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Abstract: Angraecum, commonly known as Darwin’s orchid, is the largest genus of Angraecinae
(Orchidaceae). This genus exhibits a high morphological diversity, making it as a good candidate
for macroevolutionary studies. In this study, four complete plastomes of Angraecum were firstly
reported and the potential variability hotspots were explored. The plastomes possessed the typical
quadripartite structure and ranged from 150,743 to 151,818 base pair (bp), with a guanine–cytosine
(GC) content of 36.6–36.9%. The plastomes all contained 120 genes, consisting of 74 protein-coding
genes (CDS), 38 transfer RNA (tRNA) genes and 8 ribosomal RNA (rRNA) genes; all ndh genes
were pseudogenized or lost. A total of 30 to 46 long repeats and 55 to 63 SSRs were identified.
Relative synonymous codon usage (RSCU) analysis indicated a high degree of conservation in codon
usage bias. The Ka/Ks ratios of most genes were lower than 1, indicating that they have undergone
purifying selection. Based on the ranking of Pi (nucleotide diversity) values, five regions (trnSGCU-
trnGGCC, ycf1-trnNGGU, trnNGUU-rpl32, psaC-ndhE and trnSGCU-trnGGCC) and five protein-coding
genes (rpl32, rps16, psbK, rps8, and ycf1) were identified. The consistent and robust phylogenetic
relationships of Angraecum were established based on a total of 40 plastomes from the Epidendroideae
subfamily. The genus Angraecum was strongly supported as a monophyletic group and sister to
Aeridinae. Our study provides an ideal system for investigating molecular identification, plastome
evolution and DNA barcoding for Angraecum.

Keywords: Darwin’s orchid; Angraecinae; Orchidaceae; plastid genome; phylogenetic analysis

1. Introduction

Darwin’s most famous hypothesis was that a hawkmoth with an 11-inch (approximately
28 cm) proboscis would pollinate the Madagascan orchid [1]. This orchid belongs to Angraecum,
commonly known as Darwin’s orchid, and is the largest genus of Angraecinae (Orchidaceae),
comprising over 220 species [2,3]. Members of the Angraecum genus are mainly distributed
from Madagascar to Africa and the Mascarene Islands [4]. Madagascar is the diversity center
of this genus with approximately 142 species, 90% of which are endemic [5]. This genus is
primarily characterized by its white to green flowers, labellum with a clavate or filiform spur,
and two pollinia [6]. The high morphological variation among Angraecum species makes
it one of the most valuable ornamental orchids. Approximately 190 artificial interspecific
hybrids of Angraecum have been produced and registered with the Royal Horticultural Society
(http://apps.rhs.org.uk/horticulturaldatabase/orchidregister/orchidregister.asp, accessed
on 2 November 2023). Additionally, this genus also plays a critical role in pollination biology,
evolution and ecological research [7–9].

Due to its extensive morphological diversity, this genus has generally been considered
one of the most complicated groups within Angraecinae since its establishment. Mor-
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phologically, Garay proposed 19 sections to categorize the Angraecum species based on
their floral characters [10]. However, recent molecular phylogenetic studies have revealed
that Angraecum was non-monophyletic, and most of the sections defined by Garay were
also non-monophyletic [8,11–14]. Additionally, all studies consistently showed unstable
topologies with weak to moderate support. It seems that a limited number of traditional
molecular markers have hindered our understanding of Angraecum phylogeny, making it
challenging to distinguish between different Angraecum species. Exploring the molecular
phylogenetic markers with more loci suitable for Angraecum is needed.

Advancements in next-generation sequencing (NGS) technology have greatly facil-
itated the acquisition of complete plastomes, which can provide more loci to clarify the
phylogenetic relationships of complex taxa [15–17]. Plastomes are suitable for phylogenetic
analysis due to their uniparental inheritance, abundance of informative loci and moderate
mutation rate [18]. In recent years, whole plastome data have significantly advanced our
understanding of the relationships within Orchidaceae [19–21]. Liu et al. used plastome
sequences to elucidate the phylogenetic relationships within the Cleisostoma–Gastrochilus
clades, revealing strong support and a stable topological structure [22]. Based on 79 protein-
coding sequences of 46 species from 16 genera, Tu et al. showed a robust phylogenetic
framework of the Cheirostylis and Goodyera clades of Goodyerinae [23]. Moreover, the
comparison of plastome structures has proven valuable in understanding the molecular
evolutionary patterns involving gene duplication, loss, rearrangement, and transfer within
Orchidaceae [24–28]. However, no studies of Angraecum plastomes have been reported,
hindering our understanding of the plastome evolution and phylogenetic relationships of
this genus.

To enhance our understanding of Angraecum plastome characteristics, structural di-
versity and evolution, we firstly present four Angraecum plastomes. This study aims to
evaluate variations in high-variability sites and simple sequence repeats, characterizing and
contrasting Angraecum plastomes in order to understand the evolutionary pattern of the
plastome and resolving phylogenetic relationships in Angraecum for accurate authentication
of Angraecum species.

2. Results
2.1. Characteristics of the Plastome

A total of four newly sequenced Angraecum plastomes comprised an LSC region
(87,889–88,904 bp), an SSC region (11,599–11,922 bp) and a pair of IRs (25,387–25,982 bp)
(Figure 1). Plastome sizes ranged from 150,743 bp (A. borbonicum) to 151,818 bp (A.
sesquipedale). Each Angraecum plastome possessed the quadripartite structure with
similar percentages in each region (LSC 58.1–58.6%, IR 16.8–17.1%, and SSC 7.7–7.9%)
(Table 1). The GC content of the whole plastome exhibited minimal variation, ranging
from 36.6% to 36.9%.

Table 1. Characteristics of the complete plastomes of Angraecum.

Taxa Size (bp) GC Content
(%)

LSC Size in
bp (%)

IR Size in
bp (%)

SSC Size in
bp (%)

Total
Number
of Gene

CDS tRNA
Gene

rRNA
Gene

Number
of ndh

Fragment

A. borbonicum 150,743 36.7 88,206 (58.5) 25,387 (33.7) 11,763 (7.8) 120 74 38 8 7
A. lecomtei 151,277 36.8 87,889 (58.1) 25,733 (34.0) 11,922 (7.9) 120 74 38 8 7
A. sesquipedale 151,818 36.8 88,904 (58.6) 25,982 (34.2) 11,760 (7.7) 120 74 38 8 7
A. sororium 151,341 36.9 87,992 (58.1) 25,875 (34.2) 11,599 (7.7) 120 74 38 8 7

All four plastomes of Angraecum encoded 120 genes, encompassing 74 CDSs, 38 tRNA
genes and 8 rRNA genes (Table 1). Among them, 18 genes were replicated in the IR regions,
comprising 5 protein-coding genes (rpl2, rpl23, rps7, rps19 and ycf2), 4 rRNA genes (rrn4.5,
rrn5, rrn16, and rrn23), and 8 tRNA genes (trnAUGC, trnHGUG, trnICAU, trnIGAU, trnLCAA,
trnNGUU, trnRACG, and trnVGAC) (Figure 1). The loss or pseudogenization of the ndh genes
was widespread among all Angraecum plastomes (Figure 1, Table 1). All four plastomes
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shared the same pseudogenes (ndhB/C/D/E/J/K). No significant rearrangements among
these plastomes were detected by a Mauve analysis (Figure 2).
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Figure 1. The annotation map of Angraecum plastome. The darker gray in the inner circle corresponds
to GC content. The IRA and IRB (two inverted repeating regions), LSC (large single-copy region),
and SSC (small single-copy region) are indicated outside the GC content.

The comparative analysis of plastome boundary genes for four Angraecum plastomes
revealed a highly conserved distribution pattern (Figure 3). The rpl22 gene in all species
spanned from LSC to IRb, with a length of 31 bp to 33 bp. The ycf1 gene was entirely located
in the SSC region, and there were no ycf1 fragments near the junction between the IRb and
the SSC (JSB). For the junction between the IRa and the LSC (JLA), the trnH and psbA genes
were detected.
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Figure 3. Comparison of junctions between the LSC (large single-copy region), SSC (small single-copy
region), and IR (inverted repeat regions) regions among four Angraecum plastomes.

2.2. Repeated Analysis

Six types of simple sequence repeats (SSRs) (mononucleotide, dinucleotide, trinu-
cleotide, tetranucleotide, pentanucleotide, and hexanucleotide) were examined to explore
potential genetic markers suitable for clarifying intragenus variations in Angraecum. All
categories were detected, with a total of 55 (A. borbonicum) to 63 (A. lecomtei) SSRs (Figure 4,
Supplementary Table S2). Mononucleotide repeats were the most frequent type, followed
by dinucleotide repeats, with a range of 7 (A. lecomtei) to 11 (A. borbonicum). Among these
classified repeat types, the A/T mononucleotide repeats were the most frequently observed,
with a range of 30 (A. borbonicum) to 44 (A. lecomtei).

A total of 155 long repeats were detected in Angraecum plastomes, comprising 4 types
of long repeats (palindrome, forward, reverse, and complement) (Figure 4, Supplementary
Table S3). Among them, all types were detected within two species (A. lecomtei and A.
sesquipedale), three types were detected within A. borbonicum, and only two types were
detected within A. sororium (Figure 4). The number of long repeats ranges from 30 (A.
sororium) to 46 (A. lecomtei) (Figure 4, Supplementary Table S3). Palindrome repeats were
the dominant type of long repeats, followed by forward. The length of long repeats in all
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species mostly ranged from 30 bp to 40 bp. There were two extremely long repeat sequences
found within A. lecomtei, 104 bp and 80 bp, respectively.
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SSR motifs (mono-, di-, tri-, tetra-, penta- and hexa-); (B) Frequency of classified repeat types
(considering sequence complementary); (C) Variation in repeat abundance and type (P, palindromic;
F, forward; R, reverse; C, complement); (D) The number of long repeats sequences by length.

2.3. Codon Usage Analyses

The concatenated sequences of 68 CDSs (ndh genes were widespread pseudogenized
or lost) were used to calculate the RSCU values and codon usage frequency of Angraecum
plastomes. Visualization of the RSCU values for Angraecum plastomes revealed a highly
conserved codon usage bias (Figure 5, Supplementary Table S4). All species possessed
64 different types of codons and encoded a total of 19,377–19,389 codons. Among these
codons, leucine (Leu) was the most frequent amino acid, while cysteine (Cys) had the
lowest frequency (Supplementary Table S4). The codon GCU exhibited the highest RSCU
value, while the codon CGC had the lowest RSCU value. The most frequently used stop
codon was UAA, and then UAG and UGA.
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2.4. Selective Pressure Analysis

The nonsynonymous (Ka), synonymous substitution rates (Ks), and the ratio Ka/Ks
were calculated to explore whether the protein-coding genes of four Angraecum plastomes
have undergone selection (Figure 6, Supplementary Table S5). A. borbonicum and A. lecomtei
exhibited relatively high Ka and Ks values among the four Angraecum plastomes. A.
sesquipedale had the highest average Ka/Ks value (0.2815). The genes atpH, infA, psaC, psaJ,
psbC, psbE and psbI were found to undergo neutral evolution (Ka/Ks = 1). The majority of
the protein-coding genes were found to have undergone purifying selection. (Ka/Ks < 1).
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2.5. Plastome Sequence Divergence and Barcoding Investigation

The plastome divergence among Angraecum species was calculated using an mVISTA
program with the annotated plastome of Thrixspermum centipeda as a reference genome
(Figure 7). The results showed that the greatest variation was localized within the LSC and
SSC regions, whereas the IR regions exhibited higher conservation. The coding regions
were highly conserved in comparison to the non-coding regions. These results indicate that
several regions may be suitable for DNA barcodes that can distinguish different Angraecum
species easily.
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a reference. The y-axis shows the coordinates between the plastomes.

To further explore the mutation hotspots of Angraecum plastomes to develop specific
DNA barcodes, Pi values was calculated using DnaSP6 (Figure 8). The average Pi value
among the four plastomes was 0.00777, with the IR region averaging 0.00251, the LSC region
averaging 0.00919, and the SSC region averaging 0.02019, respectively (Supplementary
Table S6). According to the ranking of Pi values, five hypervariable regions were identified:
trnSGCU-trnGGCC, ycf1-trnNGGU, trnNGUU-rpl32, psaC-ndhE and trnSGCU-trnGGCC. In terms
of protein-coding genes, rpl32, rps16, psbK, rps8, and ycf1 showed high Pi values and may
be used as DNA barcodes for further phylogenetic analyses and species identification.
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size was 25 bp. x-axis, position of the midpoint of a window; y-axis: nucleotide diversity of each
window or genes.

2.6. Phylogenetic Analysis

In the present study, we obtained a robust phylogenetic framework of the Epi-
dendroideae using three methods (ML, MP and BI), including 40 species from 34 gen-
era (Figure 9). The species of Angraecum formed a well-supported monophyletic group
(BS = 100, PP = 1.00), which was revealed as a sister to Aeridinae. The intrageneric relation-
ships of Angraecum showed that Angraecum could be divided into two diverging clades
with strong support (BS = 100, PP = 1.00). The taxa A. lecomtei, together with A. borbonicum,
formed the first distinct clade. A. sororium was grouped together with A. sesquipedale,
supported as the second clade.
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3. Discussion
3.1. The Plastome Characteristics and Structural Evolution

In the present study, we firstly reported four Angraecum plastomes and provided
genetic resources for understanding the evolution of plastomes in this group. All An-
graecum plastomes had the typical quadripartite structure (Figure 1), consisting of one
LSC region, one SSC region, and two IR regions, similar to most common angiosperms.
Limited variation in overall plastome size was detected among Angraecum species: A. bor-
bonicum possessed the smallest plastome at 150,743 bp, and A. sesquipedale had the largest
at 151,818 bp. The plastome size falls within the previously reported range of Orchidaceae
plastomes, which ranged from 19,047 bp (Epipogium roseum) [29] to 212,688 bp (Cypripedium
tibeticum) [24]. No significant variation in GC content was found among Angraecum plas-
tomes (36.7–36.9%) in this study. In addition, no unusual structural features were detected
among Angraecum plastomes according to the result of Mauve (Figure 2).

The loss and pseudogenization of the ndh genes were commonly observed in Orchi-
daceae (Figure 1, Table 1). The phenomenon has been observed in several orchid lineages,
including Vanilla [30], Dendrobium [25], Bulbophyllum [31], Goodyerinae [23], Neottieae [32],
Polystachya [26], and Aeridinae [20,21]. Our study showed that all Angraecum plastomes
were ndh-deleted: ndhA/F/G/H/I genes were completely lost and the other ndh genes
were pseudogenes. The previous study suggests that the loss of ndh genes may be associ-
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ated with the epiphytic lifestyle of plants [33]. Angraecum species are usually epiphytic or
lithophytic [6], supporting the pseudogenization or loss of ndh genes in epiphytic habitats.

Previous studies showed that the IR/SC boundary shift is one of the main factors
contributing to differences in plastome length and gene content [34,35]. However, the gene
arrangement of the IR/SC boundary in Angraecum plastomes was extremely conserved
(Figure 3), indicating that the variations in plastome length and gene content in Angraecum
were not caused by the IR/SC boundary shift.

Simple sequence repeats (SSRs) are commonly found in plastomes, serving as a crucial
molecular marker in phylogenetics, population genetics, and evolutionary studies [36,37].
The present study investigated the dispersion of repeat sequences in four Angraecum
plastomes, which showed a similar SSR motif distribution (Figure 4). Numerous long
repeat sequences were identified, with the majority falling within the range of 30 to 40 bp,
consistent with ranges previously recorded in other Orchidaceae lineages [24–28]. However,
we detected two extremely long repeat sequences within the plastome of A. lecomtei with
lengths of 104 bp and 80 bp. This result indicated that these long repeat sequences could
potentially be DNA barcodes in future studies of this species. Our results significantly
contribute to understanding the development of specific DNA barcodes in Angraecum.

Relative synonymous codon usage (RSCU) values were used to measure codon usage
bias in coding sequences, which could provide evidence for exploring the evolutionary
patterns of species [38]. Our results indicated that codon usage bias was highly conserved
among four Angraecum plastomes (Figure 5). Previous studies indicated that similar codon
selection strategies may contribute to the close phylogenetic relationships between closely
related species. Our results were consistent with previous studies of codon preference in
Orchidaceae [26,27].

We also conducted a selective pressure analysis to compare the protein-coding genes
evolution in the four Angraecum plastomes (Figure 6, Supplementary Table S6). The Ka/Ks
ratios were crucial for understanding the adaptive evolution among species [39]. Our results
showed that no genes were identified with positive selection (Ka/Ks > 1) and most genes
were found to have undergone purifying selection (Ka/Ks < 1). These phenomena might
reflect that most cp-genes in these Angraecum species were likely to undergo deleterious
nonsynonymous substitutions [40].

3.2. Plastid Genomic Evolutionary Hotspots

To identify mutational hotspots for phylogenetic reconstruction of taxonomically
problematic groups, numerous plastomes comparative analyses within Orchidaceae had
been reported [24–28]. In this study, a total of five hotspots regions (trnSGCU-trnGGCC,
ycf1-trnNGGU, trnNGUU-rpl32, psaC-ndhE and trnSGCU-trnGGCC) and five CDSs (rpl32, rps16,
psbK, rps8, and ycf1) were selected for candidate barcodes, respectively (Figure 8). These
findings may contribute to the development of specific DNA barcoding markers and the
resolution of phylogenetic relationships in Angraecum.

3.3. Phylogenetic Analysis

Angraecum presented a considerable challenge to its phylogenetic reconstruction and
classification because of the numerous disparities between morphology and molecular
analyses. Based on matK, trnL-F and ITS, Carlsward et al. [11] revealed that Angraecum was
non-monophyletic and exhibited collapsed relationships with low to moderate support [11].
However, based on a broader sampling and molecular markers, the phylogenetic relation-
ships of Angraecum, as revealed by Micheneau et al. [12], Andriananjamanantsoa et al. [5],
and Simo-Droissart et al. [13], are still unresolved due to incongruent topology and weak
support. In addition, the non-monophyletic status of most sections defined by Garay [10]
was commonly found in these studies [5,12,13]. Therefore, the most recent molecular phylo-
genetic study suggested that using genomic data to resolve the phylogeny of Angraecum is
needed [14]. Our phylogenomic analyses revealed that the phylogenetic resolution within
Angraecum has been greatly improved with strong support (Figure 9). Four Angraecum
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species were clustered into a monophyletic group (BS = 100, PP = 1.00) and could be further
divided into two diverging clades. This result indicated that the plastome sequences were
ideal molecular markers for resolving the intrageneric relationships of Angraecum.

According to the new Orchidaceae classification system [41], Angraecum was placed in
the subtribe Angraecinae, sister to the subtribe Aeridinae of the subfamily Epidendroideae.
Previous studies commonly indicated that Epidendroideae was the most taxonomically
problematic subfamily due to its significant diversification (comprising approximately
76% of Orchidaceae species) [42]. To explore the phylogenetic position of Angraecinae,
we reconstructed the phylogeny relationships within Epidendroideae, including a total
of 40 species from 34 genera. Our results showed that Angraecinae was sister to Aerid-
inae with strong support in all analyses (BS = 100, PP = 1.00) (Figure 9), consistent with
previous studies [19]. Additionally, we identified several extremely short branches within
Epidendroideae (Figure 9). Short branch lengths in phylogenetic trees could be attributed
to the rapid radiation events, resulting in few opportunities for molecular changes [43]. The
widespread rapid radiation events among Epidendroideae may explain why the numerous
species and genera within this subfamily.

4. Materials and Methods
4.1. Taxon Sampling and Sequencing

Four Angraecum species were selected for the study: A. borbonicum, A. lecomtei, A.
sesquipedale, and A. sororium. Fresh and healthy leaf tissues of Angraecum were obtained
from Fujian Agriculture and Forestry University (Fuzhou, Fujian, China) and Shanghai
Chenshan Botanical Garden (Shanghai, China). Four Angraecum species were selected.
Based on the previous study [41], a total of 40 plastomes from 34 genera were selected,
including six species from five genera from Lower Epidendroideae as the outgroups.
Voucher information and GenBank accession numbers are provided in Supplementary
Table S1.

Total DNA was extracted from fresh leaves with a Plant Mini Kit (Qiagen, Redwood
City, CA, USA) based on the manufacturer’s protocol, which included prewashing with
STE buffer to remove inhibitory chemicals. DNA degradation and contamination were
evaluated on 1% agarose gels. Next-generation sequencing (NGS) was performed on an
Illumina Hiseq 4000 sequencing platform (Illumina, San Diego, CA, USA), generating
150-bp paired-end reads. Scripts were used to filter the Illumina data in the cluster with the
default parameters. Paired reads were excluded from the analysis if they contained more
than 50% low-quality (Q ≤ 5) bases or if the N content exceeded 10% of the reads’ base
number. More than 10 Gb clean data were obtained for each species.

4.2. Plastome Assembly and Annotation

To obtain complete plastomes, we used a GetOrganelle pipe-line (https://github.com/
Kinggerm/GetOrganelle, accessed on 1 November 2023) [44] to filter the paired-end reads
with default parameters. Then, the SPAdes 3.10 [45] were employed to assemble the filtered
reads. To obtain pure contigs, we further filtered the “fastg” files by the GetOrganelle script.
The filtered De Bruijn graphs were then examined and corrected by Bandage [46]. Finally,
four high-quality and complete plastomes were obtained.

PGA software [47] was used to annotate the newly assembled Angraecum plastome,
and the published sequence of Thrixspermum centipeda (MW057769) was used as a reference.
The start and stop codons in protein-coding genes were manually visualized and corrected
by aligning them with the reference plastome in Geneious R11.1.5 [48]. The annotation
maps were drawn using OGDRAW [49].

4.3. Plastome Comparative and Codon Usage Analysis

The rearrangements of Angraecum plastomes were identified and plotted by Mauve [50].
The genes on the boundary regions of LSC/IRb/SSC/IRa were visualized by the IRscope
online program [51]. The online software MISA (http://misaweb.ipk-gatersleben.de/,

https://github.com/Kinggerm/GetOrganelle
https://github.com/Kinggerm/GetOrganelle
http://misaweb.ipk-gatersleben.de/
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accessed on 1 November 2023) [52] was employed to detect simple sequence repeats
(SSRs). Parameters for SSR motifs were 10, 5, 4, 3, 3, and 3 nucleotide repeats set for
mono-, di-, tri-, tetra-, penta- and hexa-motif microsatellites (mononucleotide, dinucleotide,
trinucleotide, tetranucleotide, pentanucleotide, and hexanucleotide) set as the minimum
threshold, respectively. The REPuter software [53] was used to detect four types of long
repeat sequences, including forward (F), palindrome (P), reverse (R), and complement (C).
The minimum repeat size of oligonucleotide repeats was set at 30 bp, and the Hamming
distance was set at 3. Results were visualized with the R package ggplot2 [54].

A total of 68 CDSs of each Angraecum plastome were extracted and concatenated
using PhyloSuite v1.2.2 [55]. Relative synonymous codon usage (RSCU) values for each
Angraecum species were calculated by DAMBE [56]. Finally, a heatmap was generated
using TBtools [57].

4.4. Selective Pressure Estimation

A total of 68 CDSs were retrieved and used to investigate substitution rates, respec-
tively. The non-synonymous (Ka) and synonymous (Ks) rates, as well as the Ka/Ks ratio,
were calculated using Ka/Ks calculator ver. 2.0 [58]. When Ka/Ks > 1 indicates positive
(adaptive) selection, Ka/Ks = 1 indicates neutral evolution, while Ka/Ks < 1 signifies
negative (purifying) selection.

4.5. Sequence Divergence, Barcoding Investigation and Phylogeny

The online program mVISTA was used to analyze the diversity of Angraecum plastomes
using the Shuffle-LAGAN [59] alignment program and Thrixspermum centipeda (MW057769)
was used as a reference. The nucleotide variability (Pi) of whole plastomes and 68 CDSs of
Angraecum were calculated by DnaSP 6 [60] with the default parameters.

A total of 40 plastomes were aligned by MAFFT [61] and we employed TrimAL
v1.4 [62] to trim the poorly aligned positions with a default parameter. Then, the matrix
was used to reconstruct the phylogenetic tree. The phylogenetic trees were inferred by
maximum likelihood (ML), maximum parsimony (MP), and Bayesian inference (BI) on the
website CIPRES Science Gateway web server (RAxML-HPC2 on XSEDE 8.2.12, PAUP on
XSEDE 4.a 168 and MrBayes on XSEDE 3.2.7a) [63]. For ML analysis, the GTRGAMMA
model was specified for all datasets [64] and calculated bootstrap values from 1000 boot-
strap replicates using heuristic searches [65]. For BI analysis, we used MrBayes v. 3.2.7a
under the GTR + I + Γ substitution model. The Markov chain Monte Carlo (MCMC) algo-
rithm was run for 10,000,000 generations, with one tree sampled every 100 generations.
The first 25% of trees were discarded as burn-in to construct majority-rule consensus trees
and estimate posterior probabilities (PP).

5. Conclusions

In the present study, we firstly reported four Angraecum plastomes (A. borbonicum,
A. lecomtei, A. sesquipedale, and A. sororium). The characteristics and comparative analysis
results indicate that the genomic structure and gene content of Angraecum plastomes are
highly conserved. All ndh genes were found to be lost or pseudogenized. According to
the ranking of Pi values, a total of five hotspots regions (trnSGCU-trnGGCC, ycf1-trnNGGU,
trnNGUU-rpl32, psaC-ndhE and trnSGCU-trnGGCC) and five protein-coding genes (rpl32, rps16,
psbK, rps8, and ycf1) were identified for DNA barcodes. Based on whole plastome sequences,
we explored the intrageneric and intergeneric relationships of Angraecum and found that
plastome data offer valuable insights into the phylogenetic relationships of Angraecum.
These findings shed new light on plastome evolution and the phylogenetic relationships of
Angraecum and its related lineages.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms25010184/s1.

https://www.mdpi.com/article/10.3390/ijms25010184/s1
https://www.mdpi.com/article/10.3390/ijms25010184/s1


Int. J. Mol. Sci. 2024, 25, 184 13 of 15

Author Contributions: Z.-J.L. and M.-H.L.: Conceptualization. C.-Y.Z. and W.-J.L.: Methodology,
Software; C.-Y.Z., W.-J.L., R.L. and M.-H.L.: Data curation, Writing—Original draft preparation,
Writing—Reviewing and editing. C.-Y.Z., R.L. and Y.W.: Validation; Resources. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was supported by the Outstanding Youth Scientific Fund of Fujian Agriculture
and Forestry University (XJQ202005), the Nature Science Foundation of Fujian Province, China
(2021J01134), and the Forestry Peak Discipline Construction Project of Fujian Agriculture and Forestry
University (72202200205).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the data are provided within this manuscript and supplementary
materials.

Acknowledgments: We acknowledge the technical support of laboratory staff during the conduction
of laboratory experiments, Ding-Kun Liu, Xiong-De Tu, and Jin-Liao Chen.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Harder, L.D.; Johnson, S.D. Darwin’s beautiful contrivances: Evolutionary and functional evidence for floral adaptation. New

Phytol. 2009, 183, 530–545. [CrossRef] [PubMed]
2. Hermans, J.; Verlynde, S.; Rajaovelona, L.; Cribb, P.J.; Hervouet, J.M. New species and nomenclatural changes in Angraecum

(Orchidaceae) from Madagascar. Kew Bull. 2020, 75, 49. [CrossRef]
3. Hermans, J.; Rajaovelona, L.; Cribb, P. Angraecum inflatum, a new species in Angraecinae (Orchidaceae) from Madagascar. Kew

Bull. 2021, 76, 513–517. [CrossRef]
4. Simo-Droissart, M.; Micheneau, C.; Sonké, B.; Droissart, V.; Plunkett, G.M.; Lowry, P.P., II; Hardy, O.J.; Stévart, T. Morphometrics

and molecular phylogenetics of the continental African species of Angraecum section Pectinaria (Orchidaceae). Plant Ecol. Evol.
2013, 146, 295–309. [CrossRef]

5. Andriananjamanantsoa, H.N.; Engberg, S.; Louis, E.E., Jr.; Brouillet, L. Diversification of Angraecum (Orchidaceae, Vandeae) in
Madagascar: Revised phylogeny reveals species accumulation through time rather than rapid radiation. PLoS ONE 2016, 11,
e0163194. [CrossRef] [PubMed]

6. Pridgeon, A.M.; Cribb, P.J.; Chase, M.W.; Rasmussen, F.N. Genera Orchidacearum Volume 6: Epidendroideae (Part 3); OUP Oxford
Press: Oxford, UK, 2014.

7. Nilsson, L.A.; Jonsson, L.; Rason, L.; Randrianjohany, E. Monophily and pollination mechanisms in Angraecum arachnites Schltr.
(Orchidaceae) in a guild of long-tongued hawk-moths (Sphingidae) in Madagascar. Biol. J. Linn. Soc. 1985, 26, 1–19. [CrossRef]

8. Micheneau, C.; Fournel, J.; Pailler, T. Bird Pollination in an Angraecoid Orchid on Reunion Island (Mascarene Archipelago, Indian
Ocean). Ann. Bot. 2006, 97, 965–974. [CrossRef]

9. Buyun, L.I.; Cherevchenko, T.M.; Kovalska, L.A.; Ivannikov, R.V. Reproductive biology of Angraecum eburneum subsp. superbum
(Orchidaceae) under glasshouse conditions. Environ. Exp. Biol. 2015, 13, 33–39.

10. Garay, L.A. Systematics of the genus Angraecum (Orchidaceae). Kew Bull. 1973, 28, 495–516. [CrossRef]
11. Carlsward, B.S.; Whitten, W.M.; Williams, N.H.; Bytebier, B. Molecular phylogeny of Vandeae (Orchidaceae) and the evolution of

leaflessness. Am. J. Bot. 2006, 93, 770–786. [CrossRef]
12. Micheneau, C.; Carlsward, B.S.; Fay, M.F.; Bytebier, B.; Pailler, T.; Chase, M.W. Phylogenetics and biogeography of Mascarene

angraecoid orchids (Vandeae, Orchidaceae). Mol. Phylogenet. Evol. 2008, 46, 908–922. [CrossRef] [PubMed]
13. Simo-Droissart, M.; Plunkett, G.M.; Droissart, V.; Edwards, M.B.; Farminhão, J.N.M.; Ječmenica, V.; D’haijère, T.; Lowry, P.P.; Sonké,
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