We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Toxische Abwehrstrategien der Pflanzen in Europa | SpringerLink

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Toxische Abwehrstrategien der Pflanzen in Europa

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • First Online:
Pflanzen und Haut

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • 100 Accesses

Zusammenfassung

Zahlreiche Pflanzen setzen chemische Verbindungen mit giftiger bzw. toxischer Wirkung ein, um Fressfeinde oder anderweitige Schädlinge abzuwehren. Ist die toxische Wirkung der eingesetzten Verbindungen stark genug, kann die Pflanze auf den zusätzlichen Einsatz mechanischer Wehrkonzepte verzichten (Kap. 2 und 3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

Literatur zu Abschn. 4.1.1

  • Breitmaier E (2008) Alkaloide: Betäubungsmittel, Halluzinogene und andere Wirkstoffe, Leitstrukturen aus der Natur. Vieweg+Teubner, Wiesbaden. S 1–3

    Google Scholar 

  • Hesse M (2000) Alkaloide - Fluch oder Segen der Natur? Wiley-VCH, Weinheim. S 7–10

    Google Scholar 

  • Latscha HP, Kazmaier U (2008) Alkaloide. In: Latscha H P, Kazmaier U, Klein, HA (2016) (Hrsg) Chemie für Biologen (Bd 7), Springer. S 681–693

    Google Scholar 

  • Meißner CFW (1819) Ueber ein neues Pflanzenalkali (Alkaloid). Schweiggers J Chem Phys 25:379–381

    Google Scholar 

  • Pastore MN, Kalia YN, Horstmann M, Roberts MS (2015) Transdermal patches: history, development and pharmacology. Br J Pharmacol 172(9):2179–2209

    CAS  PubMed  PubMed Central  Google Scholar 

Literatur zu Abschn. 4.1.1.1

  • Abbassy MA, El- OA, El-Hamady S, Sholo MA (1998) Insecticidal, acaricidal and synergistic effects of soosan, Pancratium maritimum extracts and constituents. J Egypt Soc Parasitol 28(1):197–205

    CAS  PubMed  Google Scholar 

  • Balogh A, Kretzschmar M (2007) Arzneimittel für Notfälle. In: Lemmer B, Brune K (Hrsg) Pharmakotherapie. Springer, S 537–542

    Google Scholar 

  • Cozanitis DA, Friedmann T, Fürst S (1983) Study of the analgesic effects of galanthamine, a cholinesterase inhibitor. Arch Int Pharmacodyn Ther 266(2):229–238

    CAS  PubMed  Google Scholar 

  • Elgorashi EE, Stafford GI, van Staden J (2004) Acetylcholinesterase enzyme inhibitory effects of Amaryllidaceae alkaloids. Planta Med 70(03):260–262

    CAS  PubMed  Google Scholar 

  • Habermehl G, Ziemer P (1999) Abteilung Samenpflanzen, Unterabteilung Bedecktsamer. In: Mitteleuropäische Giftpflanzen und ihre Wirkstoffe. Springer, Berlin, S 45

    Google Scholar 

  • Harvey AL (1995) The pharmacology of galanthamine and its analogues. Pharmacol Ther 68(1):113–128

    CAS  PubMed  Google Scholar 

  • Jaspersen-Schib R (1970) Toxic amaryllidaceas. Pharm Acta Helv 45(7):424–433

    CAS  PubMed  Google Scholar 

  • Jong ND, Vermeulen AM, Wijk RG, Groot HD (1998) Occupational allergy caused by flowers. Allergy 53(2):204–209

    PubMed  Google Scholar 

  • Ludewig R (1999) Akute Vergiftungen: Ratgeber zu Erkennung, Verlauf, Behandlung und Verhütung toxikologischer Notfälle. Wissenschaftliche Verlagsgesellschaft

    Google Scholar 

  • Lüders G (1977) Die Narzissenkrankheit der Gärtner. In: Steigleder GK, Aulepp H (Hrsg) Verhandlungen der Deutschen Dermatologischen Gesellschaft. XXXI. Tagung, gehalten in Köln 29.03. – 02.04.1977. Der Hautarzt. Suppl II, 28. Jhrg, S 49–51

    Google Scholar 

  • Neuwinger HD, Mebs D (1997) Boophone disticha. A hallucinogenic African plant. Dtsch. Apoth. Ztg. 137:1127–1132

    CAS  Google Scholar 

  • Renard-Nozaki J, Kim T, Imakura Y, Kihara M, Kobayashi S (1989) Effect of alkaloids isolated from Amaryllidaceae on herpes simplex virus. Res Virol 140:115–128

    CAS  PubMed  Google Scholar 

  • Salarbaks AM (2009) Myocardial infarction and fatal heart arrest in elderly patients: 2 case reports. Reactions 1264:8

    Google Scholar 

  • Sinclair C (2015) New warnings added to Reminyl prescribing information. Reactions 1579:5–28

    Google Scholar 

  • Teuscher E (2010) Amaryllidaceenalkaloide. In: Teuscher E, Lindequist U (Hrsg) Biogene Gifte, Wissenschaftliche Verlagsgesellschaft, Stuttgart, S 517

    Google Scholar 

  • Wildman WC (1960) Alkaloids of the Amaryllidaceae. In: Manske RHF (Hrsg) The alkaloids: chemistry and physiology. Academic Press, New York, Bd VI, S 289–413

    Google Scholar 

  • Wilkinson D, Murray JI, Galantamine Research Group (2001) Galantamine: a randomized, double-blind, dose comparison in patients with Alzheimer’s disease. Int J Geriatr Psychiatry 16(9):852–857

    Google Scholar 

Literatur zu Abschn. 4.1.1.2

  • Ahmed MS, Zhou DH, Maulik D, Eldefrawi ME (1990) Characterization of a cocaine binding protein in human placenta. Life Sci 46(8):553–561

    CAS  PubMed  Google Scholar 

  • Bandelow B (2013) Psychische und Verhaltensstörungen durch psychotrope Substanzen. In: Bandelow B, Gruber O, Falkai P (Hrsg) Kurzlehrbuch Psychiatrie. Springer, Berlin, S 38–48

    Google Scholar 

  • Bogan R, Zimmermann T, Zilker T, Eyer F, Thiermann H (2009) Plasma level of atropine after accidental ingestion of Atropa belladonna. Clin Toxicol 47(6):602–604

    CAS  Google Scholar 

  • Heard CM, Brain KR (1995) Does solute stereochemistry influence percutaneous penetration? Chirality 7(4):305–309

    CAS  PubMed  Google Scholar 

  • Jufer R, Walsh SL, Cone EJ, Sampson-Cone A (2006) Effect of repeated cocaine administration on detection times in oral fluid and urine. J Anal Toxicol 30(7):458–462

    CAS  PubMed  Google Scholar 

  • Lindequist U (2010) Tropanalkaloide. In: Teuscher E, Lindequist U (Hrsg) Biogene Gifte. Wissenschaftliche Verlagsgesellschaft, Stuttgart, S 599 ff.

    Google Scholar 

  • Mulder PPJ, De Nijs M, Castellari M, Hortos M, MacDonald S, Crews C, Hajslova J, Stranska M (2016) Occurrence of tropane alkaloids in food. EFSA supporting publication. 13(12) 1140E. https://doi.org/10.2903/sp.efsa.2016. EN-1140. Zugegriffen: 6. Aug. 2019

  • Renner UD, Oertel R, Kirch W (2005) Pharmacokinetics and pharmacodynamics in clinical use of scopolamine. Ther Drug Monit 27(5):655–665

    CAS  PubMed  Google Scholar 

  • Roddick JG, Weissenberg M, Leonard AL (2001) Membrane disruption and enzyme inhibition by naturally-occurring and modified chacotriose-containing Solanum steroidal glycoalkaloids. Phytochemistry 56(6):603–610

    CAS  PubMed  Google Scholar 

  • Rogawski MA (1984) Transdermal scopolamine and sialorrhea. Arch Neurol 41(1):15–15

    CAS  PubMed  Google Scholar 

  • Seeger R, Neumann HP (1986) DAZ-Giftlexikon. Dtsch Apoth Ztg 126:1930

    CAS  Google Scholar 

  • Trozak DJ (1985) Delayed hypersensitivity to scopolamine delivered by a transdermal device. J Am Acad Dermatol 13(2):247–251

    CAS  PubMed  Google Scholar 

  • United Nations (1977) Single Convention on Narcotic Drugs, 1961: As amended by the 1972 Protocol amending the Single Convention on Narcotic Drugs. 1961 UN https://www.unodc.org/pdf/convention_1961_en.pdf. Zugegriffen: 6. Aug. 2019

Literatur zu Abschn. 4.1.1.3

  • Adams HA, Flemming A (2014) Analgesie, Sedierung und Anästhesie in der Notfallmedizin. Aktuelles Wissen für Anästhesisten. Refresher Course Nr. 40, Mai 2014, Leipzig. https://www.ai-online.info/abstracts/pdf/dacAbstracts/2014/2014-015-RC105.1.pdf. Zugegriffen: 8. Febr. 2020

  • De Rosa G, Di Vincenzo G (1992) Isochelidonine, a benzophenanthridine alkaloid from Chelidonium majus. Phytochemistry 31(3):1085–1086

    Google Scholar 

  • Frank DE (1946) The use of papaverine hydrochloride in the prevention of anaphylactic shock in guinea pigs. J Immunol 52:59–64

    CAS  PubMed  Google Scholar 

  • Fulde G, Wichtl M (1994) Analytik von Schöllkraut – das Hauptalkaloid ist Coptisin. Dtsch Apoth Ztg 134(12):17–22

    CAS  Google Scholar 

  • Gemba M, Nakanishi JI, Mikuriya N, Nakajima M (1986) Influence of papaverine on cyclic nucleotide level and cellular metabolism in rat kidney cortex in terms of its inhibitory effect on p-aminohippurate transport. J Pharmacobiodyn 9(2):125–131

    CAS  PubMed  Google Scholar 

  • Lampert ML, Andenmatten C, Schaffner W (1998) Mahonia aquifolium (Pursh) Nutt. Z Phytotherapie 19:107–118

    Google Scholar 

  • Lebiedzińska A, Szefer P (2006) Vitamins B in grain and cereal–grain food, soy-products and seeds. Food Chem 95(1):116–122

    Google Scholar 

  • Kametani T, Honda T (1985) Synthetic method of narcotine. In: Manske RHF, Holmers HL (Hrsg) The alkaloids – chemistry and physiology, Bd 1 (1950) bis Band 63 (2006). Academic Press, New York

    Google Scholar 

  • Kelentey B (1960) On the pharmacology of chelidonine and sanguinarine. Arzneimittel-Forschung, Editio Cantor Verlag, Aulendorf. 10. 135–137 https://europepmc.org/article/med/13853337. Zugegriffen: 9. Febr. 2020

  • Lindner E (1985) Structure activities and pharmacological properties of the opium alkaloids. In: The Chemistry and Biology of Isoquinoline Alkaloids, Springer, Berlin, S 38–46

    Google Scholar 

  • Ludewig R (1999) Akute Vergiftungen. G Fischer, Jena

    Google Scholar 

  • Menachery MD, Lavanier GL, Wetherly ML, Guinaudeau H, Shamma M (1986) Simple isoquinoline alkaloids. J Nat Prod 49(5):745–778

    CAS  Google Scholar 

  • Nolting, DM (2005) Untersuchungen zur Zytotoxizität von Alkylanzien, Topoisomerasehemmstoffen und Ukrain auf vier humane Ewing-Sarkom-Zelllinien. Inaugural-Dissertation zur Erlangung der Doktorwürde der Medizinischen Fakultät Münster/Westfalen. https://d-nb.info/974230421/34. Zugegriffen: 9. Febr. 2020

  • Pitea M, Petcu P, Goina T, Preda N (1972) Thin-layer chromatographic studies of alkaloids from Berberis vulgaris. Planta Med 21(2):177–181

    CAS  PubMed  Google Scholar 

  • Sanwalka NJ, Khadilkar AV, Chiplonkar SA (2011) Development of non-dairy, calcium-rich vegetarian food products to improve calcium intake in vegetarian youth. Current Science, 657–663

    Google Scholar 

  • Schneider W (1965) Methodology from the discovery to the synthesis of morphine. Mitt Dtsch Pharm Ges Pharm Ges DDR 35(5):85–90

    CAS  PubMed  Google Scholar 

  • Shukla S, Singh SP, Yadav HK, Chatterjee A (2006) Alkaloid spectrum of different germplasm lines in opium poppy (Papaver somniferum L.). Genet Resour Crop Evol 53(3):533–540

    Google Scholar 

  • Schwarzmann-Schafhauser D (2005) Morphium. In: Gerabek WE, Haage BD, Keil G, Wegner W (Hrsg) Enzyklopädie Medizingeschichte. De Gruyter, Berlin, S 1009

    Google Scholar 

  • Teuscher E (2010) Isochinolinalkaloide. In: Teuscher E, Lindequist U (Hrsg) Biogene Gifte. Wissenschaftliche Verlagsgesellschaft, Stuttgart, S 494

    Google Scholar 

  • Wichtl M (2002) Chelidonii herba. Teedrogen und Psychopharmaka. Wissenschaftliche Verlagsgesellschaft, Stuttgart. S 130–134

    Google Scholar 

  • Yi J, Ye X, Wang D, He K, Yang Y, Liu X, Li X (2013) Safety evaluation of main alkaloids from Rhizoma Coptidis. J Ethnopharmacol 145(1):303–310

    CAS  PubMed  Google Scholar 

Literatur zu Abschn. 4.1.1.4

  • Bevan-Jones R (2009) Poisonous plants: a cultural and social history. Windgather Press

    Google Scholar 

  • Bisset NG (1981) Arrow poisons in China. Part II. Aconitum—botany, chemistry, and pharmacology. J Ethnopharmacol 4(3): 247–336

    Google Scholar 

  • Boehm R, Serck J (1876) Beiträge zur Kenntnis der Alkaloide der Stephanskörner (Delphinium staphysagria). Arch Exp Pathol Pharmakol 5(4–5):311–328

    Google Scholar 

  • Bruchhausen F v, Ebel S, Fram W, Hackenthal E (1991) Hagers Handbuch der pharmazeutischen Praxis. Bd. 7: Stoffe A–D. Birkhäuser/Springer, S 63

    Google Scholar 

  • Chan TY (2009) Aconite poisoning. Clin Toxicol 47(4):279–285

    CAS  Google Scholar 

  • Chan TY (2012) Aconite poisoning following the percutaneous absorption of Aconitum alkaloids. Forensic Sci Int 223(1–3):25–27

    CAS  PubMed  Google Scholar 

  • Chen Y, Koelliker S, Oehme M, Katz A (1999) Isolation of diterpenoid alkaloids from herb and flowers of aconitum napellus ssp. vulgare and electrospray ion trap multiple MS study of these alkaloids. J Nat Prod 62(5):798

    Google Scholar 

  • Colombo ML, Bravin M, Tome F (1988) A study of the diterpene alkaloids of Aconitum napellus ssp. neomontanum during its onthogenetic cycle. Pharmacological research communications 20:123–128

    CAS  PubMed  Google Scholar 

  • Eibel WC, Otomura F, Pupulin ART (2014) Effect of Delphinium staphisagria in Murine Infection by Myocoptes musculinus. Br J Pharm Res 4(24):2702

    Google Scholar 

  • Faugeras G, Paris R (1960) Aconite. III. Distribution of alkaloids in plants of various origins. Quantitative study. Toxicity. Annales pharmaceutiques francaises 18:474

    Google Scholar 

  • Fühner, H. (1931). Akonitum-Vergiftung. (Giftmord). Arch Toxicol 2(1):123–124

    Google Scholar 

  • Gubanow IA (1965) Delphinium als Quelle curareähnlicher Präparate. Planta Med 13(02):200–205

    Google Scholar 

  • Jabbour F, Renner SS (2011) Consolida and Aconitella are an annual clade of Delphinium (Ranunculaceae) that diversified in the Mediterranean basin and the Irano-Turanian region. Taxon. Bd 60, Nr 4, S 1029–1040

    Google Scholar 

  • Kozlov VA, Guliaeva TN (1983) Poisoning by the fruit of the privet (Ligustrum vulgare). Sud Med Ekspert 26(3):56

    CAS  PubMed  Google Scholar 

  • Liangqian L, Kadota Y (2001) Aconitum. In: Wu Zhengyi, Peter H. Raven, Deyuan Hong (Hrsg) Flora of China. Volume 6: Caryophyllaceae through Lardizabalaceae, Science Press und Missouri Botanical Garden Press, Beijing und St. Louis, ISBN 1-930723-05-9, S 149

    Google Scholar 

  • Lin CC, Chan TY, Deng JF (May 2004) Clinical features and management of herb-induced aconitine poisoning. Ann Emerg Med 43(5):574–579

    PubMed  Google Scholar 

  • Ludewig R, Lohs K (1991) Akute Vergiftungen: Ratgeber für toxikologische Notfälle. Jena, Fischer. ISBN 3-334-00095-8

    Google Scholar 

  • Macht DI (1938) The absorption of drugs and poisons through the skin and mucous membranes. J Am Med Assoc 110(6):409–414

    CAS  Google Scholar 

  • Pelt JM (2005) Die Geheimnisse der Heilpflanzen, Knesebeck, ISBN 3-89660-291-8, S 80

    Google Scholar 

  • Peura P (1982) Chemotaxonomic investigations of the alkaloids content in the genus Nuphar. I. Review of the literature. Acta Pharm Fenn 89:205–213

    Google Scholar 

  • Puschner B, Booth MC, Tor ER, Odermatt A (2002) Diterpen Alkaloid Toxicosis in Cattle in the Swiss Alps. Vet Human Toxicol 44(1):8–10

    Google Scholar 

  • Roth L (2012) Aconitum napellus. In: Roth L, Daunderer M, Kormann K (Hrsg) Giftpflanzen – Pflanzengifte. Nikol, S 88

    Google Scholar 

  • Saisho K, Toyoda, M, Takagi, K, Satake M, Takahashi S, Yamamoto Y, Kasai K, Hashimoto S, Saito Y (1994) Identification of aconitine in raw honey that caused food poisoning. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi) Japan 35(1):46–50_1

    Google Scholar 

  • Serck J (1874) Beiträge zur Kenntnis des Delphinins in chemischer und physiologischer Beziehung. Inauguraldissertation. Kaiserliche Universität Dorpat (Estland). Druck von C. Matthiesen

    Google Scholar 

  • Seeger R (1994) Aconitin und verwandte Diterpenalkaloide. Dtsch Apoth Ztg 134(29):2749

    Google Scholar 

  • Tang L, Ye L, Lv C, Zheng Z, Gong Y, Liu Z (2011) Involvement of CYP3A4/5 and CYP2D6 in the metabolism of aconitine using human liver microsomes and recombinant CYP450 enzymes. Toxicol Lett 202(1):47–54. https://doi.org/10.1016/j.toxlet.2011.01.019.PMID21277363

    Article  CAS  PubMed  Google Scholar 

  • Teuscher E (2010a) Terpenakaloide. In: Teuscher E, Lindequist U (Hrsg) Biogene Gifte. Wissenschaftliche Verlagsgesellschaft, Stuttgart, S 695 ff.

    Google Scholar 

  • Teuscher E (2010b) Terpenakaloide. In: Teuscher E, Lindequist U (Hrsg) Biogene Gifte. Wissenschaftliche Verlagsgesellschaft, Stuttgart, S 706

    Google Scholar 

  • Wink M, Van Wyk BE, Wink C (2008) Handbuch der giftigen und psychoaktiven Pflanzen. Wissenschaftliche Verlagsgesellschaft, Stuttgart, S 40

    Google Scholar 

  • Zhang YT, Wu ZH, Zhang K, Zhao JH, Ye BN, Feng NP (2014) An in vitro and in vivo comparison of solid and liquid-oil cores in transdermal aconitine nanocarriers. J Pharm Sci 103(11):3602–3610

    CAS  PubMed  Google Scholar 

Literatur zu Abschn. 4.1.1.5, 4.1.1.5.1, 4.1.1.5.2, 4.1.1.5.3, 4.1.1.5.4

  • Akhtar S (2013) Areca nut chewing and esophageal squamous-cell carcinoma risk in Asians: A meta-analysis of case–control studies. Cancer Causes Control 24(2):257–265

    PubMed  Google Scholar 

  • Alpert HR, Connolly GN, Biener L (2012) A prospective cohort study challenging the effectiveness of population-based medical intervention for smoking cessation. Tobacco Control, tobaccocontrol-2011

    Google Scholar 

  • Ambrose JA, Barua RS (2004) The pathophysiology of cigarette smoking and cardiovascular disease: an update. J Am Coll Cardiol 43(10):1731–1737

    CAS  PubMed  Google Scholar 

  • Amudhan MS, Begum VH, Hebbar, KB (2012) A review on phytochemical and pharmacological potential of Areca catechu L. seed. Int J Pharm Sci Res 3(11):4151

    Google Scholar 

  • Arredondo J, Chernyavsky AI, Grando SA (2006) Nicotinic receptors mediate tumorigenic action of tobacco-derived nitrosamines on immortalized oral epithelial cells. Cancer Biol Ther 5(5):511–517

    CAS  PubMed  Google Scholar 

  • Benowitz NL, Burbank AD (2016) Cardiovascular toxicity of nicotine: Implications for electronic cigarette use. Trends Cardiovasc Med 26(6):515–523. https://doi.org/10.1016/j.tcm.2016.03.001.ISSN1050-1738.PMC4958544.PMID27079891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Audi J, Belson M, Patel M, Schier J, Osterloh J (2005) Ricin poisoning: a comprehensive review. Jama 294(18):2342–2351

    CAS  PubMed  Google Scholar 

  • Brown CJ, Cheng JM (2014) Electronic cigarettes: product characterization and design considerations. Tobacco Controll 23(2):ii4–ii10. https://doi.org/10.1136/tobaccocontrol-2013-051476. ISSN 0964-4563. PMC 3995271

  • British American Tobacco (2018) The global market. http://www.bat.com/group/sites/UK__9D9KCY.nsf/vwPagesWebLive/DO9DCKFM. Zugegriffen: 9. Sept. 2018

  • Chandra PS, Carey MP, Carey KB, Jairam KR (2003) Prevalence and correlates of areca nut use among psychiatric patients in India. Drug Alcohol Depend 69(3):311–316

    PubMed  Google Scholar 

  • Christen AG (1992) The impact of tobacco use and cessation on oral and dental diseases and conditions. Am J Med 93(1):25–31

    Google Scholar 

  • Chu NS (2001) Effects of betel chewing on the central and autonomic nervous systems. J Biomed Sci 8(3):229–236

    CAS  PubMed  Google Scholar 

  • Davies P, Levy S, Pahari A, Martinez D (December 2001). Acute nicotine poisoning associated with a traditional remedy for eczema. Archives of Disease in Childhood 85(6):500–502. https://doi.org/10.1136/adc.85.6.500. PMC 1718993. PMID 11719343

  • Dawson RF, Solt ML, Christman DR (1960) Nicotine and its botanical sources. Ann N Y Acad Sci 90(1):7–12

    CAS  PubMed  Google Scholar 

  • Deng JF, Ger J, Tsai WJ, Kao WF, Yang CC (2001) Acute toxicities of betel nut: rare but probably overlooked events. J Toxicol Clin Toxicol 39(4), 355–360

    Google Scholar 

  • Djurdjevac M, Trautner M (2003) Analyse von Nicotin aus Tabakblättern. https://www.chf.de/eduthek/projektarbeiten/trautner.pdf Zugegriffen: 8. Sept. 2018

  • Domino EF, Hornbach E, Demana T (1993) The nicotine content of common vegetables. (Letter to the editor) The New England Journal of Medicine. Bd 329, S 437. https://doi.org/10.1056/NEJM199308053290619

  • Fagerström KO (2011) Determinants of tobacco use and renaming the FTND to the Fagerström Test for Cigarette Dependence. Nicotine Tob Res 14(1):75–78

    PubMed  Google Scholar 

  • Fagerström KO, Bridgman K (2014) Tobacco harm reduction: the need for new products that can compete with cigarettes. Addict Behav 39(3):507–511. https://doi.org/10.1016/j.addbeh.2013.11.002

    Article  PubMed  Google Scholar 

  • Faulkner JM (1933) Nicotine poisoning by absorption through the skin. J Am Med Assoc 100(21):1664–1665

    Google Scholar 

  • Nair J, Ohshima H, Friesen M, Croisy A, Bhide SV, Bartsch H (1985) Tobacco-specific and betel nut-specific N-nitroso compounds: occurrence in saliva and urine of betel quid chewers and formation in vitro by nitrosation of betel quid. Carcinogenesis 6(2):295–303

    CAS  PubMed  Google Scholar 

  • Ferraz AC, Pereira LF, Ribeiro RL, Wolfman C, Medina JH, Scorza FA, Santos NF, Cavalheiro EA, Da Cunha C (2000) Ricinine-elicited seizures. A novel chemical model of convulsive seizures. Pharmacol Biochem Behav 65(4):577–83

    Google Scholar 

  • Garg A, Chaturvedi P, Gupta PC (2014) A review of the systemic adverse effects of areca nut or betel nut. Indian J Med Paediatr Oncol: Official J Indian Soc Med Paediatr Oncol 35(1):3

    Google Scholar 

  • Hamelin EI, Johnson RC, Osterloh JD, Howard DJ, Thomas JD (2012) Evaluation of ricinine, a ricin biomarker from a non-lethal castor bean ingestion. J Anal Toxicol 36(9):660–662. https://doi.org/10.1093/jat/bks077. PMC 4561852PMID 23014889

  • Herrmann K, Trinkkeller U (2014). Bewährte Rezepturen. Dermatologie und medizinische Kosmetik: Leitfaden für die kosmetische Praxis, Springer, S 215

    Google Scholar 

  • Huang JL, McLeish MJ (1989) High-performance liquid chromatographic determination of the alkaloids in betel nut. J Chromatogr A 475(2):447–450

    CAS  Google Scholar 

  • Northoff E (2004) Higher world tobacco use expected by 2010-growth rate slowing down. FAO News. Rome: Food and Agriculture Organization of the United Nations. https://www.un.org/press/en/2004/sag209.doc.htm. Zugegriffen: 8. Sept. 2018

  • Groß B, Landthaler M, Hohenleutner U (2003) Rauchen–Auswirkungen auf die Haut. JDDG: J Dtschen Dermatologischen Ges 1(10):801–810

    Google Scholar 

  • Haustein KO, Groneberg D (2008) Tabakabhängigkeit: Gesundheitliche Schäden durch das Rauchen. Springer

    Google Scholar 

  • Jeng JH, Chang MC, Hahn LJ (2001) Role of areca nut in betel quid-associated chemical carcinogenesis: current awareness and future perspectives. Oral oncology, 37(6), 477–492

    Google Scholar 

  • Jimenez Ruiz CA, Solano Reina S, de Granda Orive JI, Signes-Costa Minaya J, de Higes Martinez E, Riesco Miranda JA, Altet Gómez N, Lorza Blasco JJ, Barrueco Ferrero M, de Lucas Ramos P (2014) „El cigarrillo electrónico. Declaración oficial de la Sociedad Española de Neumología y Cirugía Torácica (SEPAR) sobre la eficacia, seguridad y regulación de los cigarrillos electrónicos“. Archivos de Bronconeumología 50(8):362–367. https://doi.org/10.1016/j.arbres.2014.02.006. ISSN 0300-2896. PMID 24684764

  • Khan FA, Robinson PG, Warnakulasuriya KAAS, Newton JT, Gelbier S, Gibbons DE (2000) Predictors of tobacco and alcohol consumption and their relevance to oral cancer control amongst people from minority ethnic communities in the South Thames health region, England. J Oral Pathol Med 29(5):214–219

    CAS  PubMed  Google Scholar 

  • Knight, KG (Hrsg) (1985) Lloyd´s Survey Handbook. Lloyd’s of London Press Ltd., Colchester

    Google Scholar 

  • McNeill A, Brose LS, Calder R, Hitchman SC, Hajek P, McRobbie H (August 2015) „E-cigarettes: an evidence update“ (PDF). Public Health England, UK, S 63

    Google Scholar 

  • Lavoie FW, Harris TM (1991) Fatal nicotine ingestion. J Emerg Med 9(3):133–166. https://doi.org/10.1016/0736-4679(91)90318-a.PMID2050970

    Article  CAS  PubMed  Google Scholar 

  • Lazutka FA, Vasilyauskene AD, Gefen SG (1969) Toxicological evaluation of the insecticide nicotine sulfate. Gig Sanit 34(5):30–33

    CAS  PubMed  Google Scholar 

  • Lee ST, Wildeboer K, Panter KE, Kem WR, Gardner DR, Molyneux RJ, Chang CW, Soti F, Pfister JA (2006) Relative toxicities and neuromuscular nicotinic receptor agonistic potencies of anaasine enantiomers and anabasine. Neurotoxicol Teratol 28(2):220–228. https://doi.org/10.1016/j.ntt.2005.12.010.PMID16488116

    Article  CAS  PubMed  Google Scholar 

  • Le Houezec J (2003) Role of nicotine pharmacokinetics in nicotine addiction and nicotine replacement therapy: a review. Int J Tuberc Lung Dis 7(9):811–819

    PubMed  Google Scholar 

  • Ma YT, Hsu FL, Lan SJJ, Chen CF (1996) Tannins from betel nuts. J Chin Chem Soc 43(1):77–81

    CAS  Google Scholar 

  • Mayer B (2013) How much nicotine kills a human? Tracking back the generally accepted lethal dose to dubious self-experiments in the nineteenth century. Arch Toxicol https://doi.org/10.1007/s00204-013-1127-0

  • McKnight RH, Spiller HA (2005) Green tobacco sickness in children and adolescents. Public health reports (Washington, D.C. 1974) 120(6):602–605 PMID 16350329, PMC 1497768

    Google Scholar 

  • Miedaner T (2018) Tabak–der heilige Rauch. In: Genusspflanzen. Springer, Berlin, S 217–239

    Google Scholar 

  • Minna JD (2003) Nicotine exposure and bronchial epithelial cell nicotinic acetylcholine receptor expression in the pathogenesis of lung cancer. J Clin Investig 111(1):31–33

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nutt D, King LA, Saulsbury W, Blakemore C (2007) Development of a rational scale to assess the harm of drugs of potential misuse. The Lancet 369(9566):1047–1053

    Google Scholar 

  • Okamoto M, Kita T, Okuda H, Tanaka T, Nakashima T (Jul 1994) Effects of aging on acute toxicity of nicotine in rats. Pharmacol Toxicol 75(1):1–6. https://doi.org/10.1111/j.1600-0773.1994.tb00316.x. PMID 7971729. Zugegriffen: 8. Sept. 2018

  • Otmar G, Kotzias D (2007) Tobacco, Cigarettes and Cigarette Smoke, an Overview. Ispra, Italy: European Commission Joint Research Centre. Report No. EUR, 22783

    Google Scholar 

  • Patel K, Patel DK (2016) Medicinal signifcance, pharmacological activities, and analytical aspects of ricinine: A concise report

    Google Scholar 

  • Peng J, Cai S, Wang L, Zhao N, Zhang TJ, Chen ZX, Meng FH (2014) A metabonomic analysis of serum from rats treated with ricinine using ultra performance liquid chromatography coupled with mass spectrometry. Plos One 2014; 9(3):e90416

    Google Scholar 

  • Proplanta (2009) Tabakanbaugebiete in Deutschland. https://www.proplanta.de/Fotos/Tabakanbaugebiete-in-Deutschland_Bild1160555615.html. Zugegriffen: 8. Sept. 2018

  • Rogers AJ, Denk LD, Wax PM (2004) Catastrophic brain injury after nicotine insecticide ingestion. The Journal of emergency medicine 26(2):169–172

    CAS  PubMed  Google Scholar 

  • Schep LJ, Slaughter RJ, Beasley DM (2009) Nicotinic plant poisoning. Clin Toxicol 47(8):771–781. https://doi.org/10.1080/15563650903252186.PMID19778187

    Article  CAS  Google Scholar 

  • Schuller HM, Orloff M (1998) Tobacco-specific carcinogenic nitrosamines: ligands for nicotinic acetylcholine receptors in human lung cancer cells. Biochem Pharmacol 55(9):1377–1384

    CAS  PubMed  Google Scholar 

  • Shetty KV, Johnson NW (1999) Knowledge, attitudes and beliefs of adult South Asians living in London regarding risk factors and signs for oral cancer. Community Dent Health 16(4):227–231

    CAS  PubMed  Google Scholar 

  • Shiffman S, Jarvik ME (1984) Cigarette smoking, physiological arousal, and emotional response: Nesbitt’s paradox re-examined. Addict Behav 9(1):95–98

    CAS  PubMed  Google Scholar 

  • Simons KW, Balls M (2001) Directive 2001/20/EC of the European Parliament and of the Council of 4 April 2001 on the Approximation of the Laws, Regulations and Administrative Provisions of the Member States Relating to the Implementation of Good Clinical Practice in The Conduct of Clinical Trials on Medicinal Products for Human Use. Official Journal of the European Communities 121:34–44

    Google Scholar 

  • Sine C, Hrsg. (1993) Nicotine. In: Farm chemicals handbook 93:C245

    Google Scholar 

  • Soave M (1895) Über Ricinin. Chemisches Zentralblatt 66, Bd I, S 853

    Google Scholar 

  • Steenkamp PA, Van Heerden FR, Van Wyk BE (2002) Accidental fatal poisoning by Nicotiana glauca: identification of anabasine by high performance liquid chromatography/photodiode array/mass spectrometry. Forensic Sci Int 127(3):208–217

    CAS  PubMed  Google Scholar 

  • Villégier AS, Salomon L, Granon S, Changeux JP, Belluzzi JD, Lesli FM, Tassin JP (2006) Monoamine oxidase inhibitors allow locomotor and rewarding responses to nicotine. Neuropsychopharmacology 31(8):1704

    PubMed  Google Scholar 

  • Winstock AR, Trivedy CR, Warnakulasuriya KAAS, Peters TJ (2000) A dependency syndrome related to areca nut use: some medical and psychological aspects among areca nut users in the UK. Addiction Biol. 5:173–179

    CAS  Google Scholar 

  • Warnakulasuriya S, Trivedy C, Peters TJ (2002) Areca nut use: an independent risk factor for oral cancer: The health problem is under-recognised. BMJ: Br Med J 324(7341):799

    Google Scholar 

  • Warnakulasuriya S (2009) Global epidemiology of oral and oropharyngeal cancer. Oral Oncol 45(4–5):309–316

    PubMed  Google Scholar 

  • Wollina U, Verma S, Parikh D, Parikh A (2002) Orale und extraorale Erkrankungen durch BetelkauenOral and extraoral disease due to betel nut chewing. Der Hautarzt 53(12):795–797

    CAS  Google Scholar 

  • Yamamoto I (1999) Nicotine to Nicotinoids: 1962 to 1997. In: Nicotinoid insecticides and the nicotinic acetylcholine receptor. Springer, Tokyo, S 3–27

    Google Scholar 

  • Zhou XZ, Zhang JY, Zhao CY, Li JS, Zhan ZF, Li JY, Wang L (2007) Acute toxicity of arecoline hydrobromide in mice and rat in taking orally [J]. Prog Vet Med 9:008

    Google Scholar 

Literatur zu Abschn. 4.1.1.6, 4.1.1.6.1, 4.1.1.6.2

  • Arnold RE (1978) Poisonous plants. Terra Pub

    Google Scholar 

  • Bowman WC, Sanghvi IS (1963) Pharmacological actions of hemlock (Conium maculatum) alkaloids. J Pharm Pharmacol 15(1):1–25

    CAS  PubMed  Google Scholar 

  • Daugherty CG (1995) The death of Socrates and the toxicology of hemlock. Journal of medical biography 3(3):178–182

    CAS  PubMed  Google Scholar 

  • Davies ML, Davies TL (1994) Hemlock: murder before the Lord. Med Sci Law 34(4):331–333

    CAS  PubMed  Google Scholar 

  • Dekant W, Vamvakas S (2013) Giftpflanzen, Pflanzengifte. In: Aktories K, Förstermann U, Hofmann F, Starke K (Hrsg.) Allgemeine und spezielle Pharmakologie und Toxikologie, Elsevier, Urban & Fischer

    Google Scholar 

  • Geiger PL (1833) Ueber einige neue giftige organische Alkalien. Annalen der Pharmacie 7(3):269–280

    Google Scholar 

  • Lane JE (1920) A few early notes on syphilis in the english colonies of North America. Arch Dermatol Syphilology 2(2):215–219

    Google Scholar 

  • Kursinszki L, Szőke É (2015) HPLC-ESI-MS/MS of brain neurotransmitter modulator lobeline and related piperidine alkaloids in Lobelia inflata L. J Mass Spectrom 50(5):727

    CAS  PubMed  Google Scholar 

  • Ramawat KG (1999) Secondary plant products in nature. Biotechnology Secondary Metabolities. Science Publishers, New Hampshire, S 123–143

    Google Scholar 

  • Römpp-online (2002) Conium-Alkaloide. https://roempp.thieme.de/roempp4.0/do/data/RD-03-02437. Zugegriffen: 1. Okt. 2018

  • Schwarting AE (1963) Poisonous seeds and fruits. Progress in chemical toxicology 18:385–401

    Google Scholar 

  • Speck FG (1937) Catawba medicines and curative practices. In: Davidson, DS (Hrsg) Publications of the Philadelphia Anthropological Society, Philadelphia. University of Pennsylvania Press, S 179–197

    Google Scholar 

  • Stansbury J, Saunders PR, Zampieron ER (2013) The use of lobelia in the treatment of asthma and respiratory illness. J Restorative Med 2(1):94–100

    Google Scholar 

  • Tamboli AM, Rub RA, Ghosh P, Bodhankar SL (2012) Antiepileptic activity of lobeline isolated from the leaf of Lobelia nicotiana efolia and its effect on brain GABA level in mice. Asian Pac J Trop Biomed 2(7):537–542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weimann C, Heinrich M (1997) Indigenous medicinal plants in Mexico: the example of the Nahua (Sierra de Zongolica). Botanica Acta 110(1):62–72

    Google Scholar 

  • Williamson EM (2017) Herbal neurotoxicity: An introduction to its occurrence and causes. In: Pelkonen O, Duez P, Vuorela P, Vuorela H (Hrsg) Toxicology of herbal products. Springer, Cham

    Google Scholar 

Literatur zu Abschn. 4.1.1.7, 4.1.1.7.1, 4.1.1.7.2, 4.1.1.7.3, 4.1.1.7.4

  • Barceloux DG (2009) Potatoes, tomatoes, and solanine toxicity (Solanum tuberosum L., Solanum lycopersicum L.). Disease-a-month 55(6):391–402

    Google Scholar 

  • Blumenthal M (Hrsg) (1998) The complete German Commission E Monographs: Therapeutic Guide to Herbal Medicine. Austin, TX, American Botanical Council, S 232

    Google Scholar 

  • Börner H, Schlüter K, Aumann J (2009) Abwehrmechanismen der Pflanzen gegen Krankheitserreger und Schadtiere. Pflanzenkrankheiten und Pflanzenschutz, 357–382

    Google Scholar 

  • Bös B (2016) Buxus. In: Giftpflanzen-Kompendium. http://www.giftpflanzen.com/buxus_sempervirens.html. Zugegriffen: 5. Febr. 2019

  • GIZ. Bonn (2018) Buchsbaum, immergrüner (Buxus sempervirens). http://www.gizbonn.de/74.0.html. Zugegriffen: 6. Okt. 2018

  • Haas HT (1938) Zur Pharmakologie des Germerins und seiner Spaltprodukte. Naunyn-Schmiedebergs Arch Exp Pathol Pharmakol 189(2–4):397–410

    CAS  Google Scholar 

  • Hornfeldt CS, Collins JE (1990) Toxicity of nightshade berries (solanum dulcamara) in mice. J Toxicol Clin Toxicol 28(2):185–192

    CAS  PubMed  Google Scholar 

  • Hruby K, Lenz K, Krausler J (1981) Veratrum album poisoning (author’s transl). Wien Klin Wochenschr 93(16):517–519

    CAS  PubMed  Google Scholar 

  • lzawa K, Amino, Kohmura M, Ueda Y, Kuroda (2010) Bitter-Tasting Natural Products – Solanine. In: Mander L, Liu HW (Hrsg) Comprehensive natural products II: chemistry and biology (Bd 1) Elsevier, S 631–671

    Google Scholar 

  • Jainu M, Devi CSS (2006) Antiulcerogenic and ulcer healing effects of Solanum nigrum (L.) on experimental ulcer models: possible mechanism for the inhibition of acid formation. J Ethnopharmacol 104(1–2):156–163

    Google Scholar 

  • Leporatti ML, Ghedira K (2009) Comparative analysis of medicinal plants used in traditional medicine in Italy and Tunisia. J Ethnobiol Ethnomed 5(1):31

    PubMed  PubMed Central  Google Scholar 

  • Ludewig R (1999) Akute Vergiftungen. Fischer, Jena

    Google Scholar 

  • Morris SC, Lee TH (1984) The toxicity and teratogenicity of Solanaceae glycoalkaloids, particularly those of the potato (Solanum tuberosum): a review. Food Technology in Australia. http://agris.fao.org/agris-search/search.do?recordID=AU19850092379. Zugegriffen: 6. Aug. 2019

  • Patil BC, Sharma RP, Salunkhe DK, Salunkhe K (1972) Evaluation of solanine toxicity. Food and cosmetics toxicology 10(3):395–398

    CAS  PubMed  Google Scholar 

  • Roddick JG, Rijnenberg AL, Weissenberg M (1990) Membrane-disrupting properties of the steroidal glycoalkaloids solasonine and solamargine. Phytochemistry 29(5):1513–1518

    CAS  Google Scholar 

  • Sander H (1963) Solanum dulcamara. VII. Biosynthesis of spirosolanol glycosides in the ripening fruit. In: Planta Med (11) 23

    Google Scholar 

  • Taylor SL, Hefle SL (2017) Naturally occurring toxicants in foods. In Foodborne, S 327–344

    Google Scholar 

  • Watzl B, Geisen R (2009) 22 Fragen zu Obst und Gemüse für die Praxis. Ernährungs-Umschau 56(6):22–24

    Google Scholar 

  • Zitnak A, Johnston GR (1970) Glycoalkaloid content of B5141–6 potatoes. Am Potato J 47(7):256–260

    CAS  Google Scholar 

Liteartur zu Abschn. 4.1.2

  • Kobayashi A, Matsumoto H (1965) Studies on methylazoxymethanol, the aglycone of cycasin: Isolation, biological, and chemical properties. Arch Biochem Biophys 110(2):373–380

    CAS  PubMed  Google Scholar 

  • Křen V (2008) Glycoside vs. aglycon: the role of glycosidic residue in biological activity. In: Glycoscience, Springer, Berlin, S 2589–2644

    Google Scholar 

  • Minic Z (2008) Physiological roles of plant glycoside hydrolases. Planta 227(4):723

    CAS  PubMed  Google Scholar 

  • Reichstein T (1951) Chemie der herzaktiven Glykoside. Angew Chem 63(17–18):412–421

    CAS  Google Scholar 

Literatur zu Abschn. 4.1.2.1

  • Caldwell JH, Greenberger NJ (1971) Interruption of the enterohepatic circulation of digitoxin by cholestyramine: I. Protection against lethal digitoxin intoxication. J Clin Investig 50(12):2626–2637

    Google Scholar 

  • Smith TW, Butler jr, VP, Haber E, Fozzard H, Marcus FI, Bremner WF, Schulman IC, Phillips A (1982) Treatment of life-threatening digitalis intoxication with digoxin-specific Fab antibody fragments: experience in 26 cases. New England J Med 307(22):1357–1362

    Google Scholar 

Literatur Abschn. 4.1.2.1.1

  • Freeman WT (1897) A note on the skin irritation caused by handling hyacinth bulbs. Br J Dermatol 9:66–67

    Google Scholar 

  • Kamano Y, Kotake A, Hashima H, Inoue M, Morita H, Takeya K, Itokawa H, Nadachi N, Segawa T, Yukita A, Saitou K, Katsuyama M (1998) Structure–cytotoxic activity relationship for the toad poison bufadienolides. Bioorg Med Chem 6(7):1103–1115

    CAS  PubMed  Google Scholar 

  • Mendonça FS, Nascimento NC, Almeida VM, Braga TC, Ribeiro DP, Chaves HA, Silva Filho GB, Riet-Correa F (2018) An outbreak of poisoning by Kalanchoe blossfeldiana in cattle in northeastern Brazil. Trop Anim Health Prod 50(3):693–696

    PubMed  Google Scholar 

  • Petricic J, Tarle D, Holik L (1971) Über das Vorkommen des Hellebrins in den unterirdischen Teilen der Helleborus-Arten Jugoslawiens. Planta Medica 19 (S 01):143–146

    Google Scholar 

Literatur zu Abschn. 4.1.2.1.2

  • Cassileth B (2010) Oleander (Nerium oleander). Oncology 24(13):1240–1240

    PubMed  Google Scholar 

  • Cui BN, Xu X, Zhao YS (2005) Clinical efficacy of compound periploca liquid in treating condyloma acuminatum and its effect on human papilloma virus DNA expression

    Google Scholar 

  • Schmiedeberg O (1874) Untersuchungen über die pharmakologisch wirksamen Bestandtheile der Digitalis purpurea L. Arch Exp Pathol Pharmakol 3(1):16–43

    Google Scholar 

  • Teuscher E (2010) Kap. 12 Steroide. In: Teuscher E, Lindequist U (Autoren) Biogene Gifte. Wissenschaftliche Verlagsgesellschaft, Stuttgart, S 229–280

    Google Scholar 

  • Yarnell E (2015) Herbs against human papillomavirus. Altern Complement Ther 21(2):71–76

    Google Scholar 

Literatur zu Abschn. 4.1.2.2, 4.1.2.2.1

  • Baker DA, Douglas Jr JM, Buntin DM, Micha JP, Beutner KR, Patsner B (1990) Topical podofilox for the treatment of condylomata acuminata in women. Obstet Gynecol 76(4), 656–659

    Google Scholar 

  • Dewick PM, Jackson DE (1981) Cytotoxic lignans from Podophyllum, and the nomenclature of aryltetralin lignans. Phytochemistry 20(9):2277–2280

    CAS  Google Scholar 

  • Drew SE, Conway SJ, Jennings P, Helliwell K (1987) Determination of the aryltetralin lignan content of podophyllum resins and roots/rhizomes. J Pharm Pharmacol 39(9): 738–739

    Google Scholar 

  • Edwards A, Atma-Ram A, Thin RN (1988) Podophyllotoxin 0.5% v podophyllin 20% to treat penile warts. Sex Transm Infect 64(4):263–265

    Google Scholar 

  • French L, Nashelsky J (2002) What is the most effective treatment for external genital warts? J Fam Pract 51(4):313

    Google Scholar 

  • MacRae WD, Towers GN (1984) Biological activities of lignans. Phytochemistry 23(6):1207–1220

    CAS  Google Scholar 

  • Peterson J, Dwyer J, Adlercreutz H, Scalbert A, Jacques P, McCullough ML (2010) Dietary lignans: physiology and potential for cardiovascular disease risk reduction. Nutr Rev 68(10):571–603

    PubMed  Google Scholar 

  • Podwyssotzki V (1880) Pharmakologische Studien über Podophyllum peltatum. Archiv für experimentelle Pathologie und Pharmakologie 13(1–2):29–52

    Google Scholar 

  • Shu J, Hui S, Lihua W, Enping J, Dongxue C. Jianguang C, Xintian F (2011) Sedative and hypnotic effects of Schisandra Chinensis baill lignans. In: Human Health and Biomedical Engineering (HHBE), International Conference 2011, S 514–517

    Google Scholar 

  • Sundharam JA (1990) Podophyllin and its use in the treatment of condylomata acuminata. Indian J Dermatol Venereol Leprol 56(1):10

    Google Scholar 

  • Svindland HB (1984) Malignant transformation of condyloma acuminatum after treatment with podophyllin. Eur J Sex Transm Dis 1:165–167

    Google Scholar 

  • Thiersch JB (1963) Effect of Podophyllin (P) and Podophyllotoxine (PT) on the Rat Litter in utero. Proc Soc Exp Biol Med 113(1):124–127

    CAS  Google Scholar 

  • Wienert V (2004) Virus-induced anorectal diseases. Condylomata acuminata and herpes simplex. Der Hautarzt 55(3), 248–253

    Google Scholar 

Literatur zu Abschn. 4.1.2.3

  • Eriksson G, Pliura A, Fernandez-Lopez J, Blanco Silva R, Villani F, Bucci G, Casasoli M, Cherubini M, Lauteri M, Mattioni C, Monteverdi C, Sansotta A, Garrod G, Mavrogiannis M, Scarpa R, Spalato F, Aravanoupoulos P, Alizoti E, Drouzas A (2004) Management of genetic resources of the multi-purpose tree species Castanea sativa Mill. In III Int Chestnut Congr 693:373–386

    Google Scholar 

  • Hostettmann K (2005) Saponins. Cambridge University Press, S 18, ISBN 978-0-521-02017-6

    Google Scholar 

  • Jagels R (1985) Health hazards of natural and introduced chemical components of boatbuilding woods. Am J Ind Med 8(3):241–251

    CAS  PubMed  Google Scholar 

  • Kerner J, Mitchell J, Maibach HI (1973) Irritant contact dermatitis from agave americana L: incorrect use of sap as hair restorer. Arch Dermatol 108(1):102–103

    CAS  PubMed  Google Scholar 

  • Kofler L (1927) Historischer Rückblick. In Die Saponine, Springer, Vienna, S 1–4

    Google Scholar 

  • Lees DC, Lack HW, Rougerie R, Hernandez-Lopez A, Raus T, Avtzis ND, Augustin S, Lopez- C (2011) Tracking origins of invasive herbivores through herbaria and archival DNA: the case of the horse-chestnut leaf miner. Front Ecol Environ 9(6):322–328

    Google Scholar 

  • Lüning HU, Schlösser E (1976) Die Rolle von Saponinen im Resistenzmechanismus gegen Pilze. Z Pflanzenkrankheiten Pflanzenschutz 83(6):317–327

    Google Scholar 

  • Läuger P, Martin H, Müller P (1944) Über Konstitution und toxische Wirkung von natürlichen und neuen synthetischen insektentötenden Stoffen. Helv Chim Acta 27(1):892–928

    Google Scholar 

  • Londoño VG, Villa SA, Medina LO, Valencia VA, Maya WC (2014) Spermicidal activity of steroidal and triterpenoid saponins extracted from various plants. Revista Cubana de Plantas Medicinales 19(1):76–84

    Google Scholar 

  • Parmentier E (2012) Resistance of pearlfishes to saponins. In: Echinoderms in a Changing World: Proceedings of the 13th International Echinoderm Conference, January 5–9 2009, University of Tasmania, Hobart Tasmania, Australia. CRC Press, S 303

    Google Scholar 

  • Sherrow V (2006) Encyclopedia of hair: a cultural history. Greenwood Publishing Group, S 286

    Google Scholar 

  • Wagner G (2011) Waschmittel – Chemie, Umwelt, Nachhaltigkeit. Wiley, S 50

    Google Scholar 

Literatur zu Abschn. 4.1.2.3.1

  • Brunner F, Hoffmann C, Schuller-Petrovic S (2001) Responsiveness of human varicose saphenous veins to vasoactive agents. Br J Clin Pharmacol 51(3):219–224

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gepdiremen A, Mshvildadze V, Süleyman H, Elias R (2005) Acute anti-inflammatory activity of four saponins isolated from ivy: alpha-hederin, hederasaponin-C, hederacolchiside-E and hederacolchiside-F in carrageenan-induced rat paw edema. Phytomedicine 12(6–7):440–444

    CAS  PubMed  Google Scholar 

  • Hofmann D, Hecker M, Völp A (2003) Efficacy of dry extract of ivy leaves in children with bronchial asthma–a review of randomized controlled trials. Phytomedicine 10(2–3):213–220

    CAS  PubMed  Google Scholar 

  • Sirtori CR (2001) Aescin: pharmacology, pharmacokinetics and therapeutic profile. Pharmacol Res 44(3):183–193

    CAS  PubMed  Google Scholar 

  • Spoerke DG, Spoerke SE, Hall A, Rumack BH (1987) Toxicity of Cyclamen persium (Mill). Vet Hum Toxicol 29(3):250–251

    CAS  PubMed  Google Scholar 

  • Rabe E, Pannier F, Ko A, Berboth G, Hoffmann B, Hertel S (2010) Incidence of varicose veins, chronic venous insufficiency, and progression of the disease in the Bonn Vein Study II. J Vasc Surg 51(3):791

    Google Scholar 

  • Reznicek G, Jurenitsch J (1991) Der therapeutische Wert von Triterpensaponinen – Anspruch und Wirklichkeit. Pharm Unserer Zeit 20(6):278–281

    CAS  PubMed  Google Scholar 

Literatur zu Abschn. 4.1.2.3.2

  • Reich S, Altmeyer P, Stücker M (2006) Systemische medikamentöse Therapie von chronischen Venenerkrankungen – Systemic therapy of chronic venous diseases. Der Hautarzt 57(1):9–18

    CAS  PubMed  Google Scholar 

Literatur zu Abschn. 4.1.2.4

  • Anilkumar, M. (2010) 10. Ethnomedicinal plants as anti-inflammatory and analgesic agents. Ethnomedicine: A source of complementary therapeutics, 267–293

    Google Scholar 

  • Bradley PR (1992) British Herbal Compendium Vol. I, British Herbal Medicine Association, 222

    Google Scholar 

  • Chrubasik S, Eisenberg E, Balan E, Weinberger T, Luzzati R, Conradt C (2000) Treatment of low back pain exacerbations with willow bark extract: a randomized double-blind study. Am J Med 109(1):9–14

    CAS  PubMed  Google Scholar 

  • Schmid B, Tschirdewahn B, Kötter I, Günaydin I, Lüdtke R, Selbmann HK, Heide L (1998) Analgesic effects of willow bark extract in osteoarthritis: results of a clinical double-blind trial. Focus Altern Complement Ther 3(4):186

    Google Scholar 

  • Schmid B, Kötter I, Heide L (2001) Pharmacokinetics of salicin after oral administration of a standardised willow bark extract. Eur J Clin Pharmacol 57(5):387–391

    CAS  PubMed  Google Scholar 

  • Sontakke S, Thawani V, Gharpure KJ, Patel SB (2005) Herbals in osteoarthritis, Milestone, 25

    Google Scholar 

  • Vlachojannis J, Magora F, Chrubasik S (2011) Willow species and aspirin: different mechanism of actions. Phytotherapy Research 25(7):1102–1104

    CAS  PubMed  Google Scholar 

Literatur zu Abschn. 4.1.3

  • Kekulé A (1863) Terpene. In: Kekulé A (Autor) Lehrbuch der organischen Chemie. Ferdinand Enke, Erlangen. S 464–493

    Google Scholar 

  • Mendoza- I, Kutzner E, Huber C, Segura J, Eisenreich W, Arrillaga I (2015) Metabolic cross-talk between pathways of terpenoid backbone biosynthesis in spike lavender. Plant Physiol Biochem 95:113–120

    CAS  PubMed  Google Scholar 

Literatur zu Abschn. 4.1.3.1

  • Breitmaier E (1999) Diterpene. In: Terpene. Vieweg + Teubner, Wiesbaden, S 60–89

    Google Scholar 

  • Caesar GJ (53 v. Chr.) De bello Gallico. VI.Buch, 31, 5

    Google Scholar 

  • Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12(4):564–582

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hecker E (1985) Cell membrane associated protein kinase C as receptor of diterpene ester co-carcinogens of the tumor promoter type and the phenotypic expression of tumors. Arzneimittelforschung 35(12A):1890–1903

    CAS  PubMed  Google Scholar 

  • Kedei N, Lundberg DJ, Toth A, Welburn P, Garfield SH, Blumberg PM (2004) Characterization of the interaction of ingenol 3-angelate with protein kinase C. Can Res 64(9):3243–3255

    CAS  Google Scholar 

  • Keeling CI, Bohlmann J (2006) Diterpene resin acids in conifers. Phytochemistry 67(22):2415–2423

    CAS  PubMed  Google Scholar 

  • Kreibich G, Witte I, Hecker E (1971) On the biochemical mechanism of tumorigenesis in mouse skin. Z Krebsforschung und klinische Onkologie/Cancer Res Clin Oncol. Springer, Berlin, S 113–123

    Google Scholar 

  • Lampe KF (1988) Rhododendrons, mountain laurel, and mad honey. JAMA 259(13):2009

    CAS  PubMed  Google Scholar 

  • Li L, Shukla S, Lee A, Garfield SH, Maloney DJ, Ambudkar SV, Yuspa SH (2010) The skin cancer chemotherapeutic agent ingenol-3-angelate (PEP005) is a substrate for the epidermal multidrug transporter (ABCB1) and targets tumor vasculature. Cancer research, 0008-5472

    Google Scholar 

  • Maejima H, Kinoshita E, Seyama I, Yamaoka K (2003) Distinct sites regulating grayanotoxin binding and unbinding to D4S6 of Nav1. 4 sodium channel as revealed by improved estimation of toxin sensitivity. J Bio Chem

    Google Scholar 

  • Reininger WR (2012) Phytansäure, eine beinahe übersehene verzweigtkettige Fettsäure in der menschlichen Ernährung. Diplomarbeit, Universität Wien, Fakultät für Lebenswissenschaften

    Google Scholar 

  • Rosen RH, Gupta AK, Tyring SK (2012) Dual mechanism of action of ingenol mebutate gel for topical treatment of actinic keratoses: rapid lesion necrosis followed by lesion-specific immune response. J Am Acad Dermatol 66(3):486–493

    CAS  PubMed  Google Scholar 

  • Saraiva L, Fresco P, Pinto E, Portugal H, Gonçalves J (2001) Differential Activation by Daphnetoxin and Mezerein of PKC-Isotypes α, βI, δ and ζ. Planta Med 67(09):787–790

    CAS  PubMed  Google Scholar 

  • Szallasi A, Blumberg PM (1990) Resiniferatoxin and its analogs provide novel insights into the pharmacology of the vanilloid (capsaicin) receptor. Life Sci 47(16):1399–1408

    CAS  PubMed  Google Scholar 

Literatur zu Abschn. 4.1.3.1.1

Literatur zu Abschn. 4.1.3.1.2

  • Bala TM, Panda M (2006) No poinsettia this Christmas. South Med J 99(7):772–774

    PubMed  Google Scholar 

  • Crowder JI, Sexton RR (1964) Keratoconjunctivitis resulting from the sap of candelebra cactus and the pencil tree. Arch Ophthalmol 72(4):476–484

    CAS  PubMed  Google Scholar 

  • Evens ZN, Stellpflug SJ (2012) Holiday plants with toxic misconceptions. W J Emerg Med 13(6):538

    Google Scholar 

  • GIZ Bonn (2018) Weihnachtsstern (Euphorbia pulcherrima). http://www.gizbonn.de/245.0.html. Zugegriffen: 23. Dez. 2018

  • Gschwendt M, Hecker E (1974) Über die Wirkstoffe der Euphorbiaceen. J Cancer Res Clin Oncol 81(3):193–210

    CAS  Google Scholar 

  • Hausen BM, Schulz, KH (1977) Occupational contact dermatitis due to Croton (Codiaeum variegatum (L.) A. Juss var. pictum (Lodd.) Muell. Arg.) Sensitization by plants of the Euphorbiaceae. Contact Dermatitis 3(6):289–292

    Google Scholar 

  • Hausen BM (1988) Allergiepflanzen-Pflanzenallergene. Handbuch und Atlas der Allergie-induzierenden Wild- und Kulturpflanzen. Ecomed Landsberg, München

    Google Scholar 

  • Hausen BM (1997) Euphorbia pulcherrima. in: Hausen BM, Vieluf I (Hrsg.) Allergiepflanzen-Pflanzenallergene. Handbuch und Atlas der Allergie-induzierenden Wild- und Kulturpflanzen. Kontaktallergene. Allergische Frühreaktionen. Ecomed, Landsberg a. Lech. S 129

    Google Scholar 

  • Hecker E (1968) Cocarcinogenic principles from the seed oil of Croton tiglium and from other Euphorbiaceae. Can Res 28(11):2338–2348

    CAS  Google Scholar 

  • Hecker E, Schmidt R (1974) Phorbolesters—the irritants and cocarcinogens of Croton Tiglium L. In: Fortschritte der Chemie Organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products. Springer, Vienna, S 377–467

    Google Scholar 

  • Krenzelok EP, Jacobsen TD, Aronis JM (1996) Poinsettia exposures have good outcomes… just as we thought. Am J Emerg Med 14(7):671–674

    CAS  PubMed  Google Scholar 

  • Machholz R, Lewerenz HJ (1989) Carbonsäuren. In: Machholz R Lewerenz HJ (Hrsg.) Lebensmitteltoxikologie. Springer Verlag, Berlin, Heidelberg. S 208–213

    Google Scholar 

  • Mennel S, Müller C, Meyer CH (2005) Toxische Endophthalmitis. Der Ophthalmologe 102(11):1099–1101

    CAS  PubMed  Google Scholar 

  • Mizuno F, Osato T, Imai S, Koizumi S, Aya T, Kinoshita T, Hirai N, Hirota M, Ohigashi H, Koshimizu K (1986) Epstein-Barr virus-enhancing plant promoters in east Africa. AIDS research 2:151–155

    Google Scholar 

  • NC State Extension (North Carolina State University) Raleigh, NC/USA (2016a) Euphorbia milii.https://plants.ces.ncsu.edu/plants/all/euphorbia-milii/. Zugegriffen: 25. Dez. 2018

  • NC State Extension (North Carolina State University) Raleigh, NC/USA (2016b) Euphorbia lactea. https://plants.ces.ncsu.edu/plants/all/euphorbia-lactea/. Zugegriffen: 25. Dez. 2018

  • Paulsen E, Skov PS, Andersen KE (1998) Immediate skin and mucosal symptoms from pot plants and vegetables in gardeners and greenhouse workers. Contact Dermatitis 39(4):166–170

    CAS  PubMed  Google Scholar 

  • Santucci B, Picardo M, Cristaudo A (1985) Contact dermatitis from Euphorbia pulcherrima. Contact dermatitis 12(5):285–286

    CAS  PubMed  Google Scholar 

  • Schmidt H, ØLholm‐Larsen P (1977) Allergic contact dermatitis from croton (Codiaeum). Contact dermatitis 3(2):100–100

    Google Scholar 

  • U.S. National Plant Germplasm System (2017) Euphorbiaceae im Germplasm Resources Information Network (GRIN), USDA, ARS, National Genetic Resources Program. National Germplasm Resources Laboratory, Beltsville, Maryland. https://npgsweb.ars-grin.gov/gringlobal/taxonomyfamily.aspx?id=433. Zugegriffen: 25. Nov. 2018

  • Vincentz F (2006) Checklist: The succulent members of plant family Euphorbiaceae In: Sukkulente Euphorbien. https://dspace.jcu.cz/handle/123456789/12051. Zugegriffen: 25. Nov. 2018

    Google Scholar 

Literatur zu Abschn. 4.1.3.2

  • Aiken C, Chen CH (2005) Betulinic acid derivatives as HIV-1 antivirals. Trends in molecular medicine 11(1):31–36

    Google Scholar 

  • Blaschek W (1998) Iris. In: Blaschek W, Hänsel R, Keller K, Reichling J, Rimpler H, Schneider G (Hrsg.) Hagers Handbuch der pharmazeutischen Praxis. Drogen A-K. Springer, Berlin, Heidelberg. S 875–886. https://doi.org/10.1007/978-3-642-58928-7_9

  • Catchpole OJ, Grey JB, Noermark KA (2000) Fractionation of fish oils using supercritical CO2 and CO2+ ethanol mixtures. J Supercrit Fluids 19(1):25–37

    Google Scholar 

  • Connolly JD, Hill RA (1991) Description of main terpenoid types. Dictionary of terpenoids 1:21–22

    Google Scholar 

  • Drescher M, Bonakdar M (2001) Anreicherung des Kohlenwasserstoffes Squalen in einem Zwischenprodukt der Olivenölherstellung durch Extraktion mit verdichtetem Kohlendioxid. Chem Ing Tech 73(4):338–342

    Google Scholar 

  • Fernandez-Arche A, Saenz MT, Arroyo M, De la Puerta R, Garcia MD (2010) Topical anti-inflammatory effect of tirucallol, a triterpene isolated from Euphorbia lactea latex. Phytomedicine 17(2):146–148

    Google Scholar 

  • Fulda S, Kroemer G (2009) Targeting mitochondrial apoptosis by betulinic acid in human cancers. Drug Discov Today 14(17–18):885–890

    Google Scholar 

  • Galgon T, Wohlrab W, Dräger B (2005) Betulinic acid induces apoptosis in skin cancer cells and differentiation in normal human keratinocytes. Exp Dermatol 14(10):736–743

    Google Scholar 

  • Jäger S, Trojan H, Kopp T, Laszczyk MN, Scheffler A (2009) Pentacyclic triterpene distribution in various plants–rich sources for a new group of multi-potent plant extracts. Molecules 14(6):2016–2031

    Google Scholar 

  • Jäger-Becker D (2009) Adjuvantien stärke Grippe-Impfstoffe. Ärzte Zeitung. https://www.aerztezeitung.de/medizin/krankheiten/infektionskrankheiten/influenza_grippe/article/565265/adjuvantien-staerken-grippe-impfstoffe.html. Zugegriffen: 26. Dez. 2019

  • Król SK, Kielbus M, Rivero-Müller A, Stepulak A (2015) Comprehensive review on betulin as a potent anticancer agent. BioMed Research International. Volume 2015. Article ID 584189. http://dx.doi.org/10.1155/2015/584189. Zugegriffen: 27. Dez. 2018

  • Langdon RG, Bloch, K (1953) The biosynthesis of squalene. J Biol Chem 200(1):129–134

    Google Scholar 

  • Metelmann HR, Brandner JM, Schumann H, Bross F, Fimmers R, Böttger K, Scheffler A, Podmelle F (2015) Accelerated reepithelialization by triterpenes: proof of concept in the healing of surgical skin lesions. Skin Pharmacol Physiol 28:1–11

    Google Scholar 

  • Pappas A (2009) Epidermal surface lipids. Dermato-endocrinology 1(2):72–76

    Google Scholar 

  • Pisha E, Chai H, Lee IS, Chagwedera TE, Farnsworth NR, Cordell GA, Beecher CWW, Fong HHS, Kinghorn AD, Brown DM, Wani MC, Wall ME, Hieken TJ, Das Gupta TK, Pezzuto JM (1995) Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nat Med 1(10):1046–1051

    Google Scholar 

  • Poralla K (1982) Considerations on the evolution of steroids as membrane components. FEMS Microbiol Lett 13(2):131–135

    Google Scholar 

  • Ritter MC, Dempsey ME (1971) Specificity and role in cholesterol biosynthesis of a squalene and sterol carrier protein. J Biol Chem 246(5):1536–1539

    Google Scholar 

  • Ríos JL, Escandell JM, Recio MC (2005) New insights into the bioactivity of cucurbitacins. In: Studies in Natural Products Chemistry. Vol. 32. Elsevier, Amsterdam, NL. S 429–469

    Google Scholar 

  • Teuscher E (2010) Triterpene. In: Teuscher E, Lindequist U (Hrsg.) Biogene Amine. Wissenschaftliche Verlagsgesellschaft, Stuttgart. S 213

    Google Scholar 

  • Tsujimoto M (1916) A highly unsaturated hydrocarbon in shark liver oil. Ind Eng Chem 8(10):889–896

    Google Scholar 

Literatur zu Abschn. 4.1.3.2.1

  • Hartmann-Schreier J (2003) Cucurbitacine. In: Römpp Online. Georg Thieme. Zugegriffen: 21. Aug. 2018

    Google Scholar 

  • Hylands PJ, Mansour ES, and Oskoui MT (1980) Bryocoumaric Acid, a New Triterpene from 80/o- nia dioica. Chem Soc Perkin Trans. I, 2933–2936

    Google Scholar 

  • Krienke EG, von Mühlendahl KE (1978) Akzidentelle Vergiftungen durch Pflanzen, Teil III. Notfallmedizin 4:619

    Google Scholar 

  • Metcalf RL, Metcalf RA, Rhodes AM (1980). Cucurbitacins as kairomones for diabroticite beetles. Proc Natl Acad Sci 77(7):3769–3772

    Google Scholar 

  • Miro M (1995) Cucurbitacins and their pharmacological effects. Phytother Res 9(3):159–168

    Google Scholar 

  • Ríos JL, Escandell JM, Recio MC (2005) New insights into the bioactivity of cucurbitacins. In: Studies in Natural Products Chemistry. Vol. 32. Elsevier, Amsterdam, NL. S 429–469

    Google Scholar 

  • Teuscher E (2010) Triterpene. In: Teuscher E, Lindequist U (Hrsg.) Biogene Amine. Wissenschaftliche Verlagsgesellschaft, Stuttgart. S 215

    Google Scholar 

  • Ukiya M, Akihisa T, Yasukawa K, Tokuda H, Toriumi M, Koike K, Kimura Y, Nikaido T, Aoi W, Nishino H. Takido M (2002) Anti-inflammatory and anti-tumor-promoting effects of cucurbitane glycosides from the roots of Bryonia dioica. J Nat Prod 65(2):179–183

    Google Scholar 

  • Uzal FA, Puschner B, Tahara JM, Nordhausen RW (2005). Gossypol toxicosis in a dog consequent to ingestion of cottonseed bedding. J Vet Diagn Investig 17(6):626–629

    Google Scholar 

  • von Mühlendahl KE (2003) Wichtigste giftige Beeren und Pflanzen. In: Mühlendahl, von KE, Oberdisse U, Bunjes R, Brockstedt M (Hrsg.) Vergiftungen im Kindesalter, Thieme, Stuttgart, S 5

    Google Scholar 

Literatur zu Abschn. 4.1.3.2.2

  • Blaschek W (1998) Iris. In: Blaschek W, Hänsel R, Keller K, Reichling J, Rimpler H, Schneider G (Hrsg.) Hagers Handbuch der pharmazeutischen Praxis. Drogen A-K. Springer, Berlin, Heidelberg. S 875–886. https://doi.org/10.1007/978-3-642-58928-7_9

  • Christenhusz MJ, Byng JW (2016) The number of known plants species in the world and its annual increase. Phytotaxa 261(3):201–217. https://doi.org/10.11646/phytotaxa.261.3.1

  • Flückiger FA (1876) Ueber das Oel der Iriswurzel. Arch Pharm 208(6):481–487

    Google Scholar 

  • Marner FJ, Jaenicke L (1989) Die absolute Konfiguration der Iridale und Cycloiridale unterschiedlicher Herkunft. Helv Chim Acta 72(2):287–294

    Google Scholar 

Literatur Abschn. 4.1.4

  • Habermehl G, Ziemer P (1999) Abteilung Samenpflanzen, Unterabteilung Bedecktsamer. In: Mitteleuropäische Giftpflanzen und ihre Wirkstoffe. Springer, Berlin, S 45

    Google Scholar 

Literatur Abschn. 4.1.4.1

  • Feng S, Zeng W, Luo F, Zhao J, Yang Z, Sun Q (2010) Antibacterial activity of organic acids in aqueous extracts from pine needles (Pinus massoniana Lamb.). Food Sci Biotechnol 19(1):35–41

    Google Scholar 

  • Hänsel R (1968) Pflanzensäuren als Hauptwirkstoffe. In: Steinegger E, Hänsel R (Hrsg) Lehrbuch der allgemeinen Pharmakognosie, Springer, S 55–60

    Google Scholar 

Literatur Abschn. 4.1.4.1.1

  • Braun R, Fuhrmann GF, Legrum W, Steffen C (2013) Spezielle Toxikologie für Chemiker: Eine Auswahl toxischer Substanzen. Springer, S 82

    Google Scholar 

  • Kapur B M, Vandenbroucke AC, Adamchik Y, Lehotay DC, Carlen PL (2007) Formic acid, a novel metabolite of chronic ethanol abuse, causes neurotoxicity, which is prevented by folic acid. Alcohol: Clin Exp Res 31(12):2114–2120

    Google Scholar 

  • Malizia E, Reale C, Pietropaoli P, De Ritis GC (1977) Formic acid intoxications. Acta pharmacologica et toxicologica 41:342

    PubMed  Google Scholar 

  • Malorny G (1969) Die akute und chronische Toxizität der Ameisensäure und ihrer Formiate. Z Ernährungswiss 9(4):332–339

    CAS  PubMed  Google Scholar 

  • Mcmartin KE, Collins TD (1983) Role of ethanol metabolism in the alcohol-induced increase in urinary folate excretion in rats. Biochem Pharmacol 32(17):2549–2555

    CAS  PubMed  Google Scholar 

  • Rajan N, Rahim R, Kumar SK (1985) Formic acid poisoning with suicidal intent: a report of 53 cases. Postgrad Med J 61(711):35–36

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sicherheitsdatenblatt (2016) Ameisensäure 85%. https://www.carlroth.com/downloads/sdb/de/5/SDB_5355_DE_DE.pdf. Zugegriffen: 30. Dez. 2018

  • Striepling E, Möller M, Bisgwa F, Rudolf KD (2008) Akzidentelle Verätzung mit Ameisensäure – Kasuistik und Literaturübersicht. GMS Verbrennungsmedizin; 2:Doc02. http://www.egms.de/static/en/journals/vmed/2008-2/vmed000003.shtml. Zugegriffen: 30. Dez. 2018

  • Thoms HFM, Holfert J, Mylius E, Gilg E, Jordan KF (1917) Schule der Pharmazie: Chemischer Theil. Springer

    Google Scholar 

Literatur zu Abschn. 4.1.4.1.2

  • Charrier MJS, Savage GP, Vanhanen L (2002) Oxalate content and calcium binding capacity of tea and herbal teas. Asia Pac J Clin Nutr 11(4):298–301

    Google Scholar 

  • Daunderer M (1995) Lexikon der Pflanzen-und Tiergifte: Diagnostik und Therapie. Nikol

    Google Scholar 

  • Frohne D, Pfänder HJ (2004) Giftpflanzen. Ein Handbuch für Apotheker, Ärzte, Toxikologen und Biologen. Wissenschaftliche Verlagsgesellschaft, Stuttgart

    Google Scholar 

  • Habermehl G, Ziemer P (1999) Abteilung Samenpflanzen, Unterabteilung Bedecktsamer. In: Mitteleuropäische Giftpflanzen und ihre Wirkstoffe, Springer, Berlin, S 217

    Google Scholar 

  • Hess B, Zipperle L, Jaeger Ph (1993) Citrate and calcium effects on Tamm-Horsfall glycoprotein as a modifier of calcium oxalate crystal aggregation. Am J Physiol-Ren Physiol 265(6):F784–F791

    Google Scholar 

  • Hönow R, Gu KLR, Hesse A, Siener R (2010) Oxalate content of green tea of different origin, quality, preparation and time of harvest. Urol Res 38(5):377–381

    PubMed  Google Scholar 

  • Isensee E (1844) Geschichte der Medicin, Chirurgie, Geburtshülfe, Staatsarzneikunde, Pharmacie und Naturwissenschaften und ihrer Litteratur: Buch 5: Neuere und neueste Geschichte der Heilwissenschaften und ihrer Litteratur (Pharmacie, Materia medica, Chirurgie, Ohren-, Augen-, Zahn-Heilkunde und Geburtshülfe) (Bd 2). Nauck

    Google Scholar 

  • Libert B, Creed C (1985) Oxalate content of seventy-eight rhubarb cultivars and its relation to some other characters. J Hortic Sci 60(2):257–261

    CAS  Google Scholar 

  • Littledike ET, James L, Cook H (1976) Oxalate (Halogeton) poisoning of sheep: certain physiopathologic changes. Am J Vet Res 37(6):661–666

    CAS  PubMed  Google Scholar 

  • Machholz R, Lewerenz HJ (1989) Carbonsäuren. In: Machholz R Lewerenz HJ (Hrsg.) Lebensmitteltoxikologie. Springer Verlag, Berlin, Heidelberg. S 208–213

    Google Scholar 

  • Schweikart J (2013) Oxalat in Nahrung. https://www.oxalsaeure.net/oxalsaeurehaltige-lebensmittel/. Zugegriffen: 30. Dez. 2018

  • Noonan SC, Savage GP (1999) Oxalate content of foods and its effect on humans. Asia Pac J Clin Nutr 8(1): 64–74

    Google Scholar 

  • Weiß C (2009) Oxalsäure, Ernährungs-Umschau 11, S 636–639

    Google Scholar 

  • Wirth W, Gloxhuber C (1994) Toxikologie. Thieme, Stuttgart

    Google Scholar 

  • Yang JC, Loewus FA (1975) Metabolic conversion of L-ascorbic acid to oxalic acid in oxalate-accumulating plants. Plant Physiol 56(2):283–285

    CAS  PubMed  PubMed Central  Google Scholar 

Literatur zu Abschn. 4.1.4.2.1

  • Akbulut S, Semur H, Kose O, Ozhasenekler A, Celiktas M, Basbug M, Yagmur Y (2011) Phytocontact dermatitis due to Ranunculus arvensis mimicking burn injury: report of three cases and literature review. Int J Emerg Med 4(1):7

    PubMed  PubMed Central  Google Scholar 

  • Basiner A (1882) Poisoning with oil of Ranunculus, Anemonin and Cardol. Am J Pharm 1835–1907:130

    Google Scholar 

  • Bates N (2016) Acute plant poisoning in goats. Livestock 21(5):300–306

    Google Scholar 

  • Bonora A, Dall’Olio G, Donini A, Bruni A (1987) An HPLC screening of some Italian Ranunculaceae for the lactone protoanemonin. Phytochemistry 26(8):2277–2279

    CAS  Google Scholar 

  • Chao WGZ, Yuehuan W (1989) Studies on the extracts of three Ranunculaceae species and Protoanemonin for Bioassays. J Anhui Agric Univ 1:002

    Google Scholar 

  • Christenhusz MJ, Byng JW (2016) The number of known plants species in the world and its annual increase. Phytotaxa 261(3):201–217

    Google Scholar 

  • Degirmenci E, Duman N, Mat A, Bavunoglu I, Ikizceli I, Aktas C (2015) Phytocontact dermatitis: a case study/Fitokontakt Dermatit: Olgu Sunumu. Akademik Acil Tip Olgu Sunumlari Dergisi 6(3):66

    Google Scholar 

  • Dombrowski S (2014) Plants and plant parts. In: Riedel F, Gründling F, Maslo R, Schlagintweit B, Schumann R, Stephan K, Woese K (Hrsg) List of Substances of the Competent Federal Government and Federal State Authorities. Bundesamt für Verbraucherschutz und Lebensmittelsicherheit. Springer, S 9–141

    Google Scholar 

  • GIZ-Bonn.Zentrum für Kinderheilkunde.ukb (2018) Hahnenfuß Scharfer (Ranunculus acris). http://www.gizbonn.de/index.php?id=135. Zugegriffen: 7. Okt. 2018

  • Heinrich S (2008) Vorkommen von Giftpflanzen auf Wiesen und Weiden. Bakkalaureatsarbeit zur Erlangung der Würde einer Bakkalaurea der Naturwissenschaften. Veterinärmedizinischen Universität Wien und der Universität für Bodenkultur Wien. https://www.researchgate.net/profile/Silke_Schaumberger/publication/291945399_Vorkommen_von_Giftpflanzen_auf_Wiesen_und_Weiden_sowie_deren_Bedeutung_in_der_Pferdefutterung/links/56a9b11308ae7f592f0d9403.pdf

  • Hill R, Van Heyningen R (1951) Ranunculin: the precursor of the vesicant substance of the buttercup. Biochem J 49(3):332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mares D (1987) Antimicrobial activity of protoanemonin, a lactone from ranunculaceous plants. Mycopathologia 98(3):133–140

    CAS  PubMed  Google Scholar 

  • Martín ML, San Román L, Domínguez A (1990) In vitro activity of protoanemonin, an antifungal agent. Planta Med 56(01):66–69

    PubMed  Google Scholar 

  • Moore RHS (1971) Poisoning by Old Man’s Beard (Clematis vitalba). Veterinary Record 89(21):569

    Google Scholar 

  • Prieto JM, Recio MC, Giner RM, Máñez S, Rı́os (2003) Pharmacological approach to the pro-and anti-inflammatory effects of Ranunculus sceleratus L. J Ethnopharmacol 89(1):131–137

    CAS  PubMed  Google Scholar 

  • Takhtajan A (2009) Flowering plants. Springer. https://doi.org/10.1007/978-4020-9609-9

    Article  Google Scholar 

  • Teuscher E (2010) Herzwirksame Steroidglykoside. In: Teuscher E, Lindequist U (Autoren) Biogene Gifte, Wissenschaftl. Verlagsgesellschaft, Stuttgart, S 230

    Google Scholar 

  • Turan H, Sarici M, Turan A (2012) Irritant phytocontact dermatitis due to buttercup (ranunculaceae) in a geriatric patient. Turkish Journal of Geriatrics, 15(4)

    Google Scholar 

  • Ucmak D, Ayhan E, Meltem Z, Ucak H (2014) Presentation of three cases with phyto contact dermatitis caused by Ranunculus and Anthemis genera. J Dermatol Treat 25(6):467–469

    Google Scholar 

Literatur zu Abschn. 4.2.1

  • Albrecht J, Wiesmann M (2006) Das olfaktorische System des Menschen. Der Nervenarzt 77(8):931–939

    CAS  PubMed  Google Scholar 

  • Christoph F (2001) Chemische Zusammensetzung und antimikrobielle Eigenschaften der ätherischen Öle von Leptospermum scoparium JR et G. Forst. und anderer Teebaumöle der Gattungen Kunzea, Leptospermum und Melaleuca unter besonderer Berücksichtigung von Handelsölen

    Google Scholar 

  • EU-Verordnung (EG) Nr. 1907/2006 (REACH) über die Registrierung, Bewertung, Zulassung und Beschränkung von Chemikalien. Amtsblatt der Europäischen Union vom 29.05.2007. L136/129-L136/139. https://echa.europa.eu/de/regulations/reach/understanding-reach. Zugegriffen: 7. Jan. 2019

  • EU-Verordnung (EG) Nr. 1272/2008 über die Einstufung, Kennzeichnung und Verpackung von Stoffen und Gemischen. https://echa.europa.eu/de/web/guest/regulations/clp/legislation. Zugegriffen: 7. Jan. 2019

  • Engl A, Schmelzer A, Risch B (2018) Chemie Pur-Unterrichten in der Natur: Ätherischen Ölen auf der Spur. CHEMKON 25(1):7–15

    Google Scholar 

  • Frings S, Müller F (2014) Riechen. In: Biologie der Sinne. Springer Spektrum, Berlin, S 95–116

    Google Scholar 

  • Haagen-Smit AJ, Kisser JG (1958) The lower terpenes. In Der Stoffwechsel Sekundärer Pflanzenstoffe/The Metabolism of Secondary Plant Products. Springer, Berlin, S 52–131

    Google Scholar 

  • Hänsel R (1968) Ätherische Öle, Harze und Balsame. In: Steinegger E, Hänsel R (Hrsg) Lehrbuch der Pharmakognosie – Auf phytochemischer Grundlage. Springer Berlin, S 407

    Google Scholar 

  • Hagvall L, Bäcktorp C, Svensson S, Nyman G, Börje A, Karlberg AT (2007) Fragrance compound geraniol forms contact allergens on air exposure. Identification and quantification of oxidation products and effect on skin sensitization. Chem Res Toxicol 20(5):807–814

    Google Scholar 

  • Heinrich J (2007) Das olfaktorische System beim Menschen: Der Einfluss von Gerüchen auf das Verhalten. (Examensarbeit 2006 im Fachbereich Biologie der Ernst Moritz Arndt Universität, Greifswald). GRIN

    Google Scholar 

  • Legrum W (2011) Aromastoffe in Lebensmitteln. In Riechstoffe, zwischen Gestank und Duft, Vieweg + Teubner, S 83–116

    Google Scholar 

  • Martin K, Allgaier C (2011) Wechselbeziehungen zwischen Pflanzen und Phytophagen. In Ökologie der Biozönosen. Springer, Berlin, S 27–70

    Google Scholar 

  • Nagorka R, Straff W, Wolter E (2016) Duftstoffe. Produktspezifische Regelungen. Umweltbundesamt (Hrsg). Ratgeber Duftstoffe chemische Begleiter des Alltags. Broschüre

    Google Scholar 

  • Passreiter CM (2009) Verwendung Ätherischer Öle in Phyto-und Aromatherapie. CME-Beitrag Pharmazeutische Wissenschaft. Apotheken-Magazin, 8–14

    Google Scholar 

  • Reichling J, Gachnian-Mirtscheva R, Frater-Schröder M, Saller R, Rabinovich MI, Widmaier W (2008) Sekundäre Pflanzeninhaltsstoffe—phytochemische und phytopharmakologische Grundlagen. In: Heilpflanzenkunde für die Veterinärpraxis, S 33–39

    Google Scholar 

  • Sattelberger R, Gauch H (2004) Humanbiomonitoring von Moschusduftstoffen. Endbericht an das Bundesministerium für Gesundheit und Frauen. BMGF, Wien

    Google Scholar 

  • Sticher O (2007) Ätherische Öle und Drogen, die ätherisches Öl enthalten. In: Hänsel R, Sticher O (Hrsg) Pharmakognosie—Phytopharmazie Springer. Heidelberg, Berlin, S 1023–1140

    Google Scholar 

  • Turek C, Stintzing FC (2013) Stability of essential oils: a review. Compr Rev Food Sci Food Saf 12(1):40–53

    CAS  Google Scholar 

  • Verband Deutscher Riechstoffhersteller (2019) Duft erklären. http://duftstoffverband.de/dufterschaffen/musik-fuer-die-nase/. Zugegriffen: 8. Jan. 2019

Literatur zu Abschn. 4.2.1.1 :

  • Beer AM, Matreitz T (2013) Zur Anwendung ätherischer Öle im Krankenhaus. Zeitschrift für Phytotherapie, 34(04), 158–163

    Google Scholar 

  • Demleitner M, Struck D (2011) Aromatherapie: Grundlagen, Wirkprinzipien, Praxis. Elsevier, Urban & Fischer Verlag, München

    Google Scholar 

  • Hausen BM (1997) Teil I: Allergische Spätreaktionen in: Hausen BM, Vieluf I: Allergiepflanzen, Pflanzenallergene: Handbuch und Atlas der allergie-induzierenden Wild-und Kulturpflanzen: Kontaktallergene, allergische Frühreaktionen. ecomed, München, S 26–42

    Google Scholar 

  • Kasanen, JP, Pasanen AL, Pasanen P, Liesivuori J, Kosma VM, Alarie Y (1999) Evaluation of sensory irritation of 3-carene and turpentine, and acceptable levels of monoterpenes in occupational and indoor environment. J Toxicoe. Br J Dermatol 156(3):510–515

    Google Scholar 

  • Mücke W, Lemmen C (2010) Geruchsstoffe. In: Mücke W, Lemmen C (Hrsg.) Duft und Geruch: Wirkung und gesundheitliche Bedeutung von Geruchsstoffen. ecomed Medizin, Hüthe Jehling Rehm GmbH, München. S 54

    Google Scholar 

  • Ross SA, ElSohly MA (1996) The volatile oil composition of fresh and air-dried buds of Cannabis sativa. J Nat Prod 59(1):49–51

    Google Scholar 

  • Schnaubelt K, Pütz J (1995) Neue Aromatherapie. Egmont vgs-Verlagsgesellschaft, Köln

    Google Scholar 

Literatur zu Abschn. 4.2.1.1.1

  • Allah MA, Foda YH, Saleh M, Zaki MSA, Mostafa MM (1975) Identification of the volatile constituents of the Egyptian lemongrass oil Part I. Gas chromatographic analysis. Food/Nahrung 19(3):195–200

    Google Scholar 

  • Aschan O (1903) Die Konstitution des Kamphers und seiner wichtigsten Derivate: die theoretischen Ergebnisse der Kampherforschung monographisch Dargestellt. F. Vieweg und Sohn

    Google Scholar 

  • Astani A, Reichling J, Schnitzler P (2010) Comparative study on the antiviral activity of selected monoterpenes derived from essential oils. Phytotherapy Res: Int J Devoted Pharmacol Toxicol Eval Nat Prod Deriv 24(5):673–679

    CAS  Google Scholar 

  • Babu KG, Singh B, Joshi VP, Singh V (2002) Essential oil composition of Damask rose (Rosa damascena Mill.) distilled under different pressures and temperatures. Flavour Fragrance J 17(2):136–140

    Google Scholar 

  • Badi HN, Yazdani D, Ali SM, Nazari F (2004) Effects of spacing and harvesting time on herbage yield and quality/quantity of oil in thyme, Thymus vulgaris L. Ind Crops Prod 19(3):231–236

    Google Scholar 

  • Basch E, Ulbricht C, Hammerness P, Bevins A, Sollars D (2004) Thyme (Thymus vulgaris L.), thymol.J Herbal Pharmacother 4(1):49–67

    Google Scholar 

  • Baydar H, Baydar NG (2005) The effects of harvest date, fermentation duration and Tween 20 treatment on essential oil content and composition of industrial oil rose (Rosa damascena Mill.). Industrial Crops and Products 21(2):251–255

    Google Scholar 

  • Bayrak A, Akgül A (1994) Volatile oil composition of Turkish rose (Rosa damascena). J Sci Food Agric 64(4):441–448

    CAS  Google Scholar 

  • Behr A, Johnen L (2009) Myrcene as a natural base chemical in sustainable chemistry: a critical review. ChemSusChem: Chemistry & Sustainability Energy & Materials 2(12):1072–1095

    Google Scholar 

  • Berger RG (2012) Riechstoffe, zwischen Gestank und Duft. Vorkommen, Eigenschaften und Anwendung von Riechstoffen und deren Gemischen. In Legrum W (Hrsg) Angewandte Chemie 124(13):3112–3112

    Google Scholar 

  • BG RCI (2000) Toxikologische Bewertung Nr.259 Thymol 06/00, BG Chemie. https://www.google.com/search?q=kontaktallergien+thymol. Zugegriffen: 11. Aug. 2019

  • Bickers D, Calow P, Greim H, Hanifin JM, Rogers AE, Saurat JH, Sipes IG, Smith RL, Tagami H (2003) A toxicologic and dermatologic assessment of linalool and related esters when used as fragrance ingredients. Food Chem Toxicol 41(7):919–942

    CAS  PubMed  Google Scholar 

  • Bleumink E, Mitchell JC, Nater JP (1973) Allergic contact dermatitis from cedar wood (Thuja plicata). Br J Dermatol 88(5):499–504

    CAS  PubMed  Google Scholar 

  • Bonamin F, Moraes TM, Dos Santos RC, Kushima H, Faria FM, Silva MA, Junior IV, Nogueira L, Bauab TM, Souza Brito ARM, da Rocha LR, Hiruma CA (2014) The effect of a minor constituent of essential oil from Citrus aurantium: The role of β-myrcene in preventing peptic ulcer disease. Chem Biol Interact 212:11–19

    CAS  PubMed  Google Scholar 

  • Bradberry SM, Cage SA, Proudfoot AT, Vale JA (2005) Poisoning due to pyrethroids. Toxicol Rev 24(2):93–106

    CAS  PubMed  Google Scholar 

  • Breitmeier E (1999) Terpene. Teubner Studienbücher. Stuttgart, Leipzig, S 21

    Google Scholar 

  • Breitmeier E (2005) Terpene: Aromen, Düfte, Pharmaka, Pheromone: Aromen, Dufte, Pharmaka, Wiley VHC

    Google Scholar 

  • Brito RG, Guimarães AG, Quintans JS, Santos MR, De Sousa DP, Badaue-Passos D Jr, de Lucca W, Jr BFA, Barreto EO, Oliveira AP, Quintans LJ (2012) Citronellol, a monoterpene alcohol, reduces nociceptive and inflammatory activities in rodents. J Nat Med 66(4):637–644

    Google Scholar 

  • Caputi L, Aprea E (2011) Use of terpenoids as natural flavouring compounds in food industry. Recent Pat Food, Nutr & Agric 3(1):9–16

    CAS  Google Scholar 

  • Chen W, Viljoen AM (2010) Geraniol—a review of a commercially important fragrance material. S Afr J Bot 76(4):643–651

    CAS  Google Scholar 

  • Chialva F, Doglia G, Gabri G, Aime S, Milone L (1976) Isolamento et identificazione del cis-e trans-epocsiocimene nell'olio essenziale of Artemisia absinthium Linn. italiana. Riv. ital. essenze, profumi, piante offic., aromi, saponi, cosmet., aerozol, 58(10):522–526

    Google Scholar 

  • Christensson JB, Andersen KE, Bruze M, Johansen JD, Garcia-Bravo B, Gimenez A, Goh CL, Nixon R, White IR (2012) Air-oxidized linalool–a frequent cause of fragrance contact allergy. Contact Dermatitis 67(5):247–259

    CAS  Google Scholar 

  • Ciftci O, Ozdemir I, Tanyildizi S, Yildiz S, Oguzturk H (2011) Antioxidative effects of curcumin, β-myrcene and 1, 8-cineole against 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin-induced oxidative stress in rats liver. Toxicol Ind Health 27(5):447–453

    CAS  PubMed  Google Scholar 

  • Cole ER, Dos Santos RB, Lacerda V, Martins JDL, Greco SJ, Cunha Neto A (2014) Chemical composition of essential oil from ripe fruit of Schinus terebinthifolius Raddi and evaluation of its activity against wild strains of hospital origin. Brazilian J Microbiol 45(3):821–828

    CAS  Google Scholar 

  • Daphi J, Raddatz H, Müller R (2010) Untersuchung von Riechstoffen-Kontrollierte Düfte. HighChem-Aktuelles aus der Lebensmittelchemie 5:94–95

    Google Scholar 

  • Diepgen TL, Dickel H, Becker D, Geier J, Mahler V, Schmidt A, Schwanitz HJ †, Skudlik C, Wagner E, Wehrmann W, Weisshaar E, Werfel T, Blome O (2005) Evidenzbasierte Beurteilung der Auswirkung von Typ-IV-Allergien bei der Minderung der Erwerbsfähigkeit (Evidence-based evaluation of the occupational relevance of different delayed type sensitizations or allergens) Der Hautarzt, 56(3):207–223

    Google Scholar 

  • Elumalai S, Kesavan R, Ramganesh S, Murugesan R (2011) Isolation, purification and identification of the anti-diabetic components from Cinnamomum zeylanicum and Cinnamomum cassia bark oil extracts. Current Botany

    Google Scholar 

  • Eriksson KA, Stjernberg NL, Levin JO, Hammarström U, Ledin MC (1996) Terpene exposure and respiratory effects among sawmill workers. Scand J Work Environ Health 22:182–190

    CAS  PubMed  Google Scholar 

  • Fretz TA, Sydnor TD, Cobbs MR (1976) Monoterpene composition of foliage of 9 Juniperus species. Sci Hortic 5(1):85–91

    CAS  Google Scholar 

  • Gershenzon J, Croteau R (1990) Regulation of monoterpene biosynthesis in higher plants. In Biochemistry of the mevalonic acid pathway to terpenoids. Springer, Boston, MA. S 99–160

    Google Scholar 

  • Gessner O, Orzechowski G (1974) Die Giftpflanzen und Arzneipflanzen von Mitteleuropa. Universitätsverlag Winter

    Google Scholar 

  • Grosse Y, Loomis D, Guyton KZ, Ghissassi FEl, Bouvard V, Benbrahim-Tallaa L, Mattock H, Straif K and Monograph Working Group (2017) Some chemicals that cause tumours of the urinary tract in rodents. Lancet Oncol 18(8):1003

    Google Scholar 

  • Gurova AI, Grinina OV, Smoliar N, Drozhzhina NA, Zasorina IN (1986) Evaluation of the toxicity of chrysanthemic acid and its derivatives. Gig Sanit 1:16–18

    Google Scholar 

  • Hagvall L, Bäcktorp C, Svensson S, Nyman G, Börje A, Karlberg AT (2007) Fragrance compound geraniol forms contact allergens on air exposure. Identification and quantification of oxidation products and effect on skin sensitization. Chem Res Toxicol 20(5):807–814

    Google Scholar 

  • Hartmann-Schreier J (2003) Citronellole. In: Römpp- online Lexikon Chemie. Thieme. https://roempp.thieme.de/roempp4.0/do/data/RD-03-01937. Zugegriffen: 20. Jan. 2019

  • Hartmann-Schreier J, Menzel M (2010) Geraniol. In: Römpp-online Lexikon Chemie. Thieme. https://roempp.thieme.de/roempp4.0/do/data/RD-07-00782. Zugegriffen: 20. Jan. 2019

  • Hausen BM, Reichling J, Harkenthal M (1999) Degradation products of monoterpenes are the sensitizing agents in tea tree oil. Am J Contact Dermatitis 10(2):68–77

    CAS  Google Scholar 

  • Hausen BM, Kuhlwein A, Schulz KH (1982) Colophony allergy. A contribution to the origin, chemistry, and uses of colophony and modified colophony products, 1. Dermatosen in Beruf und Umwelt. Occupation and environment 30(4):107–115

    Google Scholar 

  • Hausen BM (1997) Teil I: Allergische Spätreaktionen. in: Hausen BM, Vieluf I (Hrsg.): Allergiepflanzen, Pflanzenallergene: Handbuch und Atlas der allergie-induzierenden Wild-und Kulturpflanzen: Kontaktallergene, allergische Frühreaktionen. ecomed, Landsberg a. Lech. S 26–42

    Google Scholar 

  • Heydorn S, Menne T, Andersen KE, Bruze M, Svedman C, White IR, Basketter DA (2003) Citral a fragrance allergen and irritant. Contact dermatitis 49(1):32–36

    CAS  PubMed  Google Scholar 

  • Holopainen M, Hiltunen R, von Schantz M (1987) A study on tansy chemotypes. Planta Med 53(03):284–287

    CAS  PubMed  Google Scholar 

  • Holzmann, G., Wangelin, M., & Bruns, R. (2012). Chemische Grundlagen zu den Baustoffen. In Natürliche und pflanzliche Baustoffe, Vieweg+ Teubner, S 25–53

    Google Scholar 

  • Inui T, Tsuchiya F, Ishimaru M, Oka K, Komura H (2013) Different beers with different hops. Relevant compounds for their aroma characteristics. J Agric Food Chem 61(20):4758–4764

    Google Scholar 

  • Inouye S, Uchida K, Yamaguchi H (2001) In-vitro and in-vivo anti-Trichophyton activity of essential oils by vapour contact. Mycoses 44(3–4):99–107

    CAS  PubMed  Google Scholar 

  • Jonas M (2018) Charakterisierung geruchsaktiver und physiologisch aktiver Aromastoffe in Salbei und Rosmarin (Dissertation, Technische Universität München)

    Google Scholar 

  • Jost M, Rüegger M, Gutzwiller A, Liechti B, Wolf R (2003) Verhütung von Berufskrankheiten in pathologisch-anatomischen Instituten und histologischen Laboratorien. Suva. S 19. http://www.sohf.ch/Themes/Labo/2869_25_D.pdf. Zugegriffen: 13. Jan. 2019

  • Jouhar AJ (1991) Poucher's Perfumes, cosmetics and soaps. Vol.1 The Raw Materials of Perfumery. Chapman and Hall, London

    Google Scholar 

  • Juergens UR, Dethlefsen U, Steinkamp G, Gillissen A, Repges R, Vetter H (2003) Anti-inflammatory activity of 1.8-cineol (eucalyptol) in bronchial asthma: a double-blind placebo-controlled trial. Respir Med 97(3):250–256

    Google Scholar 

  • Karlberg AT, Börje A, Duus J, Lidén C, Rastogi S, Roberts D, Uter W, White IR (2013) Activation of non-sensitizing or low-sensitizing fragrance substances into potent sensitizers–prehaptens and prohaptens. Contact Dermatitis 69(6):323–334

    CAS  PubMed  Google Scholar 

  • Karlberg AT, Börje A, Duus Johansen J, Lidén C, Rastogi S, Roberts D, Uter W, White IR (2013) Activation of non‐sensitizing or low‐sensitizing fragrance substances into potent sensitizers–prehaptens and prohaptens. Contact Dermatitis 69(6):323–334

    Google Scholar 

  • Kawashima K, Miwa Y, Kimura M, Mizutani K, Hayashi A, Tanaka O (1985) Diuretic action of paeonol. Planta Med 51(03):187–189

    Google Scholar 

  • Kofidis G, Bosabalidis A, Kokkini S (2004) Seasonal variation of essential oils in a linalool-rich chemotype of Mentha spicata grown wild in Greece. J Essent Oil Res 16(5):469–472

    CAS  Google Scholar 

  • Kusumi T, Uchida H, Inouye Y, Ishitsuka M, Yamamoto H, Kakisawa H (1987) Novel cytotoxic monoterpenes having a halogenated tetrahydropyran from Aplysia kurodai. J Org Chem 52(20):4597–4600

    CAS  Google Scholar 

  • Lee TY, Lam TH (1989) Irritant contact dermatitis due to the herbal oil, Black Man Oil. Contact Dermatitis 20(3):229–230

    CAS  PubMed  Google Scholar 

  • Li J, Jongsma MA, Wang CY (2014) Comparative analysis of pyrethrin content improvement by mass selection, family selection and polycross in pyrethrum [Tanacetum cinerariifolium (Trevir.) Sch. Bip.] populations. Ind Crops Prod 53:268–273

    CAS  Google Scholar 

  • Ludewig R (1999) Akute Vergiftungen. Fischer, Jena

    Google Scholar 

  • Mabberly DJ (1997) The plant book. A portable dictionary of the vascular plants. Cambridge University Press

    Google Scholar 

  • Malkiewicz K, Andersson L (2015) Stoffbewertung für Citronellal. Co RAP (Community rolling action plan) https://echa.europa.eu/de/information-on-chemicals/evaluation/community-rolling-action-plan/corap-table/-/dislist/details/0b0236e1807e8de0 Zugegriffen: 20. Jan. 2019

  • Marchese A, Orhan IE, Daglia M, Barbieri R, Di Lorenzo A, Nabavi SF, Gortzi O, Izadi M, Nabavi SM (2016) Antibacterial and antifungal activities of thymol: a brief review of the literature. Food Chem 210:402–414

    CAS  PubMed  Google Scholar 

  • Marongiu B, Piras A, Porcedda S (2004) Comparative analysis of the oil and supercritical CO2 extract of Elettaria cardamomum (L.) Maton. J Agric Food Chem 52(20):6278–6282

    Google Scholar 

  • Matura M, Goossens A, Bordalo O, Garcia-Bravo B, Magnussona K, Wrangsjö K, Karlberg AT (2002) Oxidized citrus oil (R-limonene): a frequent skin sensitizer in Europe. J Am Acad Dermatol 47(5):709–714

    PubMed  Google Scholar 

  • Matura M, Sköld M, Börje A, Andersen KE, Bruze M, Frosch P, Goossenns A, Johansen JD, Svedman C, White IR, Karlberg AT (2005) Selected oxidized fragrance terpenes are common contact allergens. Contact Dermatitis 52(6):320–328

    CAS  PubMed  Google Scholar 

  • Menzel M (2009) Linalool. In: Römpp-online Lexikon Chemie. Thieme. https://roempp.thieme.de/roempp4.0/do/data/RD-12-01184. Zugegriffen: 20. Jan. 2019

  • Merck (2010) Myrcen. Sicherheitsdatenblatt gemäß Verordnung (EG) Nr. 1907/2006. Sicherheitsdatenblatt – Merck Millipore (PDF). Zugegriffen: 11. Aug. 2019

    Google Scholar 

  • Mersch-Sundermann V (2007) Gesundheitliche Bewertung von alpha-Pinen in der Innenraumluft-aktueller Erkenntnisstand. Umweltmedizin in Forschung und Praxis 12(3):129

    CAS  Google Scholar 

  • Montag A (1997) Bedarfsgegenstände: Recht-Technologie-Chemie-Wechselwirkungen; Eine Einführung. (unter Mitwirkung von Andreas Montag) Behr’s Verlag, Hamburg

    Google Scholar 

  • Möschlin S (1986) Klinik und Therapie der Vergiftungen

    Google Scholar 

  • Nagtegaal MJ, Pentinga SE, Kuik J, Kezic S, Rustemeyer T (2012) The role of the skin irritation response in polysensitization to fragrances. Contact dermatitis 67(1):28–35

    CAS  PubMed  Google Scholar 

  • Nhu TT, Casabianca H, Grenier-Loustalot MF (2006) Deuterium/hydrogen ratio analysis of thymol, carvacrol, γ-terpinene and p-cymene in thyme, savory and oregano essential oils by gas chromatography–pyrolysis–isotope ratio mass spectrometry. J Chromatogr A 1132(1–2):219–227

    CAS  PubMed  Google Scholar 

  • Nielsen GD, Larsen ST, Larsen ST, Hougaard KS, Hammer M, Wolkoff P, Clausenn PA, Wilkins CK, Alarie Y (2005) Mechanisms of acute inhalation of (+) and (–)-α-Pinene in BALB/c mice. Basic Clin Pharmacol Toxicol 96:420–428

    CAS  PubMed  Google Scholar 

  • Pascual TJ de, Barrero A, Caballero A, Caballero M, San Feliciano A (1978) Components of berries of Juniperus sabina L hydrocarbons of essential oil. In: Anales de Quimica 74(7–8):1093–1096

    Google Scholar 

  • Pelkonen O, Abass K, Wiesner J (2013) Thujone and thujone-containing herbal medicinal and botanical products: Toxicological assessment. Regul Toxicol Pharmacol 65(1):100–107

    CAS  PubMed  Google Scholar 

  • Penagos H, Manuskiatti W, Abrams K, Hogan DJ, Maibach HI, O’Malley M (2001) The reported skin effects of pesticides by use and structural category. In: Penagos H, O’Malley M, Maibach HI (Hrsg) Pesticide Dermatoses. CRC Press, Boca Raton, S 102

    Google Scholar 

  • Peterson A, Machmudah S, Roy BC, Goto M, Sasaki M, Hirose T (2006) Extraction of essential oil from geranium (Pelargonium graveolens) with supercritical carbon dioxide. J Chem Tech Biotechnol: Int Res Process, Environ Clean Technol 81(2):167–172

    CAS  Google Scholar 

  • Pfalzgraf A, Rohn S (2015) Bedarfsgegenstände: Materialien – Chemie – Wechselwirkungen – Konformität. Behr’s Verlag

    Google Scholar 

  • Pitarević I, Kuftinec J, Blažević N, Kuštrak D (1984) Seasonal variation of essential oil yield and composition of dalmatian sage, Salvia officinalis. J Nat Prod 47(3):409–412

    Google Scholar 

  • Raina VK, Srivastava SK, Aggarwal KK, Syamasundar KV, Khanuja SPS (2003) Essential oil composition of Cymbopogon martinii from different places in India. Flavour Fragr J 18(4):312–315

    Google Scholar 

  • Rapp A, Suckrau I, Versini G (1993) Untersuchungen des Trauben-und Weinaromas. Z Lebensmitteluntersuchung Forsch A 197(3):249–254

    CAS  Google Scholar 

  • Sacchetti G, Maietti S, Muzzoli M, Scaglianti M, Manfredini S, Radice M, Bruni R (2005) Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chem 91(4):621–632

    CAS  Google Scholar 

  • Sacco T, Chialva F (1988) Chemical characteristics of the oil from Artemisia absinthium collected in Patagony (Argentina). Planta Med 54(01):93–93

    CAS  PubMed  Google Scholar 

  • Satar S (1984) Single and double terpenes in etheric oil of Mongolian juniper type. Pharmazie 39(1):66

    CAS  Google Scholar 

  • SCCS (2012) How can fragrance substance become skin allergens. https://ec.europa.eu/health/scientific_committees/opinions_layman/perfume-allergies/en/l-3/3-becoming-allergens.htm. Zugegriffen: 11. Aug. 2019

  • Schiller KH (2002) Wirkungen von Zubereitungen aus Humulus lupulus L. in pharmakologischen Modellen. Mathematisch-Naturwissenschaftliche Fakultät, Westfälische Wilhelms-Universität Münster. Dissertation, S 1–155. https://d-nb.info/967390389/34. Zugegriffen: 11. Aug. 2019

  • Sezik E, Yeşilada E, Honda G, Takaishi Y, Takeda Y, Tanaka T (2001) Traditional medicine in Turkey X. Folk medicine in central Anatolia. J Ethnopharmacol, 75(2–3):95–115

    Google Scholar 

  • Shafer TJ, Meyer DA (2004) Effects of pyrethroids on voltage-sensitive calcium channels: a critical evaluation of strengths, weaknesses, data needs, and relationship to assessment of cumulative neurotoxicity. Toxicol Appl Pharmacol 196(2):303–318

    CAS  PubMed  Google Scholar 

  • Shafer TJ, Meyer DA, Crofton KM (2004) Developmental neurotoxicity of pyrethroid insecticides: critical review and future research needs. Environ Health Perspect 113(2):123–136

    PubMed Central  Google Scholar 

  • Shaw PE (1979) Review of quantitative analyses of citrus essential oils. J Agric Food Chem 27(2):246–257

    CAS  Google Scholar 

  • Silva AB, Silva T, Franco ES, Rabelo SA, Lima ER, Mota RA, Da Camara CAG, Pontes-Filho T, Lima-Filho JV (2010) Antibacterial activity, chemical composition, and cytotoxicity of leaf’s essential oil from Brazilian pepper tree (Schinus terebinthifolius, Raddi). Braz J Microbiol 41(1):158–163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soran ML, Varodi C, Cobzac SC, Lung I (2011) Essentials oils determination from Satureja hortensis L. by chromatographic techniques. J Essent Oil Bearing Plants 14(6):699–707

    Google Scholar 

  • Sulman E, Matveeva V, Doluda V, Nicoshvili L, Bronstein L, Valetsky P, Tsvetkova I (2006) Nanostructured catalysts for the synthesis of vitamin intermediate products. Top Catal 39(3–4):187–190

    CAS  Google Scholar 

  • Tetenyi P, Kaposi P, Hethelyi E (1975) Variations in the essential oils of Tanacetum vulgare. Phytochemistry 14(7):1539–1544

    CAS  Google Scholar 

  • Tornier C, Rosdy M, Maibach HI (2006) In vitro skin irritation testing on reconstituted human epidermis: reproducibility for 50 chemicals tested with two protocols. Toxicol In Vitro 20(4):401–416

    CAS  PubMed  Google Scholar 

  • Treudler R, Richter G, Geier J, Schnuch A, Orfanos CE, Tebbe B (2000) Increase in sensitization to oil of turpentine: recent data from a Multicenter Study on 45,005 patients from the German-Austrian Information Network of Departments of Dermatology (IVDK). Contact Dermatitis 42(2):68–73

    CAS  PubMed  Google Scholar 

  • Vilaplana J, Romaguera C (2000) Allergic contact dermatitis due to eucalyptol in an anti-inflammatory cream. Contact Dermatitis 43(2):118

    CAS  PubMed  Google Scholar 

  • Vostrowsky O, Brosche T, Ihm H, Zintl R, Knobloch K (1981) On the essential oil components in Artemisia absinthium. Z Naturforsch 36:369–377

    Google Scholar 

  • Yatagai M, Sato T, Takahashi T (1985) Terpenes of leaf oils from Cupressaceae. Biochem Syst Ecol 13(4):377–385

    CAS  Google Scholar 

  • Zeković ZP, Lepojević ZD, Mujić IO (2009) Laurel extracts obtained by steam distillation, supercritical fluid and solvent extraction. J Nat Prod 2:104–109

    Google Scholar 

Literatur zu Abschn. 4.2.1.1.2

  • Drew DP, Krichau N, Reichwald K, Simonsen HT (2009) Guaianolides in apiaceae: perspectives on pharmacology and biosynthesis. Phytochem Rev 8(3):581–599

    CAS  Google Scholar 

  • Park SH, Choi SU, Lee CO, Yoo SE, Yoon SK, Kim YK, Ryu SY (2001) Costunolide, a sesquiterpene from the stem bark of Magnolia sieboldii, inhibits the RAS-farnesyl-proteintransferase. Planta Med 67(04):358–359

    CAS  PubMed  Google Scholar 

  • Picman AK (1986) Biological activities of sesquiterpene lactones. Biochem Syst Ecol 14(3):255–281

    CAS  Google Scholar 

  • Pittayakhajonwut P, Usuwan A, Intaraudom C, Veeranondha S, Srikitikulchai P (2009) Sesquiterpene lactone 12, 8-eudesmanolides from the fungus Xylaria ianthinovelutina. Planta Med 75(13):1431–1435

    CAS  PubMed  Google Scholar 

  • Schmidt TJ (2006) Structure-activity relationships of sesquiterpene lactones. In Studies in natural products chemistry Elsevier (33), S 309–392

    Google Scholar 

  • Warshaw EM, Zug KA (1996) Sesquiterpene lactone allergy. American journal of contact dermatitis 7(1):1–23

    CAS  PubMed  Google Scholar 

  • Wedge DE, Galindo JCG, Macıas FA (2000) Fungicidal activity of natural and synthetic sesquiterpene lactone analogs. Phytochemistry 53(7):747–757

    CAS  PubMed  Google Scholar 

Literatur zu Abschn. 4.2.1.2.1

  • Hartmann-Schreier J (2017) Anethol. In: Römpp – Lexikon der Chemie. https://roempp.thieme.de/roempp4.0/do/data/RD-01-02415. Zugegriffen: 25. Jan. 2019

  • Poon TS, Freeman S (2006) Cheilitis caused by contact allergy to anethole in spearmint flavoured toothpaste. Australas J Dermatol 47(4):300–301

    PubMed  Google Scholar 

  • Reichling J, Suschke U, Schneele J, Geiss HK (2006) Antibacterial activity and irritation potential of selected essential oil components–structure-activity relationship. Nat Prod Commun 1(11):1934578X0600101116.

    Google Scholar 

  • Schnaubelt K (1995) Neue Aromatherapie. Pütz J (Hrsg) Egmont vgs-Verlagsgesellschaft

    Google Scholar 

Literatur zu Abschn. 4.2.1.2.2

  • Badr AN, Nada F, Shehata MG, Amra HA, Jones HC, Chancey JC, Oguz H (1980) Dillapiol and Apiol as Specific Inhibitors of the Biosynthesis of Aflatoxin G1 in Aspergillus parasiticus. J Appl Sci 17(4):67–73

    Google Scholar 

  • Baltes W (2007) Gesundheitsschädliche Stoffe in natürlichen Lebensmitteln. Lebensmittelchemie. Springer, Berlin, S 237–284

    Google Scholar 

  • Fuhremann TW, Lichtenstein EP, Stratman FW (1978) Effects of naturally occurring food plant components on insecticide degradation in rats. J Agric Food Chem 26(5):1068–1075

    CAS  PubMed  Google Scholar 

  • Giusti GV, Moneta E (1973) A case of criminal abortion by ingestion of parsley decoction and naphthalene used vaginally. Arch Kriminol 152:161–164

    CAS  PubMed  Google Scholar 

  • Hartmann-Schreier J (2003) Apiol. In: Römpp – Lexikon der Chemie. https://roempp.thieme.de/roempp4.0/do/data/RD-01-02990. Zugegriffen: 22. Jan. 2019

  • Hausen BM (1997) Petroselinum crispum. In: Hausen BM, Vieluf I (Hrsg.) Allergiepflanzen-Pflanzenallergene. Ecomed, Landsberg a. Lech. S 200

    Google Scholar 

  • Hermann K, Roux A, Fiddes FS (1956) Death from apiol used as abortifacient. The Lancet 267(6929):937–939

    Google Scholar 

  • Koul O, Walia S, Dhaliwal GS (2008) Essential oils as green pesticides: potential and constraints. Biopestic Int 4(1):63–84

    Google Scholar 

  • Krammer G (2004) Petersilienöle. In: Römpp – Lexikon der Chemie. https://roempp.thieme.de/roempp4.0/do/data/RD-16-01262. Zugegriffen: 24. Januar 2019

  • Krist S (2013) Petersiliensamenöl. In: Lexikon der pflanzlichen Fette und Öle. Springer, Wien, S 629–634

    Google Scholar 

  • Mittelbach F (1984) Handekzem bei Kontaktallergie gegen Petersilie: Untersuchungen zur Allergenfindung und Kreuzallergie mit anderen Apiaceae (Umbelliferae). Aktuelle Dermatologie 10(2):52–55

    Google Scholar 

  • Ochsmann J (2003) Some notes on problems of taxonomy and nomenclature of culti-vated plants. Schriften zu Genetischen Ressourcen, 42

    Google Scholar 

  • Prentner A (2017) Heilpflanzen für Niere, Blase und Prostata. In: Heilpflanzen der Traditionellen Europäischen Medizin. Springer, Berlin, S 237–270

    Google Scholar 

  • Stransky L, Tsankov N (1980) Contact dermatitis from parsley (Petroselinum). Contact Dermatitis 6(3):233–234

    CAS  PubMed  Google Scholar 

  • von Noorden C, Salomon H (1920) Handbuch der Ernährungslehre: Allgemeine Diätetik (Bd. 1). Springer. S 512–513

    Google Scholar 

  • Weiss RF (1982) Lehrbuch der Phytotherapie. Hippokrates, Stuttgart. S 272

    Google Scholar 

Literatur zu Abschn. 4.2.1.2.3

  • Koul O, Walia S, Dhaliwal GS (2008) Essential oils as green pesticides: potential and constraints. Biopestic Int 4(1), 63–84

    Google Scholar 

Literatur zu Abschn. 4.2.1.2.4

  • BGBL (2001) Bundesgesetzblatt, Teil I Nr. 28, ausgegeben am 25.06.2001, Verordnung zur Änderung der Aromenverordnung und zur Aufhebung lebensmittelrechtlicher Vorschriften für Teigwaren vom 18.06.2001. S 1178

    Google Scholar 

  • Chizzola R (2011) Composition of the essential oils from Anthriscus cerefolium var. trichocarpa and A. caucalis growing wild in the urban area of Vienna (Austria). Natural product communications 6(8):1147–1150

    Google Scholar 

  • EG-Verordnung r. 1334/2008 des europäischen Parlamentes und des Rates vom 16. Dezember über Aromen und bestimmte Lebensmittelzutaten mit Aromaeigenschaften zur Verwendung in und auf Lebensmitteln sowie zur Änderung der Verordnung (EWG) Nr. 1601/91 des Rates, der Verordnungen (EG) Nr. 2232/96 und (EG) Nr. 110/2008 und der Richtlinie 2000/13/EG. Anhang III, Teil B. https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=uriserv:OJ.L_.2008.354.01.0034.01.DEU. Zugegriffen: 26. Jan. 2019

  • Jenner PM, Hagan EC, Taylor JM, Cook EL, Fitzhugh OG (1964) Food flavourings and compounds of related structure I. Acute oral toxicity. Food Cosmet Toxicol 2:327–343

    CAS  Google Scholar 

  • Krammer G (2006) Estragol. In: Eisenbrand G, Schreier P (Hrsg) Römpp – Lexikon der Lebensmittelchemie. Thieme, Stuttgart. S, S 321–322

    Google Scholar 

  • Teuscher E (2010) Estragol. In: Teuscher E, Lindequist U (Hrsg) Biogene Gifte. Wissenschaftliche Verlagsgesellschaft, Stuttgart, S 324

    Google Scholar 

Literatur zu Abschn. 4.2.1.2.5

  • Atsumi T, Tonosaki FS, K, (2005) A comparative study of the antioxidant/prooxidant activities of eugenol and isoeugenol with various concentrations and oxidation conditions. Toxicol In Vitro 19(8):1025–1033

    CAS  PubMed  Google Scholar 

  • Dammaschke T (2013) Einsatz biokompatibler Zemente bei der Vitalerhaltung der Pulpa und in der Endodontie. wissen kompakt 7(2):3–12

    Google Scholar 

  • Epstein SS, Fujii K, Andrea J, Mantel N (1970) Carcinogenicity testing of selected food additives by parenteral administration to infant Swiss mice. Toxicol Appl Pharmacol 16(2):321–334

    CAS  PubMed  Google Scholar 

  • Iten F, Saller FI, Reichung J (2004) Naturstoffchemie – Sind Naturprodukte mit Methyleugenol kanzerogen? Deutsche Apotheker Zeitung (DAZ) 144(28):42–49. https://www.deutsche-apotheker-zeitung.de/daz-az/2004/daz-28-2004/uid-12255. Zugegriffen: 26. Jan. 2019

  • Johnson JD, Ryan MJ, Toft JD, Graves SW, Hejtmancik MR, Cunningham ML, Herbert R, Abdo KM (2000) Two-year toxicity and carcinogenicity study of methyleugenol in F344/N rats and B6C3F1 mice. J Agric Food Chem 48(8):3620–3632

    CAS  PubMed  Google Scholar 

  • Li YH, Sun ZH, Zheng P (2004) Determination of vanillin, eugenol and isoeugenol by RP-HPLC. Chromatographia 60(11–12):709–713

    CAS  Google Scholar 

  • Marongiu B, Piras A, Porcedda S, Casu R, Pierucci P (2005) Comparative analysis of supercritical CO2 extract and oil of Pimenta dioica leaves. J Essent Oil Res 17(5):530–532

    CAS  Google Scholar 

  • Mahrous HS, El-Far AH, Sadek KM, Abdel-Latif MA (2017) Effects of different levels of clove bud (syzygium aromaticum) dietary supplementation on immunity, antioxidant status, and performance in broiler chickens. Alexandria J Vet Sci 54(2)

    Google Scholar 

  • Munerato MC, Sinigaglia M, Reguly ML, de Andrade HHR (2005) Genotoxic effects of eugenol, isoeugenol and safrole in the wing spot test of Drosophila melanogaster. Mutat Res/Genet Toxicol Environ Mutagen 582(1):87–94

    CAS  Google Scholar 

  • Nacar S, Tansi S (2000) Chemical components of different basil (Ocimum basilicum L.) cultivars grown in Mediterranean regions in Turkey. Israel J Plant Sci 48(2):109–112

    Google Scholar 

  • National Toxicology Program. (2010). Toxicology and carcinogenesis studies of isoeugenol (CAS No. 97-54-1) in F344/N rats and B6C3F1 mice (gavage studies). National Toxicology Program technical report series, (551), 1. https://www.ncbi.nlm.nih.gov/pubmed/21372857. Zugegriffen: 26. Jan. 2019

  • Prashar A, Locke IC, Evans CS (2006) Cytotoxicity of clove (Syzygium aromaticum) oil and its major components to human skin cells. Cell Prolif 39(4):241–248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Senanayake UM, Lee TH, Wills RB (1978) Volatile constituents of cinnamon (Cinnamomum zeylanicum) oils. J Agric Food Chem 26(4):822–824

    CAS  Google Scholar 

  • Singh G, Marimuthu P, Heluani CSD, Catalan C (2005) Antimicrobial and antioxidant potentials of essential oil and acetone extract of Myristica fragrans Houtt.(aril part). J Food Sci 70(2):M141–M148

    Google Scholar 

  • Sober HA, Hollander F, Sober EK (1950) Toxicity of Eugenol: Determination of LD50 on Rats. Proc Soc Exp Biol Med 73(1):148–151

    CAS  PubMed  Google Scholar 

  • Traboulsi AF, El-Haj S, Tueni M, Taoubi K, Nader NA, Mrad A (2005) Repellency and toxicity of aromatic plant extracts against the mosquito Culex pipiens molestus (Diptera: Culicidae). Pest Manag Sci: Formerly Pestic Sci 61(6):597–604

    CAS  Google Scholar 

  • Uter W, Werfel T (2017) Aktuelles von der Kontaktallergie-Übersicht und Bewertung besonders interessanter Arbeiten aus 2016. Allergologie 40(6):227

    Google Scholar 

  • Wagner H, Bladt S, Zgainski EM (1983) Ätherischöl-Drogen (Aetherolea). In Drogenanalyse. Springer, Berlin, S 5–49

    Google Scholar 

  • WHO (2018) Methyleugenol. IARC-Monograph. https://monographs.iarc.fr/wp-content/uploads/2018/06/mono101-013.pdf. Zugegriffen: 26. Jan. 2019

Literatur zu Abschn. 4.2.1.2.6

  • Archer AW (1988) Determination of safrole and myristicin in nutmeg and mace by high-performance liquid chromatography. J Chromatogr A 438:117–121

    CAS  Google Scholar 

  • Bowes KM, Zheljazkov VD, Caldwell CD, Pincock JA, Roberts JC (2004) Influence of seeding date and harvest stage on yields and essential oil composition of three cultivars of dill (Anethum graveolens L.) grown in Nova Scotia. Can J Plant Sci 84(4):1155–1160

    Google Scholar 

  • Forrest JE, Heacock RA (1972) Nutmeg and mace, the psychotropic spices from Myristica fragrans. Lloydia 35(4):440–449

    CAS  PubMed  Google Scholar 

  • Forrest TP, Forrest JE, Heacock RA (1973) The isolation of some diarylpropanoids from nutmeg. Naturwissenschaften 60(5):257–258

    CAS  Google Scholar 

  • Hattori M, Hada S, Shu YZ, Kakiuchi N, Namba T (1987) New acyclic bis-phenylpropanoids from the aril of Myristica fragrans. Chem Pharm Bull 35(2):668–674

    CAS  Google Scholar 

  • Hattori M, Yang XW, Shu YZ, Kakiuchi N, Tezuka Y, Kikuchi T, Namba T (1988) New constituents of the aril of Myristica fragrans. Chem Pharm Bull 36(2):648–653

    CAS  Google Scholar 

  • Hallström H, Thuvander A (1997) Toxicological evaluation of myristicin. Nat Toxins 5(5):186–192

    PubMed  Google Scholar 

  • Kalbhen DA (1971) Die Muskatnuß als Rauschdroge Ein Beitrag zur Chemie und Pharmakologie der Muskatnuß (Myristica fragrans). Angew Chem 83(11):392–396

    Google Scholar 

  • Krist S (2013) Lexikon der pflanzlichen Fette und Öle. Springer-Verlag. S 503

    Google Scholar 

  • Kovar KA (1981) Chemie und Wirkungsweise N-freier Halluzinogene. Pharm Unserer Zeit 10(3):65–74

    CAS  PubMed  Google Scholar 

  • Marcus C, Lichtenstein EP (1982) Interactions of naturally occurring food plant components with insecticides and pentobarbital in rats and mice. J Agric Food Chem 30(3):563–568

    CAS  PubMed  Google Scholar 

  • Menninger A (2001) Die Verbreitung von Schokolade, Kaffee, Tee und Tabak in Europa (16.–19. Jahrhundert). Ein Vergleich. Leimgruber, Yvonne, Fauz, Patrick, Rossfeld, Roman ua (Hrsg): Chocolat Tobler. Zur Geschichte der Schokolade und einer Berner Firma. Historisches Institut der Universität Bern, Bern, S 28–37

    Google Scholar 

  • Prentner A (2010) Muskatnussbaum. In: Bewusstseinsverändernde Pflanzen von A–Z. Springer, Wien, S 201–208

    Google Scholar 

  • Shulgin AT (1966) Possible implication of myristicin as a psychotropic substance. Nature 210(5034):380–384

    CAS  PubMed  Google Scholar 

  • Shulgin AT, Sargent T, Naranjo C (1967) The chemistry and psychopharmacology of nutmeg and of several related phenylisopropylamines. Psychopharmacol Bull 4(3)

    Google Scholar 

  • Stein U, Greyer H, Hentschel H (2001) Nutmeg (myristicin) poisoning—report on a fatal case and a series of cases recorded by a poison information centre. Forensic Sci Int 118(1):87–90

    CAS  PubMed  Google Scholar 

  • Wink M, Van Wyk BE, Wink C (2008) Handbuch der giftigen und psychoaktiven Pflanzen. Wissenschaftliche Verlagsgesellschaft, Stuttgart

    Google Scholar 

Literatur zu Abschn. 4.2.1.2.7

  • BGVV (2001) Gesundheitliche Bewertung von Duftölen, die Safrol, Methyleugenol oder Estragol enthalten. https://mobil.bfr.bund.de/cm/343/duftoele.pdf. Zugegriffen: 28. Jan. 2019

  • Chen SJ, Wu BN, Yeh JL, Lo YC, Chen IS, Chen IJ (1995) C-fiber-evoked autonomic cardiovascular effects after injection of Piper betle inflorescence extracts. J Ethnopharmacol 45(3):183–188

    CAS  PubMed  Google Scholar 

  • Clark AM (1976) Naturally occurring mutagens. Mutation Res/Rev Genet Toxicol 32(3–4):361–374

    CAS  Google Scholar 

  • ECHA (2018) 5-allyl-1,3-benzodioxole –Substance Information – ECHA. https://echa.europa.eu/de/substance-information/-/substanceinfo/100.002.133. Zugegriffen: 29. Jan. 2019

  • Efferth T (2006) Molekulare Toxikologie. Molekulare Pharmakologie und Toxikologie: Biologische Grundlagen von Arzneimitteln und Giften, 153–259

    Google Scholar 

  • Huang JK, Huang CJ, Chen WC, Liu SI, Hsu SS, Chang HT, Tseng LL, Chou CT, Chang CH, Jan CR (2005) Independent [Ca 2+] i increases and cell proliferation induced by the carcinogen safrole in human oral cancer cells. Naunyn-Schmiedeberg’s Arch Pharmacol 372(1):88–94

    CAS  Google Scholar 

  • Jenner PM, Hagan EC, Taylor JM, Cook EL, Fitzhugh OG (1964) Food flavourings and compounds of related structure I. Acute oral toxicity. Food Cosmet Toxicol 2:327–343

    Google Scholar 

  • Kamdem DP, Gage DA (1995) Chemical composition of essential oil from the root bark of Sassafras albidum. Planta Med 61(06):574–575

    CAS  PubMed  Google Scholar 

  • Lee JM, Liu TY, Wu DC, Tang HC, Leh J, Wu MT, Hsu HH, Huang PM, Chen JS, Lee CJ, Lee YC (2005) Safrole–DNA adducts in tissues from esophageal cancer patients: clues to areca-related esophageal carcinogenesis. Mutat Res/Genet Toxicol Environ Mutagen 565(2):121–128

    CAS  Google Scholar 

  • Przyrembel H (2003) Arzneipflanzen in Nahrungsergänzungsmitteln. Bundesgesundheitsblatt-Gesundheitsforschung-Gesundheitsschutz 46(12):1074–1079

    Google Scholar 

  • Surburg H, Panten J (2016) Common fragrance and flavor materials: preparation, properties and uses. Wiley

    Google Scholar 

  • Wu MT, Lee YC, Chen CJ, Yang PW, Lee CJ, Wu DC, Hsu HK, Ho CK, Kao EL, Lee JM (2001) Risk of betel chewing for oesophageal cancer in Taiwan. Br J Cancer 85(5):658

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang GF, Chen CJ (2006) Analysis on chemical components and their contents of essential oil from Cinnamomum camphora leaf in Fujian Province. J Plant Res Environ 15(4):69

    Google Scholar 

Literatur zu Abschn. 4.2.1.2.8

  • Banovac D (2012) Antimikrobielle Wirkung ausgewählter flüchtiger Verbindungen und ätherischer Öle auf luftgetragene Keime. Diplomarbeit, Universität Wien. Fakultät für Lebenswissenschaften BetreuerIn: Krist, Sabine. URN: urn:nbn:at:at-ubw:1–29635.47749.763169-0. Zugegriffen: 29. Jan. 20129

    Google Scholar 

  • Brodie JF (2001) Menstrual interventions in the nineteenth-century United States. Regulating menstruation: Beliefs, practices, interpretations, 39

    Google Scholar 

  • EG-Verordnung (2008) Nr.1334/2008 des europäischen Parlamentes und des Rates über Aromen und bestimmte Lebensmittelzutaten mit Aromaeigenschaften zur Verwendung in und auf Lebensmitteln sowie zur Änderung der Verordnung (EWG) Nr. 1601/91 des Rates, der Verordnungen (EG) Nr. 2232/96 und (EG) Nr. 110/2008 und der Richtlinie 2000/13/EG. https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX:32008R1334. Zugegriffen: 29. Jan. 2019

  • Hausen BM (1997) Cinnamomum zeylanicum. In: Hausen BM, Vieluf I (Hrsg.) Allergiepflanzen-Pflanzenallergene. ecomed, Landsberg a. Lech. S 97–99

    Google Scholar 

  • Jenner PM, Hagan EC, Taylor JM, Cook EL, Fitzhugh OG (1964) Food flavourings and compounds of related structure I. Acute oral toxicity. Food Cosmet Toxicol 2:327–343

    Google Scholar 

  • Kim JR, Jeong IH, Lee YS, Lee SG (2015) Insecticidal activity of cinnamon essential oils, constituents, and (E)-cinnamaldehyde analogues against Metcalfa pruinosa Say (Hemiptera: Flatidae) nymphs and adults. Korean J Appl Entomol 54(4):375–382

    Google Scholar 

  • Khan A, Safdar M, Khan MMA, Khattak KN, Anderson RA (2003) Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes Care 26(12):3215–3218

    PubMed  Google Scholar 

  • Kitagawa H, Iwaki R (1963) Coumarin derivatives for medicinal purposes. XVII. Pharmacological studies on coumarin derivatives having biological activity. Yakugaku zasshi: J Pharm Soc Japan 83:1124

    Google Scholar 

  • Madan KD (1998) Life and travels of Vasco da Gama. Asian Educational Services

    Google Scholar 

  • Mang B, Wolters M, Schmitt B, Kelb K, Lichtinghagen R, Stichtenoth DO, Hahn A (2006) Effects of a cinnamon extract on plasma glucose, HbA1c, and serum lipids in diabetes mellitus type 2. Eur J Clin Invest 36(5):340–344

    CAS  PubMed  Google Scholar 

  • Miranda F, Brandão F, Silvad R (1990) Cosmetic contact dermatitis (1984–1989). Contact Dermatitis 23(4):242–243

    Google Scholar 

  • Samarasekera R, Kalhari KS, Weerasinghe IS (2006) Insecticidal activity of essential oils of Ceylon Cinnamomum and Cymbopogon species against Musca domestica. J Essent Oil Res 18(3):352–354

    CAS  Google Scholar 

  • Schnuch A, Griem P (2018) Duftstoffe als Allergene. Allergo J 27(6):42–54

    Google Scholar 

  • Schormüller J (2013) Alkaloidhaltige Genussmittel, Gewürze, Kochsalz (Bd 6). Springer

    Google Scholar 

  • Siedentopp U (2008) Heilpflanze Chinesischer Zimt. Dtsch Z Akupunktur 51(4):62–65

    Google Scholar 

  • Simoons FJ (2014) Food in China: a cultural and historical inquiry. CRC Press

    Google Scholar 

  • Wang YH, Avula B, Nanayakkara ND, Zhao J, Khan IA (2013) Cassia cinnamon as a source of coumarin in cinnamon-flavored food and food supplements in the United States. J Agric Food Chem 61(18):4470–4476

    CAS  PubMed  Google Scholar 

Literatur zu Abschn. 4.2.2

  • Andersen HH, Møller G, Winter R, Eskelund P, Arendt-Nielsen L (Aug 2013) A review of topical high-concentration L-menthol as a translational model of cold allodynia and hyperalgesia. Eur J Pain 18(3):315–325. https://doi.org/10.1002/j.1532-2149.2013.00380.x.PMID23963768

    Article  PubMed  Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M, Rosen TA (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389(6653):816–824

    CAS  PubMed  Google Scholar 

  • Hensel H (1981) Thermoreception and temperature regulation. Monogr Physiol Soc 38:1–321

    CAS  PubMed  Google Scholar 

  • Macpherson LJ, Geierstanger BH, Viswanath V, Bandell M, Eid SR, Hwang S, Patapoutian A (2005) The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. Curr Biol 15(10):929–934

    CAS  PubMed  Google Scholar 

  • McNamara FN, Randall A, Gunthorpe MJ (2005) Effects of piperine, the pungent component of black pepper, at the human vanilloid receptor (TRPV1). Br J Pharmacol 144(6):781–790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rein H (1925a) Beiträge zu der Lehre von der Temperaturempfindung der menschlichen Haut. Z BioI 82:189–212

    Google Scholar 

  • Rein H (1925b) Über die Topographie der Warmempfindung. Beziehungen zwischen Innervation und receptorischen Endorganen. Z BioI 82:513–535

    Google Scholar 

  • Strughold H, Porz R (1931) Die Dichte der Kaltpunkte auf der Haut des menschlichen Körpers. Z BioI 91:563–571

    Google Scholar 

  • Wiesenauer M (2012) Scharfstoffe. In: PhytoPraxis. Berlin, Heidelberg, S 222

    Google Scholar 

  • Xu H, Blair NT, Clapham DE (2005) Camphor activates and strongly desensitizes the transient receptor potential vanilloid subtype 1 channel in a vanilloid-independent mechanism. J Neurosci 25(39):8924–8937

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zygmunt PM, Peterson J, Andersson DA, Chuang H, Sørgård M, Di Marzo V, Julius D, Högestätt ED (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400(6743):452–457

    CAS  PubMed  Google Scholar 

Literatur zu Abschn. 4.2.2.1.1

  • Daunderer M (1990) Drogenhandbuch für Klinik und Praxis: Diagnose, Nachweis, Therapie, Prophylaxe, Recht, Drogenprofile. Ecomed

    Google Scholar 

  • Flaman Z, Pellechia S, Bailey B, McGuigan M (2001) Unintentional exposure of young children to camphor and eucalyptus oils. Paediatrics & child health 6(2):80–83

    CAS  Google Scholar 

  • Hänsel R (1972) Ätherische Öle, Harze, Balsame. In: Steinegger E, Hänsel R (Hrsg) Lehrbuch der Pharmakognosie: auf phytochemischer Grundlage. Springer, S 421

    Google Scholar 

  • Hänsel R, Hölzl J (1996) Ätherische Öle, Campher. I: Hänsel R, Hölzl J (Hrsg) Lehrbuch der pharmazeutischen Biologie. Springer, Berlin, S 149–151

    Google Scholar 

  • Hempel B (2000) Toxikologie von D-Campher. In Phytopharmaka VI (S 29–37). Steinkopff, Heidelberg

    Google Scholar 

  • Hänsel R (1994) Kampfer. In: Hänsel R, Keller K, Rimpler H, Schneider G (Hrsg.BB) Hagers Handbuch der pharmazeutischen Praxis. Band 6, Drogen P–Z, S 496–500, 551–557, ISBN 3-540-52639-0

    Google Scholar 

  • Koll W, Haase J, Schütz RM, Mühlberg B (1961) Reflexentladungen der tiefspinalen Katze durch afferente Impulse aus hochschwelligen nociceptiven A-Fasern (post δ-Fasern) und aus nociceptiven C-Fasern cutaner Nerven. Pflüger’s Arch Gesamte Physiol Menschen Tiere 272(3):270–289

    Google Scholar 

  • Geller RJ, Spyker DA, Garrettson LK, Rogol AD (1984) Camphor toxicity: development of a triage strategy. Vet Hum Toxicol 26:8–10

    PubMed  Google Scholar 

  • Gouin S, Patel H (1996) Unusual cause of seizure. Pediatr Emerg Care 12(4):298–300

    CAS  PubMed  Google Scholar 

  • Kopke K (2010) Die Atemstimulierende Einreibung (ASE)-Eine pflegerische Interventionsstudie zur Schmerzreduktion bei mehrfach erkrankten älteren Menschen (Doctoral dissertation, Medizinische Fakultät Charité-Universitätsmedizin Berlin)

    Google Scholar 

  • Kroll M, Ring C, Gaus W, Hempel B (2005) A randomized trial of Korodin® Herz-Kreislauf-Tropfen as add-on treatment in older patients with orthostatic hypotension. Phytomedicine 12(6–7):395–402

    CAS  PubMed  Google Scholar 

  • Love JN, Sammon M, Smereck J (2004) Are one or two dangerous? camphor exposure in toddlers. J Emerg Med 27(1):49–54

    PubMed  Google Scholar 

  • Lübke G (2003) Ätherische Öle. In: v. Mühlendahl KE, Oberdisse U, Bunjes R, Brockstedt M (Hrsg) Vergiftungen im Kindesalter. Thieme, Stuttgart, S 68–70

    Google Scholar 

  • Opdyke DLJ (1978) Camphor USP. Monographs on fragrance materials. Food Cosmet Toxicol 16(1):665–671

    CAS  Google Scholar 

  • Pandey AK, Bora HR, Deka SC, Rastogi RC, Baruah AKS (1997) Composition of the essential oil of the bark of Cinnamomum camphora. J Med Aromat Plant Sci 19(2):408–409

    CAS  Google Scholar 

  • Poppenga RH (2002) Herbal medicine: potential for intoxication and interactions with conventional drugs. Clin Tech Small Anim Pract 17(1):6–18

    PubMed  Google Scholar 

  • Prentner A (2017) Heilpflanzen für Gelenke, Knochen und Schmerzen. In Heilpflanzen der Traditionellen Europäischen Medizin (S. 397–423). Springer, Berlin

    Google Scholar 

  • Richter A, Löscher W 2006) Phytotherapeutika. In: Löscher W, Ungemach FR, Kroker R (Hrsg) Pharmakotherapie bei Haus-und Nutztieren. Georg Thieme

    Google Scholar 

  • Schlumpf M, Kypke K, Vökt CC, Birchler M, Durrer S, Faass O, Ehnes C, Fuetsch M, Gaille C, Henseler M, Hofkamp L Maerkel K, Reolon S, Zenker A, Timms BB, Tresguerres JAF, Lichtsteigera W (2008) Endocrine active UV filters: developmental toxicity and exposure through breast milk. CHIMIA Int J Chem 62(5):345–351

    Google Scholar 

  • Selescu T, Ciobanu AC, Dobre C, Reid G, Babes A (2013) Camphor activates and sensitizes transient receptor potential melastatin 8 (TRPM8) to cooling and icilin. Chem Senses 38(7):563–575

    CAS  PubMed  Google Scholar 

  • Ständer S, Zeidler C, Augustin M, Bayer G, Kremer AE, Legat FJ, Maisel, P, Mettang Th, Metz M, Nast A, Niemeier V, Raap U, Schneider G, Ständer HF, Staubach P, Streit M, Weishaar E (2017) S2k‐Leitlinie zur Diagnostik und Therapie des chronischen Pruritus–Update–Kurzversion. JDDG: J Dtsch Dermatologischen Ges 15(8):860–873

    Google Scholar 

  • Stahl PH, Wermuth, CG (2002) Monographs on acids and bases. Handbook of Pharmaceutical Salts: Properties, Selection, and Use, 265–266

    Google Scholar 

  • Strughold H, Porz, R (1931) Die Dichte der Kaltpunkte auf der Haut des menschlichen Körpers. Z BioI 91:563-571

    Google Scholar 

  • Weiss J, Catalano P (1973) Camphorated oil intoxication during pregnancy. Pediatrics 52(5):713–714

    CAS  PubMed  Google Scholar 

  • Wiesenauer M (2012) Scharfstoffe. In: PhytoPraxis, Berlin, Heidelberg, S 222

    Google Scholar 

Literatur zu Abschn. 4.2.2.1.1.2

  • Bacon FJ (1928) The botanical origin of American peppermint—Mentha piperita L. Journal of the American Pharmaceutical Association, 17(11):1094–1096

    Google Scholar 

  • Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI, Stucky CL, Jordt SE, Julius D (2007) The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448(7150):204

    CAS  PubMed  Google Scholar 

  • EU-Richtlinie 2014/40 (2014) Richtlinie des Europäischen Parlaments und des Rates vom 3. April 2014 zur Angleichung der Rechts-und Verwaltungsvorschriften der Mitgliedstaaten über die Herstellung, die Aufmachung und den Verkauf von Tabakerzeugnissen und verwandten Erzeugnissen und zur Aufhebung der Richtlinie 2001/37/EG. EG-Text von Bedeutung für den EWR

    Google Scholar 

  • Hänsel R, Hölzl J (1996) Ätherische Öle. In: Hänsel R, Hölzl J (Hrsg) Lehrbuch der pharmazeutischen Biologie. Springer, S 128–132

    Google Scholar 

  • Hensel H, Zottermann Y (1951) The effect of menthol on the thermoreceptors. Acta Physiol Physiologica Scandinavica 24(1):27–34

    CAS  PubMed  Google Scholar 

  • Krammer G, Menzel M (2008a) Menthol. In: Römpp-Online – Lexikon der Chemie. Thieme, Stuttgart. https://roempp.thieme.de/roempp4.0/do/data/RD-13-01237

  • Krammer G, Menzel M (2008b) Pfefferminzöle. In: Römpp-Online – Lexikon der Chemie. Thieme, Stuttgart. https://roempp.thieme.de/roempp4.0/do/data/RD-16-01328

  • Paschke M, Tkachenko A, Ackermann K, Hutzler C, Henkler F, Luch A (2017) Activation of the cold-receptor TRPM8 by low levels of menthol in tobacco products. Toxicol letters 271:50–57

    CAS  PubMed  Google Scholar 

  • Plevkova J, Kollarik M, Poliacek I, Brozmanova M, Surdenikova L, Tatar M, Mori N, Canning BJ (2013) The role of trigeminal nasal TRPM8-expressing afferent neurons in the antitussive effects of menthol. Journal of Applied Physiology 115(2):268–274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schäfer B (2013) Menthol: Minze versus Tagasako-Prozess. Chemie unserer Zeit 47(3):174–182

    Google Scholar 

  • Wei ET, Seid DA (1983) AG-3–5: a chemical producing sensations of cold. Journal of Pharmacy and Pharmacology 35(2):110–112

    CAS  PubMed  Google Scholar 

  • Wickham RJ (2015) Focus: Addiction: How Menthol Alters Tobacco-Smoking Behavior: A Biological Perspective. The Yale journal of biology and medicine 88(3):279

    CAS  PubMed  PubMed Central  Google Scholar 

Literatur zu Abschn. 4.2.2.1.2

  • Atsumi T, Fujisawa S. Tonosaki K (2005) A comparative study of the antioxidant/prooxidant activities of eugenol and isoeugenol with various concentrations and oxidation conditions. Toxicology in vitro 19(8):1025–1033

    Google Scholar 

  • Dammaschke T (2013) Einsatz biokompatibler Zemente bei der Vitalerhaltung der Pulpa und in der Endodontie. wissen kompakt 7(2):3–12

    Google Scholar 

  • Epstein, SS, Fujii K, Andrea J, Mantel N (1970) Carcinogenicity testing of selected food additives by parenteral administration to infant Swiss mice. Toxicol Appl Pharmacol 16(2):321–334

    Google Scholar 

  • Iten F, Saller FI, Reichung J (2004) Naturstoffchemie – Sind Naturprodukte mit Methyleugenol kanzerogen? Deutsche Apotheker Zeitung (DAZ) 144(28):42–49. https://www.deutsche-apotheker-zeitung.de/daz-az/2004/daz-28-2004/uid-12255. Zugegriffen: 26. Jan. 2019

  • Johnson JD, Ryan MJ, Toft JD, Graves SW, Hejtmancik MR, Cunningham ML, Herbert R, Abdo KM (2000) Two-year toxicity and carcinogenicity study of methyleugenol in F344/N rats and B6C3F1 mice. J Agric Food Chem 48(8):3620–3632

    Google Scholar 

  • Krist S (2013) Lexikon der pflanzlichen Fette und Öle. Springer, S 503

    Google Scholar 

  • Li YH, Sun ZH, Zheng P (2004) Determination of vanillin, eugenol and isoeugenol by RP-HPLC. Chromatographia 60(11–12):709–713

    Google Scholar 

  • Marongiu B, Piras A, Porcedda S, Casu R, Pierucci P (2005) Comparative analysis of supercritical CO2 extract and oil of Pimenta dioica leaves. J Essen Oil Res 17(5):530–532

    Google Scholar 

  • Mahrous HS, El-Far AH, Sadek KM, Abdel-Latif MA (2017) Effects of Different Levels of Clove Bud (Syzygium Aromaticum) Dietary Supplementation on Immunity, Antioxidant Status, and Performance in Broiler Chickens. Alexandria J Vet Sci 54(2)

    Google Scholar 

  • Munerato MC, Sinigaglia M, Reguly ML, de Andrade HHR (2005) Genotoxic effects of eugenol, isoeugenol and safrole in the wing spot test of Drosophila melanogaster. Mutat Res/Genet Toxicol Environ Mutagen 582(1):87–94

    Google Scholar 

  • Nacar S, Tansi S (2000) Chemical components of different basil (Ocimum basilicum L.) cultivars grown in Mediterranean regions in Turkey. Isr J Plant Sci 48(2):109–112

    Google Scholar 

  • National Toxicology Program (2010) Toxicology and carcinogenesis studies of isoeugenol (CAS No. 97-54-1) in F344/N rats and B6C3F1 mice (gavage studies). National Toxicology Program technical report series, (551), 1. https://www.ncbi.nlm.nih.gov/pubmed/21372857. Zugegriffen: 26. Jan. 2019

  • Prashar A, Locke IC, Evans CS (2006) Cytotoxicity of clove (Syzygium aromaticum) oil and its major components to human skin cells. Cell Prolif 39(4):241–248

    Google Scholar 

  • Prashar A, Locke IC, Evans CS (2006) Cytotoxicity of clove (Syzygium aromaticum) oil and its major components to human skin cells. Cell Prolif 39(4):241–248

    Google Scholar 

  • Schaaf F, Gross F (1953) Tierexperimentelle Untersuchungen mit Salben und Salbengrundlagen. Dermatology 106(6):357–378

    CAS  Google Scholar 

  • Sexton JE, Vernon J, Wood JN (2014) TRPs and pain. In: Mammalian Transient Receptor Potential (TRP) Cation Channels. Springer, Cham, S 873–897

    Google Scholar 

  • Sober HA, Hollander F, Sober EK (1950) Toxicity of Eugenol: Determination of LD50 on Rats. Proc Soc Exp Biol Med 73(1):148–151

    Google Scholar 

  • Traboulsi AF, El‐Haj S, Tueni M, Taoubi K, Nader NA, Mrad A (2005) Repellency and toxicity of aromatic plant extracts against the mosquito Culex pipiens molestus (Diptera: Culicidae). Pest Manage Sci: Formerly Pestic Sci 61(6):597–604

    Google Scholar 

  • Uter W, Werfel T (2017) Aktuelles von der Kontaktallergie-Übersicht und Bewertung besonders interessanter Arbeiten aus 2016. Allergologie 40(6):227

    Google Scholar 

  • Wagner H, Bladt S, Zgainski EM (1983) Ätherischöl-Drogen (Aetherolea). In Drogenanalyse. Springer, Berlin, S 5–49

    Google Scholar 

  • WHO (2018) Methyleugenol. IARC-Monograph. https://monographs.iarc.fr/wp-content/uploads/2018/06/mono101-013.pdf. Zugegriffen: 26. Jan. 2019

Literatur zu Abschn. 4.2.2.1.3

  • Asero R, Mistrello G, Roncarolo D, Antoniottib PL, Falagiani P (1998) A case of garlic allergy. J Allergy Clin Immunol 101(3):427–428

    CAS  PubMed  Google Scholar 

  • Avato P, Tursi F, Vitali C, Miccolis V, Candido V (2000) Allylsulfide constituents of garlic volatile oil as antimicrobial agents. Phytomedicine 7(3):239–243

    CAS  PubMed  Google Scholar 

  • Bassioukas K, Orton D, Cerio R (2004) Occupational airborne allergic contact dermatitis from garlic with concurrent Type I allergy. Contact Dermatitis 50(1):39–41

    PubMed  Google Scholar 

  • Beaumont P, Moneret-Vautrin DA, Dzviga C, Grand JL (2013) Anaphylaxie alimentaire à l’oignon et à l’ail: insuffisance des prick-tests et des IgE spécifiques à la source allergénique. À propos de cinq cas. Revue Française d'Allergologie 53(5):446–449

    Google Scholar 

  • Block E (1992) Die Organoschwefelchemie der Gattung Allium und ihre Bedeutung für die organische Chemie des Schwefels. Angew Chem 104:1158–1203. https://doi.org/10.1002/ange.19921040906

    Article  CAS  Google Scholar 

  • Block E (2010) Garlic and other alliums: The lore and the science. Royal society of chemistry. Verlag RSC, Cambridge, S 152–166

    Google Scholar 

  • Casetti F, Huber R, Schempp CM (2011) Unverträglichkeitsreaktionen der Haut auf Pflanzen. Schweiz Z Ganzheitsmedizin/Swiss J Integr Med 23(3):144–146

    Google Scholar 

  • Chan EF, Mowad C (1998) Contact dermatitis to foods and spices. Am J Contact Dermatitis 9(2):71–79

    CAS  Google Scholar 

  • Chase MW, Reveal JL, Fay MF (2009) A subfamilial classification for the expanded asparagalean families Amaryllidaceae, Asparagaceae and Xanthorrhoeaceae. Bot J Linn Soc 161(2):132–136

    Google Scholar 

  • Habermehl GG, Ziemer P (1999) Mitteleuropäische Giftpflanzen und ihre Wirkstoffe. Springer, Berlin

    Google Scholar 

  • Hänsel R (2013) Pflanzliche Lipidsenker. Arzneidrogen in der Medizin heute. In: Dingermann T, Hänsel R, Zündorf I (Hrsg) Pharmazeutische Biologie: Molekulare Grundlagen und klinische Anwendung. Springer, S 61

    Google Scholar 

  • Hjorth N, Roed J (1976) Occupational protein contact dermatitis in food handlers. Contact Dermatitis 2(1):28–42

    CAS  PubMed  Google Scholar 

  • Jappe U, Bonnekoh B, Hausen BM, Gollnick H (1999) Garlic-related dermatoses: case report and review of the literature. Am J Contact Dermatitis 10(1):37–39

    CAS  Google Scholar 

  • Krammer G (2004) Propanthialoxid. In: Römpp – Lexikon der Chemie. Thieme, Stuttgart. https://roempp.thieme.de/roempp4.0/do/data/RD-16-04331. Zugegriffen: 12. Febr. 2019

  • Lee TY, Lam TH (1991) Contact dermatitis due to topical treatment with garlic in Hong Kong. Contact Dermatitis 24(3):193–196

    CAS  PubMed  Google Scholar 

  • Legrum W (2011) Riechstoffe, Zwischen Gestank und Duft: Vorkommen, Eigenschaften und Anwendung von Riechstoffen und deren Gemischen. Springer

    Google Scholar 

  • Mitchell JC (1980) Contact sensitivity to garlic (Allium). Contact Dermatitis 6(5):356–357

    CAS  PubMed  Google Scholar 

  • Negishi O, Negishi Y, Ozawa T (2002) Effects of food materials on removal of allium-specific volatile sulfur compounds. J Agric Food Chem 50(13):3856–3861

    Google Scholar 

  • Rae HA (1999) Onion toxicosis in a herd of beef cows. Can Vet J 40(1):55

    Google Scholar 

  • Rao RR, Natarajan S (1949) Toxicity of pterygospermin and allicin. Proc: Plant Sci 29(4):148–154

    Google Scholar 

  • Rimbach G, Nagursky J, Erbersdobler HF (2015) Gewürze. In: Lebensmittel-Warenkunde für Einsteiger. Springer Spektrum, Berlin, 261–282

    Google Scholar 

  • Schempp CM, Schöpf E, Simon JC (2002) Durch Pflanzen ausgelöste toxische und allergische Dermatitis (Phytodermatitis). Der Hautarzt 53(2):93–97

    CAS  Google Scholar 

  • Teuscher E (1979) Lauchöle. In: Pharmazeutische Biologie. Vieweg, Braunschweig, S 422–424

    Google Scholar 

Literatur zu Abschn. 4.2.2.1.4

  • Alpizar YA, Boonen B, Gees M, Sanchez A, Nilius B, Voets T, Talavera K (2014)

    Google Scholar 

  • Allyl isothiocyanate sensitizes TRPV1 to heat stimulation. Pflügers Arch-Eur J Physiol 466(3):507–515

    Google Scholar 

  • Bäumler S (2012) Senf. In: Heilpflanzen Praxis heute. Bd 1: Heilpflanzenportraits. Elsevier, München, S 560–562

    Google Scholar 

  • Hanschen FS, Lamy E, Schreiner M, Rohn S (2014) Reactivity and stability of glucosinolates and their breakdown products in foods. Angew Chem Int Ed 53(43):11430–11450

    CAS  Google Scholar 

  • Herzallah S, Holley R (2012) Determination of sinigrin, sinalbin, allyl-and benzyl isothiocyanates by RP-HPLC in mustard powder extracts. LWT-Food Sci Technol 47(2):293–299

    CAS  Google Scholar 

  • Leitzmann C (2010) Sekundäre Pflanzenstoffe in Lebensmitteln. In: Ernährung und Fasten als Therapie. Springer, Berlin, S 49–59

    Google Scholar 

  • Teuscher E (2010) Glukosinolate. In: Teuscher E, Lindequist U (Hrsg) Biogene Gifte. Wissenschaftliche Verlagsgesellschaft, Stuttgart, S 452

    Google Scholar 

Literatur zu Abschn. 4.2.2.2.1

  • Ali MA, Alam NM, Yeasmin MS, Khan AM, Sayeed MA, Rao VB (2007) Antimicrobial screening of different extracts of Piper longum Linn. Res J Agri Biol Sci 3(6):852–857

    Google Scholar 

  • Cardoso VS, Castro IS, Lima CAR, Lima MEF, Dorneles LEG, Direito GM, Danelli MGM (2011) Efficacy of piperine in reducing the effects of aflatoxin intoxication in broiler chickens: a preliminary report. Arq Bras Med Vet e Zootecnia 63(2):495–498

    CAS  Google Scholar 

  • Francis LP, Francis GW (1977) Sedum alkaloids. Planta Med 32(07):268–274

    CAS  PubMed  Google Scholar 

  • Freedman P (2005) Spices and late-medieval European ideas of scarcity and value. Speculum 80(4):1209–1227

    Google Scholar 

  • Geng S, Zheng Y, Meng M, Guo Z, Cao N, Ma X, Du Z, Li J, Duan Y, Du G (2016) Gingerol reverses the cancer-promoting effect of capsaicin by increased TRPV1 level in a urethane-induced lung carcinogenic model. J Agric Food Chem 64(31):6203–6211

    CAS  PubMed  Google Scholar 

  • Gough TA, Goodhead K (1975) Occurrence of volatile nitrosamines in spice premixes. J Sci Food Agric 26(10):1473–1478

    CAS  Google Scholar 

  • Jirovetz L, Buchbauer G, Ngassoum MB, Geissler M (2002) Aroma compound analysis of Piper nigrum and Piper guineense essential oils from Cameroon using solid-phase microextraction–gas chromatography, solid-phase microextraction–gas chromatography–mass spectrometry and olfactometry. J Chromatogr A 976(1–2):265–275

    CAS  PubMed  Google Scholar 

  • Kapoor IPS, Singh B, Singh G, De Heluani CS, De Lampasona MP, Catalan CA (2009) Chemistry and in vitro antioxidant activity of volatile oil and oleoresins of black pepper (Piper nigrum). J Agric Food Chem 57(12):5358–5364

    CAS  PubMed  Google Scholar 

  • Kolesnikov DG, Shvartsman AG (1939) Alkaloids of Sedum acre L. Zh Obshch Khim 9:2156

    CAS  Google Scholar 

  • Manrique V, Cuda JP, Overholt WA (2013) Brazilian peppertree: a poster child for invasive plants in Florida. J Florida Stud 1:1–14

    Google Scholar 

  • Marion L (1945) The alkaloids of sedum acre L. Can J Res 23(5):165–166

    Google Scholar 

  • McNamara FN, Randall A, Gunthorpe MJ (2005) Effects of piperine, the pungent component of black pepper, at the human vanilloid receptor (TRPV1). Br J Pharmacol 144(6):781–790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perez Gutierrez RM, Neira AM, Hoyo-Vadillo C (2013) Alkaloids from piper: a review of its phytochemistry and pharmacology. Mini Rev Med Chem 13(2):163–193

    Google Scholar 

  • Piyachaturawat P, Glinsukon T, Toskulkao C (1983) Acute and subacute toxicity of piperine in mice, rats and hamsters. Toxicol Lett 16(3–4):351–359

    CAS  PubMed  Google Scholar 

  • Rose JE, Behm FM (1994) Inhalation of vapor from black pepper extract reduces smoking withdrawal symptoms. Drug Alcohol Depend 34(3):225–229

    CAS  PubMed  Google Scholar 

  • Sharma PK, Pandey H, Dubey P, Jain M, Bhargav D (2012) Physico-chemical characterization and identification of alkaloids from piper nigrum (Piperaceae). Int J Pharm Res Dev (IJPRD) 4(08):5–10

    Google Scholar 

  • Siedentopp U (2008) Heilpflanze Ingwer—wirksam als Arznei, Gewürz und Tee. Dtsch Z Akupunktur 51(1):72–75

    Google Scholar 

  • Sterner O, Steffan B, Steglich W (1987) Novel azepine derivatives from the pungent mushroomchalciporus piperatus. Tetrahedron 43(6):1075–1082

    CAS  Google Scholar 

  • Sudjarwo SA, Eraiko K, Giftania K (2017) Protective effects of piperine on lead acetate induced-nephrotoxicity in rats. Iran J Basic Med Sci 20(11):1227

    PubMed  PubMed Central  Google Scholar 

  • Turner J (2005) Spice: the history of a temptation. Vintage Books/Random House, New York

    Google Scholar 

  • Wood M, Steven F, Boom M (1998) The Boletes of California (online edition) ehemals: Thiers HD (1975) California Mushrooms – A Field Guide to the Boletes. Hafner Press, New York

    Google Scholar 

  • Yaffe PB, Doucette CD, Walsh M, Hoskin DW (2013) Piperine impairs cell cycle progression and causes reactive oxygen species-dependent apoptosis in rectal cancer cells. Exp Mol Pathol 94(1):109–114

    CAS  PubMed  Google Scholar 

  • Backonja M, Wallace MS, Blonsky ER, Cutler BJ, Malan Jr P, Rauck R, Tobias J and the NGX-4010 C116 Study Group (2008) NGX-4010, a high-concentration capsaicin patch, for the treatment of postherpetic neuralgia: a randomised, double-blind study. Lancet Neurol 7(12):1106–1112

    Google Scholar 

  • Barbero GF, Ruiz AG, Liazid A, Palma M, Vera JC, Barroso CG (2014) Evolution of total and individual capsaicinoids in peppers during ripening of the Cayenne pepper plant (Capsicum annuum L.). Food Chem 153:200–206

    Google Scholar 

  • Barboza GE, Agra MF, Romero MV, Scaldaferro MA, Moscone EA (2011) New endemic species of Capsicum (Solanaceae) from the Brazilian Caatinga: comparison with the re-circumscribed C. parvifolium. Syst Bot 36(3):768–781

    Google Scholar 

  • Barboza GE (2011) Lectotypifications, synonymy, and a new name in Capsicum (Solanoideae, Solanaceae). PhytoKeys 2:23

    Google Scholar 

  • Becker H (1981) Scharfstoffe. Pharm Unserer Zeit 10(3):75–80

    Google Scholar 

  • Cisneros-Pineda O, Torres-Tapia LW, Gutiérrez-Pacheco LC, Contreras-Martín F, González-Estrada T, Peraza-Sánchez SR (2007) Capsaicinoids quantification in chili peppers cultivated in the state of Yucatan, Mexico. Food Chem 104:1755–1760

    Google Scholar 

  • EG-Verordnung Nr.1334 (2008) Verordnung (EG) Nr. 1334/2008 des Europäischen Parlamentes und des Rates vom 16. Dezember 2008 über Aromen und bestimmte Lebensmittelzutaten mit Aromaeigenschaften zur Verwendung in und auf Lebensmitteln sowie zur Änderung der Verordnung (EWG) Nr. 1601/91 des Rates, der Verordnungen (EG) Nr. 2232/96 und (EG) Nr. 110/2008 und der Richtlinie 2000/13/EG, Anhang III, Teil A. L 354/47. https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=uriserv:OJ.L_.2008.354.01.0034.01.DEU. Zugegriffen: 8. Okt. 2019

  • Fett DD (2003) Botanical briefs: Capsicum peppers. Cutis 72(1):21–23

    Google Scholar 

  • González-Zamora A, Sierra-Campos E, Luna-Ortega J, Pérez-Morales R, Ortiz J, García-Hernández J (2013) Characterization of different capsicum varieties by evaluation of their capsaicinoids content by high performance liquid chromatography, determination of pungency and effect of high temperature. Molecules 18(11):13471–13486

    Google Scholar 

  • Hänsel R, Hölzl J (1996) Cayennepfeffer. In Lehrbuch der pharmazeutischen Biologie. Berlin, Heidelberg, S 257–259

    Google Scholar 

  • Kennedy WR, Vanhove GF, Lu SP, Tobias J, Bley KR, Walk D, Wendelschafer-Crabb G, Simone DA, Selim, MM (2010) A randomized, controlled, open-label study of the long-term effects of NGX-4010, a high-concentration capsaicin patch, on epidermal nerve fiber density and sensory function in healthy volunteers. J Pain 11(6):579–587

    Google Scholar 

  • Kozukue N, Han JS, Kozukue E, Lee SJ, Kim JA, Lee KR, Levein CE, Friedman M (2005) Analysis of eight capsaicinoids in peppers and pepper-containing foods by high- performance liquid chromatography and liquid chromatography-mass spectrometry. J Agric Food Chem 53:9172–9181

    Google Scholar 

  • LaMotte RH, Shain CN, Simone DA, Tsai EF (1991) Neurogenic hyperalgesia: psychophysical studies of underlying mechanisms. Journal of neurophysiology 66(1):190–211

    Google Scholar 

  • Lindequist U (2010) Amine. In: Teuscher E, Lindequist U (Hrsg.) Biogene Gifte. Wissenschaftliche Verlagsgesellschaft, Stuttgart, 415–417

    Google Scholar 

  • Maggi CA, Meli A (1988) The sensory-efferent function of capsaicin-sensitive sensory neurons. Gen Pharmacol 19:1–43

    Google Scholar 

  • Mason L, Moore RA, Derry S, Edwards JE, McQuay HJ (2004) Systematic review of topical capsaicin for the treatment of chronic pain. Brit Med J 328(7446):991

    Google Scholar 

  • Moscone EA, Scaldaferro MA, Grabiele M, Cecchini NM, Sánchez García Y, Jarret R, Daviñia RA, Ducasse DA, Barboza GE, Ehrendorfer F (2006) The evolution of chili peppers (Capsicum-Solanaceae): a cytogenetic perspective. In VI International Solanaceae Conference: Genomics Meets Biodiversity 745, S 137–170

    Google Scholar 

  • Nolano M, Simone DA, Wendelschafer-Crabb G, Johnson T, Hazen E, Kennedy WR (1999) Topical capsaicin in humans: parallel loss of epidermal nerve fibers and pain sensation. Pain 81(1–2):135–145

    Google Scholar 

  • O'Neill J, Brock C, Olesen AE, Andresen T, Nilsson M, Dickenson AH (2012) Unravelling the mystery of capsaicin: a tool to understand and treat pain. Pharmacol Rev 64(4):939–971

    Google Scholar 

  • Othman ZAA, Ahmed YBH, Habila MA, Ghafar AA (2011) Determination of capsaicin and dihydrocapsaicin in Capsicum fruit samples using high performance liquid chromatography. Molecules 16(10):8919–8929

    Google Scholar 

  • Reimann S, Luger T, Metze D (2000) Topische Anwendung von Capsaicin in der Dermatologie zur Therapie von Juckreiz und Schmerz. Hautarzt 51(3):164–172

    Google Scholar 

  • Saito A, Yamamoto M (1996) Acute oral toxicity of capsaicin in mice and rats. J Toxicol Sci 21(3):195–200

    Google Scholar 

  • Schubert G (2015) Wem gehört der/die/das Paprika? Culinaria balcanica 24:55

    Google Scholar 

  • Schubert-Sollberg E, Sollberg S (1998) Pruritus – Ursachen und Behandlungsmöglichkeiten. MMP 8:230–235

    Google Scholar 

  • Schulzeck S, Wulf H (1997) Lokaltherapie mit Capsaicin oder ASS bei chronischen Schmerzen. Der Schmerz 11(5):345–352

    Google Scholar 

  • Scoville, Wilbur (May 1912) Note on capsicums. J Am Pharm Assoc 1(5):453–454

    Google Scholar 

  • Simone DA, Nolano M, Johnson T, Wendelschafer-Crabb G, Kennedy WR (1998) Intradermal injection of capsaicin in humans produces degeneration and subsequent reinnervation of epidermal nerve fibers: correlation with sensory function. J Neurosci 18(21):8947–8959

    Google Scholar 

  • Staender S, Luger T, Metze D (2001) Treatment of prurigo nodularis with topical capsaicin. J Am Acad Dermatol 44(3):471–478

    Google Scholar 

  • Thapa B, Skalko-Basnet N, Takano A, Masuda K, Basnet P (2009). High-performance liquid chromatography analysis of capsaicin content in 16 capsicum fruits from Nepal. J Med Food 12:908–913

    Google Scholar 

  • Thomas BV, Schreiber AA, Weisskopf CP (1998) Simple method for quantitation of capsaicinoids in peppers using capillary gas chromatography. J Agric Food Chem 46:2655–2663

    Google Scholar 

  • Touska F, Marsakova L, Teisinger J, Vlachova V (2011) A “cute” desensitization of TRPV1. Curr Pharm Biotechnol 12(1):122–129

    Google Scholar 

  • Wiesenauer M (2012) Scharfstoffe. In: PhytoPraxis. Berlin, Heidelberg, S 222

    Google Scholar 

  • Yang CY, Mandal PK, Han KH, Fukushima M, Choi K, Kim CJ, Lee CH (2010) Capsaicin and tocopherol in red pepper seed oil enhances the thermal oxidative stability during frying. J Food Sci Technol 47(2):162–165

    Google Scholar 

  • Zatyko L (2006) Selection of paprika in ancient times and today. Acta Agronomica Hungarica 54(2):167–178

    Google Scholar 

  • Bresinsky A, Besl H (1989) A colour atlas of poisonous fungi: a handbook for pharmacists, doctors and biologists. Manson Publ., London, S 168

    Google Scholar 

  • Laux HE (1985) Eßbare Pilze und ihre giftigen Doppelgänger. Franckh’sche Verlagshandlung, Stuttgart, S 21

    Google Scholar 

  • Lincoff GH (2000) National Audubon Society Field Guide to Mushrooms. Alfred A. Knopf, New York, S 571

    Google Scholar 

  • Spiteller P (2013) Chalciporon. In: Römpp – Lexikon der Chemie. https://roempp.thieme.de/roempp4.0/do/data/RD-03-01037

  • Hartmann-Schreier J, Schweiggert R (2017) Geschmacksschärfe. In: Römpp-Chemie-Lexikon-online. https://roempp.thieme.de/roempp4.0/do/data/RD-07-02401. Zugegriffen: 19. Febr. 2019

  • Marx W, McKavanagh D, McCarthy AL, Bird R, Ried K, Chan A, Isenring L (2015) The effect of ginger (Zingiber officinale) on platelet aggregation: a systematic literature review. PloS One 10(10):e0141119

    Google Scholar 

  • Oyagbemi AA, Saba AB, Azeez OI (2010) Molecular targets of [6]-gingerol: Its potential roles in cancer chemoprevention. BioFactors (Oxford, England) 36(3):169–178

    Google Scholar 

  • Pourmasoumi M, Hadi A, Rafie N, Najafgholizadeh A, Mohammadi H, Rouhani MH (2018) The effect of ginger supplementation on lipid profile: A systematic review and meta-analysis of clinical trials. Phytomedicine: Int J Phytotherapy Phytopharmacol 43:28–36

    Google Scholar 

  • Proplanta (2018) Ingweranbau in Bayern. https://www.proplanta.de/Agrar-Nachrichten/Pflanze/Ingwer-Anbau-in-Bayern-verzeichnet-erste-Erfolge_article1546090944.html. Zugegriffen: 24. Febr. 2019

  • Semwal RB, Semwal DK, Combrinck S, Viljoen AM (2015) Gingerols and shogaols: Important nutraceutical principles from ginger. Phytochemistry

    Google Scholar 

  • Senchina DS, Hallam JE, Kohut ML, Nguyen NA, Perera MADN (2014) Alkaloids and athlete immune function: caffeine, theophylline, gingerol, ephedrine, and their congeners. Exerc Immunol Rev 20

    Google Scholar 

  • Sicherheitsdatenblatt Sigma-Aldrich (2016) https://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=DE&language=de&brand=SIGMA&productNumber=G1046 Zugegriffen: 20. Febr. 2019

  • Stanisiere J, Mousset PY, Lafay S (2018) How safe is ginger rhizome for decreasing nausea and vomiting in women during early pregnancy? Foods (Basel, Switzerland) 7(4)

    Google Scholar 

  • ZDF (2018) Ingweranbau erstmals in Europa. Sendung vom 22.10.2018. https://www.zdf.de/nachrichten/heute-in-europa/ingwer-anbau-erstmals-in-europa-100.html. Zugegriffen: 24. Febr. 2019

  • Heymann H, Lawless, HT (2013) Sensory evaluation of food: principles and practices. Springer Science & Business Media

    Google Scholar 

  • Kumar S, Kamboj J, Sharma S (2011) Overview for various aspects of the health benefits of Piper longum Linn. fruit. J Acupunct Meridian Stud 4(2):134–140

    Google Scholar 

  • Martins AP, Salgueiro L, Vila R, Tomi F, Canigueral S, Casanova, J, Provença da Cunhab A, Adzet T (1998) Essential oils from four Piper species. Phytochem 49(7):2019–2023

    Google Scholar 

  • Pfennig A, Delinski D, Johannisbauer W, Josten H (2011) Extraction technology-sample extraction of pepper. In: Bart HJ, Pilz St (Hrsg) Industrial scale, natural products extraction. Wiley-VHC, Weinheim, S 191

    Google Scholar 

  • Römpp (1997) Mauerpfeffer. Falbe J, Regitz M (Hrsg) Römpp Lexikon Chemie. Thieme, Stuttgart, S 2657

    Google Scholar 

  • Roth L, Daunderer M, Kormann K (2008) Giftpflanzen-Pflanzengifte: Vorkommen, Wirkung, Therapie, allergische und phototoxische Reaktionen; neu: mit Sonderteil über Gifttiere. Nikol, Hamburg, S 649

    Google Scholar 

Literatur: zu Abschn. 4.2.2.2.2

  • Appendino G, Szallasi A (1997) Euphorbium: modern research on its active principle, resiniferatoxin, revives an ancient medicine. Life Sci 60(10):681–696

    CAS  PubMed  Google Scholar 

  • Asakawa Y (1995) Sacculatane. In: Herz W, Kirby GW, Moore RE, Steglich W, Tamm CH (Hrsg) Fortschritte der Chemie organischer Naturstoffe 65. Springer, Wien, S 268–272

    Google Scholar 

  • Asakawa Y (1999) Phytochemistry of bryophytes. In: Phytochemicals in human health protection, nutrition, and plant defense. Springer, Boston, MA, S 319–342

    Google Scholar 

  • Asakawa Y, Ludwiczuk A, Nagashima F (2013) Biologically active compounds of the marchantiophyta and bryophyta. In: Chemical Constituents of Bryophytes. Springer, Vienna, S 619–638

    Google Scholar 

  • Brown D (2016) Resiniferatoxin: The evolution of the “molecular scalpel” for chronic pain relief. Pharmaceuticals 9(3):47

    PubMed  PubMed Central  Google Scholar 

  • Christenhusz MJ, Byng JW (2016) The number of known plants species in the world and its annual increase. Phytotaxa 261(3):201–217

    Google Scholar 

  • Hausen BM (1997) Frullanoid. In: Hausen BM, Vieluf I (Hrsg.) Allergiepflanzen-Pflanzenallergene. Ecomed, Landsberg a. Lech. S 271

    Google Scholar 

  • Heiss J, Iadarola M, Cantor F, Oughourli A, Smith R, Mannes A (2014) (364) A Phase I study of the intrathecal administration of resiniferatoxin for treating severe refractory pain associated with advanced cancer. J Pain 15(4):67

    Google Scholar 

  • Jantwal A, Rana M, Rana AJ, Upadhyay J, Durgapal S (2019) Pharmacological potential of genus marchantia: a review. J Pharmacognosy Phytochem 8(2):641–645

    CAS  Google Scholar 

  • Material safety data sheet (2014) Resiniferatoxin sc 24015. Santa Cruz Biotechnology Inc. http://datasheets.scbt.com/sc-24015.pdf. Zugegriffen: 1. März 2019

  • Olah Z, Szabo T, Karai L, Hough C, Fields RD, Caudle RM, Blumberg PM, Iadarola MJ (2001) Ligand-induced dynamic membrane changes and cell deletion conferred by vanilloid receptor 1. J Biol Chem 276(14):11021–11030

    CAS  PubMed  Google Scholar 

  • Raithel SJ, Sapio MR, LaPaglia DM, Iadarola MJ, Mannes AJ (2018) Transcriptional changes in dorsal spinal cord persist after surgical incision despite preemptive analgesia with peripheral resiniferatoxin. Anesthesiology 128(3):620–635. https://doi.org/10.1097/ALN.0000000000002006

    Article  CAS  PubMed  Google Scholar 

  • Szallasi A, Blumberg PM (1989) Resiniferatoxin, a phorbol-related diterpene, acts as an ultrapotent analog of capsaicin, the irritant constituent in red pepper. Neuroscience 30(2):515–520

    CAS  PubMed  Google Scholar 

  • Szallasi A, Blumberg PM (1990) Resiniferatoxin and its analogs provide novel insights into the pharmacology of the vanilloid (capsaicin) receptor. Life Sci 47(16):1399–1408

    Google Scholar 

  • Szallasi A, Blumberg PM (1992) Vanilloid receptor loss in rat sensory ganglia associated with long term desensitization to Resiniferatoxin. Neurosci Lett 140(1):51–54

    CAS  PubMed  Google Scholar 

Literatur zu Abschn. 4.2.2.2.3

  • Andina D, de Bernardi M, del Vecchio A, Fronza G, Mellerio G, Vidari G, Vita- P (1980) Sesquiterpenes from Russula sardonia. Phytochemistry 19(1):93–97

    CAS  Google Scholar 

  • Anke H, Sterner O (1991) Comparison of the antimicrobial and cytotoxic activities of twenty unsaturated sesquiterpene dialdehydes from plants and mushrooms. Planta Med 57(4):344–346

    CAS  PubMed  Google Scholar 

  • Bon M (2005) Pareys Buch der Pilze. Franckh-Kosmos, Stuttgart, S 80

    Google Scholar 

  • Camazine SM, Resch JF, Eisner T, Meinwald J (1983) Mushroom chemical defense. J Chem Ecol 9(10):1439–1447

    CAS  PubMed  Google Scholar 

  • Forsby A, Andersson M, Lewan L, Sterner O (1991) The cytotoxicity of 22 sesquiterpenoid unsaturated dialdehydes, as determined by the neutral red absorption assay and by protein determination. Toxicol In Vitro 5(1):9–14

    CAS  PubMed  Google Scholar 

  • List PH, Hackenberg H (1969) Velleral und iso-Velleral, scharf schmeckende Stoffe aus Lactarius vellereus FRIES. Arch Pharm 302(2):125–143

    CAS  Google Scholar 

  • Montag A (1997) Leder für Bekleidung. In: Montag A (Autor) Bedarfsgegenstände: Recht-Technologie-Chemie-Wechselwirkungen. Eine Einführung. Unter Mitwirkung von Andreas Montag. Behr's Verlag, Hamburg. S 228–233

    Google Scholar 

  • Sterner O, Bergman R, Kihlberg J, Wickberg B (1985) The sesquiterpenes of Lactarius vellereus and their role in a proposed chemical defense system. J Nat Prod 48(2):279–288

    CAS  Google Scholar 

  • Sterner O, Carter RE, Nilsson LM (1987) Structure-activity relationships for unsaturated dialdehydes 1. The mutagenic activity of 18 compounds in the Salmonella/microsome assay. Mutat Res/Genet Toxicol 188(3):169–174

    Google Scholar 

  • Sterner O (1989) The co-formation of sesquiterpene aldehydes and lactones in injured fruit bodies of Lactarius necator and L. circellatus. The isolation of epi-piperalol. Acta Chem Scand 43:694–697

    CAS  Google Scholar 

Literatur zu Abschn. 4.2.3

  • Covington AD (2009) Tanning chemistry: the science of leather. Royal Society of Chemistry

    Google Scholar 

  • Cummings AJ (1850) Tannin as a medical agent. Boston Med Surg J (1828–1851) 43(2):36

    Google Scholar 

  • Geyer J, Herling AW (2016) Pharmakologie der Verdauung. In: Löscher W, Richter A (Hrsg) Lehrbuch der Pharmakologie und Toxikologie in der Veterinärmedizin. Ferdinand Enke, Stuttgart, S 279–323

    Google Scholar 

  • Haslam E (1966) Chemistry of vegetable tannins. Academic Press London, New York

    Google Scholar 

  • Khanbabaee K, van Ree T (2001) Tannins: classification and definition. Nat Prod Rep 18(6):641–649

    CAS  PubMed  Google Scholar 

  • Montag A (1997) Leder für Bekleidung. In: Montag A (Autor) Bedarfsgegenstände: Recht-Technologie-Chemie-Wechselwirkungen. Eine Einführung. Unter Mitwirkung von Andreas Montag. Behr's Verlag, Hamburg. S 228–233

    Google Scholar 

  • Porter LJ (2012) 11 Tannins. Methods in plant biochemistry 1:389

    Google Scholar 

  • Reddy MB, Love M (1999) The impact of food processing on the nutritional quality of vitamins and minerals. In Impact of processing on food safety. Springer, Boston, MA, S 99–106

    Google Scholar 

  • Ruszczyński M, Urbańska M, Szajewska H (2014) Gelatin tannate for treating acute gastroenteritis: a systematic review. Annals of gastroenterology: quarterly publication of the hellenic society of gastroenterology 27(2):121

    Google Scholar 

  • Steinegger E, Hänsel R (2013) Pharmakognosie. Springer, S 413

    Google Scholar 

  • Ude M, Hengstler S, Schulz M, Müller WE, Leuner K (2009) Mineralstoffe und Spurenelemente–ein Fall für die Beratung. In der Apotheke. Pharm Unserer Zeit 38(3):268–276

    Google Scholar 

Literatur zu Abschn. 4.2.3.1

  • Akiyama H, Fujii K, Yamasaki O, Oono T, Iwatsuki K (2001) Antibacterial action of several tannins against Staphylococcus aureus. J Antimicrob Chemother 48(4):487–491

    CAS  PubMed  Google Scholar 

  • Al‐Ayyoubi S, Gali‐Muhtasib H (2007) Differential apoptosis by gallotannin in human colon cancer cells with distinct p53 status. Molecular Carcinogenesis: Published in cooperation with the University of Texas MD Anderson Cancer Center 46(3):176–186

    Google Scholar 

  • Baltes W (2000) Zusatzstoffe im Lebensmittelverkehr. In: Lebensmittelchemie. Springer, Berlin, S 154–194

    Google Scholar 

  • Bedgood DR Jr, Bishop AG, Prenzler PD, Robards K (2005) Analytical approaches to the determination of simple biophenols in forest trees such as Acer (maple), Betula (birch), Coniferus, Eucalyptus, Juniperus (cedar), Picea (spruce) and Quercus (oak). Analyst 130(6):809–823

    CAS  PubMed  Google Scholar 

  • Bhandary BSK, Sharmila KP, Kumari NS, Bhat SV (2013) Acute and subacute toxicity study of the ethanol extracts of Punica granatum (Linn). Whole fruit and seeds and synthetic ellagic acid in swiss albino mice. Asian J Pharm Clin Res 6(4):192–198

    Google Scholar 

  • Bulani VD, Kothavade PS, Nagmoti DM, Kundaikar HS, Degani MS, Juvekar AR (2015) Characterisation and anti-inflammatory evaluation of the inclusion complex of ellagic acid with hydroxypropyl-β-cyclodextrin. J Incl Phenom Macrocycl Chem 82(3–4):361–372

    CAS  Google Scholar 

  • Fink M (2002) Einsatz der Nah-Infrarot (NIR)-Spektroskopie zur quantitativen Bestimmung ausgewählter pflanzlicher Inhaltsstoffe. Von der gemeinsamen Naturwissenschaftlichen Fakultät der Technischen Universität Carolo-Wilhelmina zu Brauschweig zur Erlangung des Grades einer Doktorin der Naturwissenschaften genehmigte Dissertation. https://d-nb.info/968061184/34. Zugegriffen: 10. März 2019

  • Fukuda T, Ito H, Yoshida T (2003) Antioxidative polyphenols from walnuts (Juglans regia L.). Phytochemistry 63(7):795–801

    Google Scholar 

  • Daniel EM, Krupnick AS, Heur YH, Blinzler JA, Nims RW, Stoner GD (1989) Extraction, stability, and quantitation of ellagic acid in various fruits and nuts. J Food Compos Anal 2(4):338–349

    CAS  Google Scholar 

  • Gómez- AM, Verardo V, Toselli M, Segura- A, Fernández-Gutiérrez A, Caboni MF (2013) Determination of the major phenolic compounds in pomegranate juices by HPLC–DAD–ESI-MS. J Agric Food Chem 61(22):5328–5337

    PubMed  Google Scholar 

  • Gudej J, Tomczyk M (2004) Determination of flavonoids, tannins and ellagic acid in leaves from Rubus L. species. Arch Pharmacal Res 27(11):1114–1119

    Google Scholar 

  • Hagerman AE (2002) Hydrolyzable tannin structural chemistry. Tannin handbook, 1–5

    Google Scholar 

  • Haslam E (1992) Gallic acid and its metabolites. In: Hemingway RW, Laks PE (Hrsg) Plant Polyphenols: Synthesis, Properties, Significance, S 169–193

    Google Scholar 

  • Laslo E, Köbölkuti ZA (2017) Total phenol content and antimicrobial activity of lingonberry (Vaccinium vitis-idaea L.) from several areas in the eastern Carpathians. Notulae Sci Biologicae 9(1):77–83

    Google Scholar 

  • Löwe J (1868) Über die Bildung von Ellagsäure aus Gallussäure. Z Chem 4:603

    Google Scholar 

  • Mertens-Talcott SU, Percival SS (2005) Ellagic acid and quercetin interact synergistically with resveratrol in the induction of apoptosis and cause transient cell cycle arrest in human leukemia cells. Cancer Lett 218(2):141–152

    Google Scholar 

  • Montag A, Reinel D (1997) Teer-Präparate in der Dermatologie. Dermatosen in Beruf und Umwelt 45(1):22–24

    Google Scholar 

  • Morimoto S, Nonaka GI, Nishioka I (1987) Tannins and Related Compounds. LIX. Aesculitannins, Novel Proanthocyanidins with Doubly-Bonded Structures from Aesculus hippocastanum L. Chem Pharm Bull 35(12):4717–4729

    Google Scholar 

  • Ortega A, Domingo JL, Gómez M, Corbella J (1989) Treatment of experimental acute uranium poisoning by chelating agents. Pharmacol Toxicol 64(3):247–251

    CAS  PubMed  Google Scholar 

  • Ozawa T, Kobayashi S, Seki R, Imagawa H (1984) A new gallotannin from bark of chestnut tree, Castanea crenata sieb. et zucc. Agric Bio Chem 48(6):1411–1416

    Google Scholar 

  • Ring J, Fröhlich HH (1985) Antiphlogistika (ausgenommen Glukokortikosteroide) und Venenmittel. In: Wirkstoffe in der dermatologischen Therapie. Springer, Berlin, S 184–193

    Google Scholar 

  • Römpp (2002) Gallussäure. In: Dill B, Heiker FR, Kirsching A (Hrsg) Römpp Lexikon Chemie-online. https://roempp.thieme.de/roempp4.0/do/data/RD-07-00113. Zugegriffen: 5. März 2019

  • Rul EF, Khaikin MS, Fedorina LG, Derstuganoff EF (1967) The tanning-developing properties of some polyoxy con1pounds. J Photographic Sci 15(4):174–180

    CAS  Google Scholar 

  • Scalbert A (1991) Antimicrobial properties of tannins. Phytochemistry 30(12):3875–3883

    CAS  Google Scholar 

  • Schlesier K (2002) Untersuchungen zum Polyphenolspektrum und zur antioxidativen Wirkung von Tee und Wechselwirkungen von Teepolyphenolen mit Eisen. Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium. Vorgelegt dem Rat der biologisch-pharmazeutischen Fakultät der Friedrich-Schiller-Universität Jena. http://www.bioaktive-pflanzenstoffe.uni-jena.de/docs/Dissertation_Karin_Schlesier_2002.pdf. Zugegriffen: 10. März 2019

  • Seeram NP, Lee R, Scheuller HS, Heber D (2006) Identification of phenolic compounds in strawberries by liquid chromatography electrospray ionization mass spectroscopy. Food Chem 97(1):1–11

    CAS  Google Scholar 

  • Sticher O (2010) Phenolische Verbindungen. In: Hänsel R, Sticher O (Hrsg) Pharmakognosie—Phytopharmazie. Springer, Berlin, S 1051–1215

    Google Scholar 

  • Stoner GD, Mukhtar H (1995) Polyphenols as cancer chemopreventive agents. J Cell Biochem 22:169–180

    Google Scholar 

  • Takos AM, Ubi BE, Robinson SP, Walker AR (2006) Condensed tannin biosynthesis genes are regulated separately from other flavonoid biosynthesis genes in apple fruit skin. Plant Sci 170(3):487–499

    CAS  Google Scholar 

  • Yamanaka D, Motoi M, Ishibashi KI, Miura NN, Adachi Y, Ohno N (2013) Modulation of interferon-γ synthesis by the effects of lignin-like enzymatically polymerized polyphenols on antigen-presenting cell activation and the subsequent cell-to-cell interactions. Food Chem 141(4):4073–4080

    CAS  PubMed  Google Scholar 

  • Zahn T, Hensel A (2017) Birkenrindenextrakt zur Wundheilung. Deutsche Apotheker Zeitung (47) 34. https://www.deutsche-apotheker-zeitung.de/daz-az/2017/daz-47-2017/birkenrindenextrakt-zur-wundheilung. Zugegriffen: 24. Mai 2020

  • Zekert O (1936) Carl Wilhelm Scheele. Gedenkschrift zum 150. Todestage. Springer, Berlin, S 1–57

    Google Scholar 

  • Zhao T, Sun Q, del Rincon SV, Lovato A, Marques M, Witcher M (2014) Gallotannin imposes S phase arrest in breast cancer cells and suppresses the growth of triple-negative tumors in vivo. PloS one 9(3):e92853

    Google Scholar 

Literatur zu Abschn. 4.2.3.2

  • Afoakwa EO, Quao J, Takrama J, Budu AS, Saalia FK (2012) Changes in total polyphenols, O-diphenols and anthocyanin concentrations during fermentation of pulp pre-conditioned cocoa (Theobroma cacao) beans. Int Food Res J 19(3):1071–1077

    Google Scholar 

  • Aizpurua-Olaizola O, Ormazabal M, Vallejo A, Olivares M, Navarro P, Etxebarria N, Usobiaga A (2015) Optimization of supercritical fluid consecutive extractions of fatty acids and polyphenols from Vitis vinifera grape wastes. J Food Sci 80(1):101–107

    Google Scholar 

  • Actis-Goretta L, Lévèques A, Rein M, Teml A, Schäfer C, Hofmann U, Li H, Schwab M, Eichelbaum M, Williamson G (2013) Intestinal absorption, metabolism and excretion of (−)-epicatechin in healthy humans assessed by using an intestinal perfusion technique. Am J Clin Nutr 98(4):924–933

    CAS  PubMed  Google Scholar 

  • Bayard V, Chamorro F, Motta J, Hollenberg NK (2007) Does flavanol intake influence mortality from nitric oxide-dependent processes? Ischemic heart disease, stroke, diabetes mellitus, and cancer in Panama. Int J Med Sci 4(1):53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Belz GG, Mohr- S (2011) Kakao und dunkle Schokolade zur kardiovaskulären Prävention? DMW-Dtsch Med Wochenschr 136(51/52):2657–2663

    CAS  Google Scholar 

  • Bhagwat S, Haytowitz DB, Holden JM (2014) USDA database for the flavonoid content of selected foods, Release 3.1. US Department of Agriculture: Beltsville, MD, USA

    Google Scholar 

  • Chen ZP, Schell JB, Ho CT, Chen KY (1998) Green tea epigallocatechin gallate shows a pronounced growth inhibitory effect on cancerous cells but not on their normal counterparts. Cancer Lett 129(2):173–179

    CAS  PubMed  Google Scholar 

  • Clouth A, Schöfer H (2015) Treatment of recalcitrant facial verrucae vulgares with sinecatechins (greentea catechins) ointment. J Eur Acad Dermatol Venereol 29(1):178–179

    CAS  PubMed  Google Scholar 

  • Chun OK, Chung SJ, Song WO (2007) Estimated dietary flavonoid intake and major food sources of US adults. J Nutr 137(5):1244–1252

    CAS  PubMed  Google Scholar 

  • Dönmez Ö, Mogol BA, Gökmen V, Tang N, Andersen ML, Chatterton DE (2020) Modulation of gastrointestinal digestion of β-lactoglobulin and micellar casein following binding by (−)-epigallocatechin-3-gallate (EGCG) and green tea flavanols. Food & function, 11(7), 6038-6053

    Google Scholar 

  • Dräger B, Stintzing FC (2011) Proanthocyanidine. In: Dill B, Böckler F, Kirschning A (Hrsg.) Römpp-online. Lexikon Chemie. https://roempp.thieme.de/roempp4.0/do/data/RD-16-04136. Zugegriffen: 10. März 2019

  • EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) (2018) Younes M, Aggett P, Aguilar F, Crebelli R, Dusemund B, Filipic M, Frutos MJ, Galtier P, Gott D, Gundert-Remy U, Lambré, Leblanc JC, Moldeus P, Mortensen A, Oskarsson A, Stankovic I, Waalkens-Berendsen IW, Woutersen RA, Andrade RJ, Fortes C, Mosesso P, Restani P, Arcella D, Pizzo F, Smeraldi C, Wright M (2018) Scientific opinion on the safety of green tea catechins. https://doi.org/10.2903/j.efsa.2018.5239. Zugegriffen: 13. März 2019

  • Ferreira D (1999) Vol. 3. Carbohydrates and their derivatives including tannins, cellulose and related lignins. In: Barton S, Nakanishi K, Meth-Cohn O (Hrsg) Comprehensive natural products chemistry, Bd 1–9, Elsevier, Oxford, S 747

    Google Scholar 

  • Freudenberg K, Cox RF, Braun E (1932) The Catechin of the Cacao Bean 1. J Am Chem Soc 54(5):1913–1917

    CAS  Google Scholar 

  • Hara Y (2001) Green tea – health benefits and applications. Taylor & Francis, London

    Google Scholar 

  • Hooper L, Kay C, Abdelhamid A, Kroon PA, Cohn JS, Rimm EB, Cassidy A (2012) Effects of chocolate, cocoa, and flavan-3-ols on cardiovascular health: a systematic review and meta-analysis of randomized trials. Am J Clin Nutr 95(3):740–751

    Google Scholar 

  • Hu J, Webster D, Cao J, Shao A (2018) The safety of green tea and green tea extracts consumption in adults–results of a systematic review. Regul Toxicol Pharmacol 95:412–433

    CAS  PubMed  Google Scholar 

  • Jones C, Woods K, Whittle G, Worthington H, Taylor G (1999) Sugar, drinks, deprivation and dental caries in 14-year-old children in the north west of England in 1995. Commun Dent Health 16(2):68–71

    CAS  Google Scholar 

  • Khalesi S, Sun J, Buys N, Jamshidi A, Nikbakht-Nasrabadi E, Khosravi-Boroujeni H (2014) Green tea catechins and blood pressure: a systematic review and meta-analysis of randomised controlled trials. Eur J Nutr 53(6):1299–1311

    CAS  PubMed  Google Scholar 

  • Julkunen-Tiitto R, Sorsa S (2001) Testing the effects of drying methods on willow flavonoids, tannins, and salicylates. J Chem Ecol 27(4):779–789

    CAS  PubMed  Google Scholar 

  • Liu H, Zou T, Gao JM, Gu L (2013) Depolymerization of cranberry procyanidins using (+)-catechin,(−)-epicatechin, and (−)-epigallocatechin gallate as chain breakers. Food Chem 141(1):488–494

    CAS  PubMed  Google Scholar 

  • Lorenz M, Urban J, Engelhardt U, Baumann G, Stangl K, Stangl V (2009) Green and black tea are equally potent stimuli of NO production and vasodilation: new insights into tea ingredients involved. Basic Res Cardiol 104(1):100–110

    CAS  PubMed  Google Scholar 

  • Määttä-Riihinen KR, Kähkönen MP, Törrönen AR, Heinonen IM (2005) Catechins and procyanidins in berries of Vaccinium species and their antioxidant activity. J Agric Food Chem 53(22):8485–8491

    PubMed  Google Scholar 

  • Martinez SE, Davies NM, Reynolds JK (2013) Toxicology and safety of flavonoids. Flavonoid Pharmacokinetics: Methods of Analysis, Preclinical and Clinical Pharmacokinetics, Safety, and Toxicology, 249–280.

    Google Scholar 

  • Meloni G, Milani M (2018) Efficacy and tolerability of topical green tea extract (polyphenon E) Application in a “Therapy-Resistant” Plantar Wart. Case Rep Dermatol 10(2):127–132

    PubMed  PubMed Central  Google Scholar 

  • Morimoto S, Nonaka GI, Nishioka I (1987) Tannins and Related Compounds. LIX. Aesculitannins, Novel Proanthocyanidins with Doubly-Bonded Structures from Aesculus hippocastanum L. Chem Pharm Bull 35(12):4717–4729

    Google Scholar 

  • NCBI (National Center for Biotechnology Information) (2019) (−)-Epigallocatechin gallate. PubChem Compound Database; CID=65064, https://pubchem.ncbi.nlm.nih.gov/compound/65064. Zugegriffen: 10. März 2019

  • Orians CM, Fritz RS (1995) Secondary chemistry of hybrid and parental willows: Phenolic glycosides and condensed tannins in Salix sericea, S. eriocephala, and their hybrids. J Chem Ecol 21(9):1245–1253

    Google Scholar 

  • Ottaviani JI, Momma TY, Kuhnle GK, Keen CL, Schroeter H (2012) Structurally related (−)-epicatechin metabolites in humans: Assessment using de novo chemically synthesized authentic standards. Free Radical Biol Med 52(8):1403–1412

    CAS  Google Scholar 

  • Otteneder H, Schreier P (2012) Catechine. In: Dill B, Böckler F, Kirschning A (Hrsg) Römpp-online. Lexikon Chemie. https://roempp.thieme.de/roempp4.0/do/data/RD-03-00674. Zugegriffen: 10. März 2019

  • Pelzer FJ (1837) Vollständiges Handbuch der gesammten Lederfabrikation theoretisch und praktisch bearbeitet: nebst einer neuen nach chemisch technischen Grundsätzen aufgestellten und praktisch erprobten Schnellgerberei, mit Einschluß aller bis jetzt bekannt gewordenen Gerbearten. Bädeker, Leipzig

    Google Scholar 

  • Pietta PG (2000) Flavonoids as antioxidants. J Nat Prod 63(7):1035–1042

    CAS  PubMed  Google Scholar 

  • Primetta A (2018) Phenolic compounds in the berries of the selected vaccinium species the potential for authenticity analyses. Academic Dissertation of Forestry and Natural Sciences.

    Google Scholar 

  • Kuopio, 2014 Пocтyпилo в peдaкцию 14 нoябpя 1, 7–37. https://www.researchgate.net/publication/272172300_Phenolic_compounds_in_the_berries_of_the_selected_Vaccinium_species_The_potential_for_authenticity_analyses. Zugegriffen: 20. April 2019

  • Ried K, Sullivan TR, Fakler P, Frank OR, Stocks NP (2012) Effect of cocoa on blood pressure. Cochrane Database of Systematic Reviews (8)

    Google Scholar 

  • Schlesier K (2002) Untersuchungen zum Polyphenolspektrum und zur antioxidativen Wirkung von Tee und Wechselwirkungen von Teepolyphenolen mit Eisen. Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium. Vorgelegt dem Rat der biologisch-pharmazeutischen Fakultät der Friedrich-Schiller-Universität Jena. http://www.bioaktive-pflanzenstoffe.uni-jena.de/docs/Dissertation_Karin_Schlesier_2002.pdf. Zugegriffen: 10. März 2019

  • Stacewicz-Sapuntzakis M, Bowen PE, Hussain EA, Damayanti-Wood BI, Farnsworth NR (2001) Chemical composition and potential health effects of prunes: a functional food? Crit Rev Food Sci Nutr 41(4):251–286

    CAS  PubMed  Google Scholar 

  • Tatti S, Swinehart JM, Thielert C, Tawfik H, Mescheder A, Beutner KR (2008) Sinecatechins, a defined green tea extract, in the treatment of external anogenital warts: a randomized controlled trial. Obstet Gynecol 111(6):1371–1379

    PubMed  Google Scholar 

  • Türk O (2014) Tannine. In: Stoffliche Nutzung nachwachsender Rohstoffe. Grundlagen-Werkstoffe-Anwendungen. Springer, Wiesbaden, S 471

    Google Scholar 

  • Vogiatzoglou A, Mulligan AA, Lentjes MA, Luben RN, Spencer JP, Schroeter H, Khaw KT, Kuhnle GGC, (2015) Flavonoid intake in European adults (18 to 64 years). PloS one 10(5):e0128132

    Google Scholar 

  • von Lippmann EO (1921) Zeittafeln zur Geschichte der organischen Chemie. In Zeittafeln zur Geschichte der Organischen Chemie. Springer, Berlin, S 1–56

    Google Scholar 

  • Wollgast J, Anklam E (2000) Polyphenols in Theobroma cacao: Changes in composition during the manufacture of chocolate and methodology for identification and quantification: A review. Food Res Int 33(2000):423–447

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Montag .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Montag, A. (2023). Toxische Abwehrstrategien der Pflanzen in Europa. In: Pflanzen und Haut . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-63014-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-63014-3_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-63013-6

  • Online ISBN: 978-3-662-63014-3

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics