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Although the value of Azolla species as a green manure for lowland 

agriculture is well established, environmental and management 

constraints have limited its use to a few countries. cultivation of 

Azolla species may be extended to other areas if species and cultivars 

adapted to specific agricultural envirorunents can be identified. Five 

accessions from three species of Azolla were identified as being 
, 

relatively tolerant of high light and temperature. The nitrogen 

accumulation potential and physiological characteristics of these 

accessions were evaluated in a series of experiments. 

The nitrogen and biomass accumulati on by Azolla caroliniana 
-

(Brazil),!• caroliniana (Ohio, U.S.A.),!· microphylla (Galapagos), A. 

pinnata (Indonesia) and A. pinnata (Taiwan) were evaluated during sumner 

in Taiwan. Although average air temperatures were above 30 C, A. 

caroliniana from Ohio, U.S.A. and!· pinnata from Indonesia accumulated 

more than 40 kg ha-1 of nitrogen in 20 days when intercropped ~ith ric:e. 

Rice in plots fertilized with Azolla species had greater plant height, 

shoot weight, leaf area index, tiller number, and grain yield than the 

control plots. Rice growth and yield were not increased by treatments 

which included 25 kg ha-1 of fertilizer nitrogen with Azolla. The leaf 

area index and grain yield of rice fertilized with Azolla nitrogen were 

less than those obtained with a similar quantity of fertilizer nitrogen. 

The lower response to Azolla may be due to the delay in release of 

nitrogen by mineralization. 
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The relative growth rate of!· caroliniana (Ohio),!• rnicrophylla 

(Galapagos) and A. pinnata (Indonesia) in greenhouse studies was 

negatively related to initial biomass when the biomass exceeded 600 g 

-2 m • An initial biomass of 600 g m-2 of A. caroliniana, !· microphylla 

or A. pinnata produced more fresh weight and nitrogen after 21 days of 

growth than did initial biomasses of 200 or 400 g m-2• Fresh weight and 

nitrogen accumulation of all three species declined progressively with 

decreasing growth light level. With initial biomasses of 250 or 500 g 
~ 

m-2, the two species ~ccurnulated almost the same biomass and nitrogen 

after 20 days when both were grown at 35% light. At higher light 

levels, A. microphylla accumulated significantly more fresh weight than 

A. caroliniana and A. pirinata, but had a significantly lower dry matter 

and nitrogen content. 

Growth of A. caroliniana and A. microphylla in controlled

temperature chambers was greater at 20 C than at 33 C when harvested 10 

days after planting (DAP): only the growth of!· microphylla _was greater 

at 20 C than at 33 C at 20 OAP. Growth declined with decreasing light 

and the effect was generally much greater at 33 C than at 20 C. 

The carbon dioxide exchange rate per unit weight (Cf:Rw) of A. 

caroliniana was greater than rates measured for A. microphylla and A. 

pinnata. The greater CERw was attributed to a greater specific leaf 

area and specific chlorophyll content. CERw increased curvilinearly _ 

with increasing photosynthetic photon flux density up to about 1500 

;.uncles m-2 s-1 • The CERw decreased as the biomass increased, probably 

due to increased mutual shading. 
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Significant advances in food prcduction have been realized during 

this century mainly due to the success of scientific agriculture. A key 

to this success is the use of fertilizers and agro-chemicals. About 

one-third to one-half o~ the world cereal yield increase in the i;:ast 30 

years can be attributed"to the use of fertilizer nitrogen (Hardy, 1975). 

Ho-wever in recent years, small farmers in developing countries have not 

been able to apply fertilizers at recomnended rates because of high cost 

and limited availability. As a result, presently there is a greater 

emphasis on agricultural practices which would lessen a farmer's 

dependence on chemical fertilizers. Among these practices is the 

utilization of biologically fixed nitrogen which is an attractive 

alternative to fertilizer nitrogen because of its low cost. · The aIIDunt 

of nitrogen biologically fixed in the biosphere every year is between 

120 to 175 million metric tons. The quantity fixed in land under 

cultivated crops is estimated to be 45 million metric tons (Burns and 

Hardy, 1975~ Burns, 1980). 

Nitrogen-fixing plants, mostly legumes, have been used as green 

manures for centuries and played a major role in plant nutrition and 

soil fertility before the advent of chemical fertilizers. At present, 

there is rene-wed interest in green manuring and in cropping practices 

such as crop rotation and intercropping in which nitrogen fixed by one 

crop is made available to a second crop after mineralization in the 
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soil. Major research programs are underway to maximize the input from 

biological nitrogen fixation in crop fields. The greatest benefit from 

this technology would be expected in fields with low soil fertility that 

are planted to crops requiring higher amounts of nitrogen. This is 

often the case in rice-producing small farms in developing countries. 

Rice constitutes nearly 20% of world food-grain production and is 

the major food crop in South and South-Fast Asia (Stangel, 1979). There 
, 

is an urgent need to step up rice production to feed the ever-increasing 

population. Since the land area available to expand agriculture is 

limited in most regions of Asia, the grain yield of rice per unit area 

of land must te increased. A major achievement in this regard is the 

breeding of high-yielding rice varieties, particularly at tRe 

International Rice Research Institute (IRRI). An important character

istic of these varieties is their response to applied fertilizer 

nitrogen. IRRI and several national research institutes continue to 

make improved rice varieties available to farmers. 

The yield potential of rrany of these improved varieties range from 

12 to 15 tons ha-1; however, national average yields in many countries 

are only 2.0 to 3.0 tons ha-1 (IRRI,1979). Gap analysis studies 

conducted to determine the reasons for this discrepancy have identified 

fertilizer application and insect control as the two nost important 

factors limiting yield potential of these new rice varieties. Since new 

varieties have teen selected for response to higher levels of nitrogen, 

significant yield gains are likely to be achieved only by increasing the 

supply of this essential nutrient. Fertilizer nitrogen rates of over 

225 kg ha-1 are applied by sane Japanese farmers to produce yields of 
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over 9.0 tons ha-1 • In the majority of developing countries, however, 

average nitrogen use is below 50 kg ha-1 and consequently rice yields 

are below 3.0 tons ha-1 (Matsushima, 1976: Stangel, 1979). Large 

increases in yields may be possible by the application of higher rates 

of nitrogen, provided the other conditions for growth are satisfactory. 

Nevertheless, high prices and non-availability of nitrogen fertilizer 

often prevent farmers from fertilizing at reconmended rates. According 

to Burgess (1981), the situation may get worse if the production cost of 

nitrogen fertilizer continues to rise. 

An alternative source of nitrogen in rice culture is the aquatic 

fern of the genus Azolla which has been receiving a great deal of 

attention lately because of its symbiotic association with a nitrogen 

fixing blue-green algae. It has been used in China (Ctru, 1979) and 

Vietnam (Tuan and Thuyet, 1979) as a green-manure for centuries. In 

recent years, researchers in many other countries are exploring the 

potential of Azolla sp. primarily as a source of nitrogen for rice 

(Lumpkin et al., 1982: Rains and Talley, 1979; Singh, 1977: watanabe et 

al., 1977). Seven Azolla species have been recognized (Lufli)kin and 

Plucknett, 1981) and several accessions have been identified within some 

of these species (Watanabe and Berja, 1983). These species and 

accessions respond differently to environmental variations (watanabe et 

al., 1977: Lumpkin, 1983). 

The successful use of Azolla as a green manure for rice will depend 

on its adaptation to the environmental conditions in which rice is 

grown. Azolla can be grown either as a monocrop prior to planting rice 

or as an intercrop that is incorporated within the first month after 
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planting the rice crop. In either of these cropping systems, Azolla may 

be exposed to sub or supra-optimal temperature and light regimes. 

A significant constraint to the wider use of Azolla in tropical 

rice-growing areas is the low productivity during periods of warm 

weather. Species used during the Sllliltler must be productive in 

envirorunents having temperat ures of 30 C or greater and high solar 

radiation. Information is lacking on species response to high 

t emperature and solar radiation and to management practices that would 

' 
result in the maxircum accumulation of nitrogen for rice during the 

sl..IlTffler season. Supplemental fertilizer nitrogen is likely to be needed 

to assure high yields because the time available for the growth of a 

green manure for a sumner rice crop is relatively short. Appropriat e 

nanagement practices such as timing of fertilizer nitrogen application 

and the relationship between initial Azolla bianass and growth and 

nitrogen accumulation need to be investigated. 

To test the hypothesis that .Azolla species and management practices 

exist which would make Azolla a viable greeruranure crop for the warm 

summer rice season, a series of experiments were conducted with the 

following objectives: 

1. to evaluate in the field the effectiveness of five Azolla 

accessions representing three species as green manure for a sunrner rice 

crop in Taiwan: 

2. to examine the influence of light, temperature and initial 

plant bianass on dry matter and nitrogen accwnulation of Azolla in 

greenhouse experiments: 

3. to study the influence of light oo carbon assimilation by 

Azolla. 
4 



CBAPl'ER II 

REVIEJtl OF LITERMURE 

2.1 Azolla-Anabaena symbiotic system 

Azolla ( the genus name will be used in the generic sense for 

convenience) is a free-floating fern that is native to Asia, Africa and 

the Americas. Azolla species have been dispersed by nan and natural 

means to various parts df the world (Lumpkin and Plucknett, 1982). 

Physiological processes such as photosynthesis and nitrogen fixation 

occur only during the vegetative phase of azolla which is represented by 

the sporophyte. The azolla sporophyte has fronds and roots. The fronds 

are usually 1.0 to 3.0 cm in diameter. It is classified as a fern based 

on the type of spores it produces (Table 1). Further classification 

into individual species takes into account morphological characteristics 

of fronds and spores. The cavity within the dorsal lobe of the fern 

leaf contains the nitrogen fixing blue-green algae Anabaena azollae, a 

cyanobacterium. In their syrrbiotic association, azolla provides shelter 

and products of photosynthesis to the algae in exchange for reduced 

nitrogen. 

2.2 Influence of envil:ament at the life cycle of azolla 

While the azolla sporophyte rrultiplies by vegetative reproductia1, 

the a1set of the gametophytic cycle can be induced by a number of 

environmental factors. Extreme stress induces sporulation to ensure 

survival during temporarily unfavorable conditions (Ashton, 1977). 

Becking (1979) obtained sporocarp formation in A. filiculoides and 
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TABLE 1. Classification of Azolla. 

DIVISIOO Pteridophyta 

CLASS Filicopsida 

ORDER Salviniales 

FAMILY Azollaceae 

GENUS Azolla 

SEX:'TIONS Azolla Rhizos~rma 

SPECIES A. caroliniana A. nilotica 

A. filiculoides A. Einnata 

A. mixicana 

A. microEhrlla 

A. rubra 

VARIETIES . A. einnata var. imbricata 

A. einnata var. Einnata 

Source: Lumpkin and Plucknett (1982). 

6 



A. caroliniana with high light intensities and relatively low night 

tenperatures. Karamyshev (1957: quoted by Becking, 1979) observed 

sexual reproduction in~- pinnata during the hot sunmer nonths whereas 

for the same species Moore (1969) reported sporocarp formation in cold 

weather in China. Talley and Rains (1980) reported that high 

temperature accelerated sporulation of A. filiculoides. A. pinna.ta and 

~- nilotica produced sporocarps during periods of low night temperature 

and short days in Hawai1 (personal observation). The optimum conditions 

that resulted in the highest percentage of plants bearing sporocarps in 

A. filiculoides were 14 hour photoperiod, 9.5 pH, 27 C and a nitrate 

nitrogen concentration of l ng 1-l (Ashton, 1977). The spores survive 

sul:merged in water and complete their life cycle to form the sporophyte 

when environmental conditions return to normal. For this reason, the 

first appearance of the sporophyte and subsequent abundance of azolla in 

its natural habitats were strongly correlated with seasonal changes 

(Gopal, 1967: Holst and Yopp, 1979a). 

2.3 Influence of envil:armt m vegetative growth of azolla 

The agronomic value of azolla depends on dry matter and nitrogen 

accumulation. Rate and duration of dry matter and nitrogen accumulation 

are dependent on photosynthesis and nitrogen fixation. These 

physiological processes are influenced to a great extent by light and 

temperature. T. A. Lumpkin (personal comnunication} attributed the 

higher nitrogen accumulation of A. filiculoides canpared to four other 

azolla accessions to its ability to maintain the irrmature phase of its 

life cycle throughout the growing season. The amount of nitrogen 
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accumulated was positively and exponentially related to time to 

sporocarp formation and negatively and exponentially related to average 

maximum temperature prevailing from 'planting' to sporocarp formation 

(Talley and Rains, 1980). 

2.3.l Light 

Growth and nitrogen accumulation generally increase up to an 

optimum light level and then decline. The growth rate in A. 

filiculoides was positively correlated with sunlight up to 50% and then 

declined with further increase in light (Ashton, 1974). Light 

saturation of photosynthesis in~- caroliniana was observed at 400jlE m-

2 s-1 by Ray- et _al. (1979), but the co2 fixation rate did not decline 

appreciably even at 2000 JJE ~-2 s-1. The optimum range of light levels 

for growth of azolla in China was 20 to 50 klux (FAO, 1979) while 

VietnaIIEse researchers have reported a light intensity for rnaximum 

growth of 15 to 18 klux (Tuan and Thuyet, 1979). The wide disGrepancies 

observed by various workers rnay be due to species and accession 

differences and differences in biomass per unit area at the time of 

sanpling. Nutrition can be another reason for these differences. For 

exaitl)le, Tung and Shen (1981) observed the highest growth rate at 50% 

light when the culture medium contained less than four ppm phosphorus. 

Addition of 20 ppn phosphorus resulted in maximum growth at full 

sunlight. 

The optimum temperature for growth of~- filiculoides increased 

from 22 Cat a light intensity of 5 klux to 26 C when the intensity was 

increased to 20 klux (Ashton, 1974). Similar results were reported by 
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Talley and Fains (1980) who obtained the highest growth rate for day

night temperatures of 10/1.0 Cat 100.J.lE m-2 s-1 : but at 35/25 C, the 

highest growth rate was at 1000 JlE m-2 s - 1. 

Solution pH interacts with light to influence azolla growth. The 

growth rate of A. filiculoides cultured at solution pH values ranging 

from 3 to 6 was negatively correlated with increasing light from 15 klux 

to 75 klux. However the growth rate was posi'tively correlated with 

light up to 60 klux ..men pH ranged from 7 to 11. These results were 

obtained with a nutrient solution containing 10 ~ nitrogen as nitrate: 

Ashton (1974) concluded that uptake of combined nitrogen was greatest at 

acidic pHs and very low at basic pHs, while nitrogen fixation was 

highest in the basic range. The light-pH interaction has not been 

explained. Growth at 75 klux light intensity was lower than 60 klux at 

all pH values. Sane'Nhat contradictory results have been reported from 

Vietnam where high light intensity enhanced azolla growth at pH 5, but 

inhibited growth at pH 6 and 7 (Tuan and Thuyet, 1979). Peters et al. 

(1980) found no interaction between light and pH. The available data 

suggest that generally azolla grows better under ~rtial shade than in 

full sunlight. Deep shade may reduce growth. 

In general, high light intensities appear to be detrimental to 

nitrogen fixation. Unlike legumes where root nodules are located away 

from leaves, there is no spatial separation of photosynthetic and 

nitrogen fixation systems in azolla. In addition, the endophyte also 

contains chlorophyll and phycobilin pigments 'Nhich enable it to absorb 

light. Okon and Hardy (1983) consider this the ideal nitrogen-fixing 

system as both organisms of the synt,iosis are plototrophic and possess a 
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large light tarvesting surface. Although this increases the efficiency 

of utilization of light energy by the azolla-anabaena system, it may 

expose the endophyte to strong solar radiation and reduce nitrogen 

fixation rate. No change in nitrogen fixation, as estimated by 

acetylene (C2H2 ) reduction, was cbserved by Becking (1976) when A. 

pinnata was exposed to light intensities of 14 to 27 klux. However, the 

rate of c2H2 reduction was considerably reduced at noon when light 

intensities of 80 to 90 klux were reached (Becking, 1979). Acetylene 
, 

reduction by A. caroliniana was saturated at about 5.0 klux whereas co2 - . 
fixation saturated at 8.0 klux (Peters, 1976). Subsequently Peters et 

al. (1980) reported an increase in growth rate of five accessions of 

azolla with increasing light intensity up to 400Jmtoles m-2 s-1, while 

C2H2 reduction activity saturated at 200 J.llllOles m-2 s-1. There was an 

increase in nitrogen fixation of about 30% in A. mexicana when light 

intensity was increased from 12 klux to 25 klux (Holst and Yopp, 1979b). 

Nitrogen fixation in~· filiculoides reached a peak at 2SOJlE m-2 s-1 at 

day-night temperatures of 30/20 C (Talley and Rains, 1980). Becking 

(1979) suggested that the lower light intensities under a rice canopy 

may favor nitrogenase activity in azolla. Exposure of A. pinnata for 5 

hrs to light intensities of 16 to 57 % of full sunlight had very little 

effect on nitrogenase activity: however nitrogenase activity was reduced 

to 30% of control plants by 84% of full sunlight (Brotonegoro and 

Abdulkadir, 1976). 

The light-harvesting pigments in azolla are chlorophyll a and band 

carotenoids. Anabaena is canposed of vegetative cells and heterocysts. 

Vegetative cells are the site of photosynthesis and contain chlorophyll 
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a, phycobilins and carotenoids (Peters et al., 1979). Heterocysts are 

specialized cells where nitrogen fixation occurs. Unlike the 

heterocysts of other symbiotic blue~reen algae that are in association 

with green plants such as cycads and Gunnera, those of Anabaena azollae 

retain phycobilins and absorb light energy (Peters et al., 1980). 

Estimates indicate that 10 to 20% of chlorophyll a or 7.5 to 15% of 

total chlorophyll in the azolla-anaba.ena complex is contributed by the 

endophyte (Peters and ~yne, 1974a). 

The azolla-anabaena symbiotic association's light absorption 

spectra for (X'lotosynthesis is very similar to that of other green plants 

with the maximum quantum yield ·occurring between 650 nm and 670 nm. In 

(X'lycobilin pigments of the endophyte, the maximum quantum yield occurs 

between 580 nm and 640 run which is the portion of the spectrum least 

efficiently absorbed by chlorophyll pigments (Ray et al., 1979: Tyagi et 

al., 1981). 

2.3.2 Temperature 

The successful use of azolla as a green manure will depend to a 

great extent on the growth and nitrogen fixation rates obtained under 

extremes of temperature. In fact, poor adaptability of azolla 

accessions grown in China and Vietnam to teirperature extremes is one of 

the reasons for the non-adoption of this technology by other rice

growing countries in Asia. Azolla growth is usually retarded by high as 

well as low temperatures. The cardinal temperatures for azolla vary 

with species (Lumpkin, 1983). Data for A. filiculoides show that the 

cardinal temperatures are 5.0 C and 45 C (Ashton, 1974). In the studies 
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of Talley and Rains (1980), !• filiculoides had a biomass doubling time 

of 6.7 days when grown at day-night temperatures of 10/1.0 C or 15/5.0 

C: the doubling time was only two to three days when grown in 30/20 C 

but growth was too low to assess quantitatively at 40/30 c. 

Although azolla can grow at extremely low and high temperatures, 

the optimum temperature range for growth and nitrogen fixation is 

usually narrower. Peters et al.(1980) found growth of!· mexicana and 

A. pinnata was greatest ,at 30 C while for!· caroliniana and A. 

filiculoides, the highest growth rates were at 25 to 30 C and 25 C 

respectively. The optimum temperature for growth of!· pinnata in China 

was 20 to 25 C (FAO, 1979). Watanabe et al. (1977) reported that fresh 

weight accumulation of!• pinnata at 35/27 C was less than half of that 

at 32/24 C, although the average temperature of 31 C was not unusually 

high for A. pinnata. Peters (1980) suggested that exposure to 35 C for 

12 hrs may have been responsible for the reduced growth. 

The ideal temperature range for nitrogen fixation also appears to 

be in the 20 to 30 C range. Acetylene reduction activity of!• pinnata 

increased with increasing temperature, reaching a maximum at about 30 C 

but there was appreciable activity even at 40 C (Becking, 1979). 

Similar results were obtained with!· pinnata (Chapnan et al., 1981) and 

A. mexicana (Holst and Yopp, 1979b), but in both studies, acetylene 

reduction activity almost ceased at 40 C. Acetylene reduction increased 

with increasing temperature up to 40 C in studies on!· pinnata: 

inhibition occurred only at 43 C (Brotonegoro and At:dulkadir, 1976). 

Nitrogenase activity was almost nil at 40/30 C in!• filiculoides: 

however, when azolla grown at 20/10 C or at 30/20 C was placed in an 
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environment where temperature was increased step.,ise by 5 C every 2 hrs, 

nitrogenase activity increased with temperature up to 40 C and remained 

high at 45 c (Talley and Rains, 1980). In most of the studies discussed 

above, the C2H2 reduction rates were greatly reduced above 35 c. This 

may be due to the adverse effects of high temperature on synthesis of 

metabolites required for nitrogen fixation. 

Temperature also influences the nitrogen and dry matter content of 

azolla plant material. !Lumpkin and Plucknett (1980) in their review 

quoted a study in China where nitrogen concentrati on of dry azolla 

increased from 1.75 % to 4.5 % as temperature was increased from 5 C to 

25 C: however at 40 C, the nitrogen concentration dropped to 2.5 %. 

Nitrogen concentration was inversely related to the dry natter content 

of the tissue. The dry matter concentrations at temperatures of 5, 25 

and 40 C were 16, 6 and 10% respectively. Nitrogen content increased 

with te~rature in fl· filiculoides up to 30/20 C and then decreased at 

35/25 C (Talley and Rains, 1980). In another study, nitrogen content of 

four accessions of azolla increased up to 30 C, while A. filiculoides 

had the highest nitrogen content at 25 c. Beyood the optinum 

temperature, there was a drop in nitrogen content in all species (Peters 

et al., 1980). A green nanure containing a higher dry matter content 

and a higher nitrogen percentage is the objective in azolla culture. 

Since its tissue is very delicate, even azolla with a low nitrogen 

content would be expected to decompose rapidly but the total amount of 

nitrogen added per unit fresh weight ~uld be low. 

Low or high temperature stress causes azolla to change color from 

green to pink or red. This color change is believed to be brought 
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about by the accumulation of anthocyanin pigments. Pieterse et al. 

(1977) observed an acceleration in anthocyanin formation at 5.0 to 10 C 

in A. filiculoides and A. carol iniana. Peters et al. (1980) observed 

the following color responses to temperature among the species. 

Anthocyanin formation occurred at 15 C in A. mexicana and A. 

caroliniana; at 40 c, ~- filiculoides was bleached, ~- caroliniana was 

bright red, and A. mexicana was reddish brown. A. pinnata remained 

green at all temperatures. 
, 

Temperature is often correlated with pest and disease outbreaks. 

This is a serious problem in the cultivation of azolla during warm 

sumner weather. Pests of azolla thrive in warmer temperatures and may 

devastate the entire crop within a short time. High temperature 

combined with high humidity and shading under the rice canopy provide an 

ideal envirorunent for fungal disease developnent in dense azolla mats. 

Therefore azolla grown as green nanure for sumner crops should be 

incorporated when the mat biomass attains 1.5 to 2.0 k~ m-2 (Lumpkin and 

Plucknett, 1982). 

2.3.3 Species differences in azolla 

If azolla is intercropped with rice, high light intensities nay not 

be detrimental because the rice canopy provides some shade. Therefore , 

the potential of azolla as a green-manure crop for the sumner months 

will depend largely on the average temperature prevailing during that 

time and on species adaptability. The variability in growth response of 

Azolla species to light and temperature may make it possible to identify 

species and accessions better suited to a given environment. Field 
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studies of Talley et al. (1977) showed that A. mexicana has greater 

tolerance to high light than~- filiculoides. However, Peters et 

al.(1980) found no difference in response to light among five accessions 

of azolla representing four species, including the two species mentioned 

above, in controlled environment s t udies. ~- microphylla, A. 

caroliniana and A. pinnata var. imbricata were more heat-tolerant than 

A. filiculoides, A. mexicana, A. nilotica, A. pinnata var. pinnata and 

A. rubra (Lumpkin and P~ucknett, 1982; Watanabe, 1984). Peters et 

al.(1980) found the heat tolerance of~- pinnata and A. mexicana to be 

highest, A. caroliniana was intermediate, and A. filiculoides the 

lowest. 

Azolla -species have also differed in tissue dry matter and nitrogen 

content (Peters et al., 1980; Peters and Calvert, 1982). Therefore a 

high growth or biomass accumulation rate for azolla does not necessarily 

mean a higher rate of nitrogen accumulation. Absolute values of 

accumulated nitrogen are the most reliable indicators of the potential 

of a species as a green-manure crop. Studies in China by Lumpkin et al. 

(1982) dern:>nstrated that the quantity of nitrogen accumulated by Azolla 

species differs markedly~ in monoculture as well as duel culture with 

rice, A. filiculoides accumulated 1IDre nitrogen than three other species 

investigated. 

2.4 Photosynthesis and Nitrogen Fixatiai 

The light energy absorbed by phycobilins is used for nitrogen 

fixation in heterocysts and for CD2 fixation in vegetative cells of the 

endophyte (Tyagi et al., 1981). According to Ray et al. (1979), the 
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contribution of the endophyte to the association's cn2 fixation capacity 

is relatively small because it contains less than 20% of the chlorophyll 

and approximately 50% of its cells may be heterocysts that lack cn2 

fixation capability. Recent estimates show that anabaena contributes 

6.0 to 10% of the total photosynthetic capability of the association 

(Peters and Calvert, 1983). 

The azolla-anabaena association exhibits characteristics of c3 

plants including the pr~uction of the typical Calvin cycle 

i ntermediates of CO2 fi1<ation. The cn2 compensation concentration of 

azolla in air was 35 JJl 1-1 • Upon reducing the oxygen level to 2%, the 

co2 compensation concentration dropped to 3.0 JJl i-1 • This suggests the 

presence of- photorespiration. However, the isolated anabaena lacked 

photorespiration as is the case for other green and blue-green algae 

(Ray et al., 1979). Rates of co2 fixation of the association in air are 

about 40% less than those at 2% oxygen (Peters and Calvert, 1983). 

In addition to co2 fixation, photosynthesis also provides ATP and 

reducing power for nitrogen fixation. Thus, nitrogen fixation in azolla 

is a light-dependent process as it relies on the products of current 

photosynthesis. Nitrogen fixation is a Photosystem !-linked process and 

not directly dependent on Photosystem II (Peters et al., 1981). The 

majority of the ATP for nitrogenase activity is obtained from cyclic 

phosphorylation (Photosystem I) and not oxidative photophosphorylation. 

Photosystem II activity is required to generate photosynthate for 

reducing power, but it is not directly required for nitrogenase activity 

(Peters et al., 1979). In the absence of light, nitrogenase activity 

can continue until the ATP and reductants generated during the light 
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period are depleted. For this reason, the rates of dark nitrogen 

fixation are less than half of those obtained during light (Peters et 

al, 1981). 

Ray et al.(1979) recorded maximum photosynthetic rates in air of 90 

to 100.)lITlOles co2 mg-1 chlorophyll hr-1 for A. caroliniana while azolla 

freed of the endophyte had values of 75 to 80.)lIDOles co2 rrg-1 hr-1. 

Daylength did not have a significant effect on photosynthetic rate 

though slightly higher rates were recorded in azolla conditioned under 

12/12 hr light-dark periods compared to 16/8 hr light-dark periods. The 

photosynthetic rates cbtained in different experinents seem to vary 

widely. Peters (1975) reported a peak value of 40 _pnoles co2 mg-1 hr-1 

and later Peters et al. (1981) cbtained values as high as 123_pooles co2 
-1 hr-1 mg • In measurements of photochemical activity, the range of 

values cbserved ~re 140 to 246 ymoles co2 rrg-1 chlorophyll hr-1 and 32 

to 150_pm:>les mg-1 chlorophyll hr-1 for Photosystem I and II 

respectively. Similarly, extracts of Anabaena vegetative cells showed 

ai:preciable Photosystem I and lo~r Photosystern II activity (Peters and 

Mayne, 1974a}. 

2.5 AzoUa in rice-based c:rql)ing systems 

Improved irrigation facilities, mechanization and breeding of 

early-maturing crop varieties have resulted in nDre intensive use of 

land. Multiple cropping, which is the cultivation of more than one crop 

during a year, is becoming m:,re popular among farmers in many countries. 

Most multiple cropping systems in Asia include at least one crop of 
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rice. Since the culture of paddy rice requires flooding, it is usually 

grown during the major rainy season in tropical Asian countries 

(R.I.C.E., 1967). This season is usually between June and December in 

the Northern Hemisphere (Mikkelsen and De Datta, 1982). In rice-based 

intensive cropping systems, azolla grown as a green-manure can be fitted 

into the annual cropping calendar as the crop preceding rice or as an 

inter-crop with rice. For it to be most effective, azolla should be 

monocropped just before rice is planted and incorporated within the 

first month of planting.rice. This will allow sufficient time for 

mineralization and release of nitrogen for rice. However, the planting 

time that maximizes the effectiveness of azolla for rice may result in 

its culture at a time when the climate is not ideal for azolla growth. 

Therefore azolla may have to be grown under unfavorable conditions in 

rrultiple cropping systems. 

Land is continuously used for food crop cultivation in areas where 

there is no pronounced winter. Farmers may not readily include a 

1IOnocrop of azolla in their cropping cycle because the benefits from a 

green manure crop are indirect. Therefore, azolla culture should be 

scheduled in such a way that it cbes not compete with rice for land, 

water or other resources. In Vietnam, azolla is usually grown as a 

winter crop from Novenber to January when roost other crops cannot be 

grown. The lower mean daily tenperatures prevailing during the winter 

months are favorable for the growth of azolla (Tuan and Thuyet, 1979). 

Azolla has been grown experimentally in the United States as a green 

manure in fallow flooded fields during fall or late winter to early 
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spring (Talley et al., 1981). In areas where the land is fallow for a 

long time, a crop of azolla can increase the soil nitrogen and organic 

matter status. Dry matter production of azolla in natural habitats 

reached a maximum in Novenber and Decenber in India (Gopal, 1967). 

In very intensive cropping systems as they are practiced today in 

many developing countries, including a rronocrop of azolla in the 

cropping cycle is almost impossible. In such instances, azolla can be 

grown as an inter-crop with rice until the rice canopy closes over 

(Lunpkin et al., 1982). It takes about four to six weeks for rice to 

develop a canopy that is dense enough to shade out azolla. In order to 

further prolong this period of intercropping, double narrow-row planting 

of rice is practiced in China. Canp:ict canopies formed by erect leaves 

and short stature of improved rice varieties facilitate greater 

penetration of light (Chu, 1979). When grown as an intercrop with rice, 

the modified envirorunent under the canopy of the main crop may not be 

suitable for azolla because sub-optimal light and temp:!rature may limit 

its photosynthetic and nitrogen fixation rates. On the other hand, the 

partial shade under the canopy may favor growth and nitrogen 

accunulation of azolla during warm summer months. Shade may also reduce 

the air and water temperature which can also be beneficial to azolla. 

Another possibility is to raise azolla in ponds or field plots set 

aside Sp:!Cifically for multiplication. The green manure can then be 

collected and incorporated into rice fields. The disadvantage of this 

method is that large quantities of fresh azolla material have to be 

collected, transported, and distributed to the field. The dry matter 
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content of azolla is around 5% and it contains 3.0 to 5.0% nitrogen on 

dry weight basis (Lumpkin and Plucknett, 1982). Thus, 500 kg fresh 

azolla has to be incorporated for every kg of nitrogen applied. Air 

drying of azolla before transportation could partly overcome this 

problem. It may also be possible to reduce the bulk by composting. 

Azolla can be grown in a multiplication plot and harvested periodically 

for air-drying or composting. 

2.6 Nitrogen requirement of rice 

Quantitative determination of the nitrogen requirement of any crop 

is difficult and often inaccurate. In the case of cereal crops, early 

top dressing or a high level of soil nitrogen stimulates tiller 

formation while late top dressing ensures survival of tillers and grain 

set. As a result, split applications of fertilizer nitrogen have proved 

to be the most efficient way to inprove nitrogen use in cereals (Spiertz 

and De Vos, 1983). As fertilizer nitrogen remains in the soil only for 

a limited time, it should be applied at growth stages when it can be 

expected to profoundly influence yield canponents. 

The components that establish the potential yield of rice can be 

expressed as follo"15 (Ishizuka, 1971): 

Yield capacity= Panicles m-2 X Spikelets Panicle-1 X Hull Size. 

Nurrber of .i;anicles is determined by the nurcber of productive tillers. 

Murayama (1979) identified two critical growth stages at which nitrogen 

influenced .i;anicle nurct:>er: at the early tillering stage when it promoted 

tiller production and at early panicle initiation stage when nitrogen 
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increased the number of tillers carrying productive ears. Consequently, 

the efficiency of fertilizer nitrogen utilization was higher when it was 

applied at or soon after transplanting and just before or at panicle 

initiation (De Datta et al., 1974). For this reason, usually nitrogen 

is provided in split applications. 

The number of spikelets initiated and the percentage of ripened 

grains determine the number of grains per panicle. Studies by 

Matsushima (1976) indicate that excess nitrogen at panicle initiation 

promotes the developrnerrt of a larger flag leaf. A larger flag leaf can 

reduce the number of grains per panicle by competing with the panicle 

for photosynthates at the time of spikelet differentiation and grain 

filling (De Datta et al., 1974). An excess of nitrogen during grain 

filling may also encourage vegetative growth and delay crop maturity. 

On the other hand, a short supply of nitrogen may reduce the leaf area 

duration and force the leaves to senesce early resulting in an increased 

number of unfilled grains (Spiertz and De Vos, 1983). Maintaining a 

nitrogen level that will bring about a balance between the vegetative 

and reproductive functions at this critical stage of growth may be 

difficult to achieve. 

The yield component that is least dependent a, nitrogen nutrition 

is grain weight. The upper limit of grain growth in rice is determined 

by the size of the hull (Matsushima, 1980). Hull size is a varietal 

characteristic and is not significantly affected by nitrogen 

application. However, the grains may not attain their potential maxinum 

size if the source capacity is inadequate. De Datta et al. (1974) 
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observed a reduction in 100 grain weight when nitrogen was applied after 

pa.nicle initiation. This reduction was due to excessive vegetative 

growth. Thus, the relationship between nitrogen and size of grain 

appears to be related to nitrogen uptake by the plant up to the early 

reproductive phase. If the plant has accumulated sufficient nitrogen 

during early growth, further application may pranote vegetative growth 

and reduce grain size. On the other hand, if the plant has formed a 

large number of grains with insufficient uptake of nitrogen, a late 

application of nitrogen·may increase grain size (Murayama, 1979). 

Nitrogen supplied frcm a slow-release source during grain filling can 

prolong photosynthetic activity of leaves and produce a higher yield 

(Heung, 1976). 

The nitrogen requirement of rice depends oo several factors, the 

most important being variety and light intensity. High yielding 

varieties generally have a higher nitrogen requirement. Varieties such 

as IR-8 require 150 to 175 kg nitrogen ha-1 during the dry season and 

100 kg ha-1 during the wet season; the dry and wet season yields were 

6.0 and 4.0 tons ha-1 respectively (IRR!, 1975; 1976). Plant growth and 

yield during the wet season is low"er because of reduced light 

availability and lower temperatures. Consequently, the crop requirement 

for nitrogen is also lowered. Data from many parts of the world show 

that the optimum nitrogen rate for modern varieties in farmers' fields 

is around 120 kg ha-1 for the dry season and 70 kg ha-1 for the wet 

season (Russell et al., 1970). Japonica rice varieties have always 

responded to well nitrogen application and farmers in Japan have used as 
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much as 230 kg nitrogen 1,a-l to produce over 9.0 tons of brown rice 1,a-l 

(Stangel, 1979). 

2.7 Azolla in nitrogen nntritim of rice 

The nitrogen requirement of rice can be satisfied by fertilizer or 

biologically fixed nitrogen. The in-situ sources of biological nitrogen · 

fixation in paddy fields are anabaena in symbiosis with azolla, free

living blue-green algae .and heterotrophic bacteria (Watanabe, 1984). 

Nitrogen fixing microorganisms are present in most paddy fields, though 

the extent of their contribution towards the overall nitrogen economy of 

the soil may not be significant. The annual input of nitrogen by 

microbial fixation in flooded paddies has been estimated to be 40 kg 

ha-1 in Japan (Yamaguchi, 1979). In subsistence agricultural systems 

where fertilizer nitrogen application is low, yields of lowland rice are 

higher than upland crops. A reason for this is better nitrogen 

conservation and nitrogen fixation by blue-green algae and heterotrophic 

bacteria (Buresh et al., 1980). 

It is also possible to supply nitrogen by the incorporation of 

green manures, COffl)Ost and crop residues (Patnaik and Rao, 1979). 

Azolla has been used as a green manure and the maxinum nitrogen input by 

~- pinnata was estimated to be 335 to 670 kg ha-1 per year (Becking, 

1972). A subsequent and more conservative approach by Becking (1976) 

estimated fixation at 103 to 162 kg 1,a-l year-1 under field conditions. 

owing to the limited time available for its cultivation in an intensive 

cropping system and the unfavorable environmental conditions under which 
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azolla may have to grow, its maximum nitrogen accumulation potential ma.y 

not be realised. In China, intercropping azolla with rice for 15 to 20 

days before planting rice produced 37 to 45 kg nitrogen ha-1 (Chu, 1979) 

while 25 kg ha-1 was accumulated in 2 months in Vietnam (Tuan and 

Thuyet, 1979). Studies conducted by Lumpkin et al. (1982) in China 

showed that 150 kg nitrogen ha-l could be fixed by monocropping A. 

filiculoides for 23 days and 100 kg ha-1 by intercropping for 20 days. 

Monocropping for 23 days followed by intercropping for 20 days fixed 200 

kg nitrogen ha-1 • The.large variations reported in different studies 

may be due to differences in Azolla species, season, nutrition and other 

management considerations. 

Where the culture feriod for azolla is short, it must be considered 

a supplementary source of nitrogen and additional fertilizer nitrogen 

wa.ild be necessary to produce a high yield of rice. Moreover, unlike 

fertilizer nitrogen, azolla-nitrogen is not irrmediately available to 

rice because of the need for mineralization. Therefore, it might be 

necessary to allow sufficient time for azolla mineralization before 

planting rice or to apply fertilizer nitrogen for the early growth of 

rice until azolla-nitrogen becanes available. As discussed earlier, the 

slow-release of nitrogen from a source like azolla can be beneficial to 

rice during grain filling. 

2.8 Maregement ixactices to neximize azolla growth and nitrogen 

fixaticm 

When the surface cover of azolla is too sparse, biomass 

accumulation will be slower because of insufficient foliage area to 
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intercept available solar radiation. Once a satisfactory cover is 

formed, biomass accumulates at an exponential rate until interplant 

competition begins. Holst and Yopp (1979a) observed the exponential 

growth phase in~- mexicana to be fran 5 to 12 days after 'planting' 

when the initial plant density was 1 plant per 10 an-2. Thereafter, 

crowding-caused mutual shading results in a growth rate decline. The 

relative growth rate of~- filiculoides remained above 0.23 g g-l aay-1 

up to a plant density of 35 plants am-2 when 2 g of azolla was 

introduced into 10 an-dlameter containers (Ashton, 1974). The growth 

rate declined sharply above this density as the water surface was fully 

covered. Therefore, in order to maximize production, the azolla surface 

cover should be dense enough to intercept light efficiently, but not too 

dense to reduce RGR. The desirable management of azolla would be t o 

start with sufficient inoculum to provide a satisfactory cover and 

incorporate the green-manure crop into the soil at regular intervals so 

that competition for light and space are minimized. 

Azolla multiplies by fragmentation and fronds tend to break up 

easily when handled. In a free-floating aquatic plant such as azolla, 

the biomass cover is better expressed as w"eight per unit area rather 

than number of plants per unit area. Depending upon whether the growth 

habit of the azolla species is erect (e.g.: A. microphylla) or prostrate 

(e.g.: A. pinnata), the optimum plant biomass may vary. Erect-growing 

species make use of lt'Ore space above the water surface and may also 

utilize light more efficiently. An increase in plant bianass beyond the 

optimum could reduce the growth rate and the amount of fresh plant 
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material produced would be less. The growth habit of species should 

also be taken into account in nultiplying azolla to be used as starting 

plant material. If a thick mat of A. microphylla forms, the shoot:root 

ratio is increased because of its erect growth habit. Inoculum from 

such dense mats exhibits slow early growth and requires a higher initial 

biomass where time is a constraint. Additional studies have to be 

conducted to determine the relationship between initial biomass and 

quantity parameters such-as dry matter and nitrogen accumulation and 

quality p:i.rameters such·as lignin ex>ntent and carbon:nitrogen ratio of 

tissues. 

The am:,unt of nitrogen_acclllilUlated by azolla will depend on 

management practices such as initial biomass (inoculum rate) and 

interval between incorporations. A higher plc¥1t biomass may be 

preferable where the time available for growth of the green-manure crop 

is short. The accUIJ)ulation of a given mass of azolla (W) can be 

described by the equation w = w
0
eRt where Wis a function of the initial 

quantity of inoculum (W0 ), the relative growth rate (R) and time (t}. A 

higher inoculum rate can intercept more available light and fix more 

nitrogen within a shorter period of time. However, producing and 

handling large quantities of inoculum is labor intensive. Likewise, 

incorporation at shorter intervals may be more productive in terms of 

nitrogen, but prohibitive in terms of labor costs. The optimum plant 

biomass and incorporation interval may differ with species as their 

growth patterns and doubling times vary (Lumpkin and Plucknett, 1980: 

Peters et al., 1980). Studies on these management practices are 

necessary to economize on the use of inoculum and labor. 
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Initial azolla biomass of 750 g m-2 and 600 g m-2 are used in China 

for early-season and late-season planting, respectively, though the 

reason for the different rates was not given (Chu, 1979). Different 

amounts of bianass are reconmended in Vietnam depending on the purpose 

for which azolla is grown. For green-manure production, 250 to 500 g 

per m-2 is used while the bianass of azolla for compost production is 

500 to 750 g m-2 (Tuan and Thuyet, 1979). Depending upon the species, 

environment, and time available for culture, inoculum rates in other 

studies have varied from 50 to 400 g m-2 (Singh, 1979: Rains and Talley, 

1979). Where more than 30 days are available for growth, even an 

inoculum biomass as low as 25 g m-2 is considered satisfactory (Lumpkin 
-

and Plucknett, 1982). 

The response of azolla to temperature was also dependent upon plant 

biomass. Once azolla fully covered the surface and growth rate levelled 

off, it becarre more sensitive to high temperature damage. Therefore, 

Watanabe and Berja (1983) proposed that azolla should be contiunously 

harvested when grown at higher temperatures. In addition to the rapid 

senescence and dacay of plant tissue, pest and disease incidence can 

also be a serious problem under warm weather conditions. 

Another consideration in azolla management is incorporation 

interval. Reducing the llBt biomass by incorporating at shorter 

intervals will stimulate fresh growth and the amount of bianass and 

nitrogen acct.m1Ulated will be greater. Therefore, use of a higher 

initial biomass of azolla will require incorporation at shorter 

intervals. Moreover, nitrogen from intercropped azolla will become 
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available to the main crop sooner, if incorporation is started early. 

Probably due to the above benefits, incorporation twice at 10 and 25 

days after rice was transplanted increased the rice yield by 1.27 Mg 

ha-1 over azolla incorporated only once at 25 days after transplanting 

(Chu, 1979). The incorporation interval has generally varied from 10 to 

20 days (Lumpkin et al., 1982; Singh, 1979; Chu, 1979). Incorporation 

is a costly labor-intensive task. If it becomes mechanized, shorter 

incorporation intervals may be possible. 

2. 9 NiUogen mineralizatiai frail azoJ Ja CJEeell aenm:e 

The rate of mineralization is affected by the quality of the green 

manure. An -indicator of quality is the ratio between carbon and 

nitrogen of plant tissue. A low C:N ratio is desired in a green manure 

crop aa it decomposes easily. The tissue lignin content should be low 

because it resists microbial decomposition (Russell, 1973). Shi et al. 

(1981) have shown that the rate of nitrogen release was negatively 

correlated with the lignin content of plant tissue. Azolla would be 

expected to decompose readily as its tissue appears less fibrous than 

most plants. Studies of Watanabe et al. (1977) and Singh (1979) showed 

that over 50% of nitrogen in azolla was released as NH4 + three weeks 

after incorporation and as much as 75% was released six weeks after 

incorporation. Studies of Bellows (1981) showed that 42% of nitrogen 

from fresh azolla and 22% from air dried azolla was released in eight 

weeks. Although dried azolla tended to be mineralized slowly during the 

first four weeks, by eight weeks there was no significant difference in 

total nitrogen release between fresh and dried azolla. 

28 



2.10 Nitrogen transformations in paddy soil 

The subnerged nature of i:eddy soils creates unusual chemical and 

biological conditions which in turn influence nitrogen transformations. 

The flooded soil has an oxidized surface layer of less than three an 

thickness and a reduced lower layer where most of the soil processes 

take place. The reduced layer is anaerobic and has a low redox 

potential, an indicator of the oxidation-reduction status of soil. 

Fertilizer nitrogen is usually added as amnonium sulfate or urea, both 

of which release nitrogen as NH4+. If nitrogen as N03- is supplied to a 

subtierged soil, it can be rapidly denitrified and the nitrogen lost to 

the atmosphere. If a field is allowed to dry, NH4+ can be oxidized to 

N03- and en subsequent flooding nitrogen is lost through denitrification 

(Patrick and Reddy, 1976~ CraS\o'ell and Vlek, 1979). Therefore poor 

water management resulting fran repeated wetting and drying cycles can 

lead to severe loss of applied as well as mineralized nitrogen. 

Fertilizer nitrogen can also become unavailable to plants as a 

result of irrmobilization. Yoshida and Padre (1975) reported microbial 

inmobilization of 20% of the E=5ddy nitrogen even without the addition of 

any organic matter. The amount fixed by microorganisms increased when 

organic matter was applied and the authors attributed this to the higher 

C:N ratio of added material. The nitrogen is not lost, but is 

unavailable to the plant for imnediate use. Applied nitrogen can also 

become unavailable due to chemical illlTIObilization. The major cause for 

this is the fixation of NH4+ ions between the interlayer space of mica 

(Kai and Wada, 1979). Chemical irrmobilization has been found to be 
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higher in kaolinite clay than in rnontrrorillonite. Dry soils tend to fix 

more nitrogen than wet soils (Black and Waring, 1972). Hence, the 

fixation rates have been found to be lower under lowland conditions 

compared to upland soils. Volatilization is also a major source of loss 

of NH4+. Mikkelsen et al.(1978) suggested that as much as 20% of NH4+ 

is lost through volatilization in paddy soils. Craswell and Vlek (1979) 

have cited other studies where the reported loss was up to 60%. 

Runoff losses can be high in paddy fields under certain conditions. 

The continuous flow of water through rice fields can carry away nitrogen 

and other nutrients. Patrick and Reddy (1976) reported that loss of 

fertilizer nitrogen can be decreased by deep placement and split 

application.- Nitrogen, especially No3-, can be lost through leaching. 

Similarly, deep placed urea may also be leached before it hydrolyses 

(Craswell and Vlek, 1979). 

The slow release of NH4+ ions by mineralization is an important 

source of nitrogen for rice. · Studies have shown that nitrogen -supplied 

from soil by mineralization can play a more important role in the growth 

of rice than does fertilizer nitrogen (Heung, 1976). In fact, even at a 

rate of 120 kg nitrogen ha-1 of chemical fertilizer application, 

addition of compost increased rice yield (Oh, 1979). Other studies 

indicate that fertilizer nitrogen is exhausted by heading stage and what 

is absorbed thereafter is mineralized nitrogen (Yoshida and Padre, 

1975). Hence supply of organic natter should be a routine practice for 

soils that are not fallowed to restore natural fertility. 
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2.11 Organic uetter in rice soils 

Oh (1979) reported that high rice yields in Korea were obtained 

when soil organic matter content ranged from 2.7 to 4.4%. The 

decomposition rate of organic matter under lowland conditions is lower 

than that in dryland soils. Paddy soils that are not allowed to dry and 

those in which minirmJm tillage is practiced would be expected to 

accumulate organic matter. Heavy application of organic matter to such 

soils may be undesirable as some products of decomposition are 

unfavorable to plant growth (Tanaka, 1978). Anaerobic microbes that 

decompose organic matter in flooded soils successively reduce soil 

compounds such as nitrates, sulfates and organic acids (Yoshida, 1978). 

Sane end-products of decanposition in flooded soils are NH4+, CH4 , H2s, 

Fe++, co2 and organic acids. Sane of these compounds can accumulate to 

toxic levels and cause nutritional disorders in rice (Tanaka, 1978). 

The redox potential of the soil declines during organic matter 

decomposition. Fresh organic matter added to paddy fields causes a 

sharp drop in redox potential of the soil (Heung, 1976). Addition of 

azolla to a flooded paddy soil lowered the redox potential from 172 to 

132 mV over a period of 28 days (Saha et al.,1981). Anaerobic bacteria 

break down organic matter slowly so that nitrogen inmobilization in 

paddy soils is reduced relative to soils where aerobic organisms 

dominate. Hence, mineralization of organic natter of high C:N ratio can 

also proceed without a substantial drop in available nitrogen in flooded 

soils (Sanchez, 1976). 
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Nonetheless, addition of organic matter can be of irrmense benefit 

to most tropical paddy soils. The present land use pattern in rice

based cropping systems of small farmers is such that it favors rapid 

depletion of soil organic matter. An upland crop is often included in 

the cropping cycle, illtllediately after the harvest of the rice crop, 

which requires drying and tilling the land. It has been shown that soil 

organic matter decomposition is greatly enhanced by wetting and drying 

cycles (Arsjad and Giddens, 1966). According to Oei and Yamasaki 

(1979), alternate use of land for lowland and upland crops increases 

mineralization of organic matter and may increase crop yields in the 

short run~ but eventually yields may decline as the organic matter in 
-

the soil is gradually depleted. Therefore paddy fields in which the 

cropping system includes planting of upland crops should receive 

sufficient organic matter or fertilizer to maintain their fertility. 
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CHAPTER III 

F.FFEx:'TIVENESS OF FIVE rn.LA ACX'ESSICBS 

AS GIBm MANURE FCR A SUfoMm RICE CROP 

IRTROIXJCTirn 

Azolla has been used as a green manure for rice in China (Chu, . 

1979) and Vietnam ('!\Jan and Thuyet, 1979) for many centuries. Although 

cultivation practices and environmental requirements for successful 

utilization of azolla in rice production are well documented (Lumpkin 

and Plucknett, 1982), the use of azolla has not spread to other rice

producing countries. One reason for this lack of interest in azolla is 

that the traditionally cultivated species in China and Vietnam, A. 

pinnata var. imbricata, does not perform well in warm tropical climat es. 

Presently there are research programs underway to identify more 

promising species of azolla and accessions within species that are 

adapted to a wider range of environmental conditions (Lumpkin et al., 

1981~ watanabe and Berja, 1983). 

The main cbjective of the experiment reported herein was to 

identify five relatively heat-tolerant accessions of azolla and to test 

them as a source of nitrogen for a sumner rice crop. The experiment was 

conducted in Taichung, Taiwan. As it was thought that azolla may not 

meet the total nitrogen requirement of the rice crop, a second objective 

was to study the effect of supplemental preplant fertilizer nitrogen on 

growth and yield of rice. It was believed that the preplant fertilizer 

nitrogen would enhance early growth of rice until nitrog,an from 

incorporated azolla became available after mineralization. 
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Ten accessions of azolla from the collection at the University of 

Hawaii were taken to the Taichung District Agricultural Improvement 

Station in Taiwan and multiplied in 40 x 25 cm plastic trays. 

Subsequently, eight of these accessions together with four others from 

the collection maintained at Taichung station were evaluated to identify 

those best adapted to warm weather. The average temperature during the 

evaluation period (July and August, 1982) was above 30 C (Table 2). The 

dimensions of the screening plots were 5 m x 3 m. About 1000 g of 

azolla was introduced into one end of the plot and restricted to a 3 m2 

area of the plot with a balllboo pole. As the azolla bicmass increased, 

the pole was noved gradually towards the opposite end to permit azolla 

to spread over the water surface and thus minimize competition. The 

first five accessions to form a total biomass cover on the surface of 

the plot during this evaluation were chosen for the field experiment. 

They were A. caroliniana (Brazil), A. caroliniana (Ohio), A. microphylla 

(Galapagos Island), A. pinnata (Indonesia) and A. pinnata (Taiwan). The 

accessions not chosen were A. pinnata (Bangkok), ~- pinnata-1 (China), 

A. pinnata-2 (China),~- pinnata (Ivory Coast),~- filiculoides 

(Hawaii),~- filiculoides (California), and~- mexicana (California). 

The five accessions chosen as heat-tolerant were intercropped with 

rice under two different nitrogen application schedules, azolla CXllbined 

and azolla only. In azolla cart>ined treatments, the plots received 25 

kg ha-l fertilizer nitrogen before rice seedlings were transplanted and 

then they were inoculated with 0.25 kg ha-1 of azolla. The source of 
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TABLE 2. Mean te11p3rature (TEMP), relative humidity (FH), rainfall (RF) and 

day length (DL) in Taichung, Taiwan during July, 1982 to Oeceni)er, 1982. 

Period TEl'IP C RH RF DL 

Mean _Max ' 1!111 hr 

July 11 - 20 30.2 35.8 85.2 13 7.9 

21 - 31 28.6 34.0 78.4 312.7 6.5 

Aug. l - 10 28.7 34.3 85.4 73.9 7.4 

11 - 20 27.2 33.5 85.S 12.9 7.7 

21 - 31 27.8 34.2 75.6 7.1 

Sept. l - 10 27.6 35.0 73.7 2.8 7.0 

11 - 20 27.0 33.9 73.8 6.6 

21 - 30 25.3 33.2 71.0 8.7 

Oct. 1 - 10 24.6 33.l 70.7 8.1 

11 - 20 24.0 31.5 71.l 8.s 

21 - 31 23.2 31.3 74.9 6.2 

Nov. l - 10 22.0 29.9 78.6 l 5.1 

11 - 20 19.l 26.9 78.5 18.5 4.6 

21 - 30 19.3 27.3 77.8 10 5.6 

Dec. l - 10 16.0 25.4 75.S 6.6 
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nitrogen thereafter was the intercropped azolla that was incorporated 

twice at 11 and 21 days after transplanting (DAT) the rice. No nitrogen 

fertilizer was applied to the plot s receiving azolla cnly treatments 

where all nitrogen was supplied by the intercropped azolla inoculated 

and incorporated as described above. Three treatments receiving zero 

(control), 50 and 100 kg fertilizer nitrogen ha-1 respectively were 

included; these treatnents were not intercropped with azolla. The 100 

kg ha-1 treatment represents the quantity of nitrogen generally 

recorrmended for rice in ·Taiwan. The final treatnent was 50 kg 

fertilizer nitrogen ha-1 and intercropped azolla. The 14 treatments 

(Table 3) were replicated three times and were arranged in a randomized 

complete block design. 

The soil is classified as sand and shale alluvial with a pH of 5.5 

and an organic matter content of 2. 1%. The field was prepared by 

ploughing and then puddling. Excess water was ·drained off before 

individual plots were made. The size of each plot was 2.5 x 4 m. The 

plots were irrigated by lateral channels and each plot had a separate 

water inlet and outlet. Preplant applications of nitrogen, phosphorus 

and potassium (Table 4) were broadcasted after the final puddling and 

mixed with the soil during levelling. All plots received phosphorus and 

potassium prior to planting and also 11 DAT. Although the local 

recorrmendation calls for all the phosphorus to be added prior to 

planting, i;:nosphorus and potassium were applied in two installments to 

promote growth of azolla (Table 4). Fertilizer application at 11 and 21 

DAT was done irrmediately after the incorporation of azolla. 
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TABLE 3. SOurce and amount of nitrogen for rice in the 14 treatments. 

Treatment m.mtier source of nitrogen 

Azolla Fertilizer N 

- - kg ha-1 - -

1 A. caroliniana (Brazil)a 25b 

2 !· caroliniana (Ohio) 25 

3 !· einnata (Taiwan) 25 

4 A. einnata (Indonesia) 25 

5 !· microphylla (Galapagos) 25 

6 A. caroliniana (Brazil) 

7 !· caroliniana (Ohio) 

8 !· 12innata (Taiwan) 

9 !· einnata (Indalesia) 

10 !· microphylla (Galapagos) 

11 0 

12 50 

13 100 

14 !· 12innata ( Indonesia) 50 

aAmounts of nitrogen applied through~ species are given in Table 6. 

brertilizer nitrogen wss applied as anmonium .sulfate ( see Table 4) • 
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TABLE 4. Timing and rate of application of nitrogen, P10sphorus and 

potaesium. 

Fertilizer Treatment 

number 

Preplant 

11 DAT 

Postplant 

21 OAT 45 DAT 

- - - - - - - - kg 1,a-l - - - - - - - - -

aNitrogen 1 to 5 

12 & 14 

13 

6 to 11 

bi>hosphorus 1 to 14 

cPotassium 1 to 14 

25 

12.5 

25 

15 

24 

10 

20 

15 

36 

aApplied u amnonium sulfate eattaining 211 N. 

bAf:plied aa super phosphate containing 18\ P20s. 
cApplied as potaa.sium chlorid9 eattaining 60I K2o. 
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Fifteen-day old seedlings of rice variety Tainan-67, belonging to 

3.5 to 4.0 l?Dnth maturity group, were transplanted at a spacing of 21 x 

21 cm on August 13, 1982. Each plot had approximately 2(X) hills and 

each hill had 4 to 7 rice seedlings. 

The day after transplanting rice, azolla inoculurn was collected 

from plots where it was being multiplied and drained in the shade for 

about one hour. Drained azolla was inoculated at 0.25 kg m-2 and 

uniformally distributed over the entire plot. Azolla was incorporated 

manually 11 and 21 DAT. At the time of first incorporation, it was 

found that the azolla growth rate was slow. Therefore, an additional 

0.3 kg m-2 of azolla from the nursery was added to each plot. After 

incorporating part of it, approxinBtely 0.5 kg ha-1 of azolla was 

retained as inoculum for the next cycle. The entire mat of azolla was 

incorporated at 21 DAT. 

Measurements 

The total quantity of nitrogen added by azolla was estimated by 

determining the fresh weight per area, and dry matter and nitrogen 

contents at each incorporation. Azolla collected from a 0.25 m2 area 

was weighed and oven-dried at 70 C for 48 hrs. The nitrogen content of 

the dried azolla was determined by the method of Mitchell (1972) 

(Appendix A). The total fresh weight and total nitrogen from azolla 

incorporated into the soil was estimated as follows: 

Wt= Wl + W2 + 0.3 - 0.5 

wn = wt x d x p 

39 



where Wt is the total arrount of fresh azolla incorporated in kg m-2, w1 

and w2 are the estimated fresh weights at the time of first and second 

incorporations respectively, 0.3 is the additional azolla introduced at 

first incorporation in kg m-2 and 0.5 is the amount in kg m-2 estimated 

to have been retained as inoculum for second growth cycle, Wn is the 

nitrogen adde9 in kg ha-1 , dis the dry matter content per g fresh 

weight and pis the nitrogen content per g dry weight. The mean 

relative growth rates (RGR) of azolla for the periods 1 to 11 DAT and 11 

to 21 DAT were estimate9 by the equation: 

RGR = ln W2 - ln W1 / t 

where w1 and w2 are the fresh weights at the beginning and end of each 

growth cycl~ lasting t days. 

Plant height and tiller number of rice were taken from 12 hills per 

plot at 28, 48 and 75 DAT. These times represent the growth stages 

active tillering, p:tnicle initiation and heading, respectively. The 12 

hills were obtained by selecting three hills ~t randan in each _plot and 

making measurerrents en that hill and the three adjacent hills that made 

a square with the original hill. LAI and shoot dry weight were measured 

by harvesting plants at cne side of the plot. Four vertically growing 

tillers, selected from four hills, were used for LAI determination. 

Leaf area was estinated by rm..1ltiplying the product of leaf length x 

maximum leaf width by 0.75, the coefficient reconmended for rice by 

Yoshida (1981). Two hills were cut at ground level to determine shoot 

dry weight. At each sampling, total shoot nitrogen content was also 

determined on a subsample obtained by compositing the samples from all 

three replicates. 
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Grain and straw yields were determined by harvesting the rice 

plants in a 6.0 m2 area. Subsamples of 100 g of grain and straw were 

oven dried for 72 hours to determine dry weights. Based on the moisture 

percentage, grain and straw yields were adjusted to 14% moisture. Plant 

height and nunber of r:anicles per hill w1ere measured from 12 hills per 

plot selected as explained above for tiller number. The percentage of 

filled grains was estimated by inmersing grains from 15 p:inicles in salt 

water of specific gravity 1.06. Those grains that floated were 

separated as unfilled grains. Filled and unfilled grains were dried and 

counted with a seed counter. The filled grains were weighed to 

determine the 100 seed weight. In addition, shoot and grain nitrogen 

content, soil pH, and organic matter were also determined. 
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RESULTS AND DISCUSS!~ 

Biare.ss ~ nitrogen aCCUIIUlatia1 by azolla accessions 

The study reported here evaluated the biomass and nitrogen 

accllirR.llation of azolla accessions in the field when intercropped with 

rice during sunmer. The initial rates of biomass accumulation for all 

accessions were low because only 0.25 kg m-2 of azolla was inoculated to 

start off the intercrop (Table 5). The range of RGR.s measured for the 

five azolla accessions were 56 to 120 mg g-1 day-1 and 45 to 140 mg g-1 

day-l for the first and·second cycles respectively (Table 5). In field 

culture of azolla in China, RGR values for most of the known species, 

including some of the accessions used in this study, were around 185 mg 

g-1 day-1~ even in intercropped azolla, Lumpkin (1983) obtained RGRs as 

high as 175 mg g-l day-1. The rice seedlings in that experiment were 36 

days old at transplanting rather than 15 days, as was used in this 

study, and the environment beneath the rice canopy may have been more 

suitable for azolla growth as suggested by Becking (1979). The fifteen

day old seedlings used in this study evidently did not provide adequate 

shade for azolla. This was further aggravated by temperatures above 30 

C (Table l) during the growing season. The age of rice seedlings at 

transplanting and their subsequent vigor in canopy development determine 

light availability and growth of azolla. 

The means for the two nitrogen application schedules were canputed 

as follows: 

azolla ccubined - mean of treatments one through five where nitrogen 

was supplied by a combination of preplant fertilizer and intercropped 
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'nm.B 5. Fresh weight of azolla at 11 and 21 daya after transplanting (DAT) 

and relative growth rate {RGR) of azolla accessiona intercropped with rice as 

influenced by fertilizer nitrogen a{:Plication. 

Treatment Fresh weight 

ll DAT 21 MT 

- - kg m-2 - -

a. Azolla cx:id;,ined 

!· caroliniana (Brazil) 0.70 0.80 b* 

A. caroliniana (Ohio) 0.86 1.80 a 

A. einnata {Taiwan) 0.67 1.16 b 

A. einnata (Indonesia) 0.77 2.03 a 

A. mic:rophylla ( Galai;»gos) 0.44 1.21 b 

b. Azolla cnly 

!· caroliniana (Brazil) 0.70 1.00 b 

A. caroliniana (Olio) 0.81 1.78 a 

!· einnata {Taiwan) 0.72 1.25 b 

!· einnata ( Indonesia) 0.66 1.n a 

A. microphylla (Galai;»goe) 0.64 1.21 b 

**sE {18) 0.13 0.15 

RGR 

1-11 DAT 

102 

120 

91 

112 

56 

101 

115 

102 

94 

87 

18.93 

11-21 DAT 

45 C 

128 ab 

84 b 

140 a 

82 b 

63 C 

124 a 

90 ab 

126 a 

87 ab 

12.68 

*Means in a coluirn and category (a orb) followed by the sanm letter 

are not i,ignificanUy different at 0.05 level of probability aa determined 

by Dlncan's llllltiple range teat. 

**standard error of meen with error degreea of freedcm in i;:arenthei,es. 
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azolla; azolla only - mean of treatments six through ten where the only 

source of nitrogen was intercropped azolla. Fresh weight and nitrogen 

accumulation in azolla caibined treatments did not differ significantly 

from azolla only treatments. Applied fertilizer nitrogen is known to 

get into flood water in lowland paddies. Obc:ema et al., (1984) measured 

78 to 98 ppn nitrogen when 100 kg ha-1 of fertilizer nitrogen was 

applied. Growth of A. pinnata was reduced to 43% of the nitrogen-free 

control in a culture solution containing 40 ppn nitrogen (Yatazawa et 

al., 1980). The lack of a difference between azoJJa CXlllbi.ned and azolla 

only treatments suggests that applied nitrogen did not adversely affect 

growth. on the other hand, nitrogen fixation of azolla would be reduced 

if combined nitrogen is available for growth (Lumpkin and Plucknett, 

1982). If that happens, the economic benefit of azolla would be lower 

as nitrogen is recycled and not newly fixed. 

!· caroliniana (Ohio) and A. pinnata (Indonesia) had the highest 

RGRs during both growth cycles. These rates are similar to the -results 

obtained with!• pinnata by Watanabe et al. (1977). The RGR of A. 

microphylla was lower than the other species during the first cycle, 

particularly in azolla cxntrl.ned treatments (1 to 11 DAT, Table 5). A. 

microphylla, the only erect-growing species included in this experiment, 

tended to have slow early growth partly due to dieback at the mature end 

of the fronds. The RGR of A. caroliniana (Brazil) declined during the 

second growth cycle (11 to 21 DAT) and it had the lowest fresh weight 

accumulation at the second incorporation. Older lower portions of the 

frond mat of A. caroliniana (Brazil) tended to die quickly and a multi-
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layer mat was not formed. Moreover, fresh growth on a decaying older 

mat appeared to be slower, perhaps due to production of toxic 

substances. The other accessions maintained their growth rates during 

second cycle. 

The arrount of nitrogen from azolla incorporated into the soil was 

approximately proportional to the total mat fresh weight (Table 6) 

because nitrogen concentration of azolla was approximately the same. A. 

caroliniana (Ohio) and A. pinnata (Indonesia) produced significantly 

greater fresh weights tllan others at both incorporations and 

consequently the amount of nitrogen added was also higher. The nitrogen 

input by these two species was in the 40 to SO kg ha-1 range. 

Considering -the warm weather and the low inoculum level, this is a 

significant contribution. 

Effect of azolla and fertilizer nitrogen en growth of rice. 

The treatment effects on plant height, leaf area index (LAI) and 

shoot dry weight are presented in Tables 7, 8 and 9, respectively. 

Since no significant interaction was obtained between azolla accession 

and prepl.ant nitrogen application (A~ndix B), only the main effects 

are presented. Sections a and bin each table represent the treatment 

means when the data for the five azolla accessions and two nitrogen 

application schedules (azolla carbined and azolla only) were analyzed as 

a 5 x 2 factorial experiment. The data for all 14 treatments were also 

analyzed as a randomized complete block design and the means for the 
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TABLE 6. Total fresh weight and nitrogen added by intercropping azolla 

accesaions with rice for 20 days. 

Treatment Total fresh weight Total nitrogen added 

- - l'l3 ha-2 - - - - - kg ha-1 - - -

a. Azolla c:cat>ined 

~- earoliniana (Brazil) 1.31 e * 25.48 

A. earoliniana (Ohio) 2.46 a 50;40 

A. einnata (Taiwan) 1.63 e 22.07 

A. Einnata (Indonesia) 2.60 a .. 44.23 

A. microphylla (Galapagos) 1.46 e 21.89 

b. Azol.la only 

A. earoliniana (Brazil) 1.49 e 29.ll 

A. earoliniana (Ohio) 2.40 a 49.16 

A. Einnata (Taiwan) 1.n be 23.88 

A. Einnata (Indonesia) 2.23 ab 37.91 

A. mierophylla (Galapagos) 1.66 e 24.89 

-SE (18) 0.16 2.78 

*Means in a coll.Im and category (a orb) followed by the same letter 

are oot significantly different at 0.05 level of ~ility aa determined 

by Dlnean's aultiple range test. 

-Standard error of mean with error degrees of freedc:ln in psrentheses. 
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supplemental treatrrents (Treatments 11 to 14) are presented in 

Section c. 

Rice plants in azolla carbined treatments were significantly taller 

than those in azolla only treatments at all growth stages except at 

harvest although the differences were small (115 DAT) (Table 7 a). The 

shorter plants in azolla only treatments at all stages of growth 

probably was due to the fact that there was less nitrogen available for 

growth in these treatments. 

There was no significant difference in height of rice plants due to 

azolla treatment at the active tillering stage (28 DAT) and at panicle 

initiation (48 DAT) (Table 7 b). The differences in plant height among 

the treatments became more marked at heading (75 DAT) though differences 

were relatively small. At this sampling, the rice plants in the~· 

caroliniana (Brazil) and~- microphylla (Galapagos) treatments were 

significantly shorter .than those in the other azolla treatments. This 

difference was still evident at the final harvest (115 DAT). These two 

accessions accumulated less biomass and nitrogen than others (Table 6). 

Therefore the quantity of biomass and nitrogen added to the soil through 

azolla incorporation seemed to have had a positive effect on plant 

height of rice. 

Plants in control plots were shorter than in all other treatments. 

This shows that rice plants benefited fran nitrogen, either fran the 

incorporation of azolla or from fertilizer. Throughout the experimental 

period, plants fertilized with 100 kg nitrogen ha-1 were taller than 
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TABLE 7. Effect of azolla and fertilizer nitrogen application on plant height 

of rice at active tillering (28 DAT), panicle initiation (48 DAT), heading (75 

DAT) and at maturity (115 DAT). 

Treatment Plant height 

28 DAT 48 -DAT 75 DAT 115 DAT 

----------~----------
a. Nitrogen application schedules 

Azolla ccat>ined 57.36 a • 79.20 a 85.14 a 87.18 a 

Azolla only 54.06 b 76.78 b 82.60 b 86.32 a 

b. ~ selectiona 

~- caroliniana (Brazil) 54.93 75. 71 82.92 b 83.38 b 

A. caroliniana (Ohio) 56.04 79.71 85.56 a 88.85 a 

A. Einnata (Taiwan) 57.00 78.50 84.29 ab 87.99 a 

~- 12innata (Indonesia} 55.97 78.67 84.14 ab 87.94 a 

~- microphylla (Galapagos) 54.61 77.38 82.43 b 85.60 ab 

**SE (18) 1.46 1.37 1.11 1.43 

c. SUpplemental treatments 

Zero 51.92 de 72.33 d 78.64 e 81.78 d 

50 kg ha-1 59.72 ab 79.00 ab 65. 78 ab 69.75 a 

100 kg ha-1 61.14 a 80.17 a 86.00 a 90.00 a 

so kg+~. einnata (Indonesia) 56.81 abed 77.67 abc 84.97 ab 90.05 a 

SE (26) 1.48 1.38 1.02 1.40 

*11eans in a column and category (a, b or c) followed by the same letter 

are not significantly different at 0.05 level of probability as datermined 

by Duncan's llllltiple range test. 

**standard error of nean with error degrees of freedan in plrentheses. 
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others. The differences among the treatments became less pronounced at 

115 DAT, although the general trend remained the same. 

The effect of azolla treatrcents on LAI was not significant at all 

three sampling times (Table 8). There was a trend towards increasing 

LAI with increasing nitrogen from azolla but differences were small. 

The control treatment attained maximum LAI at 48 DAT while LAI increased 

wi th age up to 75 DAT in other treatrcents. Due to the time taken for 

mineralization and the slow-release of nitrogen, leaf area increase may 
. 

have been delayed in azolla treatments. 

Plots that received 50 kg ha-1 fertilizer nitrogen and intercropped 

A. pinnata (Indonesia) received about 75 kg ha-1 of nitrogen by 28 DAT. 

The 100 kg ~f nitrogen ha-1 treatment had also received about the same 

amount of nitrogen up to 28 DAT. However, the LAI of the 100 kg ha-1 

treatment was about 23% greater than the azolla treatment. This is 

further evidence that the response of rice to azoll a nitrogen was slower 

than fertilizer nitrogen. The treatment fertilized with 50 kg nitrogen 

ha-1 had a larger LAI at 48 DAT than the treatment fertilized with 50 kg 

nitrogen plus azolla. It is also possible that sane of the applied 

fertilizer nitrogen and other nutrients were taken up by the fast

growing azolla, reducing the availability of these nutrients to rice 

during early growth. Eventually the nutrients would have been released 

on mineralization to promote developnent of leaf area during the period 

between 48 DAT and 75 DAT. A reduction in nitrogen availability to rice 

caused by intercropped azolla has been reported by Lumpkin et al. (1980) 

and Bellows (1981). 
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TABLB s. Effect of azolla and fertilizer nitrogen applicatia, on leaf area 

index of rice at active tillering (28 DAT), panicle initiation (48 DAT) and 

heading (75 DAT). 

Treatment Leaf area index 

28 DAT 48 OAT 75 DAT 

a. Nitrogen applicatia, schedules 

Azolla o:iai)ined 2.07 3.89 4.30 

Azolla only l.94 3.67 3.98 

b. ~•lections 

A. caroliniana (Brazil) l.88 3.74 3.94 

A. caroliniana (atio} 2.00 3.88 4.45 

A. emnata (Taiwan) 2.08 3.78 J.96 

A. einnata (Indonesia) 2.08 3.89 4.44 

~- microphylla (Galapagos) 1.99 3.63 3.92 

**sE (18) 0.21 0.20 0.26 

c. SUpplemental treatmenta 

1.54 C • 2.99 d 2.81 e Zero 

50 kg 11a-1 2.34 ab 4.71 a 4.73 abc: 

100 leg ha-1 2.70 a 4.65 ab 5.49 a 

50 kg + ~- einnata ( Indcneaia) 2.11 abc: 4.01 abc: 4.82 ab 

SE (26) 0.22 0.23 0.26 

•Meana in a colum and category (a, b or c) followed by the saJIII letter 

are not significanUy diffentnt at 0.05 level of probability as determined 

by Duncan's 111.1ltiple range teat. 

**standard error of mean with error degrees of freedcm in parentheses. 
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At 48 and 75 DAT, LAI showed a typical response to an increasing 

supply of nitrogen and the curves were best fit by a quadratic function 

(Figure land 2). The fertilizer nitrogen curve was above that of 

azolla treatments. As discussed previously, the lower LAI values for 

the azolla treatments may be attributed to the lag in nitrogen 

availability from azolla. As more azolla nitrogen mineralized frorn 48 

DAT to 75 DAT, the gap between the curves narrowed ( contrast Figures l 

and 2). 

The LAI did not exceed 6.0 even at 100 kg ha-1 of fertilizer 

nitrogen though an LAI of 6.0 is considered necessary for maximum yield 

(IRR!, 1972). The low LAI can be attributed to the fact that the crop 

was planted late. The sum,er crop in Taichung is usually planted by 

early July and harvested by mid-November. Rice in the present 

experiment was planted on July, 30 and harvested on December 06. During · 

the period of maxilI'A.ml vegetative growth in September and October, the 

average temperature became progressively cooler and dropped to 23 C by 

late October (Table 2) which may have affected leaf area developnent. 

Azolla ccni>ined treatments had significantly higher shoot dry weight 

than azolla cnl.y treatments at 48 and 75 DAT (Table 9 a). Differences 

among azolla treatments were evident only 75 DAT (Table 9 b). 

Incorporation of A. caroliniana (Ohio), A. pinnata (Taiwan) and A. 

pinnata (Indonesia) resulted in greater shoot weights than the other two 

accessions. Among the supplemental treatments, shoot dry weight 

increased with increasing amount of nitrogen application and significant 
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TABLE 9. Effect of azolla and fertilizer nitrogen application al shoot 

dry weight of rice at active tillering (28 DAT), panicle initiation 

(48 DAT) and heading (75 DAT). 

a. 

b. 

c. 

Treatment 

28 DAT 

Shoot dry weight 

48 DAT 75 DAT 

- - - - - - - - - g m-2 - - - - - - - - -

Nitrogen applicatia1 schedules 

Azolla cart>ined 282 804 a • 886 a 

Azolla only 262 733 b 839 b 

~ !!!elections 

A. caroliniana (Brazil) 263 739 827 b 

A. caroliniana (a,io) 276 806 898 a 

A. 12innata (Taiwan) 287 790 876 ab 

A. 12innata (Indonesia) 261 772 875 ab 

A. microl2!:xlla ( Galapagos l 273 734 836 ab 

**sE (18) 21.4 32.l 28.2 

supplemental Treetments 

Zero 250 b 618 e 685 d 

50 kg ha-1 299 ab 876 a 834 abc 

100 kg l'a-1 370 a 904 a 877 a 

50 kg+~- 12innata (Indonesia) 278 b 830 abc 850 ab 

SE (26) 23.6 58.0 33.6 

*Mearu, in a colim, and category (a, b or c) followed by the Mmlt 

letter are not significantly different at 0.05 level of probability 

as determined by Duncan's llllltiple range test. 

**standard error of lll!all with error degrees of freedan in parentheses. 
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differences between the control and 100 kg nitrogen were observed at all 

sampling times (Table 9 c). 

Tiller nurrber in azolla c:arbined treatnents did not differ 

significantly from azolla only treatments (Table 10 a). There was no 

significant effect of azolla treatrnent on tiller nurrber at 48 DAT (Table 

10 a). Tiller number dropped slight ly in all treatments from 48 to 75 

DAT due to tiller mortality. Since A. caroliniana (Ohio) and A. pinnata - -
(Indonesia) added more nitrogen than other accessions, they had the 

highest tiller number and lowest tiller mortality among azolla 

treatments at 75 DAT. The control treatment had significantly fewer 

tillers than all other treatments and the largest nunber of tillers were 
-

obtained wi t h 100 kg of fertilizer nitrogen • . Tiller mortality decreased 

with increasing rate of fertilizer nitrogen application (Table 10 c). 

Tiller production of rice has been shown to be influenced greatly by 

nitrogen nutrition (Ishizuka, 1971). 

According to Murayama (1979), about 50 to 60% of total nitrogen in 

high-yielding rice varieties is absorbed by the p:tnicle initiation 

stage. In the present study, even though differences in growth 

p:trarneters were observed at p:tnicle initiation (48 DAT) in response to 

nitrogen supply, some of the treatment effects became pronounced only at 

heading (75 DAT) {Tables 7 to 10). This suggests that nitrogen from 

azolla probably continued to become available to the rice crop after 

p:tnicle initiation. Watanabe et al.(1977) and Bellows (1981) have 

reported mineralization rates of 59% and 42% respectively for fresh 

azolla nitrogen during the first four weeks after incorporation. 
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TABLE 10. Effect of azolla and fertilizer nitrogen application on tiller 

production of rice at panicle initiation (48 DAT) and heading (75 DAT) and 

tiller mortality fran 48 to 75 DAT. 

Treatment Tiller nuntier 

48 DAT 

a. Nitrogen application schedule 

Azolla ccmbined 

Azolla only 

b. ~ selections 

A. caroliniana (Brazil ) 

A. caroliniana (c»'lio) 

A. pinnata (Taiwan) 

A. pinnata (Indcnesia) 

A. microphylla (Galapagos) 

**sE (18) 

c. Supplemental treatments 

Zero 

50 kg ha-1 

100 kg ha-l 

17.08 

16.23 

17.02 

l~.53 

16.48 

16.78 

16.48 

0.69 

15.47 C 

18.47 ab 

18.78 a 

50 kg+~. pinnata (Indonesia) 17.31 abc 

SE (26) o.ao 

75 DAT 

15.78 

15.46 

15.28 ab* 

16.43 a 

14.89 b 

16.ll ab 

15.39 ab 

0.55 

13.22 f 

16.83 ab 

17.58 a 

16.64 abc 

0.50 

Tiller 

rortality 

- - \ - -

7.15 

4.50 

9.80 

0.33 

9.43 

3.78 

5.eo 

4.17 

14.54 a 

8.70 ab 

5.19 ab 

3.69 ab 

4.40 

*Means in a colurm1 and category (a, b or c) followed by the eame letter 

are not significantly different at 0.05 level of probability as determined 

by Duncan's nultiple range test. 

**standard error of mean with error degrees of freedc:m in parentheNa. 
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Assuming a comparable rate of mineralization in the study reported here, 

about 50% of the nitrogen would have become available only after panicle 

initiation. 

Effect of azolla and fertilizer nitrogen at yield <X11ipouents of rice 

The number of panicles per hill is dependent on the number of 

fertile tillers. Tillers per hill declined between 48 and 75 DAT with 

the result that the correlation between number of panicles and number of 

tillers increased from 0.64 at 48 DAT to 0.85 at 75 DAT. Supplementing 

azolla with 25 kg fertilizer nitrogen (azolla ccmi>ined vs azolla only 

treatments) had no effect on tiller nurrber or on the nuni:>er of panicles 

produced (Table 11 a). 

Although there was a small but significant effect of azolla on 

tiller number at 75 DAT (Table 10 b), there was no significant effect of 

azolla accessions or nitrogen application schedules on nuni:>er of 

panicles per hill at harvest (115 DAT) (Table 11 b). 

The control treatment had significantly fewer panicles than all 

other treatments while the highest number of panicles per hill was 

obtained by fertilizing at 100 kg nitrogen ha-1. This is consistent 

with the results of Fagi and De Datta (1981) showed that the number of 

panicles per hill increased with nitrogen from zero to 90 kg ha-1. 

Grains per panicle is determined during the time of spikelet 

differentiation which occurs between p!nicle initiation and heading. 

This period is critical in relation to the nitrogen balance within the 

plant. Excessive nitrogen can promote vegetative growth at the expense 
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TABLE ll. Effect of azolla and fertilizer nitrogen application on yield 

ccmponents of rice. 

Treatment Panicles Grains per Filled t)Grains 

per hill panicle grains per hill 

__ , __ 
- - g - -

a. Nitrogen applic:atiat schedule 

Azolla <Xllt>ined 15.83 85.23 75.80 1346 

Azolla only 15.46 84.02 74.49 1300 

b. ~ selections 

A. c:aroliniana (Brazil) 15.12 80.29 b* 74.89 ab 1213 C 

~- caroliniana (Olio) 15.83 91.36 a 70.57 b 1445 a 

A. 12innata (Taiwan) 15.32 82.17 ab 76.18 ab 1257 be 

A. 12innata (Indonesia) 16.24 86.58 ab 75.88 ab 1403 ab 

A. lllicrophylla (Galapagos) 15.72 82. 72 ab 78.23 a 1299 abc 

**SE {18) 0.48 4.50 3.16 20.63 

c. SUpplemental treatments 

Zero 12.97 e 84.17 abc 78.18 abc 1092 d 

50 kg ha-1 15.86 abc 86.60 abc 75.41 abed 1376 C 

100 kg ha-1 17.42 a 87.77 abc 71.21 bed 1496 ab 

50 kg+!· 12innata (Indonesia) 17.17 ab 96.52 a 68.90 d 1632 a 

SE (26) 0.42 4.18 2.36 22.14 

*Means in a coll.llll'I and category (a, b or c) followed by the same letter 

are not significantly different at 0.05 level of probability aa determined 

by Duncan's nultiple range test. 

- Standard error of mean with error degrees of freedom in parentheses • . 

•Product of panicles per hill and grains per panicle. 
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of spikelet formation while very low nitrogen c.an reduce spikelet 

formation. A satisfactory nitrogen level ensures formation of 

sufficient spikelets to achieve a high yield (Murayana, 1979). 

Application of preplant fertilizer nitrogen to supplement azolla did not 

have an effect on grains per panicle (Table 11 a). There were 

significant differences in number of grains per panicle among azolla 

accessions (Table 11 b). Azolla treatments where the quantity of 

nitrogen added was low had fewer grains per panicle than all other 

treatments (Table 11). The control treatment produced more grains per 

panicle than some of the azolla treatments, but the differences were not 

statistically significant • . Nutrient availability to each panicle during 

grain formation nay have been greater in the control treatment than in 

the azolla treatmants because it produced significantly fewer panicles. 

Since mutual compensation of yield components occurs in cereals 

like rice, the total nurrber of grains per hill, wnich is the product of 

panicles per hill and grains per panic1e, is a better index of potential 

yield than either panicles per hill or grains per panicle. Nuntler of 

grains per hill for all azolla and nitrogen trearnents was greater than 

the control (Table 11). Approxinately 78% of the variation in grains 

per hill was accounted for by the amount of nitrogen applied (Table 12). 

The nurrber of grains per hill was proportional to the amount of nitrogen 

applied, regardless of source (Figure 3). This suggests that the yield 

potential established at spikelet differentiation in azolla treatments 

followed the same trend as fertilizer nitrogen treatments. 
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~ 12. Regression l'IDdels and coefficients of determination (R2) 

for the relationship between growth and yield parameters of rice and 

total nitrogen application for all 14 treatments. The nodels express 

the component (y) as a function of total nitrogen applied (x). 

Canponent F.quation 

Grains per panicle y = 77.69 + .15x .48* 

Filled grain% y = 79.08 - .08x - .000lx2 .47* 

Dty matter yield y = 9.69 + .045x - .0002x2 .81 ** 

Straw yield y = 4.93 + .028x - .0001Sx2 • 74** 

Grain yield y = 4.76 + .Ol7x - .000072x2 .41* 

*significant at P=.05 

** . 'f' 001 S1gn1 icant at P=. 
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In high yielding rice varieties, 70 to 80% of total nitrogen 

absorbed is taken up by the time the heading stage is reached (Murayama, 

1979). Significant correlations have also been reported by Matsushima 

(1980) between nitrogen uptake up to late spikelet differentiation and 

number of grains m-2• Nitrogen uptake up to 75 DAT (x), the product of 

plant nitrogen concentration and shoot dry weight per unit area, was 

linearly related to grain yield and grains per hill with 34% of the 

variation in grain yield and 63% of the variation in grains per hill 

being accounted for by nitrogen uptake up to 75 DAT. 

Grain yield= 4.60 + .013x r 2=.34 (P=.05) 

Grains per hill= 852 + 7.97x r 2=.63 (P=.01) 

Vlek et al.(1979) found nitrogen uptake to be curvilinearly related to 

grain yield and number of grains m-2: the increase was linear up to 

80 kg nitrogen ha-1 • The results reported here are in agreement with 

their observations. 

The filled grain percentage reflects the ability of the leaves and 

other photosynthetic structures to supply assimilates to the grains for 

storage. Murata and Matsushima (1975) stated that a filled grain 

percentage of less than 80 could mean a source limitation while a 

percentage of over 80 was likely due to sink limitation. Filled grain 

percentages were less than 80 for all treatments in the present study 

(Table 11) and were negatively correlated with number of grains per hill 

(Figure 4). Treatments receiving larger amounts of nitrogen had lower 

filled grain percentages than those receiving smaller amounts of 

nitrogen. This may be due to a greater sink capacity because number of 
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panicles per hill and number of grains per panicle were increased by 

nitrogen application in the current study (Table 11 c). In the study of 

15 genotypes, Jones et al.(1979) concluded that grain filling rate was 

negatively correlated with panicles per unit area. This was due to the 

distribution of photosynthetic products among a larger number of sinks. 

As a result , the filled grain percentage tended to be lower in 

treatments where the nurrber of grains per hill was higher. 

Another reason for the lower filled grain percentages in the 

present study was the unfavorable weather during grain ripening. The 

crop matured at the onset of winter and therefore during the grain 

ripening period the crop experienced very cold \.Jeather (Table 2). The 

average temperature and sunshine hours for the last 30 days was 19 C and 

5.5 hrs respectively; at times the day temperatures were below 15 C. 

Consequently, crop maturity was delayed by about 10 days, that is, 115 

days from planting to harvest as opposed to 105 for a surrmer crop 

planted by early-July. Hence the potential of those treatments that had 

a higher grain storage capacity was not translated into grain yield due 

to insufficient supply of assimilates during the grain filling period. 

As a result, the highest grain yield cbtained in this study was about 2 

M; 1,a-l less than the yields obtained in other experiments at Taichung 

where the sumner rice crop natured three to four weeks earlier. 

The seed weight is a varietal characteristic and is not usually 

influenced by environmental factors including nitrogen nutrition. Nate 

of the treatments significantly influenced seed weight in the present 

study. 
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Effect of azolla and fertilizer nitrogen on grain and straw yield 

Despite significant differences among treatments in sane growth 

parameters and yield components, the differences in grain yield were 

small and for the most part, nonsignificant (Table 13). Incorporation 

of azolla or application of preplant fertilizer nitrogen increased grain 

yield by about 0.8 Mg ha-1 over the control. The control treatment 

yielded 4.63 Mg ha-1 of rice which was quite high. Improved rice 

cultivars, such as the one used here, can produce high yields with 

residual nitrogen. Since the field used in this study had been planted 

to rice previously, the rice crop of this experiment appears to have 

benefited from the residual fertility. on the other hand, grain yields 

in the 50 and 100 kg nitrogen ha-1 treatments were reduced by the lower 

filled grain percentage. Therefore the fertilizer nitrogen-yield 

relationship was almost linear, though the quadratic model slightly 

improved the fit. The grain yield-nitrogen application relationships 

for fertilizer nitrogen and azolla treatments were close to each other 

at the lower levels of applied nitrogen (Figure 5). However, with 

higher amounts of nitrogen, the distance between the curves widened. 

This may be due to a) over estimation of nitrogen input in azolla 

carbined treatments orb) lo'\oler availability of nitrogen to rice plants 

from azolla due to slower mineralization and inmobilization. 

Only 41% of the variation in grain yield was accounted for by the 

al'OC>unt of nitrogen applied (Table 12). As discussed already, the cold 

spell and shorter days during grain ripening could be responsible for 

the relatively low coefficient of determination for the relationship 
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TA8LB 13. Effect of azolla and fertilizer nitrogen application a, grain 

yield, straw yield and grain:straw ratio. 

Treatment Grain Straw Grain:straw 

yield yield ratio 

----Mg ha-1 - - - -

a. Nitrogen application schedule 

Azolla caltlined 5.48 5.98 a* 0.92 

Azolla only 5.28 5.64 b 0.94 

b. ~ selections 

A. caroliniana (Brazil) 5.67 5.70 ab 0.89 b 

A. caroliniana (Chlo) 5.46 6.15 a 0.89 b 

~- einnata (Taiwan) 5.46 5.89 ab 0.93 ab 

A. 52innata (Indonesia) 5.47 5.87 ab 0.93 ab 

A. micro~lla (Galapagos) 5.44 5.45 b 1.07 a 

**sE (18) 0.17 0.23 0.040 

c. supplemental treatment.a 

Zero 4.63 d 5.00 C 0.93 ab 

50 kg ha-1 5.59 ab 6.03 a 0.93 ab 

100 kg ha-1 5.90 a 6.34 a 0.93 ab 

50 kg+!· E!innata ( Indonesia) 5.72 ab 5.92 ab 0.97 ab 

SE (26) 0.16 0.21 0.036 

*Meana in a coll.ml and category (a, b or c) followed by the aaaa letter 

are not significantly different at 0.05 level of {r'Obability aa determined 

by Duncan's nultiple range teat. 

**standard error of mean with error degrees of freedan in parentheses. 
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between grain yield and added nitrogen (Table 12). Fage and De Datta 

(1981) observed that under low solar radiation increasing nitrogen 

levels above 60 kg ha-l did not give a proportional yield increase. 

They also attributed lower yields of wet season plantings to low 

temperature and high humi di t y. These same reasons can be ascribed to 

the relatively small increase in grain yield with increasing nitrogen in 

the current study. 

Ishizuka (1971) stated that growth during any given stage is nainly 

influenced by the ability of the leaves formed at one stage to 

contribute to the growth of the next. Usually LAI in cereals increases 

as the amount of nitrogen increases (Wells and Faw, 1978). Therefore, 

an important management objective is to attain the optimum LAI required 

to produce the maximum yield. During the ripening phase, the leaves 

supply assimilates to the developing grains which are the sink. Thorne 

et al. (1979) observed a positive correlation between grain yield and 

LAI at anthesis in wheat. A similar correlation existed between grain 

yield and LAI at 75 DAT (Figure 6). Studies at IRRI (1972) showed that 

grain yield does not change substantially when LAis range from 6.0 to 10 

and yields may be lower if LAI is below 6.0 due to source limitation. 

The LAI in the present experiment never exceeded 6.0 and this nay have 

limited grain yield. 

Total dry natter production was rrore highly correlated with added 

nitrogen than all other parameters (Table 12). Application of nitrogen, 

either in the form of azolla or as fertilizer, promoted vegetative 

growth and dry matter production of rice. As a result, the vegetative 
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organs required to produce a high yield were formed in the nitrogen 

treatments during early growth. However, environmental limitations 

apparently were in part responsible for the failure to realize the yield 

potential established at earlier stages of growth. The grain:straw 

ratio was typical of improved rice varieties which partition more dry 

matter into grain than do traditional cultivars. The mean grain:straw 

ratio of highly nitrogen responsive varieties was 1.13 and many dwarf 

varieties had ratios above 1.20 (Chandler, 1969). The ratios obtained 

in this study were mostly less than one. Therefore dry matter 

distribution was less efficient than in sane improved cultivars. This 

cannot be due to excessive vegetative growth, because the maximum amount 

of nitrogen applied was only 100 kg ha-1 and the maximum LAI reached was 

5.9. It is concluded that adverse weather conditions during the grain 

filling phase reduced carbohydrate synthesis and the partitioning of dry 

matter into grain. 

Effect of treatment m plant niLLogen ccntent 

The nitrogen concentration of plants is usually higher in 

young seedlings and then declines with the development of mechanical 

tissue. Nitrogen concentration is an index of nitrogen availability to 

plants. Treatments where higher amounts of nitrogen were applied 

generally had higher plant nitrogen concentrations at all stages of 

growth ( Table 14) • Nitrogen determinations were done on composite 

samples and were not replicated: thus the results were sanewhat 

inconsistent. 
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TABLE 14. Effect of total nitrogen application en plant nitrogen 

content at active tillering (28 DAT), panicle initiation (48 DAT) and 

heading (75 DAT). 

Treatment 

a. Nitrogen application .schedule 

With nitrogen 

Without nitrogen 

b. Azolla selections 

A. caroliniana (Brazil) 

A. caroliniana (Ohio) 

A. 12innata (Taiwan) 

A. 12innata (Indonesia) 

A. micro12hylla (Galapagos) 

c. Control 

Zero 

50 kg ha-1 

100 kg ha-1 

50 kg+ A. pinnata (Indonesia) 

*Not statistically analyzed. 

28 OAP 

* Plant nitrogen content 

48 OAP 75 OAP 

- - - - - - - - - % - - - - - - - - -

2.40 0.90 0.57 

2.49 0.75 o.so 

2.60 0.65 0.60 

2.60 0.95 0.53 

2.70 0.70 0.60 

2.55 0.95 0.55 

1.80 0.90 0.40 

2.30 0.80 0.35 

2.60 0.75 0.60 

2.70 0.85 0.70 

2.80 0.90 0.50 
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The total ail'Ount of fresh biomass added to soil by azolla during 

the 20 days of intercropping was between 14 to 24 M; ha-1 (Table 6). 

The addition of such large quantities of organic matter might be 

expected to increase soil organic matter content. In most of the 

plots in this study, soil organic matter increased during the cropping 

period by about 0.3%. 

The effects of azolla and fertilizer nitrogen supply on rice 

growth and yield may be sunmarized in the following manner. Azolla 

caroliniana (Ohio) and~- pinnata (Indonesia) produced more biomass 

and accumula~ed nore nitrogen than the other azolla accessions during 

the warm surra:ner months at Taichung. Azolla cari>ined treatments where 

25 kg fertilizer nitrogen per ha was applied prior to planting 

resulted in better early growth of rice but did not significantly 

increase rice yield. The potential yield that was established at 

heading was highest in plots fertilized with 50 and 100 kg nitrogen 

ha-1 followed by azolla accessions which produced greater amounts of 

biomass and fixed more nitrogen. There was an inverse relationship 

between nurrber of grains per hill and filled grain percentage at 

harvest and consequently the rice yield response to applied nitrogen 

was small. Nevertheless, nitrogen supplied either as fertilizer or as 

azolla produced relatively higher yields than control. Azolla 

nitrogen can replace requirement for fertilizer nitrogen, especially 

at later stages of growth. 
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CJIAPl'ER IV 

GRQfDI ~ OF AZOLLA SPEX:IES 

TO FRaID BICJIIASS, LIGHT AND '.lun>EJU\'lURE 

DnlQXJCTI~ 

Dry matter and nitrogen accunulation by azolla are influenced by 

environment and management factors. The important environmental 

factors influencing the physiology of azolla are light and 

temperature. The response of azolla to light has been studied by 

several researchers (Ashton, 1974; Becking, 1976; Peters et al., 

1980). Studies on the influence of temperature on azolla have been 

reported by Lumpkin (1983) arid Watanabe and Berja (1983). 

A completely formed azolla canopy is a dense biomass mat 

composed of fronds. The mat can reach about 5.0 an in thickness and 

cover the water surface fully. The microenvironment of this mat with 

regard to light and temperature is dependent on the azolla biomass 

present at any given time. Initial biomass cover can be regulated by 

management to maximize fresh weight and nitrogen accumulation by 

azolla. Holst and Yopp (1979) found that growth of azolla is reduced 

with time by the progressive increase in biomass. The initial 

biomass used to inoculate fields in China and Vietnam range from 250 

to 750 g m-2 (Lumpkin and Plucknett, 1982). Usually at least 250 g 

m-2 of azolla is preferred to provide a satisfactory surface cover. 

In the field experiment reported in Chapter III, 250 g m-2 of azolla 

was applied at the first inoculation and approximately 500 g m-2 was 
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used for the second cycle. In that experiment, in spite of the warm 

surrmer weather, A. caroliniana (Ohio) and~- pinnata (Indonesia) 

performed well enough to accumulate ever 40 kg nitrogen ha-1 within a 

period of three weeks. A. microphylla (Galapagos) also was very 

productive during the second cycle. This species also differed fran 

others as its fronds grew upright once the mat became dense. To more 

fully characterize the responses of the above three species to light, 

temperature and initial biomass, a series of greenhouse experiments 

were conducted. 

Four experiments were conducted at the greenhouse facilities of 

the Department of Agronany and Soil Science, University of Hawaii. 

The treatments and some other particulars specific to an experiment 

are included under the experimental details at the beginning of each 

experiment. Information pertaining to plant material, culture 

solution, experimental site and measurements are given below. 

Plant material 

Azolla inoculum was obtained by multiplying azolla in plastic 

buckets containing a nitrogen-free culture solution (Table 15). The 

bianass was reduced periodically during multiplication to prevent the 

mat from getting too dense~ this was essential in A. rnicrophylla as 

erect-growing fronds tended to show slow early growth. 
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TABLE 15. Chemicals used and nutrient concentration of culture 

solution. 

Chemical 

formula 

KH2ro4 

Mgs:>4.7H2o 

NaCl 

cac12.2H2o 

Iron sequestrene 

CoCl.6H2o 

CUS04.SH2o 

H3B03 

MnC12.4H2o 

Na2Mc04.2H20 

zn.so4.7H2o 

Formula 

weight 

136.09 

246.50 

58.44 

147.02 

930.83 

237.95 

249.69 

61.84 

197.91 

241.96 

287.56 

Stock 

solution 

- g 1-l 

43.85 

135.75 

12. 72 

55.20 

41.67 

0.04 

0.4 

0.56 

3.6 

0.25 

2.2 

aNutrient 

concentration 

- - PEJil - -

5 p 

6.25 K 

7.5 Mg 

8.5 s 

2.5 Na 

4 Cl 

7.5 ca 

13 Cl 

1.25 Fe 

0.005 Co 

0.05 cu 

0.05 B 

0.5 Mn 

0.05 Mo 

0.5 Zn 

aNutrient concentration in culture solution when one ml of stock 

solution was diluted with 2000 ml of water. 
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Culture solution 

The chemical composition and nutrient concentration of the 

culture solution are given in Table 15. One ml of stock solution was 

diluted to 2000 ml with tap water to prepare the culture solution 

containing the nutrients at the required concentrations. The culture 

solution had a pH of 6.0 and an electrical conductivity of -650jlIDhos. 

The solution was replaced every six days at the time of sanpling in 

Experiment l. There was no culture solution replacement in 

Experiments 2 to 4. It .was assumed that the nutrients added at the 

beginning of the experiment \were sufficient to sustain growth until 

the final harvest. This assumption was based on observations that 

normal growt}J. was obtained in culture solutions that were reused after 

azolla was harvested. 

Experimental site 

Experiments 1 to 3 were ex>nducted in a greenhouse while 

Experiment 4 was carried out in temperature-controlled acrylic plastic 

chant,ers sited close to the greenhouse. The mean temperature ranged 

from 28 to 34 C during the period of experimentation (Appendix C). 

The diurnal temperature fluctuation was 20 to 38 C during the period 

of experimentation while the tefii)erature extremes within the nutrient 

solution were 25 to 35 C. The tefii)erature of the atnosphere was 

similar to that of culture solution in the plastic chambers. The 

total solar radiation received inside the green house and plastic 

chamber was measured with a LI-COR model PY4690 pyranometer. Solar 
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radiation inside the greenhouse was 65% of that received outside. The 

corresponding figure for the plastic chambers was 80%. 

The experimental units used for Experiment l were one-liter 

containers with a surface area of 85 cm2• For Experiments 2 to 4, 

azolla was grown in five-gallon plastic buckets. The buckets were 

lined with black polythene bags to prevent entry of light through the 

sides to minimize growth of green algae. The surface of each bucket 

was divided in half with vertical fiberglass sheets. Each half was 

taken as an experimental unit and it had a surface area of 430 crn2. 

Measurements 

The entire azolla mat within the experimental unit was rernoved 

from the culture solution, the excess moisture blotted away and fresh 

weight was taken. In Experiment 1, the fronds were returned to the 

~lture solution and arranged to reconstruct the mat. The rest of the 

experiments required destructive sampling; 1.0 g of fresh weight was 

saved for chlorophyll determination and the remainder oven dried for 

dry weight and nitrogen estimation. Chlorophyll content was 

determined by the method of MacKinney (1941) as modified by Arnon 

( 1949). The procedure of Mitchell ( 1972) was used to determine total 

nitrogen. These two methods are detailed in Appendix B. The 

temperature and relative humidity were recorded with a hygro

therrnograph for the experiments conducted in the greenhouse (Appendix 

C) • 
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EXPEJUMEN.r 1: BIOV\SS ACClMJIATICN OF 'l'BREE SPEX:IES OF 'AZO'ILA. 

EXPERIMENTAL DETAILS 

The objective of this experiment was to determine the growth 

curves of !· caroliniana (Ohio), A. microphylla (Galapagos) and A. 

pinnata (Indonesia) in 65 and 100% light starting from a single frond. 

The azolla was grown until there was no further increase in bic:mass. 

The 65% light level was obtained by using neutral-density shade-cloth. 

The treatments consi_sted of a three species by two light levels 

factorial arranged in a randomized complete block design with three 

replicates. Fresh weight was measured every three days until 27 days 

after 'planting' (OAP) when biomass accumulation levelled off. 

RESULTS AND DISCUSSICN 

Typical sigmoid growth curves were d>tained for all treatments 

(Figure 7). !· microphylla accmnulated more fresh weight than the 

other two species at all measurement days. A single frond of!· 

microphylla weighed 0.06 g while those of~- caroliniana and A. 

pinnata weighed 0.05 g. This initial advantage and the upright-growth 

habit of!· microphylla may have enabled it to produce greater fresh 

weight than others. The largest difference in weights was at 24 OAP 

when~- microphylla fresh weight was 38% greater than!· caroliniana. 

In general, the time taken to completely cover the surface for control 

and shaded treatments was 12 and 15 OAP respectively. Fresh weights 

in the shade treatment was generally less than half that of control. 

Growth was slow during the first 12 days. The 12 to 21-DAP interval 
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FIGURE 7. Growth curve of three Azolla species grown under 65% light 

(shade) and 100% light (control). 
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was the grand period of growth for the control treatment and 15 to 21 

DAP for shade treatment in A. caroliniana and~- microphylla; in~

pinnata, the onset of the grand period of growth was delayed by about 

two days. Thus biorrass accumulation under shade was limited by rate 

of growth and duration of grand period of growth. 

The azolla biomass at the onset of rapid growth was 200 g m-2 

( Figure 7) • Thus, the lag phase of growth can be by-passed by 

starting with a biomass of 200 g m-2 or more. Azolla often encounters 

competition from green-algae in field conditions. A complete surface 

cover of azolla would minimize light availability for green-algae and 

suppress its growth. The container was completely covered by a single 

layer of fronds at about 400 g m-2. A biomass of over 200 g m-2 would 

be required to bring about rapid growth in azolla. Since the 

environment under field conditions may not be the optimum for growth 

of azolla, a slightly higher frond biomass may be necessary. 

The RGR of azolla increased slightly and then decreased and the 

decrease with time was curvilinear (Figure 8). This is the 

relationship conmonly observed in other plants as well. CJI:on 

developing a complete canopy over the surface, competition for 

environmental resources causes a reduction in RGR. In addition, the 

proportion of non-photosynthetic tissue in most plants increases as 

they grow older and consequently RGRs decline. An increase in non

photosynthetic tissue with age does not seem to occur in azolla 

because fronds from dense mats resume vigorous growth upon reduction 
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in mat biomass. Thus, the decline in RGR appears to be caused mainly 

by competition for light and space. 

The R;Rs during the first two weeks of growth were about 300 ng 

g-1 day-1 and these values were similar to those reported by 

Brotonegoro and Al:xfolkadir (1976) for A. pinnata, but lower than the 

413 mg g-1 day-1 for A. caroliniana quoted by Becking (1979). The 

lower RGRs in this study may be due to warm temperatures in the 

greenhouse (Appendix C). Generally the RGR started to decline at 9 

OAP 1Nhen the mat biomass exceeded 600 g m-2 ( Figures 8 and 9). As 

discussed above, at least 400 g m-2 was required to efficiently 

intercept light. Thus the optimum biomass required to maintain the 

maximum gr~h rate was 200 to 600 g rn-2• In order to maintain the 

biomass within this range, excess azolla would need to be removed 

every 2 to 3 days which is impractical in agricultural conditions. As 

the biomass range for rraximurn growth is very narrow, it will be 

difficult to maintain an azolla crop at its maximum biomass 

accumulation potential. 

EXP.l:RlftERl' 2: af'a.--r' CR INITIAL FKH> Bia.ASS 00 ™111 OF AZOLLA 

SPa::ms 

EXPERIMENTAL DETAIIS 

It was found in Experiment 1 that highest growth rate of azolla 

occurred at frond biomasses between 200 to 600 g m-2. The initial 

biomass used in many cropping situations have been within this range 

(Chu, 1979~ Tuan and Thuyet, 1979). Factors such as planting material 
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availability, duration of cropping and handling cost would determine 

the actual initial biomass for any field situation. The objective of 

the experiment reported in this section was to study the effect of 

three initial frond biomasses on the growth of three Azolla species. 

The species chosen for the study were A. caroliniana (Ohio), A. 

microphylla (Galapagos) and f1· pinnata (Indonesia) and the initial 

biomasses were 200, 400 and 600 g m-2. A 3 x 3 factorial arrangement 

of treatments was used with three replicates in a randomized complete 

block design. Three harvests \were taken at weekly intervals. The 

experiment had to be terminated at 21 OAP because mats in several 

treatments developed necrotic spots when the culture period was 

extended further. This was suspected to be a rotting disease, but the 

causal organism could not be identified. The warm greenhouse 

temperatures (Appendix C) may have been conducive to disease outbreak 

in dense mats. 

RESULTS AND DISCUSSICB 

Bianass accumulation 

.The fresh weight increase with time was generally curvilinear in 

A. caroliniana and A. microphylla (Figures 10, 11). A. microphylla 

was superior to the other two species in bianass production. Growth 

of A. pinnata levelled off early (Figure 12) as sane fronds died after 

14 days. Frond death occurred with the other two species also when 

the culture period was extended beyond 21 days. The bianass 

accumulation in the 600 g m-2 treatment continued to be higher than 
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the other two initial biomasses even at 21 DAP in!!· caroliniana and 

!!· microphylla (Figures 10, 11), but in A. pinna ta there was no such 

difference (Figure 12). It was assumed that the mat weights at the 

lo"wer two biomasses would eventually reach values comparable to the 

600 g m-2 treatement but would take more than 21 days. In contrast 

with the results obtained in this study, Brotonegoro et al. (1982) who 

studied the same three initial biomasses in the field, found that A. 

pinnata inoculated at 400 g m-2 produced the highest fresh weight 

yield when harvested at 12 DAP. Since azolla multiplies by 

fragmentation, minor disturbances are beneficial because they cause 

the break up of fronds. Wind action brings about fragmentation in 

nature. Since this does not happen under greenhouse conditions, 

growth may have been retarded due to lack of new growing points. 

RGR decreased with time and with increasing initial bicmass 

(Table 16). Increasing initial biomass reduced RGR, especially during 

the Oto 7 day period. There was a significant species x initial 

biomass interaction on RGR: the decline in RGR with increasing initial 

biomass was roore gradual in A. rnicorphylla than in A. caroliniana and 

!!· pinnata (Figure 13). RGR of A. microphylla also decreased more 

gradually than the other two species with time (Table 16). As 

discussed already in Chapter 3, this species tended to dieback when 

newly introduced at lower densities and grew vigorously after 

recovery. The difference in growth habit can be attributed to the 

ability of this species to maintain greater RGRs over a longer period 

of time. In general, RGR at any time was inversely related to the 
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TABLE 16. Effect of initial biomass and time on relative growth rate 

of three Azolla species. 

Treatment 

Azolla species 

A. caroliniana 

A. microphylla 

A. pinnata 

Initial bianass g m- 2 

200 

. 400 

600 

SE (16)** 

Relative growth rate 

7-14 OAP 

99 

91 

88 

104 a 

85 b 

89 b 

8.16 

14-21 OAP 

-1 day - - - - -

31 ab* 

49 a 

18 b 

53 a 

33 ab 

12 b 

11.4 

*Means in a column within a category followed by the same letter 

are not significantly di~ferent at the 0.05 level of probability as 

determined by Duncan's multiple range test. 

**standard error of mean with error degrees of freedom in parentheses. 
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plant biomass present at that time. The following RGR-biomass 

relationships were obtained by pooling the data for all three 

samplings. RGR of azolla expressed as a function of initial biomass 

(x) can be described by the following equations: 

A. caroliniana: RGR = 170 .062 X r 2=.60 (P=.05) 

A. micro12hylla: RGR = 146 - .038 X r 2=.83 (P=.001) 

A. 12innata : RGR = 190 - .122 X r 2=.38 (Not significant) 

The greater fresh weight accumulation off:!· microphylla did not 

result in higher dry matter production than the other two species 

because it had a lower dry matter content (Table 17). This appears to 

be an inherent characteristic of the species. The dry matter content 

of A. microphylla declin~d with age unlike that of the other two 

species. Kaplan and Peters (1981) reported a decrease in dry matter 

content with increasing leaf age in single fronds of A. caroliniana. 

However, generally an older mat would be expected to contain more dry 

matter than a young one because it can contain dead tissue with lower 

moisture content. The fronds in the uppermost layer of!· microphylla 

were growing vertically at the time of final harvest and these fronds 

appeared more succulent which may be a reason for the decrease in dry 

matter content with increasing biomass. A slower growth rate may also 

result in less succulent fronds. This may have been the case with!· 

pinnata in the present study whereas luxurious growth inf:!• 

microphylla may have resulted in succulent fronds with a lower dry 

matter content. 
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TABLE 17. Effect of initial bianass on dry matter accumulation 

and dry matter content of three Azolla species. 

Treatment 

Azolla species 

A. caroliniana 

A. microphylla 

A. pinnata _ 

Initial bianass g m2 

200 

400 

600 

SE (16)** 

Dry weight 

at 21 OAP 

- g m-2 

107.01 * a 

109.50 a 

86.87 b 

93.06 b 

-

100.94 ab 

109.37 a 

6. 71 

Dry matter content 

7 OAP 21 OAP 

----%----

5.12 b 5.61 b 

5.28 b 4.40 C 

5.86 a 7.43 a 

5.36 5.76 

5.50 6.06 

5.40 5.62 _ 

0.14 0.26 

* Means in a column within a category followed by the same letter 

are not significantly different at the 0.05 level of probability as 

determined by Duncan's multiple range test. 

** . Standard error of mean with error degrees of freedom in p:irentheses. 
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Chlorophyll content 

Chlorophyll content appeared to be species-specific and was not 

influenced by either initial biomass or age (Table 18). Chlorophyll 

content increased slightly with increasing biomass at the first 

sampling perhaps because the shading associated with increased frond 

biomass enhances the development of chlorophyll. A characteristic 

feature of A. microphylla, besides its larger fronds, is the light 

green color. The light color was due to a lower chlorophyll content 

(Table 18). The chlorophyll contents obtained in this study were 

similar to those reported for A. caroliniana by Peters et al.(1976) 

and Ray et al.(1978). 

The chlorophyll a:b ratio of 1.70 obtained in this study is much 

lower than the ratios of 3.9 to 4.3 reported by Peters et al. (1980). 

Ratios calculated from chlorophyll a and b values reported by Sa.hai 

and Khosla (1980) for A. pinnata were less than 1.5 as they were in 

this study. The discrepencies in the ratios among different studies 

may be due to the different methods used for chlorophyll 

determination. Peters et al. (1980) used the Wintermans and DeMots 

(1965) method for chlorophyll determination. The chlorophyll a:b 

ratio in A. microphylla was found to be significantly higher than in 

the other two species. Chlorophyll a is found in both azolla as well 

as anabaena cells of the symbiotic association while only azolla 

contains chlorophyll b ( Peters et al., 1979). Therefore, the higher 

chlorophyll a:b ratio in fl· microphylla comp:tred to the other two 

species could be because the endophyte makes up a larger proportion of 
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TABLE 18. Effect of initial biomass on chlorophyll content and 

chlorophyll a/b ratio of three Azolla species. 

Trea tment Chlorophyll content Chlorophyll a/b ratio 

7 OAP 21 DAP 7 DAP 21 OAP 

-1 f - ug g r. wt.-

Azolla species 

caroliniana 350 a * 311 1.36 b 1.44** A. 

A. microphylla 259 b 241 1.70 a 1.62 

A. pinnata 355 a 402 1.40 b 1.34 

Initial biana~s g m2 

200 302 322 1.55 1.49 

400 324 316 1.45 1.47 

600 339 318 1.47 1.43 

SE (16)*** .026 .094 

*Means in a column within a category followed by the same letter 

** 

are not significantly different at the 0.05 level of probability as 

determined by Duncan's multiple range test. 

P=0.05 

Chlorophyll content determined a,ly for cne replicate. 

***standard error of mean with error degrees of freedom in parentheses. 
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the biomass. If the chlorophyll content was low, a greater endophyte 

density would help meet the energy requirements for nitrogen fixation. 

Nitrogen accunrulation 

The ultirrate objective in azolla management is to produce as much 

nitrogen as possible per unit area per unit time. The total nitrogen 

accumulated is a function of dry matter accumulation and tissue 

nitrogen content. Significant differences among the species were 

found in tissue nitrogen content (Table 19). Nitrogen content of the 

three species in descending order were~· caroliniana > A. pinnata > 

A. rnicrophylla. Nitrogen content increased with age in all three 

species. This observation does not agree with that of Talley and 

Rains (1980) who reported a gradual drop in nitrogen content with age 

up to about 40 DAP. The nitrogen content of higher plants general~y 

decreases with age because of the increase in non-photosynthetic 

tissue. As non-photosynthetic tissue does not appear to increa_se with 

age in azolla, nitrogen content would not be expected to decrease in 

mature tissue. 

Nitrogen accumulation doubled during the period from 7 to 14 OAP 

in all three species (Table 20). In spite of the very high fresh 

weight accumulation (Figure 11), A. microphylla accumulated 

significantly less nitrogen than A. caroliniana because tissue dry 

matter (Table 17) and nitrogen content (Table 19) were lower. The 

fresh weight yield of~- microphylla at the final harvest was 23% 

higher than A. caroliniana, but the nitrogen yield was 33% lower. 
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TABLE 19. Effect of initial biomass and time on tissue nitrogen 

content of three Azolla species. 

Treatment 

Azolla species 

A. caroliniana 

A. microphylla 

A. pinnata 

Initial bianass g m2 

200 

400 

600 

SE (16)** 

7 

Days After Planting 

14 21 

- - - - - - - - % - - - - - - - -

4.42 a * 

3.55 b 

3.64 b 

3.89 ab 

3.52 b 

4.19 a 

0.30 

5.04 a 

3.55 C 

4.37 b 

4.53 a 

4.20 a 

4.22 a 

0.20 

5.08 a 

3.75 C 

4.34 b 

4.57 a 

4.21 b 

4.39 ab 

0.14 

*Means in a column within a category followed by the same letter 

are not significantly different at the 0.05 level of probability as 

determined by Duncan's multiple range test. 

**standard error of mean with error degrees of freedom in parentheses. 
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TABLE 20. Effect of initial bionass on nitrogen accumulation of three 

Azolla species. 

Treatment 

Azolla s~cies 

A. caroliniana 

A. rnicrophy lla 

A. pinnata 

Initial bianass g rn-2 

200 

400 

600 

SE (16)** 

7 

Nitrogen accumulation 

14 21 

-2 - - - - - - - - g rn - - - - - - - -

1.94 a * 4.36 a 5.47 a 

1.53 a 2.81 C 4.12 b 

1.55 b 3.37 b 3.77 b 

1.22 C 2.91 C 4.27 a 

1.53 b 3.40 b 4.24 a 

2.26 a 4.24 a 4.85 a 

0.17 0.26 0.38 

*Means in a column within a category followed by the same letter 

are not significantly different at the 0.05 level of probability as 

determined by Duncan's multiple range test. 

**standard error of mean with error degrees of freedom in ~rentheses. 
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Therefore, both dry natter and nitrogen contents should be considered 

as important quality parameters in evaluating the productivity of a 

green-manure crop such as azolla. With an initial biomass of 600 gm-

2 azolla accumulated significantly more nitrogen than the lower 

densities at the first two samplings (Table 20). At the final 

harvest, however, no significant difference among the treatments 

having different initial biomass was detected in total nitrogen 

accumulation though the quantity of nitrogen in the 600 g m-2 

treatment was higher. Thus, starting the growth cycle with a higher 

frond biomass was beneficial when azolla green manure was harvested at 

intervals of about 7 days. This advantage was minimized if the crop 

was allowed to grow for a longer time. 

GlOflB OF AZOLLA SP~IES 

EXPERIMENTAL DETAILS 

The experimental results discussed previously in this chapter 

indicated that the RGR of azolla was reduced when frond bicmass 

exceeded 600 g m-2 • Mutual shading would be expected to increase with 

increasing biomass and consequently light availability could becane a 

growth-limiting factor. Light availability is also likely to be 

reduced when azolla is intercropped with rice or taro. Hence, the 

objective of Experiment 3 was to examine the growth of azolla at two 

initial biomasses under three levels of light. The same three species 

investigated in Experiments 1 and 2 were grown at initial biomasses of 
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250 and 500 g m-2• The number of initial biomasses was reduced to two 

to limit the total number of treatments. The light levels were 

control (no shade), 65% light and 35% light. Different light levels 

were obtained by covering the buckets with neutral-density shade 

cloth. A split-plot design was used where the species and shade 

treatments were main-plots and initial biomass was sub-plots. The 

treatments were replicated three times. Azolla was harvested 10 DAP 

and the experiment was repeated for the harvest interval of 20 DAP. 

RESULTS AND DISCUSSial 

Shading reduced biomass accumulation in all three species. In 

addition, light level interacted significantly with species and 

biomass in influencing dry matter, nitrogen and chlorophyll contents 

of azolla. Growth in :regard to species and plant biomass followed the 

same trends evident in previous experiments. Therefore, the 

discussion of this study focuses rrore a1 the interactions between 

light and species and light and initial biomass. There was no 

significant interaction between species and biomass (AHJendix D). 

Biomass accumulation 

The fresh weight increase at 10 DAP \.as similar for all three 

species~ however, A. microphylla grown at 100% and 65% light 

accumulated significantly greater fresh weights than the other two 

species at 20 DAP (Figure 14). The differences among the species were 

very small at 35% light. The suppression of growth by shade was more 
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pronounced at 20 DAP than at 10 DAP, especially at 35% light. Growth 

of~- filiculoides (Ashton, 1974) and~- mexicana (Holst and Yopp, 

1979a) has been greater in shade than in full sunlight. In the 

present experiment, all three species of azolla grown without shade 

consistently produced higher fresh and dry matter than shaded 

treatments. The disagreement may be due to the differences in 

experimental conditions. This experiment was conducted in a 

greenhouse where light availability was 65% of that received outside. 

When 35% shade was applied inside the greenhouse, the resulting light 

level was only about 42% of full sunlight. Therefore the light level 

in the control treatments may have been sufficiently low for maximum 

biomass accumulation. Another influencing factor may be nutrient 

supply. Tung and Shen (1981) obtained maximum growth at full sunlight 

when 20 ppm of phosphorus was supplied: growth was maximum at 50% 

light in the absence of phosphorus. The phosphorus level in the 

present study was 5.0 ppm {Table 15). 

Data on dry weight accumulation showed that light interacted with 

initial biomass at both sampling times (Figure 15). The increase in 

dry weight at 65 and 100% light was more pronounced at 20 DAP than at 

10 DAP, especially with an initial biomass of 500 g m-2. The higher 

biomass yielded more at all light levels when harvested 10 DAP. This 

difference in yield at the two biomasses diminished in shaded 

treatments at 20 DAP. A similar trend was observed in the species x 

biomass x light interaction at 20 DAP {Figure 16). Differences in dry 

weight among species and biomasses were apparent only at 100% light. 
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TABLE 21. Effect of growth light level on relative growth rate of 

three Azolla species. 

Treatment Days After Planting 

7 14 

-1 da -1 - - - ug g y - - -

Azolla species 

A. oaroliniana 92 52 b* 

A. microphylla 87 68 a 

A. pinnata 84 58 b 

SE (18) ** - 4.7 5.1 

Growth light level 

35\ 43 C 49 C 

65% 94 b 59 b 

100% 126 a 70 a 

SE (16)** 3.4 7.4 

* Means in a colurm within a category followed by the sane letter 

are not significantly different at the 0.05 level of probability as 

dete:cmined by Duncan's multiple range test. 

**standard error of rcean with error degrees of freedom in P3rentheses. 
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The maximum dry matter per unit area appears to be influenced more by 

light and less by species or initial biomass when light is limiting as 

it was here. Thus if azolla is grown under low or no shade1 it is 

desirable to start with a higher biomass. On the other hand, if the 

shade is heavy, a higher initial biomass would not be advantageous, 

particularly where the harvest interval is long. The superior bianass 

accumulation potential of A. rnicrophylla was realized only when it was 

grown without shade at a higher initial biomass and harvested 20 OAP. 

The changes in tissue dry matter content of the three species 

with increasing light level is shown in Figure 17. The species were 

significantly different with!· pinnata having the highest dry matter 

content at 911 light levels. Whereas the dry matter contents of A. 

caroliniana and A. pinnata increased slightly with increasing light, 

that of A. microphylla declined considerably when light was increased 

from 35 to 65%. A. microphylla grown in 35% light did· not have 

upright growth as it did in 65% and 100% light and resembled the other 

two species. The absence of upright growth may be the reason for 

higher dry weight in 35% light than in 65% light or the control. Dry 

matter content may also be important in determining the regeneration 

potential of azolla fronds as vertically growing fronds of A. 

rnicrophylla grew slowly when used as planting material. 

Chlorophyll content 

Tissue chlorophyll content decreased with increasing light 

(Figure 18). Plants growing in shade usually contain more chlorophyll 
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per unit weight which enables them to make maximum use of the 

available sunlight. For instance, there was a three-fold increase in 

chlorophyll content when light intensity was lowered from 660 to 20),lE 

m-2 s-1 in Tradescantia albifora (Adamson, 1978). The response of A. 

carolini ana and!· pinnata was somewhat similar though their 

chlorophyll contents were less influenced by light level than that of 

!· microphylla. The chlorophyll content of A. microphylla was much 

lower than that of other two species and it decreased about 50% when 

light was increased from 35% to 100%. Although both chlorophyll a and 

b increased with increasing shade, the relative increase in 

chlorophyll b was higher (Table 22), a conmon result in higher plants 

and green algae (Falkowski and Owens, 1980). It is believed that 

chlorophyll b synthesis from chlorophyll a is enhanced in the dark 

(Tanaka and Tsuji, 1981). The chlorophyll a:b ratio of!· microphylla 

increased with increasing light (Figure 19). This increase was more 

pronounced in!· microphylla because it had 38 and 65% more 

chlorophyll a and b respectively, in 35% light than in 100% light 

(Table 22). 

Nitrogen accumulation 

Tissue nitrogen content of!· pinnata increased significantly 

with increasing light, but the trend was reversed for!· microphylla 

(Figure 20). Much smaller but significant effects of light on the 

nitrogen content of!· caroliniana were also observed. !· caroliniana 

dry matter contained more nitrogen than the other two species and it 
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TABLE 22. Effect of light a, chlorophyll a and b content of three 

Azolla species. 

Light level Chlorophyll content 

a b 

- Jl9 g-1 fr. wt. -

A. caroliniana - 100 239 180 

65 

35 

A. microphylfa - 100 

65 

35 

A.pinnata - 100 

65 

35 

246 

250 

140 

183 

194 

252 

253 

257 

190 

197 

81 

118 

134 

193 

207 

212 

109 

Expressed as% of control 

.a b 

- - - - - - % - - - - - -

100 100 

103 

105 

100 

131 

138 

100 

100 

102 

106 

109 

100 

146 

165 

100 

107 

110 
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was less sensitive to light level. Shade should promote nitrogen 

fixation and improve tissue nitrogen content because light intensities 

above 50% of full sun reduced nitrogen fixation in A. filiculoides 

(Ashton, 1974). On the other hand, ~- rnexicana grown in sun had 

higher nitrogen fixation activity than those in shade (Holst and Yopp, 

1979b). The energy required for nitrogen fixation is obtained through 

photosynthesis. Energy supply and consequently nitrogen fixation can 

be reduced when azolla is grown under heavy shade. If the dry matter 

accumulation rate proceeds faster than nitrogen accumulation rate, the 

fixed nitrogen would be translocated to a larger number of sinks 

resulting in lower tissue nitrogen content. Hence, the lower nitrogen 

content of-~. microphylla in control treatments may be the result of a 

low nitrogen fixation rate and/or higher dry matter accumulation rate. 

Nitrogen accumulation which ~s the product of dry matter 

. accumulation and nitrogen content also increased with light (Figure 

21). The differences among treatments were less pronounced in 35% 

light and cecarne progressively larger with increased light. A higher 

initial biomass was not beneficial when azolla was grown under shade 

for 20 OAP. The rate of increase in nitrogen accumulation was greater 

for A. caroliniana than for the other two species, especially in the 

higher biomass treatment. Although azolla grown under shade had a 

darker green color and appeared healthier than control plants, fresh 

weight and nitrogen accumulation were not enhanced. Similar results 

have been reported by Brotonegoro et al. (1982) in field studies with 

A. pinnata. 
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EXPElUMENI' 4: INFLUm::E OF LIGHT AND TfflPmATURE 00 GRM'li OF 'l'K> 

Az.oLLA SPEX:IFS 

EXPERIMENTAL DE'J:AH.S 

The results of Experiment 3 clearly demonstrated that azolla 

growth was reduced by shading. Temperature also influences plant 

growth and Azolla species have exhibited differential responses to 

temperature (Lumpkin and Plucknett, 1982; Watanabe and Berja, 1983). 

The adaptability of azolla to non-optirral light and temperature 

regimes is an essential requirement for its use in tropical 

environments. Therefore, the objective of the experiment reported 

here was to examine the influence of temperature and its interaction 

with light on-growth of azolla. Two species of azolla, ! • . caroliniana 

and!· microphylla, were grown at initial biomass of 500 g m-2 in 15-

liter buckets as described in Experimental site on p:ige 74. The 

temperature treatments were .20 and 33 C and the light levels were 35, 

65 and 100% of available light in the greenhouse. The experiment was 

carried out in two temperature-controlled acrylic plastic chambers 

maintained at nearly constant temperatures of 20 and 33 C. In each 

chamber, treatment arrangement was such that light level was the main

plot and species was the sub-plot. The treatments were repli cated 

three times within each chamber. The pooled data fran the two 

chambers were statistically analyzed as nested-plot treatnents to 

compare temperature effects. A sample ~A is presented in Appendix 

E. After the harvest at 10 days, the experiment was repeated for 20 

DAP harvest. 
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RESULTS AND DisaJSSICE 

Biomass accumulation 

The main effects of the three factors, temperature, light and 

species, on fresh weight accumulation at 10 and 20 DAP and dry matter 

content at 10 DAP were significant. The rnain effect of species on dry 

matter content at 20 DAP was also significant. In addition, several 

significant interactions among the three factors were also detected. 

Fresh weight was higher at 20 C than at 33 C for both A. caroliniana 

and~- microphylla at 10 DAP (Figure 22). Heavy shade depressed 

growth in both species and the growth reduction was more severe at 33 

C than at 20 C. As a result of the light x temperature interaction, 

the reduction -in fresh weight accumulation at 33 C was greater in 100% 

light than in 35 and 65% light. Fresh weight increased almost 

linearly with increasing light at 20 C, but the increase was 

curvilinear at 33 C. 

The fresh weight of~- microphylla was lo\o.ler than A. caroliniana 

at 10 DAP because of the slow early. growth of the former. However at 

20 DAP, A. microphylla produced significantly higher fresh weights 

than A. caroliniana at all temperature and light levels (Figure 23). 

Its growth was inhibited only by a canbination of high temperature and 

heavy shade. In fact, ~- microphylla fresh weights were more than 

double those of A. caroliniana in most treatments. Species x light 

and species x temperature interactions were significant at 20 OAP. 

The increase in fresh weight with increasing light was more gradual in 

A. caroliniana than in A. microphylla. Temperature did not have a 
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significnt effect on fresh weight accumulation of A. caroliniana at 20 

DAP, but there was a significant reduction at 33 C inf!· microphylla. 

Nevertheless the fresh weight produced by A. microphylla at 33 C was 

higher than that off!· caroliniana at both temperatures. 

Dry matter content was higher in A. caroliniana than in A. 

microphylla regardless of temperature or light treatment (Table 23), a 

result consistent with those observed in Experiment 2 (Table 17) and 

Experiment 3 (Figure 14). In general, azolla grown at 33 C contained 

more dry matter than when grown at 20 C. The dry matter content of A. 

microphylla decreased with age and the rate of decline was sharper at 

20 C, probably because of profuse growth. However, the dry natter 

content of A. caroliniana increased with age and the increase was much 

greater at 20 C than at 33 c. Peters et al. (1982) reported a drop in 

dry matter content with increasing temperature up to 30 C in A. 

caroliniana and an increase at temperatures above that level. 

Chlorophyll content 

The chlorophyll contents of both species were lower at 20 C than 

at 33 C (Figure 24). This may be due to fresh weight accumulating at 

a faster rate than the rate chlorophyll could be synthesized. The 

efficiency of light utilization at any time depends on the chlorophyll 

index, which is the chlorophyll content per unit land area. In spite 

of its significantly lower chlorophyll content, A. microphylla grown 

at 20 C had the highest chlorophyll index at 20 DAP { Figure 25). A 

well formed A. microphylla cover may be as efficient as that of 
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TABLE 23. Effect of temperature and light on dry matter content of 

two Azolla species at 10 and 20 days after planting (DAP). 

Treatment 

Temperature 20 C 

33 C 

Light 35% 

65% 

100% 

* SE - Temperature (4) 

Light (8) 

Species (12) 

A. caroliniana 

10 DAP 20 OAP 

A. microphylla 

10 OAP 20 OAP 

- - - - - - - - % - - - - - - - -

4.85 6.52 4.27 3.81 

5.45 5.73 4.54 4.10 

4.72 

5.17 

5.55 

0.36 

0.27 

0.29 

5.92 

6.18 

6.25 

0.24 

0.18 

0.23 

4.00 

4.41 

4.80 

4.23 

3.76 

3.88 

*standard error of mean with error degrees of freedan in parentheses. 
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A. caroliniana in intercepting light because it compensates for low 

chlorophyll content by accumulating more biomass per unit area. Since 

the chlorophyll content of A. microphylla was low, a higher initial 

level of biomass would be required to have a chlorophyll index 

comparable to that of other species. 

The chlorophyll a:b ratios were similar to those of Experiments 1 

and 2. A. caroliniana had a lower chlorophyll a:b ratio than A. 

microphylla and the ratio changed very little with increasing light 
~ 
(Figure 26). The ratio in~- microphylla increased sharply with 

increasing light from 35% to 65%, particularly in azolla grown at 33 

c. The temperature effect on the chlorophyll a:b ratio did not follow 

any particular pattern. Peters et al. (1982) found the chlorophyll 

a:b ratio of A. caroliniana to be insensitive to light and temperature 

in the 15 to 30 C range. 

Nitrogen accumulation 

The nitrogen content was higher at 20 C than at 33 C in both 

species at all light levels when harvested at 10 DAP (Table 24). When 

harvested at 20 OAP, nitrogen contents were higher at 33 c. As 

discussed previously under Experiment 3, rapid growth at 20 C may 

dilute the fixed nitrogen because of the requirement of new tissue for 

nitrogen. The data for A. microphylla at 20 OAP show this clearly. 

When A. microphylla had the highest fresh weights (Figure 23), it had 

the lowest nitrogen contents (Table 24) at all light levels. In other 

studies, nitrogen content increased with increasing temperature from 5 

122 



I:. 

2. 01 
~ 

.., 
j 

C 1 .. 
H 1. 8-j 
L 
0 ~ .R "1 
l'J .. 
p j 
H 
y "1 

L 1. 6~ 
L j 
A 

J 
j 

B ~ R ..; 
A 1.41 T 
I 
t'J 

1.J 
I 

25 

. 
. 1. 

. .\. 

CB.LOROPllYLL .A:B Bil'IO Ar ZO DAP 

caroliniana 
microphylla - - - - - - - ----

,.JI-------.._,_ 
,; ------ ,.,,.,OC 

.).) 
,, ---....._ __ 

; -------. ,,.r 20°c 
,, -----"11 

,, ------·-----,,, A-----·-------
,/ __ ..,,..,..,,,,,.--/_ ______ .,,. . 

~.,,.--.. -......... 
1,-- /' 

/ 
w' 

20°C ___ .-1:. 

-
_,__-r--,--,--,-...--..-, ..,,.._, -, • .--Tl-· .... -...-. -,,,-,-, --· -.,-r, -,,--,--r-...--..-.-..--,., -r-r 

so 75 100 

Gf\OHTH LIGHT LEVEL C"~ 

FIGURE 26. Effect of growth light level and temperature on 

chlorophyll a:b ratio of Azolla species at 20 days after planting 

(OAP). 

123 



TABLE 24. Effect of temperature and light on nitrogen content of 

two Azolla species at 10 and 20 days after planting (OAP). 

Treatrrent 

10 DAP --
A. caroliniana 20 C 

33 C 

A. microphylla 20 C 

33 C 

* SE - Temperature (4) 

Light (8) 

Species (12) 

20 DAP --
A. caroliniana 20 C 

33 C 

A. microphylla 20 C 

33 C 

SE - Temperature (4) 

Light (8) 

Species (12) 

35 

Light level 

65 100 

- - - - - - - - - % - - - - - - - - -

5.15 5.31 4.80 

4.16 4.34 4.59 

4.58 4.11 3.75 

3.84 3.85 3.84 

0.23 

0.22 

0.28 

4.82 5.16 4.75 

5.47 5.82 5.69 

2.95 3.52 3.13 

4.54 4.50 3.95 

0.38 

0.14 

0.20 

*standard error of mean with error degrees of freedan in parentheses. 

124 



,) 

' 

to 30 C and then declined at higher temperatures (Peters et al. 1980; 

Talley and Rains, 1980). 

A. caroliniana accumulated more nitrogen than~- microphylla at 

both temperatures when harvested at 10 OAP (Figure 27). However, 

rapid growth of A. microphylla during the 11-20 OAP period resulted in 

non-significant differences in accumulated nitrogen between the 

species at 20 DAP (Figure 28). Moreover at 20 OAP, nitrogen 

accumulation increased with increasing light level though the increase 

was not as great from 65 to 100% as it was from 35 to 65%. 

When azolla is grown in the field, the harvest interval usually 

is kept short to prevent disease outbreaks and to maintain rapid 

growth. In such situations, knowledge of the differential response of 

species to light and temperature could be useful for species selection 

for a given environment. 

The nitrogen production by a crop of azolla is a function of 

initial biomass, the RGR, period of cropping, tissue dry ma.tter 

content and nitrogen content. The RGR at any given time was inversely 

related to azolla biomass present at that time. A biomass of 200 to 

600 g m-2 covered the water surface and at the same time had RGRs 

above 300 mg g-l fresh weight day-1 • Initial biomasses of 200 and 400 

g m-2 had less fresh weight than an initial biomass of 600 g rn-2 up to 

21 OAP. 
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Among the three species that were investigated, !· !!1icrophylla 

accumulated more fresh weight than A. caroliniana and A. pinnata, 

particularly when the harvest interval was 20 DAP. A reason for this 

was that the fronds of A. microphylla grew upright following the 

formation of a dense surface mat. However, the fronds of this species 

had lower dry matter and nitrogen content than the other two species. 

Consequently, nitrogen accumulation in A. microphylla was generally 

lower than A. caroliniana despite its greater fresh weight 

accumulation. 

Growth rate and fresh weight accumulation were reduced by shade 

in all species. As a result, species and initial biomass effects on 

fresh weight accumulation were evident only at 100% light. Contents 

of dry matter, chlorophyll and nitrogen were less influenced by light 

level in A. caroliniana and A. pinnata: but in!· microehylla, all 

three of these parameters declined with increasing light because of 

the upright growth at 100% light. 

When the cropping period was 10 days, fresh weight accumulation 

was higher at 20 C in A. caroliniana and!· microphylla than at 33 c. 

This same trend continued at 20 DAP in!· microphylla, but A. 

caroliniana grew well at 33 C when the growth period was long. The 

higher temperature combined with heavy shade depressed biomass 

production in both species. Nitrogen accumulation was higher in all 

A. caroliniana treatnents at 10 DAP, but no significant differences 

were observed between the species at 20 DAP. 
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CIIAP'l'm V 

INFLUEX:E OF PHCJ.l'OSYNTHE''IC ~ FLUX DENSITY, GRarl'H LIGHT 

LEVEL AND fRCH> BICIWiS W CARBW ASSIMILATIW OF AZOLLA 

IN'.rRODUCTIOO 

Most of the biomass accumulated in green plants is derived from 

carbon dioxide assimilated in [:hotosynthesis. The carbon dioxide 

exchange rate (CER) provides a means of explaining the response of 

plants to environmental variation. CER is also related to 

transpiration rate as these two processes occur simultaneously in 

plants. 

The rate of [:hotosynthesis is usually expressed as the amount of 

co2 .taken up per unit time per unit area of photosynthetic surface. 

The [:hotosynthetic surface in azolla is difficult to measure 

accurately because the leaves are small and arranged compactly on the 

fronds. As biomass increases, the fronds become tightly arranged to 

form a mat. Therefore, the CER of azolla is more easily expressed on 

the basis of unit fresh weight, unit frond area, or unit chlorophyll 

content. Ray et al. (1979) presented CER of azolla on the basis of 

chlorophyll content. The frond area exposed to light can change if 

the mat is disturbed. For the rates to be representative of an 

undisturbed rnat, CER should be measured without disturbance to the 

mat. Since evaporation from the azolla growth medium cannot be 

prevented during gas exchange measurements, the water vapor loss from 
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the canopy represents evapotranspiration (ET) rather than 

transpiration. 

The effect of growth light level on chlorophyll content was 

discussed in the experiments presented in Chapter IV. Growth light 

level causes changes in chlorophyll content and frond characteristics 

such as thickness that may affect CER and overall dry matter 

accumulation. The objective of the studies reported in this chapter 

was to examine the influence of light and frond biomass on CER and ER 

of three azolla species and to relate the differences to foliar 

characteristics such as frond area and thickness. 

MATERIALS AND METHODS 

Experimental details 

The plant material and culture solution used were similar to that 

described in Chapter IV. The plants were raised in the greenhouse and 

CER measurements were carried out in the laboratory in one-liter 

containers. In order to study the effect of growth light level on 

CER, azolla was multiplied under the respective light levels for ooe 

week. The azolla biomass was then reduced to 4 g per container on the 

day of 'planting'. Planting was staggered in such a way that six 

azolla containers were available for CER measurement on any given day. 

The treatments consisted of three species, three growth light levels 

and three photosynthetic photon flux densities (PPFD) replicated thrBe 

times. The species were A. caroliniana, A. microphylla and A. pinnata 

and the growth light levels were 35%, 65% and 100% (control). The 35 
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and 65% light levels were established by covering the containers with 

neutral-density shade cloth. The containers were brought to the 

laboratory six days after planting and CER was measured under PPFD of 

300, 800 and 1300 .JlE rn-2 s-1. 

After CER was measured, fresh weight, chlorophyll cont ent and 

frond area were determined. The method for chlorophyll determination 

is described in Appendix B~ frond area of a 1.0 gram sub-sample was 

measured with a LI-COR LI-3100 area meter and total area was 

calculated by multi plying frond area per gram fresh weight by total 

fresh weight. 

There appears to be some confusion regarding the terminology in 

azolla morphology. The structure containing the cyanobacteriurn is 

referred to as a leaf by calvert and Peters (1981) and leafl et by 

Bozzini et al. (1982). The leaf of a fern is usually determinate and 

is called a frond. In azolla literature, however, a frond is a 

structure containing several indeterminate 'main stern axis' each 

bearing many leaves or leaflets. In the present study, the 

terminology used by calvert and Peters (1981), as illustrated in 

Figure 29, is followed. The actual leaf area depends on leaf size and 

the number of leaves per unit frond length (leaf density). Leaf 

length and leaf density "'1ere measured with an optical micrometer. 

The effect of azolla biomass on CER was measured for three 

species of azolla at three levels of biomass. Plant material for the 

study was raised in 15-liter buckets for 10 days. On the day of CER 

measurement, azolla was collected from the buckets and weighed 
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A. An azolla frond (Watanabe et al., 1977). 

B. A 'main stern axis' with leaves: numerals refer to·leaf 
age ( cal vert and Peters, .1981). 

FI~ 29. Illustration of azolla frond and leaves. 
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quantities were introduced into one-liter containers filled with 

culture solution. The quantities of azolla represented biomasses of 

500, 1000, 1500 g -2 m • Azolla fronds were arranged on the culture 

solution surface to construct a frond mat. The CER of azolla in each 

container was measured under PPFDs of 500, 1000, 1500, 2000 and 2500 

~ exchange measurement 

CER and ET were measured in a semi-closed gas exchange system. 

The components of the system were a Beckman IR 215A infrared gas 

analyzer (IRGA), a CO2 injection apparatus, a General Eastern 

condensation dew point hygrometer, a copper coil condenser, a flow 

meter and the azolla assimilation chamber (Figure 30). The 

assimilation chamber (AC) was made by attaching a plexiglass cover to 

a cylindrical sleeve which was inserted into the one-liter azolla 

container and secured by bolts and nuts (Figure 31). The volume of AC 

was approxirrately 150 cm3. An air pump, connected in series with the 

above components, circulated air through the system at 1.0 1 min-1. A 

second pump, connected only to the AC, noved air through the chanber 

at 8.6 1 min-1 to minimize boundary layer effects. 

The dew point temperature of air entering the assimilation 

chamber (Di) was controlled by immersing the copper coil condenser in 

a temperature-controlled water bath (WB-1). The mean Di was 14.9 C. 

The dew point temperature of air leaving the assimilation chamber (D
0

) 

was measured with the condensation dew point hygrometer. The air 
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Air circulation eystem • 
water circulation system• 

WB 

AC• assimilatiai chant>er: Al'• air pump: C • azolla container: 
cc • cei container: CU • conderusation unit: F .. flow meter: 
H'" dew-point hygraneter: INJ • CO2 injector: IRGA • infra-red 
<Jas analyzer: LS• light source: REC• recorder: WB • water bath: 
WF = water filter. 

FIQJRE' 30. Diagram of apparatus used for gas exchange 

measurements. 
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temperature (t) of the AC was maintained at 25 C by inunersing the 

azolla container in a waterbath (WB-2). 

Light from a 1000 watt Lucalox lamp housed in a parabolic 

aluminized reflector was filtered through a 3-an water layer placed 

between the lamp and AC to reduce thermal radiation. A pump placed in 

WB-1 circulated cold water through the water filter to dissipate the 

heat. The light intensity on the. surface of the azolla mat was varied 

either by changing the distance between AC and the lamp or by placing 

neutral-density shade cloth inside the water filter. PPFD was 

measured with a LI-<l)R Instruments LI-190SB quantum sensor and LI-1776 

solar monitor. 

The IRGA was calibrated &lily with 99.9% N2 and a standard gas 

containing 301 vppm of co2• The output of the IRGA was used to 

control the injection of a::>2 into the system to maintain the 

concentration between 275 to 350 vppm. The volume of co2 injected 

each time was 84 ul. 

Azolla was equilibrated under the treatment light intensity for 

10 to 15 minutes prior to making measurements. A steady-state CER of 

azolla was assumed to have been reached when D0 stabilized. The 

number of injections per unit time were obtained from a strip chart 

recording of the IRGA output. 

Calculations 

The following equations were used to calculate CER per unit fresh 

weight (CERw) and per unit frond area (CERA): 
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CERw = (T/('IY-t))(22.4 V/th)(l/W) 

CERA= (T/('IY-t))(22.4 V/ts)(l/A) 

where CERw is unol co2 g-1 fresh weight hr-1, CERA isjlinOl co2 m-2 

frond area s-1, Tis absolute temperature (273.16 Kelvin), tis the 

air temperatur e in the AC= 25 C, Vis the volume of pure co2 in ul 

injected into the system in th hours or ts seconds, 22.4 is the uls 

r,er JlIOOle, W is the total fresh weight in grams and A is the total 

frond area in m2. 

The difference in the dew point temperature of air entering (Di) 

and leaving (D0 ) the AC was used to calculate ET. The equations used 

in the calcualtion were: 

Pi= 6.107a exp [17.269 Di/(Di+237.3)] 

P0 = 6.1078 exp [17.269 Dof(D0 +237.3)] 

wi = Pi/[4618(ta+273.16)] 

W0 = Pof[4618(ta+273.16)] 

ET= [F (W0 -Wi)]/A 

where P is the water vapor pressure of air in nb, W is water vapor 

pressure in g an-3, Fis flow rate through AC in cm-3 s-1 , A is frond 

area in m2 and ET is evapo-transpiration rate in g m-2 s-1. 

Subscripts i and o denote air entering and leaving the AC 

respectively. 

The following parameters were derived t:ased on the frond area and 

chlorophyll content: 

l. Frond area index (FAI) = Frond area/ Container surface area 

2. Specific frond area (SFA) = Frond area/ Fresh weight 
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3. Specific chlorophyll content (SCC) = 

Chlorophyll content/ Frond area 

where SFA and sec are expressed in cm2 g-1 fresh weight and ug 

chlorophyll cm-2 frond area respectively. 

RF.SUI.TS AND DISCUS.SICE 

Influence of growth light level and PPFD on cm 

The CERw expressed co fresh w1eight basis represents canopy 

photosynthesis by azolla. When the three azolla species were grown at 

100% light, A. caroliniana had a significantly higher CERw than!· 

microphylla and A. pinnata at all light PPFDs (Table 25). Several 

factors may account for the higher CERw of this species. A. 

caroliniana had a greater specific frond area (SFA) resulting in a 

significantly higher FAI than the other two species (Table 26). The . 

compactly arranged leaves within a frond, as indicated by leaf 

density, further increased the photosynthetic area. The specific 

chlorophyll content (SCC) of!· caroliniana was comparable to that of 

!· pinnata and significantly higher than that of!· microphylla (Table 

26). Thus, the greater CERw of!· caroliniana is explained by the 

larger photosynthetic area and greater chlorophyll content of!· 

caroliniana. The lower CERw of A. microphylla was associated with a 

significantly lower SFA and sec. The CERw of !· pinnata was low1er 

than that of A. caroliniana because of lower SFA and leaf density 

despite the higher sec. 
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TABLE 25. Effect of growth light level and photosynthetic photon flux 

density {PPFD) on carbon dioxide exchange rate of azolla expressed on 

fresh weight basis {CERw)• 

a. 

b. 

Treatment 

300 800 1300 

-1 f h -1 - - JllllOles co2 g r. wt r 

Azolla s~cies {averaged over growth light level) 

A. caroliniana 36.72 * 56 .. 32 a 66.55 a a 

A. microphylla 29.91 C 42.10 b 46.34 b 

A. pinnata 33.58 b 48.57 b 50. 67 b 

Growth Hsht level (averaged over species) 

35% 35.67 a 47.75 49.68 b 

65% 35.68 a 51.34 61.13 a 

100% 28.86 b 47.90 52.76 b 

SE {16)** 1.61 4.28 4.55 

*Means in a column within a category followed by the same letter 

are not significantly different at the 0.05 level of probability as . 

determined by Duncan's nultiple range test. 

**standard error of mean with error degrees of freedom in parentheses. 
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TABLE 26. Effect of ~ species and growth light level on fresh 

weight, frond area index (FAI), specific frond area (SFA), specific 

chlorophyll content (SCC), leaf length and number of leaves per frond area 

( Leaf density) • 

Treatment Fresh wt. FA! SFA sec Leaf 

Length 

- g - arf- g-1 Jl9 =-2 ltlll 

a. ~ species (averaged over growth light level) 

A. caroliniana 6.55 b* 2.93 a 38.44 a 8.98 a 1.1** 

A. microphylla 6.88 ab 2.14 C 26.96 C 7.55 b 1.3 

A. pinnata 7.20 a 2.46 b 29.33 b 9.07 a 1.6 

b. ~light~ (averaged over species) 

35% 5.09 C 2.03 C 34.ll a 8.53 1.3 

65% 6.98 b 2.55 b 31.25 b 8.68 1.4 

100% 8.57 a 2.95 a 29.38 C 8.38 1.4 

SE (16)*** .26 .12 .80 .34 

*Means in a column within a catego:i:y followed by the same letter 

are not significantly different at the 0.05 level of probability as 

determined by ~can's rrultiple range test. 

**Mean of 15 to 20 observations. 

Density 

no.l!ffl-1 

3.28** 

2.27 

2.22 

2.68 

2.63 

2.59 

***standard error of mean with error degrees of freedom in parentheses. 
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CERw at all PPFDs increased with growth light level from 35% to 

65% and declined at 100% (Table 25). Since CER measurement was done 6 

DAP, the FAI at 100% light rnay have exceeded the optimum causing a 

decrease in CERw· The azolla biomass in 100% light was above 1000 g 

m-2 for all species~ Growth rates declined at biomasses greater than 

600 g m-2 in greenhouse studies discussed in Chapter 4 (Figure 11). 

Therefore, the CERw-biomass relationship may be similar to that 

between relative growth rate and bionass. 

The SFA decreased with increasing growth light level (Table 26). 

An increase in leaf thickness with increasing light level is corcmonly 

observed in plants. A four-fold increase in light caused the leaf 

thickness to double in tornato (Charles-Edwards and Ludwig, 1975). 

Bannister and Wildish (1,982) reported significantly lo-wer SI.As in 

ferns from sunny habitats compared to the same species growing in 

shade. As shown in Table 26, the FAI \.BS higher at 100% light despite 

the lower SFA due to the greater fresh weight at the highest light 

level. Growth light level did not affect sec. 

CERw at a given growth light level increased with increasing PPFD 

( Table 25) , but the increase from 800 to 1300 JlE m-2 s-1 was sna.11. 

Light saturation may have occurred at 1300.)lE m-2 s-1 but no data were 

collected at higher PPFDs. Ray et al.(1979) observed light saturation 

at 400 yE m-2 in ~. caroliniana, but the azolla biomass and growth 

light level of their study is not given. Among other ferns, 

Botrychium virginianum and Pellaea atropurpurea light saturated at 800 

and 2500 ft candles respectively (Ludlow and Wolf, 1975) while in 
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Pteris cretica saturation was at 20 to 25 W m-2 (Hariri and Prioul, 

1978). Light saturation usually occurs at lower intensities when the 

measurement is made on a single leaf than when made on a plant canopy: 

because a plant canopy is multilayered, more light is required to 

saturate it (Gaastra, 1962). 

There was no difference anong the species at 800 or 1300.JlE m-2 

s-1 when CER was expressed on a unit frond area basis (Table 27). 

CERA of A. caroliniana was significantly lower than the other two 

species at 300.JlE m-2 s-1. This may have been due to greater nrutual 

shading in A. caroliniana which had a significantly greater FAI (Table 

26). The maximal photosynthetic rates of ferns are generally low: the 

average is near 2Jllll01 m-2 s-1 (Nobel et al., 1984). The rates in the 

present study ranged from ,2.7 to 5.SJIIrlOl m-2 s-1. The actual 

photosynthetic area of an azolla frond can be many times greater than 

the frond area because many leaves are borne on a frond. This may be. 

a reason for the higher CERA values in the present study than those 

reported for other ferns. 

The evapo-transpiration rate (ET), which is expressed on a unit 

frond area basis, generally followed the same trend as CERA and 

increased with increasing PPFD (Table 28). A. caroliniana had lower 

ET than the other two species. Whereas the CERAs of the three species 

were not different at the highest PPFD (Table 27), the ET rates 

differed significantly (Table 28). The ET of~- microphylla and A. 

pinnata were higher than A. caroliniana at all three PPFD. Since the 

CERAs of the three species were similar at 800 and l300pE m-2 s-1 , 
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TABLE 27. Effect of growth light level and photosynthetic photon flux 

density (PPFD) on carbon dioxide exchange rate of azolla expressed CX1 

frond area basis (CERA). 

Treatment 

300 800 1300 

l -2 -1 - - JlITlO es co2 m s 

a. Azolla species (averaged over growth light level) 

A. caroliniana 2.66 b* 4.07 4.85 

A. microphylla 3.08 a 4.41 4.82 

A. pinnata 3.18 a 4.62 4.82 

b. Growth Hsiht level (averaged over species) 

35% 2.93 b 3.90 4.05 b 

65% 3.22 a 4.58 5.46 a 

100% 2.77 b 4.62 5.00 a 

SE (16)** 0.15 0.43 0.42 

*Means in a column within a category followed by the same letter 

** 

are not significantly different at the 0.05 level of probability as 

determined by Duncan's multiple range test. 

Standard error of mean with error degrees of freedom in i;:arentheses. 
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TABLE 28. Effect of growth light level and photosynthetic photon flux 

density (PPFD) on evapo-transpiration rate of azolla. 

a. 

b. 

Treatment 

300 

PPFD (uE m-2 s-1 ) 

800 1300 

------ g m-2 s-1 ------
Azolla se:cies (averaged over growth light level) 

A. caroliniana 59.42 b* 67.14 C 69.26 C 

A. microphylla 85.25 a 95.59 a 95.86 a 

A. pinnata 78.83 a 79.86 b 83.55 b 

Growth light level (averaged over species) 

35% 69.25 b 76.20 b 72.96 C 

65% 79.04 a 73.26 b 81.96 b 

100% 75.21 ab 93.12 a 93.75 .a 

SE (16)** 4.19 3.85 3.76 

*Means in a column within a category followed by the same letter 

are not significantly different at the 0.05 level of probability a.s 

determined by Duncan's multiple range test. 

**standard error of mean with error degrees of freedom in parentheses. 
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the water use efficiency of A. caroliniana would be greater than the 

other two species. Although the water surface was completely covered 

by the azolla mats, evaporation would not have been totally prevented. 

The higher ET of the less compact canopy of A. microphylla suggests 

that evaporation was a significant component of ET. 

Influence of :fra1d biarass and PP.ffl ai CER of azolla species 

Significant differences were observed in CERw among species, 

frond bioma.ss and PPFD. As was shown previously {Table 25), the rates 

were higher for~- caroliniana than for A. microphylla and A. pinnata 

{Figure 32). CERw increased with increasing PPFD and light saturation 

was attained around 1500JlE m-2 s-1 in A. caroliniana and A. pinnata~ 

A. microphylla saturated at about 1000 yE m-2 s-1. CERw was higher at 

the 500 g m-2 frond biomass than at 1000 and 1500 g m-2 biomasses 

(Figure 33). Since mutual shading would be greater in denser mats, 

the CERw may .l)ave been reduced by competition for light. Light 

saturation at the lowest frond biomass occurred at around 1500JJE m-2 

s-1 while saturation was not attained in higher amounts of biomass. 

This is usually observed in canopies of higher plants because some 

leaves in the lower layers of the canopy are shaded and may never be 

light saturated. 
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The differences in carbon dioxide exchange rate among azolla 

species were related to foliar characteristics. Specific leaf area, 

specific chlorophyll content and leaf density appear to be important 

determinants of CER as they are in other plant species. A. 

caroliniana had a higher SLA, sec and leaf density which resulted in 

greater CERw than~- rnicrophylla and~- pinnata. All three of the 

above parameters were lower for A. microphylla which probably limited 

its CERw• The limiting factors in A. pinnata were lower SFA and leaf 

density. The CERw increased with growth light level from 35 to 65% 

and then declined, probably due to supra-optimal FAI in the control 

treatment. The ET of A. caroliniana was also lower than the other two 

species and therefore it may use water more efficiently in dry matter 

production. CERw increased with increasing PPFD and decreased with 

increasing frond biomass. PPFD for saturation increased with 

increasing frond biomass. 
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CHAPTER VI 

GENERAL DISCUSSIOO 

Adaptation to warm climates is an essential requirement for the 

expansion of azolla cultivation in the tropics. The results of the 

field experiment with azolla showed that the azolla accessions!:._. 

caroliniana (Ohio) and!:.· pinnata (Indonesia) accumulated over 40 kg 

nitrogen ha-l in 20 days when grown as an intercrop in the sumner 

season (Table 6). In controlled-temperature experiments (Chapter IV), 

azolla growth was reduced by a combination of high temperature (33 C) 

and heavy shade (65%). Since azolla culture would be mostly limited 

to the first rronth after rice transplanting, heavy shade would not be 

a severe constraint when azolla is intercropped with rice. Fresh 

weight and nitrogen accumulation for the period from day 10 to day 20 

was greater than for the period from day Oto day 10 for!:._. 

microphylla at both 20 and 33 C and in A. caroliniana at 33 C when the 

growth light level was 65 or 100% (Figures 27 and 28). Therefore, a 

longer incorporation interval nay be desirable, provided disease 

outbreaks are not encountered. 

Nitrogen supplied to rice from intercropped azolla likely would 

be insufficient to meet the total nitrogen requirement of modern rice 

cultivars. Supplemental fertilizer nitrogen would be required to 

produce maximum yields. Timing of the application of fertilizer 

nitrogen is important to ensure that nitrogen from both sources are 
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fully utilized. If fertilizer nitrogen is added during intercropping, 

azolla may compete with the rice for nitrogen and the net gain in 

nitrogen would decrease. If fertilizer nitrogen application is 

delayed until after azolla incorporation, early growth of rice would 

be reduced due to nitrogen deficiency. An alternative would be to 

start the rice crop with preplant fertilizer nitrogen and introduce 

azolla 7 to 10 days after transplanting followed by incorporation at 

10 day intervals over about three weeks. This may minimize absorption 

of fertilizer nitrogen by azolla. Moreover, the rice canopy would be 

sufficiently formed to provide some shade for azolla. However, this 

is possible only if rice seedlings are about 15 days old at 

transplanting: a heavier shade may develop sooner if older seedlings 

are transplanted. Another possibility would be to deep place 

fertilizer nitrogen so that its presence in flood water is minimized, 

but this may also reduce nitrogen availability to rice seedlings. 

Initial azolla biomass and incorporation interval are the primary 

management considerations in maximizing nitrogen accumulation. In 

intensive cropping systems, management of the azolla biomass should be 

such that it is always maintained in the grand period of growth. This 

is achieved by using sufficient biomass to form a single-layer cover 

and reducing the mat thickness by incorporation when growth levels 

off. Based on the results of Experiment 3 in Chapter IV, the initial 

biomass for field conditions should be above 250 g m-2 and the 

incorporation interval about 7 to 10 days. 
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The time available for azolla culture has been an important 

factor in determining the initial biomass in China and Vietnam. A 

biomass cover sufficient enough to shade out green-algae is another 

consideration, especially during warm weather. The studies discussed 

in Chapters IV and Vindicate that differences in frond 

characteristics should also be taken into account in determining the 

initial biomass. A. caroliniana had greater specific frond area than 

A. microphylla and!· pinnata (Table 26). Therefore, a comparatively 

lo\ver arrount of initial biomass of A. caroliniana would be required to 

obtain the same degree of surface cover formed by a higher amount of 

A. microphylla or!· pinnata. 

Other frond characteristics observed in greenhouse experiments 

further confirmed that a higher initial biomass would be required for 

!· microphylla in order to efficiently intercept light. It had lo\ver 

contents of dry matter (Figure 14), chlorophyll (Figure 15) and 

nitrogen (Figure 17) than A. caroliniana and!· pinnata. If the same 

initial biomass is used for all species,!· microphylla would have 

less chlorophyll per unit area than those species that have higher 

chlorophyll content per unit fresh weight: consequently, light 

interception and biomass accumulation would be lower. 

The multiplication of azolla for field inoculation should also 

take into account the growth characteristics of the different species. 

Among the azolla species,!· filiculoides, !· microphylla and A. 

nilotica have an upright growth habit and form thicker frond mats than 

prostrate-growing species such as!• caroliniana, A. mexicana and A. 
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A. pinnata. Fronds from thicker mats of~- microphylla had lower dry 

matter and chlorophyll contents and their growth rate was slower when 

used as initial biomass. Therefore, precaution should be taken during 

multiplication of species such as A. microphylla not to permit the 

development of thick mats having high biomass. 

Although fresh weight accumulation of~- microphylla was greater 

than A. caroliniana (figure 11), significant differences in dry matter 

accumulation was not observed (Figure 13) because of lower dry matter 

content in A. microphylla (Figure 14). Dry matter production is 

dependent on carbon assimilation rate~ The- carbon dioxide exchange 

rate per unit fresh weight (CERw) was greater for A. caroliniana than 

~- microphylla (Table 25). Therefore, dry matter production of A. 

caroliniana would be expected to be higher than A. microphylla. This 

may be a reason for the lower growth rates of A. microphylla during 

the first few days after inoculation. However, when grown for 20 

days,~- microphylla compensated for lower CERw by having higher fresh 

weight per unit area. Both relative growth rate (RGR) (Figure 13) and 

CERw (Figure 33) declined with increasing initial biomass probably due 

to mutual shading. Hence, the effect of an environmental factor on 

carbon assimilation rate is reflected in the growth rate. 

Azolla is a source of low-cost nitrogen for lowland agriculture 

and also adds large amounts of organic matter which can be beneficial 

to continuously cropped soils. If an adaptable azolla accession is 

managed properly in a given environment, its contribution towards the 

nitrogen requirement of rice can be significant. 
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APPENDIX A. Analytical methods. 

A. Determination of chlorophl{ll 

Plant chlorophyll content was determined by the procedure of 

McKinney (1941) and Arnon (1949). Two grams of azolla was blended in a 

homogenizer with 40 ml of 80% acetone and 20 ng of Mga:>3 for two 

minutes. The homogenate was filtered through Whatrnan #1 filter paper 

and the extract was made to 50 ml with 80% acetone. The absorbence of 

the extract was determined with Spectronic-20 spectrophotometer at 

wavelengths of 645 and 663 run. The total chlorophyll (Ct)' chlorophyll 

a (Ca) and chlorophyll b (Cb) in ng 1-l were calculated according to the 

following equations: 

Ct= 20.2 '\545 + 80.02 "663 

ca= 12.7 '\563 - 20.69 A645 

Cb= 22.9 A645 - 40.68 '\563 

where ~ 5 and ~ 3 were absorbance at 645 and 663 nm respectively. The 

values were converted to)lg ·g-1 fresh weight. 

B. Determination of total nitrogen 

Total nitrogen of plant tissue was determined by the method 

described by Mitchell (1972). The reagents required for this method 

are: 

1. Salt mixture - 20:0.5:2.0 mixture of K2so4 , FeS04 and cuso4 : 

2. Solution A - 6.24 g NaOH in 1000 ml of water; 

3. Solution B - 5 g phenol and 25 ng sodium nitropru.sside in 500 ml 

of water~ 
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4. Solution C - 2.5 g NaOH, 1.87 g Na2HP04 , 15.9 g Na3Po40.12H20 

and 5 ml 5.25% sodium hypochlorite~ 

5. 1% EDTA solution adjusted to pH 10 with NaOH. 

A sample of 0.05 g of oven-dried ground plant material was 

placed in a 75 ml digestion tube with one g of salt mixture and 5 ml 

concentrated H2so4• The sample was digested at 375 C for three hours, 

allowed to cool and diluted to 75 ml with deionized water. An aliquot 

of 2 ml of the digest was transferred into a 100 ml volumetric flask 

followed by l ml EDTA, 5 ml of solution A, 10 ml of solution Band 10 ml 

solution c. The contents were diluted to 100 ml with deionized water 

and allowed to stand overnight for color developnent. The absorbence 

was then measured at 625 nm. The percentage nitrogen on dry weight 

basis was obtained from a standard curve. The standard curve was 

prepared by plotting the absorbance values for known nitrogen 

concentrations in the 10 to 50 ppm range. 
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APPENDIX A. (cont.) 

calender of events. 

07.30.82 Planting pre-soaked rice seeds in nursery trays. 

08.13.82 Transplanting of rice seedlings. 

08.14.82 Introduction of intercrop azolla into rice plots. 

08.24.82 First postplant fertilizer application. 

First incorporation of azolla. 

09.04.82 Second postplant fertilizer application. 

Final incorporation of azolla. 

09.10.82 Sampling at active tillering. 

09.30.82 Sampling at panicle initiation. 

10.27.82 Sampling at heading. 

12.06.82 Harvesting of rice. 
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APPENDIX B. Significance probability values (PR>F) for F values. 

Parameter 

a. Growth parameters 

Plant height - 48 DA'r 

75 DAT 

115 DAT 

Shoot dry wt - 48 DAT 

75 DAT 

LAI - 48 DAT 

- 75 DAT 

Tiller number- 48 DAT 

Tiller nurrtler- 75 DAT 

Azolla 

accession (A) 

0.082 

0.081 

0.008 

0.732 

0.146 

0.710 

0.108 

0.918 

0.072 

b. Yield and yield canponents 

Panicles hill-1 0.202 

Grains panicle-1 0.152 

Filled grain% 0.088 

100 seed weight 0.403 . 

Grain yield 0.145 

156 

N application 

schedule (B) 

0.012 

0.002 

0.357 

0.155 

0.003 

0.104 

0.073 

0.068 

0.380 

0.235 

0.675 

0.434 

0.962 

0.082 

AX B 

0.477 

0.302 

0.110 

0.311 

0.200 

0.271 

0.158 

0.152 

0.150 

0.170 

o. 715 

0.167 

0.759 

0.668 



APPENDIX c. Average temperature (TEMP) and relative humidity (RH) 

inside the greenhouse. 

Experiment 

Experiment l 

l - 7 days 

8 - 14 days 

15 - 21 days 

22 - 28 days 

Experiment 2 

1 - 7 days 

8 - 14 days 

15 - 21 days 

Experiment 3 

l - 10 days 

11 - 20 days 

-

TEMP 

C 

30.6 

33.l 

34.2 

31.0 

33.4 

32.4 

34.0 

28.5 

28.3 

-

157 

-

RH 

% 

50 

51 

48 

S4 

58 

51 

47 

50 

48 

-



APPENDIX D. Significance probability values (PR>F) for F values of 

azolla main effects (Chapter 4, Experiment 3). 

Parameter Species Biomass Light 

Fresh weight 10 OAP 0.001 0.001 0.001 

Fresh weight 20 OAP 0.001 0.001 0.032 

Dry weight 10 OAP 0.001 0.001 0.001 

Dry weight 20 OAP 0.265 0.001 0.001 

Nitrogen content 10 DAP 0.002 0.096 0.509 

Nitrogen content 20 DAP 0.001 0.087 0.687 
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APPENDIX E. Sample ANOVA of nested-plot analysis for dry matter content 

at 10 DAP. 

Source df ss MS F P>F 

Temperature l 1.690 1.690 < 4.27 ans 

Replicate 2 0.488 0.244 

Temp x Rep 2 1.098 0.549 

Error a [Rep+(Temp x Rep)] 4 1.586 0.396 

Light 2 3.987 
1.9W j 9.02 .001 

Light x Temperature 2 2.165 1.082 < 4.90 .OS 

Error b (Rep X Temp X Light) 8 1.768 0.221 

Species l 4.950 4.95 < 19.64 .001 

Species x Light 2 0.001 .0005 < .0001 ns 

Species x.. Temperature 1 0.251 0.251 < 1.00 ns 

Species X Temp X Light 2 0.250 0.125 < o.so ns 

Error C (Residual) 12 3 .024 0.252 

Total 35 19.672 

aNot s i gnificant. 
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