Vascular epiphyte restoration using bromeliad transplants in Southern Costa Rica

Estefania Fernandez is a Bascom Fellow who recently finished her master’s thesis at the University of Montpelier, France. Last year, Estefania wrote about her preliminary results on tropical forest restoration and vascular epiphyte reintroductions in Costa Rica. Here, she describes the final results, recently published in Restoration Ecology.

img_0055-001

A transplanted bromeliad, Aechmea dactylina flowering in a 10-year old tree plantation.

Vascular epiphytes are plants that germinate and root on other plants without taking their nourishment from their host plant, and they represent 50% of the flora in some tropical forests and 9% of all vascular plants worldwide. If you are a plant lover, then you most likely have one or several vascular epiphytes in your house. Some of the most appreciated horticultural families include orchids (Orchidaceae), aroids (Araceae), and bromeliads (Bromeliaceae).

Vascular epiphytes also play key roles in our ecosystems. They are crucial to forest water and mineral recycling as they intercept rainfall and prevent rapid run-off and nutrient leaching. Vascular epiphytes are also exceptional microhabitats where invertebrate communities find refugia and birds and arboreal mammals forage.

ef-bromeliad-jg1-001

Transplanted individual of Werauhia gladioliflora

Despite their importance in forest ecosystems, vascular epiphytes are rarely taken into account in forest restoration. This is problematic because vascular epiphytes are often among the slowest plants to recolonize regenerating forests.

In 2015-2016, I tested whether transplanting epiphytes into young restoration sites could be a viable strategy to accelerate their reestablishment. I used a bromeliad for my experiment, Werauhia gladioliflora (H. Wendl.) J.R. Grant, which was common in remnant forest but had not been found during epiphyte surveys in nearby restoration areas. In March-June 2015, I transplanted 60 bromeliads into three restoration plantations near Las Cruces Biological Station in southern Costa Rica. I revisited the sites in January-February 2016, nine months after transplantation, to monitor survival and arthropod recolonization.

Happily, over 75% bromeliads survived and the number of arthropods on branches with bromeliads was seven times greater than in branches without bromeliads. Additionally, I observed that bromeliads buffered the local microclimate; during the driest and hottest times of the day, the interior of the bromeliads was moister and cooler than ambient air.

merge_pic

Transplanted individuals of Werauhia gladioliflora (left) hosted considerably more arthropods in their rosettes than could be found on the stems of trees that had not received a transplant. GN, JG, and MM are three study sites near Las Cruces Biological Station in southern Costa Rica. Photo by Dave Janas.

Restoring arboreal refugia

My research suggests that transplanting fallen epiphytes onto trees in restored sites contributes to the recovery of vascular epiphyte diversity in these ecosystems and has the additional benefits of bringing back arthropod diversity to these sites. Epiphytes, and specifically “tank” epiphytes that retain water in their rosettes, help stabilize microclimatic conditions, a critical function in light of climate change, which may put arboreal communities at special risk. Indeed, the body temperature of many animals such as invertebrates entirely depends on ambient temperatures but rising temperatures could push arboreal animal communities to the ground. Epiphytes offer ideal refugia from high temperatures and drought and their presence in tree canopies and understory is critical to preserve arboreal animal communities. Transplanting other epiphyte families or even entire epiphyte communities found on fallen branches could be tested in the future to broaden this strategy.

img_0053

Estefania inspects a flowering individual of an Aechmea dactylina transplant

This work was supported by a grant from the National Science Foundation.

Epiphyte restoration in Brazil’s Atlantic Forest

CCSD restoration ecologist and PARTNERS member Leighton Reid spent 10 days collaborating with scientists and students in the Tropical Silviculture Lab (LASTROP) at the University of São Paulo. Epiphytes were a central theme of the visit.

Vascular epiphytes are plants that live non-parasitically on other plants. Readers from the tropics will be quite familiar with some epiphytes, like the ubiquitous Tillandsia of Neotropical powerlines, but temperate zoners will have seen many epiphytes as well, at the florist, the botanical garden, and the mall. These plants are incredibly diverse; by one estimate, epiphytes make up 9% of all vascular plants worldwide. But epiphytes also face serious challenges in today’s world. Habitat loss and overharvesting threaten some epiphyte species with extinction. Many epiphytes also have a hard time recolonizing new habitat in regenerating forests, but new studies on epiphyte restoration could help.

I spent the past 10 days in the State of São Paulo learning about epiphyte ecology, conservation, and restoration from students and scientists at the University of São Paulo’s College of Agriculture (Escola Superior de Agricultura Luiz de Queiroz). This part of Brazil was once covered in semideciduous tropical and subtropical forests, which hosted about 150 vascular epiphyte species. Today, only ~15% of the forest remains, but there is a large effort underway to restore 15 million hectares (nearly 58,000 square miles) of it by 2050.

blog3

ESALQ maintains shade house with more than 3,000 orchids, including (A) Cattleya loddigesii, (B) C. forbesii, and (C) Arpophyllum giganteum.

Frederico Domene is a doctoral student studying epiphyte reintroduction in restored Atlantic Forest. Like his advisor, Pedro Brancalion, Fred’s interest in epiphyte restoration stems from a passion for orchids. He grows a variety of them at his house in Piracicaba, preferring true species over horticultural varieties.

Fred picked me up in his black pickup, “mamangava”, and took me on a tour of several tree plantations where he has been developing methods for reestablishing populations of epiphytic orchids, bromeliads, cacti, and aroids. Fred’s basic procedure involves collecting epiphyte seeds (or purchasing small plants, in the case of orchids), growing them out in a nursery, and then attaching them to trees using twine or plastic. He started his work in 2010 and has been monitoring his plants, and reintroducing new plants, every year since. He uses a ladder to put the orchids up high, out of easy reach for would-be poachers.

blog2

Atlantic Forest restoration plantations. Left: 60-year old plantation along the Rio Piracicaba near Rio Claro. Right: 12-year old plantation at the Anhembi Forest Science Experimental Station. The older restoration site had considerably more naturally recolonizing epiphytes than the younger site.

Late August is mid-winter in São Paulo, and while it doesn’t get particularly cold, it is quite dry. The restoration plantations were crunchy with desiccated leaves and twigs. These are harsh conditions for epiphytes, which do not have the luxury of soil to buffer to their roots from the sunlight and dry air. Some of Fred’s epiphytes have withered and died, especially during a 100-year drought in 2012. But others are thriving, thanks to special adaptations, such as the velamen of orchid roots, which wicks up rainwater when it drips down the tree trunk during storms. Many individuals have started fruiting and flowering, a good sign for the future viability of these reintroduced populations.

epi3

Epiphyte reintroductions in restoration plantations. (A) A reintroduced festoon of bromeliads, orchids, and cacti. (B) A fruit-bearing orchid (Cattleya forbesii), six years after reintroduction. (C) This reintroduced cactus (Epiphyllum phyllanthus) seemed to grow better in tree forks than on vertical stems, as did an aroid, (D) Philodendron bipinnatifidum. (E) Two tiny cacti have germinated in this direct seeding experiment, using seeds enrobed in paper discs. (F) Even where epiphytes have dessicated and died, experimental infrastructure continues to enhance epiphyte development; here a small bromeliad (Tillandsia recurvata) uses a piece of natural twine as a foothold.

To identify the key challenges for epiphyte restoration, it is also important to study epiphyte recolonization in naturally regenerating forests. Alex Mendes, an undergraduate researcher at ESALQ, is doing just that. On an unseasonably rainy morning, Alex, Fred, and I visited three regenerating forests near the sugar town of Rio Claro. We ducked under barbed wire fences and wandered through low, dense vegetation where Alex is systematically searching for vascular epiphytes. Two forests had rather few epiphytes – mostly generalist bromeliads – but one forest had a high density of orchids, which happened to be flowering spectacularly on the day we visited. Based on historical aerial photos, Alex knows that these three forests are at least 20 years old. They are part of a network of 75 sites that he will ultimately search for epiphytes. By the end of his undergraduate program, Alex hopes to be able to predict where epiphyte communities will regenerate on their own, and where they will need more assistance.

20160831_095557

This secondary forest near Rio Claro might have felt like your average overgrown Psidium guajava patch had it not been  decorated with dozens of Ionopsis sp. orchids.

These are early days for learning about epiphyte restoration, and there is still a lot of work to be done. The projects that I visited in Brazil are making headway, complementing our research in Costa Rica. It remains to be seen under what circumstances epiphyte reintroductions will be most successful. Perhaps an even more important issue will be convincing funding agencies and land managers to think beyond trees.

IMG_0011

Fred Domene and Alex Mendes are making strides in the ecology of epiphyte reintroductions and community assembly. Here, they pose with a reintroduced bromeliad (Billbergia zebrina) at Anhembi experimental station.

Planning Fig Tree Planting in Costa Rica

In early December I spent 10 days in southern Costa Rica preparing sites for a tropical forest restoration experiment using fig trees. Figs are classic keystone species; that is, they have a large influence on their ecosystem relative to their abundance. Figs produce fruits that are eaten by many animals throughout the year. These animals disperse other plant species’ seeds below the figs’ crowns, and as a result, forests around fig trees often have diverse types of seedlings.

Some figs are also capable of resprouting from vegetative cuttings, meaning that one can cut branches from adult trees and plant them as though they were seedlings. If cuttings are taken from fruiting adult trees, the cuttings can even produce fruits in the first year after they are planted, potentially attracting seed-carrying animals.

On one humid night last week, I woke up at 2AM, my bed shaking from a nearby magnitude 6.6 earthquake. The next day a co-worker cut through his shin to the bone with a machete. It rained every day, but flowering corteza amarilla (Tabebuia ochracea) trees signified that the dry season is nearly here.

You can read more about tropical forest restoration research in Costa Rica in our latest paper on seed dispersal, or you can listen to a podcast from earlier this fall on Science Sort-Of.

-Leighton Reid

This slideshow requires JavaScript.