which e xpands , HüTTEMANN and ine depression at e diagram comes tl vegetation they 1pine pasture was >asturc indicators .cal investigation accompanied by ; diminished and (HüTTEMANNand tation are known . Vons (1991 m), n usitatissimum, JUt B URGA ( 1980) )nside rs climatic te San Bernadino' the first cultural : pollen grains of ) Marsehol (20 I 0 'alpine zone is a interference is a jue to a climatic gations of HEITZ he Oberhalbstein the highest-lying ) registered by a nunculaceae and learance phase is Jf alpine pastures m in the diagram he AP (eg. Picea) and Umbelliferae ·d offarm i ng near ion are identified 0) alpine pasture セャ ョオウ@ viridis). By Jen Umbelliferae appear at higher values. A light larch-wood is created, which is used for forest-pasture. During the Middle Ag es ( 1170±40 BP; B-4231) the cultivation of larch-forest is intensified. The change in the economic utilization is documented by the increase of Cichoriaceae and Asteraceae, and the decrease of Ericaceae. This reflects the change from forest-pasture to meadows. From the Lake Böhnig (2095 m), in the Valais, M ARKGRAF (1969) reports several forest fires from the Neolithic in the subalpine regions. The charcoal horizons are radiocarbon dated to 4300 BP (3350±100 BC: B-790) and 3600 BP (2220±100 BC: B-79 1). In the pollendiagram these charcoallayers arevisible in a Pinus decline, the occurrence of cultural indicators and an increase of the pollen concentration. In each case a secondary succession from open areas to a maturesubalpine forest takes place. This disturbance of the subalpine forests of the Valais is confirmed by the palynological investigations of WELTEN ( 1982). In four diagrams WELTEN (1982) demonstrates human activity at and above the timber-line from 4000 BP onwards. Again the first traces appear in the highest-lying mire of «Aletschwald» (2017 m), where a first phase of forest-pasture is documented from 3400-1900 BP. Pinus cembra decreases, and indicators for pasture rise. The second phase of utilization continues from 1900 BP till today, and shows a spread of larch ( Larix decidua), and a decrease of green alder (Ainus viridis) and cembra pine ( Pinus cembra). In two mües from the lower subalpine zone, at Wallbach ( 1885 m) and Robbiei ( 1895 m), human impact is not in evidence before 2600 BP, eg., 1500 BP. GENERAL PATTERNS The review of pollen diagrams from the highland zones of the eastern and western Alps shows some gene ral patterns: in chronological, order the first palynolog ical record of human interference in highland zones is detected in the Neolithic period. Obviously the disturbance by man of the alpine environment has inte nsified with the transition to a produclive economy, which Ieads to the fi rst c hanges of the alpine vegetation. The increase of pasture weeds and plants from nutrient-rich stands gives evidence that the alpine mats were used for grazing. Gradually human impact becomes visible at lower altitudes. From the Bronze Age the subalpine woods were used for forest-pasture, as is shown by the increase of pasture weeds. At this stage the extensi ve forestpasture at the timber-line does not effect the natural rejuvenation of tree populations (<f KLöTZI, 1991 ). During the Late Bronze Age, spruce (Picea) is felled se1ectively at the timber-line, and therefore larch ( Larix decidua) is favoured indirectly. The light stands of Larch-forest are ric h in grass in the ground cover, and are the prefered pasture a reas. Extensi ve clearance at the timber-line becomes necessary with the establishment of Alpi ne pastures. Evidence for Alpine pasture («Aimwirtschaft» in a narrow sense) exists from the Late Bronze Age in the western Alps (WEGMÜLLER, 1976). In the estern Alps the earliest indication of Alpine pasture originates from the Ötz valley . BoRTENSCHLAGER (unpublished diagram) registered a clearance phase at 2875±25 BP in the pollen diagram from «Grüner» (1980 m) near Obergurgl. Following a charcoal layer, the AP of subalpine trees declines and NAP rises, especially indicators for pasture. The next expansion ofthe managed area happens during Roman Iimes. Clearances are recognizeable in almost every diagram from alpine or subalpine regions. Extensive destruction -119 of subalpine forests occurs from the Middle Ages onwards. Large areas of subalpine forest are turned into grazing areas. This intensification of stock-farming Ieads toa timber-linedepression of several hundred metres. Whether the Subboreal restriction of spruce (Picea) is caused by the interference of man, remains tobe checked. The decline of spruce is also recognizeable in pollen diagrams without evidence ofhuman impact, from the beginning ofthe SubboreaL Therefore a co-evolution of alpine grass-ecosystems and the economic interests of man has to be considered. The decline of Picea is also an indicator of climatic deterioration. In consequence of the resulting timberAltitude (m) 2760 2700 2500 2300 2255 2100 1900 1700 Rotenberg Age (yrs BP) Fig. 4 · The first occurrence of anthropogenic disturbance visible in the pollen diagrams of the eastem Alps ordered in altitudinal sequence. lalpine forest are r-linedepression ·rference of man, liagrams without t co-evolution of セ イ・、N@ The decline resulting timber- line depression the alpine mats expand, and form ideal pasture for prehistoric farmers. The chronological sequence of anthropogenic influence on the high Iands shows that the areas of pasture were gradually displaced to lower regions (fig. 4). This pattern reflects advances in stock-breeding. The implication is that the yield per unit area increases with decreasing altitude (ELLENBERG, 1982; P ENZ, 1978). This kind of utilization of the uplands is documented until recent historical times (STERN, 1983). It is abandoned when the farmers give up the principle of self-sufficiency. Accordingly, in some areas a reforestation of the subalpine region can be recognized in the pollen diagrams. セXP@ REFERENCES 875 Rlnderpl&tz eastern Alps ordered AMBACH, W., BORTENSCHLAGER, S. and EtSNER, H. 1969- Umersuchungen von charakteristischen Pollenspektren im Akkumulationsgebiet eines Alpengletschers. Pollen et Spores, II: 65-72. BIRKS, H.J.B. 1973- Modempollenrain studies in some arctic and alpine enviromne/1/s. Quaternary Plant Ecology, 14. Symposyum ofthe British Ecolological Society, 1972: 143-168. BoRTENSCHLAGER. S. 1967- Pollenanalytische Ergebnisse einer Fimprojilumersuclwng am Kesse!lmndfemer ( 3240 m, Ötztal, Tirol). Grana Palynologica, 7: 260-274. BoRTENSCiiLAGER, S. 1970- Probleme und Ergebnisse der Untersuchung von Pollenspektren im Hochgebirge. Mitteilungen der Ostalpen Gesellschaft für Vegetationskunde, 10: S-9. ß ORTENSCHLAGER, S. 1992 - Die Waldgrenze im Postg/azial.ln EoER-KOVAR, J. (ed.) Pa/aeovegeational deve/opment in Europe and regions relevamto its pa/aeojloristic evolution. Proceedings ofthe Pan-European Pa1aeobotanical Conference: 9-13. Vienna. BORTENSCHLAGER, S. 1993- Das höchst gelegene Moor der Ostalpen «Moor am Rofenberg» 2760 m. Dissenationes Botanicae. 196: 329-334. BRAUN-BLANQUET, L. and JENNY, H. 1926- Vegetationsentwicklung und Bodenbildung in der alpinen Stufe der Zantralalpen. Denkschriften der Schweizerische n Naturforschenden Gesellschaft. 63: 183-349. BuRGA, C. 1980- Pollenanalytische Untersuchungen zur Vegetationsgeschichte des Schams und des San BemardinoPassgebietes (Graubünden. Schweiz). Dissenationes Botanicae, 56: 5-165. BuRGA, C. 1984- Aktuelle Vegetation und Pollengehalt von Oberflächenproben der obermontanen bis subalpinen Stufe am Bernhardin-Pass (Graubünden/Schweiz). Jahrberichten der Naturwissenschaften Gesellschaft Graubünden, 10 1:53-99. ELLENBERG, H. 1982- Vegetation Mitteleuropas mit den Alpen. 5-989. Stuttgan. HEITZ, CH. 1975- Vegetationentwicklung und Waldgren:_schwankungen des Spät und Postglazials im Oberhalbstein (Graubünden/Schweiz) mit besonderer Berück.lichtigung der Fichteneinwandenmg. Beiträge zurGeobotanischen Landesaufnahme der Schweiz. 55: 63 pp. HICKS, S. 1986 - Modem pol/en deposition recordfrom Kuusamo, Finland. II. The establishment ojpol/en: vegetation analogies. Grana, 25: 183-204. HOTTEMANN, H. and BoRTENSCHLAGER, S. 1987- Beiträge zur Vegetationsgeschichte Tirols VI: Riesengebirge, Hohe Tatra - Zillertal, Kiihtai. Berichte der naturwissenchaftlich-medizinischen Verein Innsbruck, 74: 81-1 12. JACOBSON, G.L.JR. and BRADSHAW, R.H.W. 198 1 - The selection ojsitesfor palaeovegetational swdies. Quarternary Research, 16: 80-96. JANSSEN, R.C. 1973 - Loca/ and regional pollen deposition. In BIRKS, H.J.B. and WEST, R.G. (eds.) Quartemary Plant Ecology. 14th Syposium of the British Ecological Society. 1972: 31-42. JocHJMSEN, M. 1986- Zum Problem des Pollenfluges in den Hochalpell. Dissen ationes Botanicae, 90. KLöTZU, F. 1991 - Alpine Vegetation stabilund natürlich ? In MüLLER, J.P. and GILGEN, B. (eds.) Die Alpen - ein sicherer Lebensraum ? Ergebnisse der 171 Jahresversamml ung der Schweizerischen Akademie der - 121 Naturwissenschaften 1991 in Chur: 70-83. KOFLER, W. 1992- Lo svilluppo della vegetatione durante /'era tardopaleolitica e mesolitica nei dintorni di Trertto. Preistoria Alpina. 28 (in press). KRAL. F. 1971 - Pollenanalyrische Umersuchungen zur Waldg eschichte des Dachsteinmassivs. Veröffentlichungen des Institutes für Waldbau an der Hochschule für Bodenkultur in Wien: 5-145. KüTTEL, M. 1974- Zum alpinen Spät- und friihen Postglazial: Das Profil Obergrubs ( 1910 m) im Diemigral, Bemer Oberlmu/, Schweiz. Zeitschrift für Gletscherkunde, 10: 207-216. LANG. G. 1993 - Holozäne Veränderungen der Waldgrenze in den Schweizer Alpen- Methodische Ansätze und gegenwärtiger Kennmisstand. Dissertationes Botanicae. 196: 317-327. LARCHER, W. 1963 - Zur spärwinterlichen Erschwerung der Wasserbilanz an der Waldgrenze. Berichte des naturwissenschaftlich-medizinischen Verein lnnsbruck, 53: 125- U7. MANGERUD, J., ANDERSEN. S.T., BERGLUND. B.E. and DONNER,J.J. 1974- QuatemarystratigraphyofNorden, a proposa/ for terminology and classification. Boreas. 3: 109 - 128. MARKGRAF, V. 1969 - Moorkundliehe und vegetmionsgeschichtliche Umersuclwngen an einem Moorsee w1 der Waldgrenze im Wal/is. Botanische Jahrbuch, 89: 1-63. MüLLER, H.J. 1972- Pollenanalytische Untersuchungen zum Eisrückzug und zur Vegetmionsgeschichte im Vorderriteinund Lukmaniergebier. Flora, 161: 333-384. ÜEGGL. K. and W AHLMÜLLER. N. nd- A mesolithic seasonal dwelling sile in the high-alpine region ofrhe Eastem Alps. Journal of the American Association of Stratigraphie Palynologists (in press) . PEKZ. H. 1978- Die Almwimchaft in Österreich. Münchner Studien zur Sozial und Wirtschaftsgeographie. 15: 21 I pp. ScHRöTER, C. 1926- Das Pflanzenlehen der Alpen. 5-1288. Zürich. SEtWALD. A. 1980 - Beiträge zur Vegerationsgeschichte Tirols IV: Natzer Plmeau - Viiianderer Alm. Berichte der naturwissenschaftlicher-medizinischer Verein Jnnsbruck, 67: 3 1-72. STERN. R. 1983- Humanimpact on tree borderlines. ln HOLZNER, W., WERGER. M.J .A. and lKUSHtMA. I. (eds.) Man 's impacr on vegerarion: 227-236. The Hague. TAUBER. H. 1965 -Differential pollen deposition and the imerprewtion of pollen diagrams . Danmark Geologiske Undcrsoekig, 89: 1-69. TRANQUILLINI. W. 1976 - Water relationsandalpine timberline. Ecological Studies. 19: 473-491. TRANQUILLINI. W. 1979 - Physiological ecology oj the alpine timberline. Ecological Studies, 31: 1- 131 . VoR REN. K.-D., MORKVED, B., and BORTENSCHLAGER, S., 1993- Human impactOll the Holocenejorestline inthe Centra/ Alps. Vegetation History and Archaeobotany. 2: 145-156. WEGMÜLLER. H.P. 1976- Vegetationsgeschichtliche Untersuchungen in den Tlwralpenund im Faningebiet ( Kanrone Appenze/1, St. Gallen, Graubiinden/Schweiz). Botanisher Jahrbuch Systematische. 97: 226-307. WEGMÜLLER. S. and, LüTTER A. 1990- Palynologische Untersuchungen zur spät-undpostglazialen Vegetarionsgeschichte der nordwestlichen Kalkvoralpen Botanica Helvetica, 100: 37-73. WELTEN, M. 1982 - Vegetationsgeschichtliche UnTersuchungen in den westlichen Schweizer Alpen: Bern-Wa/lis. Denkschriften der Schweizerischen Naturforschenden Gesellschaft. 95: 1-104. ZoLLER. H. 1960 - Pollenanalyrische Unrersuchungen :ur Vegetationsgeschichte der insubrischen Schweiz. Denkschriften der Schweizerischen Naturforschenden Gesellschaft, 83: 45-156. ZoLLER. H. and BROMBACHER, CH. 1984 - Das Pollenprofil «Chavalus» bei Sr. Moritz- Ein Beitrag zur Wald- und Landwirtschajisgeschichre im Oberengadin. Dissertationes Botanicae, 72: 377-398. Author's Address: KLAUS OEGGL, Institut für Botanik der Leopold-Franzens-Universität lnnsbruck, Semwartestraße 15, A-6020 INNSBRUCK 122-