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Abstract: The genus Cichorium (Asteraceae) that originates from the Mediterranean area consists of
six species (Cichorium intybus, Cichorium frisee, Cichorium endivia, Cichorium grouse, Cichorium chico
and Cichorium pumilum). Cichorium intybus L., commonly known as chicory, has a rich history of
being known as a medicinal plant and coffee substitute. A variety of key constituents in chicory
play important roles as antioxidant agents. The herb is also used as a forage plant for animals. This
review highlights the bioactive composition of C. intybus L. and summarizes the antioxidant activity
associated with the presence of inulin, caffeic acid derivatives, ferrulic acid, caftaric acid, chicoric acid,
chlorogenic and isochlorogenic acids, dicaffeoyl tartaric acid, sugars, proteins, hydroxycoumarins,
flavonoids and sesquiterpene lactones. It also covers the plant’s occurrence, agriculture improvement,
natural biosynthesis, geographical distribution and waste valorization.
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1. Introduction

The genus Cichorium, part of the dandelion family Asteraceae, consists of six species:
C. intybus, C. frisee, C. endivia, C. grouse, C. chico and C. pumilum. The origin of these species
is the Mediterranean region, but they also may be cultivated worldwide in temperate and
semi-arid areas [1]. C. intybus L., commonly known as chicory, is a perennial herbal plant
most often bearing bright blue flowers that has been grown since ancient times. Besides the
medicinal application of this plant, there are several other uses of C. intybus L., including
the industrial extraction of inulin, as a coffee substitute, or as animal food. Moreover, the
leaves of the plant can be consumed raw or cooked [2,3].

In addition to the above-mentioned benefits, C. intybus L. possesses numerous biolog-
ical properties, including antioxidant, hepatoprotective, anti-inflammatory, antidiabetic,
antimicrobial and tumor-inhibitory activity [4,5]. Inulin and specialized metabolites such as
hydroxycinnamic acids, coumarins, flavonoids and sesquiterpene lactones that are located
in the different parts of C. intybus L. could be responsible for these biological properties [6].
Hydroxycinnamic acid derivatives, especially hydroxycinnamoyl esters, are extensively
distributed in the plant kingdom [7]. They are phenolic compounds that are well known for
their antioxidant properties and could play a role in the prevention of various diseases asso-
ciated to oxidative stress. Since sucrose and fructans are known for their radical scavenging
properties in plant cells [8], it has been suggested that the in vitro antioxidant activity of
chicory may be attributed not only to the phenolic derivatives. Pharmacological properties
of C. intybus L. are summarized in Figure 1.

Chicory as a functional food has been studied by the food industry in the form of
root flour [9]. Functional foods, also known as nutraceuticals, can be widely described as
processed foods that provide medical or health benefits as well as a reduction in disease
risk. There is evidence that nutraceuticals extracted from plants can significantly reduce
the incidence of chronic diseases [10].
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roots and barley has provided a product with a high antioxidant capacity [11,12]. 
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compounds, vitamins and polyynes (Table 1). 

In nature, inulin (1) is the second most abundant storage carbohydrate after starch 
[13]. Chemically, inulin is an unbranched polysaccharide affiliated to the class of fructans. 
Inulin consists of around 30 β-fructosyl fructose units (presented in furanose form) usu-
ally with glucopyranose unit-reducing ends linked through β-1,2-glycosidic bonds 
[14,15]. The moderate average degree of polymerization and its availability made this pol-
ysaccharide of interest for human health [16]. Thus, inulin has been utilized as either func-
tional food [17] in the cosmetic industry [18] or for biomedical applications [19]. The phar-
maceutical and physiological implications of inulin have been reviewed [20]. Important 
amounts of inulin have been reported for fresh (ca. 68%) and dried (ca. 98%) chicory, as 
well as for other compounds [21]. 
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Chicory is also a valuable vegetable crop worldwide for making coffee substitutes
from roots. In recent decades, coffee substitutes have become a popular alternative to usual
coffee brews. This trend is due to the absence of caffeine, a rich bioactive composition and
the specific sensory properties of these brews. The combination of roasted chicory roots
and barley has provided a product with a high antioxidant capacity [11,12].

2. Chemistry

Phytochemical analysis indicated that the different parts of C. intybus contained in-
ulin (1), caffeic acid derivatives (2) such as ferrulic acid (3), caftaric acid (4), chicoric acid (5),
chlorogenic acid (3-CQA, 6), isochlorogenic acid (3,5-diCQA,) (7), dicaffeoyl tartaric acid,
sugars, proteins, hydroxycoumarins (e.g., 8, 9, 12), flavonoids (e.g., 10, 11), terpenoids,
sesquiterpene lactones (e.g., Crepidiaside A) (13), alkaloids, steroids, oils, volatile com-
pounds, vitamins and polyynes (Table 1).

In nature, inulin (1) is the second most abundant storage carbohydrate after starch [13].
Chemically, inulin is an unbranched polysaccharide affiliated to the class of fructans. Inulin
consists of around 30 β-fructosyl fructose units (presented in furanose form) usually with
glucopyranose unit-reducing ends linked through β-1,2-glycosidic bonds [14,15]. The
moderate average degree of polymerization and its availability made this polysaccharide of
interest for human health [16]. Thus, inulin has been utilized as either functional food [17]
in the cosmetic industry [18] or for biomedical applications [19]. The pharmaceutical and
physiological implications of inulin have been reviewed [20]. Important amounts of inulin
have been reported for fresh (ca. 68%) and dried (ca. 98%) chicory, as well as for other
compounds [21].

A survey on the chemical transformation of inulin and their industrial application
has been provided [22]. The synthesis of N-(aminoethyl)inulin monosubstituted at C-6 has
been reported and its potential antioxidant capacity against hydroxyl radicals has been
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investigated at different concentrations [23]. N-(Aminoethyl)inulin proved to be a useful
precursor for the chemical transformation of inulin.

Cichoric acid (5) is a derivative of both cafeic and tartaric acids. Cichoric acid is a
phenolic derivative with important antioxidant properties [24]. Its high antioxidant activity
is due to the presence of a catechol ring in the structure of this bioactive compound [25].
An overview on the effects of chicoric acid as a functional food ingredient has been recently
presented [26]. It has been found that, in chicory, the major phenolic acid is chicoric
acid, with the highest concentration (1692.33 g/g d.w.) [27]. On the other hand chichoric
acid complexes with Cu(II), Ni(II), Co(II) and Zn(II) have been reported to exhibit higher
antimicrobial activity than the ligand alone, which might be the result for its increased
absorption [28].

Using high-performance liquid chromatography, the amounts of caffeic acid and six
chlorogenic acids, 3-CQA 6, 4-CQA, 5-CQA, 3,4-diCQA, 3,5-diCQA 7 and 4,5-diCQA, have
been analyzed in several vegetables consumed in Brazil [29]. Chicory and collard greens
have been identified as the major source for monocaffeoylquinic acids 3-, 4- and 5-CQA.

Moreover, although not directly related, it should be noted that multiple biological
roles have been attributed to caffeoylquinic esters, which were shown to be more resistant to
microbes [30]. Caffeoylquinic derivatives have been also demonstrated as key intermediates
in the synthesis of lignin [31].

Interestingly, the tissue distribution of tartaric acid esters has been highlighted [32,33].
These have been shown to be mainly concentrated in the aerial part, whereas 3,5-
dicaffeoylquinic acid (3,5-diCQA, 7) was mainly located in the root [34]. Chlorogenic
acid (3-CQA, 6) has been found to be evenly distributed in all organs. The biosynthesis of
hydroxycinnamates in C. intybus L. has been described, and it was revealed that two types
of enzymes are involved in the synthesis and accumulation of CQA.

The main constituents of C. intybus L. are presented in Table 1.

Table 1. Main chemical constituents of Cichorium intybus L.

Compound
No. Common Name/IUPAC Name Structure Ref

1 Inulin [35]

2 Caffeic acid/
(E)-3-(3,4-Dihydroxyphenyl)prop-2-enoic acid [36]

3
Ferulic

acid/(2E)-3-(4-Hydroxy-3-methoxyphenyl)prop-2-
enoic acid

[37]
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Table 1. Cont.

Compound
No. Common Name/IUPAC Name Structure Ref

4
Caftaric acid/

(2R,3R)-2-{[(2E)-3-(3,4-Dihydroxyphenyl)prop-
2-enoyl]oxy}-3-hydroxybutanedioic acid

[38]

5
Chicoric acid/

(2R,3R)-2,3-Bis{[(2E)-3-(3,4-dihydroxyphenyl)
prop-2-enoyl]oxy}butanedioic acid

[39]

6

5-Caffeoylquinic acid (Chlorogenic acid)/
(1S,3R,4R,5R)-3-{[(2E)-3-(3,4-

Dihydroxyphenyl)prop-2-enoyl]oxy}-1,4,5-
trihydroxycyclohexane-1-carboxylic acid

[40]

7

3,5-Dicaffeoylquinic acid (Isochlorogenic acid A)/
(3R,5R)-3,5-Bis{[(2E)-3-(3,4-dihydroxyphenyl)prop-

2-enoyl]oxy}-1,4-
dihydroxycyclohexanecarboxylic acid

[38,41]

8 Aesculetin/
6,7-Dihydroxy-2H-1-benzopyran-2-one [42]

9
Aesculin/

6-(β-D-Glucopyranosyloxy)-7-hydroxy-2H-1-
benzopyran-2-one

[42]

10
Luteolin/

2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-4H-1-
benzopyran-4-one

[43]

11
Isoquercetin/

3-(β-D-Glucopyranosyloxy)-3′,4′,5,7-
tetrahydroxyflavone

[38]
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Table 1. Cont.

Compound
No. Common Name/IUPAC Name Structure Ref

12
Ellagic acid/

2,3,7,8-Tetrahydroxy
(1)benzopyrano[5,4,3-cde](1)benzopyran-5,10-dione

[44]

13

Crepidiaside A/
(3aS,9aS,9bS)-6-Methyl-3-methylidene-9-

({[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-
(hydroxymethyl)oxan-2-yl]oxy}methyl)-

3aH,4H,5H,9aH,9bH-azuleno[4,5-b]furan-2,7-dione

[45]

14 Cyanidin [46,47]

A large number of flavonol derivatives and phenolic acids have been identified us-
ing mass spectrometry. The results pointed out the presence of quercetin, myricetin and
kaempferol derivatives (flavonols), a flavanone derivative, malic and quinic acids, hydrox-
ycinnamic acids (p-coumaric and caffeic acids) and their derivatives as well as a galloyl
derivative [48]. Additionally, two amino acids, L-tryptophan and methylentryptophan,
have been detected in the chicory leaves.

Antioxidant and anti-inflammatory activities have been identified for aesculetin (8),
a coumarin derivative identified in the chicory and Sancho tree. A recent study revealed that
a naturally occurring aesculetin has been found to ameliorate the effects of urban coarse
particulate matter inhalation by interfering with pulmonary inflammation and oxidative
stress [49,50].

Some individual and total phenol concentrations of different parts of wild chicory
have been determined using molecular absorption spectrometry and HPLC [51]. The
flowers showed the highest total phenolic derivatives concentration (1531.2 mg Gallic acid
equivalent (GAE)/100 g dry weight (d.w.)), followed by leaves (1180.3 mg GAE/100 g d.w.),
roots (167.86 mg GAE/100 g d.w.) and stems (142.36 mg GAE/100 g d.w.). Additionally,
the HPLC analysis indicated the presence of several phenolic acids, e.g., methyl gallic acid
and ellagic acid (12), in the range of 30–50% from the total phenol concentration.

The phytochemical characterization of several edible purple-reddish vegetables has
revealed that phenolic acids (chlorogenic and syringic acids) are the most abundant
compounds [52]. The high content of phenolic derivatives, especially quercetin-3,4-O-
diglucoside, has been found to be responsible for the higher antioxidant activities of
red chicory.

The physiological functions and some of the action mechanisms of different C. intybus L.
constituents are summarized in Figure 2.
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2.1. Hairy Root Culture (HRC)

The ability of the roots of C. intybus L. species to produce a large variety of hydroxycin-
namic acid derivatives is well known. Additionally, the hairy root culture (HRC) concept
became a valuable technique for the biosynthesis of specialized metabolites. A comparison
with the mother plant tissue revealed that HRC has a faster growth in a hormone-free
environment. Apart from the common hydroxycinnamic acid derivatives, the HRC has the
ability to produce metabolites not known in the mother plant roots [53,54]. Consequently,
elicitation proved to be a useful method for the enhancement of metabolite production.

Among the large variety of compounds produced by the HRC of chicory, such as
coumarins [55] and sesquiterpene lactones [56,57], caffeoylquinic acid derivatives are
the major constituents [58], with dicaffeoylquinic acids of type 7 as major components.
Among caffeoylquinic acids, di-CQAs are supposed to exhibit the most important antioxi-
dant [59,60], antibacterial and anti-inflammatory [61] properties. For this reason, elicited
hairy roots represents a feasible way for the biosynthesis of di-CQAs (about 12% of dry
weight) [62]. Methyl jasmonate has been reported to improve the accumulation and pro-
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duction of CQAs in the HRC of C. intybus [63]. Elicitation has the unique capacity to induce
the biosynthesis of 3,4,5-tricaffeoylquinic acid. It should be noted that tricaffeoylquinic acid
derivatives have not previously been identified in the C. intybus roots.

Agrobacterium rhizogenes LBA 9402 transmuted the HRC of C. intybus, proved to
be a good source of sesquiterpene lactones [64]. This modification also provided known
hydroxycinnamates (caffeic, 5-CQA, 3,5-diCQA and 4,5-diCQA acids) and new glucosides,
such as the sesquiterpene lactone 8-deoxylactucin glucoside and neolignan glucoside, or
(7S,8R)-3′-demethyl-dehydrodiconiferyl alcohol-3′-O-β-glucopyranoside [41]. Agrobac-
terium strain K599 has been used for the genetic modification of two species of chicory [65].
As compared with the mother plant, the hairy roots showed an increased growth rate and
revealed the accumulation of higher amounts of inulin.

The distribution of hydroxycinnamate and sesquiterpene lactone derivatives among
the HRC of C. intybus L., the roots of wild and cultivated chicory, as well as the callus culture
of the plant, have all been investigated [66]. The major antioxidant hydroxycinnamate in the
hairy roots has been identified as 3,5-dicaffeoylquinic acid (7), with a 5.5% content reported
for the dry weight. Regarding the presence of the sesquiterpene lactone derivatives in the
hairy roots, it has been established that 85% of them are represented by the 8-deoxylactucin
glucoside (crepidiaside A, 13) and that 1.4% of them are based on the dry weight, almost
two-fold more than in wild chicory roots.

2.2. Geographical Distribution

Different chicory ecotypes have been compared in terms of the phenolic profile and
antioxidant properties [67]. Significant differences in phenolic acids (chicoric acid 5 and
5-caffeoylquinic acid 6), flavonoid composition and antioxidant activity have been recorded
among various ecotypes, as well as between the growing conditions (cultivated or wild
plants). The total phenolic content has been found to be higher in cultivated ecotypes than
in wild ones, whereas important amounts of flavonoids, especially apigenin-O-glucuronide,
isorhamnetin-3-O-glucuronide and kaempferol-3-O-glucuronide, have been identified in
commercial products.

An investigation on the bioaccessibility of chicory varieties in Turkey as well as
the changes in anthocyanin, phenolics and antioxidant capacity have been reported [68].
The most frequent compounds in the methanol extracts have been identified as trans-
ferulic and syringic acids (1.85 and 2.54 mg/kg, respectively), whilst the major flavanol
was (+)-catechin. The highest flavanol content has been identified in the green chicory
(0.62 mg/kg). Higher levels of extractable (8855.50 mg GAE/100 g) and hydrolysable
(7005.51 mg GAE/100 g) phenolics and anthocyanin (12.80 mg/kg) have been determined
in red chicory than in other varieties.

2.3. Agriculture Improvement

Arbuscular mycorrhizal fungi (AMF) are very common in earthly ecosystems, being
well known due to their symbiotic associations with the roots of the vascular plants [69].
The AMF have been found to promote growth of the plant and to enhance its chemistry,
morphology and structure [70]. The fungi-colonized roots also increase resistance to
pathogens, influence the rhizosphere microbial composition and reduce environmental
toxicity [71,72].

The involvement of arbuscular mycorrhizal fungi in the production of secondary
metabolites as well as the activity of enzymatic antioxidants of the plant in the presence
of toxic metal (Cd, Pb, Zn) have been investigated [73]. A comparison between chicory
inoculated with Rhizophagus irregularis and non-inoculated plants has been performed in
the presence of the above metals and in non-polluted environments. Whilst no differences
have been found between the concentration of hydroxycinnamates in chicory cultivated in
polluted or non-polluted environments, a higher concentration of caftaric acid 4, cichoric
acid 5 and 3,5-dicaffeoylquinic acid 7 have been identified in AMF-inoculated plants.
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Moreover, regardless of the cultivation conditions, increased enzymatic activities of CAT,
POX and SOD antioxidant enzymes have been identified in mycorrhizal plants.

The concentration dynamics of health-promoting compounds with nutritional value
in C. intybus L. by using the arbuscular mycorrhizal symbiont Funneliformis mosseae have
been evaluated [74]. It has been found that Zn and Fe uptake notably increased as the
result of mycorrhizal colonization of chicory. At the same time, it has been found that
the Cu concentration at the level of roots decreased. Furthermore, the high levels of Zn
and Fe in mycorrhizal plants has been correlated with the accumulation of inulin, fructose
and carotenoids, which suggested a relationship with the production of health-promoting
molecules [75,76].

Impact of calcareous substrata on AMF evolution and on lipid peroxidation in C. intybus
roots has been studied [77]. Thus, the oxidative damage of chicory plants grown in
CaCO3-enriched soil has been assessed via the lipid peroxidation increase monitored via
malondialdehyde (MDA) production and the POD antioxidant enzyme activities. It has
been found that non-mycorrhizal roots present higher levels of MDA as compared to
mycorrhizal roots. This investigation revealed the potential of arbuscular mycorrhizal
symbiosis to prevent lipid peroxidation by increasing chicory tolerance to elevated levels
of CaCO3.

The growth parameters and enzymatic antioxidant parameters of wild chicory have
been evaluated under salt stress [78]. Mycorrhizal C. intybus L. revealed good tolerance
to moderate soil salinity. The increase in the soil salinity has been accompanied by the
decrease in malondialdehyde levels in roots and leaves as well as by the increase in the
proline content, especially in roots. Moreover, the activity of APX, CAT, POD and SOD
antioxidant enzymes has been intensified under salt stress conditions.

The biological effects of different kinds of fertilizers on cultivated chicory have been
investigated in the presence and the absence of pesticides [79]. The antioxidants, including
total polyphenols and flavonoids along with the antioxidant activity of total phenolic
compounds and flavonoids, have been identified to be higher in chicory grown in soil
treated with chemical fertilizer and no pesticide. Furthermore, the level of carotenoids and
the inhibitory effects on HepG2 cells have been positively influenced by an eco-developed
fertilizer group under both pesticide conditions.

Humic acid and vermicompost have been found to increase the amount of bioactive
components of chicory and therefore the antioxidant activity of the herb [80]. The use of
a combination of humic acid and vermicompost resulted in a considerable accumulation
of caffeic acid against other phenolic components (2773 mg/100 g d.w.). Moreover, when
vermicompost has been used alone, the quantity of ellagic acid in shoots has increased to
an average value of 262.51 mg/100 g d.w.

2.4. Extraction of the Main Constituents

Extraction of biologically active compounds present in red chicory has been performed
using response surface methodology and evaluated in terms of the effects of temperature
(62.4 ◦C) and time (25 min) [81]. A nontoxic solvent has been used for the extraction of
bioactive compounds from an aqueous acetic acid solution at a pH of 2.5. Considerable
levels of ellagic acid (12) and anthocyanins (cyanidin-3-O-glucoside and cyanidin-3-O-
(6-O-malonyl) glucoside, compound 13 derivatives) have been discovered in red chicory.
The components of the extract exhibited antioxidant properties and a slight in vitro lipid
peroxidation inhibition.

The orthogonal matrix technique has been employed for the extraction of C. intybus L.
roots [82]. The matrix consists of a 24 h impregnation time in 70% ethanol, followed by
three sonication steps at 300 W. These conditions proved to be the optimal combination
for the improvement of the chicory extract yield, total phenolic content and antioxidant
activity. The bioactive substances have been primarily detected as caffeoylquinic acids
(e.g., 6, 7).
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2.5. Waste Valorization

A huge challenge of this century is waste management and decreasing food waste.
The so-called food by-products represent a recent approach that enables for the valorization
of food wastes. It consists in the recovery of valuable components by using processing
technologies [83].

In the case of chicory, the food by-product concept means that the increase in the
amounts of polyphenols in the extracts resulted from chicory grounds. Important amounts
of antioxidant polyphenols have been recovered using Amberlite XAD 16, a resin that
exhibited good adsorption properties [84]. Desorption has been performed using 70%
aqueous ethanol. An alternative way is the use of Amberlite XAD-2, a nonionic polymeric
resin [85]. In this case, two desorption procedures have been considered using methanol
and water, respectively. Water extraction provided a higher phenolic content in the purified
extracts, the highest mean values being 300 mg of phenolic/g of dried extract.

The antioxidant phenolic profile of a lyophilizate red chicory extract has been char-
acterized and compared with BHT [86]. The antioxidant properties of red chicory have
been evaluated against the lipid peroxidation of different oils and to oxidative stress via
monitoring gene expression. A pleiotropic protective effect on stress responsive genes has
been recorded.

A comparison between water-based conventional and microwave-assisted extraction
techniques has been reported [87]. The yields and antioxidant activity of aqueous extracts
have been correlated with several variables: water/sample ratio, extraction time and
temperature (in conventional extraction). The conventional extraction procedure of chicory
wastes has provided the highest amounts of phenolic antioxidants.

Forced chicory roots, by-products of chicon agricultural production, can be valorized
for their caffeoylquinic acid (3-CQA, 5-CQA and 3,5-di-CQA) content. The optimization of
extraction conditions of caffeoylquinic acids has been reported. The optimal experimental
extraction conditions have been obtained using 70% ethanol at 50 ◦C or pure water at
90 ◦C [88]. Using an accelerated solvent extraction procedure, the highest antioxidant
activity has been achieved at 115 ◦C using 40% aqueous ethanol [89].

2.6. Miscellaneous

The effects of microwave cooking on the chicory leaves have been reported. Eighteen
phenolic compounds have been found in chicory leaf extracts [90]. p-Hydroxybenzoic acid,
3-O- and 5-O-caffeoylquinic acids, 4-feruloylquinic acid, kaempferol-3-sophoroside and
quercetin-di-glucoside were the major phenolic derivatives. The amount of these phenolic
compounds along with lipid peroxidation and the total flavonoid content has significantly
increased as a result of microwave cooking.

3. Health Benefits of Chicory Constituents

The phenolic profile and antioxidant activity have been evaluated for different colored
varieties of chicory vegetables (red-spotted, heavily red, and green-colored) [91]. Whereas
the red color is provided by cyanidin derivatives (e.g., 14), all of the investigated chicories
contain important quantities of hydroxycinnamic and hydroxybenzoic acids (e.g., 2, 4–6).
The particular composition of red chicories gives them great peroxyl radical scavenging
activity in terms of effectiveness and capacity.

The chicory leaf extracts demonstrated antioxidant activity in human plasma and
an inhibitory effect on lipid peroxidation. A significant effect has also been identified on
the level of thiol groups, a biomarker of oxidative stress [92]. These studies found that
anthocyanins (compound 14 derivatives) are the main phenolic compounds in red chicory
leaves, which are responsible for their antioxidant activity.

The antioxidant properties of polyphenols contained by minimally processed red
chicory products (storage at 4 ◦C) have been investigated in model reactions catalyzed using
enzymatic sources of reactive oxygen species: diaphorase, myeloperoxidase and xanthine
oxidase [93]. It has been found that less than 20% of flavonoids and hydroxycinnamic
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acids have been lost during storage of the processed red chicory extracts. The model
enzymatic reactions indicated that generation of the superoxide radical along with quinonic,
hypochlorite and hydrogen peroxide radicals are responsible for the strong antioxidant
activity of the extracts.

The enzymatic activity of peroxidase and polyphenol oxidase in C. intybus L. leaves has
been found to be temperature-dependent. Moreover, the antioxidant behavior of the phe-
nolic components of chicory leaves has been affected by the applied drying techniques [94].
The freeze-dried and hot air-dried leaves have preserved the most of the phenolics and
thus these possess better antioxidant activity.

The anti- and pro-oxidant activity of water extracts of chicory have been analyzed [95].
The linoleic acid-β-carotene micellar model system has been used to investigate the an-
tioxidant activity of juices obtained at 2 ◦C and of those heated at 102 ◦C. Both anti- and
pro-oxidant activity have been identified for the juice obtained at 2 ◦C. The consequences
of thermal treatments such as freeze-drying, freezing and boiling have been reported [96].
It has been found that in a cold medium, all juices contain a thermally unstable component,
which promoted and accelerated linoleic acid peroxidation [97]. The presence and the
activity of thermally stable antiperoxyl radical components, which confer protection from
peroxidation to linoleic acid, are masked by the presence of these pro-oxidant compounds.
The latter can be removed via separation or inactivated via heating.

The antioxidant properties of C. intybus L. extract embedded in chitosan nanocompos-
ite nanofibers and silver nanoparticles using chicory leaf-derived callus extract have been
reported [98,99]. In addition, a combination of chitosan, polyvinyl alcohol and 50 mg of
chicory root extract exhibited the most efficient antioxidant and antibacterial activity. The
highest yield in the total phenolic content of root extracts (4 mg GAE/g) has been obtained
using ethanol as a solvent.

The murine model and nutrigenomic and metagenomic analyses have been used for
testing the water extracts of chicory roots. Novel mechanisms of action as antioxidant,
antiviral and antibacterial, as well as on cancer prevention have been disclosed [100].

The antiosteoporotic effect of C. intybus in glucocorticoid-induced osteoporosis in rats
has been investigated [101]. The antioxidant properties of chicory water extracts (flavonoids
and inulin content) have increased the mineral bone density in the dexamethasone-
treated group.

The effects of a chicory-supplemented diet against oxidative stress and hepatic disor-
ders induced by chlorpromazine and sodium nitrite (nitrosamine precursors) have been
studied in male rats [102]. It has been found that this approach can decrease the hepatotoxi-
city and oxidative stress induced by nitrosamine precursors due to its efficient scavenging
free radicals responsible for cell damage.

Novel heteropolysaccharides have been isolated from C. intybus L. roots [103]. Their
preliminary structural characterization has indicated a combination of glucitol, fructose
and glucose along with sorbin in a ratio of 10:14:6:1 and with a molecular weight of
8511.4 Da. These chicory polysaccharides showed reduced lipid activity in male rats with
non-alcoholic fatty liver disease.

The acute alcohol-induced steatosis in mice can be decreased using chicoric acid
through a mechanism involving the inducible nitric oxide synthase (iNOS) and iNOS-
dependent signaling cascades in the liver [104].

The impact of chicory seed extract on hepatic steatosis determined by different stages
of diabetes in rats and established in HepG2 cells via the bovine serum albumin–oleic
acid complex has been evaluated [105]. Simultaneous treatment with C. intybus L. has
prevented steatosis, inflammation and fibrosis of the cells and tissues. Treatment with
C. intybus L. alone has reestablished the normal levels of the hepatic proteins and increased
the expression of PPARα and SREBP-1c genes. Thus, chicory extract exhibits PPARα agonist
properties. Additionally, chicory seed extract has been found to release glycerol from
HepG2 cells.
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It has been reported that the oxidative stress induced by methotrexate in rats can be
reduced by using a hydroalcoholic root extract of C. intybus L. [106]. The hepatoprotective
effect of chicory syrup against liver damage, lipid peroxidation and oxidative stress induced
by a pyrethroid insecticide, deltamethrin, has been investigated in male rats [107]. The
results of chicory syrup administration consist in decreasing of lipid peroxidation level,
increasing the activity of antioxidant enzymes and improving the histopathological profile
of the liver. C. intybus L. has also been found to provide hepatic protection against cirrhosis
induced by thioacetamide through intracellular pathways: corrections in the liver functions,
inflammatory and redox conditions [108].

Along with the antioxidant and antimicrobial properties, extracts from chicory roots
exhibited toxigenic properties against fungi. The experiments on rats indicated that the use
of the chicory root extract may enhance the generation of functional products that could be
able to improve aflatoxins-induced oxidative stress in liver [109].

The impact on the large intestinal mucosa induced by the introduction of small
amounts of chicory inulin in growing pigs’ diet has been investigated [110]. Native inulin-
enriched diets have been found to improve the levels of antioxidant proteins, protein
foldases and the profile of molecular chaperones. These proteins play an important role
in preserving the integrity of mucosal cells and confer protection against reactive oxygen
species and some endotoxins.

The impact on the intestinal health of nutraceutical phytochemicals presented in Tre-
viso red chicory has been described [111,112]. The presence of antioxidant anthocyanins
in this chicory variety has a direct scavenging impact on the formation of reactive oxy-
gen species over the gastrointestinal tract. The impact on intestinal health appears to
be enhanced by the good ability of anthocyanin metabolites to be diffused in intestinal
tissue. It has been suggested that the protection of the lining of the gut for an efficient
intestinal barrier may arise from the interaction between anthocyanin derivatives and the
mucopolysaccharide complexes.

The antioxidative profile of the body along with the antibacterial activity of β-
glucuronidase at the level of the gut have been enhanced by a combination of monocaf-
feoylquinic and dicaffeoylquinic acids [113]. This mixture has been extracted from the seeds,
roots and root peels of C. intybus L. Rats’ diets improved with chicory root extracts contain-
ing different amounts of fructan and polyphenols triggered positively physiological effects
to them, especially in terms of the blood lipid profile [114,115]. Positive modifications in the
lipid profile of the blood serum have been induced by a chicory leaf extract. The extract has
been found to be rich in chicoric and chlorogenic acids and polyphenolic glycosides.

Natural chicoric acid extracts might have a significant impact on diabetes treatment
since their administration to diabetic rats has been reported to reduce basal hyperglycemia
and improve tolerance to glucose [116,117]. Moreover, the effects of chicoric acid on reg-
ulating insulin resistance and chronic inflammatory responses have been explored by
glucosamine in HepG2 cells [118]. It resulted in a decrease in the reactive oxygen species
levels (COX-2 and iNOS).

Diabetic obese albino mice have been treated with soluble root extracts of chicory and
the effects on the body weight and blood glucose level as well as the anti-inflammatory
and antioxidant status have been monitored [119]. The positive results of chicory root
administration appear to be due to the upregulating of the GDF-15 level.

The enhancement of the mitochondrial function and of energy metabolism as a re-
sult of chicoric acid administration has been reported to ensure neuron survival against
inflammation [120]. Recent results have indicated that a chicoric acid-based nutritional sup-
plementation has ameliorated cognitive impairment induced by D-galactose, as well as the
SH-SY5Y cell apoptosis induced by hydrogen peroxide via promotion of the Keap1/Nrf2
signal pathway and its antioxidant enzymes. These findings pointed out the high potential
of the nutritional preventive strategy based on chicoric acid for the use against oxidative
stress-related cognitive impairment [121,122].
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The inhibitory effects of chicoric acid on systemic inflammation-induced neuroin-
flammation, amyloidogenesis and cognitive impairment have been investigated [123]. It
has been found that chicoric acid prevented lipopolysaccharide-induced memory impair-
ment and neuronal loss through behavioral tests and histological examination. Moreover,
chicoric acid downregulated lipopolysaccharide-induced glial overactivation by inhibiting
the MAPK and NF-kB pathway.

4. Conclusions

This comprehensive review highlights the health benefits of Cichorium intybus L.’s main
constituents. It covers their occurrence, natural biosynthesis, geographical distribution and
waste valorization. The antioxidant properties of chicory components, first reported in
1995 [124], are also summarized. The present literature survey also suggests that the chicory
herb parts exhibit numerous biological activities such as anti-inflammatory, antimicrobial,
hepatoprotective, antidiabetic, gastroprotective, analgesic, tumor-inhibitory and antiallergic
effects. Further in vitro and in vivo studies are required in order to evaluate the possible
therapeutic application of this herb.
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Abbreviations

APX Ascorbate peroxidase
BHT Butylated hydroxytoluene
Caco-2 Human colon carcinoma cell line
CAT Chloramphenicol acetyltransferase
COX Cyclooxygenase
3-CQA 3-Caffeoylquinic acid (chlorogenic acid)
4-CQA 4-Caffeoylquinic acid
5-CQA 5-Caffeoylquinic acid
3,4-diCQA 3,4-Dicaffeoylquinic acid
3,5-diCQA 3,5-Dicaffeoylquinic acid (isochlorogenic acid)
4,5-diCQA 4,5-Dicaffeoylquinic acid
DPPH 2,2-Diphenyl-1-picrylhydrazyl
GAE Gallic acid equivalents
GDF15 Growth differentiation factor 15
HepG2 Liver hepatocellular carcinoma
HRC Hairy root culture
MAPK Mitogen-activated protein kinase
MDA Malondialdehyde
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iNOS Inducible nitric oxide synthase
NF-κB Nuclear factor kappa B
POD Antioxidant enzyme peroxidase
POX Class III plant peroxidase
PPARα Peroxisome proliferator-activated receptor alpha
mRNA Messenger RNA
SOD Superoxide dismutase
SREBP-1 Sterol regulatory element-binding protein 1
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114. Żary-Sikorska, E.; Juśkiewicz, J.; Jundziłł, A.; Rybka, J. Effect of diets varying in the type of dietary fibre and its combination with
polyphenols on gut function, microbial activity and antioxidant status in rats. J. Anim. FeedSci. 2016, 25, 250–258. [CrossRef]
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