Skip to main content
  • 116 Accesses

Abstract

Chrysanthemum with its large number of cultivars in respect of growth habit, size, color, and shape of bloom has attracted its admirers and enthusiasts all over the world for its use both as a commercial flower crop and as a popular exhibition flower. The chapter will provide a transparent picturesque application of mutation techniques for the creation of novel varieties in chrysanthemums. All important basic aspects and technical advancement related to induced mutagenesis work have been discussed. One can see all types of mutation work starting from classical to modern on this crop and can get a clear picture of technological advancement and its successful application for the development of new varieties. The knowledge generated so far on chrysanthemum will work as a model system for future need-based planning of successful and accurate application of mutation techniques in crop improvement programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe T, Katsumoto Y, Miyazaki K, Yoshida S, Kusumi T (2002) Isolation of sterile mutants of Verbena hybrida using heavy-ion beam irradiation. RIKEN Accel Prog Rep 35:129

    Google Scholar 

  • Ahloowalia B (1995) In vitro mutagenesis for the improvement of vegetatively propagated plants. In: Induced mutations and molecular techniques for crop improvement. Proceedings of a symposium, Vienna, 19-23 June, jointly organized by IAEA and FAO, pp 531–541

    Google Scholar 

  • Anderson YO (1987) Reclamation of the genus Chrysanthemum L. HortScience 22(2):313

    Article  Google Scholar 

  • Anitha G, Shiragur M, Patil BC, Nishani S, Seetharamu GK, Ramanagouda SH, Naika MBN (2021) Mutation studies in chrysanthemum cultivar Poornima white. J Pharmacogn Phytochem 10(1):1235–1239

    Google Scholar 

  • Anonymous (1961) Chrysanthemums. Bull Minist Agric Fish Food Lond 2(6)

    Google Scholar 

  • Asami I, Hasegawa T, Yamada M (2010) Development of an easy screening method to evaluate the non-branching characteristics of the chrysanthemum line in the juvenile plantlet stage and in vitro stage. Res Bull Aichi Agric Res Ctr 42:1–6

    Google Scholar 

  • Asami I, Tsuji T, Hasegawa T, Fukuta S, Kuroyanagi S, Hase Y, Yoshihara R, Narumi I (2011) Producing new gene resources in chrysanthemums using ion-beam irradiation. JAEA Takasaki Ann Rep 2009:68

    Google Scholar 

  • Bajpay A, Dwivedi DH (2019) Gamma ray induced foliage variegation and anatomical aberrations in Chrysanthemum (Dendranthema grandiflora T.) cv. Maghi. J Pharmacogn Phytochem 8(4):871–874

    Google Scholar 

  • Banerji BK, Datta SK (1986) Induction of single flower mutant in Hibiscus cv. ‘Alipur Beauty’. J Nucl Agric Biol 15(4):237–240

    Google Scholar 

  • Banerji BK, Datta SK (1988) ‘Anjali’—a new gamma ray induced single flower mutant of Hibiscus. J Nucl Agric Biol 17(2):113–114

    Google Scholar 

  • Banerji BK, Datta SK (1990) Induction of somatic mutations in chrysanthemum cultivar ‘Anupam’. J Nucl Agric Biol 19:252–256

    Google Scholar 

  • Banerji BK, Datta SK (1993) Varietal differences in radiosensitivity of garden chrysanthemum. Nucleus 36(3):114–117

    Google Scholar 

  • Bañón S, Conesa E, Valdés R, Miralles J, Martínez JJ, Sánchez Blanco MJ (2012) Effects of saline irrigation on phytoregulator-treated chrysanthemum plants. Acta Hortic 937:307–312. https://doi.org/10.17660/ActaHortic.2012.937.37

    Article  Google Scholar 

  • Barakat MN, El-Sammak H (2011) In vitro mutagenesis, plant regeneration and characterization of mutants via RAPD analysis in baby’s breath Gypsophila paniculata L. Am J Crop Sci 5:214–222

    Google Scholar 

  • Barakat MN, Abdel Fattah RS, Badr M, El-Torky MG (2010) In vitro mutagenesis and identification of new variants via RAPD markers for improving Chrysanthemum morifolium. Afr J Agric Res 5:748–757

    Google Scholar 

  • Bolon YT, Haun WJ, Xu WW, Grant D, Stacey MG et al (2011) Phenotypic and genomic analyses of a fast neutron mutant population resource in soybean. Plant Physiol 156:240–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolon YT, Stec AO, Michno JM, Roessler J, Bhaskar PB, Ries L et al (2014) Genome resilience and prevalence of segmental duplications following fast neutron irradiation of soybean. Genetics 198:967–981. https://doi.org/10.1534/genetics.114.170340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowen HJM (1965) Mutations in horticultural chrysanthemum. Radiat Bot Suppl. 5:695–700

    Google Scholar 

  • Bowen HJM, Cawse PA, Dick MJ (1962) The induction of sports in chrysanthemum by gamma irradiation. Radiat Bot 1:297–303

    Article  Google Scholar 

  • Brock RD (1966) Second cycle of mutation and selection for quantitative variation in Trifolium subterraneum. Radiat Bot 6:357–369

    Article  Google Scholar 

  • Broertjes C (1966a) Mutation breeding of Chrysanthemum. Euphytica 15:156–162

    Article  CAS  Google Scholar 

  • Broertjes C (1966b) Mutation breeding in Chrysanthemum. Induced mutations and their utilization. Gatersleben 357

    Google Scholar 

  • Broertjes C (1971) Dose-fractionation studies and radiation-induced phenomena in African violet. In: Benson DW, Sparrow AH (eds) Survival of food crops and livestock in the mission. Oak Ridge, TN, pp 325–342

    Google Scholar 

  • Broertjes C (1972) Use in plant breeding of acute, chronic or fractionated doses of X-rays or fast neutrons as illustrated with leaves of Saintpaulia. Thesis, Centr. Agric. Pubbl. Doc., Wageningen, Agric. Res. Rep., 776:74

    Google Scholar 

  • Broertjes C (1976) Mutation breeding of auto-tetraploid Achimenes cultivars. Euphytica 25:297–304

    Article  Google Scholar 

  • Broertjes C, Jong DE (1984) Radiation-induced male-sterility in daisy type of Chrysanthemum morifolium Ram. Euphytica 33(1):433–434

    Google Scholar 

  • Broertjes C, Van Harten AM (1988) Applied mutation breeding for vegetatively propagated crops. Elsevier, Amsterdam

    Google Scholar 

  • Broertjes C, Koene P, van der Veen JWH (1980) A mutant of a mutant of a mutant of a … Irradiation of progressive radiation-induced mutants in a mutation-breeding programme with Chrysanthemum morifolium Ram. Euphytica 29:525–530

    Article  Google Scholar 

  • Broertjes C, Pouwer A, Evers JFM (1983) Kleurenkeus in overvloed. Alleen geel ontbreekt nog bij Achimenes. Vakbl. Bloemisterij 38(35):34–35

    Google Scholar 

  • Buiatti M, Tesi R (1968) Gladiolus improvement through radiation induced somatic mutation. Publication No. 1. Laboratorio di Mutagenesi e differeziamento del C.N.R., Pisa, pp 1–6

    Google Scholar 

  • Bush SR, Earle ED, Langhans RW (1976) Plantlets from petal segments, petal epidermis, and shoot tips of the periclinal chimera Chrysanthemum morifolium ‘Indianapolis’. Am J Bot 63(6):729–737

    Article  Google Scholar 

  • Caroline VJE, Mallaiah B (2011) In-vitro mutagenesis in an endangered medicinal cucurbit Bryonopsis laciniosa (L.) Naud. Int J Genet Eng Biotechnol 2(1):67–75. ISSN 0974-3073

    Google Scholar 

  • Cassels AC, Walsh C, Periappuram C (1993) Diplontic selection as a positive factor in determining the fitness of mutants of Dianthus ‘Mystere’ derived from X-irradiation of nodes in in vitro culture. Euphytica 70:167–174

    Article  Google Scholar 

  • Castillo-Martínez CR, de la Cruz-Torrez E, Carrillo-Castañeda G, Avendaño-Arrazate CH (2015) Inducción de mutaciones en crisantemo (Dendranthema grandiflora) usando radiación gamma y etil metano sulfonato. Agroproductividad 8(2):60–64. http://132.248.9.34/hevila/Agroproductividad/2015/vol8/no2/9.pdf

    Google Scholar 

  • Cawse PA (1965) Production of Chrysanthemum sports by gamma radiation. Radioisot. Rev., Sheet. Wantage Res. Lab. (A.E.R.E.), Wantage

    Google Scholar 

  • Chakrabarty D, Mandal AKA, Datta SK (1999) Management of chimera through direct shoot regeneration from florets of chrysanthemum (Chrysanthemum morifolium Ramat). J Hortic Sci Biotechnol 74(3):293–296

    Article  Google Scholar 

  • Chakrabarty D, Mandal AKA, Datta SK (2000) Retrieval of new coloured chrysanthemum through organogenesis from sectorial chimeras. Curr Sci 78(9):1060–1061

    Google Scholar 

  • Chaleff RS (1983) Isolation of agronomically useful mutants from plant cell cultures. Science 214:676–682

    Article  Google Scholar 

  • Chen F, Chen S, Guo W, Ji S (2003) Salt tolerance identification of three species of Chrysanthemums. Acta Hortic 618:299–305. https://doi.org/10.17660/ActaHortic.2003.618.34

    Article  CAS  Google Scholar 

  • Dalsou V, Short KC (1987) Selection for sodium chloride tolerance in chrysanthemum. Acta Hortic 212:737–740

    Article  Google Scholar 

  • Das PK, Ghosh P, Dube S, Dhua SP (1974) Induction of somatic mutations in some vegetatively propagated ornamentals by gamma irradiation. Technology (Coimbatore, India) 11(2,3):185–188

    Google Scholar 

  • Datta SK (1985a) Gamma ray induced mutant of a mutant chrysanthemum. J Nucl Agric Biol 14(4):131–133

    Google Scholar 

  • Datta SK (1985b) Colchi-mutation (C-mutation). Everyman’s Sci XIX(3):70–72

    Google Scholar 

  • Datta SK (1987) ‘Colchi Bahar’—a new chrysanthemum cultivar evolved by colchi mutation. The Chrysanthemum 43(1):4

    Google Scholar 

  • Datta SK (1990) Induction and analysis of somatic mutations in garden chrysanthemum. Adv Hortic For 1:241–254. Article No. 31

    Google Scholar 

  • Datta SK (1991) Evaluation of recurrent irradiation on vegetatively propagated ornamental: Chrysanthemum. J Nucl Agric Biol 20(2):81–86

    Google Scholar 

  • Datta SK (1992) Radiosensitivity of garden chrysanthemum. J Ind Bot Soc 71(I–IV):283–284

    Google Scholar 

  • Datta SK (1994) Induction and analysis of somatic mutations in vegetatively propagated ornamental. D. Sc. Thesis, Kanpur University, Kanpur, India

    Google Scholar 

  • Datta SK (1997) Ornamental plants—role of mutation. Daya Publishing House, Delhi, p 219

    Google Scholar 

  • Datta SK (2000) Mutation studies on garden Chrysanthemum—a review. In: Singh SP (ed) Scientific horticulture, vol 7. Scientific Publisher, Jodhpur, pp 159–199

    Google Scholar 

  • Datta SK (2005a) Technological advances for development of new ornamental varieties. In: Trivedi PC (ed) Advances in biotechnology. Agrobios (India), Jodhpur, pp 285–304

    Google Scholar 

  • Datta SK (2005b) In: Datta SK (ed) Role of classical mutation breeding in crop improvement. Daya Publishing House, Delhi, pp 1–314

    Google Scholar 

  • Datta SK (2012) Success story on induced mutagenesis for development of new ornamental varieties. Bioremediat Biodivers Bioavailab 6(Special issue 1):1–26. Global Science Book

    Google Scholar 

  • Datta SK (2015) Indian floriculture; role of CSIR. Regency Publications, A Division of Astral International(P) Ltd., New Delhi

    Google Scholar 

  • Datta SK (2019) Floriculture work at CSIR-National Botanical Research Institute, Lucknow. Sci Cult 85(7–8):274–283

    Google Scholar 

  • Datta SK (2023) Induced mutagenesis in chrysanthemum. In: Penna S, Jain SM (eds) Mutation breeding for sustainable food production and climate resilience. Springer, pp 565–598

    Chapter  Google Scholar 

  • Datta SK, Banerji BK (1991) Analysis of induced somatic mutations in chrysanthemum. J Ind Bot Soc 71(I–IV):59–62

    Google Scholar 

  • Datta SK, Banerji BK (1993) Gamma ray induced somatic mutation in chrysanthemum cv. ‘Kalyani Mauve’. J Nucl Agric Biol 22(1):19–27

    Google Scholar 

  • Datta SK, Banerji BK (1995a) Chromosome counting in original and gamma ray induced mutants of chrysanthemum. J Nucl Agric Biol 24(1):58–61

    Google Scholar 

  • Datta SK, Banerji BK (1995b) Improvement of garden chrysanthemum through induced mutation. Flora Fauna 1(1):1–4

    Google Scholar 

  • Datta SK, Teixeira da Silva JAT (2006) Role of induced mutagenesis for development of new flower colour and type in ornamentals. In: Book chapter: floriculture, ornamental and plant biotechnology. Global Science Book Ltd., pp 640–645. ISBN: 490331300X

    Google Scholar 

  • Datta SK, Gupta MN (1980) Effects of gamma irradiation on rooted cuttings of small flower chrysanthemum. New Bot VII:73–85

    Google Scholar 

  • Datta SK, Gupta MN (1981a) Effects of gamma irradiation on rooted cuttings of Korean type Chrysanthemum cv. ‘Nirmod’. Bangladesh J Bot 10(2):124–131

    Google Scholar 

  • Datta SK, Gupta MN (1981b) Studies on Chrysanthemum cultivar ‘Otome Zakura’ and its mutants. Bot Prog 4:88–92

    Google Scholar 

  • Datta SK, Gupta MN (1983) Somatic flower colour mutation in Chrysanthemum cv. ‘D-5’. J Nucl Agric Biol 12(1):22

    Google Scholar 

  • Datta SK, Gupta MN (1984) Effects of colchicines on rooted cuttings of Chrysanthemum. The Chrysanthemum 40(5):191–194

    Google Scholar 

  • Datta SK, Gupta MN (1987) Colchicine induced somatic flower color mutation in Chrysanthemum. Bangladesh J Bot 16(1):107–108

    Google Scholar 

  • Datta SK, Mandal AKA (2005) In vitro mutagenesis—a quick method for establishment of solid mutant in chrysanthemum. Curr Sci 88(1):155–158

    CAS  Google Scholar 

  • Datta SK, Banerji BK, Gupta MN (1985) ‘Tulika’—a new chrysanthemum cultivar evolved by gamma irradiation. J Nucl Agric Biol 14(4):160

    Google Scholar 

  • Datta SK, Chakraborty D, Mandal AKA (2001) Gamma ray-induced genetic manipulations in flower colour and shape in Dendranthema grandiflorum and their management through tissue culture. Plant Breed 120:91–92

    Article  CAS  Google Scholar 

  • De Jong J (1984) Genetic analysis in Chrysanthemum morifolium. I. Flowering time and flower number at low and optimum temperature. Euphytica 33:455–463

    Article  Google Scholar 

  • De Jong J, Custers JBM (1986) Induced changes in growth and flowering of chrysanthemum after irradiation and in vitro culture of pedicels and petal epidermis. Euphytica 35:137–148

    Article  Google Scholar 

  • Dermen H (1947) Periclinal cytochimeras and histogenesis in cranberry. Am J Bot 34:32–43

    Article  CAS  Google Scholar 

  • Dermen H (1953) Periclinal cytochimeras and origin of tissues in stem and leaf of peach. Am J Bot 40:154–168

    Article  Google Scholar 

  • Dilta BS, Sharma YD, Gupta YC, Bhalla R, Sharma BP (2003) Effect of gamma-rays on vegetative and flowering parameters of chrysanthemum. J Ornam Hortic 6(4):328–334

    Google Scholar 

  • Din A, Qadri ZA, Rather ZA, Iqbal S, Malik SA, Rafiq S (2020) Congenial in vitro γ-ray induced mutagenesis underlying the diverse array of petal colours in chrysanthemum (Dendranthemum grandiflorum kitam) cv. “Candid”. Published: 01 December 2020 by MDPI in The 1st International Electronic Conference on Plant Science session Plant Cell and Developmental Biology. https://doi.org/10.3390/IECPS2020-08780

  • Din A, Qadri ZA, Wani MA, Rather ZA, Iqbal S, Malik SA, Rafiq S, Nazki IT (2021) Congenial in vitro γ-ray induced mutagenesis underlying the varied array of petal colours in chrysanthemum (Dendranthemum Grandiflorum Kitam). ‘Candid’. Research Square. https://doi.org/10.21203/rs.3.rs-617238/v1

    Book  Google Scholar 

  • Dommergues P (1962) Mutagenese experimentale. Ann Amel Plant 12:67–78

    Google Scholar 

  • Dowrick GJ, El-Bayoumi A (1966a) The origin of new forms of the garden chrysanthemum. Euphytica 15:32–38

    Article  Google Scholar 

  • Dowrick GJ, El-Bayoumi A (1966b) The induction of mutations in chrysanthemum using X- and gamma radiation. Euphytica 15:204–210

    Article  CAS  Google Scholar 

  • Du Y, Luo S, Li X, Yang J et al (2017) Identification of substitutions and small insertion-deletions induced by carbon-ion beam irradiation in Arabidopsis thaliana. Front Plant Sci Sect Plant Genet Genomics 8. https://doi.org/10.3389/fpls.2017.01851

  • Dwimahyani I, Widiarsih S (2010) The effects of gamma irradiation on the growth and propagation of in vitro chrysanthemum shoot explants (cv. Yellow Puma). Atom Indonesia 36(2):45–49

    Article  Google Scholar 

  • Dwivedi AK, Banerji BK, Chakraborty D, Mandal AKA, Datta SK (2000) Gamma ray induced new flower colour chimera and its management through tissue culture. Indian J Agric Sci 70(12):853–855

    Google Scholar 

  • Flick CE (1983) Isolation of mutants from cell culture. In: Evans DA, Sharp WR, Ammirato PV, Yamada Y (eds) Handbook of plant culture, vol 1. Macmillan, New York, pp 393–441

    Google Scholar 

  • Fujii T (1962a) Mutations induced by radiation in vegetatively propagated plants with special reference to flower colour. Gamma Field Symp 1:51–59

    Google Scholar 

  • Fujii T (1962b) A comparison of biological effects of acute and chronic irradiation. Rec Adv Breed 4:209–218

    Google Scholar 

  • Fujii T, Mabuchi T (1961) Irradiation experiments with chrysanthemum. Seiken Hiho 12:40–44

    Google Scholar 

  • Fujii T, Matsumura S (1967) Somatic mutations induced by chronic gamma irradiation. Seiken Jiho 19:43–46

    Google Scholar 

  • Fukutaku Y, Yamada Y (1984) Sources of proline nitrogen in water stressed soyabean (Glycine max) II, fate of 15N-labled protein. Physiol Plant 61:622–628

    Article  Google Scholar 

  • Furutani N, Matsumura A, Hase Y, Yoshihara R, Narumi I (2008) Dose response and mutation induction by ion beam irradiation in chrysanthemum. JAEA-Review 2008-055, p 69

    Google Scholar 

  • Gautam AS, Soodand KC, Richarria AK (1992) Mutagenic effectiveness and efficiency of gamma rays, ethylmethane sulphonate and their synergistic effects in black gram (Vigna mungo L.). Cytologia 57:85–89

    Article  CAS  Google Scholar 

  • Gautam AS, Soodand KC, Mittal RK (1998) Mutagenic effectiveness and efficiency of gamma rays and ethylmethane sulphonate in rajmash (Phaseolus vulgaris L.). Legume Res 21(3&4):217–220

    Google Scholar 

  • Ghormade GN, Tambe TB, Patil UH, Nilima G (2020) Yield and quality of chrysanthemum varieties as influenced by chemical mutagens in VM1 generation. J Pharmacogn Phytochem 9(4):3100–3104

    Article  Google Scholar 

  • Girija M, Dhanavel D (2009) Mutagenic effectiveness and efficiency of gamma rays, ethyl methane sulphonate and their combined treatments in cowpea (Vigna unguiculata L. Walp). Global J Mol Sci 4(2):68–75

    CAS  Google Scholar 

  • Greene EA, Codomo CA, Taylor NE et al (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164(2):731–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grunewald J (1983) In vitro mutagenesis of Saintpaulia and Pelargonium cultivars (genetic variability, vegetative propagation). Acta Hortic 131:339–343

    Article  Google Scholar 

  • Gupta MN (1966) Induction of somatic mutations in some ornamental plants. In: Proc. All India Symp. Hortic, pp 107–114

    Google Scholar 

  • Gupta MN (1979) Mutation breeding of some vegetatively propagated ornamentals. In: Progress in plant research, Silver Jubilee Publication National Botanical Research Institute, vol 2, pp 75–92

    Google Scholar 

  • Gupta MN, Datta SK (1978) Effects of gamma rays on growth, flowering behavior and induction of somatic mutations in chrysanthemum. SABRAO J 10(2):149–161

    Google Scholar 

  • Gupta MN, Jugran HM (1978) Mutation breeding of chrysanthemum II. Detection of gamma ray induced somatic mutations in vM2. J Nucl Agric Biol 7(2):50–59

    Google Scholar 

  • Gupta MN, Shukla R (1971) Mutation breeding of chrysanthemum. I. Production of new cultivars by gamma ray induced somatic mutations in vM1. In: Intnl. Symp. on use of isotopes and radiation in agric. and Animal Husbandry Research, New Delhi, Dec. 1971, pp 164–174

    Google Scholar 

  • Hamatani M, Iitsuka Y, Abe T, Miyoshi K, Yamamoto M, Yoshida S (2001) Mutant flowers of dahlia (Dahlia pinnata Cav.) induced by heavy-ion beams. RIKEN Accel Prog Rep. 34:169

    Google Scholar 

  • Hara Y, Abe T, Sakamoto K, Miyazawa Y, Yoshida S (2003) Effects of heavy-ion irradiation in rose (Rosa hybrida ‘Bridal Fantasy’) (II). RIKEN Accelerator Prog Rpt 36:135

    Google Scholar 

  • Haspalot G, Kunter B, Kantoglu Y (2022) Determination of mutagenic-sensitivity and induced variability in the mutant populations of ‘Bacardi’ chrysanthemum cultivar. Genetika 54(1):147–160. https://doi.org/10.2298/GENSR2201147H

    Article  Google Scholar 

  • Haspolat G (2022a) Induction of mutagenesis on Chrysanthemums. Ornam Hortic 28(4). https://doi.org/10.1590/2447-536X.v28i4.2523

  • Haspolat G (2022b) Changes on mutant pot chrysanthemums (Dendranthema ×grandiflora grandiflora Tzelev). Not Bot Horti Agrobo 50(4):13002

    Article  CAS  Google Scholar 

  • Haspolat G, Senel U, Taner Kantoglu Y, Kunter B, Guncag N (2019) In vitro mutation on chrysanthemums. Acta Hortic 1263:261–266. https://doi.org/10.17660/ActaHortic.2019.1263.34

    Article  Google Scholar 

  • Heslot H (1964) L’induction experiment de mutations chezles plantes florales. 17 CR Acad Agri Fr:1281–1308

    Google Scholar 

  • Heywood VH, Humphries CJ (1977) Anthmidene systematic review. In: Heywood VH, Hartome JB, Turner BL (eds) The biology and chemistry of compositae. Academic, New York, pp 851–898

    Google Scholar 

  • Hossain Z (2005) In vitro development of NaCl tolerant line in Chrysanthemum morifolium Ramat. using antioxidant enzymes as biochemical marker. Ph.D. Thesis, Kalyani University, Kalyani, West Bengal, India

    Google Scholar 

  • Hossain Z, Mandal AKA, Shukla R, Datta SK (2004) NaCl stress—its chromotoxic effects and antioxidant behavior in roots of Chrysanthemum morifolium Ramat. Plant Sci 166:215–220

    Article  CAS  Google Scholar 

  • Hossain Z, Mandal AKA, Datta SK, Biswas AK (2006a) Isolation of a NaCl-tolerant mutant of Chrysanthemum morifolium by gamma radiation: in vitro mutagenesis and selection by salt stress. Funct Plant Biol 33:91–101

    Article  CAS  PubMed  Google Scholar 

  • Hossain Z, Mandal AKA, Datta SK, Biswas AK (2006b) Development of NaCl-tolerant strain in Chrysanthemum morifolium Ramat. through in vitro mutagenesis. Plant Biol 8(4):450–461

    Article  CAS  PubMed  Google Scholar 

  • Hossain Z, Mandal AKA, Datta SK, Biswas AK (2007) Development of NaCl-tolerant strain in Chrysanthemum morifolium Ramat. through shoot organogenesis of selected callus line. J Biotechnol 129:658–667

    Article  CAS  PubMed  Google Scholar 

  • Huitema JBM, Cussenhoven GC, Dons JJM, Broertjes C (1986) Induction and selection of low temperature tolerant mutants of Chrysanthemum Ramat. Acta Hortic 197:89–96

    Google Scholar 

  • Huitema JBM, Preil W, Gussenhoven GC, Schineidereit M (1989) Methods or the selection of low-temperature tolerant mutants of Chrysanthemum morifolium Ramat. by using irradiated cell suspension cultures. I. Selection of regenerations in vivo under suboptimal temperature conditions. Plant Breed 102:140–147

    Article  Google Scholar 

  • Ichikawa S, Yamakawa K, Sekiguchi F, Tatsuno T (1970) Variation in somatic chromosome number found in radiation-induced mutants of Chrysanthemum morifolium Hemsl. cv. Yellow Delaware and Delaware. Rad Bot 10:557–562

    Article  Google Scholar 

  • Iizuka M, Yoshihara R, Hase Y (2008) Development of commercial variety of osteospermum by a stepwise mutagenesis by ion beam irradiation. JAEA Takasaki Ann Rep 2007:65

    Google Scholar 

  • Ikegami H et al (2005) Mutation induction through ion beam irradiations in protoplasts of chrysanthemum. Bull Fukuoka Agric Res Cent 24:5–9

    Google Scholar 

  • Ikegami H, Suyama T, Kunitake T, Kuroyanagi N, Matsuno T, Hirashima K, Tanigawa T, Sakai Y, Hase Y, Tanaka A et al (2006) Mutation induction through ion beam irradiations in chrysanthemum cultivars, ‘Jinba’, and breeding a new line ‘J CH1029’ by this method. Bull Fukuoka Agric Res Cent 25:47–52

    Google Scholar 

  • Jain HK, Bose AK, Sathpathy D, Sur SC (1961) Mutation studies in annual chrysanthemum. I. Radiation-induced variation in flower form. Indian J Genet Plant Breed 21:68–74

    Google Scholar 

  • Jank H (1957a) Experimental production of mutations in Chrysanthemum indicum by X-rays. (Translation of Jank 1957a). U.K. At. Energy Established, Harwell. 36pp

    Google Scholar 

  • Jank H (1957b) Experimentelle Mutationsauslosung dursh Rontgenstrahlen bei Chrysanthemum indicum. Zuchter 27:223–231

    Google Scholar 

  • Jayakumar S, Selvaraj R (2003) Mutagenic effectiveness and efficiency of gamma rays and ethylmethane sulphonate in sunflower (Helianthus annuus L.). Madras Agric J 90(7–9):574–576

    Google Scholar 

  • Jerzy M (1990) In vitro induction of mutation in Chrysanthemum using x-and gamma radiation. Mutat Breed Newsl 35:10

    Google Scholar 

  • Jerzy M, Lubomski M (1991) Adventitious shoot formation on ex in vitro derived leaf explants of Gerbera jamesonii. Sci Hortic 47:115–124

    Article  Google Scholar 

  • Jerzy M, Zalewska M (1992) In vitro adventitious bud techniques for mutation breeding of Gerbera jamesonii. Acta Hortic 314:269–274

    Article  Google Scholar 

  • Jerzy M, Zalewska M (1996) Polish cultivars of Dendranthema grandiflora Tzvelev and Gerbera jamesonii Bolus bred in vitro by induced mutations. Mutat Breed Newsl 42:19

    Google Scholar 

  • Johnson RT (1980) Gamma irradiation and in vitro induced separation of chimeral genotypes in carnation. HortScience 15(5):605–606

    Article  Google Scholar 

  • Jong DE (1978) Selection for wide temperature adaptation in Chrysanthemum morifolium Ram. Hemsel. Nath J Agric Sci 26:110–118

    Google Scholar 

  • Jung-Heliger H, Horn W (1980) Variation nach mutagener Behandlung von Stecklingen and in vitro-Kulturen bei Chrysanthemum. Z Pflanzenzlichg 85:185–199

    Google Scholar 

  • Kanaya T, Saito H, Hayashi Y, Fukunishi N, Ryuto K, Miyazaki K, Kusumi T, Abe T, Suzuki K (2008) Heavy-ion beam-induced sterile mutants of verbena (Verbena hybrida) with an improved flowering habit. Plant Biotechnol 25:91–96

    Article  Google Scholar 

  • Kapadiya DB (2014) Induction of variability through mutagenesis in Chrysanthemum (Chrysanthemum morifolium Ramat) varieties Jaya and Maghi through mutagenesis. Thesis M.Sc. (Horti.), Navsari Agricultural University, Navsari, Gujarat, India. p 180

    Google Scholar 

  • Kapadiya DB, Chawala SL, Patel AI, Ahlawat TR (2014) Exploitation of variability through mutagenesis (Chrysanthemum morifolium Ramat.) var. Maghi. The Bioscan 9(4):1799–1804

    Google Scholar 

  • Kapadiya DB, Chawla SL, Patel AI, Bhatt D (2016) Induction of variability through in vivo mutagenesis in chrysanthemum (Chrysanthemum morifolium Ramat.) var. Jaya. Indian J Hort 73(1):141–144

    Article  Google Scholar 

  • Kaul MLH, Bhan AK (1977) Mutagenic effectiveness and efficiency of EMS, DES and gamma-rays in rice. Theor Appl Genet 50(5):241–246

    Article  CAS  PubMed  Google Scholar 

  • Kaul A, Kumar S, Ghani M (2011) In vitro mutagenesis and detection of variability among radiomutants of chrysanthemum using RAPD. Adv Hort Sci 25(2):106–111

    Google Scholar 

  • Kim YS, Sang YS, Jo JD, Lee HJ, Sang HK (2016) Effects of gamma ray dose rate and sucrose treatment on mutation induction in chrysanthemum. Eur J Hortic Sci 81(4):212–218. https://doi.org/10.17660/eJHS.2016/81.4.4

    Article  Google Scholar 

  • Kitamura S (1978) Dendranthema at Nippoanthemum. Acta Phytotaxonomica et. Geobotanica 29:165–170

    Google Scholar 

  • Kodym A, Afza R (2003) Physical and chemical mutagenesis. In: Grotewold E (ed) Plant functional genomics, vol 236. Humana Press, Inc., Totowa, NJ, pp 189–203. https://doi.org/10.1385/1-59259-413-1:189

    Chapter  Google Scholar 

  • Kodym A, Afza R, Forster BP et al (2012) Methodology for physical and chemical mutagenic treatments. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. Joint FAO/IAEA Division of nuclear Techniques in Food and Agriculture, IAEA, Vienna, pp 169–180

    Chapter  Google Scholar 

  • Konzak CF, Nilan RA, Wagnerand J, Foster RJ (1965) Efficient chemical mutagenesis. The use of induced mutations in plant breeding Rept. FAO/IAEA Tech. Meet. Rome

    Google Scholar 

  • Koornneet M, Dellaert LW, Van Der Veen JH (1982) EME-and radiation-induced mutation frequencies at individual loci in Arabidopsis thaliana (L). Heynh. Mutat Res 93:109–123

    Article  Google Scholar 

  • Kovalchuk O, Arkhipov A, Barylyak I et al (2000) Plants experiencing chronic internal exposure to ionizing radiation exhibit higher frequency of homologous recombination than acutely irradiated plants. Mutat Res 449(1):47–56

    Article  CAS  PubMed  Google Scholar 

  • Kumari K, Dhatt K, Kapoor M (2013) Induced mutagenesis in Chrysanthemum morifolium variety ‘Otome Pink’ through gamma irradiation. Bioscan 8:1489–1492

    Google Scholar 

  • Laneri U, Franconi R, Altavista P (1990) Somatic mutagenesis of Gerbera jamesonii hybr.: irradiation and in vitro culture. Acta Hortic 280:395–402

    Article  Google Scholar 

  • Latado RR, Tulmann Neto A, Mendes BMJ (1996) In vitro mutation breeding of Chrysanthemum (Dendrathema grandifolia Tzvelev.) cv. Pink repin (in Portuguese). Pesqui Agropecu Bras 31:489–496

    Google Scholar 

  • Latado RR, Adames AH, Neto AT (2004) In vitro mutation of chrysanthemum (Dendranthema grandiflora Tzvelev) with Ethylmethane sulphonate (EMS) in immature floral pedicels. Plant Cell Tiss Org Cult 77:103–106

    Article  Google Scholar 

  • Lema-Rumińska J, Sliwinska E (2009) Evaluation the stability of plants obtained from the somatic embryos in chrysanthemum (Chrysanthemum × grandiflorum/Ramat./Kitam.). Zesz Probl Post Nauk Rol 539:425–432

    Google Scholar 

  • Lema-Rumińska J, Sliwinska E (2015) Evaluation of the genetic stability of plants obtained via somatic embryogenesis in Chrysanthemum × grandiflorum (Ramat./Kitam.). Acta Sci Pol Hort Cult 14:131–139

    Google Scholar 

  • Lema-Rumińska J, Zalewska M (2002) Evaluation of ploidy in chrysanthemum mutants (Dendranthema grandiflora Tzvelev) obtained in mutagenesis induced in vitro and in vivo by ionizing radiation. Acta Sci Pol Hort Cult 1:43–48

    Google Scholar 

  • Li W, Meng R, Liu Y, Chen S, Jiang J, Wang L, Zhao S, Wang Z, Fang W, Chen F, Guan Z (2022) Heterografted chrysanthemums enhance salt stress tolerance by integrating reactive oxygen species, soluble sugar, and proline. Hortic Res 9:uhac073. https://doi.org/10.1093/hr/uhac073

    Article  PubMed  PubMed Central  Google Scholar 

  • Love JE, Constantin MJ (1965) The response of some ornamental plants to fast neutrons. Tenn Farm Home Sci 56:10–12

    Google Scholar 

  • Love JE, Malone BB (1967) Anthocyanin pigments in mutant and nonmutant Coleus plants. Rad Bot 7:549–552

    CAS  Google Scholar 

  • Lysikov VN (1990) Experimental mutagenesis in plants. Izvestiya Akademii Nauk Moldavskoi SSR. Biologicheskie i. Khimicheskie Nauki 4:3–10

    Google Scholar 

  • Mahna SK, Garg R (1989) Induced mutation in Petunia nyctaginiflora Juss. Biol Plant 31:152–155

    Article  Google Scholar 

  • Mahure HR, Choudhry ML, Prasad KV, Singh SK (2010) Mutation in chrysanthemum through gamma irradiation. Indian J Hortic 67:356–358

    Google Scholar 

  • Maliga P (1984) Isolation and characterization of mutants in plant cell cultures. Annu Rev Plant Physiol 35:519–552

    Article  CAS  Google Scholar 

  • Maluszyuski M, Ahloowalia BS, Sigurbjornsson B (1995) Application of in vivo and in vitro mutation techniques for crop improvement. Euphytica 85:303–315

    Article  Google Scholar 

  • Mandal AKA, Datta SK (2005) Direct somatic embryogenesis and plant regeneration from ray florets of chrysanthemum. Biol Plant 49(1):29–33

    Article  Google Scholar 

  • Mandal AKA, Chakrabarty D, Datta SK (2000a) Application of in vitro techniques in mutation breeding of chrysanthemum. Plant Cell Tissue Organ Cult 60:33–38

    Article  Google Scholar 

  • Mandal AKA, Chakrabarty D, Datta SK (2000b) In vitro isolation of solid novel flower colour mutants from induced chimeric ray florets of chrysanthemum. Euphytica 114:9–12

    Article  Google Scholar 

  • Mangaiyarkarasi R, Girija M, Gnanamurthy S (2014) Mutagenic effectiveness and efficiency of gamma rays and ethyl methane sulphonate in Catharanthus roseus. Int J Curr Microbiol Appl Sci 3(5):881–889

    Google Scholar 

  • Matsubara H (1982) Mutation breeding in ornamental plants. Techniques used for radiation induced mutants in Begonia, Chrysanthemum, Abelia and Winter Daphne. Gamma Field Symp 21:65–68

    Google Scholar 

  • Matsubara H, Shigematsu K, Suda H et al (1971) The isolation of the mutated plants from sectorial chimera induced by irradiation in Begonia and Chrysanthemum. In: Japan Atomic Industrial Forum (ed) Proc. 10th Jpn. Conf. Radioisot., Tokyo Metrop. Isotop Res. Cent., Tokyo, pp 374–376

    Google Scholar 

  • Matsumura A, Furutani N, Hase Y, Yokota Y, Tanaka A (2007) Dose response and mutation induction by ion beam irradiation in chrysanthemum. JAEA-Review 2007-060-78-3-12, p 78

    Google Scholar 

  • Matsumura A, Nomizu T, Furutani N, Hayashi K, Minamiyama Y, Hase Y (2010) Ray florets color and shape mutants induced by 12C5+ ion beam irradiation in chrysanthemum. Sci Hortic 123:558–561. https://doi.org/10.1016/j.scienta.2009.11.004. ISSN: 0304-4238

    Article  CAS  Google Scholar 

  • Mergen F, Thielges BA (1966) Effects of chronic exposures to Co60 radiation on Pinus rigida seedlings. Radiat Bot 6(3):203–211

    Article  Google Scholar 

  • Miao H, Wenlie G, Hui GY, Xue Y, Bin JH, Wei ZY (2016) Polyploidy induced by colchicine in Dendranthema indicum var. aromaticum, a scented chrysanthemum. Eur J Hortic Sci 81(4):219–226. ISSN: 1611-4426. http://www.pubhort.org/.../index.htm

    Article  Google Scholar 

  • Mile N, Kulus D (2018) Microwave treatment can induce chrysanthemum phenotypic and genetic changes. Sci Hortic 227:223–233

    Article  Google Scholar 

  • Miler N, Kulus D, Sliwinska E (2020) Nuclear DNA content as an indicator of inflorescence colour stability of in vitro propagated solid and chimera mutants of chrysanthemum. Plant Cell Tissue Organ Cult (PCTOC) 143:421–430. https://doi.org/10.1007/s11240-020-01929-9

    Article  CAS  Google Scholar 

  • Mishra PN, Chandra V, Kappor LD (1973) Cultivation of plants for perfumes in India, Part I. Observations on performance of tuberose (Polianthes tuberosa L.) on saline-alkaline soils. Indian Perfumer 16(1):38–39

    Google Scholar 

  • Mishra P, Datta SK, Chakrabarty D (2003) Mutation in flower colour and shape of Chrysanthemum morifolium induced by gamma irradiation. Biol Plant 47(1):153–156

    Article  Google Scholar 

  • Misra P, Datta SK (2007) Standardization of in vitro protocol in Chrysanthemum cv. Madam E. Roger for development of quality planting material and to induce genetic variability using gamma-radiation. Indian J Biotechnol 6:121–124

    CAS  Google Scholar 

  • Misra P, Banerji BK, Kumari A (2010) Effect of gamma irradiation on chrysanthemum cultivar ‘Pooja’ with particular reference to induction of somatic mutation in flower color and form. Abst: national symposium on lifestyle floriculture: challenges and opportunities. Session-2, crop improvement, biotechnology, and biodiversity, March 19–21, 2010 at DR. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, H.P., India, Abstract No. 2.56:41

    Google Scholar 

  • Miyazaki K, Suzuki K, Abe T, Katsumoto Y, Yoshida S, Kusumi T (2002) Isolation of variegated mutants of Petunia hybrida using heavy-ion beam irradiation. RIKEN Accel Prog Rep 35:130

    Google Scholar 

  • Miyazaki KK, Suzuki K, Iwaki T, Kusumi T, Abe T, Yoshida S, Fukui H (2006) Flower pigment mutations induced by heavy ion beam irradiation in an interspecific hybrid of Torenia. Plant Biotechnol 23:163–167

    Article  CAS  Google Scholar 

  • Momin KC, Gonge VS, Dalal SR, Bharad SG, Kulwal PL, Ratnawkar DV (2010) Radiation-induced variability studies in chrysanthemum under the net house. Abst: National Symposium on Lifestyle Floriculture: Challenges and Opportunities. Session-2, Crop Improvement, Biotechnology, and Biodiversity, March 19–21, 2010 at DR. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, H.P., India, Abstract No. 2.59:43

    Google Scholar 

  • Murashige T, Skoog FA (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–479

    Article  CAS  Google Scholar 

  • Nagatomi S (1991) Enlargement of induced variations by combined method of chronic irradiations with callus culture in sugarcane. Gamma Field Symp 30:87–110

    Google Scholar 

  • Nagatomi S (1992) Effects of various irradiation methods on mutation induction of regenerants through leaf trimming and tissue culture of pineapple. Tech News 41:1–2

    Google Scholar 

  • Nagatomi S (2002) Effectiveness of gamma ray chronic irradiation on in vitro mutagenesis in crops. SEMINARI: Agriculture & Viosciences, pp 49–58

    Google Scholar 

  • Nagatomi S, Degi K (2009) Mutation breeding of chrysanthemum by gamma field irradiation and in vitro culture. In: Shu QY (ed) Induced plant mutations in the genomics era. Food and Agriculture Organization of the United Nations, Rome, pp 258–261

    Google Scholar 

  • Nagatomi S, Katsumata K, Nojiri C (1993a) Induction of dwarf-type plants derived from in vitro cultures by gamma-ray irradiation in Cytisus genus. Tech News 51:1–2

    Google Scholar 

  • Nagatomi S, Degi K, Yagaguchi M, Miyahira E, Skamoto M, Takaesu K (1993b) Six mutant varieties of different flower colour induced by floral organ culture of chronically irradiated chrysanthemum plants. Technical News of Institute of Radiation Breeding no. 43:1–2

    Google Scholar 

  • Nagatomi S, Tanaka A, Kato A, Watanabe H, Tano S (1995) Mutation induction on chrysanthemum plants regenerated from in vitro cultured explants irradiated with 12C5+ ion beam. TIARA Annu Rep 5:50–52

    Google Scholar 

  • Nagatomi S et al (1996a) Combined effect of gamma irradiation methods and in vitro explant sources on mutation induction of flower color in Chrysanthemum morifolium Ramat. Gamma Field Symp 35:51–68

    Google Scholar 

  • Nagatomi S et al (1996b) Three mutant varieties in Eustoma grandiflorum induced through in vitro culture of chronic irradiated plants. Tech News 53:1–2

    Google Scholar 

  • Nagatomi S et al (1996c) Mutation induction on chrysanthemum plants regenerated from in vitro cultured explants irradiated with C ion beam. TIARA Annu Rep 5:50–52

    Google Scholar 

  • Nagatomi S, Tanaka A, Tano S, Watanabe H (1997a) Chrysanthemum mutants regenerated from in vitro explants irradiated with 12C5+ ion beam. Technical News of Institute of Radiation Breeding, No. 60

    Google Scholar 

  • Nagatomi S, Tanaka A, Kato A, Watanabe H, Tano S (1997b) Mutation induction on chrysanthemum plants regenerated from in vitro cultured explants irradiated with 12C5 ion beam. TIARA Ann Rep 1995:50–51

    Google Scholar 

  • Nagatomi S, Tanaka A, Kato A, Yamaguchi H, Watanabe H, Tano S (1998) Mutation induction through ion beam irradiations in rice and chrysanthemum. TIARA Ann Rep 1997:41–43

    Google Scholar 

  • Nagatomi S, Miyahira E, Degi K (2000) Induction of flower mutation comparing with chronic and acute gamma irradiation using tissue culture techniques in Chrysanthemum morifolium. Ramat. Acta Hortic 508:69–73

    Article  Google Scholar 

  • Nagatomi S, Watanabe H, Tanaka A, Yamaguchi H, Degi K, Morishita T (2003) Six mutant varieties induced by ion beams in chrysanthemum. Institute of Radiation Breeding, Technical News 65

    Google Scholar 

  • Nakagawa H (2009) Induced mutations in plant breeding and biological researches in Japan. In: Shu QY (ed) Induced plant mutations in the genomic era. Food and Agriculture Organization of the United Nations, Rome, pp 48–54

    Google Scholar 

  • Nasri F, Zakizadeh H, Vafaee Y, Mozafari AK (2022) In vitro mutagenesis of Chrysanthemum morifolium cultivars using ethyl methanesulphonate (EMS) and mutation assessment by ISSR and IRAP markers. Plant Cell Tissue Organ Cult 149(2):657–673. https://doi.org/10.1007/s11240-021-02163-7

    Article  CAS  Google Scholar 

  • Natarajan AT, Maric MM (1961) The time-intensity factor in dry seed irradiation. Radiat Bot 1:1–9

    Article  Google Scholar 

  • Novak FJ (1991a) Mutation breeding by using tissue culture techniques. In: Gamma field symposia no. 30. Inst. of Radiation Breeding, NIAR, MAFF, Japan, pp 23–32

    Google Scholar 

  • Novak FJ (1991b) In vitro mutation system for crop improvement. In: Plant mutation breeding for crop improvement, vol 2. IAEA, Vienna, pp 327–342

    Google Scholar 

  • Oka-Kira E et al (2005) Klavier (klv), a novel novel-hyper nodulation mutant of Lotus japonicus affected in vascular tissue organization and floral induction. Plant J 44:505–515

    Article  CAS  PubMed  Google Scholar 

  • Okamura M, Yasuno N, Takano M, Tanaka A, Shikazono N, Hase Y (2002) Mutation generation in chrysanthemum plants regenerated from floral organ cultures irradiated with ion beams. TIARA Ann Rep 2001:42–43

    Google Scholar 

  • Okamura M et al (2003) Wide variety of flower-color and-shape mutants regenerated from leaf cultures irradiated with ion beams. Nucl Inst Meth Phys Res B206:574–578

    Article  Google Scholar 

  • Okamura M et al (2006) Advances in mutagenesis in flowers and their industrialization. Floric Ornam Plant Biotechnol 1:619–628. Global Science Books

    Google Scholar 

  • Okamura M, Shimizu A, Watanabe S, Hase Y, Narumi I, Tanaka A (2007) Ion beam breeding of flower color variations in transgenic plants with multi-disease tolerance. JAEA-Review 2007-060-82-3-16, p 82

    Google Scholar 

  • Okamura M, Shimizu A, Onishi N, Hase Y, Yoshihara R, Narumi I (2008) Ion beam breeding of flower color variations in transgenic plants with multi-disease tolerance. JAEA-Review 2008-055, p 62

    Google Scholar 

  • Okamura M, Hase Y, Furusawa Y, Tanaka A (2015) Tissue dependent somaclonal mutation frequencies and spectra enhanced by ion beam irradiation in chrysanthemum. Euphytica 202:333–343

    Article  CAS  Google Scholar 

  • Oladosu Y, Rafii MY, Abdullah N et al (2016) Principle and application of plant mutagenesis in crop improvement: a review. Biotechnol Biotechnol Equip 30(1):1–16

    Article  CAS  Google Scholar 

  • Padmadevi K (2009) In vivo and in vitro mutagenesis and molecular characterization in chrysanthemum (Dendranthema grandiflora Tzvelev). Ph.D. Thesis submitted to Tamil Nadu Agricultural University

    Google Scholar 

  • Padmadevi K, Jawaharlal M, Kannan M, Ganga M (2010a) In vitro mutation studies in chrysanthemum (Dendranthema grandiflora Tzvelev). Abst: national symposium on lifestyle floriculture: challenges and opportunities. Session-2, crop improvement, biotechnology, and biodiversity, March 19–21, 2010 at DR. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, H.P., India, Abstract No. 2.47:35

    Google Scholar 

  • Padmadevi K, Jawaharlal M, Kannan M, Ganga M (2010b) A protocol for regenerating mutagen-treated explants of chrysanthemum (Dendranthema grandiflora Tzvelev). Abst: national symposium on lifestyle floriculture: challenges and opportunities. Session-2, crop improvement, biotechnology, and biodiversity, March 19–21, 2010 at DR. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, H.P., India, Abstract No. 2.48:35–36

    Google Scholar 

  • Palekar AR, Tambe TB, Ghormade GN (2022) Growth and flowering of chrysanthemum varieties influenced by induced mutagenesis in M1 generation. Pharma Innov J 11(2):737–740

    CAS  Google Scholar 

  • Patil UH, Parhe SD, Pulate SC (2015) Induction of somatic mutation in chrysanthemum cultivar ‘Local Golden’. The Bioscan 10(2):789–792

    Google Scholar 

  • Patil UH, Karale AR, Katwate SW, Patil MS (2017) Mutation breeding in chrysanthemum (Dendranthema grandiflora T.). J Pharmacogn Phytochem 6(6):230–232

    CAS  Google Scholar 

  • Predieri S (2001) Mutation induction and tissue culture in improving fruits. Plant Cell Tissue Organ Cult 64(2–3):185–210

    Article  CAS  Google Scholar 

  • Predieri S, Divrgilio N (2007) In vitro mutagenesis and mutant multiplication (Chapter 30). In: Jain SM, Haggman H (eds) Protocols for micropropagation of woody trees and fruits. Springer, pp 323–333

    Chapter  Google Scholar 

  • Preil W, Engelhardt M, Walther F (1983) Breeding of low temperature tolerant poinsettia (Euphorbia pulcherrima) and Chrysanthemum by means of mutation induction in in vitro cultures. Acta Hortic 131:345–351

    Article  Google Scholar 

  • Purente N, Chen B, Liu X, Zhou Y et al (2020) Effect of ethyl methanesulfonate on induced morphological variation in M3 generation of Chrysanthemum indicum var. aromaticum. HortScience 55(7):1099–1104

    Article  CAS  Google Scholar 

  • Puripunyavanich V, Piriyaphattarakit A, Chanchula N, Taychasinpitak T (2019) Mutation induction of in vitro chrysanthemum by gamma irradiation. Chiang Mai J Sci 46(3):609–617. http://epg.science.cmu.ac.th/ejournal

    CAS  Google Scholar 

  • Rahi TS, Datta SK (2000) Performance of chrysanthemum (Chrysanthemum morifolium) cut flower varieties in saline water irrigated soil. Indian J Agric Sci 70(7):469–471

    Google Scholar 

  • Rahi TS, Singh B (2011) Salinity tolerance in Chrysanthemum morifolium. J Appl Hortic 13(1):30–36

    Article  Google Scholar 

  • Rahi TS, Shukla R, Pandey RK, Datta SK (1998) Performance of ornamental crops in salt affected soils and use of gamma rays to develop salt resistant strains. J Nucl Agric Biol 27(4):253–263

    Google Scholar 

  • Rahi TS, Shukla R, Datta SK (2001) Effect of gamma radiation on the performance of Gladiolus vs. in normal and salt affected soil. In: Exploring the Gladiolus in India. Proceedings of the national conference on gladiolus, January 24–25, 2000, Lucknow, pp 73–74

    Google Scholar 

  • Rai SK, Katiyar RS, Singh SP (2001) Prospects of gladiolus crops on sodic waste land. In: Exploring the Gladiolus in India. Proceedings of the national conference on Gladiolus, January 24–25, 2000, Lucknow, pp 104–104

    Google Scholar 

  • Rana RS (1964a) Multiple allelism in radiation induced ray floret mutants of annual chrysanthemum. Curr Sci 33:592–593

    Google Scholar 

  • Rana RS (1964b) Radiation induced chromosomal arrangements in annual chrysanthemum. Experientia 20(11):617

    Article  Google Scholar 

  • Rana RS (1964c) A radiation induced chimera in annual chrysanthemum. Naturwissemschaften 51:642–643

    Article  Google Scholar 

  • Rana RS (1964d) Phenotypic variability of an induced mutant of annual Chrysanthemum. Genetica 35:236–240

    Article  Google Scholar 

  • Rana RS (1965a) Radiation induced variation in ray floret characteristics on annual chrysanthemum. Euphytica 14:296–300

    Article  Google Scholar 

  • Rana RS (1965b) A radiation induced useful mutant of annual chrysanthemum. Curr Sci 34:58

    Google Scholar 

  • Richter A, Singleton WR (1955) The effect of chronic gamma radiation on the production of somatic mutations in carnations. Proc Natl Acad Sci U S A 41(5):295–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto K, Takatori Y, Chiwata R, Matsumura T, Tsukiashi K, Hayashi Y, Abe T (2016) Production of mutant line with early flowering at low temperature in spray-type chrysanthemum cultivar induced by C-ion beam irradiation. RIKEN Accel Prog Rep 49:262

    Google Scholar 

  • Salleh S, Zaiton A, Kahar SA, Abu HA, Shuhaimi S, Yahya A (2010) Early field observations on the effect of gamma and ion beam irradiations on Chrysanthemum morifolium. Malaysia: N. p., 2010. Web

    Google Scholar 

  • Salleh S, Ahmad Z, Hassan AA, Awang Y, Sandrang AK, Abdullah TL (2012a) Effect of ion beam irradiation on morphological and flowering characteristics of chrysanthemum. J Sains Nuklear Malaysia 24(2):59–70

    Google Scholar 

  • Salleh S, Zaiton A, Hassan AHA, Shuhaimi S, Yahya A, Kahar SA, Lee ATB (2012b) Studies on the effectiveness of acute gamma and ion beam irradiation in generating flower colour mutation for Chrysanthemum morifolium. Malaysia: N. p., 2012. Web

    Google Scholar 

  • Sarker A, Sharma B (1988) Efficiency of early generation selection for induced polygenic mutations in lentils (Lens culinaris Medik.). Indian J Genet 48:155–159

    Google Scholar 

  • Sasaki K, Aida R, Niki T, Yamaguchi H, Narumi T, Nishijima T, Hayashi Y, Ryuto H, Fukunishi N, Abe T et al (2008) High efficiency improvement of transgenic torenia flowers by ion beam irradiation. Plant Biotechnol 25:81–89

    Article  CAS  Google Scholar 

  • Satina S, Blakeslee AF (1941) Periclinal chimeras in Datur stramonium in relation to development of leaf and flowers. Am J Bot 28:862–871

    Article  Google Scholar 

  • Sato T, Ohya Y, Hase Y, Tanaka A (2006) Studied on flower color and morphological mutations from chrysanthemum in vitro explants irradiated with ion beams. JAEA Takasaki Ann Rep 2004:74–75

    Google Scholar 

  • Schum A (2003) Mutation breeding in ornamentals: an efficient breeding method. Acta Hortic 612:6

    Google Scholar 

  • Schum A, Preil W (1998) Induced mutations in ornamental plants. In: Jain SM, Brar S, Ahloowalia (eds) Somaclonal variation and induced mutations in crop improvement, pp 333–366

    Chapter  Google Scholar 

  • Shafiel MR, Hatamzadeh A, Azadi P, Samizadeh LH (2019) Mutation induction in chrysanthemum cut flowers using gamma irradiation method. J Ornam Plants 9(2):143–151

    Google Scholar 

  • Shatnawi M, Fauri A, Shibli R, Al-Mazraawi M, Megdadi H, Makhadmeh I (2009) Tissue culture and salt stress in Chrysanthemum morifolium. Acta Hortic 829:189–196. https://doi.org/10.17660/ActaHortic.2009.829.27

    Article  CAS  Google Scholar 

  • Sheenan TJ, Sagawa Y (1959) The effects of gamma radiation on chrysanthemum and gladiolus. Proc Flo State Hortic Soc 72:388–391

    Google Scholar 

  • Shikazono N, Suzuki C, Kitamura S et al (2005) Analysis of mutations induced by carbon ions in Arabidopsis thaliana. J Exp Bot 56:587–596

    Article  CAS  PubMed  Google Scholar 

  • Shirao T, Ueno K, Minami K, Tanaka A, Imakiire S, Hase Y, Tanaka A (2007) Ion beam breeding of chrysanthemum cultivar ‘Sanyo-ohgon’. JAEA-Review 2007-060 3-08, p 74

    Google Scholar 

  • Shirao T, Ueno K, Abe T, Matsuyama T (2013) Development of DNA markers for identifying chrysanthemum cultivars generated by ion-beam irradiation. Mol Breed 31:729–735

    Article  CAS  Google Scholar 

  • Shukla R, Datta SK (1993) Mutation studies on early and late varieties of garden chrysanthemum. J Nucl Agric Biol 22(3–4):138–142

    Google Scholar 

  • Simard MHN, Michaux-Ferriere, Silvy A (1992) Variants of carnation (Dianthus caryophllus L.) obtained by organogenesis from irradiated petals. Plant Cell Tissue Organ Cult 29:37–42

    Article  Google Scholar 

  • Singh LB (1970) Utilisation of saline-alkali soils without prior reclamation—Rosa damascena, its botany, cultivation and utilization. Econ Bot 24(2):175–179

    Article  Google Scholar 

  • Singh LB (1971) Utilization of saline-alkali soils for agro-industry without prior reclamation. III. Tuberose. Econ Bot 26:361–363

    Article  Google Scholar 

  • Singh M, Bala M (2015) Induction of mutation in chrysanthemum (Dendranthema grandiflorum Tzvelev.) cultivar Bindiya through gamma irradiation. Indian J Hort 72(3):376–381

    Article  Google Scholar 

  • Skirvin RM, Janick J (1976) Tissue culture induced variation in scented Pelargonium spp. J Am Soc Hortic Sci 10(3):281–290

    Article  Google Scholar 

  • Smith M (1985) In vitro mutagenesis. Ann Rev Genet 19:423–462

    Article  CAS  PubMed  Google Scholar 

  • Smith AG, Noyszewski A (2018) Mutagenesis breeding for seedless varieties of popular landscape plants. Acta Hortic 1191(1191):43–52. https://doi.org/10.17660/ActaHortic.2018.1191.7

    Article  Google Scholar 

  • Sneepe J (1977) Selection for yield in early generation of self-fertilizing crops. Euphytica 26:27–30

    Article  Google Scholar 

  • Solanki IS, Sharma B (1994) Mutagenic effectiveness and efficiency of gamma rays, ethylene eimine and N-nitroso-N-ethyl urea in macrosperma lentil (Lens culinaris Medik.). Indian J Genet 54(1):72–76

    CAS  Google Scholar 

  • Solanki IS, Sharma B (2001) Early generation selection of polygenic mutations in lentils (Lens culinaris Medik.). Indian J Genet 61(4):330–334

    Google Scholar 

  • Soliman TMA, Lv S, Yang H, Hong B (2014) Isolation of flower color and shape mutations by gamma radiation of Chrysanthemum morifolium Ramat cv. Youka. Euphytica 199:317–324

    Article  CAS  Google Scholar 

  • Srivastava HP (1976) A note on the cultivation of Damasc Roses on usar soils. Indian Perfumer XVIII(part II):8–11

    Google Scholar 

  • Srivastava HP, Sharma ML (1976) Cultivation of Jasminum grandiflorum L. on saline alkali soils. Indian Perfumer XVIII(part I):25–22

    Google Scholar 

  • Stewart RN, Derman H (1970) The origin of adventitious buds in Chrysanthemum. Am J Bot 57:734–735

    Google Scholar 

  • Su JS, Jiang JF, Zhang F, Liu Y, Ding L, Chen SM, Chen FD (2019) Current achievements and future prospects in the genetic breeding of chrysanthemum: a review. Hortic Res 6:109

    Article  PubMed  PubMed Central  Google Scholar 

  • Sugiyama M, Saito H, Ichida H, Hayashi Y, Ryuto H, Fukunishi N, Terakawa T, Abe T (2008a) Biological effects of heavy-ion beam irradiation on Cyclamen. Plant Biotechnol 25:101–104

    Article  Google Scholar 

  • Sugiyama M, Hayashi Y, Fukunishi N, Ryuto H, Terakawa T, Abe T (2008b) Development of flower color mutant of Dianthus chinensis var. semperflorens by heavy-ion beam irradiation. RIKEN Accel Prog Rep 41:229

    Google Scholar 

  • Suryawati S, Aisyah I, Marwoto B, Kumiati R (2022) Comparing the response of callus of two chrysanthemums (Dendranthema grandiflora Tzvelev) cultivars to the chemical mutagen ethyl methane sulfonate (EMS). Acta Hortic. https://doi.org/10.17660/ActaHortic.2022.1334.10

  • Suzuki K, Takatsu Y, Gonai T, Nogi M, Sakamoto K, Fukunishi N, Ryuto H, Saito H, Abe T, Yoshida S et al (2005) Flower color mutation in spray-type chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) induced by heavy-ion beam irradiation. RIKEN Accel Prog Rep 38:138

    Google Scholar 

  • Tamaki K, Yamanaka M, Hayashi Y, Abe T, Koyama Y (2017) Effect of the cultivar characteristics on the appearance of flower color mutants by C-ion irradiation in chrysanthemum. Hortic Res (Jpn) 16:117–123

    Article  Google Scholar 

  • Tamari M, Tanokashira Y, Nagayoshi S, Kido K, Tojima F, Hase Y, Oono Y (2017) Development of low-temperature-flowering chrysanthemum varieties ‘Ryujin’ and ‘Touma’. QST Takasaki Ann Rep 2015:130

    Google Scholar 

  • Tanaka A (2009) Establishment of ion beam technology for breeding. In: Shu QY (ed) Induced plant mutations in the genomics era. Food and Agriculture Organization of the United Nations, Rome, pp 216–219

    Google Scholar 

  • Tanaka A, Shikazono N, Hase Y (2010) Studies on biological effects of ion beams on lethality, molecular nature of mutation, mutation rate, and spectrum of mutation phenotype for mutation breeding in higher plants. J Radiat Res 51:223–233

    Article  CAS  PubMed  Google Scholar 

  • Tanokashira Y, Nagayoshi S, Hirano T, Abe T (2015) Effects of heavy-ion-beam irradiation on flower-color mutation in chrysanthemum. RIKEN Accel Prog Rep 47:297

    Google Scholar 

  • Tanokashira Y, Nagayoshi S, Watanabe G, Hase Y (2016) Efficient breeding of yellow mutants by ion-beam irradiation in spray chrysanthemum ‘Southern Chelsea’. JAEA Takasaki Ann Rep 2014:98

    Google Scholar 

  • Telem RS, Sadhukhan R, Mandal N, Sarkar HK, Wani SH (2015) Gamma rays induced mutagenesis for identification of new variants via RAPD markers in chrysanthemum (Chrysanthemum morifolium Ramat.). J Cell Tissue Res 15(3):5289–5294. www.tcrjournals.com. ISSN: 0973-0028; E-ISSN: 0974-0910

    Google Scholar 

  • Toyoda T, Watanabe H, Emoto K, Yoshimatsu S, Hase Y, Kamisoyama S (2007) Induction of new color variation by irradiation of ion beams to light yellow ‘Jinba’. JAEA-Review 2007-060- 81-3-15, p 81

    Google Scholar 

  • Ueno K et al (2002) Effects of ion beam irradiation on chrysanthemum leaf discs and Sweet potato callus. JAERI-Review 35:44–46

    Google Scholar 

  • Ueno K et al (2004) Additional improvement of chrysanthemum using ion beam re-irradiation. JAERI-Review 25:53–55

    Google Scholar 

  • Ueno K, Shirao T, Nagayoshi S, Hase Y, Tanaka A (2005) Additional improvement of chrysanthemum using ion beam reirradiation. TIARA Ann Rep 2004:60

    Google Scholar 

  • Ueno K, Nagayoshi S, Imakiire S, Koriyama K, Minami T, Tanaka A, Hase Y, Matsumoto T (2013) Breeding of new chrysanthemum cultivar ‘Aladdin 2′ through stepwise improvements of cv. ‘Jimba’ using ion beam re-irradiation. Hortic Res (Jpn) 12:245–254

    Article  Google Scholar 

  • Ukai Y (1982) Irradiation service at the Institute of Radiation Breeding. Gamma Field Symp 21:105–112

    Google Scholar 

  • Usenbaev EK, Imankulova K (1974) Radiation mutants of roses. Proc Int. Hort Congr. 19 109

    Google Scholar 

  • Van Harten AM (1998) Mutation breeding: theory and practical applications. Cambridge Univ. Press, Cambridge, p 353

    Google Scholar 

  • Velu S, Mullainathan L, Arulbalachandran D, Dhanavel D, Poonguzhali R (2007) Effectiveness and efficiency of gamma rays and EMS on cluster bean (Cyamopsis tetragonoloba (L.) Taub.). Crop Res 34(1, 2&3):249–251

    Google Scholar 

  • Verma AK, Prasad KV, Kumar S (2010a) Isolation of yellow-colored mutant in Chrysanthemum cv. Thai Chen Queen through in vitro regeneration of ray florets. Abst: national symposium on lifestyle floriculture: challenges and opportunities. Session-2, crop improvement, biotechnology, and biodiversity, March 19–21, 2010 at DR. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, H.P., India, Abstract No. 2.27: 24–25

    Google Scholar 

  • Verma AK, Batra A, Misra P, Banerji BK, Dwivedi AK (2010b) Effects of ethyl methane sulphonate on chrysanthemum and induction of flower color mutation. Abst: national symposium on lifestyle floriculture: challenges and opportunities. Session-2, crop improvement, biotechnology, and biodiversity, March 19–21, 2010 at DR. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, H.P., India, Abstract No. 2.37: 29–30

    Google Scholar 

  • Verma AK, Batra A, Misra P, Banerji BK, Dwivedi AK (2010c) Induction of flower color mutation in Chrysanthemum. Abst: national symposium on lifestyle floriculture: challenges and opportunities. Session-2, crop improvement, biotechnology, and biodiversity, March 19–21, 2010 at DR. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, H.P., India, Abstract No. 2.38: 30–31

    Google Scholar 

  • Verma AK, Prasad KV, Singh K, Kumar S (2012) In vitro isolation of red coloured mutant from chimeric ray lorets of chrysanthemum induced by gamma-ray. Indian J Hort 69(4):562–567

    Google Scholar 

  • Wakita N, Kazama Y, Hayashi Y, Ryuto H, Fukunishi N, Yamamoto K, Ijichi S, Abe T (2009) Induction of floral color mutation by C-ion irradiation in spray-type chrysanthemum. RIKEN Accel Prog Rep 41:230

    Google Scholar 

  • Walther F, Sauer A (1985) Entwicklung von “Sortengamilien” bei Gerbera amesonii Dtsch. Gartenbau 39(45):2097

    Google Scholar 

  • Walther F, Sauer A (1986a) Analysis of radiosensitivity—a basic requirement for in vitro somatic mutagenesis. II. Gerbera jamesponii. In: Nuclear techniques and in vitro culture for plant improvement. IAEA, Vienna, Aug. 1985, Vienna, International Atomic Energy Agency, STI/PUB/698, pp 155–159

    Google Scholar 

  • Walther F, Sauer A (1986b) In vitro mutagenesis in Gerbera jamesonii. In: Horn W, Jenson CJ, Odenbach W, Schieder O (eds) Genetic manipulation in plant breeding. Proc. Symp. Eucarpia, Berlin, 1985. Walter de Gruyter Publ, Berlin, pp 555–562

    Google Scholar 

  • Walther F, Sauer A (1989) Increase of genetic variation in ‘Blue Daisy’ (Brachycome multifida) by in vitro-mutagenesis and polyploidization. Mutat Breed Newsl 33:3–4

    Google Scholar 

  • Wani AA (2009) Mutagenic effectiveness and efficiency of gamma rays, ethyl methane sulphonate and their combination treatments in chickpea (Cicer arietinum L.). Asian J Plant Sci 8(4):318–321

    Article  CAS  Google Scholar 

  • Wasscher J (1956) The importance of sports in some florist flower. Euphytica 5:163–170

    Article  Google Scholar 

  • Watanabe H, Toyota T, Emoto K, Yoshimatsu S, Hase Y, Kamisoyama S (2008) Mutation breeding of a new chrysanthemum variety by irradiation of ion beams to ‘Jinba’. JAEA Takasaki Ann Rep 2007:81

    Google Scholar 

  • Weigle JL, Butler JK (1983) Induced dwarf mutant in Impatiens platypetala. J Hered 74(3):200

    Article  Google Scholar 

  • Wu JL, Wu C, Lei C, Baraoidan M, Bordeos A, Madamba MR, Ramos-Pamplona M, Mauleon R, Portugal A, Ulat VJ, Bruskiewich R, Wang G, Leach J, Khush G, Leung H (2005) Chemical- and irradiation-induced mutants of Indica rice IR64 for forward and reverse genetics. Plant Mol Biol 59(1):85–97

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi H, Nagatomi S, Morishita T, Degi K, Tanaka A, Shikazono N, Hase Y (2003) Mutation induced with ion beam irradiation in rose. Nucl Instrum Methods Phys Res B 206:561–564

    Article  CAS  Google Scholar 

  • Yamaguchi H, Shimizu A, Degi K, Morishita T (2008) Effects of dose and dose rate of gamma ray irradiation on mutation induction and nuclear DNA content in chrysanthemum. Breed Science 58(3):331–335. https://doi.org/10.1270/jsbbs.58.331

    Article  Google Scholar 

  • Yamaguchi H, Shimizu A, Hase Y, Degi K, Tanaka A, Morishita T (2009) Mutation induction with ion beam irradiation of lateral buds of chrysanthemum and analysis of chimeric structure of induced mutants. Euphytica 165:97–103

    Article  Google Scholar 

  • Yamaguchi H, Shimizu A, Hase Y, Tanaka A, Shikazono N, Degi K, Morishita T (2010) Effects of ion beam irradiation on mutation induction and nuclear DNA content in chrysanthemum. Breed Sci 60:398–404. https://doi.org/10.1270/jsbbs.60.398-404

    Article  Google Scholar 

  • Yamakawa K, Sekiguchi F (1968) Radiation induced internal disbudding as a tool for enlarging mutation sectors. Gamma Field Symp 7:19–39

    Google Scholar 

  • Yoder BI (1967) Evolution of the Indianapolis family. Grow Circ Newsl No 51:1–4

    Google Scholar 

  • Yoshida S, Kusumi T (2002) Isolation of variegated mutants of Petunia hybrida using heavy-ion beam irradiation. RIKEN Accel Prog Rep 35:130

    Google Scholar 

  • Zalewska M, Lema-Rumińska J, Miler N (2007) In vitro propagation using adventitious buds technique as a source of new variability chrysanthemum. Sci Hortic 113:70–73. https://doi.org/10.1016/j.scienta.2007.01.019

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Datta, S.K. (2023). Chrysanthemum. In: Role of Mutation Breeding In Floriculture Industry. Springer, Singapore. https://doi.org/10.1007/978-981-99-5675-3_8

Download citation

Publish with us

Policies and ethics