

Backyard Berries!

Growing Blueberries in the Home Garden

NWWRECC E\% I272

Lisa Wasko DeVetter
Associate Professor, Horticulture

Online Resource

https://smallfruits.wsu.edu/

Small Fruit Horticulture Research \& Extension Program
MOUNT VERNON NORTHWESTERN WASHINGTON RESEARCH AND EXTENSION CENTER

Welcome to the WSU Small Fruit
Horticulture (SFH)
program!
©
myWSU ACCESS POUCIES ©

The focus of the SFH program is whole-plant nhwsinlnov of cmall frulit crons in resnonce th

View Information by Crop High Bush Blueberry

Email: lisa.devetter@wsu.edu

Blueberry is a True Native Fruit

Blueberry - Genus Vaccinium

Family - Ericaceae

- Northern highbush (V. corymbosum)
- Lowbush (V. angustifolium)
- Half-high (V. corymbosum \times V. angustifolium)
- Southern highbush (V. darrowii and others) \rightarrow Evergreen for "low chill" environments
- Rabbiteye (V. virgatum)

Northern Highbush Blueberry Vaccinium corymbosum

- Deciduous, perennial shrub native to North America
- Shallow rooted with no root hairs (mycorrhizal)
- Crown forming
- Fresh and processed
- 6-8 years to reach full production
- Long lived (40-50 years)
- 5-10 ft tall at maturity
- High chill

Lowbush Blueberry - V. angustifolium

- "Wild" blueberry
- Managed stands in Maine and eastern Canada
- Deciduous, twiggy shrub Rhizomatous, also with mycorrhizae
- Burning and/or mowing in alternate years for rejuvenation
- Processed market

Half-High Highbush Blueberry V. corymbosum X V. angustifolium

- Cross between high and low bush types
- Much like northern highbush, but shorter
- Less productive than highbush
- Can be grown in containers or as ornamentals
- Planting can last 30+ years
- $11 / 2-4 \mathrm{ft}$ tall at maturity
- High chill

Southern Highbush Blueberry

- Hybrids of V. darrowii and others
- Developed for low-chill areas with warmer and dryer summers (e.g,. central CA)
- Cross-pollination recommended
- Not recommended for PNW

Blueberry Domestication Timeline

- Blueberry was harvested from the wild prior to domestication
- Native Americans used them as a medicine and for flavoring
- 1983 - Elizabeth White noted their potential as an agricultural crop
- 1908 - USDA botanist, Frederick Coville, began selecting wild plants for breeding
- 1910 - Coville discovered blueberries grow best in acidic soil conditions and published his research
- 1911 - White began on-farm collaborations with Coville after reading Experiments in

Blueberries

Blueberry Domestication Timeline

- 1916 - White and Coville's sold the first commercial crop in Whitesbog, NJ
- 1932 - NJ presents White with "outstanding contribution to agriculture" award
- 1942-1962 - >200,000 seedlings planted across 13 states
- 1974 - USDA announces July as National Blueberry Month
- 1990s - Research on blueberry antioxidant activity begins
- 2000s - Scientific research on blueberry health attributes published
- 2012 - Blueberries found in 4,000 products (food, pet food, and cosmetics)

Blueberry's Early Days

Blueberries in Washington

- Leading national producer
- 163 million pounds harvested from 16,700 acres in 2019
- ~24\% of national production
- 70\% of processed market
- Lead national organic production
- 4.7 million pounds harvested from 1,400 certified acres in 2011
- ~50\% of national production

Understanding Plant Growth and Development

Growth and Development - Shoots

- Crown - part of a perennial plant where roots and stems/canes emerge; at ground level
- Canes - large, primary stems that arise from crown
- Two main types of shoots
- Vegetative growth occurs in flushes

Growth and Development - Shoots

- Two shoot types:
- Laterals - develop from vegetative buds on 1-yearold wood (last year's growth)

- Whips - arise from latent buds on older wood at the base of the crown or higher up on the bush; vigorous and arrive after lateral shoots

Growth and Development - Buds

- Two types of buds on laterals: 1) Fruiting/floral

2) Vegetative

- Bud development initiated mid-summer and fall (when days are shorter and cooler)

Growth and Development - Roots

- Shallow rooted (most within first 18 inches of soil)
- Not very extensive (within 1 ft from the crown), but depends on soil type
- No root hairs!
- Very fine roots (75\% of roots are 30-50 $\mu \mathrm{m}$ in diameter)
- Fine roots associate with ericoid mycorrhizae
- Thicker roots important for anchorage, storage, and transport

Growth and Development - Shoots

WashingTon State

Planting

- Late April-May or Aug.-Sept. are good times to plant
- Space plants ~ 3 feet apart
- Dig holes large enough to accommodate all the roots and deep enough so you can cover the uppermost roots with 3 to 4 inches of soil (but don't bury the crown!)
- Break up the root ball!
- Pack the soil firmly around the roots
- Mulch
- Ilrrigate thoroughly, frequently, and deeply

Pollination

Pollination is Transfer of Pollen

- Pollination is the transfer of pollen from the male anther of a flower to the female stigma
- Adequate fruit set and berry
 development in blueberry relies on good pollination
- Ensure you have pollinators in the landscape
- Cross-pollination beneficial for most cultivars

Honey Bees are the Primary Pollinators for Cultivated Blueberry

- Honey bees (Apis mellifera) are the primary pollinators in agriculture, pollinating over 130 crops
- Italian (ligustica) honey bee is the most commercially used sub-species
- Weakness of ligustica includes poor foraging at temperatures below $55^{\circ} \mathrm{F}$, with moderate winds (~ 12
 mph), and with precipitation

Fruit

- Fruit is a berry
- Bloom - powdery epicuticular wax
- Fruit develop within 2-3 months post pollination
- Irrigation important during filling for size and flavor
- Flavor concentrated in skin; differs by cultivar
- Mature bush can yield up to 20 lbs/bush

Development of Fruit Quality

Timing of harvest critical for optimal quality

Harvesting and Postharvest Care for Optimal Fruit Quality

- Proper harvest time and interval (7-11 days)
- Reduce drop heights (no more than 6 inches) during harvest and postharvest
- Avoid compressing fruit
- Cool quickly!
- Always follow food safety guidelines

Blueberry Break! Washington Blueberries

WaGrown Blueberries S3E2: Samson Farms
https://youtu.be/z1rWzP6lekY

Nutrient Management

Plant Nutrients - A Review

- Goal of fertilization is to remove nutrient limitations (and make sure nothing is in excess)
- A nutrient is essential if it is needed for a plant to grow properly (and be productive)
- Macronutrients - needed in large quantities

- Micronutrients - needed in small quantities

Nutrient Management in Blueberry

- Good nutrient management is essential for successful blueberry production
- Blueberries are adapted to acidic soil conditions
- Goal is to lower and maintain soil pH = 4.2-5.5
- Blueberry takes up predominately ammonium nitrogen (not nitrate)
- High organic matter ($\geq 3 \%$) promotes good growth
- Blueberry is sensitive to amendments with high salt content and pH
- Important to modify soil pH and organic matter preplant

Pre-Plant Considerations

- Air and water drainage
- Access to quality irrigation water and ability to irrigate
- Adequate soil pH and organic matter \rightarrow soil test!

Recommended Soil Sufficiency Levels*

Nutrient	Range (ppm)
Phosphorus (Bray P)	$25-40$
Phosphorus (Olsen)	$10-20$
Potassium (K)	$100-150$
Calcium (Ca)	1,000
Magnesium (Mg)	60
Manganese (Mn)	$20-60$
Boron (B)	$0.5-1.0$

NOTE

- Target pH is 4.2 to 5.5
- EC should be less than $2 \mathrm{dS} / \mathrm{m}$
- Not advised to use soil tests to predict nitrogen availability
*Repurposed from Strik and Bryla, 2015.

Pre-Plant Considerations Organic Matter

- Pre-plant incorporation of Douglas fir sawdust beneficial for heavier soils
- Avoiid animal-based manures, cedar, oak, walnut, or any other sawdust
- Application:
- 3.5 inches of sawdust in 3-footwide strips on 10 -foot centers (~19 units/acre)
- Add 5 lb N/unit of sawdust (~95 lb
 N/acre)
- Incorporate to a depth of 10 inches

Acidifying Soils

- Target pH is 4.2 to 5.5
- If soil pH is above this range, need to apply an acid \rightarrow elemental sulfur (S°)
- Amount of acid to apply depends on initial pH, cation exchange capacity (CEC), and free llime (residual carbonates)
- Acidification takes time...
- Pre-plant is also a good time to apply organic matter (e.g. Douglas fir sawdust, orchard wood chips, peat moss, etc.)
- Acidified irrigation water for post plant pH management and alkaline water
- Resources can help guide acidification

Acidifying Soils

```
EM 8857-E • February 2004
```

\$2.00

Acidifying Soll for Crop Production West of the Cascade Mountains

(Western Oregon and Washington)
D. Horneck, J. Hart, R. Stevens, S. Petrie, and J. Altland

Soil acidification sometimes is necessary for optimum plant grow west of the Cascade Mountain Range. Commercial producers of blueberries, azaleas, rhododendrons, and other ornamentals may need to reduce soil pH for optimu Soil acid
Soil acidification is best per formed prior to planting, it is muck more difficult in established planilable to determine soil test is cation amendent metes. This publication is intended to prov puidelines for acidification of guidelines for acidification of commercial fields. It is not intend ornamentals.

Crop soil pH requirements
Table 1 lists optimum soil pH for selected crops grown in western Washington and Oregon. Soils in this region are naturally acidic. For most crops, liming to raise soil pH , rather han soif acidifcation, is needed. Blueberrics and nursery, trons are exceptions. These "acid drons are exception. These "acidlhan 60 and preferably below 55 . Cultivation of these crops usually is Cultivation of these crops usually acidification west of the Cascad acidification west of the Cascade Mountain Range. Acidification of production of these crops is soil for pro
common.

Table 1.-Optimum soil pH range for selected crops.*

Alfalfa	$6.5-8.4$
Vegetables	$6.5-8.2$

Vegetables
Garlic
Grass for seed or pastures
Fruit trees
Highbush blueberries and cranberries Rabbiteye blueberries Azaleas and rhododendrons
Field or silage com
Wheat
$6.5-8.2$
$6.5-75$
$6.5-7.5$
$5.5-8.2$
$5.5-8.2$
$6.0-8.0$
$6.0-8.0$
$4.5-5.5$ $4.5-5.5$
$4.2-5.0$ $4.2-5.0$
$4.5-5.5$ 5.5-5.8.4 5.5-8.4
*Soil pH determined in $1: 2$ soil:water ratio
Donald Horneck, Extension agronomist, Oregon State University: John Hart, Extension soil scientist, Oregon State Universig: Robert Sievens, Extension soil scientist Wastington State Uvinersing Sen Petrie, superintendent Columbia Basin Agriculural Research Center Oregon State Universiny; and James Athland, Extension faculy (nursery crops), North Willamette Research and Extension Center Oregon State Universigy.

Plant symptoms when soil pH is too high Plants are excellent indicators of he need for soil acidification. Several symptoms are exhibited when soil pH is too high. A common symptom is yellowing (chlorosis) of leaves, with prominent. ceaves may be smaller (han normal. encs ay be may be hrown (Figure 2) Symptoms are obs

WashingTon State SUNIVERITY

Nitrogen Fertility

- Remember - blueberry is adapted to use the ammonium $\left(\mathrm{NH}_{4}\right)$ form of nitrogen [not nitrate $\left(\mathrm{NO}_{3}\right)$]
- Use ammonium or ammonium-forming fertilizers
- Apply annually based on tissue tests and/or field observations
- Symptoms of deficiency - poor growth, chlorosis (yellowing), and leaf reddening
- Don't apply excessive N fertilizer
- Too much N can cause excessive vigor at the cost of fruit production and quality

Nitrogen Deficiency

Timing of Nitrogen Application

- Nitrogen fertilizer uptake begins at bloom and extends through harvest
- Start applications early (5$10 \%$) bloom and continue through mid-June to mid-July
- For dry/granular fertilizers, divide total rate into thirds and apply:

1) Late April to early May
2) Mid May to late May
3) Mid June

Fertigation of Nitrogen

 continue until start of harvest

- Apply once every two weeks to weekly - Place lines close to soil (under mulch)

Fertigation of Nitrogen

Place lines close to soil (under mulch)

WASHINGTON STATE
SNIVERSITY

Rates of Nitrogen Application (lb N/acre of highbush)

Year	Fertigation	Granular/dry Fertilizers**
1	90^{*}	$25-40^{\dagger}$
2	90	$40-50^{\dagger}$
3	60	$50-60$
4	70	$55-65$
5	75	$65-75$
6	85	$80-100$
7	95	$90-120$
$8+$	$100-150$	$100-140$

*Based on Strik and Bryla (2015).
**Modified from Hart et al. (2006) for field w/out surface mulch and assumes in-row spacing of 2.5 to 3 ft . If sawdust mulch is used, add $25 \mathrm{lbs} \mathbf{N} /$ acre during years when mulch is reapplied.
${ }^{\dagger}$ Assumes application by hand.

Half-high blueberries require less!

Caution Using Composts in Blueberry

- Animal-based composts tend to be high in salt content, electrical conductivity (EC), and pH^{*}
- Goal is to keep compost $\mathrm{pH}<6$ (acidification may be required)

Source		Sample no.	pH	Electrical conductivity (EC)
Compost				
	Dairy	9	7.6	6.1
	Horse	5	7.8	3.3
Yard	5	7	4	
Leaf	2	7.4	2.2	
Mint	2	7.7	11.6	
On-farm	5	6.8	6	
Other organics				
Peat	1	4.8	0.7	
Sawdust	1	5.2	0.4	

*Reproduced from Sullivan and DeVetter, 2015.

Some Organic Fertilizer Options

Organic nitrogen sources*

- Fish emulsion (4-0-2)
- WISErg ${ }^{\text {TM }}$ (3-2-2)
- Blood meal (14-0-0)
- Feather meal (13/14-0-0)
- Soy protein hydrolysate
- Apply dry-based products 2-weeks before bloom to allow for mineralization
- pH should be <pH 6.0, EC < 4 dS/m (with the saturated media extract method), and K should be $<0.7 \%$ (dry weight basis)
*Products listed above are not endorsed by WSU

Mulching

- Blueberries benefit from mulch applications
- Apply 2-3 inches of mulch around plants
- Suitable mulch materials include Doulas-fir sawdust untreated orchard wood chips, weed fabrics ("weed mat"), etc.
- May need additional nitrogen (~25\%) when using sawdust mulch due to nitrogen tie-up

Irrigation

- Blueberries have shallow roots and need regular irrigation
- Irrigate new plants frequently and deeply
- Mature plants require 1.5-3 inches of water per week
- Wet soil to $1 / 2-1 \mathrm{ft}$ deep
- No standing water!
- Adjust for soil type
- Avoid overhead irrigation
- Double drip with ½-gallon emitters spaced every 18 inches under mulch ideal

Cultivar Selection

Cultivar Selection

- Cultivar is a "cultivated variety" (e.g. 'Honeycrisp')
- Successful cultivars need to be:
- Climatically adapted (cold hardiness, growing degree days, and chilling requirement)
- Adapted to soil conditions
- Tolerant to key pests or diseases
- Adequately pollinated
- Suitable maturity/harvest date
- Does the fruit characteristics meet your needs?

Cultivar Resources

A Pacific Northwest Extension Publication
Oregon State University - University of Idaho - Washington State University
PNW 656 - February 2014
Blueberry Cultivars for the Pacific Northwest
Bernadine C. Strik, Chad E. Finn, and Patrick P. Moore

'Bluecrop' (northern highbush)
-here are five main types of blueberries grown in the United States: northern highbush, souther hlghbush, rabblteye, lowbush, and half-high The northern highbush is most common type grown worldwide and in the Pactfic Northwest.

This publication briefly describes each type of blueberry. Tables I and 2 list cultivars that are sultable for the Pactic Northwest.

Northern Highbush
 Blueberries

Northern highbush blueberries (Vaccinfum corymbosum) are nattve to much of the eastern and northeastern United States, from the Appalachlan Mountains to the Atlanttc Ocean. The plants grow 5 to 9 feet tall. One named selection from the wild,

Rubel, was tntroduced in the early 1920s. Many commerctal northern highbush cultivars have been developed through traditional breeding programs. Northern highbush cultivars are listed in Table 1.

Sputhern Highbush Blueberries

Southern highbush blueberries are complex hybrids of V corymbosiam and a native, evergreen Florlda specles (V. darrowt). The plants grow about 6 to 8 feet tall. In mild production regfons, southern highbush blueberries can be grown tn an evergreen system, in which the plants retain old leaves through the winter to advance the spring frust crop.

This type was developed to allow blueberry production in low-chill areas (regtons with mild winters,
> 'Duke’ and ‘Draper’ are most widely grown at a commercial levels, but still have challenges...

Cultivar	Characteristics
Earliblue	Medium-to-large fruit, aromatic flavor, early, vigorous, erect, medium yield potential
Spartan	Large fruit, late bloom (avoids frost), but early ripening, vigorous, erect, does not tolerate heavy soils, concentrated ripening, medium- to-high yield potential
Patriot	Large fruit, more acidic, "red back", concentrated ripening, small plants (<4 ft), adaptable to heavy soils and cold, sensitive to bacterial blight, nice fall foliage, medium yield potential
Toro	Very large fruit, good flavor, stocky and spreading, slower to establish, sensitive to root rots, high-to-very-high yield potential
Olympia	Medium fruit, sweet, vigorous and spreading plant, medium yield potential
Bluecrop	Medium-to-large fruit, classic flavor, susceptible to "red back" and tartness, vigorous and upright, need to prune correctly, medium-to- high yield potential
Jersey	Small fruit, classic flavor, large and spreading plants, "heirloom", medium yield potential
Chandler	Large fruit (with good pruning), good flavor, long ripening window, medium sized plants, sensitive to bacterial blight, medium-to-high yield potential

Timing of Fruit Production

Plant Problems!

Pest Management Handbooks

Insect • Plant Disease • Weed • Pesticide Safety • Order Printed Handbook

Insect Management Handbook

Quick find: Crop pests

Enter a few letters of a crop name to find associated pests

Plant Disease Management Handbook

https://pnwhandbooks.org/

PLANT \& INSECT DIAGNOSTIC LABORATORY About the Plant Clinic

WSU Puyallup Plant \& Insect Diagnostic Laboratory

A Note to Clients during COVID-19

Updated 9/30/2020: Due to COVID-19 management strategies, the WSU Puyallup Plant and Insect Diagnostic Lab will be modifying operating procedures as follows:

WSU Extension has announced that WSU Research \& Extension Centers and other Extension locations are CLOSED to public entry but that WSU is committed to continuing its work.

DIGITAL MEANS
The lab is encouraging the use digital means for diagnostic purposes when practical.

- Please email jennyglass@wsu.edu clear photos of the damaged plant or the insect.
- For plant problems, images showing the plant in the landscape often provide additional clues as to the cause of the problem.
https://puyallup.wsu.edu/plantclinic/

Diseases - Mummy Berry

Monilinia vaccinit-corymbosi

- One of most problematic diseases in PNW
- Primary infection from overwintering "mummies" (apothecia)
- Secondary infection aided by pollinators, wind, and rain
- Manage with sanitation, fungicides, and/or disrupt spore dispersal

Diseases - Mummy Berry

 Monilinia vaccinit-corymbosi

Cultural Management of Mummy Berry

- Resistant cultivars: Bluejay, Bluetta, and Olympia
- Avoid very susceptible cultivars: Blueray, Berkeley, Earliblue, and Northland
- Bury mummies through mulch or cultivation
- Sanitation - remove infested fruit

Other Diseases

- Botrytis blight (Botrytis cinerea)
- Shock virus

Spotted wing drosophila (SWD; Drosophila suzukit)

Infected blueberry

- Monitor populations
- Pick frequently and cool
- Sanitation
- Prune for open and aerated plant canopy
- Exclusion netting
- Spinosads can provide 90-100\% control and 5-7 days residual activity
- Some formulations approved for organic
- Always read and follow the label!

WS FS049E:

http://pubs.cahnrs.wsu.edu/publications/pubs/fs049e/

WASHINGTON STATE
 UNIVERSITY
 EXTENSION

SPOTTED WING DROSOPHILA (SWD) MONITORING, IDENTIFYING, AND FRUIT SAMPLING

Spotted Wing Drosophila (SWD) Monitoring, Identifying, and Fruit Sampling

Introduction

Spotted wing drosophila (SWD, Drosophila suzukii) is a soft fruit pest, originates in Asia, and is in the same genus as other species commonly known as vinegar flies. SWD were discovered in Califomia in 2008 and in Washington and Oregon in 2009. SWD are distinguished from other vinegar flies in that they lay their eggs in undamaged fruit still attached to plants. SWD can quickly destroy soft fruit such as blucberry, raspberry, strawberry, plum, peach, and cherry due to larvae feeding inside the fruit SWD have a rapid reproductive cycle, and depending on environmental conditions, 4-10 generations can hatch each year in the Northwest.

Commercial and home fruit growers are encouraged to monitor SWD starting just before fruit begins to ripen and to apply control sprays when the first SWD are found in the monitoring
traps or when there are local reports of SWD found in the area. traps or when there are local reports of SWD found in the area.
For updates on local SWD findings, refer to the distribution. maps.
This fact sheet describes how to make a monitoring trap, how to sample fruit, and how to identify SWD. For more information on SWD, including its biology, life cycle, and control, refer to websites in Washington (
httpj//mtvernon.wsu.edu/ENTOMOLOGY/pests/SWD.html and http://extension.wsu.edu/swd/Pages/TreeFruitL Links.aspx and Oregon (http://swd.hort.oregonstate.edu)-

Monitoring Traps

Traps for monitoring SWD can easily be made at home.

- Use a clear plastic cup or deli container. A 16 oz plastic
cup is ideal.
- Drill or punch $7-10$ holes measuring $1 / 8$ to $3 / 16$-inch around the top edge of the cup (Figure la); flies will enter the trap through these holes. Leave a 3 -inch section on one side of the container to pour out used
vinegar.
- Add 1 inch of pure apple cider vinegar (not artificially flavored).
- Add 1-2 drops of unscented dish soap.
- Snap the lid in place and fasten tape over any openings in the lid to keep rainwater out.

Figure $1 . A$ dear plastic drinking cup with holes punched in the top (a) and placed in raspbery (b), stranbery (c) and chery (d) plantings as a SWD trap.
Set the traps in place to monitor SWD before fruit begins to ripen.
Caneberries and Blueberries: Hang the trap on a plant, stake, or trellis $3-5 \mathrm{ft}$ above the ground within the shady, cooler side of the plant canopy (Figure 1 lb).

Strawberries: Place the trap on the ground or elevated slightly above the canopy on a stake within the strawberry row (Figure 1c).

Tree Fruit: Hang the trap within easy reach or at eye level on. the shady side of a tree (Figure 1d).

Place 1 trap in each crop or 1 trap per acre for large plantings. Entrance holes should be clear of leaves and fruit to allow easy entry by flies. Check traps for flies and replace vinegar weekly. Do not pour the vinegar from the trap on the ground. as it can attract SWD and affeet trap results; remove the vinegar from the field and dispose elsewhere. Filter the trap contents over a fine screen or coffee drip filter placed in a hand-held colander (Figure 2) and examine with the naked eye

Pruning

Objectives

- Balance vegetative and reproductive growth
- Remove unwanted growth
- Open canopy for adequate light penetration and air circulation
- Annual pruning is essential for a healthy and productive planting!

Pruning

- "A Grower's Guide to Pruning Highbush Blueberries" by Oregon State University
- Link:
https://media.oregonstate.edu/me dia/t/0 05v1qew6
- A great video resource!

Organic \& Sustainable Agriculture at WSU Everett

1. Four-year WSU agriculture degree in western WA.
2. Save \$\$\$ - complete the first two years at a regional community college.
3. Hands-on experience through a series of internships.
4. Individual mentorship with a higher instructor to student ratio.

Nannette McGrath
Academic Advisor and Recruiter
nannette.mcgrath@wsu.edu

Thank you! Any questions?

Lisa Wasko DeVetter, PhD
Associate Professor of Small Fruit Horticulture Washington State University NWREC Website: http://smallfruits.wsu.edu/
Email: lisa.devetter@wsu.edu

