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Abstract: Pre-harvest sprouting (PHS) is one of the most important factors having adverse effects on
yield and grain quality all over the world, particularly in wet harvest conditions. PHS is controlled by
both genetic and environmental factors and the interaction of these factors. Breeding varieties with
high PHS resistance have important implications for reducing yield loss and improving grain quality.
The rapid advancements in the wheat genomic database along with transcriptomic and proteomic
technologies have broadened our knowledge for understanding the regulatory mechanism of PHS
resistance at transcriptomic and post-transcriptomic levels. In this review, we have described in detail
the recent advancements on factors influencing PHS resistance, including grain color, seed dormancy,
α-amylase activity, plant hormones (especially abscisic acid and gibberellin), and QTL/genes, which
are useful for mining new PHS-resistant genes and developing new molecular markers for multi-gene
pyramiding breeding of wheat PHS resistance, and understanding the complicated regulatory
mechanism of PHS resistance.
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1. Introduction

Pre-harvest sprouting (PHS) refers to the germination of grains in mature cereal spikes before
harvest under continuous wet weather conditions [1]. PHS has adverse impacts on wheat quality and
yield [2,3] and reduces baking quality of dough by making it porous, sticky, and off-color. The price
of sprouted grain is decreased by 20–50% and is unacceptable for human food if it contains more
than 4% sprouted grains [4]. The decreased bread and noodle quality is due to increased activity of
lipases, amylases, and proteases, enzymes which degrade lipids, starch, and proteins in sprouting
grains [5,6]. Global yield and quality losses due to PHS have a financial impact estimated at $1 billion
annually [7]. PHS occurred frequently in many major wheat producing areas of the world, including
China, USA, Japan, Canada, Australia, and also in Europe [8]. In China, PHS is a major problem,
especially in the northern spring wheat region, Yangtze River Valley, and northeastern spring wheat
region which are characterized by heavy rainfall and high humidity before harvest [9]. In recent years,
it has also become a serious problem in the Yellow and Huai Valleys’ wheat region due to climate
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changes. Therefore, improving PHS resistance is a major breeding objective to mitigate the risk of PHS
and increase the production of high-quality wheat.

PHS resistance is associated with several developmental, physiological, and morphological features
of the spike and seed, which includes seed coat (pericarp) color and permeability, seed dormancy,
α-amylase activity, and levels of plant growth hormones (abscisic acid, gibberellin and auxin) [1,10–18].
Other factors, such as waxiness, hairiness, ear morphology, and germination-inhibitory compounds
produced in bracts surrounding the grains have also been linked with PHS resistance [19,20]. Among
them, seed dormancy is the major genetic factor controlling PHS resistance, therefore, much attention
has been paid to understand the molecular mechanism of seed dormancy as a means to improve PHS
resistance in wheat breeding programs.

PHS resistance is a typical quantitative trait controlled by numerous QTL/genes. Many quantitative
trait loci (QTL) have been identified for PHS resistance in wheat [1,14,18,21–37]. Several candidate
genes for PHS resistance have also identified, including TaSdr, TaPHS1, TaMFT, TaVp-1, Tamyb10, and
TaMKK3-A [38–46]. These QTL/genes are valuable for gene pyramiding in breeding programs. However,
the regulatory mechanisms of PHS remain unclear, which is why progress in improving wheat PHS
resistance is limited.

To understand the regulatory mechanism of PHS resistance and provide valuable information for
developing PHS resistant wheat varieties, this review summarizes recent advances of several major
factors affecting PHS resistance, including grain color, seed dormancy, α-amylase activity, and plant
growth hormones.

1.1. Grain Color

Grain color (GC) is an important genetic factor affecting the brightness of flour and is also
associated with seed dormancy and PHS resistance. It is controlled by the R-1 gene series distally
located on long arms of chromosomes 3A, 3B, and 3D [47]. Dominant R-1 alleles confer red grain color
and are denoted by R-A1b, R-B1b, and R-D1b whereas the recessive alleles contribute white grain color
and are named as R-A1a, R-B1a, and R-D1a, respectively. For dominant R-A1b, R-B1b, and R-D1b alleles,
only one allele is enough for red color, while redness increases in a gene dosage-dependent manner [48].
The R genes act as transcriptional activators of flavonoid synthesis genes and are positioned in the
same region as Myb-type transcription factor loci (Tamyb10-A1, Tamyb10-B1, and Tamyb10-D1) [49].
Himi et al. [40] confirmed the three Tamyb10-1 genes on chromosomes 3AL, 3BL, and 3DL as candidate
genes underlying the R-1 loci for wheat grain color.

The red pigment in the testa of plant grains is composed of catechin, and proanthocyanidins (PA)
that are produced in the flavonoid biosynthesis pathway and synthesized by different enzymes such
as dihydroflavonol-4-reductase (DFR), chalcone flavanone isomerase (CHI), flavanone 3-hydroxylase
(F3H), and chalcone synthase (CHS) [50–52] (Figure 1). These enzymes are expressed only in immature
red grains and are almost completely repressed in the grains of white wheat [49]. The above
Myb-type Tamyb10-1 transcription factors control anthocyanin production and the red pigment of
wheat grain by up-regulating the structural genes encoding DFR, CHI, F3H, and CHS in the flavonoid
biosynthesis pathway.

In general, red-grained genotypes are more resistant to PHS compared to white-grained
genotypes [53,54]. Himi et al. [53] observed the effect of R genes on grain dormancy by using
near-isogenic red grained ANK lines and white grained mutant (EMS-AUS) lines and found that
the level of dormancy conferred by R genes decreased rapidly in ANK lines during the after-ripening
stage whereas reduction in the white grained mutant (EMS-AUS) line was not large indicating that
R genes might play a minor role in seed dormancy. Groos et al. [1] detected four QTL for both PHS
resistance and GC using a recombinant inbred line (RIL) population from a cross between Renan
(red-grained) and Récital (white-grained). Three of these QTLs were close to R genes, and one was
mapped on chromosome 5AS. Lin et al. [55] reported the genetic architecture of GC and PHS and
genetic relationship of these two traits in a panel of 185 U.S. elite breeding lines and cultivars using
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a genome-wide association study (GWAS). These results showed that GC genes (Tamyb10-A1 and
Tamyb10-D1) had a significant effect on PHS resistance, but Tamyb10-B1 was significant only for GC
and not for PHS resistance. In addition, a novel QTL for GC was also identified on chromosome
1B. Zhou et al. [37] identified three main QTLs for PHS resistance by GWAS, including a novel
locus on chromosome 5D and two loci co-located with Tamyb10-1 genes on chromosomes 3A and
3D. Furthermore, 32 GC-related QTLs (GCR-QTL) were also detected, and a strong correlation was
observed between the number of GCR-QTL and seed germination rate. The above results imply that
GC is significantly associated with PHS resistance, and might be controlled jointly by many QTLs in
addition to he Tamyb10-1 gene. Of these, some QTLs are for both GC and PHS resistance; others are
for GC only and not for PHS resistance. Therefore, it should be possible to breed PHS-resistant white
wheat by using the gene-editing technology known as CRISPR/Cas9 to alter the GC-related genes
keeping in view the other dormancy-related QTLs besides those provided by the R-1 genes of the red
grained parent used for such editing.Agronomy 2018, 8, x FOR PEER REVIEW  3 of 32 
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Figure 1. Schematic representation of flavonoid biosynthesis pathway in plants. Enzymes are shown
in blue while intermediates are shown in black. End products are indicated in colored shapes. Dotted
arrows represent multiple steps. CHS, chalcone synthase; CHI, chalcone isomerase; F3H, flavanone
3-hydroxylase; DFR, dihydroflavonol 4-reductase; ANS, anthocyanidin synthase; UFGT, UDP-glucose
flavonoid 3-O glucosyltransferase; FLS, flavonol synthase; LAR, leucoanthocyanidin reductase; ANR,
anthocyanidin reductase.

1.2. Seed Dormancy

Dormancy is the inhibition of germination of morphologically ripe and healthy seeds even
under optimum conditions of light, moisture, and temperature [56,57]. Initiation and maintenance
of dormancy is affected by both genetic and environmental factors [58]. Dormancy is regarded
as a major genetic component of PHS resistance [59–61]. Seed dormancy in wheat is a complex
phenomenon and can be divided into seed coat-imposed and embryo-imposed dormancy [62,63].
Seed coat inhibitory compounds are associated with seed coat-based dormancy [53], whereas
crosstalk of phytohormones, such as abscisic acid (ABA), gibberellin (GA), and auxin, are involved
in embryo-imposed dormancy [64,65]. Seed coat-imposed dormancy in particular is involved in the
seed survival mechanism of several species [66]. The seed coat exerts its germination-restrictive action
by its mechanical resistance to radicle protrusion or being impermeable to water and/or oxygen.
These properties are positively correlated with seed coat color due to phenolic compounds in diverse
species. In wheat, red-grained genotypes exhibit a wide range of seed dormancy and are more resistant
to PHS because they contained dominant alleles in their trigenic series, whereas white-grained cultivars
lack seed dormancy at maturity and are susceptible to PHS [63,67–69].
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It is widely known that abscisic acid (ABA) is the major mediator for seed dormancy because it
plays a significant role in inducing and maintaining dormancy during seed development as well as
in imbibed seeds [70,71]. Many genes, like TaPHS1 (a TaMFT-like gene), TaCYP707A1, and TaDOG1,
have been identified for seed dormancy and are also involved in ABA synthesis and its signal
transduction [41,43,72–74]. Until now, TaPHS1/TaMFT, TaSdr, PM19-A1/A2, and TaMKK3-A are the
cloned genes involved in controlling seed dormancy and PHS resistance in wheat. TaMFT (Mother of FT
and TFL1) is a homologue of the Arabidopsis MFT gene which controls seed dormancy and also regulates
ABA and GA signal transduction. These studies indicated that wheat and Arabidopsis share the same
regulatory mechanism of seed dormancy [41,43,72]. An SNP in the promoter region (at position –222)
of TaMFT has identified which may increase MFT expression and likely contributes to increase seed
dormancy [41]. Another gene TaPHS1 (homolog of wheat MFT gene) involved in the regulation of
seed dormancy and PHS resistance was identified on wheat chromosome 3A while the mutations at
+646 and +666 positions of the coding region of TaPHS1 gene resulted in PHS susceptibility [42,43].
It has been reported that Sdr gene plays an intermediate role in inhibiting germination and promoting
dormancy in rice [75]. In wheat, three TaSdr genes TaSdr-A1, TaSdr-B1, and TaSdr-D1 have been cloned
and are involved in seed dormancy, among them; TaSdr-B1 on chromosome 2B was observed to
play a vital role in regulating seed dormancy [46,76]. Barrero et al. [44] identified two candidate
genes PM19-A1 and PM19-A2 which positively regulate seed dormancy. They also demonstrated
that PM19-A1 highly expressed in dormant genotypes during grain maturation while PM19-A2
showed sequence variations between non-dormant and dormant genotypes. In wheat, another gene
MKK3-A (mitogen-activated protein kinase kinase 3), also called TaMKK3-A, has been identified on
chromosome 4AL as a candidate gene of the Phs-A1 locus which is associated with the length of
seed dormancy [45]. Despite the multi-genic control of seed dormancy, a few major loci, including
Phs-A1 on chromosome 4AL and TaPHS1/TaMFT on chromosome 3A, have also shown to involve in
sprouting resistance and account for a significant proportion of natural variations in diverse mapping
populations [77]. Based on the strong effect, Phs-A1 has been identified in at least 15 multi-parent
and bi-parental mapping populations developed from diverse germplasm originated in the United
Kingdom, Australia, China, Japan, Mexico, Europe, Canada, and Africa [44,78–81]. Shorinola et al. [77]
studied the physiological evaluation of Phs-A1 during seed after-ripening and observed that it delayed
the rate of loss in dormancy when plants were grown across a wide temperature range of 13–22 ◦C.
In another study, Shorinola et al. [82] conducted a haplotype analysis of the Phs-A1 locus and found
that TaMKK3-A, but not PM19, was the causal gene underlying variation in sprouting associated with
Phs-A1 in diverse Asian, North American, European, and Australian germplasm.

In addition to the PHS-resistant genes identified in wheat, maize could also act as a model
to improve PHS resistance in wheat, e.g., the maize viviparous-1 (Vp1) gene. McCarty et al. [83]
reported that Vp1 gene encodes a transcription factor that plays a significant role in the regulation
of late embryogenesis in maize and late embryo development in bread wheat. TaVp1 genes were
extensively studied in wheat and were linked with seed dormancy and PHS resistance [38,39,61,84–89].
The TaVp1 genes were mapped about 30 cM from R loci on homologous group 3Lchromosomes [86].
Six TaVp-1B alleles, TaVp-1Ba, TaVp-1Bb, TaVp-1Bc, TaVp-1Bd, TaVp-1Be, and TaVp-1B were identified
in wheat [38,39,89,90]. Based on this allelic variation, the STS marker (Vp1B3) was developed for
seed dormancy and it was observed that TaVp-1Bb and TaVp-1Bc alleles were linked with higher PHS
tolerance [38]. Another STS marker (Vp1A3) was also developed for PHS tolerance by observing
greater PHS resistance in various combinations of allelic variations, like TaVp-1Agm/TaVp-1Ba,
TaVp-1Agm/TaVp-1Bb, TaVp-1Aam/TaVp-1Bb, and TaVp-1Aim/TaVp-1Bb [61]. Moreover, genetic analyses
identified other genes such as DOG1 involved in seed germination and dormancy [91–94]. The DELAY
OF GERMINATION1 (DOG1) gene was first identified in Arabidopsis as a major QTL involved in
increased seed dormancy [95]. The length of seed dormancy was estimated by the amount of expression
of DOG1 protein in freshly-harvested seeds, which indicated that the DOG1 gene is a timer for
the release from dormancy [96]. In a recent study, Nishimura et al. [97] demonstrated that the
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DOG1 and AHG1 genes interact with multiple environmental factors as well as the PYL/RCAR ABA
receptor-mediated regulatory system to establish an important regulatory mechanism for control of
seed dormancy and germination. Recent advances in genome sequencing and whole genome assembly
of hexaploid wheat will trigger progress in identifying more seed dormancy and PHS resistance
genes [98–102].

1.3. α-Amylase Activity

The α-amylase (amy) enzyme is involved in many plant physiological processes such as cold
tolerance and germination rate and can hydrolyze α-1,4 -glycosidic bonds in saccharides [103,104].
The expression of amy enzyme is strictly controlled by the phytohormones ABA and gibberellin. ABA
inhibits the amy expression during grain development. However, in genetic defect wheat, a high
level of high pI amy genes could be expressed, resulting in poor grain quality during late grain
development which is referred to as late maturity α-amylase (LMA) [105]. An elevated level of GA
promotes amy expression during seed germination [106]. Alpha-amylase activity and PHS resistance
are associated with each other possibly due to the fact that increased α-amylase activity upon water
absorption promotes seed germination [107,108]. A remarkable difference was found in α-amylase
activity between PHS-resistant and -susceptible cultivars in wheat [108]. Of three PHS traits, falling
number (FN) [109] was found to indirectly measure the α-amylase enzyme activity that degrades
starch in germinating seeds and is an important factor in quantifying PHS [110]. Breakdown of
starch due to increased α-amylase activity results in a decreased FN value and is an indirect sign
of low seed dormancy and low PHS resistance. Four isozymes of α-amylase affecting PHS have
been identified in wheat, including malt-α-amylase (α-amylase-1) on homologous chromosomes
6, green-α-amylase (α-amylase-2) on homologous chromosomes 7, α-amylase-3 on homologous
chromosomes 5, and α-amylase-4 has two members on homologous chromosomes 2 and 3 [111,112].
The wheat B genome contains genes for α-amylase-1 and α-amylase-2 among all the three genomes.
Promoters of α-amylase-1 gene contains GA responsive complex that consists of a GA-responsive
element (CAATAAA), pyrimidine box (CCTTTT), and TATCCAT/C box [112]. GA3 seemed to be
involved in regulation of expression level of α-amylase-1 and α-amylase-2 [113]. The α-amylase-1
activity seemed to be significantly correlated with seed dormancy and contributed about 84% to seed
germination [111].

In addition to α-amylase variation, α-amylase subtilisin inhibitors (ASI) were also identified
in wheat, rice, rye, and barley by limiting α-amylase activity to restrain seed germination [114,115].
Moreover, ten ASI isomerides were identified through monoclonal antibody immune imprinting
and isoelectric focusing electrophoresis techniques [116,117]. Yuan et al. [118] reported that PHS
tolerance can be increased by reducing the α-amylase activity through combing α-amylase-1 and ASI
complex. The α-amylase quantity and activity is very low in dormant seeds and increases after seed
germination, therefore, it is necessary to identify the regulatory factors interacting with α-amylase,
which can contribute to understand the complicated molecular mechanism of α-amylase regulating
PHS tolerance.

1.4. Plant Growth Hormones

Previous studies have described the significance of plant hormones in metabolic and signaling
aspects and their probable role in the maintenance and release of dormancy in seeds of cereal
crops [43,119,120]. Among plant growth hormones, abscisic acid (ABA) and gibberellin (GA) play
important roles in regulation of dormancy and germination, ABA induces dormancy and GA stimulates
seed germination [121,122]. A change in balance between ABA and GA levels in seed constitutes a
regulatory mechanism that results in maintenance or release of seed dormancy [120,123]. Several studies
have reported the regulatory mechanisms of other hormones like ethylene, jasmonate, brassinosteroids,
and auxin in controlling seed dormancy, germination and PHS resistance [43,121,124,125]. Environmental
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factors, such as light and temperature, also affect the dormancy and germination by disturbing the
balance between ABA and GA levels in cereal crops [126,127].

Numerous mutants have been developed to understand the regulatory role of plant growth
hormones in seed germination and dormancy. Recent advances in the genomics of cereal crops have
led to identify many genes involved in metabolic and signaling pathways of plant hormones for
regulating seed germination and dormancy. The levels of plant growth hormones are noticeably
different in PHS resistant and susceptible varieties; therefore, PHS resistance can be improved by
identifying more genes involved in the expression and regulation of plant growth hormones.

1.4.1. Abscisic Acid

Abscisic acid (ABA) is an essential hormone that promotes seed dormancy, seed maturation and
tolerance to desiccation [128]. Dormant wheat ABA levels increases by up to 2.5-fold during imbibition
but remains unchanged in non-dormant grains [129]. ABA level in seeds/tissues is regulated by its
synthesis and catabolism [130]. ABA biosynthesis is catalyzed by numerous enzymes like NCED
(9-cis-epoxycarotenoid dioxygenase) that acts as a key regulator of ABA biosynthesis during seed
maturation. During ABA biosynthesis, oxidative cleavage of violaxanthin and 9-cis-neoxanthin
by NCED is regarded as rate-limiting step [131], whereas ABA catabolism is triggered by ABA
8′-hydroxylase enzyme (ABA8′OH) encoded by CYP707A genes that induce ABA hydroxylation at
the 8′ position [132–134] (Figure 2). Therefore, the NCED and CYP707A genes play important roles in
germination and dormancy by controlling the ABA level in seeds.
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Figure 2. Schematic representation of ABA metabolism and signaling pathway in plants. Enzymes Figure 2. Schematic representation of ABA metabolism and signaling pathway in plants. Enzymes
are shown in blue while intermediates are shown in black. The end product is indicated in the yellow
circule; ZEP, zeaxanthin epoxidase; VDE, violaxanthin de-epoxidase; NSY, neoxanthin synthase; NCED,
9-cisepoxycarotenoid dioxygenase; XD, xanthoxin dehydrogenase; AAO3, abscisic aldehyde oxidase;
PYR/PYL/RCAR, pyrabactin resistance/pyrabactin-like/regulatory components of ABA receptors;
PP2C, protein phosphatase 2C; SnRK2, SNF1-related protein kinase2; ABI3, abscisic acid insensitive
3; ABI4, abscisic acid insensitive 4; ABI5, abscisic acid insensitive 5; VP1, viviparous 1; ABF, ABRE
binding factor.
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Seed development in wheat is characterized by two peaks of ABA accumulation that occur during
the mid and late maturation phases. The first peak arises around 25 days after pollination (DAP) while
the second peak arises around 35 DAP and extended up to 40 DAP in dormant wheat seeds [135,136],
indicating the significance of ABA in inducing embryo dormancy [137]. Moreover, imbibed dormant
wheat seeds have shown 3.8-fold higher expression of TaNCED2 than non-dormant imbibed seed,
while non-dormant seeds exhibit 2.5-fold higher expression of TaABA8′OH1 (a wheat homolog of
CYP707A) than dormant seeds in both imbibed and dry conditions [138]. Mutational analysis of the
two homologs of TaABA8′OH1 (TaABA8′OH1A and TaABA8′OH1D) showed an increase in embryonic
ABA contents during mid and late stages (40–60 DAA) of seed development resulting in a higher level
of seed dormancy [139] and highlighting the importance of higher embryonic ABA levels in inducing
seed dormancy during the seed maturation phase in wheat.

ABA has been involved in the regulation of several seed developmental processes like deposition
of storage reserves and primary dormancy induction that are evident from the observation of ABA
mutants or deficient plants in maize and Arabidopsis [140]. A large number of mutants with reduced
ability of synthesizing ABA have been developed in various crops, like the aba1 mutant in Nicotiana
plumbaginifolia, viviparous (Vp) mutants Vp5, Vp7, Vp10/Vp13, Vp14, and Vp15 in maize; aba1, aba2, and
aba3 mutants in Arabidopsis, and sit, flc, and not mutants in tomato [91,131]. Several knock-out mutations
are available for most wheat genes that provide an invaluable resource for characterizing the gene
function. The resource of Targeting Induced Local Lesions In Genome (TILLING) mutants, like Kronos
(tetraploid) and Cadenza (hexaploid), have been developed in wheat. The exome sequences of
1535 Kronos and 1200 Cadenza mutants have been resequenced using Illumina next-generation
sequencing that can be used to screen for mutations in pre-harvest sprouting and dormancy related
genes [141].

ABA biosynthetic mutants failed to induce seed dormancy and revealed a wilty vegetative
phenotype, e.g., the aba1 mutant in Arabidopsis and aba2 mutant in tobacco were not able to produce
zeaxanthin epoxidase (ZEP), the first identified ABA biosynthetic enzyme [142]. Another ABA-deficient
mutant aba4 was identified in Arabidopsis during a screening of paclobutrazol resistance germination
and has known to be impaired in neoxanthin synthase (NSY) enzyme [143]. The vp14 (viviparous14)
mutant in maize and the notabilis mutant in tomato have shown impairment for NCED, which acts
as a catalyst for oxidative cleavage of 9’-cis neoxanthin and/or xanthophylls, 9-cis-violaxanthin, and
produces xanthoxin, as shown in Figure 2 [144,145]. The vp10 and vp15 mutants in maize, sitiens and
flacca mutant in tomato and aba2 and aba3 mutants in Arabidopsis have also shown the impairment in
later steps during ABA biosynthetic pathway in the cytosol [146,147].

The role of ABA in seed dormancy of wheat has already been described [16,43]. Nambara
et al. [130] reported three core components of ABA signaling in seeds such as protein phosphatase 2Cs
(PP2Cs), SNF1-related protein kinase2s (SnRK2s) and pyrabactin resistance/pyrabactin like/regulatory
components of ABA receptors (PYR/PYL/RCAR), as shown in Figure 2. ABA forms a complex by
binding with its receptor PYR/PYL/RCAR which then interacts with PP2Cs to inhibit its function.
The PP2Cs negatively regulate ABA signaling by repressing the SnRK2s activity, which is a positive
regulator of downstream targets. Inhibition of PP2Cs causes de-repression of SnRK2s, which in
turn phosphorylates and activates down-stream transcriptional factors including ABI3 (B3 type
protein), ABI4 (AP2 type transcription factor), ABI5 (abscisic acid insensitive 5), and ABFs (bZIP-type
transcription factors). These transcriptional factors are important for the expressional regulation of
ABA-responsive genes of seeds [130]. In the absence of ABA, PP2Cs becomes activated and, in turn,
dephosphorylate and deactivate the SnRK2s. The molecular components involved in the ABA signaling
pathway seem to be conserved in seeds of both monocot and dicot species [148].

The current understanding of signaling elements like ABA that control seed dormancy and
germination mainly results from genetic analysis. In wheat, QTL and mutational analysis have
revealed the importance of ABA sensitivity in regulating seed dormancy [149,150]. Dormant wheat
seeds show more ABA sensitivity than non-dormant seeds [151,152]. Vp1 was the first gene cloned
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in maize against ABA response [83]. Expression of Vp1 in wheat embryos was positively correlated
with ABA sensitivity and degree of seed dormancy [87,153]. Splicing of the Vp1 gene in wheat and
rice counterpart resulted in susceptibility to PHS in both species [88,154]. ABI3 is the ortholog of Vp1
in Arabidopsis and the seeds containing Vp1 or ABI3 alleles exhibited similar phenotypes including
ABA insensitivity, desiccation intolerance, and premature activation of the shoot apical meristem [155].
Mutational analysis of the ABI4 and ABI5 loci in Arabidopsis showed similar quantitative effects as
ABI3 on ABA sensitivity and seed development, but ABI3 null mutations were more destructive
than ABI4 and ABI5 [156]. These studies may help to explain the role of ABA in inducing wheat seed
dormancy and to understand the molecular mechanisms underlying the regulation of ABA metabolism
in inducing dormancy during seed maturation.

1.4.2. Gibberellin

Gibberellin (GA) is another major plant hormone that plays an important role in regulation of seed
dormancy and germination [64]. GA breaks the seed dormancy and promotes germination by balancing
the primitive endogenous inhibitors [157]. It also regulates the expression of α-amylase synthesis
genes involved in seed germination and hydrolyzing the starch in the endosperm. In Arabidopsis, leafy
cotyledon 2 (lec2) and fusca3 (fus3) could up-regulate GA activity resulting in germination of seeds
before maturity [158,159].

The bioactive concentration of GA in plants is regulated by the balance between its synthesis and
inactivation, that are mainly controlled by the genes GA2ox (encoding GA 2-oxidase), GA3ox (encoding
GA 3-oxidase), and GA20ox (encoding GA 20-oxidase), respectively [160] (Figure 3). Many genes
encoding these enzymes have been identified in a range of crop species including wheat, rice, and
barley [160,161] and their expression plays significant roles in dormancy and germination by regulating
the GA level in seeds.

Variations at the transcriptional level of these genes orthologs due to after-ripening and in
non-dormant and dormant cereal crop seeds indicated the role of GA in regulating the seed germination
and dormancy. For instance, dormancy loss in imbibed after-ripened barley and wheat seeds has
shown to be linked with increased expression of the TaGA3ox and TaGA20ox genes and a higher level
of bioactive GA1 [43,126,162]. Moreover, transcriptional activation of GA20ox gene orthologs induced
an increase in the level of GA4 in non-dormant embryos of sorghum seeds, whereas up-regulation of
GA2ox gene orthologs led to a decrease in the GA4 level [163]. Mutational studies of these genes will
provide further information regarding the molecular mechanisms of GA in regulating seed germination
and dormancy. Genetic studies in rice have identified other candidate genes, such as OsGA20ox2
and OsGA2ox3, responsible for regulating seed germination [164,165], while mutational analysis of
OsGA20ox2 showed greater dormancy due to reduction in the GA levels in seeds [164].

GA signals in plants are perceived by the soluble receptor protein gene GID1 (Gibberellin
insensitive dwarf 1), that was first mapped in rice. Mutational analysis of GID1 in rice showed
repression of α-amylase production and had no inhibitory effect on seed germination [166]. Orthologs
of GID1 protein have also been identified in wheat but further characterization of functions analysis of
GID1 orthologs in seed dormancy is required [167].

DELLA proteins in plants are another important element of GA signaling pathway, which
function as a GA repressor and are broken down by ubiquitination induced by GA [168]. GA
binds with GIDI and triggers the formation of the GA-GID1-DELLA complex which then interacts
with F-box protein (the principal component of SCFSLY 1/GID2 E3 ubiquitin ligase) to degrade the
DELLA protein through the ubiquitin-26S proteasome pathway [169–171] (Figure 3). In Arabidopsis,
five DELLA proteins including RGL1 (RGA like1), RGL2 (RGA like2), RGL3 (RGA like3), GA1 (GA
insensitive), and RGA (Repressor of GA1) were identified [172], among them RGL2 is known to be an
important seed germination repressor [173]. The DELLA proteins in cereals such as RHT (reduced
height) in wheat, SLN1 (slender1) in barley and SLR1 (slender rice1) in rice are transcribed by single
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genes [174–176]. Chandler [177] observed that DELLA mutant seeds of barley were non-dormant and
exhibited higher α-amylase activity in the aleurone layer.
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Figure 3. Schematic representation of GA metabolism and signaling pathway in plants. Enzymes are
shown in blue while intermediates are shown in black. Multiple arrows represent multiple steps. GGDP,
geranylgeraryl diphosphate; CPS, ent- ent- Copalyl diphosphate synthase; KS, ent-Kaurene synthase;
KO, ent-Kaurene oxidase; KAO, ent- Kaurenoic acid oxidase; GA20ox,GA20 oxidase; GA3ox,GA3
oxidase; GA2ox,GA2 oxidase; GID1, gibberellin insensitive dwarf 1; GID2, gibberellin insensitive dwarf
2; SLN, slender1 in barley; SLR1, slender rice1; RHT, reduced height; GAMYB, GA regulated MYB
transcriptional regulator; KGM, kinase associated with GAMYB.

In addition to DELLA proteins, other GA-regulated MYB transcriptional regulators (GAMYB)
also play a significant role in the GA signaling pathway in aleurone cells of cereal crops [178].
In cereal aleurone, GAMYB triggers the transcriptional activation of GA and regulates hydrolytic
enzymes especially α-amylase by directly binding to GA responsive elements in promoter regions [178].
The GAMYB function in cereal aleurone cells was repressed by another GA downstream signaling
component named KGM1 (KINASE ASSOCIATED WITH GAMYB1) [179]. Mutational analysis of
GAMYB orthologs in rice showed repression of α-amylase gene expression but had no effect on seed
germination [180]. In wheat, whole seed transcriptional analysis showed no transcriptional differences
in orthologs of GID1, RHT, GAMYB, and KGM1 represented in the GeneChip Wheat Genome Array
between after-ripened and dormant seeds. However, transcription of GA responsive genes encoding
cell wall hydrolases and amalyses are induced in response to after-ripening [43]. These results might
indicate that wheat seeds responsiveness to GA is controlled by post-transcriptional mechanisms
or functions without these GA signaling elements. Although these studies demonstrate the role of
GAMYB in germination and dormancy, but need further studies to identify and characterize more
genes that interact with GAMYB and increase our understanding about the role of downstream GA
signaling elements in controlling germination and seed dormancy.
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1.4.3. Other Plant Hormones

Previous studies have described the importance of some other plant hormones, like ethylene,
jasmonate (JA), auxin, and brassinosteroid (BR), in regulating seed dormancy and PHS
resistance [121,124,125]. Transcriptomic analysis of dormant wheat seeds showed that imbibition
triggered variations in expression level of several orthologous genes encoding key enzymes involved
in ethylene, JA, auxin, and BR biosynthesis and their metabolic pathways due to after-ripening,
indicating roles in regulating seed germination and dormancy [43,119]. Jacobsen et al. [181] reported
that JA promotes dormancy release in dormant wheat seeds and perform antagonistically to ABA.
Transcriptional activation of biosynthetic gene orthologs, such as KAT3 (3-ketoacyl coenzyme a
thiolase3), LOX5 (lipoxygenase5), and AOS (allene oxide synthase) involved in JA biosynthesis were
detected in imbibed after-ripened seeds. The production of a huge amount of jasmonate-isoleucine
along with other orthologs of the biosynthetic pathway during after-ripened seed imbibition revealed
the role of JA in controlling wheat seed dormancy. It has been reported that methyl jasmonate decreased
the level of seed dormancy in wheat, but its role was regulated by variation in expression levels of
the ABA8´OH and NCED1 genes and ABA concentration [181]. Xu et al. [182] studied the role of
JA and other hormones in the stratification of wheat dormant seeds and found that JA formation is
necessary for seed germination induced by cold stratification. They also concluded that an increase in
JA synthesis promoted a reduction in ABA concentration in cold-stratified grain embryos. However,
the mechanism of JA in release of seed dormancy to allow germination is still not clear.

Transcriptomic analysis of after-ripened dormant wheat seeds revealed imbibition-mediated
activation of BR biosynthetic ortholog genes such as DET2 (De-etiolated 2) and DWF4 (Dwarf 4) [119].
Transcriptional activation of these BR biosynthetic and signaling components in imbibed after-ripened
wheat seeds have shown to be associated with transcriptional stimulation of BR responsive orthologs,
such as BBE (BR enhanced expression) and PRE (paclobutrazol resistance), that control cell elongation,
a process essential for seed germination [183,184]. These results indicated that BR plays a significant
role in controlling seed dormancy and germination in wheat.

In Arabidopsis, previous studies have revealed that BR plays a significant role in the regulation of
seed dormancy along with ABA and also increased the synthesis of ethylene, which has a regulatory
role in seed dormancy of monocot species, such as wild oat [185–187]. During ethylene biosynthesis,
BR mediates post-transcriptional activation of the ethylene biosynthetic enzymes such as ACC
(aminocyclopropane-1- carboxylic acid) synthase (ACS) which acts as a catalyst during the first
step [188]. In addition to ACS, ethylene biosynthesis is also mediated by another enzyme ACO (ACC
oxidase). In wheat, ACO orthologs are involved in up-regulation in whole imbibed after-ripened
seeds compared to dormant seeds [119]. Transcriptional activation of these enzymes and other
ethylene receptor orthologs in wheat, such as ERS1 (ethylene response sensor 1), have revealed
the role of ethylene in controlling seed germination and dormancy. In other cereal crops like rice
and barley, ethylene promotes germination in non-dormant seed but is not involved in the loss of
dormancy [189,190]. At present, the role of ethylene in regulating seed dormancy is not clear and
needs further investigation of its regulatory role in seed dormancy in different crops.

Recent studies have revealed the role of auxin in maintaining seed dormancy. For instance,
exogenous application of auxin increased seed dormancy in wheat [191,192] and Arabidopsis [193,194]
through ABA activation. Liu et al. [43] studied the temporal expression patterns of metabolic and
signaling genes of ABA, GA, IAA and jasmonate in both dormant and after-ripening dry and imbibed
wheat seeds and observed that after-ripening mediated developmental switch from dormancy to
germination seems to be linked with declines in seed sensitivity to ABA and IAA and repression of
auxin signaling. Mutational analysis of wheat ERA8 (Enhance Response To ABA8) mutant showed
an increase in dormancy due to increased level of embryonic jasmonate and aleurone IAA [195].
Metabolomic profiling of two water imbibed wheat cultivars Sukang (dormant) and Baegjoong
(non-dormant) detected variable amounts of many auxin-related compounds in the 48h samples
of Baejoong and found that indoleacetate abundance was not changed in the Sokang sample but
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showed an abrupt reduction in Baegjoong at 48h water imbibition. Three catabolites of IAA including
indole-3-carboxylate were also detected that showed similar of IAA at 48 h but with two other
metabolites, such as indoleacetyl-aspartate and 2-oxindole-3-acetate, showed much higher levels at
48h in Baegjoong [196]. It also regulates several plant growths and developmental processes through
the auxin signaling pathway mediated by aux/indole-3-acetic acid (IAA), transport inhibitor response1
(TIR1)/additional F box protein (AFB), and auxin response factors (ARFs) [197,198]. The ARFs are
responsible for regulating the expression of a large number of auxin-responsive genes by binding
with promoters of auxin response elements (AuxREs) [199,200]. Auxin inhibits seed germination and
promotes dormancy through ABA-mediated response by regulating seed specific signaling components
of ABA like ABI3, ABI4, and ABI5. Among them, ABI3 is the only transcription factor involved in
the regulation of seed dormancy [201–203]. Liu et al. [65] observed that auxin and ARF10/16 are
involved in the regulation of ABI3 expression which in turn inhibits seed germination and promotes
seed dormancy in after-imbibed seeds. The function of ARF10 and ARF16 as positive regulators during
the ABA signaling pathway contributes in developing a map of integrated hormone signaling during
plant growth and development [204,205]. Auxin-induced seed dormancy seems to be an evolutionary
mechanism that inhibits seed germination during unfavorable conditions and might be important for
conservation of diversity and evolution in seed plant species [65]. Whether auxin is directly involved
in seed dormancy is not clear, and its mechanism in controlling seed dormancy is also still unknown.

1.5. Environmental Factors Affecting PHS Resistance

Environmental factors such as rainfall, temperature and high relative humidity during the grain
filling and maturation stages play an important role in the regulation of dormancy and sprouting in
wheat. Temperature is one of the most important environmental factors for maintaining dormancy
during seed development and for inducing dormancy during seed imbibition [206]. During seed
development, low temperatures between 10 and 15 ◦C can induce high and prolonged dormancy while
low temperature during germination breaks dormancy of freshly-harvested wheat seeds [207,208].
At low temperatures the MOTHER OF FT AND TFL1 (MFT) gene is involved in enhancing the
dormancy during seed development in wheat [41]. It has also been reported that rainfall 10–20 days
before harvest causes little or no sprouting but may influence the crop to be highly susceptible for
sprouting at later rainfall [209]. Lunn et al. [210] studied the relationship between mean temperature
and period of seed dormancy during the grain development and found that shorter dormancy periods
occur after high mean temperatures.

Environmental factors such as temperature fluctuations, salinity and seed moisture content seem
to promote ABA synthesis in plants with consequent effects on seed dormancy [211]. Footitt et
al. [212] reported that the depth of seed dormancy and gene expression patterns were linked with
seasonal variations in soil temperature. They also explained that ABA signaling was linked with deep
dormancy during winter while its repression was linked with relief from dormancy during spring.
ABA-signaling repression was concurrent with increased DELLA repression of germination. During
winter, the expression of NCED6 (ABA synthesis) and GA2ox2 (GA catabolism) genes were found to be
increased resulting in increased seed dormancy due to the decrease in soil temperature whereas, during
spring, the endogenous ABA biosynthesis was found to be decreased while the expression of CYP707A2
(ABA catabolism) and GA3ox1 (GA synthesis) genes was increased resulting in declined seed dormancy
in Arabidopsis [212]. In another study, Kashiwakura et al. [162] used two PHS-tolerant varieties, OS38
(highly dormant) and Gifu-komugi (Gifu, moderately dormant) to characterize the mechanisms of
both dormancy maintenance and breakage at low temperatures. They observed that Gifu grains were
germinated after imbibition at 15 ◦C whereas OS38 grains remained dormant. Imbibition of Gifu
grains at low temperature caused a reduction in ABA levels in dormant embryos primarily due to the
expression of TaABA8′OH1 and TaABA8′OH2 (ABA catabolism) and TaGA3ox2 (GA synthesis) genes
resulting in increased GA levels. On the other hand, imbibition of extremely dormant OS38 grains at
a low temperature increased ABA levels by inducing the expression of TaNCED (ABA biosynthesis)
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gene and suppressing TaGA3ox2 and TaABA8′OH2 genes. In a recent study, Izydorczyk et al. [127]
observed a delay in germination of non-dormant imbibed wheat seeds under supra-optimal and
suboptimal temperatures which was due to the expression of ABA signaling genes; ABI3, ABI5, PYL5,
and SnRK2 in the embryo tissues resulted in enhanced ABA sensitivity. These studies explained the
role of ABA and GA in dormancy and germination but needs further genetic studies to understand
the physiological role of metabolic genes of ABA and GA in the regulation of seed dormancy in
cereal crops.

1.6. QTL/genes Identified for PHS Resistance

The genetics of PHS resistance is controlled by both epistatic and additive effects which are affected
by environmental conditions. The interaction between QTL epistasis (Q × Q) and the environment
(Q × E, Q × Q × E) for PHS resistance has been studied to understand the complex genetic structure
of QTL [213–215]. In wheat, PHS resistance is controlled jointly by multiple QTLs located an almost
21 chromosomes (1A, 1B, 2A, 2B, 2D, 3A, 3B, 3D, 4A, 4B, 5B, 5D, 6A, 6B, 6D, 7A, 7B and 7D) [1,14,18,
21–37,216–220] (Table 1).

In addition, several candidate genes for PHS resistance have also been identified based on
comparative genomics or transcriptomic analysis, such as TaSdr-A1 and TaSdr-B1 on 2AS and 2BS [46,76],
TaPHS1 and TaMFT on 3AS [16,41,42], TaVp-1 and Tamyb10 on group 3 chromosomes [38–40,84,86], and
PM19-A1/A2 and TaMKK3-A on 4AL chromosome [44,45] (Table 2).

The interaction of genes with different PHS resistant QTL is different. QTL positioned on
chromosome 4A may interact with R gene controlling red seed color to affect the PHS tolerance.
Another QTL for PHS resistance was identified on wheat chromosome 5D independently of an R
gene [29]. PHS is a typical quantitative trait controlled by multiple QTL and genes. A major QTL
was mapped on the chromosome 4A by using various mapping populations which controlled about
40% of the phenotypic variation in PHS resistance in wheat [3,27,227]. These studies were conducted
using SSR markers for the construction of genetic map and QTL mapping. Due to cost-effective
and rapid innovations in sequencing technologies, thousands of molecular markers especially SNPs
(such as wheat 820K, 660K, and 90K arrays) have been developed in wheat, which are useful for
fine-mapping of QTLs and for cloning of candidate genes in the target regions. Moreover, recent
advances in genome sequencing and whole genome assembly of hexaploid wheat will provide the
bases for rapid identification of various PHS resistance genes [98–102].
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Table 1. QTLs for PHS and related traits identified in wheat.

Trait QTL Chromosome Nearest Marker QTL name Material Reference

PHS and GC 5

3AL
3BL
3DL
5AS

Xffb293
Xgwm403, Xbcd131

Xgwm3
Xbcd1871

- RILs [1]

PHS and GC 3
1BS
4BL
7AS

Xpsp3000
Xpsp3030-Xpsp3078

Xpsp3050
- RILs [22]

PHS and SD 3
3A
3A
3A

Xpsr394-Xgwm5
Xcdo345

Xcdo345-Xbcd141

taVp1
QPhs.ocs-3A.1
QPhs.ocs-3A.2

RILs [23]

PHS and SD 2 4AL
3AL

Xksuf8a-Xbcd402b
Xpsr903b-XATPased - RILs [217]

PHS 1 3AL Xwmc153-Xgwm155 QPhs.ccsu3A.1 RILs [24]

SD 1 4A Xgwm397-Xgwm269-Xbarc170 - DHLs [3]

PHS and SD 1 3AL Xbarc310-Xbcd907 QPhs.ocs-3A.1 RILs [25]

PHS and SD 1 3AS
3AS

Xbarc310
Xbarc321

QPhs-3AS
QPhs.pseru-3AS RILs [26]

PHS 3 2B
2B

Xdup398-Xbarc54
Xbarc105-Xbarc334

QPhs.pseru-2B.1
QPhs.pseru-2B.2 RILs [221]

PHS 1 2DS Xgwm261-Xgwm484 Qphs.sau-2D F2 and F6 [28]

PHS 4

2B
2D
3D
6D

Xbarc55-Xwmc474
Xwmc111-WxPt-999

7Xbarc1161
Xcfd37-Xbarc196

QPhs.cnl-2B.1
QPhs.cnl-2D.1
QPhs.cnl-3D.1
QPhs.cnl-6D.1

DHLs [14]

PHS 3
2AL
3AL
3BL

Xgwm1045-Xgwm296
Xgwm153-Xgwm155

Xgwm1005–Xgwm980

QPhs.ccsu-2A.5
QPhs.ccsu-3A.1
QPhs.ccsu-3B.6

RILs [32]

PHS and GC 5

3B
3D
3A
5D
3D

Xbarc77–Xwmc30
7Xwmc552–Xwmc533
Xcfa2193–Xwmc594
Xgwm469–Xcfd10
Xwmc11–Xcfd223

QGi.crc-3B
QGi.crc-3D
QSi.crc-3A
QSi.crc-5D
QCl.crc-3D

DHLs [29]
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Table 1. Cont.

Trait QTL Chromosome Nearest Marker QTL name Material Reference

PHS and SD 1 3BL Xwmc527-Xgwm77 - DHLs [31]

PHS 1 5D XCFD40-XBARC1097 qPhs5D.1 DHLs [33]

PHS and SD 5

2A
2B
3A
4A
7B

521-2A
521-2B
521-3A
521-4A
521-7B

- Single chromosome
substitution lines [218]

PHS 3
1A
2A
7B

Xwmc611-Xwmc333
Xgwm515-Xgwm425
Xgwm297-Xwmc532

QPhsd.spa.-1A.1
QPhsd.spa.-2A.1
QPhsd.spa.-7B.1

RILs [35]

PHS 4

3B
4A
7B
7D

19 SNPs flanking the QTL
12 SNPs flanking the QTL
10 SNPs flanking the QTL
04 SNPs flanking the QTL

QSi.crc-3B
QGi.crc-4A
QSi.crc-7B
QFn.crc-7D

DHLs [80]

PHS 5

1A
1B
5B
7A
7B

wPt-6274
Xwmc191

wPt-6910-wPt-7400
Xcfa2174
Xwmc606

QPhs.spa-1A
QPhs.spa-1B
QPhs.spa-5B
QPhs.spa-7A
QPhs.spa-7B

DHLs [222]

PHS and SD 1 2B Xwmc477-Xbarc55 Sdr2B RILs [76]

PHS and SD 1 4A wsnp_Ex_c66324_64493429 -
CD920298 4A-1 RILs [44]

PHS and SD 4

4A
4B
5A
5B

GBS212432-GBS10994
7Xbarc20-Xwmc238

TTM_199619-TTM_1259
7Xbarc346-2-TTM_62137_50

Qphs.pseru-4A.1
Qphs.pseru-4B.1
Qphs.pseru-5A.1
Qphs.pseru-5B.1

RILs [223]

PHS and GC 6

3AL
3AL
3AL
3DL
3DL

1A/1D/3A/5B

Xwmc559-1
Tamyb10-A1-66
Tamyb10-A1-74
BS00067163_51
Tamyb10-D1-93

Xbarc148

- RILs [55]
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Table 1. Cont.

Trait QTL Chromosome Nearest Marker QTL name Material Reference

PHS 6

3A
4A
1B
7B
4A
6B

TaMFT
cfa2256

Xbarc181
UCW99
cfa2256

Xwmc397

QDor-3A
QDor-4A
QDor-1B
QHt-7B

QAwn-4A
QAwn-6B

RILs [224]

PHS and SD 1 2A Xgwm95-Xgwm372 Sdr2A RILs [46]

PHS and SD
PHS
PHS

3
2
3

2D
3D
3D
1B
1B
3A
3D
5D

Xwmc503
Xcfd22
Vp1-4

tPt-7980
wPt-645

7AX-111578083
3 DArT-seq and 5 SNPs

AX-109028892

QDor-2D
QDor-3D

TaVp1
-

QTL1
QTL2
QTL3

Back crosspopulation
86 Chinesegermplasm

717 Chinese wheat
landraces

[225]
[226]
[37]

PHS 5

1A
4D
5A
5D
7B

wPt-6654-wPt-7030
wPt-0710-Rht-D1

gwm186-P7560-439
P7551-267-wmc574

P7455-236-P7553-711

- RIL [220]

Note: PHS-pre-harvest sprouting; DHLs-doubled haploid lines; RILs-recombinant inbred lines; GC-grain color; SD-seed dormancy.
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Table 2. Genes for PHS and related traits identified in wheat.

Wheat Gene Chromosomes Gene Function Homologs/Orthologs Gene Experimental Methodology References

TaSdr-A1 2AS SD Rice OsSdr4
orthologs Comparative genomics approach [46]

TaSdr-B1 2BS SD Rice OsSdr4
orthologs

homologous
cloning approach [76]

TaMFT 3AS SD Wheat TaMFT homolog Transcriptomic approach [41]

TaPHS1 3AS SD Wheat MFT homolog comparative fine mapping and
map-based cloning [16,42]

TaVp-1 Group 3 Chromosomes SD and PHS Maize Vp1 and rice OsVp1 orthologs Genomic southern analysis [38,39,84,86]
Tamyb10

PM19-A1/A2
TaMKK3-A

Group 3 Chromosomes
4AL
4AL

GC
SD
SD

Arabidopsis TT2 and Rice OsMYB3 orthologs
-
-

Cloning approach
Transcriptomic approach

Map-based approach

[40]
[44]
[45]

Note: SD-seed dormancy; PHS-pre-harvest sprouting; GC-grain color.
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PHS resistance is controlled by genotype, environment and their interaction [58]. The use of
molecular markers for marker-assisted selection (MAS) could be helpful for direct identification of
favorable or deleterious alleles in diverse groups of genotypes [228]. Iyer-Pascuzzi and McCouch [229]
reported that MAS can be used for indirect selection of desired traits with considerable reduction
in cost and time. Many gene-specific markers, such as SSRs (Xgwm15, Xgwm894, and Xgwm937),
STMS markers (wmc104, Xwmc397, and Xwmc468), and STS markers (Vp1-B2 and Vp1B3), were
developed for the Vp1 gene and can be used for identification of PHS resistance in diverse
genotypes [15,27,34,38,230–233]. Ogbonnaya et al. [27] found that Xgwm894 and Xgwm937 markers
are significantly associated with PHS resistance and could be used for improving PHS resistance in
wheat breeding programs. Liu et al. [16] developed an SNP marker named TaPHS1-SNP1 that can be
used as diagnostic marker for identifying the resistance allele of TaPHS1 in breeding. Based on SNP
flanking sequences on chromosomes 3B, 4A, 7B, and 7D, 18 KASP markers were developed that can be
used for PHS resistance in future genetic studies and might also be useful for evaluating the PHS in
breeding as well as germplasm materials [80]. In a study, Rasheed et al. [234] developed five KASP
based assays of functional markers for four genes, including SDR_SNP for TaSdr-B1, TaMFT-1617R for
TaMFT-A1, TaMFT-721J for TaMFT-A1, Vp1B1-83_IND for TaVp-1B, and Vp1B1-193_IND for TaVp-1B.
These four genes may have different pathways to induce PHS tolerance; therefore, these KASP
assays could provide an excellent opportunity to combine beneficial alleles for PHS tolerance in
breeding programs. Wang et al. [235] developed STS (sequence tagged site) marker Tamyb10D for the
Tamyb10D1 gene and showed that it can be used as an efficient marker for evaluating the depth of
seed dormancy in bread wheat genotypes. Moreover, the CAPS (cleaved amplified polymorphism
sequence) marker Sdr2A has also been developed which is positioned on 2.9 cM intervals between
Xgwm95 and Xgwm372 markers and can be used for identifying PHS resistant genotypes [46]. With the
advancements in sequencing technologies, more than 124,000 gene loci have been annotated, [98,101],
which provides a huge base for identifying more genes for PHS resistance and for the development of
functional markers linked with PHS resistance, that can be used for developing PHS resistant varieties
during wheat molecular breeding programs.

2. Conclusions and Future Prospects

PHS is a complex trait and determined by various endogenous and exogenous factors.
Development of PHS resistant varieties is desirable in wheat growing areas especially having long
wet weather conditions during harvest. Only a few PHS-resistant cultivars are commercially available
in the field, and the grain quality of those cultivars needs to be improved. Therefore, selecting and
inserting new resources could also be helpful in developing PHS resistant cultivars.

Understanding the genetics of various factors affecting PHS resistance is necessary for improving
PHS resistance in wheat cultivars. The combination of both genetic and genomic technologies should
be used to deeply study the temporal and spatial transcription of the genes involved directly or
indirectly in controlling PHS resistance. Genomic and post-genomic data will broaden our knowledge
about various factors affecting PHS resistance.

Construction of mutant libraries is important for future studies. Map-based cloning and mutant
analysis of the genes underlying PHS resistance will provide new insights in improving PHS resistance
of crop species. It is also necessary to use the available crop genome database that will trigger the
progress in this field. Furthermore, rapid advancements in molecular technologies, like next-generation
sequencing (NGS) technologies [236], and ongoing chromosomal-based and wheat whole genome
sequencing projects (International Wheat Genome Sequencing Consortium, IWGSC) [98–102] will
provide new opportunities for identification and functional analysis of the candidate genes controlling
PHS resistance.
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