Skip to main content

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

In this chapter, the main processing steps and manufacturing aspects of solid dosage forms are described and the relevant literature is reviewed. Starting with powder feeding, powder blending, granulation (dry and wet), and drying the most important unit operations to make compactable granules are reviewed. As an alternative to granulation, hot-melt extrusion is introduced, together with the various downstream processing choices. Next, tableting and capsule filling—for making a final dosage form—are discussed, followed by a section on coating. In all sections scale-up methods are reviewed and an outlook for future developments is provided. The last two sections are devoted to process analytical technology (PAT) and continuous manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leane M, Pitt K, Reynolds G (2014) A proposal for a drug product Manufacturing Classification System (MCS) for oral solid dosage forms. Pharm Dev Technol 27:1–10

    Google Scholar 

  2. Roberts AW (2006) An historical overview and current developments. Bulk Solids Handl 26(6):392–411

    Google Scholar 

  3. Yang S, Evans JRG (2007) Metering and dispensing of powder; the quest for new solid freeforming techniques. Powder Technol 178(1):56–72

    Article  CAS  Google Scholar 

  4. Kehlenbeck V (2006) Continuous dynamic mixing of cohesive powders. Dissertation, Technical University Munich

    Google Scholar 

  5. Uchida K, Okamoto K (2008) Measurement technique on the diffusion coefficient of powder flow in a screw feeder by X-ray visualization. Powder Technol 187(2):138–145

    Article  CAS  Google Scholar 

  6. Fernandez JW, Cleary PW, McBride W (2011) Effect of screw design on hopper drawdown of spherical particles in a horizontal screw feeder. Chem Eng Sci 66(22):5585–5601

    Article  CAS  Google Scholar 

  7. Schulze D (2007) Powders and bulk solids: behavior, characterization, storage and flow. Springer Berlin Heidelberg New York, Berlin Heidelberg

    Google Scholar 

  8. Francis TM, Gump CJ, Weimer AW (2006) Spinning wheel powder feeding device — fundamentals and applications. Powder Technol 170(1):36–44

    Article  CAS  Google Scholar 

  9. Mracek M, Wallaschek J (2005) A system for powder transport based on piezoelectrically excited ultrasonic progressive waves. Mater Chem Phys 90(2–3):378–380

    Article  CAS  Google Scholar 

  10. Engisch W, Muzzio F (2012) Method for characterization of loss-in-weight feeder equipment. Powder Technol 228:395–403

    Article  CAS  Google Scholar 

  11. Pernenkil L, Cooney CL (2006) A review on the continuous blending of powders. Chem Eng Sci 61(2):720–742

    Article  CAS  Google Scholar 

  12. Berthiaux H, Marikh K, Gatumel C (2008) Continuous mixing of powder mixtures with pharmaceutical process constraints. Chem Eng Process Process Intensif 47(12):2315–2322

    Article  CAS  Google Scholar 

  13. Sato T (2010) Design of a GPC-based PID controller for controlling a weigh feeder. Control Eng Pract 18(2):105–113

    Article  Google Scholar 

  14. Pahl MH (2000) Mischen, Rühren, Kneten und Dosieren. Chemie Ing Tech 12(72):1451–1459

    Article  Google Scholar 

  15. Clark JP (2009) Case studies in food engineering. In: Case studies in food engineering. Springer, London

    Google Scholar 

  16. Manjunath K, Dhodapkar S, Jacob K (2004) Mixing of particulate solids in the process industries. In: Paul EL, Atiome-Obeng VA, Kresta SM (eds) Handbook of Industrial Mixing. Wiley, Hoboken, NJ, USA, pp 924–986

    Google Scholar 

  17. Pu YU, Mazumder M, Cooney C (2009) Effects of electrostatic charging on pharmaceutical powder blending homogeneity. J Pharm Sci 98(7):2412–2421

    Article  CAS  PubMed  Google Scholar 

  18. Hogg R (2009) Mixing and segregation in powders: evaluation, mechanisms and processes. Powder Technol 27(27):3–17

    Google Scholar 

  19. Mueller M (2007) Feststoffmischen. Chemie Ing Tech 79(7):1015–1023

    Article  CAS  Google Scholar 

  20. Poux M, Fayolle P, Bertrand J, Bridoux D, Bousquet J (1991) Powder mixing: some practical rules applied to agitated systems. Powder Technol 68(3):213–234

    Article  CAS  Google Scholar 

  21. Fitzpatrick JJ (2009) Particulate and powder mixing. In: Cullen PJ (ed.), Food mixing. Blackwell Publishing Ltd., Oxford, p 269–287

    Google Scholar 

  22. Lacy P (1954) Developments in the theory of particle mixing. J Appl Chem 4(5):257

    Article  Google Scholar 

  23. Deveswaran R, Bharath S, Basavaraj BV, Abraham S, Furtado S, Madhavan V (2009) Concepts and techniques of pharmaceutical powder mixing process: a current update. Res J Pharm Technol 2(2):245–249

    CAS  Google Scholar 

  24. Esbensen KH, Mortensen P (2010) Process sampling (Theory of Sampling, TOS)-the missing link in process analytical technology. In: Baakev KA (ed) Process analytical technology, 2nd edn. Wiley, Hoboken, pp 37–80

    Chapter  Google Scholar 

  25. Muzzio FJ, Robinson P, Wightman C (1997) Sampling practices in powder blending. Int J Pharm 155(2):153–178

    Article  CAS  Google Scholar 

  26. Huang A-N, Kuo H (2014) Developments in the tools for the investigation of mixing in particulate systems–a review. Adv Powder Technol 25(1):163–173

    Article  CAS  Google Scholar 

  27. Scheibelhofer O, Balak N, Koller DM, Khinast JG (2013) Spatially resolved monitoring of powder mixing processes via multiple NIR-probes. Powder Technol 243:161–170

    Article  CAS  Google Scholar 

  28. Rosas JG, Blanco M (2012) A criterion for assessing homogeneity distribution in hyperspectral images. Part 1: homogeneity index bases and blending processes. J Pharm Biomed Anal 70:680–690

    Article  CAS  PubMed  Google Scholar 

  29. Mehrotra A, Muzzio FFJ (2009) Comparing mixing performance of uniaxial and biaxial bin blenders. Powder Technol 196(1):1–7

    Article  CAS  Google Scholar 

  30. (2014) http://www.resodynmixer.com

  31. Martínez L, Peinado A, Liesum L, Betz G (2013) Use of near-infrared spectroscopy to quantify drug content on a continuous blending process: influence of mass flow and rotation speed variations. Eur J Pharm Biopharm 84(3):606–615

    Article  PubMed  CAS  Google Scholar 

  32. Portillo PM, Ierapetritou MG, Muzzio FJ (2008) Characterization of continuous convective powder mixing processes. Powder Technol 182(3):368–378

    Article  CAS  Google Scholar 

  33. Muzzio FJ, Ierapetritou MG (2013) Scale-up strategy for continuous powder blending process. Powder Technol 235:55–69

    Article  CAS  Google Scholar 

  34. Radeke CA, Glasser BJ, Khinast JG (2010) Large-scale powder mixer simulations using massively parallel GPUarchitectures. Chem Eng Sci 65(24):6435–6442

    Article  CAS  Google Scholar 

  35. Siraj MS, Radl S, Glasser BJ, Khinast JG (2011) Effect of blade angle and particle size on powder mixing performance in a rectangular box. Powder Technol 211(1):100–113

    Article  CAS  Google Scholar 

  36. Bridgwater J (2010) Mixing of particles and powders: where next? Particuology 8(6):563–567

    Article  Google Scholar 

  37. Scheibelhofer O, Balak N, Wahl PR, Koller DM, Glasser BJ, Khinast JG (2013) Monitoring blending of pharmaceutical powders with multipoint NIR spectroscopy. AAPS PharmSciTech 14(1):234–244

    Article  CAS  PubMed  Google Scholar 

  38. Liu R, Yin X, Li H, Shao Q, York P, He Y, Xiao T, Zhang J (2013) Visualization and quantitative profiling of mixing and segregation of granules using synchrotron radiation X-ray microtomography and three dimensional reconstruction. Int J Pharm 445(1–2):125–133

    Article  CAS  PubMed  Google Scholar 

  39. Gao JZH, Jain A, Motheram R, Gray DB, Hussain MA (2002) Fluid bed granulation of a poorly water soluble, low density, micronized drug: comparison with high shear granulation. Int J Pharm 237(1–2):1–14

    Article  CAS  PubMed  Google Scholar 

  40. Kumar A, Gernaey KV, De Beer T, Nopens I (2013) Model-based analysis of high shear wet granulation from batch to continuous processes in pharmaceutical production–a critical review. Eur J Pharm Biopharm 85(3 Pt B):814–832

    Article  CAS  PubMed  Google Scholar 

  41. Osborne JD, Sochon RPJ, Cartwright JJ, Doughty DG, Hounslow MJ, Salman AD (2011) Binder addition methods and binder distribution in high shear and fluidised bed granulation. Chem Eng Res Des 89(5):553–559

    Article  CAS  Google Scholar 

  42. Saito Y, Fan X, Ingram A, Seville JPK (2011) A new approach to high-shear mixer granulation using positron emission particle tracking. Chem Eng Sci 66(4):563–569

    Article  CAS  Google Scholar 

  43. Behzadi SS, Toegel S, Viernstein H (2008) Innovations in coating technology. Recent Pat Drug Deliv Formul 2(3):209–230

    Article  CAS  PubMed  Google Scholar 

  44. Burggraeve A, Monteyne T, Vervaet C, Remon JP, De Beer T (2013) Process analytical tools for monitoring, understanding, and control of pharmaceutical fluidized bed granulation: a review. Eur J Pharm Biopharm 83(1):2–15

    Article  CAS  PubMed  Google Scholar 

  45. Dhenge RM, Cartwright JJ, Doughty DG, Hounslow MJ, Salman AD (2011) Twin screw wet granulation: effect of powder feed rate. Adv Powder Technol 22(2):162–166

    Article  Google Scholar 

  46. Barrasso D, Ramachandran R (2015) Multi-scale modeling of granulation processes: bi-directional coupling of PBM with DEM via collision frequencies. Chem Eng Res Des 93:304–317

    Article  CAS  Google Scholar 

  47. Dhenge RM, Cartwright JJ, Hounslow MJ, Salman AD (2012) Twin screw wet granulation: effects of properties of granulation liquid. Powder Technol 229:126–136

    Article  CAS  Google Scholar 

  48. Tu W-D, Ingram A, Seville J (2013) Regime map development for continuous twin screw granulation. Chem Eng Sci 87:315–326

    Article  CAS  Google Scholar 

  49. Iveson SM, Litster JD (1998) Growth regime map for liquid-bound granules. AIChE J 44(7):1510–1518

    Article  CAS  Google Scholar 

  50. Iveson SM, Wauters PAL, Forrest S, Litster JD, Meesters GMH, Scarlett B (2001) Growth regime map for liquid-bound granules: further development and experimental validation. Powder Technol 117(1–2):83–97

    Article  CAS  Google Scholar 

  51. Hapgood KP, Litster JD, Smith R (2003) Nucleation regime map for liquid bound granules. AIChE J 49(2):350–361

    Article  CAS  Google Scholar 

  52. Hapgood KP, Amelia R, Zaman MB, Merrett BK, Leslie P (2010) Improving liquid distribution by reducing dimensionless spray flux in wet granulation—a pharmaceutical manufacturing case study. Chem Eng J 164(2–3):340–349

    Article  CAS  Google Scholar 

  53. Pohlman DA, Litster JD (2014) Coalescence model for induction growth behavior in high shear granulation. Powder Technol 270:435–444

    Article  CAS  Google Scholar 

  54. Kano T, Yoshihashi Y, Yonemochi E, Terada K (2014) Clarifying the mechanism of aggregation of particles in high-shear granulation based on their surface properties by using micro-spectroscopy. Int J Pharm 461(1–2):495–504

    Article  CAS  PubMed  Google Scholar 

  55. Kleinebudde P (2004) Roll compaction/dry granulation: pharmaceutical applications. Eur J Pharm Biopharm 58(2):317–326

    Article  CAS  PubMed  Google Scholar 

  56. Herting MGM, Kleinebudde P (2007) Roll compaction/dry granulation: effect of raw material particle size on granule and tablet properties. Int J Pharm 338(1–2):110–118

    Article  CAS  PubMed  Google Scholar 

  57. Bozic DZ, Dreu R, Vrecer F (2008) Influence of dry granulation on compactibility and capping tendency of macrolide antibiotic formulation. Int J Pharm 357(1–2):44–54

    Article  CAS  PubMed  Google Scholar 

  58. Mansa RF, Bridson RH, Greenwood RW, Barker H, Seville JPK (2008) Using intelligent software to predict the effects of formulation and processing parameters on roller compaction. Powder Technol 181(2):217–225

    Article  CAS  Google Scholar 

  59. Yu S, Gururajan B, Reynolds G (2012) A comparative study of roll compaction of free-flowing and cohesive pharmaceutical powders. Int J Pharm 428(1–2):39–47

    Article  CAS  PubMed  Google Scholar 

  60. Yu S, Adams M, Gururajan B (2013) The effects of lubrication on roll compaction, ribbon milling and tabletting. Chem Eng Sci 86:9–18

    Article  CAS  Google Scholar 

  61. Liu LX, Marziano I, Bentham AC, Litster JD, White ET, Howes T (2013) Influence of particle size on the direct compression of ibuprofen and its binary mixtures. Powder Technol 240:66–73

    Article  CAS  Google Scholar 

  62. Wagner CM, Pein M, Breitkreutz J (2015) Roll compaction of granulated mannitol grades and the unprocessed crystalline delta-polymorph. Powder Technol 270:470–475

    Article  CAS  Google Scholar 

  63. Hadžović E, Betz G, Hadžidedić S, El-Arini SK, Leuenberger H (2011) Investigation of compressibility and compactibility parameters of roller compacted Theophylline and its binary mixtures. Int J Pharm 416(1):97–103

    Article  PubMed  CAS  Google Scholar 

  64. Faure A, York P, Rowe RC (2001) Process control and scale-up of pharmaceutical wet granulation processes: a review. Eur J Pharm Biopharm 52(3):269–277

    Article  CAS  PubMed  Google Scholar 

  65. Kayrak-Talay D, Dale S, Wassgren C, Litster J (2013) Quality by design for wet granulation in pharmaceutical processing: assessing models for a priori design and scaling. Powder Technol 240:7–18

    Article  CAS  Google Scholar 

  66. Rambali B, Baert L, Massart DL (2001) Using experimental design to optimize the process parameters in fluidized bed granulation on a semi-full scale. Int J Pharm 220(1–2):149–160

    Article  CAS  PubMed  Google Scholar 

  67. Rambali B (2003) Scaling up of the fluidized bed granulation process. Int J Pharm 252(1–2):197–206

    Article  CAS  PubMed  Google Scholar 

  68. Watano S, Sato Y, Miyanami K (1997) Application of a neural network to granulation scale-up. Powder Technol 90:153–159

    Article  CAS  Google Scholar 

  69. Nakamura H, Fujii H, Watano S (2013) Scale-up of high shear mixer-granulator based on discrete element analysis. Powder Technol 236:149–156

    Article  CAS  Google Scholar 

  70. Chaudhury A, Niziolek A, Ramachandran R (2013) Multi-dimensional mechanistic modeling of fluid bed granulation processes: an integrated approach. Adv Powder Technol 24(1):113–131

    Article  Google Scholar 

  71. Chitu TM, Oulahna D, Hemati M (2011) Rheology, granule growth and granule strength: application to the wet granulation of lactose – MCC mixtures. Powder Technol 208(2):441–453

    Article  CAS  Google Scholar 

  72. Dosta M, Heinrich S, Werther J (2010) Fluidized bed spray granulation: analysis of the system behaviour by means of dynamic flowsheet simulation. Powder Technol 204(1):71–82

    Article  CAS  Google Scholar 

  73. Chaudhury A, Wu H, Khan M, Ramachandran R (2014) A mechanistic population balance model for granulation processes: effect of process and formulation parameters. Chem Eng Sci 107:76–92

    Article  CAS  Google Scholar 

  74. Kayrak-Talay D, Litster JD (2011) A priori performance prediction in pharmaceutical wet granulation: testing the applicability of the nucleation regime map to a formulation with a broad size distribution and dry binder addition. Int J Pharm 418(2):254–264

    Article  CAS  PubMed  Google Scholar 

  75. Zarate NV, Harrison AJ, Litster JD, Beaudoin SP (2013) Effect of relative humidity on onset of capillary forces for rough surfaces. J Colloid Interface Sci 411:265–272

    Article  CAS  PubMed  Google Scholar 

  76. Boerefijn R, Orlovic M, Reimers C, Pogodda M, Jacob M (2013) Application of the flux number approach for the simulation of granulation processes by use of flowsheeting tools. Chem Eng Sci 86:137–145

    Article  CAS  Google Scholar 

  77. Emady HN, Kayrak-Talay D, Litster JD (2013) Modeling the granule formation mechanism from single drop impact on a powder bed. J Colloid Interface Sci 393:369–376

    Article  CAS  PubMed  Google Scholar 

  78. Poon JM-H, Immanuel CD, Doyle FJ III, Litster JD (2008) A three-dimensional population balance model of granulation with a mechanistic representation of the nucleation and aggregation phenomena. Chem Eng Sci 63(5):1315–1329

    Article  CAS  Google Scholar 

  79. Smith RM, Litster JD (2012) Examining the failure modes of wet granular materials using dynamic diametrical compression. Powder Technol 224:189–195

    Article  CAS  Google Scholar 

  80. Peter S, Lammens R, Steffens K (2010) Roller compaction/dry granulation: use of the thin layer model for predicting densities and forces during roller compaction. Powder Technol 199(2):165–175

    Article  CAS  Google Scholar 

  81. Nesarikar V, Patel C, Early W (2012) Roller compaction process development and scale up using Johanson model calibrated with instrumented roll data. Int J Pharm 436(1–2):486–507

    Article  CAS  PubMed  Google Scholar 

  82. Miguélez-Morán A, Wu C (2009) Characterisation of density distributions in roller-compacted ribbons using micro-indentation and X-ray micro-computed tomography. Eur J Pharm Biopharm 72(1):173–182

    Article  PubMed  CAS  Google Scholar 

  83. Reynolds G, Ingale R, Roberts R, Kothari S, Gururajan B (2010) Practical application of roller compaction process modeling. Comput Chem Eng 34(7):1049–1057

    Article  CAS  Google Scholar 

  84. Cunningham JJC, Winstead D, Zavaliangos A (2010) Understanding variation in roller compaction through finite element-based process modeling. Comput Chem Eng 34(7):1058–1071

    Article  CAS  Google Scholar 

  85. Singh R, Ierapetritou M, Ramachandran R (2012) An engineering study on the enhanced control and operation of continuous manufacturing of pharmaceutical tablets via roller compaction. Int J Pharm 438(1–2):307–326

    Article  CAS  PubMed  Google Scholar 

  86. De Beer T, Burggraeve A, Fonteyne M, Saerens L, Remon JP, Vervaet C (2011) Near infrared and Raman spectroscopy for the in-process monitoring of pharmaceutical production processes. Int J Pharm 417(1–2):32–47

    Article  PubMed  CAS  Google Scholar 

  87. Walker G, Bell SEJ, Vann M, Jones DS, Andrews G (2007) Fluidised bed characterisation using Raman spectroscopy: applications to pharmaceutical processing. Chem Eng Sci 62(14):3832–3838

    Article  CAS  Google Scholar 

  88. Walker GM, Bell SEJ, Greene K, Jones DS, Andrews GP (2009) Characterisation of fluidised bed granulation processes using in-situ Raman spectroscopy. Chem Eng Sci 64(1):91–98

    Article  CAS  Google Scholar 

  89. Burggraeve A, Van den Kerkhof T, Hellings M, Remon JP, Vervaet C, De Beer T (2011) Batch statistical process control of a fluid bed granulation process using in-line spatial filter velocimetry and product temperature measurements. Eur J Pharm Sci 42(5):584–592

    Article  CAS  PubMed  Google Scholar 

  90. Burggraeve A, Van Den Kerkhof T, Hellings M, Remon JP, Vervaet C, De Beer T (2010) Evaluation of in-line spatial filter velocimetry as PAT monitoring tool for particle growth during fluid bed granulation. Eur J Pharm Biopharm 76(1):138–146

    Article  CAS  PubMed  Google Scholar 

  91. Hansuld EM, Briens L (2014) A review of monitoring methods for pharmaceutical wet granulation. Int J Pharm 472(1–2):192–201

    Article  CAS  PubMed  Google Scholar 

  92. Matero S, Poutiainen S, Leskinen J, Järvinen K, Ketolainen J, Reinikainen S, Hakulinen M, Lappalainen R, Poso A (2009) The feasibility of using acoustic emissions for monitoring of fluidized bed granulation. Chemom Intell Lab Syst 97(1):75–81

    Article  CAS  Google Scholar 

  93. van’t Land CM (2012) Drying in the process industry. John Wiley & Sons, Hoboken, NJ

    Google Scholar 

  94. Mujumdar AS (ed) (2006) Handbook of industrial drying, 3rd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  95. Hamilton P, Littlejohn D, Nordon A, Sefcik J, Slavin P, Andrews J, Dallin P (2013) Investigation of factors affecting isolation of needle-shaped particles in a vacuum-agitated filter drier through non-invasive measurements by Raman spectrometry. Chem Eng Sci 101:878–885

    Article  CAS  Google Scholar 

  96. Sahni EK, Chaudhuri B (2013) Numerical simulations of contact drying in agitated filter-dryer. Chem Eng Sci 97:34–49

    Article  CAS  Google Scholar 

  97. Paudel A, Worku ZA, Meeus J, Guns S, Van den Mooter G (2013) Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: formulation and process considerations. Int J Pharm 453(1):253–284

    Article  CAS  PubMed  Google Scholar 

  98. Son Y-J, Worth Longest P, Hindle M (2013) Aerosolization characteristics of dry powder inhaler formulations for the excipient enhanced growth (EEG) application: effect of spray drying process conditions on aerosol performance. Int J Pharm 443(1–2):137–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Patel BB, Patel JK, Chakraborty S, Shukla D (2013) Revealing facts behind spray dried solid dispersion technology used for solubility enhancement. Saudi Pharm J. Online Dec. 2013

    Google Scholar 

  100. Perry RH, Green DW (2012) Fluidized-bed systems. In: Perry’s chemical engineer’s handbook, 8th edn. McGraw-Hill, New York, p 1–27

    Google Scholar 

  101. Geldart D (1972) The effect of particle size and size distribution on the behaviour of gas-fluidised beds. Powder Technol 6(4):201–215

    Article  CAS  Google Scholar 

  102. Geldart D (1973) Types of gas fluidization. Powder Technol 7:285–292

    Article  CAS  Google Scholar 

  103. Mujumdar AS (2015) Handbook of industrial drying, fourth edition, 4th edn. CRC Press, Boca Raton, FL

    Google Scholar 

  104. Bhandari B, Bansal N, Zhang M, Schuck P (eds.) (2013) Handbook of food powders—processes and properties. Woodhead Publishing Limited, Cambridge, p 85–104

    Google Scholar 

  105. Ganguly A, Alexeenko AA (2012) Modeling and measurements of water–vapor flow and icing at low pressures with application to pharmaceutical freeze-drying. Int J Heat Mass Transf 55(21–22):5503–5513

    Article  Google Scholar 

  106. Oetjen GW, Haseley P (2008) Freeze-drying. Wiley-VCH, Weinheim

    Google Scholar 

  107. Anwar SH, Kunz B (2011) The influence of drying methods on the stabilization of fish oil microcapsules: comparison of spray granulation, spray drying, and freeze drying. J Food Eng 105(2):367–378

    Article  CAS  Google Scholar 

  108. Abdelwahed W, Degobert G, Fessi H (2006) Freeze-drying of nanocapsules: impact of annealing on the drying process. Int J Pharm 324(1):74–82

    Article  CAS  PubMed  Google Scholar 

  109. Abdelwahed W, Degobert G, Fessi H (2006) Investigation of nanocapsules stabilization by amorphous excipients during freeze-drying and storage. Eur J Pharm Biopharm 63(2):87–94

    Article  CAS  PubMed  Google Scholar 

  110. Abdelwahed W, Degobert G, Stainmesse S, Fessi H (2006) Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv Drug Deliv Rev 58(15):1688–1713

    Article  CAS  PubMed  Google Scholar 

  111. Mcloughlin CM, McMinn WAM, Magee TRA (2000) Microwave drying of pharmaceutical powders. Food Bioprod Process 78(2):90–96

    Article  CAS  Google Scholar 

  112. Loh ZH, Liew CV, Lee CC, Heng PWS (2008) Microwave-assisted drying of pharmaceutical granules and its impact on drug stability. Int J Pharm 359(1–2):53–62

    Article  CAS  PubMed  Google Scholar 

  113. Chandrasekaran S, Ramanathan S, Basak T (2013) Microwave food processing—a review. Food Res Int 52(1):243–261

    Article  CAS  Google Scholar 

  114. Hebbar HU, Vishwanathan K, Ramesh M (2004) Development of combined infrared and hot air dryer for vegetables. J Food Eng 65(4):557–563

    Article  Google Scholar 

  115. Das I, Das SK, Bal S (2004) Drying performance of a batch type vibration aided infrared dryer. J Food Eng 64(1):129–133

    Article  Google Scholar 

  116. Lee G (2002) Pharmaceutical process scale-up. Drugs and the pharmaceutical sciences volume 118. Eur J Pharm Biopharm 54(3):358

    Article  Google Scholar 

  117. Strong J (2009) Scale-up of pharmaceutical manufacturing operations of solid dosage forms. In: Qiu Y, Yisheng C, Zhang GGZ, Liu L, Porter WR (eds) Developing solid oral dosage forms. Elsevier, p 615–636

    Google Scholar 

  118. Kemp IC (2011) Drying models, myths, and misconceptions. Chem Eng Technol 34(7):1057–1066

    Article  CAS  Google Scholar 

  119. Lekhal A, Girard KP, Brown MA, Kiang S, Glasser BJ, Khinast JG (2003) Impact of agitated drying on crystal morphology: KCl–water system. Powder Technol 132(2–3):119–130

    Article  CAS  Google Scholar 

  120. Lekhal A, Girard KP, Brown MA, Kiang S, Khinast JG, Glasser BJ (2004) The effect of agitated drying on the morphology of l-threonine (needle-like) crystals. Int J Pharm 270(1–2):263–277

    Article  CAS  PubMed  Google Scholar 

  121. Vauhkonen M, Rimpilainen V, Heikkinen L (2012) Three-dimensional capacitance tomography of a conical fluidized bed reactor. In:2012 I.E. International instrumentation and measurement technology conference proceedings, p 921–923

    Google Scholar 

  122. Rimpiläinen V, Heikkinen LM, Vauhkonen M (2012) Moisture distribution and hydrodynamics of wet granules during fluidized-bed drying characterized with volumetric electrical capacitance tomography. Chem Eng Sci 75:220–234

    Article  CAS  Google Scholar 

  123. Roblegg E, Jäger E, Hodzic A, Koscher G, Mohr S, Zimmer A, Khinast J (2011) Development of sustained-release lipophilic calcium stearate pellets via hot melt extrusion. Eur J Pharm Biopharm 79(3):635–645

    Article  CAS  PubMed  Google Scholar 

  124. Khinast JG, Baumgartner R, Roblegg E (2013) Nano-extrusion: a one-step process for manufacturing of solid nanoparticle formulations directly from the liquid phase. AAPS PharmSciTech 14(2):601–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Breitenbach J (2002) Melt extrusion: from process to drug delivery technology. Eur J Pharm Biopharm 54(2):107–117

    Article  CAS  PubMed  Google Scholar 

  126. Ghebre-Sellassie I, Martin C (2003) Pharmaceutical extrusion technology. Marcel Dekker Inc., New York

    Book  Google Scholar 

  127. Kleinebudde P (2011) Pharmazeutisches Produktdesign: Gezielte Freisetzung von Wirkstoffen durch unterschiedliche Extrusionstechniken. Chemie Ing Tech 83(5):589–597

    Article  CAS  Google Scholar 

  128. Douroumis D (ed) (2012) Hot-melt extrusion: pharmaceutical applications. Wiley & Sons, Ltd., Chichester

    Google Scholar 

  129. Repka J, Langley MA, DiNunzio N (2013) Melt extrusion - materials, technology and drug product design. Springer, New York

    Book  Google Scholar 

  130. Rauwendaal C (2001) Polymer extrusion, 4th edn. Hanser Publishers, Munich, p 781

    Google Scholar 

  131. KohlgrĂĽber K (2008) Co-rotating twin-screw extruders. Carl Hanser Publishers, Munich

    Google Scholar 

  132. Kolter K, Karl M, Gryczke A (2012) Hot-melt extrusion with BASF pharma polymers extrusion compendium, 2nd edn. BASF, Ludwigshafen

    Google Scholar 

  133. Perdikoulias J, Dobbie T (2003) Die design. Marcel Dekker Inc., New York

    Book  Google Scholar 

  134. Han W, Wang X (2012) Optimal geometry design of the coat-hanger die with uniform outlet velocity and minimal residence time. J Appl Polym Sci 123(4):2511–2516

    Article  CAS  Google Scholar 

  135. van Laarhoven JAH (2005) Physical-chemical aspects of a coaxial sustained release device based on Poly-EVA. Dissertation, Universiteit van Utrecht

    Google Scholar 

  136. Markl D, Wahl PR, Menezes JC, Koller DM, Kavsek B, Francois K, Roblegg E, Khinast JG (2013) Supervisory control system for monitoring a pharmaceutical hot melt extrusion process. AAPS PharmSciTech 14(3):1034–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wahl PR, Treffer D, Mohr S, Roblegg E, Koscher G, Khinast JG (2013) Inline monitoring and a PAT strategy for pharmaceutical hot melt extrusion. Int J Pharm 455(1–2):159–168

    Article  CAS  PubMed  Google Scholar 

  138. Treffer D, Wahl PR, Hörmann TR, Markl D, Schrank S, Jones I, Cruise P, Mürb R-K, Koscher G, Roblegg E, Khinast JG (2014) In-line implementation of an image-based particle size measurement tool to monitor hot-melt extruded pellets. Int J Pharm 466(1–2):181–189

    Article  CAS  PubMed  Google Scholar 

  139. Saerens L, Dierickx L, Quinten T, Adriaensens P, Carleer R, Vervaet C, Remon JP, De Beer T (2012) In-line NIR spectroscopy for the understanding of polymer-drug interaction during pharmaceutical hot-melt extrusion. Eur J Pharm Biopharm 81(1):230–237

    Article  CAS  PubMed  Google Scholar 

  140. Treffer D, Wahl P, Markl D, Koscher G, Roblegg E, Khinast J (2013) Hot melt extrusion as a continuous pharmaceutical manufacturing process. In: Repka M (ed) Melt extrusion: equipment and pharmaceutical applications. Springer Publishers. p 363–396

    Google Scholar 

  141. Zema L, Loreti G, Melocchi A, Maroni A, Gazzaniga A (2012) Injection molding and its application to drug delivery. J Control Release 159(3):324–331

    Article  CAS  PubMed  Google Scholar 

  142. Pawlowski J (1971) Die Ă„hnlichkeitstheorie in der physikalisch-technischen Forschung, 1st edn. Springer, Berlin/Heidelberg, Germany

    Book  Google Scholar 

  143. Rosato D, Rosato D, Rosato M (2000) Injection molding handbook, 3rd edn. Kluwer Academic Publishers Group, Dordrecht, Netherlands

    Book  Google Scholar 

  144. Kennedy P, Zheng R (2013) Flow analysis of injection molds, 2nd edn. Carl Hanser Verlag, Munich, p 380

    Book  Google Scholar 

  145. Eitzlmayr A, Khinast J, Hörl G, Koscher G, Reynolds G, Huang Z, Booth J, Shering P (2013) Experimental characterization and modeling of twin-screw extruder elements for pharmaceutical hot melt extrusion. AIChE J 59(11):4440–4450

    Article  CAS  Google Scholar 

  146. Eitzlmayr A, Koscher G, Reynolds G, Huang Z, Booth J, Shering P, Khinast J (2014) Mechanistic modeling of modular, co-rotating twin-screw extruders. Int J Pharm 474(1–2):157–176

    Article  CAS  PubMed  Google Scholar 

  147. Eitzlmayr A, Khinast J (2014) Co-rotating twin-screw extruders: detailed analysis based on smoothed particle hydrodynamics. Part 1: hydrodynamics. Chem Eng Sci, May 2015

    Google Scholar 

  148. Eitzlmayr A, Khinast J (2014) Co-rotating twin-screw extruders: detailed analysis based on smoothed particle hydrodynamics. Part 2: mixing. Chem Eng Sci, June 2015

    Google Scholar 

  149. Sonnergaard J (2001) Investigation of a new mathematical model for compression of pharmaceutical powders. Eur J Pharm Sci 14(2):149–157

    Article  CAS  PubMed  Google Scholar 

  150. Leuenberger H (1982) The compressibility and compactibility of powder systems. Int J Pharm 12(1):41–55

    Article  CAS  Google Scholar 

  151. Sun CC (2012) Decoding powder tabletability: roles of particle adhesion and plasticity. J Adhes Sci Technol 25(4–5):483–499

    Google Scholar 

  152. Palmieri GF, Joiris E, Bonacucina G, Cespi M, Mercuri A (2005) Differences between eccentric and rotary tablet machines in the evaluation of powder densification behaviour. Int J Pharm 298(1):164–175

    Article  CAS  PubMed  Google Scholar 

  153. Sinka IC, Motazedian F, Cocks ACF, Pitt KG (2009) The effect of processing parameters on pharmaceutical tablet properties. Powder Technol 189(2):276–284

    Article  CAS  Google Scholar 

  154. Natoli D, Levin M, Tsygan L, Liu L, Qiu Y, Chen Y, Zhang GGZ, Porter W (2009) Developing solid oral dosage forms. In: Developing solid oral dosage forms. Elsevier, p 725–759

    Google Scholar 

  155. Wahl PR, Fruhmann G, Sacher S, Straka G, Sowinski S, Khinast JG (2014) PAT for tableting: inline monitoring of API and excipients via NIR spectroscopy. Eur J Pharm Biopharm 87(2):271–278

    Article  CAS  PubMed  Google Scholar 

  156. Kirsch JD, Drennen JK (1999) Nondestructive tablet hardness testing by near-infrared spectroscopy: a new and robust spectral best-fit algorithm. J Pharm Biomed Anal 19(3–4):351–362

    Article  CAS  PubMed  Google Scholar 

  157. Shah RB, Tawakkul MA, Khan MA (2007) Process analytical technology: chemometric analysis of Raman and near infra-red spectroscopic data for predicting physical properties of extended release matrix tablets. J Pharm Sci 96(5):1356–1365

    Article  CAS  PubMed  Google Scholar 

  158. Gowen AA, O’Donnell CP, Cullen PJ, Bell SEJ (2008) Recent applications of chemical imaging to pharmaceutical process monitoring and quality control. Eur J Pharm Biopharm 69(1):10–22

    Article  CAS  PubMed  Google Scholar 

  159. Wu H, Heilweil EJ, Hussain AS, Khan MA (2008) Process analytical technology (PAT): quantification approaches in terahertz spectroscopy for pharmaceutical application. J Pharm Sci 97(2):970–984

    Article  CAS  PubMed  Google Scholar 

  160. Wu H, Heilweil EJ, Hussain AS, Khan MA (2007) Process analytical technology (PAT): effects of instrumental and compositional variables on terahertz spectral data quality to characterize pharmaceutical materials and tablets. Int J Pharm 343(1–2):148–158

    Article  CAS  PubMed  Google Scholar 

  161. Serajuddin ATM (1999) Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J Pharm Sci 88:1058–1066

    Article  CAS  PubMed  Google Scholar 

  162. Vasconcelos T, Sarmento B, Costa P (2007) Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today 12(23–24):1068–1075

    Article  CAS  PubMed  Google Scholar 

  163. Ayenew Z, Paudel A, Van den Mooter G (2012) Can compression induce demixing in amorphous solid dispersions? A case study of naproxen-PVP K25. Eur J Pharm Biopharm 81(1):207–213

    Article  CAS  PubMed  Google Scholar 

  164. Worku ZA, Aarts J, Van den Mooter G (2014) Influence of compression forces on the structural stability of naproxen/PVP-VA 64 solid dispersions. Mol Pharm 11(4):1102–1108

    Article  CAS  PubMed  Google Scholar 

  165. Au-Yeung KY, Robertson T, Hafezi H, Moon G, DiCarlo L, Zdeblick M, Savage G (2010) A networked system for self-management of drug therapy and wellness. In: Wireless health 2010 on - WH’10, p 1

    Google Scholar 

  166. Cole GC(1999) The design and operation of a facility for filling hard shell gelatin capsules. [Online]. http://capsugel.com

  167. Augsburger LL (2009) Hard- and soft-shell capsules. In: Florence AT, Siepmann J (eds) Modern pharmaceutics volume 1 basic principles and systems. Informa Healthcare USA, Inc., New York, pp 499–565

    Google Scholar 

  168. Ashurst I, Malton A, Prime D, Sumby B (2000) Latest advances in the development of dry powder inhalers. Pharm Sci Technol Today 3(7):246–256

    Article  CAS  PubMed  Google Scholar 

  169. Allen LV, Popovich NG, Ansel HC (2011) Caspules. In: Troy DB (ed) Ansel’s pharmaceutical dosage forms and drug delivery systems, 9th edn. Lippincott Williams & Wilkins, New York, pp 203–224

    Google Scholar 

  170. Podczeck F, Jones BE (2004) Dry filling of hard capsules. In: Jones BE, Podczeck F (eds) Pharmaceutical capsules, 2nd edn. Pharmaceutical Press, London, pp 119–138

    Google Scholar 

  171. Watt PR, Armstrong NA (2008) Tablet and capsule machine instrumentation. Pharmaceutical Press, Chicago, pp 1–16

    Google Scholar 

  172. Podczeck F, Newton JM (1999) Powder filling into hard gelatine capsules on a tamp filling machine. Int J Pharm 185(2):237–254

    Article  CAS  PubMed  Google Scholar 

  173. Edwards D (2010) Applications of capsule dosing techniques for use in dry powder inhalers. Ther Deliv 1(1):195–201

    Article  CAS  PubMed  Google Scholar 

  174. Eskandar F, Lejeune M, Edge S (2011) Low powder mass filling of dry powder inhalation formulations. Drug Dev Ind Pharm 37(1):24–32

    Article  CAS  PubMed  Google Scholar 

  175. Faulhammer E, Fink M, Llusa M, Biserni S, Calzolari V, Lawrence SM, Khinast JG (2014) Low dose capsule filling of inhalation products: critical material attributes and process parameters. Int J Pharm 473(1–2):617–626

    Article  CAS  PubMed  Google Scholar 

  176. Cole G, Hogan J, Aulton ME, Twitchell AM (2002) Pharmaceutical coating technology. Taylor & Francis, London

    Google Scholar 

  177. Toschkoff G, Khinast JG (2013) Mathematical modeling of the coating process. Int J Pharm 457(2):407–422

    Article  CAS  PubMed  Google Scholar 

  178. Turton R (2008) Challenges in the modeling and prediction of coating of pharmaceutical dosage forms. Powder Technol 181(2):186–194

    Article  CAS  Google Scholar 

  179. Muliadi AR, Sojka PE (2010) A review of pharmaceutical tablet spray coating. Atomization Sprays 20(7):611–638

    Article  CAS  Google Scholar 

  180. Just S, Toschkoff G, Funke A, Djuric D, Scharrer G, Khinast JG, Knop K, Kleinebudde P (2013) Optimization of inter-tablet coating uniformity for an active coating process at the lab and pilot scale. Int J Pharm 457(1):1–8

    Article  CAS  PubMed  Google Scholar 

  181. Brock D, Zeitler JA, Funke A, Knop K, Kleinebudde P (2012) A comparison of quality control methods for active coating processes. Int J Pharm 439(1–2):289–295

    Article  CAS  PubMed  Google Scholar 

  182. Dubey A, Boukouvala F, Keyvan G, Hsia R, Saranteas K, Brone D, Misra T, Ierapetritou MG, Muzzio FJ (2012) Improvement of tablet coating uniformity using a quality by design approach. AAPS PharmSciTech 13(1):231–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Mauritz JMA, Morrisby RS, Hutton RS, Legge CH, Kaminski CF (2010) Imaging pharmaceutical tablets with optical coherence tomography. J Pharm Sci 99(1):385–391

    Article  CAS  PubMed  Google Scholar 

  184. Shen YC (2011) Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: a review. Int J Pharm 417:48–60

    Article  CAS  PubMed  Google Scholar 

  185. Ho L, Müller R, Römer M, Gordon KC, Heinämäki J, Kleinebudde P, Pepper M, Rades T, Shen YC, Strachan CJ, Taday PF, Zeitler JA (2007) Analysis of sustained-release tablet film coats using terahertz pulsed imaging. J Control Release 119(3):253–261

    Article  CAS  PubMed  Google Scholar 

  186. Koller DM, Hannesschläger G, Leitner M, Khinast JG (2011) Non-destructive analysis of tablet coatings with optical coherence tomography. Eur J Pharm Sci 44(1–2):142–148

    Article  CAS  PubMed  Google Scholar 

  187. Ketterhagen W, Am Ende M, Hancock B (2009) Process modeling in the pharmaceutical industry using the discrete element method. J Pharm Sci 98(2):442–470

    Article  CAS  PubMed  Google Scholar 

  188. Denis C, Hemati M, Chulia D, Lanne J-Y, Buisson B, Daste G, Elbaz F (2003) A model of surface renewal with application to the coating of pharmaceutical tablets in rotary drums. Powder Technol 130(1–3):174–180

    Article  CAS  Google Scholar 

  189. Dubey A, Hsia R, Saranteas K, Brone D, Misra T, Muzzio FJ (2011) Effect of speed, loading and spray pattern on coating variability in a pan coater. Chem Eng Sci 66(21):5107–5115

    Article  CAS  Google Scholar 

  190. Freireich B, Ketterhagen WR, Wassgren C (2011) Intra-tablet coating variability for several pharmaceutical tablet shapes. Chem Eng Sci 66(12):2535–2544

    Article  CAS  Google Scholar 

  191. Freireich B, Li J (2013) A renewal theory approach to understanding inter-particle coating variability. Powder Technol 249:330–338

    Article  CAS  Google Scholar 

  192. Kalbag A, Wassgren C (2009) Inter-tablet coating variability: tablet residence time variability. Chem Eng Sci 64(11):2705–2717

    Article  CAS  Google Scholar 

  193. Sandadi S, Pandey P, Turton R (2004) In situ, near real-time acquisition of particle motion in rotating pan coating equipment using imaging techniques. Chem Eng Sci 59(24):5807–5817

    Article  CAS  Google Scholar 

  194. Suzzi D, Toschkoff G, Radl S, Machold D, Fraser SD, Glasser BJ, Khinast JG (2012) DEM simulation of continuous tablet coating: effects of tablet shape and fill level on inter-tablet coating variability. Chem Eng Sci 69(1):107–121

    Article  CAS  Google Scholar 

  195. Mueller R, Kleinebudde P (2007) Prediction of tablet velocity in pan coaters for scale-up. Powder Technol 173(1):51–58

    Article  CAS  Google Scholar 

  196. Markl D, Zettl M, Hannesschläger G, Sacher S, Leitner M, Buchsbaum A, Khinast JG (2014) Calibration-free in-line monitoring of pellet coating processes via optical coherence tomography. Chem Eng Sci 125:200–208

    Article  CAS  Google Scholar 

  197. U.S. Food and Drug Administration (2004) Pharmaceutical cGMPs for the 21st century – a risk based approach; Final Report

    Google Scholar 

  198. U.S. Food and Drug Administration (2004) Guidance for industry. PAT - a framework for innovative pharmaceutical development, manufacturing, and quality assurance. US Department of Health, Rockville, MD

    Google Scholar 

  199. International Conference on Harmonization (2009) ICH Q8(R2), Pharmaceutical Development, Part I: pharmaceutical development, and Part II: annex to pharmaceutical development. FDA, Silver Springs

    Google Scholar 

  200. International Conference on Harmonization (2008) ICH Q10, Pharmaceutical Quality System. FDA, Silver Springs

    Google Scholar 

  201. Schenck L, Troup G, Lowinger M, Li L, McKelvey C (2011) Achieving a hot melt extrusion design space for the production of solid solutions. Chem Eng Pharm Ind, 819–836

    Google Scholar 

  202. Wartewig S, Neubert RHH (2005) Pharmaceutical applications of Mid-IR and Raman spectroscopy. Adv Drug Deliv Rev 57(8):1144–1170

    Article  CAS  PubMed  Google Scholar 

  203. Reich G (2005) Near-infrared spectroscopy and imaging: basic principles and pharmaceutical applications. Adv Drug Deliv Rev 57(8):1109–1143

    Article  CAS  PubMed  Google Scholar 

  204. Krier F, Mantanus J, Sacré P-Y, Chavez P-F, Thiry J, Pestieau A, Rozet E, Ziemons E, Hubert P, Evrard B (2013) PAT tools for the control of co-extrusion implants manufacturing process. Int J Pharm 458(1):15–24

    Article  CAS  PubMed  Google Scholar 

  205. Lyndgaard LB, Spångberg R, Gilmour C, Lyndgaard CB, van den Berg F (2014) A process analytical approach for quality control of dapivirine in HIV preventive vaginal rings by Raman spectroscopy. J Raman Spectrosc 45(2):149–156

    Article  CAS  Google Scholar 

  206. Saerens L, Dierickx L, Lenain B, Vervaet C, Remon JP, De Beer T (2011) Raman spectroscopy for the in-line polymer-drug quantification and solid state characterization during a pharmaceutical hot-melt extrusion process. Eur J Pharm Biopharm 77(1):158–163

    Article  CAS  PubMed  Google Scholar 

  207. Tumuluri VS, Kemper MS, Lewis IR, Prodduturi S, Majumdar S, Avery BA, Repka MA (2008) Off-line and on-line measurements of drug-loaded hot-melt extruded films using Raman spectroscopy. Int J Pharm 357(1–2):77–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Wang Y, Steinhoff B, Brinkmann C, Alig I (2008) In-line monitoring of the thermal degradation of poly(l-lactic acid) during melt extrusion by UV–vis spectroscopy. Polymer 49(5):1257–1265

    Article  CAS  Google Scholar 

  209. Barnes SE, Brown EC, Sibley MG, Edwards HGM, Scowen IJ, Coates PD (2005) Vibrational spectroscopic and ultrasound analysis for in-process characterization of high-density polyethylene/polypropylene blends during melt extrusion. Appl Spectrosc 59(5):611–619

    Article  CAS  PubMed  Google Scholar 

  210. Coates PD, Barnes SE, Sibley MG, Brown EC, Edwards HGM, Scowen IJ (2003) In-process vibrational spectroscopy and ultrasound measurements in polymer melt extrusion. Polymer 44(19):5937–5949

    Article  CAS  Google Scholar 

  211. Domike R, Ngai S, Cooney CL (2010) Light induced fluorescence for predicting API content in tablets: sampling and error. Int J Pharm 391(1–2):13–20

    Article  CAS  PubMed  Google Scholar 

  212. Lai CK, Zahari A, Miller B, Katstra WE, Cima MJ, Cooney CL (2004) Nondestructive and on-line monitoring of tablets using light-induced fluorescence technology. AAPS PharmSciTech 5(1):E3

    PubMed  Google Scholar 

  213. Khoptyar D, Subash AA, Johansson S, Saleem M, Sparén A, Johansson J, Andersson-Engels S (2013) Broadband photon time-of-flight spectroscopy of pharmaceuticals and highly scattering plastics in the VIS and close NIR spectral ranges. Opt Express 21(18):20941–20953

    Article  PubMed  CAS  Google Scholar 

  214. Silva AFT, Burggraeve A, Denon Q, Van der Meeren P, Sandler N, Van Den Kerkhof T, Hellings M, Vervaet C, Remon JP, Lopes JA, De Beer T (2013) Particle sizing measurements in pharmaceutical applications: comparison of in-process methods versus offline methods. Eur J Pharm Biopharm 85(3):1006–1018

    Article  PubMed  Google Scholar 

  215. Keleb EI, Vermeire A, Vervaet C, Remon J-P (2004) Twin screw granulation as a simple and efficient tool for continuous wet granulation. Int J Pharm 273(1):183–194

    Article  CAS  PubMed  Google Scholar 

  216. de Boer A, Gjaltema D, Hagedoorn P, Frijlink H (2002) Characterization of inhalation aerosols: a critical evaluation of cascade impactor analysis and laser diffraction technique. Int J Pharm 249(1–2):219–231

    Article  PubMed  Google Scholar 

  217. Li M, Wilkinson D, Patchigolla K (2005) Determination of non-spherical particle size distribution from chord length measurements. Part 2: experimental validation. Chem Eng Sci 60(18):4992–5003

    Article  CAS  Google Scholar 

  218. Petrak D (2002) Simultaneous measurement of particle size and particle velocity by the spatial filtering technique. Part Part Syst Charact 19(6):391–400

    Article  Google Scholar 

  219. Hodzic A, Kriechbaum M, Laggner P (2009) Laboratory SWAXS for application in the pharmaceutical technology. Acta Cryst A 65:120

    Article  Google Scholar 

  220. Jednačak T, Hodzic A, Scheibelhofer O, Marijan M, Khinast J, Novak P (2014) Fast real-time monitoring of entacapone crystallization and characterization of polymorphs via Raman spectroscopy, statistics and SWAXS. Acta Pharm 64(1):1–13

    Article  PubMed  CAS  Google Scholar 

  221. Hennigan MC, Ryder AG (2013) Quantitative polymorph contaminant analysis in tablets using Raman and near infra-red spectroscopies. J Pharm Biomed Anal 72:163–171

    Article  CAS  PubMed  Google Scholar 

  222. Saerens L, Ghanam D, Raemdonck C, Francois K, Manz J, Krüger R, Krüger S, Vervaet C, Remon JP, De Beer T (2014) In-line solid state prediction during pharmaceutical hot-melt extrusion in a 12 mm twin screw extruder using Raman spectroscopy. Eur J Pharm Biopharm 87(3):606–615

    Article  CAS  PubMed  Google Scholar 

  223. Bondesson L, Mikkelsen KV, Luo Y, Garberg P, Agren H (2007) Hydrogen bonding effects on infrared and Raman spectra of drug molecules. Spectrochim Acta A Mol Biomol Spectrosc 66(2):213–224

    Article  PubMed  CAS  Google Scholar 

  224. Juuti M, Tuononen H, Prykäri T, Kontturi V, Kuosmanen M, Alarousu E, Ketolainen J, Myllylä R, Peiponen K-E (2009) Optical and terahertz measurement techniques for flat-faced pharmaceutical tablets: a case study of gloss, surface roughness and bulk properties of starch acetate tablets. Meas Sci Technol 20(1):015301

    Article  CAS  Google Scholar 

  225. May RK, Evans MJ, Zhong S, Warr I, Gladden LF, Shen Y, Zeitler JA (2011) Terahertz in-line sensor for direct coating thickness measurement of individual tablets during film coating in real-time. J Pharm Sci 100(4):1535–1544

    Article  CAS  PubMed  Google Scholar 

  226. Markl D, Hannesschläger G, Sacher S, Leitner M, Khinast JG (2014) Optical coherence tomography as a novel tool for in-line monitoring of a pharmaceutical film-coating process. Eur J Pharm Sci 55:58–67

    Article  CAS  PubMed  Google Scholar 

  227. Danzl R, Helmli F, Scherer S (2009) Focus variation—a new technology for high resolution optical 3D surface metrology. J Mech Eng 57(3):245–256

    Google Scholar 

  228. Leskinen JTT, Simonaho S-P, Hakulinen M, Ketolainen J (2013) Real-time tablet formation monitoring with ultrasound measurements in eccentric single station tablet press. Int J Pharm 442(1–2):27–34

    Article  CAS  PubMed  Google Scholar 

  229. Shlieout G, Lammens RF, Kleinebudde P (2000) Dry granulation with a roller compactor. Part I: the functional units and operation modes. Pharm Technol Eur 12(11):24–35

    Google Scholar 

  230. Inghelbrecht S (1998) The roller compaction of different types of lactose. Int J Pharm 166(2):135–144

    Article  CAS  Google Scholar 

  231. Leuenberger H (2003) Scale-up in the 4th dimension in the field of granulation and drying or how to avoid classical scale-up. Powder Technol 130(1–3):225–230

    Article  CAS  Google Scholar 

  232. Plumb K (2005) Continuous processing in the pharmaceutical industry: changing the mind set. Chem Eng Res Des 83(6):730–738

    Article  CAS  Google Scholar 

  233. Malhotra G (2009) Pharmaceutical processing—batch or a continuous process: a choice. Pharm Process:16–17

    Google Scholar 

  234. Mascia S, Heider PL, Zhang H, Lakerveld R, Benyahia B, Barton PI, Braatz RD, Cooney CL, Evans JMB, Jamison TF, Jensen KF, Myerson AS, Trout BL (2013) End-to-end continuous manufacturing of pharmaceuticals: integrated synthesis, purification, and final dosage formation. Angew Chem Int Ed Engl 52(47):12359–12363

    Article  CAS  PubMed  Google Scholar 

  235. Vercruysse J, Delaet U, Van Assche I, Cappuyns P, Arata F, Caporicci G, De Beer T, Remon JP, Vervaet C (2013) Stability and repeatability of a continuous twin screw granulation and drying system. Eur J Pharm Biopharm 85(3 Pt B):1031–1038

    Article  CAS  PubMed  Google Scholar 

  236. McKenzie P, Kiang S, Tom J, Rubin AE, Futran M (2006) Can pharmaceutical process development become high tech? AIChE J 52(12):3990–3994

    Article  CAS  Google Scholar 

  237. Stephanopoulos G, Ng C (2000) Perspectives on the synthesis of plant-wide control structures. J Proc Contr 10(2–3):97–111

    Article  CAS  Google Scholar 

  238. Garcia T, Cook G, Nosal R (2008) PQLI key topics - criticality, design space, and control strategy. J Pharm Innov 3(2):60–68

    Article  Google Scholar 

  239. Boukouvala F, Ramachandran R, Vanarase A, Muzzio FJ, Ierapetritou MG (2011) Computer aided design and analysis of continuous pharmaceutical manufacturing processes, vol 29. Elsevier B.V., p 216–220

    Google Scholar 

  240. Schaber SD, Gerogiorgis DI, Ramachandran R, Evans JMB, Barton PI, Trout BL (2011) Economic analysis of integrated continuous and batch pharmaceutical manufacturing: a case study. Ind Eng Chem Res 50(17):10083–10092

    Article  CAS  Google Scholar 

  241. Pardeike J, Strohmeier DM, Schrödl N, Voura C, Gruber M, Khinast JG, Zimmer A (2011) Nanosuspensions as advanced printing ink for accurate dosing of poorly soluble drugs in personalized medicines. Int J Pharm 420(1):93–100

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the significant contributions of Diana Dujmovic, Andreas Eitzlmayr, Eva Faulhammer, Johannes Gursch, Dr. Gerold Koscher, Dr. Marcos Llusa, Daniel Markl, Dr. Sharareh Salar-Behzadi, Dr. Otto Scheibelhofer, Daniel Treffer, Dr. Gregor Toschkoff, and Dr. Patrick Wahl. Much of the work presented in this chapter was funded through the Austrian COMET Program by the Austrian Federal Ministry of Transport, Innovation and Technology (BMVIT), the Austrian Federal Ministry of Economy, Family and Youth (BMWFJ) and by the State of Styria (Styrian Funding Agency SFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes G. Khinast .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sacher, S., Khinast, J.G. (2016). An Overview of Pharmaceutical Manufacturing for Solid Dosage Forms. In: Ierapetritou, M.G., Ramachandran, R. (eds) Process Simulation and Data Modeling in Solid Oral Drug Development and Manufacture. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-2996-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2996-2_10

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-2995-5

  • Online ISBN: 978-1-4939-2996-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics