Skip to main content

“MeiQuant”: An Integrated Tool for Analyzing Meiotic Prophase I Spread Images

  • Protocol
  • First Online:
Germ Cell Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2770))

Abstract

Immunocytochemical analysis of meiotic proteins on mouse chromosome spreads is one method of choice to study prophase I chromosome organization and homologous recombination. In recent decades, the development of microscopic approaches led to the production of a large number of images that monitor fluorescent proteins, defined as fluorescent objects, and a major challenge facing the community is the deep analysis of these fluorescent objects (measurement of object length, intensity, distance between objects, as well as foci identification, counting, and colocalization). We propose a set of tools designed from the macro language of the widely used image analysis software ImageJ (Schindelin et al., Nat Methods 9: 676–682, 2012), embedded in the “MeiQuant” macro, which are specifically designed for analyzing objects in the field of meiosis. Our aim is to propose a unified evolutive common tool for image analysis, with a specific focus on mouse prophase I meiotic events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  2. Hunter N (2015) Meiotic recombination: the essence of heredity. Cold Spring Harb Perspect Biol 7. https://doi.org/10.1101/cshperspect.a016618

  3. Zickler D, Kleckner N (2015) Recombination, pairing, and synapsis of homologs during meiosis. Cold Spring Harb Perspect Biol 7. https://doi.org/10.1101/cshperspect.a016626

  4. Peters AH, Plug AW, van Vugt MJ, de Boer P (1997) A drying-down technique for the spreading of mammalian meiocytes from the male and female germline. Chromosom Res 5:66–68

    Article  CAS  Google Scholar 

  5. Kumar R, Bourbon HM, de Massy B (2010) Functional conservation of Mei4 for meiotic DNA double-strand break formation from yeasts to mice. Genes Dev 24:1266–1280. https://doi.org/10.1101/gad.571710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barchi M, Geremia R, Magliozzi R, Bianchi E (2009) Isolation and analyses of enriched populations of male mouse germ cells by sedimentation velocity: the centrifugal elutriation. Methods Mol Biol 558:299–321. https://doi.org/10.1007/978-1-60761-103-5_18

    Article  PubMed  Google Scholar 

  7. de Boer E, Lhuissier FGP, Heyting C (2009) Cytological analysis of interference in mouse meiosis. Methods Mol Biol 558:355–382. https://doi.org/10.1007/978-1-60761-103-5_21

    Article  CAS  PubMed  Google Scholar 

  8. Susiarjo M, Rubio C, Hunt P (2009) Analyzing mammalian female meiosis. Methods Mol Biol 558:339–354. https://doi.org/10.1007/978-1-60761-103-5_20

    Article  PubMed  Google Scholar 

  9. Sheppard CJR (1986) The spatial frequency cut-off in three-dimensional imaging. Optik 72:131–133

    CAS  Google Scholar 

  10. Sheppard CJR, Choudhury A, Gannaway J (1977) Electromagnetic field near the focus of wide-angular lens and mirror systems. IEE J Microw Optics Acoust 1:129–132

    Article  Google Scholar 

  11. Wilson T, Tan JB (1993) Three dimensional image reconstruction in conventional and confocal microscopy. Bioimaging 1:176–184

    Article  Google Scholar 

  12. Swedlow JR (2013) Quantitative fluorescence microscopy and image deconvolution. Methods Cell Biol 114:407–426. https://doi.org/10.1016/B978-0-12-407761-4.00017-8

    Article  PubMed  Google Scholar 

  13. McNally JG, Karpova T, Cooper J, Conchello JA (1999) Three-dimensional imaging by deconvolution microscopy. Methods 19:373–385. https://doi.org/10.1006/meth.1999.0873

    Article  CAS  PubMed  Google Scholar 

  14. Grey C, de Massy B (2021) Chromosome Organization in Early Meiotic Prophase. Front Cell Dev Biol 9:688878. https://doi.org/10.3389/fcell.2021.688878

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ir A, Or D (2023) Meiotic chromosome structure, the synaptonemal complex, and infertility. Annu Rev Genomics Hum Genet 24:35. https://doi.org/10.1146/annurev-genom-110122-090239

    Article  CAS  Google Scholar 

  16. Wojtasz L, Daniel K, Roig I et al (2009) Mouse HORMAD1 and HORMAD2, two conserved meiotic chromosomal proteins, are depleted from synapsed chromosome axes with the help of TRIP13 AAA-ATPase. PLoS Genet 5:e1000702. https://doi.org/10.1371/journal.pgen.1000702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lachmanovich E, Shvartsman DE, Malka Y et al (2003) Co-localization analysis of complex formation among membrane proteins by computerized fluorescence microscopy: application to immunofluorescence co-patching studies. J Microsc 212:122–131. https://doi.org/10.1046/j.1365-2818.2003.01239.x

    Article  CAS  PubMed  Google Scholar 

  18. Pawley JB (2006) Handbook of biological confocal microscopy. Springer US, Boston

    Book  Google Scholar 

  19. Faklaris O, Bancel-Vallée L, Dauphin A et al (2022) Quality assessment in light microscopy for routine use through simple tools and robust metrics. J Cell Biol 221:e202107093. https://doi.org/10.1083/jcb.202107093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the Montpellier Resources Imagerie (MRI), a member of the national infrastructure France-BioImaging infrastructure supported by the French National Research Agency (ANR-10-INBS-04, “Investments for the future”) for microscopy. We acknowledge the CNRS INSERM ATIP-Avenir 2017 program and ANR CONDENSin3R (ANR-20-CE12-0016-02) that support the work performed in TR lab. This work was supported by the Agence Nationale de la Recherche ANR FIRE (ANR-17-426 CE12-0015) and by the Ligue contre le Cancer (Comités départementaux de l’Hérault et du Gard) to F.B. L.D.T. is funded by a PhD fellowship from Université Montpellier, UM, ED CBS2. A.Z. was funded by the ANR FIRE and a PhD fellowship (FDT202106012805) from the Fondation pour la Recherche Médicale (FRM).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Julien Cau , Frédéric Baudat or Thomas Robert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cau, J., Toe, L.D., Zainu, A., Baudat, F., Robert, T. (2024). “MeiQuant”: An Integrated Tool for Analyzing Meiotic Prophase I Spread Images. In: Barchi, M., De Felici, M. (eds) Germ Cell Development. Methods in Molecular Biology, vol 2770. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3698-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3698-5_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3697-8

  • Online ISBN: 978-1-0716-3698-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics