See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/230982956

Metabolic characterisation of main Albanian grape cultivars

Conference Paper · January 2012

CITATIONS	5	READS			
2		69			
2 author	rs:				
	Endrit Kullaj		Adriatik D. Cakalli		
	Agricultural University of Tirana 145 PUBLICATIONS 146 CITATIONS		Agricultural University of Tirana		
			34 PUBLICATIONS 19 CITATIONS		
	SEE PROFILE		SEE PROFILE		

Some of the authors of this publication are also working on these related projects:

Documentation of Plant Genetic Resources and quality of data in Albanian Genebank Database View project

Establishment uf a fruit trees Certification Programme in Albania View project

All content following this page was uploaded by Endrit Kullaj on 06 February 2017.

Agricultural University of Tirana, Faculty of Agriculture & Enviroment, **Department of Horticulture**, Address: Koder-Kamez, Tirana, Albania www.ubt.edu.al

Poster presented at the 23rd International Scientific - Experts Congress on Agriculture and Food Industry, Izmir, Turkey 27 - 29 September 2012 www.agricongress.ege.edu.tr

Metabolic characterisation of main Albanian grape cultivars

<u>KULLAJ, Endrit¹</u>, ÇAKALLI, Adriatik²

¹Dep. Horticulture, Faculty of Agriculture and Environment, Agricultural University of Tirana, Kodër-Kamëz, 1010, Tirana, Albania Tel: +355684096186 Email: ekullaj@ubt.edu.al

² Agricultural University of Tirana, National Genebank

Introduction

Albania, located at the heart of the Mediterranean, has a millennial viticultural tradition and a wide germplasm to be valorised. Among this rich germplasm, four cultivars for winemaking have been mostly valued and commercialised in Albania. However, there is a need for further characterisation and evaluation, especially in terms of metabolic and enological characterisation.

Material and Methods

Table 1. Phenolic profiles in the skin and seeds (2009 - 2010)*

Berry part analysed	Indices	Year	SHZ	SHB	KLL	VLO
-	Total anthocyanins	2009	1271.84	0	819.69	288.69
	(mg/kg)	2010	1125.72	0	n.m	752.39
	Total flavonoids	2009	2873.16	504.16	1756.42	954.11
	(mg/l)	2010	2468.32	1125.64	n.m	919.28
	Non-anthocyanic	2009	n.m	n.m.	n.m.	n.s.
	flavonoids (mg/l)	2010	1375.93	1125.64	n.m.	576.73
CKINI	Proanthocyanidins	2009	2084.80	788.00	1644.80	1111.5
	(mg/kg)	2010	1117.09	1223.92	n.m.	1290.57
	Total polyphenols (mg/kg)	2009	3584.59	1429.90	3274.75	2330.63
	Total polyphenols (mg/l)	2010	1717.67	1316.69	n.m.	932.50
	Flavans (mg/l)	2009	518.25	355.62	1192.63	624.51
		2010	670.09	1435.53	n.m.	388.46
	Total flavonoids	2009	518.25	355.62	1192.63	624.51
	(mg/l)	2010	670.09	1435.53	n.m.	388.46
	Proanthocyanidins	2009	1050.56	592.23	2228.85	1330.97
SEEDS	(mg/kg)	2010	421.09	811.44	n.m.	396.29
SLLDS	Total polyphenols	2009	2237.70	994.1	4831.1	2724.2
	(mg/kg)	2010	417.76	747.87	n.m.	272.29
	Flavans (ma/ka)	2009	1824.30	1102.13	5069.7	2378.0
		2010	29.80	32.15	n.m.	72.70
FLESH	Hydroxycinnamic	2009	70.78	32.15	42.67	34.50
		2010	54.11	74.87	n.m.	72.70

The study was conducted during 2009 - 2010 on must and wine samples of representative clusters collected during their technological maturity (soluble solids %/titratable acidity ratio stable) and belonging to grapevine collection located at the Agricultural Technology Transfer Centre of Vlora. Clusters between 1 m and 20 cm above the soil were chosen. Titrable acidity, pH and sugar content were measured in musts of the grape varieties under study. Two replicates of 500 g of berries for each variety were frozen at -18°C until polyphenol extraction. Polyphenol extraction was based on Mattivi method, as it is able to extract polyphenols from grape skins and seeds, simulating the maceration process of red winemaking. Spectrophotometric determinations were

* Values are the means of two replicates for each extraction

n.m. – not measured

Table 2. Results of spectrophotometric determinations from the wine

Wine	Polyphenols	Total flavonoids	Total antho-	Flavans	Proantho-	T/A
code	(mg/l)	(mg/l)	cyanins	(<i>mg/l</i>)	cyanidins	
			(mg/l)		(mg/l)	
SHZV1	252.9	1843.2	270.8	442.9	688.3	2.5419
SHZV2	149.0	2710.5	356.2	896.4	1529.3	4.2929
SHZV3	110.0	1680.5	242.8	444.7	1413.2	5.8206
SHBV4	32.4	623.4	0.0	121.4	192.7	0
KVLV5	199.4	3184.9	701.4	1093.6	278.4	0.3969
KLLV6	138.3	2751.2	252.4	753.6	1810.7	7.175
KLLV7	46.9	2341.9	221.9	555.4	122.4	0.6
KLLV8	137.3	2580.4	296.0	879.9	1786.3	6.0349
KLLV9	1801.6	959.2	136.4	680.48	2597.3	19.1
KLLV10	2237.4	2181.0	159.6		2783.9	17.4
CERV11	12.6	563.8	20.0	26.3	0.0	0
ZADV12	1063.1	1565.2	96.4	304.4	1257.6	13.0
MERV13	129.9	1821.5	314.7	536.8	645.5	2.0513
MERV14	113.6	1973.3	322.9	655.2	931.5	2.8847
RIEV15	31.1	195.2	36.1	80.6	51.4	1.4233
RIEV16	24.6	493.3	23.5	90.1	91.8	3.8986

Fig. 1. Cultivars studied: A-Shesh i Zi, B-Shesh i Bardhe, C - Kallmet, D-Vlosh

carried out on the extracts according to the methods of Di Stefano et al. (1989).

Total anthocyanins, total flavonoids, non-anthocyanic flavonoids, proanthocyanidins, total polyphenols, flavans were determined in the extracts of the grape skins and seeds. Hydroxycinnamic acid was extracted from the flesh.

Wines of the cv. under study were collected from different areas like Durres, Berat, Tirana, Mirdita, Lezha, Delvina and Vlora regions.

Results

The series of tables below shows the parameters measured. Results show a high inter- and intra- variability between the cultivars under study. This could also be due to the lack of proper homologation of

Discussions and Conclusions

The high variation in polyphenolic content between cultivars (Table 1) is due to the grape composition whilst it is assumed that changes between wines of the same cultivar (Table 2) are related to the oenological practices. The results show a similar level of colour intensity (Table 2) between wines from 'Kallmet' and 'Sheshi i Zi' (1.6 \pm 0.21) but when Kallmet is mixed with Vlosh, the value increases to 2.7.

Kallmet and Sheshi i Zi produce wines suitable for ageing because they contain more phenolic compounds, especially anthocyanins and tanning with a low degree of polymerisation, able to be transformed

into proanthocyanidins or condensed tannins during storage. These autoch-

cultithonous vars, with great potential wine represent a valuable instrument improving for the local econo-

