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ABSTRACT 
 
Flowers’ colours are an essential element of their ability to attract visits from 

pollinators. However, the colours as they appear to human observers can differ 

substantially from their appearance to insect pollinators, and so it is essential to consider 

pollinator vision in any study of the ecology of flower colour.  

 

In this thesis I describe how I have overseen the development of an online database to 

provide accurate information on floral spectral reflectance measured without human 

observational bias. This resource allows a more accurate consideration of flower colours 

in future studies, and permits investigations of flower colours within and across 

habitats. Using the records in this database, I analysed flowers from two European 

habitats for spatial or temporal changes, modelling the colours according to insect visual 

perception. I discovered that the insect-colour composition of the plant communities 

does not change either along an altitudinal gradient or throughout the year. These novel 

and ecologically-relevant analyses contradict previous observational studies, but support 

the theory of a pollination “market” in which flowers compete for pollinator visitation.  

 

I then describe my experimental investigations into the visual capabilities of two 

pollinators and how this may relate to what colours of flowers they visit. Firstly I study 

the foraging behaviour of bees under spatially inconsistent illumination and how this 

impacts on their choice behaviour. I revealed patchy light can have measurable effects 

on bee foraging behaviour: they intentionally choose familiar over unfamiliar 

illumination, which may impact on the flowers they visit in complex natural 

environments. Secondly, I detail the new evidence for a red-sensitive photoreceptor in 

South African monkey beetles, a major pollinator in a habitat containing many long-

wavelength-reflecting flowers, which are not classically “attractive” to bees. 

Throughout this thesis, I explore how pollinator vision has shaped the evolution of 

flower colours in different contexts. 
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CHAPTER I 
 

INTRODUCTION 
 

The colours of flowers have fascinated people for thousands of years (Grant, 1950), yet 

the purpose of their colour, size and many aspects of their morphology is not to delight 

the human eye but as an advertisement of their presence – and the rewards they offer 

(or, in some cases, fail to offer) – to insect and vertebrate pollinators (Chittka and 

Kevan, 2005; Raguso, 2004). Their visual appeal and conspicuousness greatly enhances 

their chances of being visited by animals able to carry their pollen on to conspecifics 

and thus afford them reproductive success.  

 

Angiosperms probably first evolved around 140 million years ago (Sun et al., 2002; 

Willis and McElwain, 2002), but the radiation of the group and the innovation of a 

prominent floral display with petals and colour is more recent, occurring perhaps only 

90-100 million years ago  (Busch and Zachgo, 2009; Crane et al., 2009). The evolution 

of the flower has enhanced the reproductive success of angiosperms and contributed to 

the enormous diversification into all the species of flowering plants seen today. 

However, there is also increasing evidence indicating that pollination predates the 

evolution of angiosperms – several species of modern cycads have quite specialised 

pollination systems (Schneider et al., 2002; Tang, 1987), and a recent study by Ren 

(2009) taking into account morphological evidence from fossilised scorpionflies, 

analysis of the food deposits in their probosces and consideration of the morphology of 

a now-extinct group of gymnosperms, the Czekanowskiaceae, concluded that it was 

highly likely that a specialised scorpionfly-Czekanowskiaceae pollination system 

existed long before angiosperms radiated. 

 

FLOWER COLOUR DEVELOPMENT: PIGMENTS 

 

How are flower colours produced? Most flower colours are a result of chemical 

pigments present in the cells of the flower petals. Particularly significant are the 
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carotenoids and the anthocyanins. Carotenoids are complex organic molecules whose 

presence results in a yellow-orange colour appearance to human eyes, both in flowers 

and in fruit (Jordan, 2004). They are typically divided into two types: the carotenes and 

xanthophylls (the latter contain oxygen; the former do not).  

 

Anthocyanins are a subclass of flavonoids containing a sugar group. They are present in 

all tissues, but when they occur at higher concentrations in petals they are the cause of 

most blue-violet-red shades observed in flowers by humans (Gottsberger and Gottlieb, 

1981). The exact colour appearance conferred by these pigments is determined by the 

pH of the intracellular environment (Stewart et al., 1975). 

 

As understanding of animal behaviour progressed it became apparent that the purpose of 

flower colours is to entice pollinators to visit them, acting in concert with other features 

such as floral odour to become “sensory billboards” (Raguso, 2004). This is true both of 

the pigmentation and the structural contributions to a flower’s colour appearance. 

Experiments involving colour knockouts and different colour morphs show that flowers 

lacking their typical pigments may receive fewer pollinator visits (Brown and Clegg, 

1984; Comba et al., 2000; Dyer et al., 2007; Levin and Brack, 1995) (note, however, 

that many of these studies did not investigate the effect of colour changes on plant floral 

odour, which can have large effects on flower visitation (Kunze and Gumbert, 2001)). 

 

FLOWER COLOUR DEVELOPMENT: STRUCTURAL COLOUR 

 

Flower colour appearance can also be enhanced or altered by structural modifications of 

the petals. Some types of epidermal cells serve to concentrate photons and intensify 

pigmentation colours (Glover and Martin, 1998; Noda et al., 1994). These conical 

epidermal cells are present in around 70% of flower species studied, so one can surmise 

they serve an important purpose and their visual appeal may be a contributing factor to 

this (Dyer et al., 2007). Similarly, striations on the petal epidermis present can induce 

iridescent effects by refracting light of different wavelengths by different amounts 

(Whitney et al., 2009a), similar to the structural colour observed on butterfly wings 

(Vukusic, 2006; Vukusic et al., 2002), beetles (Seago et al., 2009) and some damselflies 

(Vukusic et al., 2004). The result is that viewing the petal from different angles 
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produces a different impression of colour; such iridescence can be detected and learned 

by insects (Whitney et al., 2009b). Such structural colours can produce a more intense 

saturation than can be achieved by pigments, but in general the majority of flower 

colours are nonetheless pigment-mediated. 

 

ANCESTRAL FLOWER COLOURS 

 

As a result of the biochemical and developmental pathways involved in pigment 

production, the colours a flower can assume are constrained by evolutionary history. In 

order for a brightly- coloured flower to emerge from a lineage that has previously only 

been white, the plant must evolve or co-opt from other biochemical pathways the 

enzymes necessary to produce coloured pigments. In contrast, a plant group with 

brightly coloured flowers may be able to give rise to a white-flowered lineage relatively 

easily by loss of a functional enzyme at some point in the pathway, such as when a 

chalcone synthase enzyme is disrupted in Antirrhinum, Ipomoea, Dendranthema or 

Delphinium (Coberly and Rausher, 2003; Yang et al., 2002). Strong evidence of this 

comes from a recent meta-analysis by Rausher (2008) in which he found many 

examples of pigments being lost from taxa at a greater rate than pigment-gain events, 

but only one taxon (Costus) in which gains of pigmentation appear to have happened 

more frequently. 

 

The ancestral flower colour associated with the first flowers was therefore unlikely to 

have been highly pigmented and to have appeared, for example, blue, pink or purple. 

We are uncertain exactly what colour the first flowers were, but early flowers were 

likely to have resembled those of the extant plant groups considered “basal” – 

specifically the ANITA-grade plants (Thien et al., 2009). 

 

In any case, in some lineages it seems that the evolution of differently-coloured 

pigments in flowers has in some way benefited them, as distinctive and striking colours 

such as red (in Papaver, Mimulus, Penstemon and Romulea just by way of illustration) 

and blue (in, to name but a few examples, Iris, Delphinium, Ipomoea) appear in many 

taxa of angiosperms convergently (Bernhardt, 2000; Chittka et al., 1994; Cronk and 

Ojeda, 2008).  
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White flowers present something of a conundrum – there are many flowers that appear 

white to humans. However, almost universally, these flowers are UV-absorbing (Kevan 

et al., 1996). Therefore, as will be explained later, to insect eyes they could be predicted 

to be as distinctly colourful as cyan or yellow appears to humans, since the flowers 

stimulate two out of three of most trichromatic insects’ photoreceptors. By contrast, 

UV-reflecting white flowers are very uncommon (Chittka et al., 1994). This implies that 

white flowers are under selection by visual systems as much as those that appear 

colourful to human eyes. 

 

FLOWER COLOUR IN THE CONTEXT OF POLLINATION 

 

Why might a flower’s colour affect the number of visits received by it? Most pollinators 

– insects or vertebrates – possess colour vision (Briscoe and Chittka, 2001; Frisch, 

1914) (note, however, that bats appear to have rather limited colour vision (Winter et 

al., 2003), and rodents and small marsupial pollinators likewise tend to be rod-

dominated dichromats (Ahnelt and Kolb, 2000; Strachan et al., 2005)), and therefore are 

able to detect the colour properties of a flower. Colour can have implications for 

salience; flowers that are highly visible against a background will be more easily 

detected and therefore more frequently visited than flowers that are less conspicuous 

(Dyer et al., 2007; Giurfa et al., 1996; Spaethe et al., 2001). This mechanism alone 

would favour the evolution of flowers with high contrast with their background, at least 

as detected by the relevant pollinators. 

 

Additionally, however, pollinators may have innate preferences for particular flower 

colours (Giurfa et al., 1995; Lunau and Maier, 1995; Raine et al., 2006) and so may tend 

to choose to visit certain colours more frequently even with no prior flower-visiting 

experience. But the overall picture is not so simple: pollinators can overcome these 

preferences and learn to associate particular colours with a reward, even colours that are 

not considered “innately attractive” to them (Menzel, 1985b; Menzel and Erber, 1978). 

Rewards offered by flowers may include nectar (Baker and Baker, 1973), pollen (Betts, 

1920; Jones, 1997), aromatic oils (Buchmann, 1987; Vogel and Machado, 1991) or heat 

(Dyer et al., 2006; Seymour et al., 2003). Thus, the flower colour serves as an 
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advertisement, both making the flower conspicuous to a pollinator and typically 

providing information about the reward contained within. 

 

However, there are fundamental differences in the colour vision used by us as human 

observers to view flowers and that of the pollinators. As it is the perception of 

pollinators which will ultimately lead to reproductive success for flowers, any 

consideration of flower colour must take into account how those colours are perceived 

by the relevant pollinators. This is investigated further in chapters III and IV, in which 

the colour composition of floral communities is modelled in bee and fly colour space in 

order to look for spatial or temporal changes relating to their pollination ecology. 

 

OVERVIEW OF THE COLOUR VISION OF INSECT POLLINATORS 

 

I now present a summary of the colour vision capabilities of bees and other 

Hymenoptera, moths, butterflies, dipteran flies and beetles. Although other insect 

groups, e.g. crickets (Micheneau et al., 2010), can also contribute to pollination, these 

guilds are considered to be the major pollinators in most community studies (Johnson, 

2004; Lázaro et al., 2008; McCall and Primack, 1992; Ollerton et al., 2009a). Some bird 

species (e.g. hummingbirds (Altshuler, 2003; Brown and Kodric-Brown, 1979; 

Castellanos et al., 2003), passerine birds (Ollerton et al., 2009b) and sunbirds (Pauw, 

1998) can also serve as pollinators and indeed are the primary pollinators of many 

flower species (Bruneau, 1997; Dalsgaard et al., 2009); their physiology is substantially 

different from that of insects and their visual apparatus and capabilities are also very 

dissimilar (Goldsmith, 1980; Goldsmith et al., 1981).  

 

Insects have compound eyes consisting of hundreds or thousands of ommatidia, discrete 

units containing the photoreceptor cells and support structures. An ommatidium 

comprises a set of photosensitive cells and the associated support structures. There are 

typically around eight elongate retinula cells, arranged around a central rod – the 

rhabdom, which serves as a light-guide to incoming light. The rhabdom contains the 

rhabdomeres, which contain the visual pigments (Goldsmith and Philpott, 1957) (Figure 

1). 
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The compound eyes in insects may all appear to be superficially similar, but in fact 

there is a great diversity of structure, enabling them to trade off sensitivity and acuity in 

different ways. Firstly, insect eyes can be of either apposition or superposition type 

(Exner, 1891). The apposition eye, thought to be the ancestral form, contains optically 

isolated ommatidia, and the fractions of images provided by each ommatidium are 

assembled in the brain to form a coherent image. The superposition eye is typical of 

many nocturnal insects: the ommatidia are not optically isolated and several ommatidia 

are able to focus light on to each of the retinula cells, producing a single, erect image in 

the eye (Land et al., 1999; Schwab, 2006). Superposition eyes increase sensitivity by a 

factor of between 10 and 1000 compared to apposition eyes (Gaten, 1998). 

 

Additionally, the rhabdoms can function in either an open or closed systems. In the 

open system, the individual rhabdomeres are separated from each other so that each 

photoreceptor cell functions semi-independently as a “picture point”, giving better 

spatial resolution without an increase in number of ommatidia. In contrast, the closed 

system consists of fused rhabdomeres and results in only a single picture-point per 

ommatidium (Zelhof et al., 2006). 

 

The photopigment genes in insects and their spectral tuning – and thus the spectral 

sensitivities of insects – are fairly well conserved for such a large taxon (Briscoe and 

Chittka, 2001), certainly predating the evolution of flowers and flower colour (Chittka, 

1996a). However, different groups have their own fine-tuning adaptations, including 

some insect species which are putatively tetra- or even pentachromatic (Briscoe and 

Chittka, 2001). Even with the same receptor physiology, the way in which incoming 

colour information is processed can differ dramatically between different insect groups. 

Here, I outline what is known about the colour vision of the main insect groups 

involved in pollination. 

 

Bees. The most important pollinator group worldwide, economically and ecologically, 

is the bees. There are over 16000 species of bee worldwide (Danforth et al., 2006), 

including both solitary species and social species. Based on studies of the honeybee  

Apis mellifera and various bumblebee species, the vision of bees is particularly well-

characterised compared to other insects. 
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Figure 1. Transverse-sectional diagram of a single ommatidium from Drosophila melanogaster, as 

seen under a microscope - taken from Goldsmith and Philpott (1957). CM refers to the rhabdom’s 

central matrix; R indicates the location of a rhabdomere, part of the overall rhabdom in the centre of the 

ommatidium, RC indicates one of the retinula cells and T is the trachea of the ommatidium. The seventh 

and eighth retinula cells are arranged with one vertically above the other so that only seven are visible in 

transverse section. 



Chapter I: Introduction 

 24 

Bees do in fact have five eyes, two of which are large compound eyes and the other 

three being simple ocelli located on the back of the head that are unlikely to be image-

forming but may have a role in controlling flight course and direction (Kastberger, 

1990a; Kastberger, 1990b). Bees have apposition eyes, the rhabdoms of which are of 

the closed variety. Their eyes are typically relatively large and high resolution for their 

body size, as bees rely highly upon the visual medium for foraging success and locating 

flowers. The ommatidia all contain eight photosensitive cells, of which six always 

contain a green-sensitive opsin. The other two cells may be either both sensitive to UV, 

both sensitive to blue, or there may be one blue-sensitive and one UV-sensitive cell 

present; these three types of ommatidium are distributed rather randomly across the 

retina (Spaethe and Briscoe, 2005; Wakakuwa et al., 2005). 

 

Almost all species of bee are diurnal (Kelber et al., 2006), though some are crepuscular 

or even nocturnal (Kelber et al., 2006; Warrant et al., 2004). Bees that forage in dim 

light typically have very large eyes for their body size (Warrant et al., 2004). 

 

Colour vision in bees was first proven definitively by Karl von Frisch (1914), and with 

one known exception (a tetrachromatic solitary bee, Callonychium petuniae (Peitsch et 

al., 1992)) they are now known to be trichromatic (Daumer, 1956; Daumer, 1958), with 

receptors exhibiting peak sensitivity to UV, blue and green light (Peitsch et al., 1992; 

von Helversen, 1972). Both behaviour and physiological studies show that bees have 

good colour vision and use it extensively when foraging. Figure 2  shows the specific 

receptor sensitivities of some bee species as tested by Peitsch (1992), with further 

information on the receptor sensitivities of other Hymenoptera for comparison. 

 

Several bee species have been demonstrated to have an innate preference for blue and 

violet flowers, as humans would perceive them, but they rapidly overcome this with 

training (Brandt et al., 1989; Giurfa et al., 1995; Gumbert, 2000). However, in some bee 

species and subspecies, a secondary unlearned preference for red flowers has been 

observed, though it is not as strong as that for blue/violet (Chittka et al., 2004). This is 

somewhat surprising given that their receptors are relatively insensitive at these 

wavelengths, but could be ecologically relevant in certain habitats in which there are 

many red flowers which, in the past, were pollinated principally by birds. If birds were 

once important pollinators in an ecosystem, the flowers may have developed 
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adaptations to this such as long wavelength reflectance; now, if pollinating bird species 

are no longer present, bees have access to a valuable source of energy (nectar) and 

adaptations to help them utilise these “bird flowers” such as a secondary red preference 

could benefit them (Chittka et al., 2004). Birds have long-wavelength receptors that 

enable detection of red light (Endler and Mielke, 2005) and therefore flowers appearing 

human red are often assumed to be adapted for bird pollination (Castellanos et al., 

2003).  

 

A bee with no specific training will tend to generalise perceptually similar flower 

colours to a large extent (Dyer and Chittka, 2004c), and therefore its ability to 

discriminate may appear poor. However, when a bee has received differential 

conditioning, in which some stimuli (such as flowers of a particular colour) are 

associated with a reward (such as nectar) and others are not, or are even associated with 

a threat or punishment (in the laboratory, bitter-tasting quinine hemisulphate solution 

(Chittka et al., 2003); in the wild, something such as a predator attack (Ings and Chittka, 

2008)), the bees will slow down their decision-making process and demonstrate the 

ability to discriminate between very similar colours with great accuracy.  

 

Nature presents a complex foraging environment in which the illumination is often 

neither constant nor consistent. Given that the spectral composition of illuminating light 

inevitably affects the spectral composition of the light reflected by an object and thus 

exciting the cells of an observer’s retina, changing illumination has the potential to 

radically alter the colour appearance of flowers or other items. There is now a body of 

published literature demonstrating bees’ abilities to compensate for changed 

illumination (Lotto and Wicklein, 2005; Neumeyer, 1981; Werner, 1987; Werner et al., 

1988); in other words, bees possess colour constancy: the ability to discriminate colours 

correctly under spectrally different light conditions. It is likely that in most or all visual 

systems, the properties of photoreceptors to adapt to light intensity by up- and down-

regulating receptor sensitivity will inevitably convey some level of colour constancy, 

and indeed when researchers have looked for colour constancy in animal groups they 

have generally found it (Balkenius and Kelber, 2004; Kinoshita and Arikawa, 2000; 

Neumeyer et al., 2002). Chapter V of this thesis will explore some aspects of bee 

foraging in environments containing complex and patchy illumination, which is in part  
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Figure 2. Receptor sensitivities for various Hymenoptera species, taken from Briscoe & Chittka 

(2001). The circles are the short-wavelength receptor (UV receptor), with the position corresponding to 

the peak sensitivity; the squares indicate the peak sensitivity for the medium-wavelength (blue) receptor 

and the closed triangles are the peaks for the long-wavelength (green) receptor. One bee species, 

Callonychium petuniae, also possesses a red receptor, as do many sawfly species. 
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determined by the limitations of bees’ colour constancy and how accurately they can 

find coloured stimuli under changing light conditions. 

  

Other Hymenoptera. Other Hymenoptera can also play a pollination role. 

Yellowjacket wasps such as Vespula vulgaris pollinate such plants as figwort and ivy; 

these have similar vision to that of bees in terms of colour discrimination and learning, 

as well as recognition and learning of shapes (Lehrer and Campan, 2004). There is little 

information on their innate colour preferences: as they possess a very similar set of 

colour receptors to bees (Figure 2), one might anticipate similar innate preferences 

based on the apparent homology of these other aspects of the visual system. However 

Real (1981) found that free-flying wasps with unknown previous experience preferred 

yellow artificial flowers to blue when the energetic rewards were equal, and Sharp and 

James (1979) reported a preference for yellow targets in an experiment performed with 

experienced foraging wasps of Vespula squamosa. 

 

A special case of pollination by wasps is the case of fig-wasps (Agaonidae). This is 

discussed extensively by other authors (Janzen, 1979; Weiblen, 2002), but as it is 

believed to be principally mediated by olfactory cues rather than visual ones, fig-wasp 

pollination will not be discussed at length here. 

 

Ants typically perform very limited pollination services as their thoracic metapleural 

glands secrete an antibiotic compound which inactivates pollen, and therefore pollen 

transfer by ants is normally unlikely to result in successful fertilisation (Beattie et al., 

1984). However, myrmecophily has been observed in some plants (de Vega et al., 2009; 

Ramsey, 1995). Different studies have produced divergent results regarding the 

photoreceptor sensitivities of ants. Kretz (1979) claimed from behavioural experiments 

that Cataglyphis bicolor possesses at least three and possibly four photoreceptor types 

with its longest-wavelength receptor maximally sensitive to wavelengths corresponding 

to human-yellow, yet Mote and Wehner (1980) and Paul et al. (1986) find evidence of 

only two photoreceptor types in this species, and likewise Formica polyctena (Menzel 

and Knaut, 1973) and Myrmecia gulosa (Lieke, 1981) only seem to have two receptor 

types. It is likely that ants locate flowers predominantly by scent rather than colour 

cues, though there is new evidence that some species can perform accurate colour 

discrimination (Camlitepe and Aksoy, 2010). 
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Beetles. Some beetles do play an important role in pollination. The classic “beetle 

flower” of the pollination syndrome hypothesis is anticipated to be white or greenish 

(Faegri and van der Pijl, 1978), i.e. presenting poor green-contrast and relying weakly if 

at all upon colour for attraction.  

 

However, one study by Dafni observes Amphicoma beetles visiting red, bowl-shaped 

flowers (Dafni, 1997). Equally, many flowers of Namaqualand and the Cape Floral 

Kingdom of South Africa are long-wavelength-reflecting (e.g. red/orange to humans) 

and pollinated by endemic monkey beetles (Scarabaeidae: Hopliini) (Colville et al., 

2002; Johnson and Midgley, 2001). Many other flowers putatively pollinated by beetles 

are either bowl or urn-shaped (Van Kleunen et al., 2007), but traditional theories claim 

the flowers should also be strongly scented (Faegri and van der Pijl, 1978), a 

characteristic which is absent in both red flowers pollinated by Amphicoma and in the 

various large flowers of the South African Cape region pollinated by monkey beetles. 

 

Beetles are thought to be highly significant in pollination of generalist flowers in 

Australian flora, as well as in other habitats with a Mediterranean climate and some 

tropical habitats (Bernhardt, 2000). In many such systems they are frequently associated 

with ANITA-grade (early-divergent) flowers, and are often considered to number 

among the most ancient pollinators (Bernhardt, 2000; Thien et al., 2009; Van Kleunen 

et al., 2007), despite that more recent evidence suggests specialised, non-beetle 

pollination systems predate the angiosperms and were far from primitive (Ren et al., 

2009). However, some other beetle pollination systems, such as those described above, 

are highly derived. 

 

Not much is known about the colour vision or preferences of flower-visiting beetles. 

Electrophysiological studies imply there are probably three or four photoreceptor types 

present in most species (Hasselmann, 1962; Lall et al., 1982). In chapter VI, I add to the 

knowledge in this area, focusing specifically on the monkey beetle (Hopliini) 

pollination system in South Africa’s Cape region and using electrophysiological 

recordings to ascertain what types of photoreceptors they possess and how this may 

relate to their ecology and lifestyle. 
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Moths. Moths are important pollinators of the flowers of many plant species, especially 

during the night. Nocturnal and crepuscular moths might be expected to have poor 

colour vision, especially when one considers that many flowers known or believed to 

rely principally on moth pollination are white or very pale pink in colour (Faegri and 

van der Pijl, 1978). However, moths actually have excellent colour discrimination 

(Kelber, 1996; Langer et al., 1979) and can continue to differentiate coloured stimuli 

even at low light levels (Kelber et al., 2002; Schlecht, 1979), outperforming humans and 

bees substantially.  

 

Physiological experiments show that many moths are trichromatic, with roughly similar 

photoreceptor sensitivities to bees (UV, blue and green) (Eguchi et al., 1982; Kelber, 

1996). However, some may have an additional photoreceptor type and thus be 

tetrachromatic (Eguchi et al., 1982).  

 

Moth  colour vision capabilities extend beyond simple discrimination tasks under sun- 

and moonlight: the moth species Macroglossum stellatum has been demonstrated to 

possess colour constancy much as honeybees do (Balkenius and Kelber, 2004), and 

therefore it can adapt to changed illumination conditions and continue to perform colour 

learning and discrimination tasks accurately. This impressive capacity for colour vision 

implies that coloured flowers can appear very visually attractive even to nocturnal 

moths.  

 

Indeed, behavioural experiments with the nocturnal hawkmoth Manduca sexta 

demonstrated that it possesses an unlearned preference for blue flowers (Goyret et al., 

2008), and therefore one might conceive of a floral community in which moth-

pollinated flowers may benefit from being blue. However, when foraging in nature, M. 

sexta most often visits white, UV-absorbing flowers – which may appear 

counterintuitive when taken in isolation, but is likely to be indicative of diverse 

selection pressures on moth-pollinated flowers in plant communities, perhaps including 

trade-offs of colour in order to reduce unwanted diurnal visitors. 

 

Butterflies. Butterflies are important diurnal pollinators, especially of brightly coloured 

(e.g. human purple and pink) flowers with long corolla tubes. Their colour vision and 

innate preferences are highly variable: some species of butterfly are trichromatic, others 
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tetrachromatic and others are even potentially pentachromatic with five photopigments 

contributing to colour vision (Arikawa et al., 1987; Kelber and Pfaff, 1999). 

 

It is thus impossible to generalise butterfly colour vision and flower preferences; 

instead, it is better to consider species individually (Neumayer and Spaethe, 2007). 

Colour preferences recorded in butterfly species in the field (i.e. experienced 

individuals) or in laboratory experiments (i.e. experimentally naïve individuals) include 

red for Gonopteryx  rhamni (Kühn and Ilse, 1925), Pieris rapae and Erebia nivalis 

(Neumayer and Spaethe, 2007), yellow with UV reflectance for Colia palaeno 

(Neumayer and Spaethe, 2007), yellow with a secondary preference for blue and purple 

in Battus philenor (Weiss, 1997) and blue in Papilio demeolus (Ilse and Vaidya, 1956). 

Colour constancy has been demonstrated in one species of butterfly, the swallowtail 

Papilio xuthus (Kinoshita and Arikawa, 2000). Given that this is an ability it shares with 

bees and nocturnal moths, it is likely that this is a trait that is universal amongst the 

butterflies. 

 

Flies. Flies can be hugely important pollinators, especially in extreme conditions such 

as high elevations (Kearns, 1992; Lázaro et al., 2008; Totland, 1993). Their visual 

systems vary immensely in the number of photopigments and it is still incompletely 

understood how the different photoreceptors interact to contribute to colour vision 

(though see Morante and Desplan (2008)). One study (Troje, 1993) has found that the  

blow fly (Lucilia sp.) possesses four photoreceptor types, but that it categorises colours 

differently from either bees or humans: rather than having a continuous scale of 

similarity between colours (e.g. a human finding leaf-green and lime-green to be 

distinct, but more similar to each other than either is to orange), it does not discriminate 

amongst colours within predefined discrete spectral ranges (Figure 3).  

 

The most important pollinators among the Diptera are probably syrphids (hoverflies). 

These visit flowers to feed on pollen and nectar as adults and therefore have ample 

opportunity to move between conspecific flowers and potentially transfer pollen. They 

are often associated with yellow or white flowers (Faegri and van der Pijl, 1978), but 

behavioural experiments have demonstrated a diversity of preferences and also learning 

ability (Lunau and Maier, 1995; Sutherland et al., 1999). Indications are that most  
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Figure 3. Receptor spectral sensitivity curves for a muscoid fly, Lucilia sp., after Hardie & 

Kirschfeld (1983). The fly possesses four photoreceptor types contributing to colour vision, two types of 

R7 receptor and two types of R8 receptor, the types being termed “yellow” and “pale” depending on the 

colour they appear when transmitting light (Troje, 1993). The vertical lines on the graph show the 

boundaries between fly colour categories as discovered by Troje (1993), within which all coloured stimuli 

are generalised: p+y+ indicates maximal stimulation of the R7p and R7y receptors and is typically termed 

“fly-UV”; p-y+ is “fly-blue”and p-y- “fly yellow”. A fourth colour category, p+y-, is a “fly purple”, 

stimulating both the extreme ends of its spectral range (via the R7p and R8y receptors). 
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species probably possess three or four photoreceptor types, with peaks broadly 

corresponding to those of bees (Horridge et al., 1975). 

 

However, the extent to which flies use colour when foraging is unclear, but is likely to 

be less than that of bees. Notably, the visual apparatus flies dedicate to colour detection 

is quite different to that of bees – whilst bees have only one type of retinula cell in terms 

of its size, with green-, UV- and blue-sensitive cells all being largely the same size, in 

the flies so far studied there are two sizes. The R1-6 cells are all of the large type; 

however, these are not thought to have a colour-sensitive function as the opsin’s 

sensitivity is too broad to allow colour discrimination. By contrast, the R7 and R8 cells 

are of the short variety, and are therefore much smaller than the broadband cells, but 

these are nonetheless the ones that are involved in colour discrimination (Borst, 2009); 

these are arranged vertically, one above the other (see Figure 1). There are two types of 

R7 cell and likewise, two types of R8 cell, differing in the colour of the pigments they 

contain (“yellow” or “pale”) (Borst, 2009; Troje, 1993), thus providing the fly with four 

photoreceptor types thought to contribute to colour discrimination. 

 

The physiology of the fly eye, with only the small R7 and R8 cells contributing to 

colour vision, combined with the colour-categorisation system discovered by Troje 

(1993) which seems to place low weight on fine colour discriminations, implies that 

flies probably do not use on colour for foraging behaviour as extensively as bees and 

Lepidoptera do, instead giving high precedence to odour information in locating food 

sources. 

 

Another dipteran pollinator group of particular interest is the long-proboscid fly group 

in South Africa. These large-bodied flies from the Nemestrinidae can have a proboscis 

of  up to 50mm long and specialise in pollinating plants with very long floral tubes such 

as Lapeirousia and some Gladiolus species (Goldblatt and Manning, 1999; Goldblatt 

and Manning, 2000; Johnson et al., 2002). These plants usually have purple to crimson 

flowers (Manning and Goldblatt, 1996) with very long (up to 70mm) floral tubes. The 

highly saturated and, to human eyes, intense colour of these flowers suggests that the 

long-proboscid fly species (of the genera Moegistorhynchus, Stenobasipteron, 

Philoliche, and Prosoeca) probably have good colour vision capabilities. 
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POLLINATION SYNDROMES 

 

The pollination syndrome hypothesis is an idea put forward to attempt to explain floral 

characteristics in terms of their pollinators. It postulates a tight, specialised relationship 

(“lock-and-key”) between various morphological and other traits of the flower, and the 

sensory, physical and learning capabilities of the insect assumed to pollinate it. For a 

long time, the pollination syndrome hypothesis was regarded as a reliable predictor of a 

plant’s pollinator based on this suite of characteristics displayed by a flower, including 

colour, morphology, odour and nectar production (Faegri and van der Pijl, 1978; Grant, 

1981; Vogel, 1954).  

 

Indeed, used in the loosest sense, pollination syndromes can give a sweeping overview 

of which pollinators might be relevant to a plant, or equally what types of plant a 

pollinator might prefer to visit (Fenster et al., 2004; Reynolds et al., 2009). There are 

various species of plants whose flowers are indeed pollinated either by a single insect 

species or by a guild of insects that are related and of similar morphology (Johnson, 

2005; Johnson et al., 2002; Johnson and Steiner, 2000). However, the pollination 

syndrome hypothesis is nonetheless an oversimplification for most habitats and insect-

plant interactions, based on erroneous assumptions about the level of specialisation of 

most flowers (Arnold et al., 2009a; Arnold et al., 2009b; Hegland and Totland, 2005; 

Johnson and Steiner, 2000; Ollerton et al., 2009a; Waser et al., 1996); in actuality, most 

flowers are relatively generalist, and are pollinated by more than one group of insects. 

Likewise, relatively few insects visit just a single species or taxon of plants. 

 

As previously mentioned, pollinators have impressive learning abilities and are often 

particularly adept at colour learning. Bees have been trained to virtually every colour 

they are physically able to detect and discriminate (Menzel, 1985b), and likely most 

other insects are similarly flexible in their learning capacities. This means that for 

flowers, being one particular colour is not necessarily any more advantageous than 

being another. However, there are some correlations between particular principal 

pollinators and particular colours – e.g. many putatively hummingbird-pollinated 

flowers are red, and this seems to have resulted in some cases of selection for the 

flowers to be less conspicuous to bees relative to hummingbirds, so the flower receives 

more avian visits and benefits from the birds’ more efficient pollen transfer without 
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“wasting” nectar feeding less efficient bee pollinators (Castellanos et al., 2003; 

Schemske and Bradshaw Jr., 1999; Vickery, 1995). 

 

However, there are inevitably some constraints on which pollinators are physically able 

to pollinate particular flowers. These, however, are typically constraints of morphology 

rather than colour. Large bees cannot enter very small flowers with long tubes and 

concealed nectar; equally, small bees lack the strength to open large Antirrhinum majus 

flowers. 

 

MEASURING FLOWER COLOUR ACCURATELY 

 

Human judgements of flower colour (in particular, when applying names to the colours) 

are intrinsically anthropocentric and, although they have a certain degree of consistency 

between individuals, fine colour judgements are often subjective (Roberson, 2005). 

They are affected by individual differences in human classifications of flower colour 

(for example, whether the flower is blue or purple) and only take into account the 

wavelengths visible to humans, which are essentially 400-700nm except in unusual 

cases such as extremely dark-adapted eyes.  

 

These constraints mean that a scientist cannot formulate accurate studies and hypotheses 

about plant-pollinator interactions by observing flowers and recording their colours 

according to his or her own judgement. Some more accurate, unbiased assay is called 

for, one which encompasses wavelengths visible to animals beside humans: in 

particular, those animals whose pollination services determine a flower’s fitness. 

 

Fortunately, such a method is available. Spectrophotometers provide very accurate data 

on the precise colour of a flower, by measuring the proportion of incident light of all 

human and insect-visible wavelengths reflected off the surface of a flower. A typical 

spectrophotometer directs light – produced ideally by a light source containing all 

wavelengths from 300-700nm – on to the surface of the flower using optic fibres, then 

the reflected light is detected by the probe and compared to a reflectance standard 

(Chittka and Kevan, 2005).  
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This results in a reflectance spectrum such as those shown in Figure 4 for three 

European species, Galium aparine (white to humans, blue-green to bees), Senecio 

vernalis (yellow to humans; UV-green to bees) and Salvia pratensis (purple to humans, 

UV-blue to bees). In flowers, reflectance spectra typically change relatively smoothly 

and usually take one of a small number of forms corresponding to different colours (as 

perceived by a human or a bee) (Chittka et al., 1994). Step-functions are common in 

white, yellow and orange/red flowers, with the reflectance increasing from near-zero to 

perhaps as much as 50% of maximum over just a few tens of nanometres – as seen in S. 

vernalis and G. aparine in Figure 4. Peaks in reflectance are also typical of floral 

reflectances, and may occur around 350nm (UV – as in S. vernalis), 400-430nm (seen in 

blue and purple flowers – see S. pratensis – and also pink flowers that appear blue-

green to bees), 550nm (associated with chlorophyll and therefore green pigments) or in 

the long wavelengths of 600nm and above (Kevan et al., 2001).  

 

MODELLING COLOUR VISION SYSTEMS 

 

Once some understanding of the neurological basis for colour vision in an animal has 

been obtained, it becomes possible to attempt to model this mathematically and 

graphically. No colour space is perfect – multiple colour spaces are in use for human 

colour vision and all have relative advantages and disadvantages (Chong et al., 2008; 

Jameson and D'Andrade, 1997; Wyszecki and Stiles, 1982) and the same is true of bee 

colour space models. All of them rely on certain assumptions about colour processing 

mechanisms and receptor sensitivities that may not always apply and indeed may not 

always be testable. 

 

Building a colour space requires some knowledge of how sensitive the different 

photoreceptor types present in an insect retina are relative to one another, rather than 

just their sensitivities in isolation, since natural stimuli tend to excite more than one 

photoreceptor type and this can have key effects on colour appearance of an object. In 

addition, one must consider what other conditions have an effect on colour vision: the 
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Figure 4. Sample spectral reflectances for three flower species from Central European grassland 

and woodland habitats (as studied in Gumbert et al. (1999) and with the reflectance data present in 

the Floral Reflectance Database). Galium aparine appears white to human eyes and blue-green to bees. 

Senecio vernalis appears yellow to human eyes and UV-green to bees. Saliva pratensis appears purple to 

human eyes and UV-blue to bees. 
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ambient light, the background colour, etc. One should also seek an understanding of 

how signals from the photoreceptor cells interact in the brain of the organism, e.g. 

inhibitory signalling and opponent coding (Backhaus, 1991). For a long time, bee vision 

research primarily used the triangular colour space model of bee vision initially based 

on research by Daumer (1956; 1958), consisting of three dimensions or axes 

corresponding to the relative quantum catch values of the three photoreceptor types 

(UV, blue and green). By excluding brightness from this model it is possible to visualise 

it as a two-dimensional graphic representation of bee colour perception, appearing as a 

triangular space with loci inside it corresponding to different colours of stimuli (Menzel, 

1979; Menzel, 1985b).  

 

However, this model did not take into account any measure of interactions and 

comparisons between the different photoreceptor signals. In addition, the colour triangle 

does not take into account the non-linear transduction process from quantum catch to 

receptor membrane potential change, which, among other things, means that receptors 

saturate at a certain light intensity and cannot increase their response above that level. 

To attempt to compensate for these shortcomings, Backhaus (1991) developed a model 

that incorporated the responses from two types of colour opponency neurons in the bee 

brain, UV+B-G- and UV-B+G-, in which stimulation of one receptor type causes 

inhibition of the adjacent one(s). This gave rise to the straightforward Colour Opponent 

Coding (COC) model in which the two axes of the model corresponded to the relative 

UV+B-G- response and the relative UV-B+G- response. Since then, however, firm 

evidence has emerged for multiple types of colour opponency neuron (Yang et al., 

2004), not just those used in Backhaus’s equations, which limits the applicability of the 

COC model. 

 

A more general colour vision model which does not weight any one colour opponency 

mechanism above any other has also been developed. This is the colour hexagon model 

(Chittka, 1992), which is now widely used. As in the other models, it is based on the 

relative excitations of the three photoreceptor types elicited by the stimulus and the 

opponency mechanisms in the bee brain. The calculations necessary to model coloured 

stimuli in this space are explained below. 
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The amount of light absorbed by one of the three photoreceptor types, i.e. photon 

capture, can be calculated using the following formula (from Chittka (1992), Spaethe 

(2001)): 

 

P = R ∫
650

300
Si(λ)I(λ)D(λ)dλ       (1) 

 

In this equation, P is the photon capture, Si is the spectral sensitivity function of the 

photoreceptor, I describes the spectral reflection of the object, D describes the spectral 

composition of the illuminant, and R expresses the adaptation to a green background 

stimulus: 

 

R = 1/ ∫
650

300
S(λ)IB(λ)D(λ)dλ       (2)

  

Here, IB is the spectral reflection of the background material to which the receptors have 

adapted. In a typical situation for a bee foraging in a natural environment one would 

expect the background to be green vegetation. The value of P for each photoreceptor 

can be transformed into a receptor excitation (E) by using the following equation:  

 

E = P/(P+1)         (3)

  

These excitations can then be converted into a locus on a two-dimensional hexagonal 

diagram (Figure 5). The closer to one of the apices the locus is situated, the more the 

corresponding photoreceptor type is stimulated – for example, an object appearing blue 

to bees will stimulate their blue receptors most strongly and therefore the locus will be 

displaced towards the upper half of the hexagon (Figure 5). The conversion uses the 

following formulae: 

 

x = (EG-EUV)√3/2  

 

 y = EB-0.5(EG+EUV)        (4) 

 

Here, the E values correspond to the calculated excitations for the three different 

photoreceptor types (UV, blue and green) present in the bee’s retina. When the x and y 
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coordinates are plotted on a graph as described, the apices of the hexagon are located at 

(-0.866, 0.5), (-0.866, -0.5), corresponding to maximal stimulation of the UV receptor 

and zero stimulation of the other two, (0, 1), corresponding to maximal stimulation of 

the blue receptor and zero of the others, (0.866, 0.5), (0.866, -0.5), corresponding to 

maximal stimulation of the green receptor and zero of the others, and (0, -1).  

 

The colour hexagon model is useful as the distance between two points on the diagram 

corresponds to the perceptual difference between the colours of the two stimuli to the 

bee. Therefore, the distance between two points (in colour hexagon units) can be used as 

a measure of colour dissimilarity according to bee colour perception. 

 

Another colour vision model, for the blow fly (Lucilia sp.), was developed by Troje 

(1993). Based on behavioural experiments, he established that flies generalise colours 

within four discrete colour categories. So although a bee appears able to perceive two 

coloured stimuli as spectrally similar but discriminable, to a fly it seems that stimuli are 

either spectrally indistinguishable or completely different. This is mediated by the 

interaction between four photoreceptor types, R7y, R7p, R8y, R8p. This means that 

froma  fly’s point of view, all stimuli are either UV, “fly-blue”, “fly-yellow” or “fly-

purple” (Troje, 1993). 

 

COLLECTING FLORAL REFLECTANCE SPECTRA 

 

The necessity for full reflectance spectra for any stimulus modelled in colour space 

means that many researchers with an interest in pollination biology have taken such 

measurements of flowers (Chittka et al., 1994; Gumbert et al., 1999; Lunau, 2000; 

Menzel and Shmida, 1993). In order to be directly comparable, such spectra need to be 

measured with care and with known instrumentation (Chittka and Kevan, 2005). In 

particular, when it comes to flowers it is important to ensure that the light source 

contains sufficient ultraviolet light. 

 

However, though many floral reflectance spectra exist, the measurements are dispersed 

throughout the world, in different file formats and physical locations. Were these 

measurements to be collected together in a single, central database accessible to any  
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Figure 5. Honeybee colour hexagon, showing hypothetical loci (1, 2, 3) for three coloured objects in 

the colour space. The colour hexagon is a schematic representation of how a honeybee sees colours, 

showing coloured objects schematically as they appear in the bee’s perception space; loci that are close 

together indicate perceptually similar colours. The three apices (b, g, u) indicate the three photoreceptor 

types a bee possesses – loci closer to one of the apices are those whose colours stimulate the 

corresponding photoreceptor most strongly, e.g. stimulus 1 stimulates the blue receptor mostly strongly 

and therefore is displaced towards the top of the hexagon. The hexagon can be divided into six segments 

which can be considered to be bee “colour categories”, as shown on the diagram. Loci in each segment 

are assumed to be perceived as that colour by the bee. 
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researcher, larger-scale studies of flower colour would become possible. This would 

also facilitate more diverse uses of the colour information that can be extracted from 

reflectance spectra. 

 

This was the motivation behind the development of the Floral Reflectance Database, a 

core part of this project introduced in chapter II. The creation of this database has also 

enabled other studies to take place, including analysis of whether the colour 

composition of flower communities changes along transects or over the course of the 

year, in addition to studies of how pollinator colour preferences and learning interact 

with the colours of flowers.  

 

TRENDS IN FLOWER COLOUR, THROUGH POLLINATOR EYES 

 

An immediate use of the Floral Reflectance Database is to make comparisons of flower 

colours within and between habitats, using not just human colour judgements, which are 

subjective and ecologically irrelevant, but the physical spectral properties of the flowers 

and insect models of colour vision. 

 

It is possible, for example, to compare whether floral communities in arid or rainforest 

habitats differ significantly in different parts of the world. The most immediate way to 

analyse reflectance spectra is using a Principal Components Analysis irrespectively of 

any colour vision system. This reduces complex spectral information down to a smaller 

number of main dimensions of variation. The first two principal components might 

typically account for around 70% of the total variation in flower colour (Arnold et al., 

2009b), and therefore although not exhaustive, are a reasonable assessment of the 

diversity of colours present in a given sample. 

 

FLOWER COLOURS ACROSS THE WORLD 

 

With the standard use of floral reflectance spectra and the development of the Floral 

Reflectance Database, it is possible to add a new dimension to studies of pollinator 

communities across the world. One can compare and contrast the colour composition of 
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whole plant communities from different habitats, latitudes or locations, or indeed as the 

database grows, focus on particular genera and families and examine whether there are 

trends or similarities and differences in the reflectance spectra of related flowers in 

different locations. 

 

An example is shown in Figure 6, in which reflectance spectra from many species 

within the Orchidaceae (listed in Appendix I) are converted into bee colour hexagon 

loci and then grouped according to whether they grow in tropical, temperate or 

intermediate/ subtropical habitats. Although this is clearly not an exhaustive survey of 

the family, being based merely on the collected spectra available in the Floral 

Reflectance Database, it appears superficially based on where the loci fall in the 

hexagon that there are more bee UV-blue flowers in temperate regions and bee blue and 

blue-green flowers in the tropics. However, these differences are not significant 

(ANOVA, F = 1.684, hdf = 4, edf = 58, p = 0.166). 

 
The pollination market hypothesis indeed predicts that a range of flower colours should 

be present in virtually all habitats, as evolution favours distinctiveness and 

conspicuousness in flowers (Friedman and Shmida, 1995; Gumbert et al., 1999). This 

might lead us to expect that all habitats would have very similar colour compositions, 

with approximately the same proportions of species of each colour present. An example 

of two datasets in which all the species growing in a particular study site have been 

sampled and spectral reflectance measurements taken are shown in Figure 7. As 

anticipated, a range of colours is present in both habitats. 

 

However, one has to take into account other constraints: since distinctiveness is 

favoured, flowers will tend to be colours that are distinctive in the visual systems of the 

pollinating insects (i.e. if no insects in a particular habitat were to possess any capacity 

for colour discrimination in the red range, one might predict that habitat to be deficient 

in flowers with mostly long-wavelength reflectance). Therefore subtle variations in 

colour composition could occur according to the pollinating species playing a role in the 

habitat. Equally, pigments could be favoured for other pleiotropic reasons related to 

resistance to abiotic environmental factors (Ben-Tal and King, 1997; Chalker-Scott, 

1999; Warren and Mackenzie, 2001). Evolutionary history may, as previously stated, 

play an impotant role: islands are a particularly unique example in which the plant and 

animal species may have passed through an evolutionary bottleneck; as the capacity to
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Figure 6. Honeybee colour hexagon plot of various species of Orchidaceae. The plant species here 

occupy diverse loci in the colour space and are divided up into those with tropical, subtropical and 

temperate native habitats. This is not an exhaustive survey of Orchidaceae by any means and therefore 

cannot be used to draw conclusions about global colour trends in this family, but serves as an example of 

how the colour hexagon can be used to visualise bee-colours of many different species for comparative 

studies. 
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a) 

b)  

 
Figure 7. Colour hexagons showing the distribution of flower colours sampled from a site at a) 

Richtersveld, South Africa and b) Har Gilo in Israel. Both are relatively arid locations but 

Richtersveld is effectively semi-desert whilst Har Gilo is Mediterranean. In both cases, a wide range of 

flower colours are present in the habitats, suggesting selection favours distinctiveness of appearance 

rather than one particular colour being universally superior. The colour “category” segments are indicated 

by: b = blue, bg = blue-green, g = green, ug = UV-green, u = UV and ub = UV-blue.
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synthesise certain pigments may be lost in the process, or genetic drift may be playing a 

larger role, it is possible that island plant communities may have unusual proportions of 

flower colours relative to mainland communities. Flowers in a community may 

therefore face a complex set of trade-offs, between being too similar to conspecifics and 

being too different, and also between pigments that would favour particular pollinators 

versus ones that protect against environmental challenges, all within the context of their 

evolutionary history (Arnold et al., 2009a; Arnold et al., 2009b; Gronquist et al., 2001; 

Whibley et al., 2006). Unravelling the pressures controlling flower colour in a particular 

plant species in a given community, therefore, is no simple task. 

 

When flower colours are plotted on the bee colour hexagon, a pattern often emerges in 

which the flowers’ colours tend to be located less frequently on boundaries between 

hexagon segments than towards the centres of these segments, with the clusters 

therefore appearing at regular intervals spaced 60° apart around the hexagon (Chittka, 

1997). Figure 8 shows this phenomenon for species recorded by surveys carried out in 

four different countries (Brazil, Costa Rica, South Africa, Israel) (Chittka, 1997; Chittka 

et al., 1994; Menzel and Shmida, 1993). For these graphs, the vectors from the centre of 

the hexagon to each species’ locus are calculated and the loci occurring at different 

angles from the centre – corresponding to different hues – can be plotted by frequency. 

This clustering phenomenon might perhaps be because insects find colours in the centre 

of categories easier to recognise or discriminate than colours that fall on category 

boundaries. However, evidence for how and indeed if bees categorise colours is still 

somewhat equivocal (Benard et al., 2006), and therefore it is difficult to say with any 

certainty whether the arbitrary segments of the colour hexagon correlate in any 

meaningful way with bee colour perception.  

 

One can also perform Principal Components Analyses (PCA) on unprocessed floral 

reflectance spectra, to investigate differences in colour composition independently of 

any insect vision bias. Figure 9 shows the results of a PCA performed on the same 

Orchidaceae species as in the colour hexagon diagrams above. This time, however, the 

results are not weighted by spectral sensitivity of a viewing insect, but depend only on 

the physical properties of the flower reflectance functions. However, as might be 

anticipated, colours that appear broadly similar to humans or to bees still cluster 

together: note the cluster of points in the lower left-hand corner of the graph from 
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temperate locations, broadly corresponding to the UV-blue flower loci on the colour 

hexagon. In this analysis, the colours of orchids in tropical, temperate and subtropical 

habitats do differ significantly (ANOVA, F = 3.565, hdf = 4, edf = 58, p = 0.011). This 

indicates that the variation in spectral reflectances detected in this analysis may be in the 

longer wavelengths to which bees are less sensitive, and it therefore affects their loci in 

the space created by the PCA but not their colour hexagon loci. One cannot use a 

selective sample such as this to draw conclusions about the colours of all orchids 

worldwide, but it serves as an example of how spectral reflectance data from many 

species across multiple habitats can be analysed to provide information about global 

trends in flower colour and of how different ways of modelling and assessing flower 

colours may give rise to different results. 

 

Figure 10 also investigates flower colours using a PCA. This shows the results of an 

analysis performed on the spectral reflectance data of the same four countries as in 

Figure 7. As might be expected according to theories of pollination markets and 

selection for distinctiveness, there is large degree of overlap in the clouds of points 

associated with different habitats, owing to the occurrence of a range of colours in all 

habitats. However, further analysis on a site-by-site basis may yield interesting 

differences in the proportions of species in each part of the distribution and in outlying 

points. 

 

These analyses serve as very brief examples of the possibilities opened to us by 

assembling larger sets of floral reflectance data. By using accurate measurements of 

flower colour in spectral reflectance format, we can choose to take into account insect 

visual systems, or to rule out all visual systems including that of humans, when looking 

for evolutionary and ecological explanations for flower colour. Such datasets will 

facilitate future research into global trends in flower colour and pollinator behaviour. 

 

THESIS AIMS 

 

In this thesis I approach the question of how flower colour has evolved under selection 

by pollinators from a variety of angles. Overall, I seek to discover how different 

selection pressures can interact to affect the evolution of flower colour and how 
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Figure 8. Angular vectors for the colour hexagon loci of the flower species from large collections of 

spectra, sampled from multiple sites in four countries: Brazil (Chittka, 1997; Chittka et al., 1994; 

Chittka et al., 1993), Costa Rica (M. P. Powell and V. Savolainen, unpublished), Israel (Menzel and 

Shmida, 1993) and South Africa (M. P. Powell and V. Savolainen, unpublished). 0° is the top apex of 

the hexagon, corresponding to the bee’s blue receptor. There are similar trends for the flora of all four 

countries, with flower colours consistently clustered towards the centre of colour hexagon segments 

(which may be used arbitrarily as colour “categories”), and relatively few colour loci located on category 

boundaries. 
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Figure 9. Principal Components Analysis performed on the same orchid species as in Figure 6. This 

analysis does not rely on any one visual system, but on the physical properties of the floral reflectances. 

Once again, the species show a diversity of colours, with clusters that loosely reflect similar bee and 

human colours. The tropical, subtropical and temperate orchids from the data set have significantly 

different colour ranges. 
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Figure 10. Principal Components Analysis performed on all the species used to compile Figure 7. It 

indicates that on a large scale the colour compositions – based on physical properties of spectra – of large 

regional floras tend to be roughly consistent. 
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particular flower colours can be favoured by a particular temporal, physical or 

biological context. By examining flower colour both at the habitat level and in terms of 

the behaviour and physiology of individual insect pollinator types I hope to provide 

more insight into the diverse pressures at work in pollinator-plant interactions and the 

ways in which flower colours are selected as a result. 

 

Chapter II 

 

I introduce in detail the Floral Reflectance Database (FReD), an online searchable 

collection of flowers’ spectral reflectances, colour hexagon coordinates and other 

information related to their colour. This sets the background for later chapters, in which  

I examine some of the data in FReD in more detail, investigating whether the differing 

species compositions of pollinators active over spatial and temporal scales can cause 

different colour compositions of the flowers in two European plant communities.  

 

Chapter III 

 

I study an elevation gradient in Norway to see whether flower colour is influenced by 

altitude, and by the insects present at that altitude. This chapter aims to examine 

whether spatial changes in pollinator composition may give rise to changes in colour 

composition of floral communities, in accordance with the flower colours traditionally 

associated with particular guilds of insect pollinator. 

 

Chapter IV 

 

I focus on a set of German grassland and woodland habitats, investigating whether 

flower colours change throughout the year, possibly as a result of differing guilds of 

pollinators being active in different seasons.  

 

Chapter V 

 

The previous chapter considers that temperate woodlands especially are subject to 

changing light environments throughout the year, as a result of the leaf-cover in the 
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canopy during different seasons. In this chapter, I move to look more closely at insect 

behaviour under inconsistent light conditions and how this might influence flower 

choice. In particular I examine the behaviour of bumblebees foraging in spectrally 

inconsistent light over a spatial scale, a condition which mimics foraging in woodland 

edges and hedgerows.  

 

Chapter VI 

 

I focus on the unusual pollination systems in the South African Cape region 

(Namaqualand and the Cape Floral Kingdom). This region has a large number of 

brightly-coloured flowers which lack strong scents but possess long-wavelength 

reflection. I investigate whether the floral colour compsition of this region significantly 

differs from flower colour compositions in other global habitats. These long-wavelength 

reflecting flowers are pollinated primarily by beetles of the Hopliini tribe, but their 

colour vision has not previously been investigated. Using electrophysiology to study the 

colour vision capacity of three monkey beetle species, Pachycnema crassipes, Lepisia 

braunsi and Clania macgregori, I consider how these visual systems may exert selective 

pressure on floral appearance in the Cape Region.
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CHAPTER II 
 

FRED: THE FLORAL REFLECTANCE DATABASE - A WEB PORTAL 

FOR ANALYSES OF FLOWER COLOUR  
 

INTRODUCTION  

 

Flower colour and pigmentation are of interest to researchers in areas of both 

developmental biology and pollination ecology (Chittka, 1997; Dyer et al., 2007; 

Whibley et al., 2006). The colours of flowers are under selection by their pollinators 

(Kevan and Baker, 1983; Tastard et al., 2008; Waser, 1983a) and this has led to a large 

range of colours and colour patterns being present in the world’s flora. However, 

flowers should not simply be categorised according to their colour appearance to a 

human observer, because pollinators have fundamentally different visual systems to 

humans, including sensitivity to different wavelength ranges. Most insects have at least 

three photoreceptors, normally responding to ultraviolet, blue and green light (Briscoe 

and Chittka, 2001; Peitsch et al., 1992); many insects have four or more spectral 

receptor types, whose sensitivity often extends into both long (>650nm) and very short 

(<300nm) wavelengths (Arikawa et al., 1987). 

 

In spite of these differences, some studies investigating flower colours in plant 

communities have only considered these colours as humans perceive them (McCann, 

1986; Warren and Billington, 2005; Weevers, 1952), an oversight that has been brought 

up repeatedly by past scholars (Daumer, 1956; Daumer, 1958; Kevan, 1972; Kevan, 

1978; Kevan and Backhaus, 1998). Such neglect of insect vision is clearly inadequate, 

as two colours that look distinct to a human can look similar to a pollinator, and vice 

versa (Chittka et al., 1994; Kevan, 1983).  

 

Spectral reflectance measurements constitute a significant improvement over merely 

considering flowers according to human-judged categories (“pink”, “yellow”, etc.). Not 

only are these subjective terms and not always used consistently between people, but 
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they do not reflect how the flowers appear to the organisms to which they should 

appeal, i.e. their pollinators.  

 

We therefore developed the Floral Reflectance Database (FReD) to provide free, 

searchable access to reflectance spectra of a large number of flowers, thereby making 

available extensive information about flower colour that is not inherently human-biased 

and which can be used when considering the interactions between floral appearance and 

the visual systems of pollinators (Menzel, 1990; Menzel and Shmida, 1993).  The 

information in FReD includes the ultraviolet reflectance of all the flowers measured, as 

well as their reflectance function in the spectrum visible to human observers. This 

allows us to build an accurate picture of how the flowers have evolved colours as an 

advertisement (Chittka and Kevan, 2005), and means that the colours of samples in the 

database can be modelled according to the visual capabilities of animals with colour 

vision systems different from humans, e.g. insects with an ultraviolet-sensitive receptor. 

Since the visual ecology of bees is so well understood, and they are also such important 

pollinators in a variety of habitats (Proctor et al., 1996), the Floral Reflectance Database 

has devoted particular attention to modelling and predicting flower colours as they 

appear to trichromatic bees to show how the flowers sampled would appear to bee eyes 

(Figure 11). However, it would be equally possible to analyse flower colours using 

another animal’s visual system as the base.  

 

The Floral Reflectance Database not only includes the reflectance spectra for the flower 

records contained within it, but the newest version also calculates the flowers’ loci on 

the colour hexagon (Chittka 1992) and provides information on how the spectra excite 

each of the bee’s three different photoreceptor types. It displays the information in the 

form of a spectral reflectance graph (Figure 12) and a diagrammatic form based on a 

pollinator vision model, the bee colour hexagon. The database records also contain 

information about where each sample was collected, as well as other floral parameters 

and the pollinators of the respective flower species, where known. We have brought 

together reflectance datasets from multiple studies for researchers to access and use 

freely. 
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Figure 11.    Bee colour hexagon diagram, showing the colour loci of three different parts of the 

yellow (to humans) flowers of Colutea arborescens (L.), including the UV-absorbing nectar guide, 

and also the locus of red campion, Silene dioica (L.). Photographs show S. dioica and also C. 

arborescens in both conventional and UV photography (upper picture: human vision; lower picture: UV 

photograph, showing markings not visible to humans but, in addition to longer wavelengths, visible to 

insects). Images and spectra for C. arborescens from Lunau (1993); S. dioica picture by S.E.J. Arnold. 
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DATA COLLECTION 

 

The measurements in the database have been collected over the last 20 years from 

various sites around the world (Chittka, 1996b; Chittka, 1997; Chittka et al., 1994; 

Gumbert et al., 1999) and are included with permission from the collectors. Flower 

spectral reflectance functions were measured in the laboratory as soon as possible after 

collection, using a spectrophotometer (see references for model and technique – also see 

Chittka and Kevan (2005)). This involves directing a light (from a light source 

containing all wavelengths from 300 to 700nm) on to the surface of the flower and 

recording the proportion of incident light reflected at each wavelength using a 

spectrophotometer (e.g. as made by Ocean Optics (Dunedin, FL, USA) or Avantes 

(Eerbeek, Netherlands)) calibrated against a white standard such as one made of BaSO4, 

which reflects light equally at all wavelengths. The readout was converted into a series 

of reflectance functions at wavelengths from 300 to 700nm, in increments of 1nm, a 

range that encompasses or exceeds the visible spectrum for most insects. 

 

Outputs are standardised so all records in FReD are in the same format. Measurements 

are taken from several parts of a flower in some cases – where this has occurred, each 

record specifies what flower part was measured and whether this could be taken as the 

main colour of  a flower (i.e. the dominant petal colour) or merely a secondary marking 

(e.g. nectar guides). Where possible, the spectral reflectance functions provided are an 

average for several inflorescences from multiple plants of the same species in that 

location, rather than simply based on a single sample. 

 

 

FRED VERSION 1.0 – BETA VERSION OF DATABASE 

 

The Floral Reflectance Database was developed originally as a beta (test) version, with 

basic search functionality and some other simple features. 
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Figure 12. Reflectance spectra for Hepatica nobilis  (Schreb.) (sampled in Germany (Gumbert et al., 

1999)) and Pyrostegia venusta (Miers) (sampled in Brazil (Chittka et al., 1994; Chittka et al., 1993)). 

The reflectance is the total proportion of light at each wavelength reflected by the sample. 
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This version is still available at http://www.reflectance.co.uk and can be accessed by 

selecting the appropriate link on the front page of the site. It contains 2283 floral 

reflectance spectra, each spanning the wavelength range of 300 to 700nm in 1nm 

increments.  

 

The beta version of the FReD website permits these records to be searched on the 

website either by keyword or by an advanced search form (allowing users to specify 

criteria such as genus, colour or location).  

 

In addition to the reflectance files, each sample has associated information about the 

characteristics and collection location for the flower. These include the following fields: 

• Location information: country, closest town, GPS data where available,  elevation 

of collection site above sea level 

• Taxonomy information: family, genus and species of the flower, and herbarium 

accession where available 

• Plant characteristics: corolla diameter, floral tube length and plant height where 

available, principle pollinators where the information is available, information on 

colour to both human and bee eyes 

• Collector information: name of collector and publication in which the reflectance 

data were first used (details of voucher specimens are given where available) 

 

Using FReD v 1.0 

 

The beta version of the database consists of a MySQL database with six tables (Figure 

13), and a Java ServerPages (JSP) user interface, which provides an intuitive 

environment to allow the user to query the database. The user interface includes a basic 

keyword search (which will call all records containing a given word, for example 

“Asteraceae” or “green”), and also an advanced search, with a search form and options 

to select fields to display in the results. A user running either of these types of search 

will then be presented with a page of corresponding search results (Figure 14), with 

basic details for each record. Each record also includes a link to the full flower 

collection and referencing details, and also to an HTML file displaying the full spectral 

reflectance. Pollinator information is given where available, in a coded format – a pop-

up window linked from the sidebar explains the codes used throughout the database. 
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Figure 13. Database structure of FReD v1.0. Individual boxes indicate discrete data tables and the 

fields within each one. Lines linking boxes show data tables that are linked by identification codes (ID 

numbers); the linked fields are indicated here by a line from the originating table, mapping to the 

corresponding fields in subsidiary tables. 
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Figure 14. Search results for FReD v1.0. When a user runs a basic or advanced search, the interface 

returns a table of results, with information on each of the samples matching the search criteria. 
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The list of search results can be sorted according to any of the fields returned (e.g. by 

genus) by clicking on the field label at the top of the column (“Genus”). 

 

FRED V 2.0: THE FINALISED VERSION 

 

Following on from the beta version of FReD, a final version has now been developed. 

This has a new, more aesthetically appealing and more intuitive user interface, using 

more efficient code and a new coding language. The underlying database itself has also 

been rearranged for speed and efficiency so that in spite of containing largely the same 

data, the presentation formats are more useful to researchers visiting the site. Similarly, 

it incorporates large numbers of new features which may be of use to visitors to the 

website. 

 

FReD version 2.0 contains a large number of spectral reflectance functions from flowers 

from all over the world, with the intention for more records to be added as they are 

collected and published. The most extensive information is available for flowers from 

Brazil and Germany. 

 

The database remains a MySQL database but the new user interface is written in PHP. 

This is an open-source coding language which works in a similar way to JSP but is 

more widely supported and less processor-intensive. The online release of the database 

functions in all major browsers and is compatible with Windows, Linux and Mac 

operating systems; however, users of some less common browsers may experience 

problems with the HexSearch facility. The database is freely accessible for any user to 

search and view wavelength files. 

 

The updated MySQL database now consists of 16 tables, dealing with information on 

the flower sample and characteristics, location, citation information, colour, collection 

and taxonomy information, and the wavelength measurements themselves (Figure 15).  

 

 

 

 



Chapter II: The Floral Reflectance Database 

 61 

 

 

 

 

 

 

 

flower

flowerid

wavelengthfile

globaluniqueidentifier1

scientificname1

labcode

accession

authority

corolla

tube

height

maincolour

altitude

*publishingdetailid

*bcolourid

*hcolourid

*locationid

*flowerpartid

*collectorid

*taxonomyid

institutioncode1

datelastmodified1

hexx

hexy

flowerpart

flowerpartid

part

pollination

*pollinatorcode

*flowerid

genus

genusid

genusname

wavelength

wavelength

reflectance

*flowerid
publishingdetail

publishingdetailid

publisherdetails

*publisherid

publisher

publisherid

publishername

bcolour

bcolourid

bcolourname

hcolour

hcolourid

hcolourname

taxonomy

taxonomyid

*familyid

*genusid

*speciesid

family

familyid

familyname

species

speciesid

speciesname

pollinator

pollinatorcode

pollinatorname

*pollinatorgroupid

pollinatorgroup

pollinatorgroupid

pollinatorgroup

sensitivity

blue

green

uv

leaf

daylight

wavelength

location

locationid

edeg

sdeg

*countryid

country

countryid

countryname

collector

collectorid

collectorname

email

institution

 
Figure 15. Table layout in FReD v2.0. The number of tables has been increased, but this has enabled the 

size of the database to be reduced to improve speed and efficiency of searches. 
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• The Flower table is the main table, containing important details of the sample 

taken, including altitude (m above sea level), plant height (cm), corolla diameter 

(mm) and tube length (mm) measurements, colour hexagon coordinates, and if 

the colour information represents the dominant colour of the flower. It also 

contains information on the herbarium accession number of the sample, if 

available. 

• The Taxonomy set of tables provide details about the species and classification 

of the different flower samples. Where necessary, the colour morph or 

subspecies of flower can be specified in the “species” field to differentiate it 

from other samples of the same species. 

• The Location set of tables provide details on where the flower sample was 

obtained, including GPS data where available. 

• The Flowerpart table contains details of what flower section is being measured 

for each sample, e.g. calyx, tips of petals, upper lip of a zygomorphic flower, 

etc. 

• The Colour tables give information on the flower colour, both as seen by a bee 

and a human (human colour judged by the collector in the field). 

• The Pollinator set of tables contain the information pertaining to the pollinating 

species, where available. 

• The Collector table provides information about the researcher who collected the 

samples. 

• The Publishing tables give information about the published source and citation 

information for each sample listed in the database. 

• The Wavelength table contains the reflectance measurements themselves. 

• The Sensitivity table is not interlinked with the flower information, but contains 

information on honeybee photoreceptor sensitivity, spectral components of 

illumination and other measurements required to calculate colour hexagon 

coordinates. 

 

The format of information contained on each flower sample in addition to the 

reflectance spectra is also summarised in Table 1.  



Chapter II: The Floral Reflectance Database 

 63 

 

Table 1 Summary of the searchable data fields in FReD and examples of the data 
format used in each 
 

Field Data type Example 

Family varchar Fabaceae 

Genus varchar Trifolium 

Species varchar repens 

Authority varchar L. 

ScientificName varchar Trifolium repens L. 

Collector varchar Chittka 

Bee colour varchar blue-green 

Human colour varchar white 

Main flower colour varchar Y 

Flower section                      varchar radially symmetric, whole flower upper 

side 

Country varchar Norway 

Town/Area varchar Oppdal 

GPS_East float [longitude coordinate, where available] 

GPS_South float [latitude coordinate, where available] 

Pollinator varchar bumblebees, large bees 

Altitude float 900 

Height float 15 

Tube length float 3 

Corolla diameter float 15 

Publication                            varchar Chittka, L. 1996 J. Theor. Biol. 181:179- 

196 

Herbarium accession             varchar [herbarium accession details, where       

available] 
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Multiple samples of the same species 

 

As previously mentioned, the database often contains multiple reflectance spectra for 

the same species. Different records may reflect different flower parts being sampled – 

e.g. the nectar guide versus the keel of the flower – in which case the part measured is 

specified in the “flowerpart” field. Alternatively, there may be records for different 

subspecies, cultivars or morphs; many species of plant have more than one floral colour 

morph (Whibley et al., 2006). In these cases, the “type” of plant sampled is also 

specified in the species field (e.g. “Viola lutea (w)” to indicate the white morph of Viola 

lutea (Huds.)). As the colour of the flower to human eyes is also recorded in the “human 

colour” field, it is additionally possible to infer the colour morph from this information. 

 

Using the database – functions and features 

 

The database web portal consists of several user-friendly features to facilitate access to 

the data and provide users with additional tools for analysis and consideration of flower 

colours. These include: 

• Search facilities 

• Colour hexagon display 

• Reflectance graphs 

• Raw reflectance data downloads 

• HexSearch facility, to search for flowers with similar colour hexagon loci. 

 

Search facilities 

 

Visitors to the Floral Reflectance Database are able to use the search facilities to run 

basic or guided searches for flowers with specific characteristics, e.g. flowers from a 

particular location, of a particular species or colour, or a combination of these. The 

Advanced Search also allows the user to choose from which data fields he/she wishes to 

display results; a default selection is given, but they are free to edit this as they choose. 

As the basic search supports Boolean syntax (AND, OR, NOT, and use of quotes) 

(Frants and Shapiro, 1991), it resembles common search engines and thus is 

straightforward and intuitive to use. 
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Both types of search produce a table of results (Figure 16). The results can be ordered 

by field, by clicking on one of the column headings. A search summary is available at 

the top of the page, giving some descriptive statistics on the results returned (most 

common attributes of results, such as commonest colours, locations, etc.). 

 

A user will then be able to view the reflectance spectra for all the search results. The use 

of AJAX (Asynchronous JavaScript And XML) technology keeps loading times as fast 

as possible by minimising the amount of unnecessary information displayed – a user is 

presented initially with abbreviated records, and can bring up a flower’s full record in a 

pop-up window by clicking on an individual result. Equally, the search summary, 

containing a colour hexagon showing coordinates of all the results, is not displayed by 

default; however, it is available from a link at the top of the results page. 

 

From the pop-up window for each flower record, there is a button to display the full 

reflectance data for the sample as a simple table of numeric values. From the page 

containing the table, it is possible to either return to the flower record, download the 

reflectance data in comma-separated values (.csv) format, or close the window and 

return to the table of search results. 

 

Colour hexagon facility 

 

The database also has the function to display the locus of each flower on a colour 

hexagon diagram. By making the colour loci available to users, they are able to obtain 

instant information about how the flower’s colour might appear to a typical insect 

pollinator with a colour vision system similar to that of Apis mellifera. 

 

The colour hexagon coordinates are calculated according to the methodology described 

in Gumbert, et al. (1999), taking into account the illuminating light, the reflectance of 

the background (assumed in the database to be leaves; an average leaf spectral 

reflectance is used as in Chittka (1997)) and honeybee spectral sensitivities over their 

visible wavelength range. Daylight spectral curves (D65) used in the calculations are 

taken from Wyszecki & Stiles (1982), leaf spectral reflectance data come from Chittka 

(1997), and honeybee spectral sensitivity curves are taken from Peitsch, et al. (1992).
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a) 

 

b) 

 
 

Figure 16. Sample search results from FReD v 2.0. a) First lines of the table of flower records returned 

by a search for “Ranunculaceae”; b) Sample flower record for one of the species in genus Ranunculus, 

showing the colour hexagon coordinates and spectral reflectance graph. 
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Using those data, the relative excitations of the bee’s three photoreceptor types can be 

calculated, and these three vectors can be converted into coordinates in a two-

dimensional colour space diagram (e.g. the colour hexagon), as shown in Figure 11. 

 

The flower records present the colour hexagon coordinates for each sample on a 

schematic diagram, but also give the coordinates numerically, and the excitation values 

for the three bee photoreceptor types are provided for users who wish to use these 

values in alternative models of colour vision. The colour hexagon diagram for each 

record is provided as a Portable Network Graphics (PNG) file, and therefore can be 

downloaded by users if necessary. 

 

Reflectance graph 

 

Spectral reflectance functions for each record are displayed as a graph in the flower 

record, for users to assess what pattern of reflectance a flower possess, where the major 

reflectance peaks occur, etc. These are generated dynamically using the measurements 

in the Wavelength table, and displayed as a PNG file, so they can be displayed 

separately from the search results, and saved to a user’s local hard drive if required. 

 

HexSearch facility 

 

This is an additional function which may be of particular use to researchers interested in 

mimicry or the effects of particular pigment compounds. It permits searches for flowers 

with similar bee colours rather than merely searching according to gross colour 

category. 

 

The user can select up to ten loci of interest on the colour hexagon, which are searched 

simultaneously, and can specify their position on the hexagon by clicking in the relevant 

place on the map provided. The user then selects the radius of the search area (in colour 

hexagon units (hu)), and the function returns a page of results, comprising the flowers 

with colour hexagon coordinates within the area specified. Hex searches can either be 

general (e.g. specifying a 0.5 hu radius) or more specific (e.g. 0.05 hu). The centre point 

of the search can be moved as many times as required. 
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Downloading reflectance data and compatibility with other databases 

 

The database was designed to be used by researchers, and thus we are aware that users 

may wish to download spectral reflectance curves for their own use. This option is 

available by selecting the option to “view raw data” and then “view CSV file”. They can 

then download the reflectance measurements for each species as a .csv (comma-

separated values) file, which can be imported into spreadsheets or into other databases. 

 

In order to facilitate potential future integration of FReD into a larger meta-database, we 

have organised the database with a structure in line with the international DarwinCore 

standard. FReD is also linked from the website of the Royal Botanic Gardens, Kew, 

under their lists of data and publications. We have set up links from FReD’s flower 

record pages to search results in the electronic Plant Information Centre (ePIC), the 

large plant database run by RBG Kew, and also to the Global Biodiversity Information 

Facility (GBIF). This means that a user searching FReD will also be provided with a 

link from each flower record to corresponding search results for that species in ePIC and 

GBIF, widening the information available to users of FReD about species in the 

database. 

 

Applications for the database and future developments 

 

We expect the Floral Reflectance Database to be a valuable tool to researchers wishing 

to make between-habitat or global comparisons of floral colour. With the large number 

of samples in the database already, it has applications in meta-analyses. We also 

anticipate its usefulness on a smaller scale, to provide detailed information on the exact 

colour of flowers of particular species. 

 

By providing full reflectance spectra of all the samples, we are making available 

information which makes no a priori assumptions about the colour vision system 

viewing the flowers save that its sensitivity extends from 300-700nm. The database 

provides a selection of natural, ecologically-relevant stimuli that could be used in a 

variety of colour modelling studies (in the manner of Maloney (1986) and Chittka 

(1996b)). Additionally, as there are species from many plant families of differing ages, 

the data may, in conjunction with other information about species, have uses in studies 
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of flower colour evolution and investigations of how floral colour relates to other 

characteristics. 

 

In the longer term, we intend to add more spectral reflectance readings, including data 

from South Africa and Costa Rica. We eventually hope to accept reflectance data from 

other users of the database provided that the measurements are of high quality and 

include the most important associated information about the sample being measured 

(i.e. at least species, flower section being sampled, relevant publications, location in 

which sample was collected). The database also has the potential to be extended to 

contain additional data fields of interest to pollination studies, such as details of 

flowering phenology. 

 

We anticipate that as the database grows to encompass more species from diverse 

international locations, it will become an even more useful resource for many areas of 

research requiring an objective consideration of flower colours.
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CHAPTER III 
 

FLOWER COLOURS ALONG A NORWEGIAN ALPINE ALTITUDE 

GRADIENT: BEE AND FLY PERSPECTIVES, AND THE EFFECT OF 

PHYLOGENY ON ALPINE FLOWER COLOUR 
 

INTRODUCTION 

 

Plants growing in mountainous regions are faced with a range of challenges. As well as 

having to contend, potentially, with high winds, desiccation and extremes of cold, they 

also face increased ultraviolet exposure and pollinator limitation when the temperatures 

and winds grow too extreme for pollinating insects to fly (Totland et al., 2000). Many 

strategies employed for dealing with such habitats have already been investigated in 

depth (Totland et al., 2000), but what still warrants further investigation is how flowers 

at high altitude might respond in terms of their colour. 

 

Why might some colours prove more beneficial for a plant over evolutionary time than 

others? There is some evidence that some colour morphs (particularly those containing 

anthocyanin pigments) have increased resistance to certain environmental conditions, 

e.g. desiccation (Warren and Mackenzie, 2001), cold (Ben-Tal and King, 1997; 

Chalker-Scott, 1999), and to other challenges such as herbivory (Johnson et al., 2008), 

all factors which are likely to differ in importance at different elevations. Similarly, the 

increase in ultraviolet at high elevations can be damaging to some plant cells, and it has 

been found that floral pigments such as anthocyanins may also confer protection against 

UV damage (Mori et al., 2005). The various protective effects of anthocyanin pigments 

would indicate that more strongly-coloured (blue, red, purple) flowers might be more 

abundant under more environmentally stressful conditions.  

 

Additionally, flower colour is under selection by pollinators (Wertlen, 2006), as is 

suggested by the fact that insect colour vision by far predates flower colour, and yet bee 

photoreceptors, for example, are optimal for discriminating the colours of flowers 

(Chittka 1997). There are indeed several studies associating shifts in flower colours with 
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shifts in pollinator type (Altshuler, 2003; Bradshaw Jr. and Schemske, 2003). In alpine 

areas the numbers of pollinators present will decrease overall with increasing altitude, 

and will change in composition; some insect groups are less able to function at very 

high altitudes than others (Kearns, 1992; Totland, 1992). Therefore, different pollinator 

guilds dominate at different elevations and thus the selective forces on flower traits 

might be expected to differ. The pollination syndrome hypothesis, which has often been 

used as the basis for studies of pollination systems for many years (Faegri and van der 

Pijl, 1978), postulates a strong association between different pollinator guilds and 

particular suites of floral characteristics, in particular aspects of morphology and colour 

(e.g. the zygomorphic, closed and blue/purple “bee flowers”; large, white “moth 

flowers” with long corolla tubes). Based on this theory, a changing pollinator 

composition at different elevations may be expected to lead to different “optimum” 

colours being present at different altitudes depending on the dominant pollinator types 

and the colours that appeal to them.  

 

For example, the ability of flies to forage at higher elevations than bees (Kearns, 1992; 

Lázaro et al., 2008; Totland, 1993) might perhaps lead us to expect that the flower 

colours traditionally thought to be associated with fly pollination (appearing white and 

yellow to humans) would be more abundant at high altitudes. Flowers appearing white 

(and also pink) to humans are mostly blue-green for bees and other trichromatic insects 

(Kevan et al., 1996), whereas yellow flowers can be either green or UV-green, 

depending on their UV reflectance, to such insects (Chittka et al., 1994). The recent 

study by Lázaro et al. (2008) also noted that butterflies in the Norwegian mountains 

seem to become more important pollinators as a group at higher elevations (constituting 

just 2% of the flower-visiting insects at the lowest altitude study site, but this increased 

to 7.9% at the highest altitudes), and this would perhaps lead us to expect that “butterfly 

colours” might be accordingly more abundant in high alpine locations. Butterflies’ 

innately preferred colours can vary vastly depending on species and individual 

(Neumayer and Spaethe, 2007) so it is difficult to generalise accurately. However, such 

colours may appear typically pink, purple and red to humans; from an insect’s 

perspective, often containing very long wavelength reflection, and perhaps also 

reflection in the UV/violet part of visual spectrum (Lunau and Maier, 1995; Neumayer 

and Spaethe, 2007).  
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Bees appear to be especially dominant at low to medium elevations (i.e. below the 

treeline, in sub-alpine habitats) (Lázaro et al., 2008), their large body size allowing 

foraging in the relative cold, but their high energetic requirements perhaps restricting 

their activities at very high elevations (Arroyo et al., 1982). Bees of many species have 

an innate preference for UV-blue and blue flowers (Giurfa et al., 1995; Raine et al., 

2006), but this is easily modifiable by learning, as are the innate preference in many 

other pollinating insects such as hoverflies and  butterflies (Lunau and Maier, 1995); 

bees also make a significant number of visits to yellow flowers, especially those which 

appear UV-green to their vision (McCall and Primack, 1992), but this is likely to be 

learned rather than innate.  

 

There have been previous attempts to document the effects of altitude on flower colours 

present (see Totland et al. (2000) for a summary) –  Weevers (1952) observed that there 

were more blue flower species in upland areas than in lowland areas (both in 

Switzerland above 1100m and Java above 1500m), and Kevan (1972) and Savile (1972) 

observed that flowers in alpine areas and arctic regions (which are climatically similar 

to alpine areas) tended to consist of a higher proportion of white and yellow species. 

Many of these earlier studies, however, contain primarily observational recordings that 

are not well supported by statistical power. More importantly, perhaps, with the 

exception of Kevan (1972), some of these studies have considered flower colour 

principally from the human perspective, without fully taking into account the more 

recent understanding of pollinator visual systems and how these differ from human eyes 

(Chittka and Kevan, 2005; Chittka and Menzel, 1992; Menzel and Shmida, 1993).  

 

These differences are fundamental: all insects so far extensively tested have UV 

receptors with a maximum sensitivity between around 330 and 375nm (i.e. in the UV 

range where human eyes have no sensitivity) – this includes bees and other 

Hymenoptera, Lepidoptera, Coleoptera, Hemiptera, Diptera, etc. (Briscoe and Chittka, 

2001).  As discussed in the introduction, bees, which are the most important pollinators 

in Norway at all but the high alpine elevations (Lázaro et al., 2008), also have blue and 

green receptors, but lack red receptors. Other insects, including butterflies and flies, 

have rather different colour vision systems, in some cases more complex than those of 

bees or humans (Briscoe and Chittka, 2001; Morante and Desplan, 2008). Flies and 

butterflies both have very variable numbers of photoreceptor types, depending on 
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species (e.g. five in the case of the housefly, Musca domestica (Hardie, 1986) and the 

butterfly Papilo xuthus (Eguchi et al., 1982), three so far identified for the butterfly 

Papilo protenor (Eguchi et al., 1982)). Whether their colour processing behaves as in 

bees (Backhaus, 1991) is also not completely understood, but research indicates that 

flies’ integration of photoreceptor signals can be entirely different to that of bees 

(Morante and Desplan, 2008; Troje, 1993). 

 

We sought to investigate whether the flower community growing at high altitude has a 

different pollinator-relevant colour composition to that of lower altitude areas, by using 

a data set collected along a transect in the Norwegian Dovrefjell mountains from 700 to 

1600m elevation. This is of especial interest in light of the recent study by Lázaro et al. 

(2008), in which plant communities at different elevations in southern Norway were 

surveyed for floral colour and morphology, and this was combined with visitation data. 

The study found evidence of association between traits (including colour) and 

pollinator, showing that flowers in alpine areas generally seem to be visited by 

pollinators that could be predicted according to the pollination syndrome hypothesis. 

Thus it seems that the predominance of pollinator types (and subsequently the main 

foraging strategies in evidence) varies with elevation and could potentially have strong 

effects on which plant species are most abundant.  

 

In our study we consider flower colours as seen by their pollinators, firstly using the 

well-studied model of bee colour vision, secondly using a model of fly colour vision, 

and also using the raw reflectance spectra of the flowers, thereby considering their 

colours without bias towards any vision system. As bees are important pollinators in 

most European habitats, including those in Lázaro et al. (2008) (though much less so at 

higher elevations), and as bee vision is very well characterised and understood (Chittka 

and Raine, 2006), it seems reasonable to focus first on the colours as seen by a bee – as 

spectral sensitivities of bee photoreceptors are well-conserved throughout the taxon, it is 

reasonable to use the extensive knowledge of Apis mellifera as a good approximation 

for how colours would look to honeybees, bumblebees or solitary bees alike. However, 

in acknowledgement that bees are only one of several pollinating species present, we 

also considered how the colours might appear to a fly (using a model of the blow fly 

(Lucilia sp.) as described in Troje (1993); this is not a pollinator, but no other fly colour 

vision model is currently available). Additionally, given that insect vision can be so 
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variable and complex, we analysed the raw spectral properties of the flowers. This 

encompasses wavelengths invisible to humans (<400nm) but does not impose a 

particular visual system on to the results.  

 

According to the pollination syndrome hypothesis, we would predict a change in the 

proportions of colours at different elevations, according to the dominant pollinator 

groups present. This is expected to include a general decrease in species bearing colours 

associated with bee pollination, i.e. bee-blue and UV-blue, at the highest altitudes. 

These colours generally correspond to the human colours blue and violet, but it is 

important to note that there is no absolute correspondence between bee and human 

colour categories, which highlights the importance of moving away from an 

anthropocentric view of flower colours. The pollination syndrome hypothesis would 

also predict an increase in the proportion of bee-blue-green and green species at high 

elevations in accordance with the increasing importance of fly pollinators. Overall, 

therefore, one would anticipate a gradual decrease in UV-blue and blue flowers and an 

increase in blue-green and green ones with elevation, in accordance with the shift from 

bee-dominated to fly-dominated pollination. This is supported by the findings of 

McCall and Primack (1992), who observed that purple and yellow (to humans) flowers 

were the most visited colours in lowland woodland (primarily by bees), whilst yellow 

and white were the two most visited colours in alpine tundra (most visits being by flies), 

with blue-purple flowers being much less frequently visited. Absence of such a pattern 

would indicate that flower colours are not determined only by pollination syndromes 

and that other factors may be affecting which colours are optimal. 

 

These predictions could, however, be complicated by the evolutionary history of plants 

present in the communities we studied. To investigate whether phylogeny was 

significantly linked to the colours of flowers we also took evolutionary history into 

account, building a phylogenetic tree of the species and testing whether phylogenetic 

distance correlates with differences in colours, and whether there is an interaction 

between altitude and phylogeny that affects flower colour. We found that closely related 

flowers do tend to be more similar in colour than chance would predict, which is 

unsurprising considering not all plant lineages possess the pathways to make all flower 

pigments.  

 



Chapter III: Flower colours along a Norwegian alpine altitude gradient 
 

 75 

Conversely, our study finds no evidence for a significant effect of elevation on flower 

colour as seen by bees or as considered without bias to a vision system; nor was there a 

combined effect when both altitude and phylogenetic distance were considered as 

possible predictive variables for flower colour. Thus we conclude that whilst high 

altitude does not result in a different flower colour composition compared to lower 

altitudes, the evolutionary history of flowers is, as would be expected, an important 

determining factor in their colour. It appears that pollinator selection alone cannot 

account for the colours of flower species, since the colour composition of these 

communities does not change even whilst the pollinators are expected to.  

 

MATERIALS AND METHODS 

 

Study sites and data collection 

 

The study site was located in the Dovrefjell National Park in Norway, near to Oppdal. 

Data were collected in June 1992 in the altitude range 700-1600m a.s.l. (sub-alpine to 

high-alpine), along a transect starting near Kongsvoll Biological Station and continuing 

to the Knutshø peaks east of the station. The species of all the plants in flower growing 

along the transect were noted, along with the altitude at which they were recorded. 

Spectrophotometer readings from 300-700nm (i.e. including the ultraviolet range) were 

taken of the flowers of all species present, using the methods described in Chittka and 

Kevan (2005) and Dyer and Chittka (2004a). (All spectral reflectance functions are 

available from the Floral Reflectance Database http://www.reflectance.co.uk.) A total of 

74 species were sampled from this location and are listed in Appendix II. 

 

Analysis 1: Effect of elevation on bee colour composition of the community 

 

We divided the transect into three elevation ranges: lower altitudes (700-1000m), 

intermediate altitudes (1000-1300m) and high altitudes (1300-1600m), and recorded 

which species were found in each, and which spanned more than one range. At this 

location, the low altitude group corresponds to the vegetation of mountain meadows, 

stream beds, and some forests (mainly birch); the intermediate group covers the first 
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zone above the treeline; the high altitude group comprises vegetation growing on rocky, 

unstable soils. Although the highest mountains in Norway are over 2000m, considering 

that the mean temperature between June and September in the Sør-Trøndelag region is 

typically 8°C (Østereng, 2004), the range sampled still extends into regions that can at 

times be too cold for many pollinator species to fly. Thus the dominant types of 

pollinators will change significantly within the range sampled (Totland, 1993; Totland 

et al., 2000), with an increase in muscoid fly species, a decrease in bee and beetle 

species and possibly an increase in butterfly species with increasing elevation. 

 

We first categorised the flowers by colour as perceived by bee pollinators, since these 

are one of the two most important pollinator groups in this habitat, according to their 

loci in the honeybee colour hexagon (Chittka, 1992; Gumbert et al., 1999). Previous 

studies have indicated that the division of the colour hexagon into six particular 

categories corresponds well to the actual distributions of flower colours present in 

nature (Chittka et al., 1994). Thus, we classified flowers as either bee blue, blue-green, 

green, UV-green, UV or UV-blue (see Appendix II).  

 

We used Microsoft Excel with the Bootstrap add-in (Barreto and Howland, 2005) to 

investigate whether there is an association between flower colour and elevation. We 

compared all the species that occurred in the same altitude group or combination of 

groups (e.g. low and medium) pairwise, counting the total number of times two plant 

species occurring across the same ranges also shared the same flower colour. This 

yielded a measure, N∩, of the association between flower colour and altitude ranges of 

the flowers. Then we reassigned the flower colours across the sample 10,000 times, 

whilst keeping the altitude range over which each species is found constant, and tracked 

how N∩ varied with each trial. If particular colours are strongly dominant at some 

altitudes, N∩ will be disproportionately high.  

 

By noting the number of trials in which either the N∩ value observed in the data set, or a 

more extreme value (either smaller or larger), was obtained, we could discover whether 

species growing in particular elevation ranges exhibited increased or reduced 

probability of sharing the same colour that was obtained by chance in our randomisation 

trials. 
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Figure 17. Bee colour hexagon of the species measured. The six segments correspond to the six bee 

colour categories used in this analysis (b = blue, bg = blue-green, g=green, ug=UV-green, u=UV and 

ub=UV-blue). Loci are calculated according to the relative stimulation of the three receptor types (UV, 

blue, green) elicited by the stimulus. 
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Analysis 2: Effect of elevation on fly colour composition of the community 

 

As bees are not the only pollinators in this habitat, and their importance as pollinators 

decreases at the highest altitudes, we also looked at patterns in flower colour as seen by 

flies. The model we used is that of Troje (1993), based on the blow fly Lucilia sp., in 

which stimuli across quite wide spectral ranges are not discriminated, but are 

discriminated from stimuli in other spectral ranges, with category boundaries at 400 and 

515nm. Many dipteran species (Morante and Desplan, 2008; Troje, 1993) have four 

photoreceptor types, typically referred to as R7p (short-wavelength UV), R7y (longer-

wavelength UV/violet), R8p (blue) and R8y (green). The integration system compares 

relative excitations of the two p-type receptors and the two y-type receptors and the 

receptor of each pair stimulated most strongly determines the colour the fly perceives. 

This results in four colour categories, which could be regarded as fly-UV, -blue, -yellow 

and -purple (purple referring in human vision to a colour where the shortest and longest 

wavelength receptors are stimulated most strongly), with all stimuli in one category 

being regarded by the fly as chromatically indistinguishable. 

 

Based on the known receptor sensitivities, and spectral reflectance functions of the 

flower species, we categorised the flowers into four fly colour groups and then ran a 

similar randomisation analysis to that used in Analysis 1, once more with 10,000 

repeats. This produced a probability distribution of how many species flowering in the 

same altitude ranges would also share the same colour, were colours randomly assigned 

to species, which can be compared to the actual number of times this occurred in the 

real dataset. 

 

Analysis 3: Distributions of absolute flower colours overall by elevation group 

 

Since an alternative possibility is that flowers are selected by abiotic factors, and 

because fly vision is still incompletely understood therefore cannot be modelled as 

accurately as bee vision, we also analysed the spectra independently of the 

consideration of any visual system. We simplified the spectra to the values obtained at 

50nm intervals over the range originally measured, and performed a principal 

components analysis on these data using SPSS for Windows. To test whether the 

coordinates fell into distinct clusters according to altitude group, we performed a 
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MANOVA on the points. This provides information on whether the reflectance 

functions of flowers at the different elevations differ in terms of their physical 

properties, regardless of the visual system that perceives the flowers. 

 

Analysis 4: Effect of evolutionary history on flower colour 

 

It is possible that phylogeny is a stronger predictor or constraint of flower colour than 

any selective action of pollinators or abiotic factors within a habitat, as evidenced by the 

findings in Chittka (1997) that plant families often tend to have flowers of largely two 

or three bee colour groups, with fewer flowers of other colours. Therefore, it was 

important not to neglect the existence of phylogenetic constraints of flower colour.  

 

We constructed a phylogenetic tree using existing published DNA sequence information 

of the rbcL gene. This gene has already been extensively used in phylogenetic studies as 

it is well conserved throughout the angiosperms (Angiosperm Phylogeny Group, 2003; 

Chase et al., 1993). We used the GenBank database 

(http://www.ncbi.nlm.nih.gov/Genbank/) to search for rbcL sequences for the species 

present in the habitat. When a complete or near-complete rbcL sequence was not 

available for a particular species we recorded, we substituted a sequence from a species 

of the same genus.  

 

In some cases, no sequence was available for any species in the genus; in these cases we 

used a close relative from the same family. This is valid provided that the relative is 

more closely related to the original plant species than to any of the other species 

sampled in the habitat. Thus, we used a Dimorphotheca sinuata sequence in the place of 

Antennaria dioica and a Platanthera ciliaris sequence in the place of the two 

Dactylorhiza species. This is justified by Kim and Jansen (1995) and Aceto et al. 

(1999), which place Dimorphotheca and Antennaria, and Platanthera and Dactylorhiza 

close together on phylogenetic trees. For three species (Viscaria alpina, Tanacetum 

vulgare and Hieracium sp.), we were unable to find any appropriate substitute 

sequences (sequences for other species from the same family were already included in 

the analysis, but we were unable to find species that were more closely related to the 

three above species than to the others in their families), so these species remain 

unresolved in this study and were excluded from the subsequent statistical analysis. 
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Appendix III lists the species originally recorded in the habitat, and also the data 

relating to the sequences used to resolve the relationships, including the species from 

which the rbcL sequences were obtained, the accession details of the samples and the 

relevant references. 

 

We aligned the sequences using PAUP* (Swofford, 2002), then constructed a tree using 

Maximum Parsimony. We used a heuristic search with the Tree Bisection Reconnection 

(TBR) swapping algorithm. We performed 1000 replicates for stepwise addition, saving 

only the 5 best trees from each replicate. The best trees produced were used to create a 

strict consensus tree, using the two monocot genera (Tofieldia and Dactylorhiza/ 

Platanthera) to root the tree following the Angiosperm Phylogeny Group (2003), 

thereby resolving the dataset at the genus level. Two genera (Saxifraga and Silene) 

contained three species that were all present at the study site. In order to resolve the 

relationships between the species within these genera, we used the internal transcribed 

spacer (ITS) 1 sequences (information provided in Appendix IV). 

 

Using MacClade (Maddison and Maddison, 1992), we then manually substituted the 

original species names from the habitat in place of the species providing the rbcL 

sequence information. Because of the relatively small number of taxa in our sample, 

some genera (specifically those genera in the Brassicaceae and Saxifragaceae) were 

resolved incorrectly according to the current phylogeny published by the Angiosperm 

Phylogeny Group. In these cases, we corrected the tree in MacClade according to the 

most recent information of the APG using http://www.mobot.org/MOBOT/APGroup/, 

moving taxa to their correct branches as given in this resource. 

 

All major lineages contained at least two different bee colours, though the Ericaceae in 

this sample consisted only of bee-blue and bee-blue-green species. We used MacClade 

to test whether the distribution of colours with respect to the known phylogeny deviated 

significantly from random, and also whether species on the tree showed a pattern in 

their maximum elevations relative to their phylogeny. We tested for random versus 

nonrandom distribution of traits by shuffling the characters (colour or maximum 

elevation) 1000 times and testing whether the tree lengths obtained differed 

significantly from the tree length obtained from the actual data. If the characters are 
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nonrandomly distributed in the actual tree, the tree length will be significantly shorter 

than for random reassignments of characters. 

 

To investigate whether there was an interaction between the effects of phylogeny and 

altitude in determining flower colour, we constructed a distance matrix based on 

phylogenetic distance between species on the tree. As the sequence data did not 

perfectly correlate with established trees, we did not use rbcL genetic distance in our 

measure as this would produce anomalous distances; instead we measured distance in 

terms of the number of nodes in the tree between pairs of species. We created two other 

similar distance matrices in SPSS, based firstly upon elevation ranges of the species, 

and secondly on colour distances (both derived from raw spectra and based on 

calculated Euclidean distances between colour hexagon loci).  

 

If evolutionary history constrains flower colour, one would anticipate that the colour 

distance matrix would correlate significantly with the phylogenetic distance matrix. 

Furthermore, if there was a combined effect of phylogeny and elevation on flower 

colours, an aggregate distance matrix containing combined information on phylogenetic 

distance and dissimilarity of elevation range would be expected to correlate with a 

matrix of colour distances – i.e. the closer species are in evolutionary history and 

elevation range, the more similar their colours. We used the Mantel test from the ade4 

package in the R statistical package (R Development Core Team, 2004) with 1000 

repeats to test whether this was the case. 

 

RESULTS 

 

The flower colours of the different plant species are shown plotted on a colour hexagon 

in Figure 17. The colour composition of the flower populations in the different elevation 

groups is shown in Figure 18; graphs show the bee colours of the flowers, as used in the 

analyses, and also the species as classified by human colours, for reference. 
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Analysis 1 results: Effect of elevation on bee colour composition of the 

community 

 

The commonest bee colour at all altitudes was blue-green (52% of flowers overall), and 

the proportion of blue-green flowers increased from low to high altitudes, from 45% in 

the low altitude group to 67% in the high altitude group. Whilst not significant (see 

below), this trend is in line with predictions based purely on the concept of pollination 

syndromes – at high altitudes where flies are the dominant pollinator type flowers 

should, according to this hypothesis, be more likely to be human white, i.e. bee blue-

green, than at lower elevations. By contrast, the proportion of bee-blue flowers (usually 

blue or purple to humans) declined with increasing altitude; only 5% of the flowers 

recorded above 1300m were blue to a bee’s eyes.  

 

The analysis showed no significant tendency for flowers in the same altitude group to 

share the same colour more often than chance (p = 0.144), and this holds when each 

altitude is considered individually, indicating overall that no flower colour is more 

dominant than expected at a particular altitude. 

 

Analysis 2 results: Effect of elevation on fly colour composition of the 

community 

 

The commonest fly colour categories were “fly-yellow” (50% of species) and “fly-blue” 

(38% of species); “fly-UV” and “fly-purple” categories contained only 3 and 6 species 

respectively. Increasing elevation was associated with an increase in the percentage of 

fly-yellow flowers (51% to 73%) and a decrease in fly-blue and fly-purple flowers 

(from 36% to 20%, and 8% to 0% respectively). However, these changes are not 

statistically significant: randomisation analysis revealed no trend for flowers growing in 

the same altitude ranges to share the same fly colour (p = 0.594).  

 

Analysis 3 results: Distributions of absolute flower colours overall by elevation 

group 

 

The results of the principal components analysis are shown in Figure 19. The 

distribution of colours from all three altitude groups appear to overlap heavily, and 
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a) 

 
 
b) 

 
 
 

Figure 18. Percentages of different flower colours present at the survey site, with increasing 

elevation. Flowers are classified on their appearance according to a) the bee visual system and b) the 

human visual system. (Number of species recorded at each elevation range: 700-1000m, 58; 1000-1300m, 

27; 1300-1600m, 18.) 
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Figure 19. Principal components analysis of spectral reflectance data. Here, flowers are classified as 

low, medium or high elevation based on the maximum elevation at which they were recorded (<1000m, 

<1300m and <1600m respectively). Variation accounted for by principal component 1: 45.177%; 

principal component 2: 25.871%. 
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indeed the MANOVA reveals no difference between the groups of points (p = 0.913), 

indicating that the communities of plants at all elevations share statistically 

indistinguishable physical reflectance properties, at least with the sample sizes available 

to us. 

 

Analysis 4 results: Effect of evolutionary history on flower colour 

 

The phylogenetic tree of the plant species present at the study site is shown in Figure 

20, with the colours included for reference purposes. The tree length when maximum 

elevation was mapped on to the tree is significantly shorter than chance (p = 0.029), 

indicating that growing at high elevations is a trait that occurs nonrandomly with respect 

to phylogeny. By contrast, in this analysis, the tree length for colour did not differ 

significantly from random (p = 0.250), giving no evidence in this particular analysis of a 

pattern of colour relative to phylogeny. 

 

When we compared a matrix of phylogenetic distances with a matrix of colour distances 

(based on bee colour hexagon coordinates), there was a significant correlation (p = 

0.018), indicating a significant tendency for plant species that are closely related to also 

have a similar flower colour. However, when colour distance was instead calculated 

from the raw spectra, this correlation disappeared (p = 0.174), suggesting that although 

flower colour as bees perceive it is constrained by evolutionary history, absolute colour 

does not seem to be. 

 

However, we found no significant correlation between the matrix of colour distances 

and the aggregated matrix of phylogenetic distance and dissimilarity in altitude range 

when the colour distances were derived from raw spectra (p = 0.123) or hexagon loci (p 

= 0.118). This indicates that phylogenetic distance across the data set does not interact 

with altitude to affect flower colour. 
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Figure 20. Phylogenetic tree of the species recorded at the study site. We used rbcL to resolve 

relationships to the genus level, and ITS1 sequences to resolve species within genera where necessary. 
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DISCUSSION 

 

Previous authors have made observations about the colours of flowers in alpine areas, 

stating that the colour composition of high-altitude and arctic communities differs from 

those at lower elevations (Kevan, 1972; Savile, 1972; Weevers, 1952). In this study of  

flower colours along a single transect in the Norwegian alpine flora, we sought to test 

whether any of these observations can be supported statistically. Unlike most of the 

previous authors, we considered the flower colours as they would be seen by insect 

pollinators, as this better reflects the selective pressures on those flowers, and also 

analysed them according to their raw spectral properties, a method which makes no a 

priori assumptions about the visual systems viewing the plant species. 

 

A recent study found an association between pollinator type (e.g. bees, flies, butterflies, 

etc.) and flower colour and other aspects of morphology in Norwegian habitats at 

various altitudes (Lázaro et al., 2008). Given this, and the fact that the pollinator 

community changes in composition at different elevations, a possible prediction is that 

as different pollinator types change in importance at different elevations, and each 

group is associated with particular colours of flower, then the colours of flowers present 

should also vary in accordance with these preferences. Although visit frequency taken 

alone does not perfectly assess an insect’s contribution to pollination of a particular 

plant, visit frequency is one measure of total interaction (Vázquez et al., 2005) and 

therefore a colour that is associated with more visits from a pollinator is likely also to be 

receiving more benefit from that pollinator than a flower of another colour visited less 

frequently. This could apply regardless of whether the colour association is based on 

innate preferences (Lunau and Maier, 1995) or the result of pollinators learning which 

flowers are most suitable for them (Raine et al., 2006), given flower morphology and 

rewards .  

 

However, our analysis provides no evidence for such variation, either for flower colours 

as perceived by bees or by muscoid flies. Indeed, even when considering the flower 

colours without any model of insect perception, no differences between the altitude 

groups emerged; the PCA indicates that flowers from all three groups share statistically 
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indistinguishable spectral properties. The lack of association between elevation and 

colour is unlikely to be a result of insufficient data: all species present along our transect 

were recorded, and the length of the transect spanned sufficient distance that there were 

substantial changes in the habitat type, from woodland and stream beds to unstable 

alpine soils. Although the transect began at around 700m, and did not extend to such 

low elevations as in Lázaro et al. (2008), the change in habitat types suggests a 

significant change in pollinator composition, such that a change in flower colour 

composition of the communities could be anticipated.  

 

It known from other studies that evolutionary history constrains flowers’ colours  

(Kalisz and Kramer, 2008; Menzel and Shmida, 1993), since not all families have the 

biochemical pathways to produce particular pigments. Some plant lineages only contain 

particular floral pigments and therefore flowers in those groups can only assume a 

limited range of colours. However, most plant families are ultimately capable of 

producing a variety of colours (Chittka, 1997). When taken across the whole dataset, 

there is no evidence of a combined effect of phylogeny and elevation predicting flower 

colour similarities according to relatedness and shared elevation range. 

 

There are a number of reasons why such a lack of change in the proportions of flower 

colours with changing elevation, even when the effect of phylogeny is factored into the 

analysis, may be observed. The first is the phenomenal learning ability of insect 

pollinators. Even though certain pollinator types have specific innate preferences for 

colours of flowers (Giurfa et al., 1995; Lunau et al., 1996; Raine et al., 2006), they are 

able to learn to overcome these preferences easily if a flower is sufficiently rewarding 

(Menzel, 1985b). Therefore simply because a flower’s colour matches the innate 

preference of a dominant pollinator, this may not necessarily constitute a fundamental 

selective advantage for the flowers, since the vast majority of pollinator visits will be by 

experienced individuals (Raine and Chittka, 2007a). The pollination market hypothesis, 

in fact, advocates that a range of distinct and discriminable colours in a habitat would be 

most advantageous to plants (Friedman and Shmida, 1995; Gumbert et al., 1999). Even 

if the diversity of pollinators decreases with elevation, rather than appealing to the 

innate preferences of those remaining pollinator types, a flower may benefit more from 

evolving an appearance that is distinctive and recognisable (Chittka et al., 1999). 

 



Chapter III: Flower colours along a Norwegian alpine altitude gradient 
 

 89 

As stated previously, there is also selection for certain pigments for reasons other than 

pollinator preference, particularly because of their protective ability for the plant. 

Examples include defence against desiccation, herbivory or UV damage (Chittka et al., 

2001; Fineblum and Rausher, 1997; Mori et al., 2005; Warren and Mackenzie, 2001). 

There is evidence that in vegetative tissues, production of anthocyanins, which confer 

blue, purple and red colours on tissues, is induced by UV-B exposure, and that once the 

plant has been challenged with UV radiation, there is a cross-resistance effect, allowing 

the plant increased tolerance of extreme cold and drought (Chalker-Scott, 1999). Based 

on the current knowledge of multiple functions of plant pigments, in particular 

anthocyanins, it is even conceivable that in some cases the pigments favoured by 

physical factors conflict with those that pollinators may favour. This would result in an 

overall observation that colour frequencies at different altitudes do not differ, in spite of 

various selection pressures favouring particular colours in particular circumstances.  

 

As an example, based on current knowledge of the protective effects of anthocyanin 

pigments, one might expect that the flowers of plants subjected more often to such 

extreme environmental conditions would bear such pigments in increased quantities. 

However, at high altitudes where these conditions are common and so the pigments 

would be favoured, traditional thinking might suggest that flowers would be principally 

pollinated by flies and therefore “should” be white or yellow, in line with the pollination 

syndrome concept (Lázaro et al., 2008). Thus based on pollination biology alone, one 

might anticipate a significant reduction in, for example, purple flowers (bee blue or UV-

blue) with elevation, but not if one considers that purple pigments may serve other 

functions in floral tissues unrelated to pollination. This could result in a trade-off 

situation in which flowers must compromise between the colours that appeal to 

pollinators’ innate preferences and those which serve other protective functions, with 

the possible colours further constrained by the evolutionary history of the flower 

species. Analogous trade-offs in which traits or behaviours are beneficial in some 

contexts and disadvantageous in others are relatively abundant in nature, such as in 

Boeing (2004) in which zooplankton vertical migration in lakes must compromise 

between the risks of UV damage and predator avoidance. 

 

Overall, our study indicates that the colours of flowers in mountainous areas as 

elevation increases cannot be predicted with a simple rule, and that the pollinator types 
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present cannot account for the lack of differences if considered purely within the 

context of the pollination syndrome concept. However, the colours of alpine flowers are 

clearly determined by multiple factors, including the floral pigments present in their 

families and the potential functions of those pigments in cells. We must therefore 

consider flower colour in the context of plants’ evolutionary history, as well the 

multiple selective pressures on this trait, both biotic and abiotic. 
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CHAPTER IV 
 

FLOWER COLOUR PHENOLOGY IN EUROPEAN GRASSLAND AND 

WOODLAND HABITATS, THROUGH THE EYES OF POLLINATORS 
 

INTRODUCTION 

 

In much the same manner as researchers have made observations about the colours of 

flowers present in alpine and arctic regions, as mentioned and tested in the previous 

chapter, there have been many observations about the colours of flowers that are present 

at different times of year. Robertson (1924), for example, stated that plant species with 

greenish-yellow flowers tend to bloom earlier in the year than ones of other colours; 

McCann (1986) claimed that spring flowers are most frequently white and late summer 

flowers more likely to be yellow; Warren and Billington (2005) concluded that there is 

a significant interaction between flower colour and month, stating that yellow, white 

and pink/purple flowers are all most abundant in early summer, whilst blue flowers are 

more or less constant in abundance throughout the flowering season. However, 

relatively little work has been done to analyse this aspect of phenology statistically, and 

none at all that considers the flowers’ colours as their pollinators see them rather than 

relying on human classifications, which might be of limited ecological relevance. In this 

study, we have chosen to analyse the flowers classified by the colours as they appear to 

the most significant pollinators in the local habitat: bee species (including honeybees, 

Apis mellifera, bumblebees, Bombus spp. and diverse solitary bees). We have also 

considered the colours of flowers based on their spectral properties, independently of 

any visual system.  

 

Flowering plant species may have evolved in number of ways that reduce competition 

for pollinators, including separation of flowering in time or space from other species, 

and evolving a different colour to its neighbours to make the species easier to 

discriminate by the pollinator and thus secure more conspecific pollen (Heinrich, 1975; 

Rathcke, 1983; Rathcke and Lacey, 1985; Waser, 1978; Waser, 1983b). However, there 

is also a trade-off: flowering as part of a large group can attract more pollinators 

because of a mass display effect (Heinrich, 1975). Therefore the outcome for the flower 
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can be predicted to be a balance between being visually distinct or physically separate 

from other species against being too separate and not attracting sufficient pollinators. 

With regard to phenology, this is reflected in two contrasting hypotheses that predict 

how biotically pollinated flowers should time their blooming relative to other species in 

the community. Firstly, it has been suggested that by staggering flowering times, plants 

can minimise interspecific competition for pollinators and so all species will benefit; 

secondly, that by synchronising flowering times, all the species will benefit by 

attracting more pollinators with a mass display effect (Rathcke and Lacey, 1985) (see 

Martínková et al. (2002) for an overview). 

 

What is often overlooked, however, is the interaction between phenology and the 

colours of the flowers; it may not be necessary for two plant species to diverge in 

flowering time if their flowers are of different colours and therefore easily distinguished 

by pollinators. Many species of pollinators have excellent colour vision and are 

therefore able to discriminate flowers of different colours with great accuracy (Briscoe 

and Chittka, 2001; Frisch, 1914; Internicola et al., 2008; Kelber et al., 2003; Kevan and 

Backhaus, 1998; Menzel, 1985b). The colour vision of Hymenoptera is now well 

understood and modelled (Backhaus, 1991; Chittka et al., 1992; Daumer, 1958; Frisch, 

1914; Menzel, 1975; Menzel, 1985a). Given their good colour vision, the colour 

preferences of pollinating insects can act as an important selective force in the 

appearance of entomophilous flowers. 

 

The pollination syndrome hypothesis, as previously discussed, might lead to the 

prediction that the colours of flowers present at particular times of year should reflect 

the innate preferences of the dominant guilds of pollinators active at that time. For 

example, some solitary bees and certain species of bumblebee (especially newly-

emerged queens) are most active in early spring (Heinrich, 1976; Herrera, 1988; 

Macior, 1978). Therefore, one might expect there to be selection for those flowers that 

bloom around this time to be maximally attractive to bees by producing pigments in 

“bee colours” (bee blue and UV-blue). By comparison, later in the season more 

butterflies and hoverflies are active (Bosch et al., 1997; Gutiérrez and Menéndez, 1998; 

Herrera, 1988), perhaps leading one to expect more of an abundance of the pink/purple 

(“UV-blue” to bees) flowers considered to be preferred by butterflies, and the white and 
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yellow (bee “blue-green” and “green”) ones that are visited by many syrphids 

(hoverflies) (Knuth, 1908; Lunau and Maier, 1995) .  

 

However, despite that one might conclude from the predictions of the pollination 

syndrome hypothesis that pollinating insects will be instinctively drawn to flowers 

exhibiting particular characteristics such as certain colours, it is well known that insects 

are plastic in their behaviour. Indeed, there is abundant evidence that many are excellent 

learners (Chittka and Raine, 2006; Gumbert, 2000; Kelber, 1996; Menzel, 1985b; 

Zaccardi et al., 2006), able to associate almost any colour with reward. They can 

therefore potentially take advantage of all the colours of rewarding flowers available in 

a habitat at a given time. Thus, there may only be minimal advantage from displaying 

colours preferred innately by the dominant pollinator group at a certain time of year. A 

better strategy may be to evolve a distinctive colour, to reduce the number of 

interspecific visits by foraging pollinators and ensure the conspecificity of pollen 

(Gumbert et al., 1999). 

 

In this study, we investigated whether flowers of particular colours (as seen by bees as 

well as by human observers, and also considered according to their physical reflectance 

spectra) tend to bloom at particular times of year. Such a finding might indicate an 

evolutionary adaptation to a particular guild of pollinators. Alternatively, in a given 

habitat, flowers of all colours may bloom throughout the year. This observation would 

instead lend support to the theory that pollination is a market in which flowers compete 

against one another for pollinators and therefore are under pressure to be different, 

distinctive and salient more than fulfilling a particular suite of predefined characteristics 

which are considered to make them best-suited to a certain pollinator species (Heinrich, 

1979; Ollerton et al., 2009a; Peleg et al., 1992; Waser et al., 1996). 

 

MATERIALS AND METHODS 

 

Study site and data collection 

 

The data were collected from Unteres Annatal-Lange Dammwiesen, a nature reserve 

located near Strausberg in Germany, during 1991-1993. Five ecologically distinct sites 
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were studied at this location, each ca. 500m2 in area, referred to in this article as “dry 

grassland”, “humid meadow”, “roadside”, “maple shrub”, “hazel woodland”. The study 

sites were visited fortnightly between March and October each year, and any insect-

visited flowering species in bloom were recorded (see Gumbert et al. (1999)). 

Additionally, spectral reflectance readings were taken of all the flowers using a flash 

spectrophotometer using the protocol described in Menzel and Shmida (1993), Gumbert 

et al. (1999); see also Chittka and Kevan (2005): this involved directing an electronic 

flash (including UV light) on to the flower at an angle of 45°, then detecting the light 

reflected back using a cooled (-60C) photodiode array. The spectrophotometer was 

calibrated against a BaSO4 standard, and where the measurement area of the 

spectrophotometer (diameter 10mm) was larger than than the area of a single floral unit, 

several flowers were “tiled” together, exposing only the flower parts of interest to give a 

total area larger enough to measure. Where the flower parts were of more than one 

colour, the dominant colour was considered to be the flower’s overall colour. This 

produces a dataset for each species consisting of the proportion of total light reflected 

by the flower surface at each wavelength in the bee visible range (300-700nm), at 1nm 

intervals. 

 

In total, we collected observations for 146 species, from 30 plant families. Some species 

occurred in more than one habitat, whilst others occurred in only a single habitat. 

Colours and flowering times of all species observed are included in Appendix V, and 

are the same as those given in Gumbert et al. (1999). Spectral reflectance data for all 

species can be found online in the Floral Reflectance Database 

(http://www.reflectance.co.uk) (Arnold et al., 2008). 

 

Colour categories 

 

Bees (including solitary species such as Lasioglossum, and several Bombus species) are 

usually the principal pollinators in these types of habitats in Germany (Raine and 

Chittka, 2007b; Steffan-Dewenter et al., 2002; Steffan-Dewenter and Tscharntke, 1999). 

However, other pollinators present include syrphids, beetles and butterflies (Kunze and 

Chittka, 1996; Steffan-Dewenter and Tscharntke, 1999; Waser et al., 1996). As 

honeybees and bumblebee species have been shown to have broadly similar colour 

vision (Briscoe and Chittka, 2001; Peitsch et al., 1992), we calculated flower colour loci  
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Figure 21. Bee colour hexagon with loci of sample plant species’ flower colours plotted. Bees 

typically have three photoreceptor types, sensitive to blue, green and UV light, and these are indicated at 

the apices of the hexagon. The hexagon can then be divided into segments, each one corresponding to a 

different colour category. Loci of individual flowers are shown as points; the habitat contains a range of 

flower colours. The commonest bee colour for these flowers is blue-green. 
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as viewed by a honeybee, using the colour hexagon model and the methodology 

described in Gumbert et al. (1999) and Chittka (1992).  

 

As in the previous chapter, we used the six arbitrary “bee colour categories” to classify 

flowers as blue, blue-green, green, UV-green, UV or UV-blue in bee colour perception, 

according to their loci in the colour hexagon.  

 

Statistical analysis: Bee and human colours 

 

Each of the species sampled in the data set was assigned to a colour category based on 

the appearance of its flowers, either to humans (blue, green, pink, purple, red, white, 

yellow; judged by the collectors in the field environment and then generalised into the 

colour category that best describes the appearance) or to bees (blue, blue-green, green, 

UV, UV-blue or UV-green; calculated from spectral reflectance data). The same species 

were then categorised as flowering or non-flowering for each month between March and 

October. Using these data, each species in the data set was compared pairwise with each 

other species for each month, and the number of cases in which species of the same 

colour group flowered in the same month was calculated. To test whether this number 

was greater than would be expected by chance, we elected to use a randomisation 

approach similar to that described in Rossiter et al. (2005): flower colours were 

randomly reassigned within habitat and family using Mathematica 5.0 (2003) (Wolfram 

Research, Inc., Illinois, USA). For each randomisation, the number of cases in which 

species of the same colour group flowered in the same month (N∩) was recalculated for 

the randomised data. This was repeated 10,000 times, giving a distribution of values to 

which N∩ could be compared; the proportion of times in which the randomised values 

equalled or exceeded N∩ is the p value. 

 

The analysis was repeated with the plant species classified according to human and bee 

categories, enabling us to ascertain whether there is a difference in flowering patterns 

depending on the visual system perceiving them.  

 

As was discussed in the previous chapter, it is important not to neglect the previous 

observations that flowering characteristics can be affected simply by the plant’s 

evolutionary history.  For example, one of the most important predictors of flowering 
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phenology may simply be the family of the plant (Fox and Kelly, 1993; Ollerton and 

Lack, 1992). This may not necessarily be an evolutionary constraint per se, but certainly 

some clades seem to have a tendency to flower at similar times of year (e.g. the 

Asteraceae typically flower later in the year (Ollerton and Lack, 1992)). It has also been 

noted that some families (e.g. Apiaceae) have a large number of flowers of broadly 

similar colours (Chittka, 1997; Chittka et al., 1994). This means that any study of this 

type needs to take such potential correlations into account. Additionally, some particular 

locations have strongly skewed distributions of flower colour (Goldblatt et al., 1998a; 

Kevan and Baker, 1983), so it is important to consider the potential influence of habitat 

in our analysis. 

 

Our statistical approach gave us the options to control for habitat and family, ensuring 

that ecological and phylogenetic information are preserved and accounted for as 

necessary. We ran randomisations both with species pooled between habitats, but 

families still controlled for, and with species pooled between plant families, but with 

habitats controlled for. We also considered each habitat individually, to ascertain 

whether there were trends present in some habitats but not others. 

 

Statistical analysis: Spectral properties independent of a visual system 

 

We also considered the plant species’ flower colours independent of any visual 

processing, human or insect. This could indicate any trends in flower colours that were 

dictated by abiotic constraints, such as drought-tolerance in the height of summer. For 

the first analysis, we took the raw reflectance spectra of the species present, with all the 

reflectance values at 25nm intervals between 300 and 700nm. As spectra tend to change 

smoothly (Chittka et al., 1994), there is little information lost by sampling at a larger 

wavelength interval than the original spectrophotometer measurements. This provided 

17 measurements across the bee visible range for each species, which could be analysed 

using Principal Components Analysis (PCA) in SPSS for Windows to extract the first 

two principal components describing variation between the spectra. This was done both 

for all habitats pooled and for each habitat individually. We divided the species into 

three groups of broadly similar size (in terms of number of plant species): “early” 

(blooming in March to May), “mid” (blooming in June and July) and “late” (blooming 

August to October) in order to compare whether the plant communities at different 
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times of year had similar compositions of spectra present. We chose to use a smaller 

number of flowering-times groups for this analysis compared to the month-by-month 

considerations of flowers in bloom for previous analyses because most species bloom in 

more than one month successively. Comparing clouds of points (corresponding to 

flower colours for groups of species) between two consecutive months would cause 

pseudo-replication and the groups certainly could not be considered to be independent. 

As the same plant species invariably has the same flower colour in every month of 

flowering, many of the data points would be the same between months and therefore the 

chances of finding any significant difference between floral communities in consecutive 

months would be low. 

 

Several plant species occur in more than one of our broader categories, so it must be 

acknowledged that the groups are still not entirely independent; however, the analysis 

can nonetheless indicate whether there are marked changes in the variety of spectral 

types present in each community at different times of year. 

 

Additionally, we considered whether the differences in phenology between plant species 

correlate with differences in flower colour, as defined by spectral properties. To do this, 

we created two matrices in SPSS. The first consisted of the Euclidean distances 

describing the differences between the plant species’ floral reflectance spectra. This was 

calculated using the spectral reflectance data at 25nm intervals, as for the PCA. 

 

We also calculated a dissimilarity matrix according to the differences between 

phenological properties of the plant species. To do this, each species was designated as 

flowering or non-flowering for each month, and the patterns of flowering were 

compared pairwise between species, with 1 signifying complete synchrony and 0 

signifying complete asynchrony of flowering times.  

 

Then, using the R statistical package (R Development Core Team, 2004), we ran a 

Mantel test to compare the two matrices. If flowers with similar spectral properties also 

share similar phenological characteristics, a significant correlation between the two 

matrices would be observed. 
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RESULTS 

 

The bee colour hexagon loci of all the points used in this analysis are also shown in 

Figure 21, indicating how the flowers of the different plant species appear to a bee’s 

vision.  

 

The months in which the largest numbers of plant species flowered were June and 

September (Figure 22 and 23). In the woodland habitats (hazel shrub and maple 

woodland), flowers generally appeared earlier (Figure 24 and 25), with species 

blooming in March and/or April comprising 19.2% and 16.7% of total species 

respectively (compared to 4.7%, 0% and 11.5%, for dry grassland, humid meadow and 

roadside habitats respectively).  

 

As in previous studies (Chittka et al. 1994), the commonest bee flower colour category 

was blue-green to bees (typically – but not always – corresponding to human white or 

pink) and relatively few species are bee-UV (often UV-reflecting red or orange to 

human eyes, such as the poppy Papaver rhoeas L.). White and yellow were the 

commonest colours when the dataset was categorised by human colour appearance. A 

first inspection of the proportions of colours as perceived by humans over the year 

might give the impression of substantial changes from early to later months. In March 

(and to a lesser extent in April), purple-flowered species appear much more abundant 

than in later months (Figure 22, bottom), while white-flowered species appear less 

commonly in these early months. However, it is important to note that very few plant 

species bloom so early in the year, so the proportions of colours in early months are 

based on only a small number of species. From May to later months the proportions of 

different human colours appear largely constant (Figure 22, bottom).  

 

Human colour categories 

 

Our analysis revealed that despite the lower sample sizes in the early months (Figure 22, 

top), the overall changes in proportions of human colours throughout the year are 

significant (p = 0.048); i.e. species in bloom in the same month are superficially likely 

to share the same human colour.  
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Figure 22. Human colour distributions for all sites combined. Plant species are categorised into flower 

colour groups according to human judgement. The upper graph shows the absolute counts of species in 

bloom for all months, whilst the lower shows the percentages of different colours. 



Chapter IV: Flower colour phenology in European grassland and woodland habitats 

 101 

 
 

 
 
 
 
 
 
 

 
Figure 23. Bee colour distributions for all sites combined. Species are now categorised by colour as 

they would appear to a bee. The upper graph shows the absolute counts of species in bloom for all 

months, whilst the lower shows the percentages of different colours. 
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However, when plant family was controlled for, this apparent trend disappeared (p = 

0.2784), indicating that the recorded trend occurs only because plants in the same 

family tend to have similar traits (colour, as perceived by humans, and flowering time) 

(Chittka, 1997; Ollerton and Lack, 1992). The trend also disappeared when flower 

colours were randomised within but not between habitats, controlling for effects of 

habitat on the dataset (p = 0.1512). 

 

Bee colour categories 

 

For bee colours, likewise, there appears to be a change in relative colour frequencies 

from early to late months (Figure 23, bottom); in March, UV-blue flower species appear 

to be more common than in later months, whereas bee green and blue-green flowers 

appear less common. However, inspection of the sample sizes in the absolute counts  

 (Figure 23, top) once again shows that these apparent temporal changes in flower 

colour proportions are the result of small sample sizes: there are only half a dozen 

species that flower in March, in all habitats taken together. 

 

Accordingly, our randomisation approach generated a result that missed the significance 

threshold (p = 0.0935), indicating no significant tendency for flowers blooming at the 

same time to share the same bee colour, and this marginal effect vanished entirely when 

plant family membership was taken into account (p = 0.2608), or when the different 

habitats were controlled for (p = 0.3099). These findings indicate that flowering time 

cannot be taken as a significant predictor of bee flower colour, regardless of whether or 

not the phylogeny of the plants in these habitats is taken into consideration. 

 

Individual habitats 

 

The colour distributions for each habitat are shown in Figures 24 (human colours) and 

25 (bee colours). We analysed each habitat separately with the randomisation, once 

more controlling for possible effects of phylogeny. Regardless of whether the flower 

colours used were those perceived by bees or humans, no individual habitat showed a 

significant pattern (Table 2). Therefore, whichever of the habitats is considered, the 
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Figure 24. The percentages of different flower colours (as perceived by a human) in the five habitat 

types throughout the year. Left hand graphs show the absolute counts of flowers in bloom; right hand 

graphs show the percentages of the different colours present each month. 
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Figure 25. The percentages of flower colours (as perceived by a bee) in the five habitat types 

throughout the year. As before, left hand graphs show the absolute counts of flowers in bloom; right 

hand graphs show the percentages of the different colours present each month. 

 

 

 



Chapter IV: Flower colour phenology in European grassland and woodland habitats 

 105 

 
 
 
 
 
 
 
 
Table 2. Summary of p-values for the randomisation tests performed on flower 
colour trends in individual habitats. The values are the results of randomisation tests 
investigating whether species in each habitat which share the same colour also share the 
same flowering phenology. Randomisation tests include a control for evolutionary 
history.  
 

Habitat p-value for bee 

colour model 

p-value for human 

colour model 

Dry grassland 0.2239 0.2886 

Humid meadow 0.5943 0.4462 

Roadside 0.3057 0.6834 

Hazel shrub 0.8566 0.3780 

Maple woodland 0.7201 0.7588 
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a) 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 26. Principal Components Analysis of reflectance spectra for plant 

species from a) all five habitats combined and b) each habitat individually. 

Flower species are categorised as early-flowering (March to May), mid-season-

flowering (June and July) or late-flowering (August to October). 

b) 
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chances of plant species in bloom in a given month being the same colour to bee or 

human observers is no greater than chance.  

 

Spectral properties independent of visual system 

 

The Principal Components Analyses, both for the species from all habitats pooled and 

for the species in each habitat individually, are shown in Figure 26. There appears to be 

a high degree of overlap between the spectral properties of species blooming at different 

times of year, and indeed this is supported by the statistics: early-, mid- and late- 

blooming species overall form statistically indistinguishable groups (Hotelling’s Trace, 

F = 0.028, p = 0.166, hdf = 4, edf = 460). When each habitat is taken individually, to 

discover whether any trends are present in a particular habitat which are masked when 

data from all five locations are pooled, there is also no statistical difference between the 

spectra of early-, mid- and late-flowering species (Hotelling’s Trace, dry grassland: F = 

0.015, p = 0.766; humid meadow: F = 0.018, p = 0.875; roadside: F = 0.061, p = 0.416; 

hazel shrub: F = 0.187, p = 0.213; maple woodland: F = 0.042, p = 0.894). 

 

The comparison of matrices revealed that there was no significant correlation between 

the spectral properties of flower species and their phenological properties (Mantel test, p 

= 0.072, N=146). The slight trend towards significance, as in the randomisation analysis 

of human flower colours, may perhaps be caused by a small tendency for closely related 

flowers to both bloom at the same time of year and possess similar coloured pigments 

with comparable spectra; however, this effect is not strong enough to pass the 

significance threshold and there is no definitive evidence that any slight association can 

exert an effect in a community containing so many species that are only very distantly 

related. 

 

DISCUSSION 

Previous studies have considered the selective forces that determine when a plant 

should come into flower (Heinrich, 1976; Kochmer and Handel, 1986; Ollerton and 

Lack, 1992), and whether more species of plants possess particular flower colours at 

particular times of year (McCann, 1986; Robertson, 1924; Warren and Billington, 
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2005). The pollination syndrome hypothesis might lead us to expect that if particular 

pollinator guilds constitute a larger proportion of the total pollinators at certain times of 

year then those plant species blooming at that time should be more likely to possess the 

flower colours associated with those pollinators. In our study, we sought to test this, and 

especially we attempted to disentangle the previous observations based on human 

colours, and the ecological relevance of these, by modelling flower colours as they are 

seen by the most important pollinators in our study community, the bees (Gumbert et 

al., 1999; Steffan-Dewenter et al., 2002), and also by removing the bias of any colour 

vision system and simply considering the flower colours in the form of their reflectance 

spectra. Unlike some previous studies (e.g. McCann (1986)), we also address these 

questions by using robust statistical analyses rather than merely subjective judgements 

of trends. 

 

Consequently, although superficial examination of the data collected appears to suggest 

that in some habitats, certain colours of flowers bloom at particular times of year, the 

statistics show that these observations are largely unsupported. We found no statistically 

significant evidence that the colours of flowers (as perceived by bee pollinators, or 

considered in terms of physical reflectance) change throughout the year. We did obtain 

a single significant finding: a trend for plants flowering in certain months to have the 

same human colours. This could be taken to be consistent with previous observations of 

particular human colours dominating at different times of year (McCann, 1986; Warren 

and Billington, 2005). However, even this one significant result breaks down if the 

analysis takes into account the phylogeny of the species in the habitats.  

 

Thus our findings support the hypothesis of Heinrich (1975), that selection will tend to 

favour a variety of colours of flower at any given time of year in order to attract 

pollinators. It has been shown that several bee species will readily learn to associate any 

flower colour with a reward (Chittka et al., 1992; Menzel, 1985b) and that many other 

insect species are similarly capable of associative learning (Kelber, 1996; Kinoshita et 

al., 1999; Lunau, 1992), and therefore distinctiveness is generally likely to be more of 

an asset than being any particular colour. Indeed, as also observed in the previous 

chapter, the majority of pollinators in the field will have learning experience influencing 

their flower visitation decisions rather than being guided by innate preferences alone. 

Distinctiveness and detectability are also beneficial in light of more recent experiments 
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demonstrating that flower constancy only holds over the short term (minutes), as a 

result of insect memory dynamics (Menzel, 2001; Raine and Chittka, 2005; Raine and 

Chittka, 2007b): a foraging bee will not necessarily remain loyal to a colour or species 

of flower indefinitely, and might frequently shift to other species if the previously 

visited variety is not available in the immediate vicinity. These observations of insect 

learning and switching behaviour are consistent with our results, which demonstrate a 

broad range of flower colours present in all habitats studied throughout the year rather 

than periods in which single flower colours dominate.  

 

We also investigated the phenology of flower colours in different types of habitat, 

looking at three “open” habitats based largely on grassland, and two “woodland” 

habitats. Different habitats may have different pollinators and present different foraging 

conditions for those pollinators, and also present the flowers themselves with different 

challenges. It is already known that in woodland areas, understorey plants flower earlier 

(Heinrich, 1976) (see left-hand graphs in Figure 24 and 25), in order to maximise their 

growth and productivity before the trees come into full leaf and shade them out. The 

light environment in woodland areas is also distinctive, and this could perhaps impact 

on pollinators’ foraging choices. During much of the year, pollinators in woodland must 

forage under lower light levels, and also under light that is spectrally different from 

normal daylight (with a spectral peak around 550nm owing to filtering through green 

leaves) (Endler, 1993); it is still unknown how this may affect their foraging strategies 

and colour preferences. For example, some colours of flower may be less salient or 

harder to discriminate under woodland light than under ordinary daylight, making such 

colours disadvantageous when the canopy is closed. Whilst it is known that bees at least 

have good colour constancy and are able to recognise colours accurately under a variety 

of illuminants (Lotto and Chittka, 2005; Werner et al., 1988), it is also known that their 

colour constancy is not perfect (Dyer, 1999; Dyer, 2006; Dyer and Chittka, 2004a). The 

extent to which switching between light habitats while foraging induces “mistakes” 

(visits to flowers of a plant species that was not the intended target) as a result of 

imperfect constancy remains to be determined. 

 

However, our results did not provide any evidence of a shift in the flower colours of 

woodland plant species between early spring (minimal leaf cover) and late 

spring/summer (more intense leaf cover). There was no trend for woodland flowers 
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blooming in particular months to share the same colour more often than expected by 

chance, as one might predict if particular colours dominated at certain times of year and 

if some colours increased or decreased in importance later in the year. We found no 

evidence that plant species in these habitats changed in relative frequencies of colours 

throughout the year, in a way that could be related to the level of leaf coverage. We also 

found no evidence of shifts in the spectral composition of the woodland plant 

communities. 

 

Another consideration is that some previous observers may have noted only the 

abundance of functional floral units of different colours at given times of year, without 

recording the number of plant species in bloom. This would result in judgements of the 

“dominant” flower colour based primarily on a the flower colours of just few plant 

species that happen to occur at very high abundance (e.g. an English bluebell wood in 

May would appear predominantly blue to human eyes, but the blue effect comprises just 

one species (Yanney Wilson, 1959)). Our study, however, considers only the diversity 

of plant species in flower regardless of the numbers of functional floral units per 

species. 

 

Our results show that previous records of flower colours changing over the year can 

vary depending on the visual system used to classify flower colours. Plant species that 

are closely related may share both similar flowering times and similar pigmentation, 

possibly resulting in apparent abundances of particular colours, as perceived by humans, 

at particular times of year. However, this pattern is not reflected in the trends in flower 

colour as perceived by bees that we observed in our study sample, nor is the trend borne 

out in analyses of the spectral reflectance functions of species in our study sites. Thus 

our findings demonstrate that we should be wary about drawing conclusions about 

patterns in flower colour based on human perception alone.
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CHAPTER V  

FORAGING BEHAVIOUR OF BEES IN PATCHY LIGHT CONDITIONS 
 

INTRODUCTION 

 

As mentioned in the previous chapter, the light environment in any terrestrial habitat is 

not consistent across space or time. Temperate woodland and hedgerow habitats – in 

particular during the spring time when the trees and large shrubs are only partially in 

leaf – present a complex foraging environment for insect pollinators. In these 

environments, many areas are shaded by leaves for much of the growing season, 

altering both the overall illuminance and the chromaticity of the light beneath (Endler, 

1993). Other patches are open, but will only receive direct sunlight for a small part of 

the day when the sun is overhead, at other times being lit only by skylight. Furthermore, 

the spectral content of sunlight and light from the sky varies over the course of the day 

and between days (Hernández-Andrés et al., 2001; Johnsen et al., 2006). 

 

An animal seeking rewarding flowers or another food source in such a habitat is 

therefore faced with a considerable visual challenge. Without some way to compensate 

for changing hues and intensities, colour and brightness information would be 

unreliable and potentially useless. Simple receptor adaptation enables a basic form of 

compensation for changing illumination – if a photoreceptor is highly stimulated, it 

down-regulates its sensitivity to light. This permits some basic compensation for 

changes in illuminant (Neumeyer, 1981).  

 

However, some animals have now been proven to have more sophisticated colour 

processing. Honeybees were found in the 1980s to have colour constancy, the ability to 

discriminate colours correctly under changed illumination (Neumeyer, 1981; Werner, 

1987; Werner et al., 1988). These initial experiments were performed with controlled 

lighting and coloured panels of stimuli; the bees were trained to visit one panel, and 

then the lighting was changed in its spectral content (e.g. by increasing the blue content) 

and then the bees were retested to see if they could still choose the correctly-coloured 

panel or whether they made mistakes. The results of both Neumeyer’s (1981) 
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experiments and Werner’s (1988) experiments (which additionally included tests on 

some stimuli which reflected UV light, under illuminating light with variable UV 

content) demonstrated presence of colour constancy in bees. Thus, even when the 

spectral content of illuminating light changes, they are able to learn to distinguish 

coloured stimuli with a high degree of accuracy. 

 

However, there is an increasing body of evidence suggesting that this ability, as in 

humans, is approximate rather than perfect. Even the data from Neumeyer’s original 

experiments showed that larger changes in the illuminant caused the bees to make more 

mistakes when recognising coloured stimuli (Dyer, 1999; Neumeyer, 1981). 

Furthermore, if bees adapted flawlessly to changed illumination, they would not detect 

changes in the spectral content of illuminant light and would therefore not be able to use 

illumination information to influence their behaviour. However, Dyer and Chittka 

(2004b) and Dyer (2006) demonstrated that bees directly perceived changes in 

illuminating light. Additionally, Lotto and Chittka (2005) demonstrated that bees could 

use illumination as contextual cue in foraging tasks. Studies by Dyer (1998; 1999) used 

data on bees’ photoreceptor responses and the reflectances of natural flowers to predict 

that some flowers would appear to change in colour to bee eyes under altered lighting, 

demonstrating that bees’ colour constancy is only approximate. However, none of these 

experiments sought to address the responses of bees to short-term changes in 

illumination that are associated with foraging in patchy light, as they might encounter in 

nature, i.e. moving rapidly into and out of illumination patches so the illumination 

surrounding the bee changes over the space of seconds rather than minutes. 

 

Possessing only approximate colour constancy could give rise to a difficult situation for 

bees foraging in such environments with patchy light, e.g. woodland edges, hedgerows 

and gardens. Whereas bees may be accurate at discriminating flowers and spotting 

concealed predators under sunlight, under leaf-shade or skylight they may make 

mistakes in finding the correct flowers, or even fail to spot flowers with predators (e.g. 

crab spiders) on them; the same applies when moving from leaf-shade into sunlight 

patches once more. Some illuminants could therefore be considered by the bees to be 

more risky, and it may affect their choice behaviour. This can be further complicated by 

metamerism, when two items with different spectral reflectances which are 

discriminable under one illuminant become indistiguishable under another (Wyszecki 
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and Stiles, 1982). For a foraging bee, this could cause misidentification of flowers 

which in other illuminations would be discriminable (even, perhaps, in spite of shape or 

odour differences between species). 

 

In the following series of experiments, we sought to test whether an illuminant which 

simulated leaf-shade was associated with lower accuracy for bumblebees in a colour 

discrimination task compared to their performance under simulated daylight. We then 

investigated whether a difference in performance under the two illuminants could lead 

to an experimentally naïve group of bees behaving differently under the two 

illuminants, for example, spending more time under one compared to the other, making 

more mistakes under one than under the other, or altering their foraging strategy, such 

as becoming more or less flower-constant or preferring particular colours of flower. 

Flower constancy could conceivably be affected by patchy light as it might alter bees’ 

willingness to probe new species or cause them to make mistakes in species 

identification. 

 

Through these experiments, we sought to gain a better understanding of how bees 

forage under patchy light. This will provide us with insight into the limitations of colour 

constancy, and the biological relevance of failures of colour constancy. 

 

GENERAL METHODS 

 

Experiments were performed indoors between January 2007 and December 2009. For 

each experiment, we connected a colony of bumblebees (Bombus terrestris dalmatinus) 

(colonies supplied by Koppert UK Ltd. and Syngenta Bioline Ltd.) to a flight arena 

(1.2m by 1m) via a plastic tunnel; the tunnel was gated so that only a single bee was 

released into the arena at a time during the training and testing bouts. Thus bees were 

always trained and tested individually, with no conspecifics present to provide 

distractions or cues. Each bee was individually marked with a paint spot on its thorax 

and was used in only one of the different experiments detailed, so had no prior 

experience of colour or learning experiments. Between experiments, bees were allowed 

to forage from a clear (uncoloured) feeder placed on the centre-line of the flight arena, 

containing sucrose solution; when experiments were not in progress, the arena was 
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illuminated by the simulated daylight lighting setup detailed below. The colonies were 

also provided with pollen directly into the nesting box three times per week. 

 

The flight arena consisted of a wooden box with a transparent (UV-transmitting) lid. 

Lighting was provided by four fluorescent “daylight” tubes (Duro-Test Lighting, 

Philadelphia, USA) and one UV-blacklight (Maplin Electronics Ltd., UK). Lights were 

buffered at high flicker-frequency (>1000Hz) and a sheet of UV-transmitting white 

diffusion (White Light Ltd., London, UK) was placed beneath the lights to prevent the 

bees from trying to fly towards the fluorescent tubes and to mix the light from the five 

tubes. This was the default illumination for the arena, and also the illumination in the 

“daylight” patches during patchy light experiments. We simulated leaf-shade in this 

setup by using coloured filters placed above the arena to alter the intensity and spectral 

composition of the incoming light. These filters consisted of a combination of two 

sheets of green translucent plastic (Acco UK Ltd., Ayelsbury, UK) and one sheet of 

tracing paper (Simply Stationery, Ackerman Group Plc., London, UK). The 

transmittance spectra for this and an average spectrum calculated from multiple samples 

of green leaves (for comparison) are included in Figure 27. We used leaf-shade “patch” 

filters, which were rectangular sheets one-quarter of the area of the top of the arena; two 

of these placed in diagonally opposite quadrants of the arena created a setup in which 

half the arena’s area was illuminated by simulated daylight and the other half was 

illuminated by leaf-shade light (Figure 28). We refer to this later in this chapter as the 

“Battenberg design” for convenience. Alternatively, a large leaf-shade filter could be 

placed above the flight arena to illuminate the whole area uniformly with leaf-shade 

light. 

 

Two colours of stimuli were used throughout the first three experiments, representing 

two flower colour morphs, or flowers of two different species (and therefore can be 

considered to be artificial flowers). The positive stimulus (S+; containing a food reward) 

consisted of a square 2.4cm x 2.4cm UV-transmitting transparent plastic tile (thickness 

4mm) placed over a dark purple square of paper of the same size. The negative stimulus 

(S-; containing no reward, or a quinine penalty), where used, was an identical plastic tile 

but placed over a pale purple square of paper. The colours were chosen as they fall 

within the distribution of colours present in European woodland and were expected to 

be difficult but not impossible for the bees to learn to discriminate between. Spectra and 
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colour hexagon coordinates (under normal light) for the stimuli are included in Figure 

29.  

 

The tiles contained a small central indent, diameter 2mm, depth 2mm, in which a drop 

of sucrose reward could be concealed (as bees may use the presence of a visible liquid 

drop to influence their decision whether to land or not, especially for tasks that are 

otherwise perceptually difficult). We washed and dried all the tiles after each foraging 

bout.  

 

The stimuli were placed on glass vials of height 4.2cm, with equal numbers (either 4 or 

2, depending on the experiment) in each quadrant of the arena. The arrangement of 

stimuli within each quadrant was pseudo-randomised after each bout so that the bees 

could not learn to associate any location in the arena with the predictable presence of 

either a rewarding or unrewarding stimulus. 
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Figure 27. Spectral transmittance of leaves (averaged from multiple samples as in Chittka (1997)) 
and the leaf filter used in our experiments. 
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Figure 28. The two alternative patchy light layouts of filters, in the “Battenberg” design. Green 

patches indicate leaf-shade light filters, whilst the white patches are illuminated by simulated daylight 

(produced by a combination of “daylight” fluorescent tubes and a UV-blacklight). 
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a) 

 
 
b) 

 
 
Figure 29. The two colour stimuli, S+ (dark purple, containing sucrose) and S- (pale purple, where 

used, containing quinine), as a) reflectance spectra and b) colour hexagon coordinates under D65 

lighting conditions. 
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EXPERIMENT 1: LEARNING EXPERIMENT 
 
 

If bee colour constancy is perfect, one would expect bees to learn to discriminate two 

coloured stimuli as quickly and accurately under one lighting condition as under 

another. Conversely, imperfect colour constancy may result in a poorer colour learning 

performance under some illuminants, especially if the illuminant contains low 

proportions of some light wavelengths relative to others. In this experiment, we used a 

straightforward colour learning task under two different illuminants to discover whether 

bees performed equally well under both illuminants or whether there was a difference in 

learning speed for one of the illuminants. 

 

METHODOLOGY 

 

Each bee in this experiment was only trained and tested under a single illumination 

condition to control for any bias in prior familiarity with the setup or order effects. Bees 

were trained and tested under one of two experimental treatments, both of which 

consisted of uniform illumination (not patchy). Treatment 1 was uniform simulated 

daylight (no coloured filters); Treatment 2 was uniform simulated leaf-shade, produced 

by placing the leaf-shade filters beneath the lighting array, so that the entire area above 

and inside the arena was lit by green-coloured light. We tested 15 bees in each 

treatment. 

 

In both treatments, a single bee was allowed to forage in the arena containing 8 positive 

and 8 negative stimuli. The positive stimuli contained a reward of 15µl of 40% sucrose 

solution, whilst the negative stimuli contained 15µl of 0.013% quinine hemisulphate 

solution, a known aversive substance to bees commonly used to penalise incorrect 

choices (Dyer and Chittka, 2004c). The volumes chosen would allow a bee to satiate on 

sucrose solution within a foraging bout, causing her to return to the nest. 

 

We recorded the bee’s landings for 100 visits. If any part of the bee made physical 

contact with the stimulus, this was counted as a landing. Each time the bee returned to 

the nest, the plastic tiles were washed, the arena floor was wiped down and the 
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arrangement of stimuli was pseudo-randomised so that the bees could not use spatial 

memory to identify the correct artificial flower type. 

 

After 100 training visits, we gave each bee an unrewarded test, in which all the stimuli 

were washed and replaced in the arena without either sucrose or quinine, and the bee’s 

first 10 landings were recorded. This test controls for any olfactory effect of the sucrose 

or quinine as the bee cannot use a potential odour to identify whether the stimulus is 

“correct” or “incorrect”; the outcome therefore depends only on what the bee has 

already learned in previous bouts. The bee was not allowed to return to the nest until she 

had completed at least 10 landings. 

 

RESULTS 

 

As could be predicted by the relatively small colour distance between the two stimuli, 

the bees initially chose between them at chance level under both the daylight and leaf-

shade illuminants (Figure 30). In both treatments, the bees gradually learned to prefer 

the dark purple S+ stimulus (GLM, F = 3.579, hdf = 9, edf = 20, p = 0.008). During the 

training phase, learning appeared to occur faster under the daylight condition than under 

the lead shade condition, though this effect fell short of the significance threshold 

(GLM, F = 1.763, hdf = 9, edf = 20, p = 0.139). However, in the unrewarded test at the 

end of the training period, the bees trained and tested under the daylight condition 

exhibited a better performance than those under the leaf-shade condition, selecting more 

of the correct S+ stimuli (t-test, t = 1.78, df = 28, p = 0.043) (Figure 31). 

 

CONCLUSION 

 

Based on the differences in final performance in the unrewarded test, bees appeared to 

find colour discrimination more difficult under the leaf-shade condition. This most 

probably highlights the fallibility of bee colour constancy; if they could correct perfectly 

for the illumination, there would be no difference between the two groups of bees at any 

stage in the training and testing process. The decrease in performance could also be a 

result of the lower light intensity under the leaf-shade filter; it has been shown that the 
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accuracy of target detection in bees deteriorates under low light conditions (Chittka and 

Spaethe, 2007; Skorupski et al., 2006). Experiment 3 of this chapter includes a control 

setup in order to explore whether this is an important contributing factor. 

 

The fact that the effect of illumination on performance was only significant in the final 

test phase may have one of two explanations: it may be because the differences in 

accuracy at intermediate training stages were relatively slight and only reached 

significance when the bees were selecting the correct stimuli well above chance level 

anyway. Alternatively, it may be that the bees learn both tasks at similar speeds but as 

their colour constancy is only approximate, they have a “ceiling” performance under 

some illuminants, and cannot exceed this because of the limits of their physiology in 

discriminating colours, just as in fine colour discrimination tasks under ordinary 

lighting, they can never learn perceptually difficult tasks to 100% accuracy (Dyer and 

Chittka, 2004c).  

 

In any case, we are able to conclude from this experiment that the bees find it harder to 

discriminate the two colours accurately under simulated leaf-shade light compared to 

simulated daylight. One must, however, be wary about extrapolating this to all colour 

pairs (especially ones with a larger perceptual colour difference) under all illuminants. 

However, it supports existing literature exploring the limitations of colour constancy in 

bees, and the fact that the leaf-shade condition is an ecologically relevant illuminant 

which a wild bee may encounter means we should certainly consider the possibility that 

bees may occasionally misidentify flowers when foraging in woodland and leaf cover. 

 

This may have repercussions for forest understorey plants – although in all 

environments, flowers are under selective pressure to be highly conspicuous and 

discriminable, if bees generally discriminate flowers more poorly under leaf-shade 

relative to daylight, the pressure for species to diverge in colour will be stronger. 

However, mimicry inside woodlands and forests may perhaps be favoured more 

strongly, as our data indicate that the bees are more likely to make “mistakes” in such 

environments and thus potentially visit unrewarding mimic species, making pollination 

more likely for these species under leaf-shade rather than in open, daylight-illuminated 

habitats. 
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Figure 30. Learning curves for bees under the two lighting conditions, showing the percentage of 

correct choices per block of 10 flower visits. (Bars = standard error.) 

 

 
 
Figure 31. Results of unrewarded test after the differential conditioning training for the two stimuli 

under leaf-shade and simulated daylight illuminants. The graph shows the % of correct landings under 

the two illumination conditions, as mean ± standard error for each treatment group. The results show that 

bees are more accurate at discriminating the two coloured stimuli under simulated daylight than under 

leaf-shade. 
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EXPERIMENT 2: PATCHY LIGHT EXPERIMENT 
 

Having established that the bees find one illumination condition more difficult than the 

other when trained to discriminate between the two stimuli, we investigated their 

foraging behaviour when they had an opportunity to choose the illuminant in which they 

preferred to spend the most time and visit the most flowers. It seems likely that they 

would exhibit some preference for the “easier” illuminant, in which they perform more 

accurately and make fewer mistakes. 

 

In this experiment we used the “Battenberg” design, in which half of the total arena area 

was illuminated by simulated daylight and the other half with simulated leaf-shade. As 

the bees were able to pass freely between the two illuminants, they could choose 

whether to visit both illuminants equally, or favour one over the other. 

 

The time course of choices for targets and flight behaviour in the two illuminants will 

also be informative. If the bees avoid the leaf-shade (difficult) illuminant because it 

presents a higher risk of mistakes, one would expect that the preference for the daylight 

(easy) illuminant would be relatively weak initially, as the bees have no experience with 

punishment of errors, and would grow stronger as the bees learn that there is a cost of 

mistakes. In contrast, an aversion to one of the illuminants that is present at the outset of 

the experiment is unlikely be related to perceived error rate, given that the bees have no 

experience with choosing the incorrect stimulus at this point in training. Such a 

preference must be mediated by some other factor, such as a preference for the higher-

intensity illuminant. We investigated these possibilities in a series of control 

experiments, detailed in the next section of this chapter, in particular the potential 

effects of familiarity with the illuminant and how light intensity differences between the 

patches might affect the bees’ flight and visitation behaviour. 

 

In addition, there may be a difference depending on the type of learning paradigm used. 

If both colours of flower are equally rewarding, or the unrewarding flower colour 

contains only water rather than quinine, there is relatively little incentive for the bees to 

forage accurately (even in a differential scenario with sucrose versus water, as the 

energetic cost of moving on to the next flower in a small flight arena is negligible) 
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(Chittka et al., 2003; Chittka and Spaethe, 2007). This means one would expect the 

aversion to mistakes and thus to leaf-shade illuminant to develop faster and more 

strongly in a differential conditioning paradigm with quinine. Conversely, the aversion 

to leaf-shade light, if present, would remain weaker if there was no or low cost of 

mistakes, such as in an absolute conditioning paradigm or one in which only water was 

used on the S- stimuli.  

 

METHODOLOGY 

  

In these conditions the bees could choose freely whether to fly in both illuminants or 

just one, and whether to visit the artificial flower stimuli under either or both of the 

types of illuminant patches. 

 

The green filters were laid on the lid of the arena in the previously described Battenberg 

design, so that two quarters of the area were illuminated by green light and two quarters 

by simulated daylight. 16 of the previously described coloured stimuli were used. 

Parallel horizontal strings (of human-beige colour, 2mm diameter) 7.5cm apart marked 

out the boundaries of the quadrants in three-dimensions (Figure 32) – foraging bees did 

not collide with the strings or attempt to land on them, and if the bee crossed one of the 

strings it could be easily and unambiguously identified as a change of quadrant and 

therefore recorded as a switch between illuminant patches. This reduced error in human 

observation of when the bee switched quadrants. 

 

In the Absolute Conditioning treatment, all 16 stimuli were of the dark purple S+ variety 

and were rewarded with 10µl of 40% sucrose solution (the smaller volume encouraged 

the bees to visit all or almost all of the stimuli within a foraging bout). In the 

Differential Conditioning treatment, there were 8 stimuli of the dark purple S+ type and 

8 of the pale purple S- type. The S+ contained sucrose solution; the S- contained quinine 

solution. In the Differential Conditioning treatment, the volume of sucrose solution was 

increased to 20µl so that the bee could satiate within a foraging bout and would return 

home, and an equal volume of quinine solution was used. 
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Figure 32. String arrangement crossing arena, dividing it into four quadrants. The purpose of the 

strings is to ensure accuracy of judging when the bee passes from one quadrant of the arena, and hence 

illumination patch, to the next. Bees did not land on or collide with the strings during foraging bouts so 

they are not anticipated to affect performance. 
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The stimuli were arranged so that there were equal numbers of each colour in each 

quadrant (i.e. four S+ per quadrant for Absolute Conditioning; two S+ and two S- for 

Differential Conditioning). The stimuli were pseudo-randomised between bouts, whilst 

still keeping the numbers in each quadrant the same, and the filters were swapped in a 

pseudo-random fashion between the two possible Battenberg arrangements shown in 

Figure 28. 

 

Data recording 

 

Each bee was recorded for five foraging bouts. Using the program ETHOM (Shih and 

Mok, 2000) on a laptop computer, we recorded each time the bee switched between 

illuminants (both leaf-shade to simulated daylight and vice versa), when the bee landed 

on stimuli under the leaf-shade and daylight patches, and whether these choices were 

correct or incorrect in the Differential Conditioning treatment. The ETHOM program 

records each event with a timestamp, so that it is possible to calculate how much time 

the bee spent in different illuminants. 

 

Therefore, the data we acquired allowed us to analyse the proportion of time spent 

under the two illumination types during each bout, the order of artificial flower visits 

(including whether each flower was a correct or incorrect choice where relevant, and 

under which illuminant), and thus analysed the bees’ illumination preferences in terms 

of the time spent in the two lighting types and in terms of where the bees visited 

flowers. It also allowed us to look at how these preferences and behaviours changed 

over time. As we collected data both on the flight times under the two illuminants and 

also the flower visits made, these can be analysed separately, allowing us to consider 

both behavioural types. 

 

Initial illuminant preferences 

 

We were able to assess the individual bees’ initial illuminant preferences by looking at 

where they made their first ten visits to the coloured stimuli during the first foraging 

bout, both under Absolute and Differential Conditioning paradigms. A bee foraging in 

this setup could make all of these ten visits under simulated leaf-shade light, all under 
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Figure 33. Modelled initial illuminant visit behaviour for a population of bees with no preference 

for either illuminant. If a population of bees with no illuminant preference were allowed to forage in the 

arena setup and their first ten choices were recorded, the proportion of choices by each bee in each 

illuminant would form a Gaussian distribution such as this, with most bees choosing around 5/10 flowers 

under the leaf-shade illuminant (leaf-shade visit preference). 
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Figure 34. Modelled initial illuminant visit behaviour for a population of bees with a fixed and 

consistent preference for the daylight illuminant. These are the hypothetical results for a population of 

bees with a probability of 0.3 of choosing a flower in the leaf-shade illuminant, i.e. a consistent non-

exclusive preference for daylight illuminant. As in the previous figure, the proportion of choices by each 

bee in each illuminant would form a Gaussian distribution, but this time most bees choose around 2/10 

flowers under the leaf-shade illuminant. 
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simulated daylight, or a mixture of both, and the number of visits under green leaf-

shade light can be used as an index of initial leaf-shade preference, ranging from 0 (total 

leaf-shade aversion) to 10 (all choices made under leaf-shade light). If the bees chose 

artificial flowers randomly, in terms of illuminant, one would anticipate a Gaussian 

distribution of leaf-shade light preference, with most bees choosing approximately 5 out 

of 10 of the flowers under leaf-shade illuminant (Figure 33). If the bees avoided the 

green light with a consistent probability, this distribution would shift towards a lower 

median number of leaf-shade choices, but remain the same shape (Figure 34). 

 

In contrast, a skewed, non-normal distribution of leaf-shade visit preferences may 

indicate differing degrees of aversion between individuals. This could, potentially, be 

correlated with other traits such as overall accuracy in choosing the correct flowers for 

bees trained and tested in the Differential Conditioning treatment, or eye size (as bees 

with larger eyes have higher visual acuity and can capture more light, so can forage 

accurately at a lower light intensity; there is great variability in the size of bumblebee 

workers (Spaethe and Chittka, 2003) so this may have important effects). 

 

Visit speeds 

 

Using the data collected by ETHOM, one can take the total time a bee spent under one 

or the other illuminant and divide it by the number of artificial flowers visited during 

this time under the illuminant. This can be used as a rough proxy for the time taken to 

find and handle flowers, i.e. “search time”. Such a measure will tell us whether, for 

example, the bee appears to be spending longer flying in the arena per artificial flower 

visit under the simulated leaf-shade illumination, indicating perhaps that it is taking her 

longer to locate the stimuli under these illumination conditions. 

 

RESULTS 

 

The result of the learning experiment might lead us to predict that the bees would 

preferentially avoid leaf-shade light when faced with a free choice of illuminant in a 

task where mistakes are punished. Presence of an aversion to one of the colours of 
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illuminant that does not follow this behavioural pattern (i.e. grows weaker with time, or 

is strong even in bees with no experience of punishment) indicates a different reason for 

the behaviour. This could, for example, be a preference for high intensity light or an 

aversion to unfamiliar illuminants. 

 

In terms of flight time, we found that the tendency to fly preferentially in daylight 

patches was strongest initially (Figure 35). This preference in the first bout was highly 

significant (paired t-test, Absolute Conditioning: t = -4.95, df = 26, p = 0.000019; 

Differential Conditioning: t = -3.36, df = 24, p = 0.0026).  

 

However, this preference decreased with time and by the end of the five bouts, the bees 

were indifferent to which illuminant they flew in (paired t-test, Absolute Conditioning: t 

= -0.63, df = 26, p = 0.267; Differential Conditioning: t = -0.78, df = 24, p = 0.446 – i.e. 

in both cases no significant difference in flight times under each illuminant). This effect 

occurred in both the Absolute and Differential Conditioning treatments, so appears to be 

independent of the possibility of costly mistakes. 

 

In terms of artificial flower visits, the overall trends are similar (Figure 36): bees 

initially avoid the green leaf-shade illuminant, preferring to make visits under simulated 

daylight, but over time become indifferent to illuminant and visit artificial flowers in 

both patches equally often (paired t-test comparing initial and final preferences, 

Absolute Conditioning: t = -5.00, df = 25, p = 0.0000369; Differential Conditioning: t = 

-4.67, df = 23, p = 0.000107). 

 

Initial illuminant preferences 

 

We compared the initial preferences observed in the bees to the modelled distributions 

described above, to discover whether the bees’ preferences appear to be normally 

distributed (with most indifferent to illuminant or nearly so, and a few bees exhibiting a 

strong preference for one illuminant or the other). However, both the Absolute and 

Differential Conditioning data show that initial preferences form a superficially non-

normal distribution (Figure 37). The low median preference for the Absolute 

Conditioning treatment (2/10, versus 5/10 in the random model) suggests that on 

average, the bees avoid the leaf-shade illuminant. The distribution of preferences, 
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however, does not significantly differ from normal (Kolmogorov-Smirnov test, Z = 

1.201 , p = 0.111). Likewise for the Differential Conditioning treatment, the median 

preference is 3/10 compared to the model’s 5/10, but once again the distribution is not 

significantly different from normal (K-S test, Z = 0.716, p = 0.684). The two 

distributions of initial preferences are statistically identical (Mann-Whitney U test, Z = -

0.361, p = 0.718), indicating that bees’ initial preferences for illuminant are not 

determined by the presence of “incorrect” or punishing flowers in the paradigm. 

 

Visit speeds  

 

Calculating this approximate measure of “search time” for the bees in the two 

treatments demonstrates that the average search times in both illuminants decreased 

between bouts 1 and 5, going from 25.5s per visit overall in bout 1 to 14.2s per visit 

overall in bout 5 for the Absolute Conditioning treatment and 20.7s per visit in bout 1 to 

18.6s per visit in bout 5 for the Differential Conditioning treatment.  

 
However, it also shows that the initial search times for foraging under the leaf-shade 

illuminant are consistently higher than the search times for the daylight illuminant. In 

the Absolute Conditioning treatment in the first bout, the bees averaged 58.0s per flower 

visit under the leaf-shade, and just 24.1s per visit under the simulated daylight (paired t-

test on log-transformed data (as raw data were not normal), t = 2.118, p = 0.046). 

However, by bout 5 the bees took only 15.0s per flower visit in the leaf-shade and 15.2s 

per visit in the simulated daylight (paired t-test on log-transformed data, t = 1.558, p = 

0.131). Likewise, for the Differential Conditioning treatment, the initial time per visit 

was 30.5s for the leaf- shade illuminant and 19.0s per visit for the simulated daylight 

(significantly different: paired t-test on log-transformed data, t = 3.135, p = 0.005), 

reducing to 21.8s and 18.3s per visit respectively by bout 5 (not different: paired t-test 

on log-transformed data, t = -0.064, p = 0.949), the increased search time perhaps 

reflecting speed-accuracy trade-offs as this setup contained punishments (Chittka et al., 

2003).  

 

The results are indicative of more difficulty or hesitation finding stimuli under the green 

leaf-shade illuminant when they have no previous experience with it, but a comparable 

performance at locating stimuli once the bees have experience.  
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Figure 35. Preference for leaf-shade illuminant in the Absolute and Differential Conditioning 

treatments. In both cases, the bees initially show a level of aversion to the leaf-shade, spending less than 

50% of their time there, but by the end of the training show no preference. 

 
 

 
 
Figure 36. Flower visit data for the Absolute and Differential Conditioning treatments. Over the 

course of 100 flower choices, initially the bees made less than 30% of their flower visits in the leaf-shade 

illuminant, but after the 100 visits they have lost this aversion and the number of flower visits taking 

place under the leaf-shade illuminant is not significantly different from chance. (Bars = standard error.) 
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Figure 37. Distribution of initial preferences for visiting flowers in the leaf shade illuminants. 

Preferences may range between 0 (no visits in leaf-shade) and 10 (all visits in leaf shade) over the first 10 

visits each bee makes. 
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CONCLUSIONS 

 

Perfect colour constancy would require an animal to adapt instantly to moving into a 

different illuminant, to the point where they would not even be aware of the  

illumination change. It is clear from this experiment that bees can detect the spectral 

content of the ambient illumination, and notice when it changes. Furthermore, they are 

spontaneously choosing to fly in one illuminant more than the other by preference. This 

requires them to factor illumination information into their chosen foraging routes 

around the flight arena, potentially modifying routes in order to avoid potentially 

rewarding flowers because they are in the “wrong” quadrants. 

 

The investigation of the bees’ initial illuminant preferences in terms of the flowers they 

visit confirmed the initial aversion to the leaf-shade illuminant in both the Absolute 

Conditioning and Differential Conditioning treatments. Although to the eye it appears 

that both distributions of preferences are non-normal, which would indicate a diversity 

of illuminant aversion levels among the individual bees, the statistics do not support this 

conclusion and therefore it is likely that the initial tendency to avoid visiting flowers in 

this unfamiliar illuminant is a relatively consistent one, with a probability of around 0.7-

0.8. 

 

The visit speed data indicates that the bees initially forage relatively inefficiently, 

perhaps spending a lot of time investigating the arena rather than visiting flowers, or 

simply spending a lot of time searching for flowers on which to land. With experience, 

this process becomes more time-efficient, with the number of visits. This is in spite of 

the fact that experienced bees are less likely to revisit depleted flowers or negative 

stimuli containing quinine, so the total number of visits they make per bout tends to 

decrease. 

 

The data also show that the initial search times for flowers under the leaf-shade 

illuminant are higher. The most likely explanation for this is that the bees find it more 

difficult to locate flowers under this light relative to daylight when they lack experience 

foraging in the new illuminant. Under the Differential Conditioning treatment, it is 



Chapter V: Foraging behaviour of bees in patchy light conditions 

 135 

possible that bees also find it more difficult to assess whether the flowers are “correct” 

or “incorrect” under leaf-shade. The fact that the behaviour is consistent for both 

absolute and differential conditioning, however, strongly suggests that it is not just 

assessing the “correctness” of a flower in leaf-shade that slows down the bee, as then 

one would not expect this behaviour to persist in the Absolute Conditioning treatment as 

well. It is therefore most probably simply a difficulty in finding the flowers, either due 

to the colour shift or the decrease in light intensity (as in Chittka and Spaethe (2003); 

Skorupski et al. (2006)). 
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EXPERIMENT 3: CONTROL EXPERIMENTS 
 

Having established that bees exhibit an initial aversion to the leaf-shade illuminant, 

which is lost with time, the question remains: what causes this preference for one 

illuminant over the other. As it is present only initially, and over time and with 

experience the bee becomes indifferent to the illuminant, it cannot be an error-

avoidance strategy; the aversion is, in fact, strongest when the bee has no experience of 

errors, and weakest when the bee has most experience.  

 

This leaves some alternative possibilities: 

• the bee avoids the illuminant that is unfamiliar to her 

• the bee avoids the illuminant that appears “dimmer”, i.e. has a lower light 

intensity 

• the bee avoids illuminants of particular colours 

 

In the control experiments, we examined the first two of these possibilities to see 

whether either of them was supported by behavioural evidence. 

 

METHODOLOGY 

 

Effect of pretraining 

 

It is possible that the bees’ prior level of experience with simulated leaf-shade could 

affect their behaviour with respect to the leaf-shade illumination patches. In the 

previous experiments, each bee was naïve in terms of her prior experience with green 

illumination but had prior foraging experience under simulated daylight illumination. 

 

Therefore we ran a control experiment in which the bees were trained with absolute 

conditioning as before, but each bee had a minimum of one full bout of foraging under 

uniform leaf-shade light before the start of the experiment. Therefore, the green light 

was no longer “unfamiliar” to the bee (although typically she still had more experience 

with the artificial daylight illuminant). We then proceeded as previously, recording the 
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bee’s choices and flight times under the two illuminants for 5 foraging bouts. The 

stimulus setup was identical to that in the Absolute Conditioning treatment in 

Experiment 2. 

 

Effect of light intensity 

 

It is also possible that any differences in bee behaviour under leaf-shade versus daylight 

could be accounted for not by the chromaticity of the green patches, but by the 

reduction in light intensity. This would be expected to affect signal-to-noise ratio, 

meaning that less visual information, and particularly less colour information, is 

available to the bees. 

 

Therefore we ran an additional experiment to control for light intensity, by balancing 

the light intensity in daylight and leaf-shade patches by placing a neutral density filter 

over the arena lid in the daylight patches. Light transmitted through the neutral density 

filter had a similar illuminance (25.8% of white light) to that transmitted through the 

leaf-shade filters (18.0% of white light) across the 300-700nm range, so that the two 

types of illuminant now had similar brightness but one retained essentially the same 

spectral composition as the original simulated daylight, whilst the other (leaf-shade) 

was green. Although still not an exact match, one could predict that if a large difference 

in light intensity accounted for a strong preference for the brighter illuminant over the 

dimmer one, a smaller difference in light intensity would result in a weakened 

preference for the brighter illuminant. 

 

Control for eye size 

 

It is possible that, where there is a demonstrated aversion to leaf-shade light in some 

bees, the magnitude of this aversion will be determined in part by the bees’ visual acuity 

and/or its ability to function in low lighting. These measures are partly dependent on the 

size of their eyes and therefore the light that the eyes are able to capture. In bees, visual 

acuity is dependent on the bee’s eye size and the consequent size of ommatidia; this 

scales relative to the size of the bee’s body (Snyder and Menzel, 1975; Spaethe and 

Chittka, 2003). Body size varies greatly in bumblebees compared to honeybees, 

sometimes varying by a factor of 10 (Michener, 1974; Spaethe and Chittka, 2003; 
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Spaethe and Weidenmüller, 2002). Using thorax width as a proxy for eye size can 

provide us with an approximate estimate of the bee’s visual acuity and sensitivity to 

light (Spaethe and Chittka, 2003), and this should be considered when accounting for 

variations in bee performance, in particular under low-light conditions or in setups 

where poor visual acuity or photon capture may compromise performance. 

 

All tested bees from the Differential Conditioning experiment were frozen after the 

testing, as samples of the total bees used. We then measured their thorax widths using 

electronic digital callipers (Axminster Power Tool Centre, Axminster). Each bee was 

measured three times for the width of the thorax just in front of the wings, and the mean 

of these readings was used as the thorax diameter. We were then able to look for 

correlations between thorax width and various measures of behaviour.  

 

If it was the case that bees made more mistakes under the leaf-shade light only because 

of the signal-to-noise ratio, i.e. in lower light intensity it was more difficult to extract 

useful information from the scene, then bees with larger eyes which can capture more 

light would be expected to perform better, making fewer mistakes. Equally, if any 

aversion to leaf-shade light was due to bees avoiding dark patches in which it was more 

difficult to perform, one might anticipate that this aversion would be stronger in smaller 

bees with small eyes, who would struggle more under low light conditions. 

 

RESULTS 

 

Effect of pretraining 

 

Bees in this treatment experienced absolute conditioning during the experiment 

identical to those in the Absolute Conditioning treatment of the previous patchy light 

experiments, but had received prior experience with green light so that green light was 

no longer an unfamiliar stimulus. Figure 38 shows the bees’ preferences for leaf-shade 

versus daylight in terms of flight time over the course of the experiment. Although the 

bees still show a slight initial aversion to the green light (spending only 44% of their 

time in the green light patches on average), this preference is not significant; the initial 

aversion to green light appears to have vanished (paired t-test, t = -1.37, df = 14, p = 
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Figure 38. Bee flight time preferences for the leaf-shade patches after prior foraging experience in 

this illuminant. The aversion to the green leaf-shade patches is no longer significant. (Bars = standard 

error.) 

 

 
 
Figure 39. Bee visit preference for flowers in green leaf-shade light after pretraining providing 

previous foraging experience under leaf-shade illumination. The aversion to leaf-shade light that was 

observed initially in bees with no prior with the illumination is not present in bees with this experience. 

(Bars = standard error.) 
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0.096). This is confirmed by the visit data in Figure 39; the proportion of visits the 

pretrained bees make under leaf-shade is significantly different to the proportion made 

by bees with no prior experience of leaf-shade (t-test, 44.2% of visits in leaf-shade 

versus 28.9%, t = -1.75, df = 36, p = 0.045). 

 

In the previous experiments in which the leaf-shade illuminant was unfamiliar to the 

bees whilst the simulated daylight was familiar from when they were allowed into the 

arena to forage outside experimental time, they initially took much longer finding 

flowers under leaf-shade than under simulated daylight. With pretraining, however, this 

difference is eliminated: in bout 1, the pretraining control bees visited flowers in the 

leaf-shade at a speed of 15.2s per visit, and in the simulated daylight at 16.4s per flower 

visit, which is not a significant difference (paired t-test, t = -0.425, p = 0.339). 

 

Effect of light intensity 

 

 

Figure 40 shows the bees’ preferences for green versus attenuated daylight in terms of 

flight time. The behaviour of the bees is largely the same as in the original experiment; 

i.e. the bees initially avoid flying in the green light patches. This preference is smaller 

than for the initial Absolute Conditioning experiment (41.9% of time spent under leaf-

shade, versus only 38.6% in the original Absolute Conditioning experiment), but 

remains significant (paired t-test, t = -3.80, df = 15, p = 0.0009), and the flower-visiting 

behaviour, shown in Figure 41, is not significantly different from the original 

experiment (t-test, t = -0.70, df = 37, p = 0.245). This indicates that although there may 

be a small tendency for bees to avoid areas with lower light intensity whilst foraging, 

that does not explain their preference for daylight entirely. 

 

Effect of pretraining: initial preferences 

 

Figure 42 shows the distribution of individual bees’ initial preferences for the green 

leaf-shade light according to their first ten flower choices in the pretraining control 

experiment, in which bees had prior experience with foraging under the leaf-shade 

illumination. In this experiment, the bees’ median initial preference for the green light 



Chapter V: Foraging behaviour of bees in patchy light conditions 

 141 

 

 

 
 
Figure 40. Bee flight time preferences for the leaf-shade patches in the light intensity control, in 

which leaf-shade and simulated daylight patches are matched for light intensity. The initial aversion 

to the green leaf-shade patches is retained. (Bars = standard error.) 

 
 

 
 
Figure 41. Bee visit preference for flowers in green leaf-shade light when the simulated daylight 

patches are intensity-matched with the leaf-shade patches. As in the previous experiments, bees 

exhibit an initial aversion to visiting flowers in the unfamiliar leaf-shade illuminant. (Bars = standard 

error.) 
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 was 5, which is the same as the median preference produced by the model for bees 

selecting their illumination randomly. This distribution did differ significantly from the 

Absolute Conditioning condition of Experiment 1 (Mann-Whitney U, Z = -1.970, p = 

0.049), demonstrating that prior experience with the green leaf-shade illumination 

decreases bees’ aversion to it.  

 

Effect of light intensity: initial preferences 

 

The initial visit preferences for this control experiment are shown in Figure 42. The 

median value for the green light initial preferences was 3 for the light intensity control, 

in which the “daylight” and “leaf-shade” quadrants matched in light intensity (but not 

chromaticity) , which is lower than the modelled value of 5 . The distribution of initial 

preferences does not differ statistically significantly from the comparable Absolute 

Conditioning results from Experiment 2 (Mann-Whitney U, Z= 0.178, p = 0.858), 

indicating that the initial aversion to green light cannot be accounted for only by the 

intensity difference in illumination between the daylight and leaf-shade conditions. 

 

Control for eye size 

 

Thorax widths in the measured bees had a mean value of 5.26mm (range = 4.49 to 

5.88mm). Although, as shown in Figure 43, there is a very slight positive correlation 

between initial visits made under leaf-shade light and thorax width (used as a proxy for 

eye size) in the bees trained and tested in the Differential Conditioning paradigm, this 

falls short of significance (Spearman’s rank correlation, ρ = 0.078, p = 0.711).  

 

Our data show no evidence that bees with larger eyes perform better under the lower 

light intensity leaf-shade patches compared to smaller bees: foraging performance under 

green light was not correlated with eye size (Figure 43; Spearman’s rank correlation, ρ 

= -0.029, p = 0.894) and likewise final preference for green light in fact showed a very 

slight negative correlation with eye size, which also was not statistically significant 

(Spearman’s rank correlation, ρ = -0.199, p = 0.340).



Chapter V: Foraging behaviour of bees in patchy light conditions 

 143 

 

 

 

 

 

 

 

 

 

 
Figure 42. Preferences of the bees for visiting the artificial flowers in the leaf-shade patches versus 

simulated daylight during their first 10 landings. Bees can make between 0 and 10 of their first 10 

artificial flower landings in the experiment on artificial flowers in the green areas; this graph shows the 

percentages of tested bees making different numbers of landings in the leaf-shade illuminant. These 

results are for the two control experiments, one controlling for the effect of prior experience (pretraining) 

foraging under green leaf-shade light, and the other controlling for the reduced light intensity in the leaf-

shade patches. 
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a)   

b) 

 
c) 

 
Figure 43. Controls for eye size. Thorax width serves as a proxy for body size and therefore eye size 

(Spaethe and Chittka, 2003), a metric has implications for bees’ visual acuity and foraging under low-

light conditions. However, in the Differential Conditioning scenario of Experiment 2, it is not 

significantly correlated with a) the initial number of visits made to stimuli in simulated leaf-shade during 

the first 10 choices, b) the total % of correct choices made in the final foraging bout, or c) the amount of 

time spent under leaf-shade illuminant during the final foraging bout. 
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CONCLUSIONS 

 

The control experiments demonstrate that initial leaf-shade light aversion seems to be a 

result of unfamiliarity with the illuminant. It cannot be explained by the lower light 

intensity present in the green patches. The control for the effect of pretraining also 

confirms that the reason why bees appeared to spend longer looking for flowers under 

leaf-shade light in the first experiments was because of the unfamiliarity of the 

illuminant: in the pretraining control, the bees had to perform the same task, but having 

prior experience with locating stimuli under leaf-shade illuminant meant that they no 

longer did so more slowly than under the simulated daylight. 

 

Eye size is not a factor in this leaf-shade aversive behaviour, nor does eye size cause 

predictable variation in bees’ foraging performance under the green light in our 

experiments. This strongly suggests that bees’ visual acuity and the intensity of light are 

not responsible for any of the behaviours previously noted under leaf-shade, such as a 

lower accuracy at finding flowers, initial aversion to the illuminant or a slower rate of 

visiting flowers. 
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EXPERIMENT 4: FLOWER CONSTANCY UNDER PATCHY LIGHT 
 
This experiment was performed by a final-year undergraduate student, Hin Wai Henry 

Mak, under my supervision. We designed the experiment in collaboration and he 

collected the data. I performed the analysis. 

 

Flower constancy is a the behaviour observed in pollinators in which they tend to visit 

multiple flowers from the same plant species successively, even ignoring potentially 

rewarding flowers from another plant species (Bennett, 1884; Christy, 1884; Waser, 

1986). Bombus terrestris is known to exhibit measurable (though not total) flower 

constancy over the short term (minutes), and this is thought to be constrained by 

memory dynamics (Raine and Chittka, 2007b). However, this is normally investigated 

in a meadow environment with relatively spatially consistent light, and many 

bumblebee species forage in hedgerows and woodland edges where the lighting is 

spatially inconsistent. If it makes it harder to recognise flowers, this may cause the bees 

to make “mistakes” when passing from one illuminant to another and visit a different 

colour or species of flower to the one on which the bee had been foraging previously. 

Alternatively, the bee may become more conservative in her behaviour and be less 

likely to probe flowers of new species if they are encountered in an illuminant that is 

also unfamiliar. 

 

We therefore wanted to investigate how a patchy light scenario affected bumblebee 

flower constancy. Incomplete (or absent) flower constancy requires bees to sample 

different flowers. When the lighting is patchy or inconsistent, there are three 

possibilities as to how this sampling behaviour will be affected: 

1. The bees will “sample” different flowers with higher frequency than under uniform 

light, as the illumination changes reduce their ability to recognise familiar flowers 

consistently (i.e. cause them to make mistakes). 

2. The bees will sample different flowers with lower frequency, as the illumination 

change creates a riskier environment, in which foraging on a familiar species by 

preference represents a safer strategy. 

3. The bees will correct for the changed illuminant perfectly and their flower constancy 

behaviour will be unchanged. 
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METHODOLOGY 

 

A similar flight arena to previously was used, though the dimensions were smaller 

(0.7m x 1.1m). As before, 16 artificial flower stimuli were used in an experiment, with 

two colours of stimuli each time, and these were arranged so that each quadrant of the 

arena contained two artificial flowers of each colour. 

 

In this experiment, two colour pairs were used, either Magenta/Cyan or Orange/Green. 

The colour hexagon loci and spectral reflectances for these colours are shown in Figure 

44. The colours were chosen because of their clear colour difference in bee colour space 

(Magenta/Cyan: 0.198 hu; Orange/Green: 0.117 hu) and because the first two colours 

appear UV-blue and blue to bees respectively, both considered attractive colours to bees 

with no prior colour experience (Gumbert, 2000), whilst orange and green appear UV-

green and green, which are both less attractive. Therefore in both cases the bees should 

be able to tell the colours apart easily and in neither setup do the bees encounter one 

very strongly attractive colour versus one that they would typically avoid, a scenario 

that may bias results. The coloured stimuli were set up as artificial flowers, in the same 

manner as in previous experiments; the two colours used in each experimental setup 

represent flowers of two different plant species. 

 

We then released bees which had no prior colour training but which had received 

absolute conditioning on uncoloured, UV-transmitting plastic tiles into the experimental 

arena. The arena contained the two types of stimuli, and two quadrants covered by green 

filters in a Battenberg layout as previously described. All artificial flowers contained 

10µl of 40% sucrose solution, allowing the bee to satiate and return home within a 

foraging bout. Every time the bee touched a flower, it was considered to be a landing, 

and all the landings made by the bee during a foraging bout were recorded. The bees 

were allowed to forage until they had made 60 landings (usually taking 3-4 foraging 

bouts), then they were removed from the apparatus, frozen and their thorax widths 

measured as a control for eye size, as before. 
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a) 

 
 
b) 

 
 
Figure 44. a) Spectral reflectances of the four stimuli used in the flower constancy experiments, and 

b) their colour hexagon coordinates under simulated daylight illumination. 
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In total, 21 bees were tested, 11 of them on the Magenta/Cyan colour pair and 10 on the 

Orange/Green colour pair. 

 

Data analysis 

 

With the data recorded on which colours of flower a bee visited and in what order, it is 

possible to calculate the bee’s flower constancy index (Bateman’s Index), as in Gegear 

and Laverty (2005) and Waser (1986). We were able to do this for the visit data for our 

experimental bees, and see how it differed overall for the two colour pairs. We were 

also able to use the same formula to look at switches between illuminants, giving us an 

index of “illumination constancy” (i.e. fidelity to a single illuminant). Bateman’s Index 

ranges from -1 to 1, with 0 representing random choices (e.g. randomly choosing 

Magenta or Cyan, or randomly choosing flowers in leaf-shade or daylight illuminant), 

whilst -1 indicates total inconstancy and 1 indicates total constancy to a species (here, 

represented by a particular colour of stimulus) or illuminant. If the bees chose flowers 

entirely at random, both the flower constancy and illuminant constancy indices would 

be expected to be zero or very close to zero. 

 

Two successive flower visits could be classified into one of four types: same 

illuminant/same flower type (e.g Magenta versus Cyan) (SI/ST), same 

illuminant/different type (SI/DT), different illuminant/same species (DI/ST) or different 

illuminant/different species (DI/DT). If the light colour illuminating a flower makes no 

difference to whether the bee switches species or not, one would expect that the ratio of 

SI/ST to SI/DT would be the same as DI/ST to DI/DT – i.e. the bee is as likely to be 

“disloyal” and switch flower types within the same illuminant as between illuminants. 

However, if the two ratios differ, it implies that switching illuminant causes the bee to 

be more or less flower constant than when foraging within an illuminant patch. This 

might be expected if either the bee makes mistakes in identifying flowers when 

switching between illuminants, or if the bee is displaying “cautious” behaviour and 

tending to prefer a more familiar flower type. 
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RESULTS 

 

Constancy indices 

 

The overall flower constancy index, pooled for all bees in each treatment group, was  

-0.2959 for the Magenta/Cyan pairing and -0.1392 for the Orange/Green pairing, when 

illumination is not taken into account. This is indicative of slight flower inconstancy for 

both colour pairs (some tendency to actively avoid visiting the same flower species 

twice in succession). Analysis of the ratios of same-type visits to different-type visits 

supports this, with a significantly higher proportion of visits for both colour pairs being 

made to flowers of a different type to the same type as the last (Chi-square test, 

Magenta/Cyan: χ2 = 56.211, df = 1, p= 6.5x10-14, Orange/Green: χ2 = 8.786 , df = 1, p = 

0.003). 

 

By contrast, the illumination constancy indices for both colour pairs indicate an above-

random degree of fidelity to the illuminant. For the Magenta/Cyan pairing, the 

illumination constancy was 0.1421 and for the Orange/Green pairing it was 0.0579. 

Both values are relatively close to random but for the Magenta/Cyan pairing there were 

nonetheless significantly more visits being made in the same colour of illuminant rather 

than a different colour (Magenta/Cyan: χ2 = 16.988, df =1, p = 0.000038; Orange/Green: 

χ2 = 2.197, df = 1, p = 0.1383). 

 

Magenta/Cyan pairs 

 

For the Magenta/Cyan colour combination, the bees made 55% of their initial landings 

on Cyan flowers, and 64% overall were made in daylight patches. These differences did 

not differ significantly from random (Fisher’s exact test, p = 0.545). The breakdown of 

the initial choices of the bees is shown in Table 3. 

 

Throughout the experiment, the bees made slightly more choices (52%) to the Cyan 

stimuli rather than to the Magenta ones. Although under the leaf-shade illuminant, 54% 

of visits were made to the Cyan stimuli, this is not a significant preference (Chi-square 

test, χ2 = 1.524, df = 1, p = 0.217). 
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Table 3. Choice behaviour of bees in the Magenta/Cyan treatment, showing the 
number of bees choosing each type of artificial flower (Magenta or Cyan, under 
daylight or leaf-shade) for their first landing 
 
 Daylight Leaf-shade 

Magenta 4 1 

Cyan 3 3 

 
 
 
 
 
 
 

 
 
Figure 45. Choice behaviour of bees on equally rewarding artificial flowers of colours Magenta and 

Cyan, showing the relative frequencies of switches of flower type within and between illuminant 

patches. Bees choose flowers of a different type significantly more often within an illuminant patch than 

when switching illuminants for this colour pair. 
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As demonstrated above, in this experiment, the bees exhibited no flower constancy. 

However, they switched type within illumination patches more often than between 

illumination patches (Figure 45) – overall, for this colour pair, 40% of visits involved 

the bee switching type within an illumination patch. There was a significant tendency 

for bees to be more flower-constant when switching between illuminants than when 

foraging within an illuminant (Chi-square test, χ2 = 6.257, df = 1, p = 0.012). 

 

Orange/Green pairs 

 

For the Orange/Green pairs, the bees made the vast majority (80%) of their initial 

choices to the orange stimuli, and 70% of the initial choices in the simulated daylight 

patches, but these differences are not statistically significant (Fisher’s Exact test, p = 

0.533). The breakdown of initial choices is shown in Table 4. 

 

Throughout the experiment, the bees made more choices (54%) to Orange rather than 

Green. This preference is not significantly affected by whether the bees are foraging 

under simulated daylight or leaf-shade (Chi-square test, χ2 = 0.104, df = 1, p = 0.747). 

 

Similarly to the Magenta/Cyan colour pair, for Orange/Green pair, a majority (32%) of 

choices consisted of bees remaining in the same illuminant type but switching type. 

However, although the proportion of species-switches between illuminants was lower 

than those within illuminants (Figure 46), this missed the significance threshold for this 

colour pair (Chi-square test, χ2 = 2.047, df = 1, p = 0.153). 

 

CONCLUSIONS 

 

Based on the data collected in this experiment, it appears that bees foraging within an 

illumination patch will switch between flower type (or in the field, plant species or 

colour morph) frequently. This is probably a particularly pronounced tendency in a 

flight arena setup such as this, in which the two flower types have identical morphology 

and minimal handling times, and the energy expended by landing on a different flower 

type that may possibly prove unrewarding is very low – so the bees have little incentive 

to learn flowers of type and remain loyal to that type throughout the bout. In a field  
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Table 4. Choice behaviour of bees in the Orange/Green treatment, showing the 

number of bees choosing each type of artificial flower (Orange or Green, under 

daylight or leaf-shade) for their first landing 

 
 Daylight Leaf-shade 

Orange 5 3 

Green 2 0 

 
 
 
  
 
 

 
 
 
Figure 46. Choice behaviour of bees on equally rewarding flowers of colours Orange and Green, 

showing the relative frequencies of switches of types within and between illuminant patches. Bees 

choose artificial flowers of a different type more often within an illuminant patch than when switching 

illuminants for this colour pair, but this misses the significance threshold.  
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environment this could work differently, as flowers of different plant species also differ 

in other dimensionalities: odour, size, morphology, and may accordingly require 

different handling techniques. These factors will work to reduce switching between 

flowers from different plant species. 

 

However, based on our findings, when the bees pass into a new illumination, they are 

more likely to remain with the flower type they most recently visited than they would 

when foraging in a consistently illuminated patch of the arena. This may be because 

bees are less likely to engage in further exploratory behaviour in an environment 

already presenting unfamiliar conditions, and therefore this developed as a risk-aversion 

strategy. 

 

Given that the cost of foraging in a flight arena is very low, and in particular the flight 

times between flowers are very small, representing a small risk and low energy 

expenditure regardless of the choices a bee makes, it is hard to predict whether this 

behaviour would be maintained in a bee foraging in a more ecological environment such 

as a woodland edge. Were it to be the case, it may potentially have implications for 

flowers with a distinctive appearance and low frequency. A bee encountering such a 

flower in an area of consistent light would be more likely to explore it than if it was 

encountered whilst the bee was switching illuminant rapidly. This may, possibly, result 

in selection for rare plant species adapted to living on woodland edges to mimic similar 

species in order to gain more visits, but for plants better-adapted to living in the centre 

of meadows or in deep woodland to evolve a more distinctive floral appearance as bees 

in consistent light will be more likely to land on them without prior experience of the 

plant species. 
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DISCUSSION OF BEE FORAGING UNDER PATCHY LIGHT 
 

When foraging in the wild, bees often move in and out of patches of different 

illuminants, such as daylight and leaf-shade, or solar daylight and skylight (Dyer and 

Chittka, 2004a; Lotto and Wicklein, 2005; Lythgoe, 1979). Unless they can adapt 

perfectly to these illuminant changes, this could be expected to affect their perception of 

colours and possibly their ability to select the correct flowers. We found that indeed, 

bees selected the correct flower less often under a light condition resembling leaf-shade 

than under a light condition resembling natural daylight, implying a failure of colour 

constancy. This finding adds further support to work by Dyer and colleagues (1999; 

2006; 2004a),  showing that there are limitations to bee colour constancy and under 

particular circumstances it may be imperfect. 

 

Previous studies such as Dyer (2006) have demonstrated, by varying light conditions 

during a foraging task, that bees are able to perceive properties of the illuminating light, 

such as its spectral content, Therefore, the bees would certainly have been aware, in the 

patchy light conditions in this experiment, that different areas of their foraging 

environment are illuminated by different types of light.  

 

Based on this information, one would predict that when faced with a choice between 

visiting flowers in leaf-shade and visiting flowers in daylight (natural or simulated), 

bees would learn to visit daylight patches preferentially as they are associated with a 

lower rate of errors. However, this would be a learned behaviour – in the beginning, 

when the bee has no experience of either incorrect choices or the chances of making 

mistakes under either illuminant, the bee would have no reason to prefer daylight 

illuminant over leaf-shade. Our results do not support this hypothesis: although the bees 

do exhibit an aversion to leaf-shade during the experiment, this aversion is, in fact, 

stronger in the beginning when the bees have no experience with the stimuli and, 

regardless of whether there are negative stimuli present or not, it grows weaker over 

time until the bees are statistically indifferent to the illuminant. This implies that the 

aversion is based not on avoidance of mistakes, but upon some other behaviour. 

 

One expects that bees would show preferences for illuminants that they consider to be 

in some way “less risky”, in a similar manner to other behaviours they develop as a 
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result of increased risk (e.g. Cartar and Abrahams (1996), Harder and Real (1987), Ings 

and Chittka (2008)). Such adaptive risk aversive behaviour has been recorded in 

numerous other animal species, both vertebrate and invertebrate (e.g. Gillespie and 

Caraco (1987), Wunderle and O'Brien (1985)). In this case, the concept of “less risky” 

could be in terms of their ability to find safe, rewarding flowers based on past 

experience – which our results do not support – or, alternatively, the illuminants may be 

considered less risky in terms of their familiarity to the bees. Our data support this 

hypothesis much better: bees with no initial experience of leaf-shade light avoid it when 

allowed to choose, but lose this aversion as they gain experience with foraging in the 

patchy light environment. In contrast, bees that have initial pretraining experience under 

green light exhibit no significant aversion and their behaviour remains consistent 

throughout the experiment. Therefore, although the bees do exhibit risk-avoidance 

behaviour, it would seem to be mediated by lack of familiarity with the illuminant rather 

than experience of a higher error rate.  

 

This is likely to be a good strategy for bees; unfamiliar illuminants may make it harder 

to detect threats (predators, etc.) and if bees’ colour constancy indeed is imperfect, the 

bee may lack the ability to anticipate how the illuminant might distort their colour 

perception of flowers. However, when the bee has more extensive experience with 

stimulus appearance under an unusual illuminant, she may be better able to predict the 

appearances of flowers and can estimate the likelihood of the illuminant being 

associated with risk. 

 

Novelty-aversive behaviour in insects is already documented (Forrest and Thomson, 

2009; Lihoreau et al., 2009) and appears to be a trait consistent within individuals at 

least on a particular day (H. Muller, personal communication). Our results also show 

individual variation in the strength of the initial aversion to green light, with some bees 

displaying indifference from the outset even without prior experience of the illuminant, 

and other bees avoiding unfamiliar illuminants very strongly.  

 

It can be beneficial, in terms of predator and effort avoidance, to display aversion to 

novel stimuli and contexts - however, for a foraging bee, avoiding novelty, including 

novel illuminants, may also be detrimental. A bee entirely avoiding the leaf-shade 

illuminant would miss out on foraging opportunities and may not return to the nest with 
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a full crop of nectar. However, typically bees made their first flower visit under leaf-

shade light before they had exhausted all the flowers under simulated daylight, 

indicating that the aversion is not absolute. This allows the bees to sample, and gain 

familiarity with, the novel illuminant. 

 

Bees’ reactions to patchy light conditions could have consequences for flower colour 

evolution, and possibly floral mimicry. With bees more likely to make mistakes under 

lower-light and unusually illuminated conditions, floral mimics may benefit from 

growing under leaf-shade and similarly “difficult” light conditions in which bees are 

more likely to pay visits to them in error. This could be tested by surveying the 

proportion of floral mimics that tend to grow in shade versus sunlight, relative to the 

flora in general, in a range of habitats.               

 

Flowers growing in shaded areas may be likely to receive fewer visits from flower-

naïve bees relative to flowers in more open spots, assuming that most bees’ initial 

foraging experience will be focused on daylight areas. As bees rapidly learn to 

overcome the aversion, this effect will be short-lived. However, it is possible that 

flowers of plant species that grow in shade may benefit from resembling those in open 

areas in order to attract bees, and species with the plasticity to grow in both shaded and 

open patches may do best as our experiments provide indications that the bees may be 

more likely to visit a familiar flower in an unfamiliar illuminant than an unfamiliar 

flower in an unfamiliar illuminant. 

 

In conclusion, we show here that bees have colour constancy failures under certain 

conditions, and make mistakes in identifying colours under some illuminants more than 

others. Bees are able to choose to enter or avoid patches of different illuminants, 

indicating awareness of the spectral properties of the illuminant and the possibility that 

some illuminants may be more risky or less desirable than others. They preferentially 

avoid certain illuminants, but this is mediated by the fact that the illuminant is 

unfamiliar rather than because it causes colour shifts leading to misidentification of 

flowers or is associated with lower light intensity, and the aversion is lost with 

experience. This behaviour may have consequences for the pollination biology of plants 

in woodland edges and hedgerows, but these are likely to be modest as bees rapidly 

learn to exploit all available light environments. 
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CHAPTER VI 

THE COLOUR VISION OF MONKEY BEETLES (COLEOPTERA: 

HOPLIINI) OF THE SOUTH AFRICAN CAPE REGION, AND HOW 

THIS MAY RELATE TO THE COLOURS OF CAPE FLOWERS. 

 

INTRODUCTION 

 

The reason why flowers are often large and brightly coloured (i.e. contrasting with the 

background to insect eyes) is to be an attractive advert to pollinators, in order to secure 

flower visits from pollinators and ultimately transfer of pollen for reproduction. A 

flower community is a market: plant species compete with each other, displaying 

flowers that are attractive and salient to pollinators in order to receive more high-quality 

visits and receive conspecific (rather than heterospecific) pollen (Friedman and Shmida, 

1995; Gumbert et al., 1999; Raguso, 2004). 

 

This can be predicted to favour particular floral traits – the flowers must, in some 

modality, be conspicuous. This could be achieved with large size, colour that is 

attractive or contrasts well with the background, strong scents or, in many cases, all of 

these factors. However, as discussed in previous chapters, which colour will result in 

the highest pollination rates depends on the other plants in the environment and possibly 

also the pollinator to which the flower is best-adapted. 

 

Introduction to the Cape region and its ecology 

 

The Cape region of South Africa is a species-rich biome. The region includes the Cape 

Floral Kingdom to the south, extending across the Western Cape near Cape Town and 

the Succulent Karoo further north, as well as covering Namaqualand in the Northern 

Cape. These regions all play host to a fascinating and striking diversity of plant and 

animal life. The region as a whole is characterised by low rainfall, particularly in the 

north (<150 mm per year in much of Namaqualand, 338 mm per year around 
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Nieuwoudtville) (Colville et al., 2002; Cowling et al., 1999), but the rain which falls 

tends to be very reliable, falling predominantly during the winter months (June-August). 

This provides the soil with sufficient moisture to support a spectacular floral display in 

the spring (July-September in Namaqualand, continuing through to November further 

south). The flowers appear for just a few weeks, but because of their simultaneous 

blooming and bright colours, the effect is noteworthy enough to attract considerable 

research interest (Cowling et al., 1999). 

 

This bright floral display is well-known throughout the region, though in the wetter 

Cape Floral Kingdom the display is longer-lasting and has a somewhat different species 

composition to the Succulent Karoo further north. However, many floral genera 

(Ursinia, Dimorphotheca, Gladiolus, Babiana, etc.) are found throughout the range 

(Cowling et al., 1999; Goldblatt et al., 1998b). Because of the drought that persists 

through much of the year, many of the plant species in this region are perennials, 

remaining dormant through the dry periods and blooming when the rains come. 

However, numerous species of annual herbs contribute to the flora as well (Cowling et 

al., 1999).  

 

Many of the flowers (or functional floral units) in the Northern and Western Cape are 

relatively large in size (Moraea, Dimorphotheca, Gazania, Babiana, etc.) and, to human 

observers, bright colours predominate. To human eyes, the commonest colours typically 

appear to be shades of yellow and orange (Goldblatt et al., 1998a). However, there are 

few, if any, studies exploring how the colours are perceived by insects and thus may 

have evolved under selection by the colour vision of insect pollinators (Johnson and 

Midgley, 2001; Van Kleunen et al., 2007). 

 

The honeybee Apis mellifera capensis is present in the Cape region, as are various 

species of solitary bee (Melittidae, Megachilidae, etc.), which typically have similar 

photoreceptor sensitivities (Briscoe and Chittka, 2001; Peitsch et al., 1992). Although 

other types of pollinator with different colour vision also play an important role in 

pollination in Northern and Western Cape habitats, using the bee colour hexagon 

provides a starting point when exploring flower colour here. When plotted in the colour 

hexagon, many orange and red flowers such as those in the Cape habitats appear UV to 

bees – a colour not normally associated with bee pollination. The greatest reflectance 
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values for such species tend to be in wavelengths >600nm, to which bees’ 

photoreceptors are not very sensitive (Chittka et al., 1994; Peitsch et al., 1992). 

 

Although these subjectively-reported observations of flower colours in the Cape region 

are intriguing, they are not fully supported by species surveys. Here, we investigate 

whether the region truly does have an unusually large number of bee-UV flowers. And 

if so, why might so many of these flowers appear bee-UV in colour?  

 

Is it possible that their colour is a signal to a pollinator other than bees? In common with 

virtually all habitats, South African Karoo and Fynbos contain a diversity of pollinating 

groups, including vertebrate and invertebrate pollinators. In addition to bees (social and 

especially solitary), there are long- and short-tongued flies (Prosoeca species and 

Moegistorhynchus longirostris, and Muscidae, Tabanidae, etc. respectively), a guild of 

Scarabaeidae beetles, various butterfly species (in particular, Aeropetes tulbaghia), 

sunbirds (which also serve to pollinate introduced plants from the New World that 

originally evolved to be pollinated by hummingbirds (Geerts and Pauw, 2009)) and 

even rodents (Johnson et al., 2001). 

 

Overview of insect pollinators in the Cape and Namaqualand other than Apis 

mellifera capensis 

 
Beetle pollination. Dafni et al. (1990) observed in the Israeli flora that some long-

wavelength reflecting flowers with an open bowl shape and little or no human-

detectable scent appear to be pollinated primarily by beetles. Although the colour vision 

of the beetle species (Amphicoma sp.) and the UV reflection of these flowers are still 

unknown, this would seem to be a comparable situation to that in Namaqualand, with its 

abundance of large, bright, and open or often bowl-shaped flowers in shades of yellow, 

red and orange (Goldblatt et al., 1998a). There is a group of potential beetle pollinators 

as candidates present in the Cape Region that could occupy a similar niche: the monkey 

beetles (Coleoptera: Scarabaeidae: Hopliini). 

 

These are an important guild of pollinators in South Africa, particularly in the Northern 

Cape and Western Cape regions (Steiner, 1998). They are now believed to be the sole 

pollinator of a number of plant species (38% of Ixia, 11% of Romulea species), and 
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secondary pollinators of many other species (Picker and Midgley, 1996). Picker and 

Midgley (1996) identified at least 10 plant families containing one or more putatively 

monkey beetle-pollinated plant species, and the number of species pollinated by 

monkey beetles seems to be large, with Goldblatt et al. (1998a) identifying at least 40 

species of plant, in 14 genera, pollinated by them. 

 

They are small- to medium-sized beetles (~8-12mm long), often bright in colour, and 

named for their enlarged hind legs. Their larvae are thought to be mostly slow-growing, 

soil-dwelling organisms, feeding on the roots of plants throughout the year (Colville et 

al., 2002). The adult forms, conversely, are most frequently observed in late winter 

through to early summer (Goldblatt et al., 1998a; Johnson and Midgley, 2001) and are 

diurnal pollen-feeders (Picker et al., 2004). Their behaviour in terms of flowers is 

distinctive – they alight on flowers for miscellaneous activities including feeding, 

mating and overnight rest. Two beetles on a flower may interact (both mating and in 

some cases, confrontational behaviour to attempt to force one individual off the flower 

(Goldblatt et al., 1998a)) and often a beetle will spend a long time on a flower – hours, 

or all night. During this time, they often burrow into the centre of flowers, remaining 

near-motionless for some time, before eventually relocating to another flower (Goldblatt 

et al., 1998a). Because of their compact, hairy bodies and burrowing behaviour, they 

rapidly become covered in a thick layer of pollen (Figure 47), so they are able to 

transfer a large amount when they move to a new flower (Goldblatt et al., 1998a).  

 

There have been several studies looking at monkey beetle behaviour, flower preference 

and species diversity, and their response to various environmental challenges (Colville 

et al., 2002; Goldblatt et al., 1998a; Johnson and Midgley, 2001; Mayer et al., 2006; 

Steiner, 1998; Van Kleunen et al., 2007). It has been established that there seem to be 

two groups of monkey beetle species, the guild termed “short wavelength”, and the 

“long wavelength” group, the former being found largely on blue/white flowers and the 

latter preferring orange, yellow and red flowers (Goldblatt et al., 1998a; Picker and 

Midgley, 1996).  
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Figure 47. Example of monkey beetles (Coleoptera: Scarabaeidae: Hopliini) carrying out mating 

behaviour on an orange Namaqualand inflorescence (Gazania sp.). It is apparent that both individuals 

have acquired a thick coating of pollen from the flower as it clings to their compact and rather hairy 

bodies. (Photograph by S.E.J. Arnold.) 
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Solitary bees. There are many solitary bee species in the region, covering many of the 

major taxa also present elsewhere in the world (Anthophora, Lasioglossum, Amegilla, 

Andrena, etc.) and these undoubtedly play an important role in pollinating many plant 

species (Goldblatt et al., 1998b). Goldblatt et al. (1998b) observed “moderate floral 

constancy” in Gladiolus-pollinating bees, with insects foraging on the same sequence of 

flowers repeatedly – this suggests they transfer a high proportion of conspecific pollen 

between flowers.  Carpenter bees have some characteristics in common with European 

and North American bumblebees, namely large body size and the ability to buzz 

pollinate (Johnson, 1993; Johnson, 2004; Watmough, 1974), and are therefore able to 

fill an equivalent niche in South African pollination systems.  There are also oil 

collecting bees (Rediviva), contributing to the pollination of Diascia (Vogel, 1984), 

some Scrophulariaceae (Manning and Brothers, 1986), and some Iridaceae (Goldblatt 

and Manning, 2006). Field observations and records of bee-pollinated flora in South 

Africa indicate that there is no single “bee type” flower colour and that bee-pollinated 

flowers of a diverse variety of colours are present in Cape and Namaqualand habitats 

(Goldblatt et al., 2001).  

 

Long-proboscid flies. Fly species such as Prosoeca spp. and Moegistorhynchus 

longirostris possess extremely long probosces (6-10cm) (Johnson and Steiner, 1997; 

Manning and Goldblatt, 1997). This allows them to exploit species such as some 

Gladiolus and Lapeirousia species with extremely long corolla tubes. The flies move 

rapidly from flower to flower, spending a couple of seconds feeding on nectar at each 

one, often grasping at petal lobes when feeding rather than actually hovering (Goldblatt 

and Manning, 1999; Goldblatt and Manning, 2000). They are not believed to be flower 

constant (Goldblatt and Manning, 2000); though they sometimes seem to have a 

preferred type or form that they visit more often in a short period, but Goldblatt and 

Manning (2000) describe their foraging as mostly random in nature, switching between 

forms and colours of flowers. 

 

Flowers pollinated by long-proboscid flies usually appear to have highly saturated and 

often dark colours to human eyes, e.g. violet, purple, cerise and red. However, they can 

also can also be pale mauve – especially in the Richtersveld region – and paler markings 

are common (Manning and Goldblatt, 1996). They are most often, but by no means 
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uniformly, unscented. They represent a relatively extreme specialisation as they are 

typically pollinated infrequently or not at all by any other insect species, and many have 

adaptations to place pollen only on one specific place on the fly’s body (Manning and 

Goldblatt, 1996). 

 

Short-proboscid flies. These flies mostly comprise Muscidae and Syrphidae, and are 

considered to be predominantly generalist in their flower-visiting preferences. Some, 

however, are important pollinators of species of plant bearing “carrion” flowers – those 

which have a odour and sometimes also an appearance resembling decaying animal or 

plant matter (Johnson and Steiner, 1994). 

 

Lepidoptera. There are examples of some extremely specialised interactions between 

plants and moth or butterfly pollinators in the Cape region, the most striking example 

being Aeropetes tulbaghia, which visits large, showy, red flowers (Johnson, 1994; 

Johnson and Bond, 1994). Moth pollination is known to be of importance in these 

habitats as well, with around 50% of African orchids believed to be pollinated by moths 

(Dressler, 1981). However, in the fynbos areas of the Cape Region, there is virtually no 

evidence of specialist hawkmoth pollination (Manning and Snijman, 2002). 

 

Pollen wasps. The pollen wasps (Vespoidea: Masaridae) are abundant and diverse 

throughout the Cape region (Gess, 1992). The species present in South Africa are 

generally quite specific in their pollen preferences, most often forage on 

Mesembryanthemaceae and Aizoaceae (small, low-growing succulent plants with 

usually fairly flat floral units that are most commonly pinkish or else yellow/yellow-

green to human eyes (Struck, 1994)) (Gess and Gess, 1989). Some, however, feed on 

Asteraceae and Papilionaceae species (Gess, 1992). 

 

What visual capabilities do monkey beetles possess? 

 

In spite of a number of studies examining the behavioural colour preferences and 

foraging  behaviour of monkey beetles, nothing is known about the physiology of their 

visual systems. Behavioural experiments suggest they are highly sensitive to long 

wavelengths and able to discriminate orange from red, yellow and blue model flowers 

(Johnson and Midgley, 2001). Some other beetles have been found to have either three 
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or four photoreceptor types (Briscoe and Chittka, 2001), in the latter case, with a very 

long-wavelength receptor with peak sensitivity >600nm. 

 

Evidence for the possession of long-wavelength photoreceptors in some beetle species 

is compelling in the context of monkey beetles; if these animals have receptors enabling 

them to see red/orange then flowers which appear UV to bees may appear red/orange 

and UV-reflecting to the beetles. This would make them highly conspicuous to monkey 

beetles but not innately especially attractive to bees, implying that the convergence on 

these colours may have been as a result of beetles being favoured over bees as 

pollinators, perhaps because beetles can carry higher pollen loads (bees remove a lot of 

pollen by grooming, and many solitary bee species in South Africa are small) and 

because the relatively low ratio of bee diversity to plant diversity in the region (Waser 

and Ollerton, 2006). Adaptation of flower colour to attract other pollinators and deter 

bees has been previously demonstrated in the case of some hummingbird-pollinated 

plant species with red flowers (Castellanos et al., 2003), so this strategy is plausible. 

 

Here, we investigate the colour vision of South African long-wavelength guild of 

monkey beetles, to discover whether they possess specialised red-sensitive 

photoreceptors. We hypothesise that they should possess some mechanism for seeing 

and discriminating wavelengths longer than those that can be seen by bees (i.e. 

enhanced vision in the 600-700nm range), given that they are attracted to flowers 

reflecting these wavelengths and this would represent an adaptation by the flowers to 

signal to them more effectively than to bees. 

 

This would provide support for the theories of Dafni et al. (1990) about large, red 

flowers with open morphology being pollinated by beetles, supplement the existing 

knowledge of colour vision in beetles, which is still relatively poor, and provide an 

insight into the selective pressures resulting in the breathtaking floral display in 

Namaqualand and the Western Cape. 
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MATERIALS AND METHODS 

 

Spectral reflectance measurements of the Cape flora and consideration of 

flower colour 

 

In spring 2002, spectral reflectance measurements were collected (by M. P. Powell and 

V. Savolainen) from sites throughout the Cape Region, from Springbok southwards to 

Vanrhynsdorp and especially focusing on the areas in and around Namaqualand (the 

region approximately between Garies and Springbok). Upon arrival at each site, all 

species present within the area were noted and identified, and spectral reflectance 

measurements were taken of three flowers per species, from separate plants. Three 

repeat readings were made per flower, resulting in a total of nine spectral reflectance 

curves per species, per site. Using these nine curves, one can calculate an average 

spectral reflectance for each flower type, representing a “typical” example of the 

species. A list of sites and flowering plant species is given in Appendix VI. The 

measurements were collected using an Ocean Optics spectrophotometer (Ocean Optics 

Dunedin, FL, USA), with methodology as described in Chittka and Kevan (2005) and 

Dyer and Chittka (2004a) (using a Deuterium/Halogen light source and calibrating 

against a white standard). From these floral spectra we can then calculate colour 

hexagon coordinates for flowers of all the plant species, using the methodology 

described in earlier chapters.  

 

As explained in previous chapters, the colour hexagon can be divided into 6 segments. 

Although arbitrary, this appears to reflect the distribution of flower colours within the 

hexagon, so would seem justified as a broad way to classify colours in bee colour space 

(Chittka et al., 1994). Knowing the colour hexagon coordinates for flowers of all the 

plant species from the study sites, they could then be classified into one of the six bee 

colour categories, and we could compare the proportion of the flora appearing to be 

each bee colour with the flora of other world regions. We chose to compare with two 

tropical datasets, consisting of flowers sampled in Brazil (Chittka, 1997; Chittka et al., 

1994) and Costa Rica (collected by M. P. Powell; unpublished), and a dataset from 

Israel (Menzel and Shmida, 1993), as this covers a similar range of Mediterranean and 

desert habitats. It might be expected that the Israeli flora would be under similar 



Chapter VI: The colour vision of South African monkey beetles 

 167 

selective pressures to those in the Western and Northern Cape of South Africa and 

therefore that their colour compositions should be more similar than the South African 

dataset is to either Brazilian or Costa Rican flowers.  

 

Beetle collection 

 

Beetles were collected from two sites in South Africa during September and  

October 2009. In total, three species were investigated: Clania macgregori (4 beetles; 2 

male and 2 female), collected from Nieuwoudtville, Northern Cape; Pachycnema 

crassipes (10 beetles; 1 male and 9 female) and Lepisia braunsi (4 beetles; 3 putatively 

male and 1 female), both collected from Darling, Western Cape. These are all relatively 

common and locally frequent generalist species which therefore have the potential to 

influence the ecology of multiple plant species. 

 

As the most extensive and high-quality data were obtained from females of P. crassipes, 

this will be the main focus. However, some data providing indications about the colour 

vision capabilities of all three species were ultimately obtained. 

 

Electrophysiological techniques 

 

The experimental technique employed was similar to that employed in Döring and 

Skorupski (2007). Beetles were kept refrigerated in the dark at approximately 10°C, 

with food (horticulturally-cultivated Gazania flowers) and a water source available, 

until required.  

 

Individual beetles were cold-anaesthetised in a -18°C freezer for 5-10 minutes to render 

them motionless, and then were immobilised using dental wax on a stand. We inserted 

the indifferent (reference) electrode, made of stainless steel, into the centre of the 

beetle’s thorax, sealing it with silicone sealant. The recording electrode was a 

silver/silver chloride electrode with the glass microelectrode produced by an Intracel P-

97 (Sutter Instrument Company, Novato, CA, USA) from a borosilicate capillary (Sutter 

Instrument Co.: outer diameter 1.0mm, inner diameter 0.5mm, with filament). The 

electrode was filled with either insect Ringer solution (recipe as in Federle (2001): NaCl 

10.4g/l, KCl 0.32g/l, CaCl2 0.48g/l NaHCO3 0.32g/l) or 3.2M KCl solution and inserted 
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into the retina of the beetle’s eye using a Huxley-style micromanipulator (MP85, Sutter 

Instrument Co.). As the indifferent electrode was placed in the thorax, recordings could 

be made from either eye. 

 

The electrophysiology equipment we used consisted of a 1401 data recorder 

(Cambridge Electronic Design Ltd., Cambridge, England), an AxoClamp-2B (Axon 

Instruments Inc., USA) voltage clamp and an amplifier (NeuroLog; Digitimer Ltd., 

Letchworth Garden City, England), all connected to a computer running the Spike2 

program (Cambridge Electronic Design Ltd., Cambridge, England). The coloured light 

stimulus was provided by a an IL1 Bentham light source and M300 Bentham 

monochromator (Bentham Ltd., Reading, UK; using a stabilised power supply 605 from 

Bentham) for the electroretinogram (ERG) sweeps or a bicolour LED (Maplin 

Electronics Ltd., UK) for the adaptation experiments. 

 

It proved impossible with this experimental setup to make intracellular recordings from 

the photoreceptor cells in the beetles’ retinas, most likely because of the small size of 

the cells and the fragility of the tissue, and therefore we focused on measuring 

extracellular electroretinograms. 

 

Electroretinograms 

 

For this set of experiments, the beetle was dark adapted for a minimum of 30 minutes 

and typically at least 1 hour. Then the eye was stimulated with 50ms flashes of light 

from the monochromator, delivered by a liquid light guide (Edmund Optics, UK) at a 

distance of approximately 1.5cm from the beetle’s eye, at 8s intervals. Average intensity 

of an emitted light at this distance, across all tested wavelengths, was 2.39x10-7 µMol. 

 

We stimulated the retina with the following wavelengths of light (in nm): 350, 400, 450, 

500, 520, 540, 560, 580, 600, 620, 640, 660. However, the responses at 350nm were 

mostly of very poor quality with too much noise to ascertain the response accurately. 

For 540nm, we also took readings using neutral density filters to attenuate the light, a 

selection from Comar filters with optical density of 0.3, 0.6, 1.0 and 2.0 (Comar, 

Cambridge, UK), in order to plot an intensity/response curve showing how the response 

decreased as light intensity was reduced. 
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For each wavelength, we recorded a minimum of 40 responses in order to calculate an 

average response. This reduced the effect of random photon noise and helped to make 

weak responses more detectable. 

Adaptation experiments 

 

We performed adaptation experiments using a bicolour LED, which could emit either a 

red or a green light depending on the polarity of the current passing through the 

component. The two light colours (red and green) had peak wavelengths of 627 and 

565nm respectively, and the emission spectra are shown in Figure 48. 

 

We initially dark-adapted the beetle eye. Then, we used the LED to deliver a series of 

short flashes (50ms) of either green (565nm) or red (627nm) light, at 1.5s intervals. 

After recording the beetle’s response to these flashes, we light-adapted the eye to 

constant green light (565nm) for a minimum of 2 minutes before resuming light flashes 

of the original colour. In a green-adapted eye, it is expected that the ERG response to 

green flashes would be reduced relative to the green response in a dark-adapted eye, as a 

result of down-regulation of the sensitivity of the green receptors (Laughlin and Hardie, 

1978).  

 

The ERG response to the 627nm flashes after light-adaptation, however, depends on the 

different photoreceptor types present in the eye. If the beetle possesses only one 

receptor type in the 500-600nm range, e.g. with a peak around 550nm, the response to 

red light (627nm) can only be mediated by this receptor. A bright green light at 565nm 

would light-adapt this receptor and cause down-regulation of its response, so the 

measured response to red light after adaptation would be reduced by approximately the 

same relative amount as the green light response. However, if the beetle possesses an 

additional receptor with a sensitivity of ~600nm, the prediction is that this will be 

comparatively unaffected by adaptation to green light and will continue to respond to 

627nm light flashes at a similar level to a dark-adapted eye. 

 

Therefore, we anticipated that a continuing strong response of the ERG to 627nm light 

even after adaptation would provide an indication that a “red-sensitive” receptor may be 

present in the monkey beetle retina. 
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Figure 48. Relative radiant intensity spectra for the two colours of light emitted by the bicolour 

LED. Data provided by Kingbright to Maplin Electronics Ltd. 
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Calibration and analysis 

 

The absolute size of the ERG response to different wavelengths of light only provides 

direct information about the photoreceptors’ sensitivity to that wavelength if the 

monochromator emits all wavelengths at equal intensity. In fact, the photon density of 

the monochromator is not constancy across all wavelengths (Figure 49) and the highest 

densities are in the 550-600nm range, with a further peak around 650nm. We therefore 

used a recent calibration of the monochromator as in Döring and Skorupski (2007) to 

extrapolate the relative response of the ERG to the different wavelengths of light had 

the monochromator emitted light of equal photon density throughout the range of 

wavelengths. We believe such extrapolations to be a valid as the intensity/response 

curves for the neutral density filter readings were linear in form for the vast majority of 

the ERGs, implying that the intensity/response was behaving as a linear function at 

these light levels and halving the light level would approximately halve the response. 

 

RESULTS 

Spectral reflectance measurements of the Cape flora 

 

Figure 50 shows the colours of flowers from plant species collected from a selection of 

sites across the Namaqualand region plotted on the bee colour hexagon, with additional 

hexagons showing flower colours from some sites in Israel for comparison. Figure 51 

shows colour breakdowns averaged for all the sites sampled from each country. 

 

When the proportions of plant species with flowers in the six different bee colour 

categories are considered, the South African flora differs significantly from the floras of 

Brazil, Costa Rica and Israel in terms of its colour composition. This is especially 

evident in the larger number of bee-UV flowers present in the Northern and Western 

Cape regions of South Africa, much higher than for other locations (ANOVA 

comparing it to flora from sites in Brazil, Costa Rica and Israel; F = 6.2451, df = 3, p = 

0.00144), which can comprise up to 18% of the species present at some sites. 
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Figure 49. Normalised (to 565nm) photon density emitted by the monochromator used in the 

experiments. The light emitted is not of consistent intensity or energy for all wavelengths, so the beetle 

responses were calibrated accordingly. (Measurements performed by T.F. Döring.) 
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a) 

 

b) 

 
Figure 50. Colour hexagon showing colour distribution of plant species from (a) three sites in South 

Africa and (b) three in Israel, covering a similar range of arid and semi-arid locations. The three 

apices marked “b”, “g” and “uv” correspond to the three photoreceptor types (blue, green, ultraviolet) 

present in the honeybee Apis mellifera; the more a flower stimulates a receptor type, the closer to the apex 

the locus falls. 
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Figure 51. A graphical representation of the proportion of species of each of the six different bee 

colours, according to their colour hexagon loci, for flowers from four different countries. The 

proportions are average values calculated from the species recorded at multiple sites. It can be seen that 

South Africa has a relatively large number of UV flowers (and bee-green ones) and relatively few bee-

blue ones; Costa Rica appears to have many plant species with blue-green flowers. 
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Electroretinograms 

 

For the females of Pachycnema crassipes (N = 9 individuals), we obtained 22 complete 

or partial ERGs of sufficient quality to use. We also obtained two usable ERGs from 

females of Clania macgregori (N = 2 individuals). The readings taken using the neutral 

density filters to reduce incident light intensity by known amounts showed an  

approximate linear relationship between intensity and response at 540nm (Figure 52), 

and therefore we consider it reasonable to use the measurements of photon density at 

different wavelengths to calibrate the relative responses of the beetle retinas to the 

wavelengths. An example of a typical ERG response, an average curve for 57 light 

flashes at 500nm, is shown in Figure 53. 

 

 
Pachycnema crassipes 

 

The processed average ERG for females of P. crassipes is shown in Figure 54. The 

recordings we obtained showed consistent peaks in response in the blue-green and red 

areas of the spectrum and a high response at short wavelengths (violet region) indicating 

a probable UV peak that we were unable to resolve fully. Thus it appears that the 

beetles may be either trichromats with three photoreceptor types or tetrachromats, but if 

they are trichromats, these three photoreceptor peaks are red-shifted relative to those of 

bees. The approximate sensitivity peaks are located around 520nm and 640nm, with the 

suggestion of of a third peak around 400nm; it is possible that there is an undetected 

fourth peak at 370nm or below. 

 

We obtained very few reliable ERG responses at 350nm as we were focusing 

principally on the long wavelengths, therefore it is possible that the actual peak 

response of the UV receptor is to wavelengths in the 360-390nm range; however, we 

lack the data to clarify it. We have many more readings in the 500-660nm region, and 

consistently obtained stronger relative responses at 640nm than at either 620 or 660nm, 

indicating a wavelength sensitivity peak here which would facilitate detection of red and 

orange stimuli by the beetles. 
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Data from the male P. crassipes individual support these findings: although the 

responses at wavelengths <500nm were not fully resolved, there was evidence of peaks 

in the blue-green and red ranges, which corresponds well to the those obtained from 

female beetles (Figure 55). 

 

Clania macgegori 

 

The averaged ERG results obtained from C. macgregori are shown in Figure 56. 

Similarly to P. crassipes, there are weak indications of three local maxima, though  

resolution of the long wavelengths is poorer. This suggests that this species also 

possesses at least three receptor types, showing maximal sensitivity around 400, 500-  

520 and  >600nm respectively – however, more data are required to confirm which of 

these peaks are genuine responses and which are simply artefacts caused by noisy 

responses. In particular, a genuine peak at 640nm would agree with the results for P. 

crassipes, but for these two ERGs there is also an indication of a peak at 600nm (though 

this could serve a similar function in colour discrimination at long wavelengths). 

 

Adaptation experiments 

 

We obtained results from all three species: P. crassipes, C. macgregori and L.  braunsi. 

(P. crassipes, N = 6 beetles; C. macgregori, N = 2 beetles, 1 male, 1 female; L. braunsi, 

N = 2 beetles, 1 male, 1 female). All species showed ERG responses to both the green 

and red LED lights when dark-adapted. We acquired 12 datasets of the green response 

in P. crassipes before and after green adaptation and 11 datasets of the red response for 

that species. Other species had smaller datasets, for which it would not be appropriate to 

perform statistical analysis. The graph in Figure 57 shows the percentage change in the 

post-adaptation response to the two light colours, relative to pre-adaptation response for 

the tested species, split by sex. 

 

Although the data have a high variance and contain a lot of noise, there is a consistent 

trend for green response to be reliably reduced by adaptation, as expected. However, the 

red light response either reduces less or, in fact, increases. We supported this 

observation for P. crassipes with a t-test; the difference between the mean change in 



Chapter VI: The colour vision of South African monkey beetles 

 177 

 
Figure 52. Relative response size to light at 540nm using neutral density filters to reduce the light to 

0.5, 0.25, 0.1 or 0.01 relative to the original.  “1” is taken to be the maximum light intensity emitted by 

the monochromator at that distance and wavelength, and the corresponding response recorded from the 

beetle retina. The response changes linearly in proportion to the intensity. (Bars = standard error.) 

 
 

 

  

Figure 53. Example of a typical ERG response averaged from the responses to 57 individual light 

flashes. This curve is taken from a female P. crassipes using light of 500nm wavelength. 
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Figure 54. Electroretinogram results for females of Pachycnema crassipes. This is the average relative 

response from 22 complete or partial ERG sweeps in the 400-660nm range for 9 individuals, after 

calibration. Standard error bars show response variation. 

 
 

 
Figure 55. Electroretinogram result for a male of P. crassipes. As only one ERG was obtained from a 

male of this species, the responses are expressed as a percentage of the maximum reading obtained and 

the data are relatively noisy. However, peak responses at around 500-520nm and 640nm are still 

indicated. 
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response to red light and the mean change in response to green light was significant (t-

test, t = 2.200985, df = 11, p = 0.010529). This is consistent with the presence of a long-

wavelength receptor mediating the red response separately from the receptor mediating 

the response to green light. 

 

DISCUSSION 

 

Namaqualand and the Cape Floral Kingdom have an unusually large number of 

relatively scentless, large orange, red and yellow flowers which are not considered to be 

typical “bee colours” (often appearing UV or green in bee colour space) (Goldblatt et 

al., 1998a; Johnson and Midgley, 2001). Why this would occur is something of a 

mystery until one starts to investigate other pollinators in the habitat. 

 

One very important pollinator guild in the Cape habitats is the Hopliini (monkey 

beetles). The long-wavelength group of monkey beetles are often observed sitting, 

feeding and mating on orange, red and yellow bowl-shaped flowers, and field studies 

and surveys have shown that they are important pollinators in the region (Goldblatt et 

al., 1998a; Mayer et al., 2006; Picker and Midgley, 1996). It therefore seemed likely 

that their colour vision was somehow better-tuned to long wavelengths than is the case 

for bees. The most likely possibilities were that either the beetles had an additional 

photoreceptor with a peak around the 580-640nm part of the spectrum, or else they were 

trichromats like bees, but their “green-sensitive” long-wavelength receptor had a peak 

closer to the red than bees’. 

 

Our experiments provide indications that monkey beetles possess at least three 

photoreceptor types, with peaks found in the violet-blue, blue-green and orange-red 

parts of the visible spectrum. The short-wavelength receptor could still permit 

sensitivity to UV reflectance on flowers (though there may be a still shorter-wavelength 

receptor that we did not detect owing to our primary focus on >500nm sensitivity), 

whilst the long-wavelength receptor responds robustly to long wavelengths and is very 

likely to facilitate detection of red and orange flowers in particular. 
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This is supported both by the electroretinogram sweeps that we obtained, which indicate 

the likelihood of three peaks in the 400-700nm light spectrum range, and also by the 

adaptation experiments, in which adapting to green light reduced the response to green 

light significantly but did not similarly attenuate the response to red light. This would 

indicate that two separate receptors are responsible for the green and red light responses, 

presumably the ~520nm receptor indicated by the sweep and the ~640nm receptor 

respectively. 

 

Such a long-wavelength sensitivity peak coupled with a relatively short-wavelength 

sensitive “medium-wavelength receptor” is not unprecedented among beetles: ERG 

evidence from Carabus nemoralis and C. auratus indicates that these species possess 

four photoreceptor types with peaks at 348, 430, 500 and 620nm (Hasselmann, 1962). 

The presence in Hopliini  of receptors with approximately similar sensitivities to the 

medium- and long-wavelength receptors in Carabus species is therefore quite plausible. 

This is further supported by the unpublished discovery of a receptor in Amphicoma 

beetles with a peak sensitivity of 630nm (Briscoe and Chittka, 2001). As their ecology 

seems to parallel that of monkey beetles in terms of the flowers they visit, it is fitting 

that their visual physiology appears to follow suit. 

 

Equally, detection of polarised light in another Scarabaeidae species, the European 

cockchafer Melolontha melolontha, is mediated by a photopigment with maximal 

sensitivity at 520nm (Labhart et al., 1992), so possession of an appropriate 

photopigment to mediate blue-green sensitivity in this clade is already recorded. 

 

It is likely therefore that the large, open “beetle flowers” in the Cape Floral Kingdom 

have specifically evolved their colours in order to be more conspicuous to the visual 

systems of Hopliine beetle pollinators than to bee pollinators. This makes intuitive sense 

– as the flowering of plants in this region is relatively synchronised and concentrated  

over just a few months, competition for pollinators is intense. The number of pollinators 

may be relatively low, and monkey beetles, although slow moving, can fly fairly well 

and are able to carry large amounts of pollen on their hairy bodies. Therefore, despite 

that the dominance of bee pollination worldwide (Proctor et al., 1996) might lead on to 

assume that bee pollination is somehow “optimal”, it is unsurprising that some plant 

species will evolve characteristics that instead favour beetle pollination.
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Figure 56. Electroretinogram results for females of Clania macgregori. This is the average response 

from 2 ERGs from 2 females, in the 400-660nm range, after calibration. Standard error bars show 

response variation. Further resolution is required. 

 

 

 
Figure 57. Change in ERG responses to red or green light after adaptation to green light (565nm) 

for individuals of three monkey beetle species. The red bars indicate the change in red light response 

after adaptation; the green bars indicate change in green response after adaptation to green light (showing 

a reduced response, as expected). The changes in red and green response in P. crassipes are significantly 

different, indicative of a red-sensitive receptor mediating the red response. Bars = standard error. 
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The vision of Hopliini warrants further investigation, both in a physiological context, 

especially with an eventual aim of obtaining intracellular readings, and also in a 

behavioural context. Given that there is a relatively large wavelength gap between their 

medium- and long-wavelength receptors, one would expect that behavioural 

experiments would demonstrate rather poor colour discrimination in the blue-green to 

green colour range and somewhat better discrimination of blue shades. The short 

wavelength detection ability of these beetles is also worthy of further, more detailed 

exploration, to determine the peak sensitivity of the short-wavelength receptor. Indeed, 

although we did not find evidence to support the presence of more than one short 

wavelength receptor, our investigation of the beetles’ response to short wavelengths was 

insufficient to be sure of this. Therefore it would undoubtedly be worthwhile to look 

further at this part of the spectrum and ascertain whether there are, in fact, two receptors 

with sensitivities <420nm, similar to the 348 and 430nm receptors in Carabus, perhaps 

one with a peak around 400nm and one which we were unable to detect with our 

equipment, with a sensitivity of 330-350nm. Such a system could also account for the 

short-wavelength guild of monkey beetles, as it would enable high colour sensitivity 

and probably good discrimination of blue and violet flowers, helping to account for the 

beetles’ preference for those. 

 

This study provides evidence relating the unusual and striking colour composition of the 

South Africa Cape flora to the vision of an important and rather unique pollinator in this 

habitat. Based on our findings, we think it likely that the large numbers of magnificent 

long wavelength reflecting flowers in these habitats can be accounted for by a colour 

vision system in their monkey beetle pollinators which gives them excellent sensitivity 

to red, orange and yellow stimuli.

CHAPTER VII 
 

DISCUSSION AND CONCLUSIONS 
 

In this thesis I have explored some of the pressures driving flower colour evolution in 

the context of insect vision, and investigated the behaviour and physiology of some 

pollinating insects in order to relate this to the flowers they visit. The main contributions 

my research has made to the field of insect vision and flower colour evolution and 



` Chapter VII: Discussion and Conclusions 

 183 

ecology are summarised in Table 5. The results reiterate that there are multiple factors 

driving and constraining the evolution of flower colours.  

 

Evolutionary history plays a substantial role in what pigments a plant is able to produce 

in its petals. However, novel pigments do emerge in groups that are typically fairly 

consistent in colour (e.g. the saturated crimson colour in Nicotiana forgetiana, whilst 

the rest of the genus – including the closely related N. langsdorfii, N. alata and N. 

bonariensis – are more usually pale coloured, often white or pale greenish-yellow 

(Kaczorowski et al., 2005)). 

 

An important factor in determining a flower’s colour is the selective force of pollinators. 

Ultimately, the purpose of having a showy flower – an energetically costly ornament, 

and one which may also attract herbivory (Leege and Wolfe, 2002; Sletvold and 

Grindeland, 2008) – is to advertise the plant’s reproductive organs to pollinators. A 

pollinator’s decision to visit or reject a flower is, however, based on more than just 

instinctive attraction (Frisch, 1914; Heinrich, 1979; Leadbeater and Chittka, 2005; 

Menzel, 1985b). Many pollinators in a natural environment have extensive experience 

with locating flowers, as well as energetic costs and benefits to consider, and therefore 

have memory and learning experience in operation alongside their innate preferences. 

 

As a result, merely being the colour most innately attractive to an insect pollinator is 

insufficient to secure reliable and efficient pollination, especially in a competitive 

environment with many plant species having flowers offering different levels of reward 

and using different pollination strategies. If one colour of flower offers consistently high 

rewards, pollinators will learn to favour that colour and visit it more frequently – and 

possibly with higher fidelity, increasing the transfer of conspecific pollen. If, however, a  

 

Table 5. Major contributions made by this thesis to the field 
 

Research area Main findings/contributions 

Flower colour resources Development of the Floral Reflectance Database. 

Reference: (Arnold et al., 2008) 

Flower colour trends 

within habitats 

Flower colour (modelled through bee or fly eyes, or based 

on spectra) composition of plant communities does not 
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change over elevation gradients. 

Flower colour (modelled through bee eyes or based on 

spectra) composition of temperate plant communities does 

not change over the flowering season. 

References: (Arnold et al., 2009a, b) 

Bee colour constancy Confirmation that bee colour constancy has limitations and 

bees perform more poorly at a learning task under some 

illumination conditions. 

Bee foraging in patchy 

light 

Bees choose to avoid some illuminants in favour of other 

ones, and that this is because of familiarity with some 

illuminants more than with others. 

Bees are more likely to switch between flowers of different 

plant species when foraging within illuminant patches than 

when switching between patches. 

South African flower 

colours 

The colour composition of the Cape region possesses an 

unusually high number of bee-UV flowers, which mostly 

appear orange or red to humans. 

Colour vision of South 

African monkey beetles 

Females of Pachycnema crassipes and Clania macgregori 

possibly have a red-sensitive photoreceptor at around 

640nm peak sensitivity, correlating with the colours of 

flowers they visit. 
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particular colour of flower ceases to be associated with a good reward (as may happen 

when there are many insect foragers and flowers become nectar-depleted), many species 

of pollinator will respond by switching to another, more rewarding, colour (Menzel, 

1985b). This has implications for rewarding flowers as well as mimics. Rewarding 

flowers should have a distinctive colour so they are not confused with non-rewarding 

species and pollinators can learn to associate them with a reward. Conversely, deceptive 

flowers usually benefit from resembling a rewarding flower, and their success is often 

density-dependent – if they become too common, the pollinators will notice that a 

particular colour is not consistently rewarding and may switch to flowers of another 

plant species (Anderson and Johnson, 2006). 

 

The context of the flower and its colour is also important. A blue flower in an alpine 

meadow, for example, is subjected to different selective forces to a blue flower in a 

rainforest understorey. The pollinators themselves are different, along with their 

experiences and preferences, but so is the foraging environment – in terms of 

temperature, humidity, wind speed and light composition and intensity. All of these 

could affect which colour is optimal and why: pigments may serve a protective function 

as well as an attractive one, increasing resistance to drought or UV radiation (Chalker-

Scott, 1999; Warren and Mackenzie, 2001). On the other hand, a pigment is ineffective 

as an advertisement for pollinators if it cannot be detected by the visual system of the 

animal species that the flower relies on for pollen transfer – e.g. UV markings are of no 

use if the pollinator lacks the ability to perceive wavelengths of light shorter than 

400nm. 

 

The plant is therefore faced with complex selective forces and potential trade-offs – 

pigments may be costly, and although sometimes an intense colour may be beneficial in 

both the biotic and abiotic context, in other situations this may not be the case. 

Sometimes, the optimal pigments for protecting against abiotic challenges may be 

different to those optimal for recognition by pollinators. The plant must produce a 

combination of pigments to optimise its fitness, taking into account pollinator visitation, 

vulnerability to pests and herbivory, and physical resistance to climate effects (Arnold 

et al., 2009b; Warren and Mackenzie, 2001). 
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In chapter II of this thesis, I provide an introduction to the Floral Reflectance Database, 

a resource which will prove greatly valuable in future investigations of flower colours. 

By developing this database of flower colours, other researchers will be able to study 

the causes and effects involved in pollinator-plant interactions and the evolution of 

flower appearance in more depth. FReD will continue to expand and develop in coming 

years, with more spectra and new features being added. The diversity of colour 

information already available in the database can easily be seen in the colour hexagon 

summary produced by the search results (Figure 58).  

 

FReD may be of extensive use to researchers in the field of ecology, in studies where 

floral traits are an essential consideration, and also in some areas of development and 

genetics – for example, investigating how floral colours are arranged within 

phylogenies, in polyploid and hybrid species, or comparing various mutant floral strains 

to wild types in terms of their colour. Such studies will provide further information 

about the selection pressures exerted by pollinators on flower appearance, whilst 

bringing in under-explored considerations such as the genetic and developmental 

elements, as started by Galliot et al. (2006). 

 

What makes FReD unique is the fact that the information on colour provided does not 

assume a solely human viewpoint. It makes use of the floral reflectance data and bee 

colour space modelling to provide insight into the appearance of these flowers through 

bee eyes, and provides the data necessary for them to be modelled in other non-human 

visual systems as well. This lends an additional level of relevance to conclusions about 

plant ecology and evolution derived from these data. 

 

Chapters III and IV of this thesis use data from the Floral Reflectance Database to show 

the results of such trade-offs between abiotic and biotic factors. Despite changing light, 

weather and temperature conditions over the temporal and spatial scales, and despite 

changing pollinator compositions within these environments, both studies indicate that 

the ultimate outcome of natural selection is likely to be a relatively balanced colour 

composition in plant communities. In both cases, the number of species bearing each 

colour remains broadly constant throughout the temporal and spatial ranges studied. 

This observation applies whether colours are considered through insect (bee or fly) eyes  
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Figure 58. Colour hexagon showing loci 

generated from all the reflectance spectra 

currently available in FReD. The spread and 

range of loci serve to illustrate the diversity of 

flower colours extant in nature and indeed, 

the diversity of flowers with spectra available 

in FReD. 
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or in the context of physical reflectance spectra of the flowers. Using these biologically-

relevant, objective colour assessments gives results that can contradict those of studies 

using only human colour categories (McCann, 1986; Savile, 1972; Warren and 

Billington, 2005; Weevers, 1952). Such ecologically-related analyses of flower colour 

trends in nature are made possible by assembling floral reflectance data in an accessible 

format with details about the plant species such as their location and elevation above sea 

level. 

 

The lack of predictable trends in flower colour within many habitats, as revealed in 

chapters III and IV, informs us about flower colour in a community context. There is 

clearly no single best colour for flowers to be – or the whole community would tend to 

converge on that colour and flower meadows would look very different. Indeed, a range 

of colours seem to be maintained under a variety of conditions; whether it is March, in a 

woodland; October, in a grassland; or 1000m above sea level on alpine soils, there are 

typically flowers from all bee colour categories present, and a principal components 

analysis of the spectra shows that the diversity is maintained throughout all these 

scenarios. This implies that there is selective pressure on flowers to be diverse and 

distinctive, which makes sense in the context of pollinator learning and behaviour.  

 

The pollination market hypothesis is the most consistent and logical explanation at 

present for the colours of flowers present in plant communities, and indeed their other 

morphological traits. It makes several important and factually-based assumptions: 

- flowers of most plant species can be pollinated by more than one pollinator type 

- most pollinator species can visit and pollinate more than one flower type 

- pollinators are not visiting a single flower colour or type based on innate 

attraction or instinct, but are able to make decisions about which flowers to visit 

(Gumbert, 2000; Gumbert et al., 1999) 

 

The theory states that flowers compete with each other, like sellers at a market, for the 

“custom” of pollinators (Friedman and Shmida, 1995; Gumbert et al., 1999). They can 

advertise their rewards by being distinctive and conspicuous in various ways: large size, 

saturated or contrasting colours, strong odours. As in a market, there is no single “best” 

formula – if the majority of pollinators were to forage one colour or form of flower, 
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being different will be advantageous as some pollinators will rapidly learn to associate 

the distinctive form with more consistent rewards due to the reduced competition on 

that form. Therefore the pressures are to be as salient and easily-recognised as possible, 

resulting in a range of colours, morphologies and scents amongst flowers in a range of 

habitats. This agrees well with existing studies of flower morphology and colour 

worldwide, which have shown that few flowers truly fit into the classical “pollination 

syndromes” with prescribed sets of traits and that their colour and morphological traits 

are not reliable predictors of their pollination systems (Ollerton et al., 2009a). 

 

Although the pollination market hypothesis predicts that habitats across the world 

should all contain a broad range of floral colours and forms, shifts on a local scale do 

occasionally occur (Goldblatt et al., 1998a; Kevan and Baker, 1983), and individual 

regions might have varying proportions of species of different colours depending on the 

plant families comprising the flora, genetic drift and consistent local selection pressures 

such as unique pollinator groups. This seems to be the case in the Cape region of South 

Africa; in chapter VI, I performed an analysis of the flower colours at various different 

sites. It revealed a higher than average number of flowers that appear UV to bees 

(typically flowers that reflect maximally at long wavelengths, above 620nm), in 

accordance with previous claims that it has more flowers with red or orange colouration 

than are seen in other areas. As previously discussed, flowers of all colours are normally 

present in most habitats, and this was the case for all the floras considered in this 

chapter. However, in the Cape region the large number of flowers exhibiting a normally 

uncommon colour (to bees), and the convergence of several unrelated taxa on similar 

forms does suggest selection by a specific pollinator. This is most likely one that is not 

present in the fauna of the other habitats whose flora were analysed in this chapter. 

 

Previous studies have linked these flowers to a pollination system involving a group of 

Scarabaeidae, the monkey beetles (Colville et al., 2002; Picker and Midgley, 1996). 

This diverse group of insects and the flowers they visit form a system that appears to 

parallel the Amphicoma beetle pollination system in Israel (Dafni and Potts, 2004) but 

otherwise seems very particular to South Africa. Monkey beetle pollination is unique to 

southern Africa and therefore will result in differences in the selection pressures and 

interspecific competition in this region relative to other habitats.  
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Based on the studies in chapters II and III, and the flora and pollination ecology of 

South Africa, it is clear that any consideration of floral traits and colour in particular 

must take into account the insects present throughout the flowering season, their 

behaviour and their visual capabilities. Flies, for example, perceive colour quite 

differently to bees, and two colours which are quite distinct to an experienced bee may 

be entirely indistinguishable to a fly. My experiments – as described in chapter VI – 

have suggested for the first time that South African monkey beetles, rather than having 

a generic UV/blue/green trichromatic colour vision system similar to that of many bees, 

wasps, moths and other beetle species, may possess a colour vision system with 

enhanced sensitivity in the long wavelengths, apparently mediated by a receptor with a 

peak sensitivity of over 600nm and possibly as high as 640nm. It seems that the flowers 

of the region have evolved to take advantage of this sensitivity, having large, open 

inflorescences in yellow, orange and red colours, forms which are much less common in 

the flower meadows of Europe, for example. 

 

Electrophysiological techniques have given us insight into the sensory capabilities of 

insects relevant to their behaviour and ecology, including their vision (Döring and 

Skorupski, 2007; Peitsch et al., 1992; Skorupski et al., 2007), olfaction (Bhagavan and 

Smith, 1997; Park and Hardie, 1998; Pope et al., 2004; Raguso and Light, 1998) and 

neural processing (Giurfa, 2007; Menzel, 2007; Menzel and Müller, 1996). However, 

extracellular readings used in isolation have their limitations: as they only tell us about 

the response of the nervous cells in a tissue as a group, rather than of individual 

receptors or neurons, it is difficult to draw precise conclusions about the behaviour of 

individual cells or how, for example, a visual response to red light is mediated (Briscoe 

and Chittka, 2001). For example, one cannot necessarily be certain whether a double-

peaked electroretinogram is the result of two photoreceptors with different sensitivities 

or a single photoreceptor possessing a secondary peak. However, they can certainly 

provide clear answers on whether an insect has the capacity to detect a particular 

wavelength of light (or respond to some other stimulus).  

 

We therefore still have much more to discover about the colour vision of monkey 

beetles, including a more detailed exploration of their UV-vision, and exploration of the 

colour processing, recognition and categorisation systems they may be using to find 

flowers. By contrast, the honeybee and bumblebee visual systems are much better 
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understood, and we are able to ask much more in-depth questions about how they 

locate, discriminate and categorise flowers in a natural environment. Using this 

information in concert with the floral reflectance data in FReD and/or reflectance data 

of stimuli used in behavioural experiments allows us to make testable predictions about 

behaviours in bees that depend upon colour vision. 

 

Such accurate information is crucial when one takes visual ecology further: even for the 

same visual system and the same spectral reflectance of the flower, the colour 

appearance is not an absolute quantity. It depends upon the illuminating light and, for 

some visual systems, the background against which the object is set. Therefore, a flower 

appearing one colour – i.e. reflecting certain wavelengths of light – in the centre of an 

open meadow will reflect a different combination of wavelengths when illuminated by 

the light present in the shade of a woodland leaf canopy. A pollinator such as a bee 

seeking such a flower must be able to correct for this difference, or it may struggle to 

recognise the two flowers as one and the same species. If the pollinator is only partially 

able to compensate for the illumination change, this may cause it to choose the 

“incorrect” flower – one that offers no reward, or contains a cryptic predator. This may 

have repercussions for flowers that grow in variable light environments, if some colours 

have their appearance altered less, to insect eyes, by changing illumination compared to 

others. 

 

The natural foraging environment encountered by a pollinating insect is complex and 

variable, and illuminating light is known to comprise part of this. The light environment 

in nature changes within a day, between days, and over a spatial scale (Endler, 1993; 

Hernández-Andrés et al., 2001), and yet it is still important for a foraging insect to 

locate flowers correctly and identify them in relation to their previous foraging 

experience. The ability of a pollinator to forage efficiently in a changing light 

environment is therefore crucial to its success in finding food, and a key question is how 

effectively they can function in variable and changing illumination – i.e. do they possess 

colour constancy, and if so, is it perfect or approximate? 

 

Colour constancy has been investigated in a number of species to date, including 

vertebrates and also some insect species. Although the most extensive body of research 

is undoubtedly carried out on humans, owing to their ability to communicate their visual 
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experience and perceptions most accurately, colour constancy has also been studied in 

goldfish (Dörr and Neumeyer, 2000; Neumeyer et al., 2002), moths (Balkenius and 

Kelber, 2004), butterflies (Kinoshita and Arikawa, 2000) and stomatopods (Osorio et 

al., 1997), as well as bees. In goldfish and humans, it has been found, as in bees, to be 

imperfect (Dörr and Neumeyer, 2000; Lucassen and Walraven, 1996; Neumeyer et al., 

2002; Werner, 2006). 

 

The ability of receptors to adapt to the ambient light level could be expected to provide 

at least a basic level of approximate colour constancy in any animal with receptors 

whose sensitivities can be up or down-regulated. In humans, it is known that there are 

also additional levels of neuronal processing (Land, 1977), sampling the light received 

by different parts of the visual field and using this to estimate the spectral composition 

of the illuminating light in order to discount it from considerations of the colours of 

objects (McCann, 1992). There is still much to be discovered about the accuracy and 

limitations of colour constancy in insects, such as how it depends upon the position in 

colour space of the stimuli, the spectral content of the illuminating light, depth 

segmentation and contextual cues. 

 

Imperfect colour constancy, as demonstrated in the research I present in chapter V as 

well as existing literature (Dyer, 1999; Dyer and Chittka, 2004a; Kevan et al., 2001), 

has implications for insect foraging. If there are only subtle colour differences present 

between flowers of different plant species, it could lead to misidentification by insect 

pollinators under variable illumination. Conversely, large colour differences – to a bee’s 

eyes – between different species will be favoured in changing light contexts as the 

likelihood of misidentification will be lower. This further reinforces the conclusion, 

based on the pollination market hypothesis, that flowers need to be as easily 

discriminated and distinctive as possible (with the obvious exception of deceptive 

mimics).  

 

There has been no previous work looking at very short-term changes in illumination 

over small spatial scales in bees previously, or considerations of how this could alter 

their behaviour. My research in chapter V has provided new insights into bees’ response 

to patchy light in a foraging setting, using colours of illuminant and artificial flowers 

that are ecologically relevant. Although the small size of a bee flight arena and the 
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comparatively large rewards provided by most such experiments are a departure from 

nature, nonetheless the data I have collected about how bees respond to patchy light 

open up a new area of understanding within the field. The fact that bees are intentionally 

choosing to spend more time foraging in areas illuminated by a familiar colour of light 

and making more flower visits there is a new one, though one consistent with what is 

known of bees’ reactions to an unfamiliar physical object (initial avoidance, sampling, 

and eventual acceptance of the new addition to the environment) (Forrest and Thomson, 

2009). Additionally, the finding that bees are more likely to sample flowers of a 

different species when foraging within a patch of the same illumination, rather than 

when switching between different lighting conditions, is a novel finding which has 

implications in the context of bees discovering and pollinating new plant species when 

foraging in patchy light. It may conceivably result in selection against plant species that 

occur at low frequencies on the edge of woodlands and other areas with unusual 

illumination, as most of the encounters bees would have with such flowers would be 

when changing illumination, when they are less likely to sample the flower than if they 

encountered it within a patch of familiar and consistent illumination. 

 

All these effects, however, are likely to be relatively subtle in the natural context: the 

majority of flower visits in the field are made by experienced insect foragers, and so on 

most occasions, they have prior information about different illumination conditions, the 

appearance of different flowers in these conditions, and the relative rewards of multiple 

different flower types. This, and the behavioural plasticity of pollinators and the 

complexity of factors influencing flower traits, are essential considerations when trying 

to ascertain which colours or morphologies of flowers should be favoured by selection 

in different habitats. 

 

FUTURE RESEARCH DIRECTIONS 

 

Floral Reflectance Database still offers much scope for development to increase its 

applicability and utility for researchers. Foremost, it should acquire the largest possible 

number of high-quality spectral reflectance datasets from flowers worldwide. At present 

there is particular need for more data from North America, Australia and Asia to be 

made available in FReD, but given that there could be as many as 400,000 extant 
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angiosperm species on earth ((Govaerts, 2001); though see Scotland & Wortley (2003)), 

there are many possibilities from all areas of the world to gather new floral reflectance 

measurements.  

 

Even large amounts of floral reflectance data, however, are of limited use unless the 

flower colours can be considered in the ecologically relevant context of insect colour 

vision. The colour space models we have for the bee have proven enormously useful in 

ecological studies. However, bees are not the only pollinators playing a role in 

ecosystems. We lack a colour space model for hoverflies, a very important pollinator 

group – if we wish to model fly vision, we must use the model developed by Troje 

(1993) for blowflies, which rarely perform a pollination service. Acquiring data on the 

visual physiology and capabilities of hoverflies would allow us to construct a model 

more relevant to pollination systems. Equally, more information about moth and 

butterfly pollinators would increase our understanding of the role these diverse groups 

of insects play in pollination ecology. 

 

More research should also be performed on monkey beetle vision. This thesis presents 

extracellular recordings, and focuses primarily on long wavelengths. To build a 

coherent and reliable picture of their vision, we also need more data from the shorter 

wavelengths (<500nm) and ideally further attempts to gain intracellular readings. More 

species need to be sampled, including extending the research to male Hopliini, as they 

have different visual targets (seeking females more than food plants; the females are 

often very different in colour to the flowers) (J. Colville, personal communication).  

 

Even within the well-characterised field of bee vision there is still much to be done to 

shed light on their interactions with flowers. We need to explore the limitations of their 

colour constancy, using different colours of stimuli and illumination in order to 

establish the conditions under which most mistakes happen, and whether particular parts 

of bee colour space are associated with poorer colour constancy, as predicted by Kevan 

et al. (2001). The effects of patchy light on learning behaviours can also be explored 

much further, especially in the context of foraging and flower visitation – we should 

discover how it affects bees’ navigation and landmark recognition, detection of 

predators on flowers, and social learning causing bees to visit and prefer new plant 

species. 
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CONCLUSIONS 

 

There is no single “best” colour for flowers on a global scale to be. There is, however, 

likely to be an optimal flower colour for a particular plant species, determined by the 

pollinator species present, the other flowers in the community and the abiotic 

challenges. There is a huge diversity of flower colours, both as perceived by humans 

and, more importantly, as perceived by insects. Just as diverse are the visual systems of 

the insects that pollinate flowers. As insect vision predates flower colour, it is certain 

that the evolution of most aspects of flower colour, size and morphology have been 

driven by pollinator-mediated selection. However, the pollinator visual system does not 

have to be static over evolutionary time and inevitably is also subject to “fine-tuning” in 

terms of receptor numbers and sensitivity.  

 

In nature, most pollinators have extensive foraging experience. Although they will 

always be constrained by the limitations of their physiology – what they can detect, 

what they are physically able to land on, and which flowers provide them with rewards 

that are valuable to them – their impressive learning abilities enable them to take 

advantage of flowers in a variety of habitats and environments, and possessing a variety 

of characteristics. It is the flexibility of insect foraging strategies as much as the 

evolutionary plasticity of flowering plants that have helped to account for the enormous 

colour diversity of angiosperm species present today. 
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APPENDICES 

APPENDIX I, TO CHAPTER I 

 
List of the Orchidaceae species whose spectral reflectance data were used in the 
colour hexagon in Figure 6 of the introduction. Human colours were judged in the 
field by collectors. 
 

Genus Species Country 
Bee 
Colour 

Human 
Colour 

Bulbophyllum  falcatum  West Africa  green yellow 
Cephalanthera  longifolia  Israel  blue-green white 
Cirrhopetalum  cumingii  Philippines  UV white-red 
Coelogyne  huettneriana  Thailand  blue white 
Dactylorhiza  fuchsii  Norway  blue-green purple 
Dactylorhiza  maculata  Norway  blue-green pink 
Dactylorhiza  maculata  Austria  blue pink 
Dactylorhiza  majalis  Germany  UV-blue purple 
Dendrobium  nobile  Mexico  blue violet 
Dendrobium  aggregatum  India/China  UV yellow 
Dendrobium  hinginianum  Australia  blue-green violet 
Dendrobium  loddigesii  China  blue violet 
Dendrobium  pierardii  Burma Himalaya  blue-green yellow 
Epidendrum  ematophyllum  Brazil  blue pink 
Epipactis  atrorubens  Austria  UV-blue dark violet 
Eria  pannea  S.E. Asia  green orange 
Gymnadenia  canopsea  Austria  blue pink 
Limodorum  abortivum  Israel  UV-blue violet-white 
Maxillaria  chrysantha  Brazil  green yellow 
Maxillaria  variabilis  Mexico  green yellow 
Miltonia  cuneata  China  blue-green white 
Nigritella  nigra  Austria  UV-blue dark brown 
Oncidium  variegatum  West India  blue-green white 
Orchis  anatolica  Israel  blue violet 
Orchis  galilaea  Israel  blue-green violet-green 
Orchis  papilionacea Israel  blue violet-brown 
Orchis  tridentata Israel  blue purple 
Phalaenopsis  schilleriana  Philippines  blue-green pink 
Phalaenopsis  stuartiana  Philippines  blue-green white 
Polystachia  pubescens  S.E. Africa  UV-green yellow 
Restrepia  elegans  Venezuela  blue red 
Traunsteinera  globosa  Austria  blue-green pink 
Zygopetalum  mackaii  Brazil  blue-green pink-white 
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APPENDIX II, TO CHAPTER III 

List of plant species analysed, including colour information (as see by flies, bees, and also human, after categorising the flower colour into 
one of six human colours) and elevation of collection (in m asl). Species names are as in Norsk Flora (Lid and Lid, 2005). 
 

Family  Species name  Bee colour Human colour Fly colour Elevation 

Campanulaceae  Campanula rotundifolia  blue  blue  p- y+ (“blue”) 700-800 

Caryophyllaceae  Silene dioica  blue  pink/purple  p- y+ (“blue”) 700-1200 

Caryophyllaceae  Viscaria alpina  blue  pink/purple  p- y+ (“blue”) 1050-1180 

Fabaceae  Astragalus alpinus  blue  pink/purple  p- y+ (“blue”) 700-1500 

Fabaceae Oxytropis lapponica blue pink/purple p- y+ (“blue”) 700-900 

Fabaceae  Trifolium pratense  blue  pink/purple  p- y+ (“blue”) 700-900 

Fabaceae  Vicia cracca  blue  pink/purple  p- y+ (“blue”) 700-800 

Lentibulariaceae  Pinguicula vulgaris  blue  pink/purple  p- y+ (“blue”) 700-1300 

Onagraceae  Chamerion angustifolium  blue  pink/purple  p- y+ (“blue”) 700-900 

Plantaginaceae Veronica alpina  blue  blue  p- y+ (“blue”) 1100 

Polemoniaceae  Polemonium caerulum  blue  pink/purple  p- y+ (“blue”) 700-1000 

Primulaceae  Primula stricta  blue  pink/purple  p- y+ (“blue”) 700-900 

Primulaceae  Primula scandinavica  blue  pink/purple  p- y+ (“blue”) 1050-1150 

Ranunculaceae  Aconitum lycoctonum subsp. septentrionale  blue  pink/purple  p- y+ (“blue”) 700-900 

Violaceae  Viola canina  blue  blue  p- y+ (“blue”) 700-900 

Apiaceae  Anthriscus sylvestris  blue-green  white  p- y- (“yellow”) 700-920 

Asteraceae  Achillea nobilis  blue-green  white  p- y- (“yellow”) 700-900 
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Asteraceae  Antennaria dioica  blue-green  pink/purple  p- y- (“yellow”) 920-1200 

Asteraceae  Erigeron borealis  blue-green  white  p- y- (“yellow”) 1400-1500 

Boraginaceae  Myosotis decumbens  blue-green  blue  p- y+ (“blue”) 800-1000 

Brassicaceae  Draba incana  blue-green  white  p- y- (“yellow”) 700-1500 

Brassicaceae  Draba oxycarpa  blue-green  yellow  p- y- (“yellow”) 1600 

Caryophyllaceae  Cerastium alpinum  blue-green  white  p- y+ (“blue”) 700-1100 

Caryophyllaceae  Silene acaulis  blue-green  pink/purple  p- y+ (“blue”) 1000-1600 

Caryophyllaceae  Silene vulgaris  blue-green  white  p- y- (“yellow”) 700-900 

Caryophyllaceae  Stellaria nemorum  blue-green  white  p- y- (“yellow”) 700-900 

Crassulaceae  Sedum annuum blue-green  red  p- y- (“yellow”) 800-900 

Diapensiaceae  Diapensia lapponica  blue-green  white p- y- (“yellow”) 1040-1100 

Dipsacaceae  Knautia arvensis  blue-green  pink/purple  p- y+ (“blue”) 700-900 

Ericaceae  Andromeda polifolia  blue-green  white  p- y- (“yellow”) 1040-1260 

Ericaceae  Harrimanella hypnoides  blue-green  white  p- y- (“yellow”) 1040-1160 

Ericaceae Kalmia procumbens blue-green pink/purple p- y+ (“blue”) 1040-1160 

Ericaceae  Phyllodoce caerulea  blue-green  pink/purple  p- y+ (“blue”) 700-1500 

Ericaceae  Vaccinium vitis-idaea  blue-green  pink/purple  p- y- (“yellow”) 700-900 

Ericaceae  Vaccinium myrtillus  blue-green  red  p- y+ (“blue”) 1000-1100 

Fabaceae  Trifolium repens  blue-green  white  p- y- (“yellow”) 700-900 

Orchidaceae  Dactylorhiza maculata  blue-green  pink/purple  p- y+ (“blue”) 700 

Orchidaceae  Dactylorhiza fuchsii  blue-green  pink/purple  p- y+ (“blue”) 700 

Orobanchaceae Pedicularis lapponica  blue-green  yellow  p- y- (“yellow”) 700-800 

Orobanchaceae Pedicularis oederi  blue-green  yellow  p- y- (“yellow”) 920-1600 

Papaveraceae  Papaver radicatum  blue-green  yellow  p- y- (“yellow”) 900 
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Polygonaceae  Bistorta vivipara  blue-green  white  p- y- (“yellow”) 960-1100 

Polygonaceae  Rumex acetosa  blue-green  red  p- y- (“yellow”) 700-800 

Polygonaceae  Rumex acetosella  blue-green  red  p- y+ (“blue”) 700-900 

Primulaceae  Trientalis europaea  blue-green  white  p- y- (“yellow”) 900-1200 

Ranunculaceae  Pulsatilla vernalis  blue-green  pink/purple  p- y+ (“blue”) 1000-1200 

Ranunculaceae  Ranunculus glacialis  blue-green  pink/purple  p- y- (“yellow”) 1600 

Rosaceae  Dryas octopetala  blue-green  white  p- y- (“yellow”) 900-1500 

Rosaceae  Prunus padus  blue-green  white  p- y- (“yellow”) 700-800 

Rubiaceae  Galium boreale  blue-green  white  p- y- (“yellow”) 700-900 

Saxifragaceae  Saxifraga stellaris  blue-green  pink/purple  p- y- (“yellow”) 1400-1500 

Saxifragaceae  Saxifraga oppositifolia  blue-green  pink/purple  p- y+ (“blue”) 1400-1500 

Saxifragaceae  Saxifraga cespitosa  blue-green  white p- y- (“yellow”) 1100-1600 

Tofieldiaceae Tofieldia pusilla  blue-green  white p- y- (“yellow”) 1400 

Asteraceae  Tanacetum vulgare  green  yellow  p- y- (“yellow”) 800 

Brassicaceae  Erysinum strictum green  yellow  p- y- (“yellow”) 700-900 

Crassulaceae  Rhodiola rosea  green  green p- y- (“yellow”) 1160-1600 

Fabaceae  Astragalus frigidus  green  yellow  p- y- (“yellow”) 700-1000 

Fabaceae  Lathyrus pratensis  green  yellow  p- y- (“yellow”) 700-800 

Orobanchaceae Melampyrum sylvaticum  green  yellow  p- y- (“yellow”) 700-960 

Orobanchaceae Melampyrum pratense  green  yellow  p- y- (“yellow”) 700-800 

Ranunculaceae  Trollius europaeus  green  yellow  p- y- (“yellow”) 900 

Rosaceae  Alchemilla glabra  green  green p- y- (“yellow”) 700-1000 

Rosaceae  Potentilla crantzii  green  yellow  p- y- (“yellow”) 900-1600 

Rosaceae  Geum rivale  UV  pink/purple  p+ y+ (“UV”) 700-1000 
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Geraniaceae  Geranium sylvaticum  UV-blue  pink/purple  p+ y+ (“UV”) 700-1000 

Orobanchaceae Bartsia alpina  UV-blue  pink/purple  p+ y+ (“UV”) 700-1500 

Plantaginaceae Veronica fruticans  UV-blue  blue  p- y+ (“blue”) 700-900 

Asteraceae  Hieracium sp.  UV-green  yellow  p+ y- (“purple”) 900 

Asteraceae  Taraxacum officinale  UV-green  yellow  p+ y- (“purple”) 700-1000 

Ranunculaceae  Caltha palustris  UV-green  yellow  p+ y- (“purple”) 900-1000 

Ranunculaceae  Ranunculus acris  UV-green  yellow  p+ y- (“purple”) 700-1500 

Rosaceae  Potentilla erecta  UV-green  yellow  p+ y- (“purple”) 700-900 

Violaceae  Viola biflora  UV-green  yellow  p+ y- (“purple”) 800-1500 
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APPENDIX III, TO CHAPTER III 

Details of the rbcL sequences used to build the phylogenetic tree, including accession and citation details for the species  

providing rbcL sequences. “N/A” indicates that a suitable sequence from a species in the same genus or a closely related genus was not  

available. 

 

Species measured Species sequence used Family Accession Citation 

Achillea nobilis Achillea millefolium Asteraceae EU384938 

Panero,J.L. and Funk,V.A. The value of sampling anomalous taxa in 

phylogenetic studies: Major clades of the Asteraceae revealed. Mol. 

Phylogenet. Evol. 47, 757-782 (2008) 

Aconitum septentrionale Aconitum racemulosum   Ranunculaceae AY954488 

Wang,W., Li,R.-Q. and Chen,Z.-D. Systematic position of 

Asteropyrum (Ranunculaceae) inferred from chloroplast and nuclear 

sequences. 

Alchemilla glabra Alchemilla mollis Rosaceae AMU06792 

Soltis,D.E., Morgan,D.R., Grable,A., Soltis,P.S. and Kuzoff,R. 

Molecular Systematics of Saxifragaceae sensu stricto. Am. J. Bot. 

80, 1056-1081 (1993) 

Andromeda polifolia Andromeda polifolia Ericaceae AF124572 

Kron,K.A., Judd,W.S. and Crayn,D.M. Phylogenetic analyses of 

Andromedeae (Ericaceae subfam. Vaccinioideae). Am. J. Bot. 86, 

1290 (1999) 

Antennaria dioica Dimorphotheca sinuata Asteraceae EU384966 

Panero,J.L. and Funk,V.A. The value of sampling anomalous taxa in 

phylogenetic studies: Major clades of the Asteraceae revealed. Mol. 

Phylogenet. Evol. 47, 757-782 (2008) 
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Anthriscus sylvestris Anthriscus aemula Apiaceae D44554 

Kondo,K., Terabayashi,S., Okada,M., Yuan,C. and He,S. 

Phylogenetic relationship of medicinally important Cnidium 

offcinale and Japanese Apiaceae besed on rbcL sequences. J. Plant 

Res. 109, 21-27 (1996) 

Astragalus alpinus/frigidus Astragalus membranaceus Fabaceae EF685978 

Guo,H., Wang,W., Yang,R., Yuan,Y., Yang,N., Sun,Q. and Yu,J. 

Identification of Radix Astragali by DNA sequence of its ITS, rbcL, 

matk, cox1, and NAD1-intron2 

Bartsia alpina Bartsia alpina Orobanchaceae AF190903 

Olmstead,R.G., dePamphilis,C.W., Wolfe,A.D., Young,N.D., 

Elisons,W.J. and Reeves,P.A. Disintegration of the 

Scrophulariaceae. Am. J. Bot. 88, 348-361 (2001) 

Bistorta vivipara (syn. Polygonum 

viviparum) Polygonum cuspidatum Polygonaceae AB019031 

Inamura,A., Ohashi,Y., Sato,E., Yoda,Y., Masuzawa,T. and 

Yoshinaga,K. Intraspecific sequence variation of chloroplast DNA 

and a molecular phytogeographic study of Polygonum cuspidatum. 

Caltha palustris Caltha palustris Ranunculaceae AY395532 

Silvertown,J., McConway,K., Gowing,D., Dodd,M., Fay,M.F.,  

Joseph,J.A. and Dolphin,K. Absence of phylogenetic signal in the 

niche structure of meadow plant communities. Proc. Biol. Sci. 273, 

39-44 (2006) 

Campanula rotundifolia Campanula trachelium Campanulaceae DQ356118 

Antonelli,A. Higher level phylogeny and evolutionary trends in 

Campanulaceae subfam. Lobelioideae: Molecular signal 

overshadows morphology. Mol. Phylogenet. Evol. 46, 1-18 (2008) 

Harimanella hypnoides (syn. 

Cassiope hypnoides) Cassiope mertensiana Ericaceae L12603 

Kron,K.A. and Chase,M.W. Systematics of the Ericaceae, 

Empetraceae, Epacridaceae and related taxa based upon rbcL 

sequence data. Ann. Mo. Bot. Gard. 80, 735-741 (1993) 
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Cerastium alpinum Cerastium glomeratum Caryophyllaceae AM83542 

Manhart,J.R., Hugh,J.H. and Wilson,D. Phylogeny of the 

Caryophyllales. 

Chamerion angustifolium (syn. 

Epilobium angustifolium) Epilobium rigidum Onagraceae AF495763 

Levin,R.A., Wagner,W.L., Hoch,P.C., Nepokroeff,M., Pires,J.C., 

Zimmer,E.A. and Sytsma,K.J. Family-level relationships of 

Onagraceae based on chloroplast rbcL and ndhF data. Am. J. Bot. 

90, 107-115 (2003) 

Dactylorhiza maculata/fuschii Platanthera ciliaris  Orchidaceae AF074215 

Cameron,K.M., Chase,M.W., Whitten,W.M., Kores,P.J., 

Jarrell,D.C., Albert,V.A., Yukawa,T., Hills,H.G. and Goldman,D.H. 

A phylogenetic analysis of the Orchidaceae: evidence from rbcL 

nucleotide sequences. Am. J. Bot. 86, 208-224 (1999) 

Diapensia lapponica Diapensia lapponica Diapensiaceae L12612 

Kron,K.A. and Chase,M.W. Systematics of the Ericaceae, 

Empetraceae, Epacridaceae and related taxa based upon rbcL 

sequence data. Ann. Mo. Bot. Gard. 80, 735-741 (1993) 

Draba incarna/oxycarpa Draba nemorosa Brassicaceae NC_009272 

Hosouchi,T., Tsuruoka,H. and Kotani,H. Sequencing analysis of 

Draba nemoroza chloroplast DNA. 

Dryas octopetala Dryas drummondii Rosaceae U59818 

Swensen,S.M. The evolution of actinorhizal symbioses: evidence for 

multiple origins of the symbiotic association. Am. J. Bot. 83, 1503-

1512 (1996) 

Erigeron borealis Erigeron tenuis Asteraceae EU384973 

Panero,J.L. and Funk,V.A. The value of sampling anomalous taxa in 

phylogenetic studies: Major clades of the Asteraceae revealed. Mol. 

Phylogenet. Evol. 47, 757-782 (2008) 

Erysimum hieracifolium Erysimum capitatum Brassicaceae AY167980 

Cummings,M.P., Nugent,J.M., Olmstead,R.G. and Palmer,J.D. 

Phylogenetic analysis reveals five independent transfers of the 

chloroplast gene rbcL to the mitochondrial genome in angiosperms. 
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Curr. Genet. 43, 131-138 (2003) 

Galium boreale Galium mollugo Rubiaceae AY395538 

Silvertown,J., McConway,K., Gowing,D., Dodd,M., Fay,M.F.,  

Joseph,J.A. and Dolphin,K. Absence of phylogenetic signal in the 

niche structure of meadow plant communities. Proc. Biol. Sci. 273, 

39-44 (2006) 

Geranium sylvaticum Geranium albanum Geraniaceae DQ452884 

Fiz,O., Vargas,P., Alarcon,M., Aedo,C., Garcia,J.L. and 

Aldasoro,J.J. Phylogeny and historical biogeography of Geraniaceae 

in relation to multiple major increases and decreases in 

mitochondrial climate changes and pollination ecology. Syst. Bot. 

33, 326-342 (2008) 

Geum rivale Geum macrophyllum Rosaceae U06806 

Soltis,D.E., Morgan,D.R., Grable,A., Soltis,P.S. and Kuzoff,R. 

Molecular Systematics of Saxifragaceae sensu stricto. Am. J. Bot. 

80, 1056-1081 (1993) 

Hieracium sp. N/A    

Knautia arvensis Knautia intermedia Dipsacaceae Y10698 

Backlund,A. and Bremer,B. Phylogeny of the Asteridae s.str. based 

on rbcL sequences with particular reference to the Dipsacales. Plant 

Syst. Evol. 200 (1997) 

Lathyrus pratensis Lathyrus pratensis Fabaceae AY395544 

Silvertown,J., McConway,K., Gowing,D., Dodd,M., Fay,M.F.,  

Joseph,J.A. and Dolphin,K. Absence of phylogenetic signal in the 

niche structure of meadow plant communities. Proc. Biol. Sci. 273, 

39-44 (2006) 
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Kalmia procumbens Kalmia procumbens Ericaceae U49288 

Kron,K.A. and King,J.M. Cladistic relationships of Kalmia, 

Leiophyllum and Loiseleuria (Phyllodoceae, Ericaceae) based on 

rbcL and nrITS data. Syst. Bot. 21, 17-29 (1996) 

Melampyrum sylvaticum/pratensis Melampyrum sylvaticum Orobanchaceae AM503854 

Li,M., Wunder,J., Bissoli,G., Scarponi,E., Gazzani,S., Barbaro,E., 

Saedler,H. and Varotto,C. Development of COS genes as 

universally amplifiable markers for phylogenetic reconstructions of 

closely related plant species. Cladistics (2008) In press 

Myosotis decumbens Myosotis discolor Boraginaceae AY395552 

Silvertown,J., McConway,K., Gowing,D., Dodd,M., Fay,M.F.,  

Joseph,J.A. and Dolphin,K. Absence of phylogenetic signal in the 

niche structure of meadow plant communities. Proc. Biol. Sci. 273, 

39-44 (2006) 

Oxytropis lapponica Oxytropis anertii Fabaceae EF685981 

Guo,H., Wang,W., Yang,R., Yuan,Y., Yang,N., Sun,Q. and Yu,J. 

Identification of Radix Astragali by DNA sequence of its ITS, rbcL, 

matk, cox1,and NAD1-intron2. 

Papaver radicatum 

Papaver sp. Goldblatt 

12541 Papaveraceae AM235045 

Forest,F., Grenyer,R., Rouget,M., Davies,T.J., Cowling,R.M., 

Faith,D.P., Balmford,A., Manning,J.C., Proches,S., van der 

Bank,M., Reeves,G., Hedderson,T.A. and Savolainen,V. Preserving 

the evolutionary potential of floras in biodiversity hotspots. Nature 

445, 757-760 (2007) 

Pedicularis oederi/lapponica Pedicularis coronata Orobanchaceae AF206803 

Soltis,P.S., Soltis,D.E. and Chase,M.W. Angiosperm phylogeny 

inferred from multiple genes as a tool for comparative biology. 

Phyllodoce caerulea Phyllodoce caerulea Ericaceae AF419829 Kron,K.A. 

Pinguicula vulgaris Pinguicula caerulea Lentibulariaceae L01942 

Albert,V.A., Williams,S.E. and Chase,M.W. Carnivorous plants: 

phylogeny and structural evolution. Science 257, 1491-1495 (1992) 
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Polemonium caerulum Polemonium reptans Polemoniaceae L11687 

Olmstead,R.G., Michaels,H.J., Scott,K.M. and Palmer,J.D. 

Monophyly of the Asteridae and identification of their major 

lineages inferred from DNA sequences of rbcL. Ann. Mo. Bot. 

Gard. 79, 249-265 (1992) 

     

Potentilla erecta/crantzii Potentilla fruticosa Rosaceae U06818 

Soltis,D.E., Morgan,D.R., Grable,A., Soltis,P.S. and Kuzoff,R. 

Molecular Systematics of Saxifragaceae sensu stricto. Am. J. Bot. 

80, 1056-1081 (1993) 

Primula stricta/scandinavica Primula stricta Primulaceae AF394975 

Trift,I., Kallersjo,M. and Anderberg,A.A The monophyly of Primula 

(Primulaceae) evaluated by analysis of sequences from the 

chloroplast gene rbcL. Syst. Bot. 27, 396-407 (2002) 

Prunus padus Prunus padus Rosaceae AF411485 Jung,Y.H., Han,S.H., Oh,Y.S. and Oh,M.Y. 

Pulsatilla vernalis Pulsatilla cernua Ranunculaceae AY954492 

Wang,W., Li,R.-Q. and Chen,Z.-D. Systematic position of 

Asteropyrum (Ranunculaceae) inferred from chloroplast and nuclear 

sequences. 

Ranunculus acris/glacialis Ranunculus acris Ranunculaceae AY395557 

Silvertown,J., McConway,K., Gowing,D., Dodd,M., Fay,M.F.,  

Joseph,J.A. and Dolphin,K. Absence of phylogenetic signal in the 

niche structure of meadow plant communities. Proc. Biol. Sci. 273, 

39-44 (2006) 

Rumex acetosa and acetosella Rumex acetosella Polygonaceae D86290 

Yasui,Y. and Ohnishi,O. Comparative study of rbcL gene sequences 

in Fagopyrum and related taxa. Genes Genet. Syst. 71, 219-224 

(1996) 
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Saxifraga stellaris/oppositifolia/ 

cespitosa Saxifraga stellaris Saxifragaceae AF374732 

Soltis,D.E., Kuzoff,R.K., Mort,M.E., Zanis,M., Fishbein,M., 

Hufford,L., Koontz,J. and Arroyo,M.K. Elucidating deep-level 

phylogenetic relationships in Saxifragaceae using sequences for six 

chloroplastic and nuclear DNA regions. Ann. Mo. Bot. Gard. 88, 

669-693 (2001) 

Sedum anuum and Rhodiola rosea 

(syn. Sedum rosea) Sedum rubrotinctum Crassulaceae L01956 

Albert,V.A., Williams,S.E. and Chase,M.W. Carnivorous plants: 

phylogeny and structural evolution. Science 257, 1491-1495 (1992) 

Silene acaulis/dioica/vulgaris Silene dioica Caryophyllaceae EF646928 

Muir,G. and Filatov,D. A selective sweep in the chloroplast DNA of 

dioecious Silene (section Elisanthe) Genetics 177, 1239-1247 (2007) 

Stellaria nemorum Stellaria media Caryophyllaceae AF206823 

Soltis,P.S., Soltis,D.E. and Chase,M.W. Angiosperm phylogeny 

inferred from multiple genes as a tool for comparative biology. 

Tanacetum vulgare N/A    

Taraxacum officinale Taraxacum officinale Asteraceae AY395562 

Silvertown,J., McConway,K., Gowing,D., Dodd,M., Fay,M.F.,  

Joseph,J.A. and Dolphin,K. Absence of phylogenetic signal in the 

niche structure of meadow plant communities. Proc. Biol. Sci. 273, 

39-44 (2006) 

Tofieldia pusilla Tofieldia pusilla Tofieldiaceae AJ286562 Bremer,K. Early Cretaceous lineages of monocot flowering plants. 

Trientalis europaea Trientalis europaea Primulaceae U96655 

Anderberg,A., Stahl,B. and Kallersjo,M. Phylogenetic 

interrelationships in the Primulales inferred fromcpDNA rbcL 

sequence data. Plant Syst. Evol. (1998) 

Trifolium pratense/repens Trifolium pratense Fabaceae AY395564 

Silvertown,J., McConway,K., Gowing,D., Dodd,M., Fay,M.F.,  

Joseph,J.A. and Dolphin,K. Absence of phylogenetic signal in the 

niche structure of meadow plant communities. Proc. Biol. Sci. 273, 

39-44 (2006) 
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Trollius europaeus Trollius laxus Ranunculaceae AY954486 

Wang,W., Li,R.-Q. and Chen,Z.-D. Systematic position of 

Asteropyrum (Ranunculaceae) inferred from chloroplast and nuclear 

sequences. 

Vaccinium vitis-idaea/myrtillus Vaccinium vitis-idaea Ericaceae AF419837 Kron,K.A. 

Veronica alpinus/fruticans 

Veronica anagallis-

aquatica Plantaginaceae AY034021 

Wagstaff,S.J., Bayly,M.J., Garnock-Jones,P.J. and Albach,D.C. 

Classification, origin, and diversification of the New Zealand hebes 

(Scrophulariaceae). 

Vicia cracca Vicia cracca Fabaceae AY395566 

Silvertown,J., McConway,K., Gowing,D., Dodd,M., Fay,M.F.,  

Joseph,J.A. and Dolphin,K. Absence of phylogenetic signal in the 

niche structure of meadow plant communities. Proc. Biol. Sci. 273, 

39-44 (2006) 

Viola biflora/canina Viola philippica Violaceae AB354436 

Tokuoka,T. Molecular phylogenetic analysis of Violaceae 

(Malpighiales) based on plastid and nuclear DNA sequences. 

Viscaria alpina N/A    
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APPENDIX IV, TO CHAPTER III 

 

Details of the ITS sequences used to discriminate species within genera. 

Species Accession Citation 

Saxifraga cespitosa AF087604 

Conti,E., Soltis,D.E., Hardig,T.M. and Schneider,J. Phylogenetic relationships of the silver saxifrages (Saxifraga, 

sect. Ligulatae haworth): implications for the evolution of substrate specificity, life histories, and biogeography. Mol. 

Phylogenet. Evol. 13, 536-555 (1999) 

Saxifraga oppositifolia AF087592 

Conti,E., Soltis,D.E., Hardig,T.M. and Schneider,J. Phylogenetic relationships of the silver saxifrages (Saxifraga, 

sect. Ligulatae haworth): implications for the evolution of substrate specificity, life histories, and biogeography. Mol. 

Phylogenet. Evol. 13, 536-555 (1999) 

Saxifraga stellaris AF374827 

Soltis,D.E., Kuzoff,R.K., Mort,M.E., Zanis,M., Fishbein,M., Hufford,L., Koontz,J. and Arroyo,M.K. Elucidating 

deep-level phylogenetic relationships in Saxifragaceae using sequences for six chloroplastic and nuclear DNA 

regions. Ann. Mo. Bot. Gard. 88, 669-693 (2001) 

Silene acaulis U30949 

Desfeux,C., Maurice,S., Henry,J.P., Lejeune,B. and Gouyon,P.H. Evolution of reproductive systems in the genus 

Silene. Proc. R. Soc. Lond., B, Biol. Sci. 263, 409-414 (1996). 

Silene dioica U32568 

Desfeux,C., Maurice,S., Henry,J.P., Lejeune,B. and Gouyon,P.H. Evolution of reproductive systems in the genus 

Silene. Proc. R. Soc. Lond., B, Biol. Sci. 263, 409-414 (1996). 

Silene vulgaris U30969 

Desfeux,C., Maurice,S., Henry,J.P., Lejeune,B. and Gouyon,P.H. Evolution of reproductive systems in the genus 

Silene. Proc. R. Soc. Lond., B, Biol. Sci. 263, 409-414 (1996). 
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APPENDIX V, TO CHAPTER IV 

Phenology tables for the five habitats. Black boxes indicate that the corresponding 

species was observed in bloom during that month; white boxes indicate that the species 

was not observed to flower during that month. 

 

Phenology table for the dry grassland. 

 

Family Species M

A

R 

A

P

R 

M

A

Y 

J

U

N 

J

U

L 

A

U

G 

S

E

P 

O

C

T 

Flower colour 

          Humans Bees 

Apiaceae Aegopodium podagria         white blue-green 

 Anthriscus silvestris         white blue-green 

 Pimpinella major         white blue-green 

 Peucedanum oreoselinum         white blue-green 

Asclepiadaceae Cynanchum vincetoxicum         white blue-green 

Asteraceae Achillea millefolium         white blue-green 

 Cirsium arvense         pink blue-green 

 Cirsium oleraceum         white blue-green 

 Cirsium palustre         purple blue 

 Conyza canadiensis         white blue-green 

 Eupatorium cannabinum         pink blue-green 

 Hieracium sabaudum         yellow UV-green 

 Matricaria maritima         white blue-green 

 Mycelis muralis         yellow UV-green 

 Senecio vernalis         yellow UV-green 

 Senecio viscosus         yellow UV-green 

 Senecio vulgaris         yellow green 

 Sonchus arvensis         yellow UV-green 

 Taraxacum officinale         yellow UV-green 

Boraginaceae Lithospernum  arvensis         white blue-green 

 Myosotis arvensis         blue blue-green 

 Myosotis hispida         blue blue 

Brassicaceae Alliaria petiolata         white blue-green 

 Arabis glabra         white blue-green 

 Berteroa incana         white blue-green 

 Capsella bursa-pastoris         white blue-green 
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 Erysimum cheiranthoides         yellow UV-green 

Campunulaceae Campanula rotundifolia         blue blue 

 Campanula trachelium         blue UV-blue 

Caprifoliaceae Viburnum opulus         white blue-green 

Caryophyllaceae Arenaria serpyllifolia         white blue-green 

 Cerastium arvense         white blue-green 

 Dianthus carthusianum         purple blue 

 Holosteum umbellatum         white blue-green 

 Melandrium album         white blue-green 

 Myosoton aquaticon         white blue-green 

Convolvulaceae Calystegia sepium         white blue-green 

Cornaceae Cornus sanguinea         white blue-green 

Crassulaceae Sedum maximum         white blue-green 

 Sedum sexangulare         yellow green 

Euphorbiaceae Euphorbia cyparissias         green green 

Fabaceae Astragalus glycyphyllos         green blue-green 

 Coronilla varia         pink blue-green 

 Trifolium campestre         yellow green 

 Trifolium dubium         yellow green 

 Vicia sativa         purple UV-blue 

 Vicia sepium         blue UV-blue 

Geraniaceae Geranium robertianum         pink blue 

Guttiferae Hypericum perforatum         yellow UV-green 

Lamiaceae Clinopodium vulgare         purple blue 

 Galeopsis pubescens         pink blue 

 Galeopsis tetrahit         pink blue-green 

 Glechoma hederacea         purple blue 

 Salvia pratensis         purple UV-blue 
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 Stachys rectus         white blue-green 

Liliaceae Allium oleraceum         pink blue 

 Asparagus officinalis         green green 

 Gagea pratensis         yellow UV-green 

 Polygonatum odoratum         white blue-green 

Onagraceae Epibolium angustifolium         pink blue 

 Epibolium hirsutum         purple blue 

Papaveraceae Chelidonium majus         yellow UV-green 

 Papaver dubium         red UV 

 Papaver rhoeas         red UV 

 Papaver somniferum         red UV 

Primulaceae Primula veris         yellow green 

Ranunculaceae Ranunculus acris         yellow UV-green 

 Thalictrum minus         yellow green 

Rosaceae Fragaria viridis         white blue-green 

 Geum rivale         pink UV-blue 

 Geum urbanum         yellow UV-green 

 Potentilla argentea         yellow UV-green 

 Potentilla heptaphylla         yellow UV-green 

 Rosa canina         pink blue-green 

 Rubus caesius         white blue-green 

Rubiaceae Galium aparine         white blue-green 

 Galium mollugo         white blue-green 

 Galium verum         yellow green 

Scrophulariaceae Linaria vulgaris         yellow blue-green 

 Veronica arvensis         blue blue 

 Veronica chamaedrys         blue UV-blue 

 Veronica spicata         blue blue 
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 Veronica prostrata         blue UV-blue 

Solanaceae Solanum dulcamara         purple UV-blue 

 Solanum nigrum         white blue-green 
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Phenology table for the humid meadow. 

 

Family Species M

A

R 

A

P

R 

M

A

Y 

J

U

N 

J

U

L 

A

U

G 

S

E

P 

O

C

T 

Flower colour 

          Humans Bees 

Apiaceae Aegopodium 

podagrarium 

        white blue-green 

 Anthriscus silvestris         white blue-green 

 Peucedanum oreoselinum         white blue-green 

 Pimpinella major         white blue-green 

 Torilis japonica         white blue-green 

Asteraceae Achillea millefolium         white blue-green 

 Bellis perennis         white blue-green 

 Chamomilla recutita         white blue-green 

 Cirsium oleraceum         white blue-green 

 Crepis paludosa         yellow UV-green 

Boraginaceae Myosotis arvensis         blue blue-green 

 Symphytum officinale         purple blue 

Brassicaceae Cardamine pratensis         pink blue-green 

Campanulaceae Campanula patula         purple UV-green 

Caryophyllaceae Cerastium arvense         white blue-green 

 Cerastium holosteoides         white blue-green 

 Lychnis flos-cuculi         pink blue 

 Stellaria palustris         white blue-green 

Fabaceae Lathyrus pratensis         yellow green 

 Lotus corniculatus         yellow green 

 Trifolium campestre         yellow green 

 Trifolium pratense         pink blue 

 Trifolium repens         white blue-green 

 Vicia cracca         purple blue 

Lamiaceae Ajuga genevensis         blue UV-blue 

 Mentha aquatica         pink blue-green 

 Mentha arvensis         pink blue 

 Prunella vulgaris         blue blue 

Liliaceae Allium oleraceum         pink blue 

Lythraceae Lythrum salicaria         purple UV-blue 

Onagraceae Epilobium hirsutum         purple blue 

 Epilobium parviflora         pink blue 
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Polygonaceae Polygonum bistorta         pink blue-green 

 Rumex acetosa         red blue-green 

Ranunculaceae Ranunculus acris         yellow UV-green 

 Ranunculus repens         yellow green 

Rosaceae Filipendula ulmata         white blue-green 

 Geum rivale         pink UV-green 

 Geum urbanum         yellow UV-green 

Rubiaceae Galium mollugo         white blue-green 

Scrophulariaceae Veronica chamaedrys         blue UV-blue 

Valerianaceae Valeriana sambucifolia         white blue-green 
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Phenology table for the roadside. 

 

Family Species M

A

R 

A

P

R 

M

A

Y 

J

U

N 

J

U

L 

A

U

G 

S

E

P 

O

C

T 

Flower colour 

          Humans Bees 

Apiaceae Pimpinella major         white blue-green 

 Torilis japonica         white blue-green 

Asteraceae Achillea milefolium         white blue-green 

 Crepis paludosa         yellow UV-green 

 Hieracium murorum         yellow UV-green 

 Hieracium pilosella         yellow UV-green 

 Hieracium sabaudum         yellow UV-green 

 Mycelis muralis         yellow UV-green 

 Senecio jacobea         yellow UV-green 

 Senecio vulgaris         yellow green 

 Taraxacum officinale         yellow UV-green 

 Tussilago farfara         yellow UV-green 

Boraginaceae Myosotis arvensis         blue blue-green 

Brassicaceae Arabidopsis thaliana         white blue-green 

 Berteroa incana         white blue-green 

 Capsella bursa-pastoris         white blue-green 

 Cardaminopsis arenosa         white blue-green 

Campanulaceae Campanula patula         purple UV-blue 

 Jasione montana         blue blue 

Caprifoliaceae Symphoricarpus albus         pink blue 

Caryophyllaceae Arenaria serpyllifolia         white blue-green 

 Cerastium glomeratum         white blue-green 

 Cerastium holosteoides         white blue-green 

 Holosteum umbellatum         white blue-green 

 Silene nutans         white blue-green 

 Silene vulgaris         white blue-green 

 Stellaria graminea         white blue-green 

 Stellaria holostea         white blue-green 

Cornaceae Cornus sanguinea         white blue-green 

Dipsacaceae Knautia arvensis         pink blue-green 

Euphorbiaceae Euphorbia cyparissias         green green 

Fabaceae Lathyrus vernus         purple blue 

 Trifolium dubium         yellow green 
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 Trifolium campestre         yellow green 

 Trifolium pratense         pink blue 

 Trifolium repens         white blue-green 

 Vicia hirsuta         blue blue-green 

 Vicia sepium         blue UV-blue 

Guttiferae Hypericum perforatum         yellow UV-green 

Lamiaceae Ajuga genevensis         blue UV-blue 

Ranunculaceae Ranunculus acris         yellow UV-blue 

 Ranunculus repens         yellow green 

Rosaceae Agrimonia eupatoria         yellow UV-green 

 Fragaria vesca         white blue-green 

 Geum urbanum         yellow UV-green 

 Potentilla argentea         yellow UV-green 

 Potentilla reptans         yellow UV-green 

 Prunus padus         white blue-green 

 Prunus spinosa         white blue-green 

 Rubus caesius         white blue-green 

Scrophulariaceae Linaria vulgaris         yellow blue-green 

 Veronica chamaedrys         blue UV-blue 
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Phenology table for the hazel shrub community. 

 

Family Species M

A

R 

A

P

R 

M

A

Y 

J

U

N 

J

U

L 

A

U

G 

S

E

P 

O

C

T 

Flower colour 

          Humans Bees 

Apiaceae Aegopodium podagraria         white blue-green 

 Anthriscus silvestris         white blue-green 

 Torilis japonica         white blue-green 

Asteraceae Cirsium oleraceum         white blue-green 

Balsaminaceae Impatiens parviflora         yellow UV 

Boraginaceae Pulmonaria obscura         purple UV-blue 

Brassicaceae Alliaria petiolata         white blue-green 

Campanulaceae Campanula latifolia         blue UV-blue 

 Campanula 

rapunculoides 

        blue UV-blue 

 Campanula trachelium         blue UV-blue 

Caryophyllaceae Arenaria serpyllifolia         white blue-green 

Geraniaceae Geranium robertianum         pink blue 

Lamiaceae Galeopsis pubescens         pink blue 

 Stachys sylvatica         purple blue 

Liliaceae Maianthemum bifolium         white blue-green 

 Paris quadrifolia         green green 

 Polygonatum multiflorum         green blue-green 

Papaveraceae Chelidonium majus         yellow UV-green 

Ranunculaceae Anemone ranunculoides         yellow UV-green 

 Hepatica nobilis         purple blue 

 Ranunculus ficaria         yellow UV-green 

 Ranunculus sceleratus         yellow UV-green 

Rosaceae Geum urbanum         yellow UV-green 

 Rubus caesius         white blue-green 

Rubiaceae Gallium aparine         white blue-green 

Scrophulariaceae Lathraea squamaria         purple blue 
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Phenology table for the maple forest. 

 

Family Species M

A

R 

A

P

R 

M

A

Y 

J

U

N 

J

U

L 

A

U

G 

S

E

P 

O

C

T 

Flower colour 

          Humans Bees 

Apiaceae Aegopodium podagraria         white blue-green 

 Anthriscus silvestris         white blue-green 

 Torilis japonica         white blue-green 

Balsaminaceae Impatiens parviflora         yellow UV 

Boraginaceae Pulmonaria obscura         purple UV-blue 

Brassicaceae Alliaria petiolata         white blue-green 

Campanulaceae Campanula latifolia         blue UV-blue 

 Campanula 

rapunculoides 

        blue UV-blue 

 Campanula trachelium         blue UV-blue 

Caryophyllaceae Arenaria serpyllifolia         white blue-green 

 Stellaria holostea         white blue-green 

Geraniaceae Geranium robertianum         pink blue 

Lamiaceae Galeopsis pubescens         pink blue 

 Stachys sylvatica         purple blue 

Liliaceae Paris quadrifolia         green green 

Papaveraceae Chelidonium majus         yellow UV-green 

Primulaceae Primula veris         yellow green 

Ranunculaceae Anemone ranunculoides         yellow UV-green 

 Hepatica nobilis         purple blue 

Rosaceae Geum urbanum         yellow UV-green 

 Rubus caesius         white blue-green 

Rubiaceae Gallium aparine         white blue-green 

Scrophulariaceae Scrophularia nodosa         green blue-green 

 Veronica chamaedrys         blue UV-blue 
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APPENDIX VI, TO CHAPTER VI 

 

Site and species list of flowers sampled from Brazil, Israel, Costa Rica and South 

Africa, for the comparison of colour compositions of floral communities. 

 

Species 
 

Bee colour 
 Human colour (if recorded) 

Brazil, Location 1: Riberao Preto  

Aeschynomene paniculata  green  red-yellow  
Banisteria stellaris  blue  pink  
Banisteriopsis laevifolia  blue  violet-brown-green  
Bidens gardineri  green  orange  
Byrsonima crassa  UV-green  yellow  
Cambessedesia ilicifolia  UV-green  yellow  
Camptosema ellipticum  UV  red  
Chamaecrista nictitans  green  yellow  
Chamaecrista sp.  UV-green  yellow  
Cochlospermum regium  UV-green  yellow  
Desmodium pachyrhiza  blue-green  dark red  
Eremanthus sphaerocephalus  UV-blue  violet  
Gochnatia barrosii  blue-green  light green  
Helicteres brevispira  blue-green  orange  
Hyptis pauliana  blue-green  red  
Hyptis suaveolens  UV-blue  light violet  
Hyptis multibracteata  blue-green  light violet  
Jacaranda puberula  blue  dark violet  
Lippia lupulina  blue  violet  
Lippia pachyrhiza   blue   violet   
Lithraea molleoides  green  yellow  
Luehea speciosa  blue-green  white-pink  
Myrcia uberavensis  blue-green  white-light green  
Ouratea nana  green  yellow  
Pyrostegia venusta  green  orange  
Roupala montana  blue-green  white-green  
Serjania lethalis  blue-green  white-light green  
Sida linifolia  green  yellow  
Stilpnopappus speciosus  blue-green  white-red  
Tibouchina stenocarpa  UV-blue  dark violet  
Turnera sp.  UV  cream-yellow  
Vernonia ferruginea  blue-green  pink  
Waltheria indica  UV-green  yellow  
   
Brazil, Location 2: Salvador   

Cuphea sp.   blue-green   yellow-red   
Rhizophora mangle  UV-blue  yellow-green  
Polygala sp.  blue-green  white  
Mimosa sp.  blue  light pink  
Lantana hirta  blue  pink  
Dalbergia ecastaphyllum  UV  yellow  
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Brazil, Location 3: Sao Paulo   

Abutilon sp.  blue  pink  
Achyrocline saturejoides  blue-green  light yellow  
Aechmea sp.  UV-blue  pink  
Ageratum conyzoides  blue  violet  
Aphelandra crenata  UV-blue  violet  
Asclepias curassavica  green  yellow  
Begonia fischeri  blue  pink  
Begonia sp.  blue-green  pink  
Billbergia sp.  blue  red  
Borreria capitata  blue  pink  
Calliandra tweediei  blue-green  red  
Canistum cyatiforma  blue  violet  
Canna limbata  UV  orange  
Cardamine pratensis  UV  light pink  
Cestrum sp.  UV-green  yellow  
Chrysanthemum leucanthemum  blue-green  white  
Cissus sp.  blue  violet  
Dichorisandra sp.  UV-blue  dark violet  
Dietes sp.  blue-green  light yellow  
Dombeya burgessiae  blue  pink  
Dombeya wallichii  UV-blue  pink  
Emilia sonchifolia  blue  red  
Epidendrum imatophyllum  blue  pink  
Erigeron sp.  blue-green  white  
Erythrina speciosa  UV  red  
Eupatorium pauciflorum  blue-green  light blue  
Euphorbia milii  UV-blue  red  
Euphorbia pulcherrima  UV  yellow  
Fuchsia regia  blue  red  
Galinsoga parviflora  blue  white  
Heliconia velloziana  UV  orange  
Hemerocallis flava  UV-green  yellow  
Hibiscus rosa-sinensis  UV-blue  white-pink  
Impatiens sultani  UV  orange  
Ipomoea callida  blue  light violet  
Justicia brandegeana  UV-blue  white  
Justicia carnea  UV-blue  pink  
Justicia rizzini  blue  red  
Justicia sp.  UV  red  
Lantana camara  blue  pink  
Lantana hirta  blue-green  white  
Lantana lilacina  blue  pink  
Lonicera japonica  blue-green  cream-white  
Ludwigia elegans  UV-green  yellow  
Malva sp.  UV  red-orange  
Malvaviscus arboreus  UV  red  
Nemanthus sp.  green  orange  
Nidularium sp.  green  light green  
Oxalis sp.   blue   light violet   
Petasites sp.  blue-green  white-pink  
Polygonum capitatum  UV-blue  pink  
Pterolepis glomerata  blue-green  light violet  
Ranunculus sp.  blue  violet  
Rhododendron indicum  blue-green  violet  
Rubus rosaefolius  blue-green  white  
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Sagittaria sp.  blue-green  white  
Sanchezia nobilis  UV  yellow  
Siphocampylus convolvulaceus  UV  red  
Siphocampylus sp.  blue  violet  
Solanum sp.  blue  white  
Sonchus oleraceus  green  yellow  
Stachytarpheta speciosa  blue  violet  
Thunbergia grandiflora  blue-green  white  
Tibouchina cerastifolia  blue  violet  
Tibouchina granulosa  UV-blue  violet  
Tithonia diversifolia  UV-green  yellow  
Urera sp.  UV-blue  pink  
Vernonia scorpioides  blue  pink-white  
Vernonia sp.  UV-blue  light violet  
Vriesea carinata  green  yellow  
Vriesea incurvata  blue-green  orange  
Vriesia sp.  UV  yellow  
Wedelia paludosa  green  yellow  
   
Israel, Location 1: Avdat desert  

Achillea santolina green yellow 
Amberboa lippi UV-blue blue 
Anthemis melampodina  blue-green white 
Asphodelus tenuifolius  blue-green white 
Asphodelus aestivus UV-blue white 
Asphodelus aestivus blue white 
Asphodelus tenuifolius  blue-green white 
Astragalus amalescitanus  blue pink-white 
Astragalus sanctus  UV-blue violet-blue 
Astragalus tribuloides  blue violet-white 
Calendula arvensis  UV-green yellow 
Centaurea aegyptiaca blue-green grey-white 
Centaurea ammoncyanus  blue pink 
Colutea istria  UV-green yellow 
Convolvulus althaeoides  UV-blue pink 
Diplotaxis harra  green yellow 
Eremostachys laciniata  blue-green white 
Erodium ciconium UV-blue blue 
Erodium crassifolium  UV-blue pink 
Erodium laciniatum UV-blue pink 
Fagonia mollis UV-blue pink 
Glaucium corniculatum  UV orange 
Gymnocarpus decandrum  blue-green green-brown 
Gynandriris monophylla  blue violet 
Gynandriris monophylla  UV-blue violet 
Helianthemum ventosum  UV-green yellow 
Helianthemum vesicarium blue pink 
Hyoscamus aureus  green yellow 
Ixiolirion montanum UV-blue violet 
Lathyrus pseudocicera UV orange 
Launaea nudicaulis  UV-green yellow 
Leontodon laciniata  green yellow 
Leopoldia longipes UV green-brown 
Malva sylvestris  UV-blue pink-white 
Matricaria aurea  green yellow-green 
Moricandia nitens  UV-blue violet 
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Ornithogalum trichophyllum UV-blue white 
Papaver hybridum  UV red 
Picris longirostris  green yellow 
Reboudia pinnata blue-green white 
Retama raetam blue-green white 
Roemeria hybrida  UV-blue purple 
Salvia lanigera blue violet-pink 
Scorzonera papposa UV-blue lilac 
Senecio glauca  UV-green yellow 
Trigonella stellata green yellow-green 
Tripleurospermum auriculum  green yellow-green 
Zygophyllum dumosum  blue-green white 
   
Israel, Location 2: Hatzeva desert  

Aaronsohnia factorovskyi  green yellow 
Anthemis maris-mortui  blue-green white 
Asteriscus graveolens  green yellow 
Blepharis ciliaris  blue blue-violet 
Centaurea pallescens blue-green white-yellow 
Echium rauwolffi UV-blue pink 
Erodium laciniatum UV-blue violet 
Erucaria boveana blue-green white 
Fagonia arabica  UV-blue violet-pink 
Haplophyllum tuberculatum green green-yellow 
Hypecoum imberbe green yellow 
Kickxia floribunda  blue-green yellow-white 
Limonium pruinosum blue violet-pink 
Lotus lanuginosus UV-blue red 
Lycium shawii blue-green white 
Mesembryanthemum nodiflorum blue-green white 
Nitraria retusa blue-green white 
Reaumuria hirtella  blue white 
Tamarix nilotica  blue-green white-green-pink 
Zilla spinosa blue white 
   
Israel, Location 3: Har Gilo (Mediterranean)  

Adonis microcarpa  UV red 
Ajuga chia green yellow 
Alcea acaulis  blue pink 
Alkanna strigosa  UV-blue lilac 
Allium trifoliatum blue white 
Anagallis arvensis  UV-blue  
Anagyris foetida  green green 
Anagyris foetida  green yellow-brown 
Anchusa strigosa  UV-blue blue-violet 
Anemone coronaria  UV-blue red 
Antirrhinum majus  UV-blue violet 
Biscutella didyma  UV-green yellow 
Calycotome villosa UV-green yellow 
Cardaria draba  blue-green white 
Cercis siliquastrum blue pink 
Cistus incanus  blue pink-violet 
Cistus salvifolius blue-green white 
Crataegus aronia  blue-green  
Crepis aspera  green yellow 
Crepis hierosolymitana  UV-green yellow 
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Crepis sancta  UV-green yellow 
Crepis sancta blue-green green 
Crupina crupinastrum  blue violet 
Cyclamen persicum blue-green pink 
Echium angustifolium  UV-blue red 
Erodium acaule  UV-blue  
Erodium cicutarium  UV-blue lilac-pink 
Erodium malacoides UV-blue violet 
Euphorbia hierosolymitana green yellow-green 
Fagonia brugueri  blue white-violet 
Fagonia glutinosa  blue white-violet 
Fumana thymifolia UV-green yellow 
Geranium molle UV-blue violet 
Gynandriris sisyrinchium  blue blue 
Gypsophila arabica  UV-blue white 
Hedypnois rhagadioloides UV-green yellow 
Hirschfeldia incana  UV-green yellow 
Isatis lusitanica UV-green yellow 
Lamium amplexicaule  blue violet 
Lathyrus aphaca  green yellow 
Lathyrus aphaca  UV green 
Lathyrus blepharicarpus  UV orange 
Lathyrus gorgonii  UV  
Launaea mucronata UV-green yellow 
Lavatera cretica  blue  
Lotus collinus  UV-green yellow 
Lotus peregrinus  green yellow 
Medicago turbinata  green yellow 
Micromeria nervosa  blue violet-pink 
Onobrychis squarrosa UV-blue pink 
Onobrychis squarrosa blue pink 
Ononis natrix UV-green yellow 
Orchis galilaea  blue-green violet-green 
Orchis papilionacea UV-blue violet-brown 
Orchis tridentata blue  
Ornithogalum neurostegium UV-blue white 
Papaver hybridum  UV red 
Papaver rhoeas  UV red 
Papaver subpiriforme  UV red 
Prunus ursina blue-green  
Ranunculus asiaticus  green pink 
Ranunculus marginatus  UV-green yellow 
Rhagadiolus stellatus  UV-green yellow 
Ruta chalapensis green yellow-green 
Salvia dominica  blue-green  
Salvia fruticosa  blue violet-white 
Salvia hierosolymitana  UV-blue dark red 
Satureja thymbra blue violet-white 
Scrophularia xanthoglossa  UV-blue dark brown 
Senecio vernalis  UV-green yellow 
Silene aegyptiaca  blue  
Sinapis arvensis  UV-green yellow 
Sonchus oleraceus  UV green-yellow 
Tetragonolobus palaestinus UV red 
Thrincia tuberosa  UV-green yellow 
Tragopogon coelesyriacus  UV-blue violet 
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Trifolium stellatum blue pink 
Trifolium clypeatum  blue-green white 
Trifolium resupinatum blue violet 
Trigonella caelesyriaca  green yellow 
Trigonella kotscyi UV-green yellow 
Urospermum picroides green yellow 
Vicia hybrida  green yellow 
Vicia palaestina  blue blue-violet 
Vicia sativa UV-blue violet 
   
Israel, Location 4: Har Meirion (Mediterranean) 

Acanthus syriacus  blue pink-green 
Ainsworthia trachycarpa blue-green white 
Alcea dissecta  UV-blue pink 
Allium neapolitanum blue white 
Allium nigrum blue-green white 
Allium trifoliatum blue-green white 
Anthemis cornucopia  blue-green white 
Anthemis pseudocotula blue-green white 
Arbutus andrachne  blue-green white 
Asperula libanotica blue-green white 
Asphodelus aestivus blue white 
Bellvalia flexuosa  blue-green white-yellow 
Cephalanthera longifolia  blue-green white 
Crataegus azarolus  blue-green white 
Crepis hierosolymitana  UV-green yellow 
Crepis palaestina UV-green yellow 
Erucaria hispanica  blue-green pink 
Fumaria densiflora  blue pink 
Geranium purpureum UV-blue pink 
Geropogon hybridus  UV-blue pink 
Hesperis pendula green yellow-green 
Lamium garganicum  blue white-pink 
Leopoldia comosa  UV-blue violet 
Leopoldia comosa  UV brown 
Limodorum abortivum  UV-blue violet-white 
Linum pubescens UV-blue pink 
Orchis anatolica  blue violet 
Orchis italica  blue red-pink 
Ornithogalum neurostegium UV-blue white 
Pisum elatium  UV-blue pink 
Ranunculus millefolius  UV-green yellow 
Salvia hierosolymitana  blue-green pink 
Scandix pectenveneris blue-green white 
Scilla hyacinthoides  blue violet 
Silene dichotoma  blue-green white 
Symphytum brachycalyx  blue-green white 
Trifolium repens  blue-green white 
Valeriana dioscordiis  blue-green white 
   
South Africa, Location 1: North of Garies, towards Hondeklipbaai 

Didelta spinosa  UV  
Dimorphotheca sinuata UV  
Senecio sp. blue  
Ferraria ferrariola UV-blue  
Ferraria uncinata UV  
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Lapeirousia silenoides blue  
Pelargonium incrassatum blue  
Microloma sagittatum blue  
Felicia maxmimelleri blue  
Dimorphotheca sinuata UV  
Sperguleria media green  
Ornithogalum polyphyllum UV-blue  
Dorotheanthus bellidiformis blue-green  
Drosanthemum sp blue-green  
Hermannia trifuica blue-green  
Babiana pubescens blue  
Lapeirousia jacquinia blue  
Lyperia tristus UV  
Lebeckia serecia UV-blue  
Heliophila cf. coronopifolia blue-green  
Wahlenbergia sp. UV-blue  
Pelargonium praemorsum blue-green  
Sarcocaulon sp. UV-blue  
Leysera tenella UV  
Babiana spiralis blue  
Manulea sp. UV  
   
South Africa, Location 2: Kharkauis  

Heliophila sp. blue-green  
Salvia dentata blue-green  
Cotula cf. leptalea green  
Sperguleria media blue-green  
Gorteria diffusa UV-green  
Lebeckia serecia blue-green  
Senecio candaminifolius UV-green  
Heliophila cf. variablis blue-green  
Oxalis rescapriae green  
Oxalis obtusa UV  
Oxalis cf. pescaprae green  
Moraea miniata UV  
Dimorphotheca sinuata green  
Felicia australis blue  
Arcotheca calendula UV  
Senecio candaminifolius UV-green  
Tripteris hyoeseroides UV-green  
Silene angulata blue  
Babiana curviscepa blue  
Nemesia sp. UV  
Diascia namaquensis UV-blue  
Oxalis namaquensis green  
Trachyandra flexifolia blue-green  
Sperguleria media blue-green  
Rhyncopsidium pumillum green  
Stachys sp. blue-green  
cf. Zaluzianskya sp. green  
Bulbine praemosa UV  
Romulea citrina green  
   
South Africa, Location 3: Springbok, weather station 

Zygophyllum cordifolium UV-green  
Bulbine praemosa UV  



Appendices 

 245 

Mesembryanthemaceae UV-blue  
Felicia sp. blue  
Grielium grandiflorum/humifusum blue-green  
Albuca maxima blue-green  
Arcotheca calendula UV  
Felicia australis blue  
Oxalis obtusa UV  
Heliophila cf. variablis blue-green  
Gorteria diffusa green  
Senecio candaminifolius UV-green  
Dimorphotheca sinuata green  
Leysera tenalla green  
   
South Africa, Location 4: Soebatsfontein  

Sarcocaulon crassicaule blue-green  
Zygophyllum divariatum UV  
Gazania cupsiana green  
Didelta spinosa green  
Lebeckia serecia blue-green  
Herea elongata blue-green  
Montinia caryophyllacea blue-green  
Leysera tenella green  
Arcotheca calendula UV  
Lapeirousia silenoides blue  
Cotula cf. leptalea green  
Grielium humifusum blue-green  
Heliophila cf. amplexicaulis blue-green  
Romulea citrina UV-green  
Gorteria diffusa green  
Ursinia cf. calenduliflora UV-green  
Babiana curvircepa blue-green  
Drosanthemum hispidum UV-green  
Pelargonium praemorsum blue  
Oxalis obtusa UV  
Felicia merymuelleri blue  
Felicia sp. UV-blue  
Hesperantha flexiosa blue-green  
Diascia namaquensis UV-blue  
Crassula cf. dichotoma UV-green  
Indigofera sp. UV-blue  
   
South Africa, Location 5: Kamieskroon  

Lupinus sp. blue  
Peliostomum cf. virgatum blue  
Leysera tenella green  
Amsinckia calycina UV-green  
Wahlenbergia sp blue-green  
Grielium humifusum blue-green  
Oxalis obtusa UV  
Indigofera sp. UV-blue  
Wahlenbergia sp. blue-green  
Sperguleria media blue-green  
Gorteria sp. green  
Felicia sp.  blue  
Cotula cf. leptalea green  
Dimorphotheca sinuata green  
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Dimorphotheca sinuata green  
Senecio arenaria blue  
Arcotheca calendula UV  
   
South Africa, Location 6: On N7, 40km south of Garies at junction of Meulsteenberg and 
Bruintjiehoogte 

Mesembryanthemaceae blue-green  
Grielium humifusum blue-green  
Moraea mainata UV  
Didelta cannosa green  
Osteospermum grandiflorum UV-green  
Chlorophytum cf. angulatum/crassineive blue  
Oxalis sp. green  
Senecio arenaria blue  
Drosanthemum sp. UV-blue  
Rhyncopsidium pumillum UV-blue  
Osteospermum sp. green  
Zaluzianskya sp. blue-green  
Aizoaceae blue  
Cotula cf. leptalea green  
Ornithogalum suaveolens UV  
   
South Africa, Location 7: On N7, opposite turnoff for Bitterfontein 

Tripteris cladestina green  
Ursinia calendulifolia blue-green  
Mesembryanthemaceae blue-green  
Osteospermum grandiflorum green  
Moraea mainata UV  
Heliophila cf. variablis blue-green  
Cotula cf. leptalea green  
Drosanthemum sp. UV-blue  
Dimorphotheca sinuata green  
Arcotheca calendula UV  
Rhyncopsidium pumillum green  
cf. Asteraceae UV-blue  
Felicia/Senecio sp. green  
   
South Africa, Location 8: On N7, 30km north of Vanrhynsdorp at junction of Beeswater and 
Rooiberg 

Mesembryanthemaceae UV  
Mesembryanthemaceae UV-blue  
Drosanthemum sp. UV-blue  
Osteospermum grandiflorum UV-green  
Ursinia calendulifolia blue-green  
Senecio arenaria blue  
Suthelandia frutescens blue  
Didelta cannosa UV-green  
Cotula cf. leptalea green  
Mesembryanthemaceae blue-green  
Oxalis sp. blue-green  
Peliostomum virgatum blue  
Zaluzianskya sp. blue-green  
Gazania lichtensteini UV-green  
Hypertallis salsoides blue-green  
Lachenalia framesii UV-blue  
Zaluzianskya sp. blue  
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Costa Rica, Location 1: Tapanti National Park Sendero Oro pendula 

Strelitzia/Heliconia sp. green red/yellow 
Epidendrum odontochilum blue-green  
Not identified UV-blue red 
Not identified green red/yellow 
Saurauia cf. montana blue white 
Unidentified Acanthaceae blue-green off-white 
Maxillaria angustissima blue  
cf. Gaultheria blue pink (at base) 
Stelis sp. UV-blue  
Alternathera cf. amoena blue-green white 
Unidentified Commelinaceae UV-blue  
cf. Aloplectus UV-blue red 
Unidentified Asteraceae blue-green white 
Pilea sp. green green 
   
Costa Rica, Location 2: Tapanti National Park Sendero Oro pendula 

Oncidium klotzschianum UV-blue yellow 
Stelis sp. UV-blue  
Lepanthes disticha UV-blue  
Saurauia cf. montana blue-green white 
Unidentified Asteraceae blue-green white 
Cuphea cf. calophylla blue purple 
Not identified blue pink 
Acmella papposa or oppositifolia UV-green yellow 
Unidentified Asteraceae blue purple 
Unidentified Asteraceae green yellow 
Utricularia cf. jamesonia blue-green  
Trichosalpinx dura green yellow 
Strelitzia/Heliconia sp. UV-blue red/yellow 
Masdevallia nidifica UV-blue  
   
Costa Rica, Location 3: Tapanti National Park Sendero El Pavo 

Stelis guatemalensis blue-green  
Cleome sp. blue pink 
Unidentified Melastomataceae blue-green white 
Unidentified Asteraceae green yellow 
Unidentified Gesneraceae UV-blue/blue red 
Solanum sp. blue-green white 
Pilea sp. green green 
Centropogon sp. UV-blue/UV-green red/yellow 
Unidentified Asteraceae blue purple 
Acmella oppositifolia UV-green yellow 
Unidentified Asteraceae blue-green white 
Maxillaria pachyacron green  
Commelina cf. erecta UV-blue purple 
Strelitzia/Heliconia sp.  UV red/yellow 
Not identified blue-green white 
Unidentified Asteraceae UV-green yellow 
Not identified blue pink 
   
Costa Rica, Location 4: Braulio Carrillo National Park 

Maxillaria campanulata UV-blue/blue-green red/yellow 
Centropogon sp. UV/UV-green red/yellow 
Cavendishia complectans blue pink 
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Dioscorea cf. convolvulacea green green 
Not identified blue pink 
Begonia cf. carpinifolia blue-green white 
Unidentified Asteraceae green yellow 
Viola stipularis blue-green/blue white 
Saurauia cf. montana blue-green white 
Alloplectus sp. blue-green/UV-blue red/green 
Kohleria sp. green green 
Unidentified Asteraceae blue-green purple 
Unidentified Gesneriaceae UV red 
Unidentified Ericaceae UV-blue pink 
Gunnera sp. UV  
Heliconia secunda UV red 
Heliconia lankesteri green yellow 
   
Costa Rica, Location 5: San Jorquen de Dota  

Oncidium klotzschianum  UV-green yellow 
Columnaea sp. UV-blue red 
Unidentified Scrophulariaceae UV red 
Strelitzia/Heliconia sp. UV red/yellow 
Unidentified Melastomataceae blue-green white 
Unidentified Asteraceae UV-green yellow 
Unidentified Asteraceae UV-green yellow 
Unidentified Asteraceae blue-green purple 
Unidentified Melastomataceae blue-green pink 
Cuphea sp. blue purple 
Mucuma sp. UV green 
Unidentified Asteraceae green yellow 
Unidentified Asteraceae UV yellow 
Cuphea sp. UV red 
Rubus rosaefolius   blue-green white 
Rondeletia/Gonzalaguenia sp. blue-green white 
Unidentified Fabaceae blue-green  
Unidentified Gesneriaceae UV-blue red 
Unidentified Lamiaceae blue-green white 
   
Costa Rica, Location 6: Road from San Pedro  

Osmoglossum convallarioides blue-green white 
Trifolium repens blue-green  
Unidentified Asteraceae blue purple 
Unidentified Asteraceae green yellow 
Justicia sp. blue lilac 
Erythrina sp. UV-blue red 
   
Costa Rica, Location 7: Casa Mata on road from San Isidro to San Jose 

Oncidium briolophotum UV-green yellow 
Masdevallia pictorata blue  
Oersterdella exasperata blue/green  
Columnea sp. UV-green/UV red 
Unidentified Asteraceae blue-green purple 
Not identified UV-blue pink/white 
Not identified blue pink/white 
Unidentified Gesneriaceae blue-green red 
Cuphea sp. UV-blue purple 
Cestrum sp. blue-green white 
Unidentified Asteraceae blue-green white 
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Unidentified Commelinaceae UV-blue red 
   
Costa Rica, Location 8: Rancho Montereal nr Liberia, Guanacaste Prov 

Encyclia cordigera blue-green/blue white/purple 
Dalbergia sp. blue purple 
Combretum fruticosum green red 
Not identified green yellow 
Aphelandra sp. blue-green brown 
   
Costa Rica, Location 9: Rancho Montereal nr Liberia, Guanacaste Prov 

Encyclia cordigera blue-green/blue white/purple 
Unidentified Asteraceae blue-green purple 
Heliotropium sp. blue-green white 
Hyptis sp. blue-green white 
Cleome sp. blue-green white/purple 
Psychotria sp. blue-green white 
   
Costa Rica, Location 10: Bosque de Los Angeles 

Oncidium obryzatoides UV-green yellow 
Pitcairnea halophylla blue-green  
Not identified blue pink/white 
Unidentified Gesneriaceae blue-green yellow 
Impatiens cf. walleriana blue pink 
cf. Cuatresia sp. blue-green white 
Columnea microphylla UV red 
Unidentified Gesneriaceae UV-blue/UV red/yellow 
Rubus rosaefolius blue-green white 
Unidentified Gesneriaceae UV-blue red 
Impatiens cf. walleriana blue pink 
Begonia sp. blue-green white 
Unidentified Asteraceae blue purple 
cf. Critonia UV-green yellow 
Not identified blue purple 
Not identified blue white 
   
Costa Rica, Location 11: Macizo de la Muerte km 70 

Maxillaria falcata blue  
Cavendishia sp. UV-blue  
Bomarea sp. UV-green  
Not identified blue-green  
Unidentified Ericaceae UV-blue  
cf. Pernettya sp. blue  
Gaultheria gracilis blue-green pink (white bracts) 
   
Costa Rica, Location 12: El Alto de San Juan on road from San Isidro to Dominical 

Oncidium dichromaticum UV  
Oersterdella pinifera blue-green  
Trifolium sp. UV-green  
cf. Brunfelsia blue  
Not identified UV-blue pink 
Mannina deppei UV-blue  
Pleurothallis homalantha UV  
Vernonia sp. blue  
Unidentified Asteraceae green yellow 
Unidentified Melastomataceae blue-green white 
Unidentified Asteraceae blue-green purple 
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Unidentified Asteraceae blue-green lilac 
Unidentified Asteraceae blue-green white 
Unidentified Asteraceae blue-green purple 
Miconia trinervia blue-green white 
   
Costa Rica, Location 13: Finca Altamira near Santa Elena 

Erycina pumilio UV-green yellow 
Lantana camara green yellow/red 
Unidentified Melastomataceae blue-green white 
Unidentified Asteraceae blue red/pink 
Bouganvilla sp. UV-blue pink 
Unidentified Asteraceae blue-green white 
Unidentified Melastomataceae blue pink 
   
Costa Rica, Location 14: Finca de Fransisco Cordero near Santa Elena 

Macroclinium generalense UV-blue  
Mitracarpus hirtus blue-green white 
Psychotria elata UV red 
Syzygium jambos blue-green white 
Unidentified Asteraceae blue purple 
Unidentified Asteraceae blue-green purple 
Unidentified Asteraceae UV-blue red 
Cuphea sp. blue purple 
Impatiens walleriana UV-blue pink 
Unidentified Asteraceae green yellow 
   
Costa Rica, Location 15: La Cicica, El alto de San Juan on route from Dominical to San Isidro 

Trichocentrum ascendens UV-green  
Oesterdella pinifera blue  
Unidentified Fabaceae blue white/purple 
Unidentified Caryophyllaceae blue-green white  
Unidentified Asteraceae blue-green purple 
Vismia cf. guianensis blue light brown 
Impatiens walleriana UV-blue red 
Amphitecna sp. blue-green/green cream/orange 
Unidentified Asteraceae blue-green white 
   
Costa Rica, Location 16: La Cicica, El alto de San Juan on route from Dominical to San Isidro 

Oncidium dichromaticum UV yellow/brown 
Passiflora vitifolia blue-green  
Costus plicatus UV-blue  
Unidentified Asteraceae green yellow  
Not identified UV-blue  
Tripogendra serrulata blue red/green 
   
Costa Rica, Location 17: Las Tablas, La Amistad IP 

Oncidium klotzschianum UV-green yellow 
Unidentified Gesneriaceae blue pink, white tip 
Unidentified Asteraceae UV-green yellow 
Unidentified Melastomataceae blue-green pink-white 
Fuchsia paniculata blue purple 
Begonia sp. blue-green/blue white inner, pink outer 
Saurauia montana blue white   
   
Costa Rica, Location 18: Las Tablas, La Amistad IP 

Oncidium cariniferum blue-green white lip 
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Unidentified Gesneriaceae UV-blue pink, white tip 
Unidentified Asteraceae UV-green yellow 
Unidentified Asteraceae blue-green white 
Fuchsia paniculata blue purple  
Begonia sp. blue-green/blue  
Phytolacca sp. blue purple  
cf. Paliavana blue-green green + purple spots 
Schultesianthum megolandrun blue-green yellow 
Duranta costaricensis blue-green pale blue, purple stripe 
Solanum sp. blue-green white   
   
Costa Rica, Location 19: Las Tablas, La Amistad IP 

Oncidium klotzschianum UV-green yellow 
Fuchsia paniculata blue purple 
Unidentified Melastomataceae blue-green white 
Sloanea cf. faginea blue-green pale red 
Unidentified Asteraceae blue-green white 
Begonia sp. blue-green  
Elleanthus robustus blue purple/white 
Unidentified Asteraceae UV-green yellow 
Sechium sp. blue-green green 
Unidentified Melastomataceae blue-green white 
Rubus rosaefolius blue-green white 
Unidentified Melastomataceae blue-green pink/white 
Heliconia lankesterei var. rubra green  
cf. Paliavana blue-green  
Pilea sp. blue-green white 
Unidentified Asteraceae blue-green purple/white 
Coboea sp. blue-green  
   
Costa Rica, Location 20: On road to Rincon from Palmar Norte, 24km from Rincon 

Byrsonima crassifolia UV-green yellow 
Lantana camara UV-green red/orange 
Senna sp. UV  
Unidentified Asteraceae blue-green purple 
Unidentified Melastomataceae blue-green white 
Vochysia guatemalensis UV-green yellow 
   
Costa Rica, Location 21: On road to Rincon from Palmar Norte, 22km from Rincon  

Byrsonima crassifolia UV-green yellow 
Lantana cf. trifolia blue lilac 
Unidentified Onagraceae UV-green yellow 
   
Costa Rica, Location 22: On road from Rincon to Pto Jimenez, 3km from Pto Jimenez 

Byrsonima crassifolia UV-green yellow 
Epidendrum sp. green green 
   
Costa Rica, Location 23: Entrance to Refugio Mixta de Vida Silvestre, Carate 

Mimosa sp. green  
Lantana camara blue red/orange 
Stachyterpheta cf. jamaicensis blue-green  
Terminalia catappa blue-green  
Citharexylum sp. blue-green  
Dicliptera (iopus) green  
Wedelia tribbata UV-green  
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Costa Rica, Location 24: Reserve Forestal Golfo Dulce, on road from Carate to Pto Jimenez, 20km 
from Pto Jimenez 

Byrsonima crassifolia UV-green yellow 
Anacardium excelsum blue-green  
Vismia sp. blue  
Lantana camara blue  
Mimosa sp. UV-green  
Unidentified Verbanaceae blue  
   
Costa Rica, Location 25: On road from Carata to Pto Jimenez, at junction with Cabo Matapalo 
(18km from Pto Jim) 

Bunchosia cf. cornifolia UV-green  
Unidentified Asteraceae UV-green  
Unidentified Verbanaceae blue  
   
Costa Rica, Location 26: On road to Monteverde Cloud Forest Preserve, c.20km from Monteverde 

Stigmaphyllon cf. ellipticum  UV-green yellow 
Lantana camara green  
Russelia sermentosa UV  
   
Costa Rica, Location 27: Monteverde Cloud Forest Preserve, entrance to Refugio Eladios 

Oncidium klotzschianum UV-green yellow 
Oncidium parviflorum UV-green yellow 
Unidentified Verbenaceae blue white 
Blakea cf. gracilis  blue-green  
Conostegia sp. blue-green  
Not identified blue  
Impatiens walleriana blue  
   
Costa Rica, Location 28: Monteverde Cloud Forest Preserve, Refugio Aleman 

Oncidium klotzschianum UV-green yellow 
Oncidium parviflorum UV yellow 
Blakea cf. gracilis  blue  
Psidium guajava blue-green  
Hidalgoa termanta blue-green  
Guzmania sp. blue-green  

 
 
 


