Skip to main content

Real Time PCR Using Molecular Beacons

A New Tool to Identify Point Mutations and to Analyze Gene Expression in Mycobacterium tuberculosis

  • Protocol
Mycobacterium tuberculosis Protocols

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 54))

Abstract

Molecular beacons are a novel family of hybridization probes, which emit fluorescence upon interaction with their target. They are hairpin-shaped oligonucleotides with a central part complementary to the target, flanked by two 5 6 base pair (bp) inverted repeats, which can form a stable stem. A fluorescent moiety is covalently linked to the 5′ end of the molecule, whereas the quenching moiety, 4-(4′-dimethylaminophenylazo)benzoic acid (DABCYL), is covalently linked to the 3′ end. The stem keeps the two moieties in close proximity to each other, causing the fluorescence of the fluorophore to be quenched by energy transfer. When molecular beacons bind to their target, they undergo a conformational change that results in the restoration of fluorescence of the internally quenched fluorophore (1) (Fig. 1). Molecular beacons are extremely specific, and can clearly discriminate between targets differing only by a single nucleotide (2,3). When present in a PCR reaction where their target is the amplification product, molecular beacons can form a stable hybrid with the amplicon during the annealing step. The intensity of fluorescence at the annealing step in each amplification cycle is a direct measure of amplicon concentration (2,4) (Fig. 2). Another interesting feature of molecular beacons is that they can be coupled to a variety of differently colored fluorophores. This allows multiplex PCR reactions where different DNA fragments can be amplified and detected simultaneously in the same tube (2,3).

Operation of molecular beacons. On their own, these molecules are nonfluorescent, because the stem hybrid keeps the fluorophore (◯) close to the quencher (•). When the probe sequence in the loop hybridizes to its target, forming a rigid double helix, a conformational reorganization occurs that separates the quencher from the fluorophore, restoring fluorescence (1).

Real time measurement of amplicon synthesis during PCR using molecular beacons. (A) Four PCR reactions were initiated with a different number of template molecules (indicated). The concentration of amplicons present after each cycle of amplification was determined by measuring fluorescence during the last few seconds of the annealing step. (B) Inverted relationship between the threshold cycle (the cycle at which the fluorescent signal becomes detectable above the background) and the logarithm of the initial number of template molecules. In this example, the target is M. tuberculosis H37Rv chromosomal DNA. The primers-molecular beacon set used in the reaction was specific for sigA (reprinted from ref. 4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tyagi S. and Kramer F. R. (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol. 14, 303–308.

    Article  CAS  PubMed  Google Scholar 

  2. Tyagi S., Bratu D. P., and Kramer F. R. (1998) Multicolor molecular beacons for allele discrimination. Nat. Biotechnol. 16, 49–53.

    Article  CAS  PubMed  Google Scholar 

  3. Marras S. A. E., Kramer F. S., and Tyagi S. (1999) Multiplex detection of singlenucleotide variations using molecular beacons. Genet. Anal. 14, 151–156.

    CAS  PubMed  Google Scholar 

  4. Manganelli R., Dubnau E., Tyagi S., Kramer F. R., and Smith I. (1999) Differential expression of 10 sigma factor genes in Mycobacterium tuberculosis. Mol. Microbiol. 31, 715–724.

    CAS  Google Scholar 

  5. Pablos-Mendez A., Sterling T. R., and Frieden T. R. (1996) The relationship between delayed or incomplete treatment and all-cause mortality in patients with tuberculosis. JAMA 276, 1223–1228.

    Article  CAS  PubMed  Google Scholar 

  6. Telenti A., Imboden P., Marchesi F., Lowrie D., Cole S., Colston M. J. et al. (1993) Detection of rifampin-resistance mutations in Mycobacterium tuberculosis. Lancet 341, 647–650.

    Article  CAS  PubMed  Google Scholar 

  7. Musser J. M. (1995) Antimicrobial agents resistance in mycobacteria: molecular genetic insights. Clin. Microbiol. Rev. 8, 496–514.

    CAS  PubMed  Google Scholar 

  8. Pozzi G., Meloni M., Iona E., Orrú G., Thoresen P. F., Ricci M. L., Oggioni M. R., Fattorini L., and Orefici G. (1999) rpoB mutations in multidrug-resistant strains of Mycobacterium tuberculosis isolated in Italy. J. Clin. Microbiol. 37, 1197–1199.

    CAS  PubMed  Google Scholar 

  9. Williams D. L., Waguespack C., Eisenach K., Crawford J. T., Portaels F., Salfinger M., et al. (1994) Characterization of rifampin resistance in pathogenic mycobacteria. Antimicrob. Agents Chemother. 38, 2380–2386.

    CAS  PubMed  Google Scholar 

  10. Nash K. A., Gaytan A., and Inderlied C. B. (1997) Detection of rifampin resistance in Mycobacterium tuberculosis by use of a rapid, simple, and specific RNA/RNA mismatch assay. J. Infect. Dis. 176, 533–536.

    Article  CAS  PubMed  Google Scholar 

  11. Piatek A. S., Tyagi S., Pol A. C., Telenti A., Miller L. P., Kramer F. R., and Alland D. (1998) Molecular beacon sequence analysis for detecting drug resistance in Mycobacterium tuberculosis. Nat. Biotechnol. 16, 359–363.

    Article  CAS  PubMed  Google Scholar 

  12. Wayne L. G. (1994) Dormancy of Mycobacterium tuberculosis and latency of disease. Eur. J. Clin. Microbiol. Infect. 13, 908–914.

    Article  CAS  Google Scholar 

  13. Timm J., Gomez M., and Smith I. (1998) Gene expression and regulation, in Mycobacteria: Molecular Biology and Virulence (Ratledge C., and Dale J. W. esd.), Blackwell Science, Oxford, UK, in press.

    Google Scholar 

  14. Dubnau J. and Smith I. (2000) New method for identification of Mycobacterium tuberculosis virulence genes (to be published).

    Google Scholar 

  15. Kostrikis L. G., Tyagi S., Mhlanga M., Ho D. D., and Kramer F. R. (1998) Spectral genotyping of human alleles. Science 279, 1228–1229.

    Article  CAS  PubMed  Google Scholar 

  16. Tsuchiya S., Kobayashi Y., Goto Y., Okumura H., Nakze S., Konno T., and Tada K. (1982) Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Cancer Res. 42, 1530–1536.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Manganelli, R., Tyagi, S., Smith, I. (2001). Real Time PCR Using Molecular Beacons. In: Parish, T., Stoker, N.G. (eds) Mycobacterium tuberculosis Protocols. Methods in Molecular Medicine, vol 54. Humana Press. https://doi.org/10.1385/1-59259-147-7:295

Download citation

  • DOI: https://doi.org/10.1385/1-59259-147-7:295

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-776-2

  • Online ISBN: 978-1-59259-147-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics