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DETECTION OF HUANGLONGBING DISEASE IN
CITRUS USING FLUORESCENCE SPECTROSCOPY

S. Sankaran,  R. Ehsani

ABSTRACT. Huanglongbing (HLB) is an important citrus disease greatly affecting the citrus industry in Florida and other parts
of the world. Early disease detection would control the spread of this disease through the application of suitable management
measures. This study evaluates the application of fluorescence sensing for HLB detection of citrus leaves. A commercial
handheld fluorescence sensor was used to collect yellow, red, and far‐red fluorescence at ultraviolet (UV), blue, green, and
red excitations from healthy, nutrient‐deficient, and HLB‐infected leaves of two different sweet orange cultivars, Hamlin and
Valencia. Evaluation of the fluorescence sensing was performed under laboratory (controlled) and field conditions. The
Naïve‐Bayes and the bagged decision tree classifiers were trained and tested to assess their performance in classifying the
healthy and stressed (nutrient‐deficient) leaves. Results revealed that the Naïve‐Bayes classifier yielded high classification
accuracy under laboratory conditions (higher than 85%), while the bagged decision tree classifier yielded high overall
classification accuracy under both laboratory and field conditions (higher than 94%). The bagged decision tree classifier
performed better than the Naïve‐Bayes classifier, resulting in higher classification accuracy, although the computation time
was at least 10 times greater than that of the Naïve‐Bayes classifier. In addition, feature extraction using forward feature
selection indicated that fluorescence features such as yellow fluorescence (UV excitation) and simple fluorescence ratio
(green excitation) contributed toward differentiating healthy leaves from nutrient‐deficient and HLB‐infected leaves.

Keywords. Bagged decision tree classifier, Citrus leaves, Fluorescence sensing, Huanglongbing, Naïve‐Bayes classifier.

uanglongbing (HLB) or citrus greening is a devas‐
tating citrus disease caused by a bacterium, Can‐
didatus Liberibacter asiaticus (CLas), that has
greatly affected citrus production in different

parts of the world. Citrus trees get infected through CLas‐
infected Asian psyllid, an insect vector, which spreads the
disease. This infection is followed by the appearance of vis‐
ible symptoms, such as yellowing of the veins or of the entire
leaf or botchy leaves, followed by deformed fruits, and even‐
tual death of the tree (Chung and Brlansky, 2009). Although
laboratory techniques such as polymerase chain reaction
(PCR) provide accurate detection of HLB (Lacava et al.,
2006; Li et al., 2009), efforts are being made on the develop‐
ment of field‐based sensors (Hawkins et al., 2010; Sankaran
et al., 2010, 2011) for rapid disease detection, which would
control further spread of the disease. Presently, scouting for
visible HLB symptoms is a common practice for identifying
HLB‐infected trees in the field. One of the major challenges
during HLB detection during scouting is the differentiation
of symptoms resulting from HLB and those due to nutrient
deficiency. The similarity of these symptoms lowers the

Submitted for review in May 2011 as manuscript number IET 9205;
approved for publication by the Information & Electrical Technologies
Division of ASABE in January 2012.

The authors are Sindhuja Sankaran, ASABE Member, Post‐Doctoral
Research Associate, and Reza Ehsani, ASABE Member, Associate
Professor, Department of Agricultural and Biological Engineering, Citrus
Research and Education Center, IFAS, University of Florida, Lake Alfred,
Florida. Corresponding author: Reza Ehsani, Department of Agricultural
and Biological Engineering, Citrus Research and Education Center, IFAS,
University of Florida, 700 Experiment Station Road, Lake Alfred, FL
33850; phone: 863‐956‐8771; fax: 863‐956‐4631; e‐mail: ehsani@ufl.edu.

scouting efficiency and increases the need for better trained
scouts, which is expensive and time‐consuming. Therefore,
there is a need for a handheld portable sensor that can poten‐
tially differentiate HLB symptoms from those caused by nu‐
trient deficiency. In this study, we assess the applicability of
fluorescence sensing for this purpose.

Recently, researchers have worked toward the rapid and
early detection of abiotic and bioticstress in plants for preci‐
sion agriculture applications. For example, some have inves‐
tigated the use of laser‐induced fluorescence spectroscopy
for stress detection (mechanical stress, water stress, and cit‐
rus canker) in citrus under field and laboratory conditions
(Marcassa et al., 2006; Belasque et al., 2008; Lins et al.,
2009). Fluorescence sensing is one of the optical sensing
techniques that is widely used for plant stress detection. Over
the years, improved understanding of plant fluorescence has
allowed researchers to apply fluorescence sensing towards
plant health monitoring for several different crops (Van Koot‐
en and Snel, 1990; Lichtenthaler et al., 1998; Bravo et al.,
2004; Moshou et al., 2005; Lenk et al., 2007; Naumann et al.,
2007; Chaerle et al., 2007a, 2007b; Belasque et al., 2008; Eh‐
lert and Hincha, 2008).

Fluorescence emissions from plants can be broadly divid‐
ed into two types. In the first type, emissions are from the leaf
epidermis and fluorophores such as flavonoids, phenolics,
NADH, and others, which are present in leaf veins. The major
fluorescence output from natural or artificial UV excitation
results from the leaf epidermis in the blue and green regions
of the spectrum due to the presence of cinnamic acids such
as ferulic acid (Lichtenthaler et al., 1998; Malenovský et al.,
2009). The exciting light is interrupted by the epidermis to
prevent photodegradation of internal leaf components. The
second type of fluorescence emission occurs as a result of
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plant pigments such as chlorophyll. The chlorophyll absorbs
the red and blue wavelengths; while carotenoids absorb pho‐
tons from only the blue wavelength. The red and far‐red
(near‐infrared) fluorescence is emitted by chlorophyll‐a at
room temperature (Cerovic et al., 1999; Malenovský et al.,
2009). The first type fluorescence is broadly stated as “blue‐
green fluorescence,” whereas the second type is specified as
“chlorophyll fluorescence.” The ratio of blue‐green fluores‐
cence to chlorophyll fluorescence depends on the plant type,
exposure to sunlight, and proportion of fluorescence‐
absorbing materials present in the leaf. The chlorophyll ex‐
cited with blue or red light yields a strong red and far‐red
fluorescence (Lichtenthaler et al., 1998). Nutrient deficiency
in plants decreases the chlorophyll and carotenoid content,
thereby decreasing their respective fluorescence emissions.
Cerovic et al. (1999) described some of the specific fluores‐
cence types and their contributing factors in detail.

In addition to the fluorescence, fluorescence ratios can
also be used for monitoring physiological status of the plants.
For example, the red to far‐red fluorescence ratio decreases
with increasing chlorophyll content in leaves (Buschmann,
2007; Malenovský et al., 2009). Similarly, the blue to red/far‐
red) fluorescence ratio with UV excitation is an indicator of
physiological development, nutrition availability, and stress
occurrence (Heisel et al., 1996; Malenovský et al., 2009). The
other fluorescence ratios used for monitoring stress in citrus
are the ratio of blue to red fluorescence, blue to far‐red
fluorescence,  and red to far‐red fluorescence (UV�excitation)
(Marcassa et al., 2006; Belasque et al., 2008; Lins et al.,
2009). One of the challenges in fluorescence sensing is the
high and varying light levels (Cerovic et al., 1999; Chaerle
et al., 2007a). Thus, both laboratory and field evaluation is
essential to account for the effect of environmental light vari‐
ation.

This study evaluates a handheld multi‐parameter fluores‐
cence sensor for citrus plant stress (nutrient deficiency) and
HLB disease detection. The findings reported in this study
can help in the selection of critical fluorescence parameters
related to nutrient deficiency and HLB infection.

MATERIALS AND METHODS
FLUORESCENCE SENSOR

A Multiplex� 3 handheld multi‐parameter optical sensor
(Force‐A, Orsay, France) is a real‐time, non‐destructive, ac‐
tive sensor that was used to collect fluorescence data from cit‐
rus leaves. This sensor (fig. 1) has been developed to evaluate
the physiological status of plants using fluorescence sensing,
with special emphasis on measuring fluorescence from chlo‐
rophyll, and constitutive and induced polyphenolics. It has
been used in multiple applications (Tremblay et al., 2007;
Cerovic et al., 2008; Zhang and Tremblay, 2010; Martinon et
al., 2011). Numerous fluorescence outputs could be acquired
from this instrument. Four excitation wavelengths were used:
UV, blue (B), green (G), and red (R). For each of the excita‐
tion wavelengths, yellow (YF), red (RF), and far‐red (near‐
infrared) (FRF) fluorescence were measured. Henceforth, the
fluorescence output is labeled as: fluorescence output_ex‐
citation wavelength. For example, YF_UV represents yellow
fluorescence with UV excitation. In addition to these
12�fluorescence  features, fluorescence ratios were deter‐
mined that  include: (1) simple fluorescence ratio with green

Nutrient-deficient

HLB
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Figure 1. Handheld sensor unit and typical samples of citrus leaves used
for acquiring fluorescence data.

excitation (SFR_G), (2) simple fluorescence ratio with red
excitation (SFR_R), (3) yellow to far‐red fluorescence ratio
with UV excitation (BRR_FRF), (4) fluorescence excitation
ratio with red and UV excitation (FER_RUV), (5) fluores‐
cence excitation ratio with red and green excitation
(FER_RG), (6) flavonols (FLAV), (7) anthocyanins (ANTH),
(8) nitrogen balance index with UV and green excitation
(NBI_G), (9) nitrogen balance index with UV and red excita‐
tion (NBI_R), and (10) fluorescence excitation ratio anthocy‐
anin relative index (FERARI).

The fluorescence sensor consists of LED‐based units for
providing excitation wavelengths and filtered photodiodes as
detectors for measuring the fluorescence emissions from the
canopy/leaf surface. The sensor has six UV (UV‐A) and three
RGB LED matrices. Similarly, the sensor has three synchro‐
nized photodiodes for detecting fluorescence emissions from
the yellow, red, and far‐red regions of the spectra (fig. 2). The
sensor is capable of illumination at a distance of 10 cm from
the light source (Martinon et al., 2011). An anodized alumi‐
num black mask was used during data collection, which al‐
lowed fluorescence measurement in an area of about 191�cm2

(7.8 cm dia.).

DATA COLLECTION

Fluorescence data were collected using a handheld
fluorescence sensor during October 2010 from healthy, HLB‐
infected, and nutrient‐deficient (zinc) citrus leaves (fig. 1).
Thirty sample sets of each of the above categories from two
sweet orange cultivars (Hamlin and Valencia) were analyzed.
Each sample set of leaves consisted of four to five citrus
leaves. Five replicate data were collected from each sample.
Data were collected under field as well as controlled labora‐
tory conditions. During field data collection, the handheld
sensor was pointed toward the tree canopy, and measure‐
ments were acquired as illustrated in figure 2. Similarly, dur‐
ing laboratory data collection, the fluorescence data were
collected by placing leaf samples (which were collected from
the same tree canopy used for field data collection) on the
table such that the leaves covered the entire region of the sen‐
sor sampling mask.

Before the data analysis, FERARI was eliminated. More‐
over, the red to far‐red fluorescence ratio (RFR_UV) (UV ex‐
citation) was computed by dividing RF_ UV by FRF_UV
(Lichtenthaler  et al., 1998; Cerovic et al., 1999; Belasque et
al., 2008). It was observed that FRF_B and FRF_R values
were saturated in the laboratory data. These values negative-
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Figure 2. Sensor and data collection schematics: (a) arrangement of LED and detectors in the sensor, (b) field data collection procedure, and (c) labora‐
tory data collection procedure.

ly affected the computation of SFR_R, FER_RUV, FLAV,
FER_RG, ANTH, NBI_G, and NBI_R and therefore were not
considered in the data analysis. Thus, the field dataset con‐
sisted of 22 fluorescence features, while the laboratory data‐
set consisted of 13 fluorescence features, as shown in table 1.
The datasets and the total number of samples used for analy‐
sis are also described in table 1.

PCR ANALYSIS

DNA was extracted from the leaf samples using the Wiz‐
ard Genomic DNA purification kit (Promega Corp., Madi‐
son, Wisc.) by following the protocol for isolating genomic
DNA from plant tissue. PCR using primers A2 and JS was
performed to confirm the presence of CLas in the samples
(Hocquellet et al., 1999). Amplification of DNA was deter‐
mined by electrophoresis on 1.2% agarose gels for 30 to
45�min and visualized by ethidium bromide staining. The
703‐bp amplicon from the 16s rRNA gene is indicative of the
presence of CLas. Sample PCR gel electrophoresis results are
shown in figure 3. PCR results revealed that two of the HLB‐
infected samples of the Hamlin cultivar were PCR negative.
Therefore, the fluorescence data of these two samples were
removed from the dataset.

DATA ANALYSIS
Classification of the fluorescence features was performed

using the Naïve‐Bayes and the bagged decision tree classifi‐
ers. The Naïve‐Bayes (Ivanov et al., 2002; Huang et al., 2007;

Table 1. Fluorescence datasets used for analysis.

Dataset Cultivar
Field

or Lab
No. of

Samples
No. of

Features

Hamlin‐Field Hamlin Field 440[a] 22
Hamlin‐Lab Hamlin Lab 440[a] 13
Valencia‐Field Valencia Field 450 22
Valencia‐Lab Valencia Lab 450 13
Combined‐Field Hamlin+Valencia Field 890 22
Combined‐Lab Hamlin+Valencia Lab 890 13
[a] In general, the number of samples was: 30 sample sets × 3 categories 

× 5 replicates = 450. Two samples of the HLB‐infected category for
Hamlin were PCR negative; therefore, their fluorescence features
were removed before data analysis.

Pant et al., 2010) is a simple classifier, with the capability of
effective supervised learning though probability analysis. It
estimates the probability or probability density of features for
a given class. If Y is considered to be the class label and X1
to Xi indicate the variables (fluorescence features), then the
probability of Y given X1 to Xi according to the Naïve‐Bayes
model is:
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The p(X|Y) and p(Y) are estimated based on the p(Y|X)
during the model training, i.e., Bayes estimation. In the test‐
ing phase (test dataset), p(Y|X) is determined using the
p(X|Y) and p(Y) estimates from the training dataset (Mitch‐
ell, 1997).

A kernel smoothing density estimate was used during the
implementation  of the Naïve‐Bayes model as it did not re‐
quire a strong assumption of normal distribution. During the
classification,  a normal kernel density estimate was com‐
puted for each class based on the training data for that particu‐
lar class. Assuming that the data followed a Gaussian
distribution, the kernel density estimation will eliminate
skewness and multiple peaks. One of the basic assumptions
of this model is that the features are independent within each
class. In this study, few fluorescence features showed high
correlation.  For example, in all datasets, RF_UV and
FRF_UV, RF_G and FRF_G, and RF_B and RF_G were
highly correlated. It was anticipated that the classifier would
perform well even if the assumption of correlation is not val‐
id.

The bagged decision tree (classification tree) classifier is
a type of supervised ensemble learning algorithm with higher
stability and improved performance (Khan et al., 2001;
Huang et al., 2004) compared to decision trees. The tree bag‐
ger is an ensemble of decision trees (Breiman et al., 1984).
If the response variable Y is a function of predictor variables
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Figure 3. Conventional polymerase chain reaction analysis results for the detection of Candidatus Liberibacter asiaticus in three categories of citrus
leaves investigated in this study (lane M = DNA molecular weight markers; lane C = positive control).

X1 to Xi (fluorescence features) in the classification tree, a
binary tree/subset is generated with a branching node based
on the information provided by predictor variables. These
subsets or nodes are termed terminal nodes (two classes in
this case).

 )X,X,(XY 21 if ...=  (3)

The classification tree is developed using the predictor (X)
and response (Y) variables of the training dataset. The class
(Y) of an unknown sample in the test dataset is then predicted
based on the set of splitting rules conceived during the train‐
ing. In this study, Gini's diversity index algorithm was used
for estimating the splitting rules. The bagging generates
bootstrap replicates to strengthen the decision tree. It also im‐
proves the unbiased base learning of the model (decision
trees). During bagging (bootstrap aggregation), every classi‐
fication tree is grown on an independently drawn bootstrap
replica of the input data. In this study, 150 decision trees
based on bootstrap replicas were used to generate the en‐
semble decision tree. This number was optimized during pre‐
liminary studies. Although the bagged decision tree classifier
offers higher flexibility, the Naïve‐Bayes classifier is simpler
and faster. In order to improve the speed and performance of
the classifiers, sequential feature selection (forward selec‐
tion) was used. This feature selection method minimizes the
number of features based on the lowest possible misclassi‐
fication rate for the classifier. In sequential forward selection,
from an empty set, each feature is added sequentially until
there is no further improvement in classification accuracy us‐

ing a specific classifier. The performance of the classifiers
with and without feature selection was evaluated.

A Matlab program (ver. 7.11, The MathWorks, Inc., Na‐
tick, Mass.) was used for the data analysis. For implementing
the classification and feature selection, Statistics Toolbox 7
was used. A Hewlett‐Packard EliteBook 8740w computer,
with a processor speed of 2.13 GHz and 8 GB of internal
memory was used to run the Matlab program. The fluores‐
cence datasets (table 1) were randomized and divided into
training and testing datasets such that their ratio was 3:1.
Classifier performance was assessed based on cross‐
validation classification error, classification error, and the
computation time for classifying fluorescence values of
HLB‐infected leaves from those of nutrient‐deficient and
healthy leaves. The classifier parameters were estimated for
multiple datasets possessing variation in data collection con‐
dition (field, laboratory), type (Hamlin, Valencia, Hamlin
and Valencia combined), and analysis (with and without fea‐
ture extraction) for both classifiers. To determine the cross‐
validation error, a 10‐fold stratified cross‐validation was
performed with the training dataset.

RESULTS AND DISCUSSION
CLASSIFICATION

Table 2 presents the cross‐validation and classification re‐
sults of the Naïve‐Bayes and bagged decision tree classifiers.
Comparing the field and laboratory datasets, the cross‐
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Table 2. Validation and classification results of Naïve‐Bayes and bagged decision tree classifiers with and without feature extraction.[a]

Naïve‐Bayes Classifier Bagged Decision Tree Classifier

CVE CE
CT
(s) Fluorescence Features CE[b]

CT[b]

(s) CVE CE
CT
(s) Fluorescence Features CE[b]

CT[b]

(s)

Field dataset
Hamlin 0.17 0.17 1.5 YF_UV, RF_B, FRF_B,

SFR_G, FLAV
0.05 0.2 0.05 0.05 21.2 YF_UV, FRF_B, FRF_R,

SFR_G, SFR_R,
FER_RUV, NBI_R

0.07 6.3

Valencia 0.29 0.22 1.2 YF_UV, BRR_FRF,
FER_RG, NBI_G,
NBI_R

0.18 0.2 0.06 0.04 25.1 YF_UV, RF_B, YF_R,
SFR_R, BRR_FRF,
ANTH, NBI_R

0.04 7.6

Combined 0.28 0.32 2.0 YF_UV, FRF_B,
SFR_G, FER_RG,
NBI_R

0.22 0.3 0.07 0.05 26.5 YF_UV, RF_UV, YF_G,
FRF_G, YF_R, SFR_G,
ANTH, NBI_R, RFR_UV

0.06 10.6

Laboratory dataset
Hamlin 0.11 0.11 0.5 YF_UV, RF_UV, YF_G 0.06 0.1 0.01 0.02 6.6 YF_UV, FRF_UV, YF_G,

SFR_G, BRR_FRF
0.02 5.0

Valencia 0.14 0.14 1.0 YF_UV, FRF_UV,
RF_B, YF_G, FRF_G,
BRR_FRF, RFR_UV

0.07 0.2 0.04 0.04 9.4 YF_UV, YF_G, FRF_G 0.02 4.6

Combined 0.17 0.10 0.7 YF_UV, FRF_UV,
YF_G, FRF_G,
BRR_FRF, RFR_UV

0.07 0.3 0.04 0.04 11.2 YF_UV, RF_UV,
FRF_UV, RF_B, YF_G,
SFR_G

0.04 8.5

[a] CVE = cross‐validation classification error, CE = classification error, CT = computation time.
[b] After the fluorescence feature extraction process.

Table 3. Overall and individual class classification accuracies (%) of Naïve‐Bayes and bagged decision tree classifiers with and without feature extraction.

Classifier

Field Dataset Laboratory Dataset

Hamlin Valencia Combined Hamlin Valencia Combined

Naïve‐Bayes classifier without feature extraction
Overall 82.7 77.7 68.3 89.1 85.7 90.1
Healthy 94.7 78.9 80.0 89.5 97.4 94.7
Nutrient‐deficient 70.3 75.7 56.0 89.2 64.9 82.7
HLB‐infected 82.9 78.4 69.0 88.6 94.6 93.1

Naïve‐Bayes classifier with feature extraction
Overall 95.5 82.1 77.9 93.6 92.9 92.8
Healthy 100.0 84.2 89.3 89.5 97.4 98.7
Nutrient‐deficient 100.0 81.1 69.3 91.9 81.1 81.3
HLB‐infected 85.7 81.1 75.0 100.0 100.0 98.6

Bagged decision tree classifier without feature extraction
Overall 94.5 96.4 94.6 98.2 96.4 96.4
Healthy 97.4 94.7 96.0 94.7 100.0 98.7
Nutrient‐deficient 94.6 97.3 92.0 100.0 91.9 90.7
HLB‐infected 91.4 97.3 95.8 100.0 97.3 100.0

Bagged decision tree classifier with feature extraction
Overall 92.7 96.4 94.1 98.2 98.2 96.4
Healthy 94.7 94.7 94.7 94.7 100.0 97.4
Nutrient‐deficient 94.6 97.3 92.0 100.0 97.3 92.0
HLB‐infected 88.6 97.3 95.8 100.0 97.3 100.0

validation error and classification error were lower in the lab‐
oratory dataset for Hamlin and Valencia, using both the clas‐
sifiers, than in the corresponding field dataset. This trend was
expected, as the laboratory dataset would possess lower vari‐
ability in the fluorescence values due to the controlled data
collection conditions. The cross‐validation and classification
errors for the Naïve‐Bayes classifier varied from 0.17 to 0.29
and from 0.17 to 0.32, respectively, for the field dataset.
However, the corresponding errors for the laboratory dataset
were 0.11 to 0.17 and 0.10 to 0.14. It was observed that, un‐
like the reduction in classification error from field to labora‐
tory datasets for the Naïve‐Bayes classifier, the bagged
decision tree classifier did not exhibit significant reduction

in the classification error. Thus, it could be stated that the
bagged decision tree classifier worked well for the classifica‐
tion of both field and laboratory datasets. In addition, when
the two classifiers were compared, the bagged decision tree
classifier performed better than the Naïve‐Bayes classifier in
terms of lower cross‐validation and classification errors.Ho‐
wever, the computation time of the Naïve‐Bayes classifier
was lower, taking less than 2 s in most cases to compute the
classification accuracies. In the Naïve‐Bayes classifier, the
construction of the classification algorithm is much faster
than in the bagged decision tree classifier. We found that the
Naïve‐Bayes classifier was at least 10 times faster.
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The overall and individual class classification accuracies
were computed using the confusion matrix is presented in
table 3. The overall classification accuracy of the Naïve‐
Bayes classifier for the field and laboratory datasets varied
from 68% to 83% and from 86% to 90%, respectively. The
HLB‐class classification accuracy under laboratory condi‐
tions was slightly higher than those of field conditions, espe‐
cially for the Hamlin cultivar. The classification accuracy
increased by 7% and higher under laboratory conditions.
Comparing the HLB‐class classification accuracy, the Naïve‐
Bayes classifier showed accuracy of greater than 88% under
laboratory conditions for both citrus cultivars. Thus, if the
fluorescence sensor were to be used for detecting HLB with
the Naïve‐Bayes classifier, then faster and more accurate re‐
sults could be acquired by removing the citrus leaves from the
canopy, placing them on a flat surface, and collecting data un‐
der stable conditions. The bagged decision tree classifier
showed an overall and HLB‐class classification accuracy
greater than 94% and 91%, respectively. Therefore, the
bagged decision tree classifier with the fluorescence sensor
might be more applicable in remotely detecting HLB in a tree
canopy under field conditions.

FEATURE EXTRACTION
Feature extraction using forward sequential selection was

performed to identify significant fluorescence features that
can contribute to the classification of fluorescence data for
each dataset. The fluorescence features and classifier perfor‐
mance in terms of classification accuracy and computation
time are reported in tables 2 and 3. The feature selection pro‐
cess reduced the computation time and improved the overall
and HLB‐class classification accuracies by 3% and higher,
especially for the Naïve‐Bayes classifier. Thus, with selected
features, under controlled conditions, the Naïve‐Bayes clas‐
sifier with fluorescence sensor can be used for more accurate
HLB detection.

Different fluorescence features can contribute or repre‐
sent different classes under each condition. For example,
Malenovský et al. (2009) reported that the red to far‐red
fluorescence ratios decrease with increasing chlorophyll
content. From figures 4 and 5, it can be observed that the red
to far‐red fluorescence values were lower in healthy leaves
than in nutrient‐deficient and HLB‐infected leaves for both
Hamlin and Valencia cultivars. This might be due to higher
chlorophyll content in the healthy leaves than in the stressed
leaves. Using the feature extraction method, it was observed
that yellow fluorescence with UV excitation always contrib-
uted to the classification of healthy, nutrient‐deficient, and
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Figure 4. Selected fluorescence features of the field dataset.
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Figure 5. Selected fluorescence features of the laboratory dataset.

HLB‐infected leaves. Some of the other features were far‐red
fluorescence (UV), yellow fluorescence (green), simple
fluorescence ratio (green), yellow to far‐red fluorescence ra-
tio (UV), and nitrogen balance index (UV, red). The yellow
fluorescence (green) and far‐red fluorescence (UV) were im‐
portant fluorescence features under laboratory conditions,
while nitrogen balance index (UV, red) was the prominent
feature for field conditions.

Among the different excitations, UV‐induced fluores‐
cence has been extensively used in remote sensing applica‐
tions for stress detection due to its sensitivity. Cerovic et al.
(1999) reported that UV‐excited fluorescence is a good indi‐
cator to accurately evaluate the physiological status of plants
and detect stress. A similar trend can be observed in this
study. Comparing the different fluorescence features, it could
be observed that the UV‐excited fluorescence features are
more prominent for classifying healthy and stressed leaves
(nutrient‐deficient,  HLB) than the other fluorescence fea‐
tures. The red and far‐red fluorescence with UV excitation
could be a major contributor to the chlorophyll‐a present in
the leaves (Cerovic et al., 1999). Both red and far‐red fluores‐
cence (UV) values were found to be higher in healthy leaves
than in nutrient‐deficient and HLB‐infected leaves. There‐
fore, this study demonstrates the applicability of using
fluorescence sensing for HLB‐detection in citrus.

SUMMARY
This study demonstrates the potential of using handheld

fluorescence sensing for stress detection in citrus leaves, es‐
pecially HLB detection in citrus. Both the Naïve‐Bayes and
bagged decision tree models resulted in higher classification

accuracies under laboratory (controlled) conditions than
field conditions. Comparing the classifiers, the bagged deci‐
sion tree classifier yielded higher classification accuracy, al‐
though the computation time was at least 10 times greater
than that of the Naïve‐Bayes classifier. Fluorescence feature
extraction improved the classification accuracy under both
laboratory and field conditions, especially for the Naïve‐
Bayes classifier. Among the fluorescence features and ratios
acquired from the portable fluorescence sensor, it was found
that yellow fluorescence (UV) and simple fluorescence ratio
(green) contributed to the classification of leaf conditions.
Moreover, yellow fluorescence (green) and far‐red fluores‐
cence (UV) contributed to the classification of leaves under
controlled conditions, while nitrogen balance index (red)
contributed to the classification under field conditions.

Research indicates that other fluorescence features such
as blue fluorescence (UV) and related ratios can also be a
good indicator of the physiological status of plants. Our fu‐
ture studies will involve the evaluation of these fluorescence
features as well as other ratios for HLB detection in citrus. In
addition, we intend to collect a larger dataset of fluorescence
features from multiple citrus cultivars to further improve the
classification accuracies.
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