Skip to main content

Ökophysiologie der Agrargehölze – vom Blatt zum Bestand

  • Chapter
  • First Online:
Agrarholz – Schnellwachsende Bäume in der Landwirtschaft

Zusammenfassung

Auf wechselnde Umweltbedingungen an ihren Wuchsstandorten müssen Bäume mit ihrer ökophysiologischen und morphologischen Anpassungsfähigkeit reagieren, die sich auf deren genetische Ausstattung gründet. Sowohl die Bodeneigenschaften als auch das Klima beeinflussen die physiologischen Prozesse von der Blatt- bis zur Baumebene. Grundlage für das schnelle Wachstum und die hohe Biomasseproduktivität der Agrargehölze ist die Photosynthese und die hohe Anpassungsfähigkeit an sich ändernde Umweltbedingungen. Dabei ist zu bedenken, dass die Photosynthese die Voraussetzung für das Wachstum ist, aber diese nicht das Wachstum antreibt. Interaktionen zwischen dem Bedarf an Assimilation für die Wachstumsprozesse („sinks“) und dem Angebot („source“) steuern den Kohlenstoffhaushalt der Pflanzen. Zudem ist das Angebot von Ressourcen (Wasser, Nährstoffe, Licht) eine unverzichtbare Voraussetzung für die Wachstumsprozesse. Das Kapitel gibt einen Überblick über die ökophysiologischen Anpassungen der Photosynthese, des Wasserhaushaltes und der Pflanzenernährung der schnellwachsenden Baumarten und deren Bedeutung für das Wachstum und die Kohlenstoffallokation. Zudem werden die Grundlagen für die Modellierung der Biomasseproduktion und des Kohlenstoffhaushaltes vom Blatt bis zum Bestand vorgestellt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Al Afas N, Marron N, Zavalloni C, Ceulemans R (2008) Growth and production of a short-rotation coppice culture of poplar – IV: Fine root characteristics of five poplar clones. Biomass Bioenergy 32:494–502

    Google Scholar 

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–371

    PubMed  Google Scholar 

  • Ali W (2009) Modelling of Biomass Production Potential of Poplar in Short Rotation on Agricultural Lands of Saxony, Germany. Dissertation, Fachrichtung Forstwissenschaften, TU Dresden, Tharandt

    Google Scholar 

  • Amthauer Gallardo D (2014) Standortbasierte Ertragsmodellierung von Pappel- und Weidenklonen in Kurzumtriebsplantagen. Dissertation, Fachrichtung Forstwissenschaften, TU Dresden

    Google Scholar 

  • Anders S, Beck W, Lux W, Müller J, Fischer R, König A, Küppers J-G, Thoroe C, Kätzel R, Löffer S, Heydeck P, Möller K (2004) Auswirkung der Trockenheit 2003 auf Waldzustand und Waldbau. Bundesforschungsanstalt für Forst- und Holzwirtschaft. Arbeitsbericht des Instituts für Waldökologie und Walderfassung Nr. 2/2004, S 1–109

    Google Scholar 

  • Atkinson D (2000) Root characteristics: why and what to measure. In: Smit AL, Bengough AG, Engels C, Van Nordwijk M, Pellerin S, Van de Gijn C (Hrsg) Root Methods. A Handbook. Springer, Heidelberg, S 1–32

    Google Scholar 

  • Bago B, Pfeffer PE, Abubaker J, Jun J, Allen JW, Brouillette J, Douds DD, Lammers PJ, Shachar-Hill Y (2003) Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid. Plant Physiol 131:1496–1507

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balasus A (2014) Umwelt- und Ertragswirkungen der Stickstoffdüngung beim Anbau von Weiden und Pappeln auf Ackerflächen unter Berücksichtigung phytopathologischer Aspekte. Dissertation, Fakultät für Umweltwissenschaften, TU Dresden

    Google Scholar 

  • Balasus A, Bischoff W-A, Schwarz A, Scholz V, Kern J (2012) Nitrogen fluxes during the initial stage of willows and poplars in short-rotation coppices. J Plant Nutr Soil Sci 175:729–738

    CAS  Google Scholar 

  • Ball JT, Woodrow IE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggins J, Nijhoff M (Hrsg) Progress in Photosynthesis Research 4. Nijhoff, Dordrecht, S 221–224

    Google Scholar 

  • Barnéoud C, Bonduelle P, Dubois JM (1982) Manuel de Populiculture. Association Font-Cellulose, Paris, 319 S

    Google Scholar 

  • Batzli JM, Graves WR, Van Berkum P (1992) Diversity among Rhizobium effective with Robinia pseudoacacia L. Appl Environ Microbiol 58(7):2137–2143

    Google Scholar 

  • Baule H (1967) Die Düngung von Waldbäumen. Bayrischer Landwirtschaftsverlag, München

    Google Scholar 

  • Baum C, Makeschin F (2000) Effects of nitrogen and phosphorus fertilization on mycorrhizal formation of two poplar clones (Populus trichocarpa and P. tremula x tremuloides). J Plant Nutr Soil Sci 163:491–497

    CAS  Google Scholar 

  • Baum C, Schmid K, Makeschin F (2000) Interactive effects of substrates and ectomycorrhizal colonization on growth of a poplar clone. J Plant Nutr Soil Sci 163:221–226

    CAS  Google Scholar 

  • Beaupied H, Moiroud A, Domenach A-M, Kurdali F, Lensi R (2011) Ratio of fixed and assimilated nitrogen in a black alder (Alnus glutionsa) stand. Can J For Res 20(7):1116–1119

    Google Scholar 

  • Beesk M (2015) Untersuchungen zum Wasser-, Nährstoffhaushalt und zum Wachstum von Robinien in Agroforstsystemen in der Niederlausitz. Masterarbeit, Brandenburg University of Technology Cottbus-Senftenberg

    Google Scholar 

  • Begley D, McCracken AR, Dawson WM, Watson S (2009) Interaction in Short Rotation Coppice willow, Salix viminalis genotype mixtures. Biomass Bioenergy 33:163–173

    Google Scholar 

  • Berhongaray G, Verlinden MS, Broeckx LS, Ceulemans R (2015) Changes in belowground biomass after coppice in two Populus genotypes. For Ecol Manage 337:1–10

    Google Scholar 

  • Bloom AJ, Chapin FS, Mooney HA (1985) Resource limitation in plants – an economic analogy. Annu Rev Ecol Syst 16:363–392

    Google Scholar 

  • Boddey RM, Peoples MB, Palmer B, Dart PJ (2000) Use of the 15N natural abundance technique to quantify biological nitrogen fixation by woody perennials. Nutr Cycl Agroecosys 57:235–270

    Google Scholar 

  • Böhm C, Quinkenstein A, Freese D (2011) Yield prediction of young black locust (Robinia pseudoacacia L.) plantations for woody biomass production using allometric relations. Ann For Res 54:215–227

    Google Scholar 

  • Bonosi L, Ghelardini L, Weih M (2013) Towards making willows potential bio-resources in the South: Northern Salix hybrids can cope with warm and dry climate when irrigated. Biomass Bioenergy 51:136–144

    Google Scholar 

  • Boring LR, Swank WT (1984) Symbiotic nitrogen fixation in regenerating black locust (Robinia pseudoacacia L.) stands. For Sci 30(2):528–537

    Google Scholar 

  • Bormann BT, Bormann FH, Bowden WB, Pierce RS, Hamburg SP, Wang D, Snyder MC, Li CY, Ingersoll RC (1993) Rapid N2 fixation in pines, alder and locust: evidence from the sandbox ecosystem study. Evology 74:583–598

    Google Scholar 

  • Bouman O, Sylliboy J (2012) Biomass allocation and photosynthetic capacity of willow (Salix spp.) bio-energy varieties. Forstarchiv 83:139–143

    Google Scholar 

  • Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bräuning A, Bolte A, Nabais C, Rossi S, Sass-Klaasen U (2017) Studying tree responses to extreme events. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00506

    Article  PubMed  PubMed Central  Google Scholar 

  • Broeckx LS, Fichot R, Verlinden MS, Ceulemans R (2014) Seasonal variations in photosynthesis, intrinsic water-use efficiency and stable isotope composition of poplar leaves in a short-rotation plantation. Tree Physiol 34:701–715

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soils 320:37–77

    CAS  Google Scholar 

  • Bullard MJ, Mustill SJ, Carver P, Nixon PMI (2002) Yield improvements through modification of planting density and harvest frequency in short rotation coppice Salix spp. 2. Resource capture and use in two morphologically diverse varieties. Biomass Bioenergy 22:27–39

    Google Scholar 

  • Bungart R, Hüttl RF (2004) Growth dynamics and biomass accumulation of 8-year-old hybrid poplar clones in a short-rotation plantation on a clayey-sandy mining substrate with respect to plant nutrition and water budget. Eur J Res 123:105–115

    CAS  Google Scholar 

  • Cannell MGR, Dewar RC (1994) Carbon allocation in trees – a review of concepts for modelling. Adv Ecol Res 25:59–104

    Google Scholar 

  • Carl C, Biber P, Landgraf D, Buras A, Pretzsch H (2017) Allometric models to predict abovegound woody biomass of black locust (Robinia pseudoacacia L.) in short rotation coppice in previous mining and agricultural areas in Germany. Forests 8(9):328. https://doi.org/10.3390/f8090328

    Article  Google Scholar 

  • Carl C, Biber P, Veste M, Landgraf D, Pretzsch H (2018) Key drivers of competition and growth partitioning among Robinia pseudoacacia L. Trees For Ecol Manag 430:86–93

    Google Scholar 

  • Ceulemans R, Isebrands JG (1996) Carbon acquisition and allocation. In: Stettler R, Bradshaw T, Heilman P, Hinckley T (Hrsg) Biology of Populus and its implications for management and conservation. NRC Research Press, National Research Council of Canada, Ottawa, S 355–399

    Google Scholar 

  • Comas LH, Eissenstat DM (2004) Linking fine root traits to maximum potential growth rate among 11 mature temperate tree species. Funct Ecol 18:388–397

    Google Scholar 

  • Comas LH, Bouma TJ, Eissenstat DM (2002) Linking root traits to potential growth rate in six temperate tree species. Oecologia 132:34–43

    CAS  PubMed  Google Scholar 

  • Crow P, Houston TJ (2004) The influence of soil and coppice cycle on the rooting habit of short rotation poplar and willow coppice. Biomass Bioenergy 26:497–505

    Google Scholar 

  • Cunniff J, Purdy SJ, Barraclough TJP, Castle M, Maddison AL, Jones LE, Shield IF, Gregory AS, Karp A (2015) High yielding biomass genotypes of willow (Salix spp.) show differences in below ground biomass allocation. Biomass Bioenergy 80:114–127

    PubMed  PubMed Central  Google Scholar 

  • Côté B, Camiré C (1987) Tree growth and nutrient cycling in dense plantings of hybrid poplar and black alder. Can J For Res 17:516–523

    Google Scholar 

  • Danso SK, Zapata F, Awonaike KO (1995) Measurement of biological N2 fixation in field-grown Robinia pseudoacacia. Soil Biol Biochem 25:415–419

    Google Scholar 

  • Dawson WM, McCracken AR (1995) The performance of polyclonal stands in short rotation coppice willow for energy production. Biomass Bioenergy 8:1–5

    Google Scholar 

  • Dickmann DI, Pregitzer KS (1992) The structure and dynamics of woody plant systems. In: Mitchell CP, Ford JB, Hinckley T, Sennerby-Forsse L (Hrsg) Ecophysiology of short rotation forest crops. Elsevier, London, S 95–123

    Google Scholar 

  • Dickson RE (1986) Carbon fixation and distribution in you Populus trees. In: Fujimori T, Withehead D (Hrsg) Proceedings: crown and canopy in relation to productivity. Forest Products Research Institute, Ibaraki

    Google Scholar 

  • Dimitriou I, Mola-Yudego B (2017) Nitrogen fertilization of poplar plantations on agricultural land: effects on diameter increments and leaching. Scand J For Res 32:700–707

    Google Scholar 

  • Dimitriou I, Busch G, Jacobs S, Schmidt-Walther P, Lamersdorf N (2009) A review of impacts of short rotation coppice cultivation on water issues. Lanbauforsch – Vti Agric Forstery Res 3(59):162–197

    Google Scholar 

  • Dittert K (1992) Die stickstofffixierende Schwarz-Erle-Frankia-Symbiose in einem Erlenbruchwald der Bornhöver Seenkette. Ecosys Suppl 5:1–98

    Google Scholar 

  • Dobson MC, Moffat AJ (1999) Examination of tree and root performance on closed landfills in Merseyside. Arboric J 23:261–272

    Google Scholar 

  • Doty SL, Dosher MR, Singleton GL, Moore AL, Van Aken B, Stettler RF, Strand SE, Gordon MP (2005) Identification of an endophytic Rhizobium in stems of Populus. Symbiosis 39:27–35

    CAS  Google Scholar 

  • Doty SL, Oakley B, Xin G, Kang JW, Singleton G, Khan Z, Vajzovic A, Staley JT (2009) Diazotrophic endophytes of native black cottonwood and willow. Symbiosis 47:23–33

    CAS  Google Scholar 

  • Erice G, Sanz-Sáez A, Aroca R, Ruíz-Lozano JM, Avice J-C, Irigoyen J, Sanchez-Diaz M, Aranjuelo I (2014) Photosynthetic down-regulation in N2-fixing alfalfa under elevated CO2 alters rubisco content and decreases nodule metabolism via nitrogenase and tricarboxylic acid cycle. Acta Physiol Plantarum 36:2607–2617

    CAS  Google Scholar 

  • Eshel A, Beeckman T (2013) Plant roots: the hidden half, 4. Aufl. CRC Press, Boca Raton, S 784

    Google Scholar 

  • Euring D, Ayegbeni S, Jansen M, Tu J, Da Silv CG, Polle A (2016) Growth performance and nitrogen use efficiency of two Populus hybrid clones (P. nigra × P. maximowiczii and P. trichocarpa × P. maximowiczii) in relation to soil depth in a young plantation. Iforest – J Biogeosciences For 9:847–854

    Google Scholar 

  • Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologica 78:9–19

    Google Scholar 

  • Evans S, Randle T, Henshall P, Arcangeli C, Pellenq J, Lafont S, Vials C (2005a) Recent advances in the mechanistic modelling of forest stand and catchments. In: Forest Research Annual Report and Accounts 2003–2004 The Stationery Office, Edinburgh. UK, S 98–111 (https://www.forestry.gov.uk/pdf/fr_report2003_4_modelling.pdf/$FILE/fr_report2003_4_modelling.pdf)

    Google Scholar 

  • Evans S, Randle T, Henshall P et al (2005b) The MEFYQUE stand model – ForestGrowth, with the ETp engine. In: Randle T (Hrsg) Final Report: Forest and Timber Quality in Europe: Modelling and Forecasting Yield and Quality in Europe (http://www.efi.int/files/attachments/research/project_db/mefyque_finalpublication_mainv2.pdf)

    Google Scholar 

  • Evans SP, May TR, Hollis JM, Brown CD (1999) SWBCM: a soil water balance capacity model for environmental applications in the UK. Ecol Model 121:17–49

    Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    CAS  PubMed  Google Scholar 

  • Farrar K, Bryant D, Cope-Selby N (2014) Understanding and engineering beneficial plant-microbe interactions: plant growth promotion in energy crops. Plant Biotechnol J 12(9):1193–1206

    PubMed  PubMed Central  Google Scholar 

  • Fillion M, Brisson J, Guidi W, Labrecque M (2011) Increasing phosphorus removal in willow and poplar vegetation filters using arbuscular mycorrhizal fungi. Ecol Eng 37:199–205

    Google Scholar 

  • Foltyn D (2015) Allometrische Beziehungen bei schnell-wachsenden Baumarten in Kurzumtriebsplantagen zur Bestimmung ihrer Gesamtbiomasse und der daraus resultierenden Kohlenstoffsequestrierung. Bachelorarbeit, Hochschule für nachhaltige Entwicklung Eberswalde

    Google Scholar 

  • Franche C, Lindström K, Elmrich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soils 321:35–59

    CAS  Google Scholar 

  • Fränzle O, Schimming C-G (2008) Element fluxes in atmosphere, vegetation and soil. In: Fränzle O, Kappen L, Blume H-P, Dierssen K (Hrsg) Ecosystem organization of a complex landscape. Ecological studies 202. Springer, Heidelberg, Berlin, New York, S 169–205

    Google Scholar 

  • Friend AL, Scarascia-Mugnozza G, Isebrands JG, Heilman PE (1991) Quantification of two year old poplar root systems – morphology, biomass, and 14C distribution. Tree Physiol 8:109–119

    CAS  PubMed  Google Scholar 

  • Gálvez L, González EM, Arrese-Igor C (2005) Evidence for carbon flux shortage and strong carbon/nitrogen interactions in pea nodules at early stages of water stress. J Exp Bot 56:2551–2561

    PubMed  Google Scholar 

  • Gentili F, Huss-Danell K (2003) Local and systemic effects of phosphorus and nitrogen on nodulation and nodule function in Alnus incana. J Exp Bot 54:2757–2767

    CAS  PubMed  Google Scholar 

  • Gentili F, Wall LG, Huss-Danell K (2006) Effects of phosphorus and nitrogen on nodulation are seen already at the stage of early cortical cell divisions in Alnus incana. Ann Bot 98(2):309–315

    PubMed  PubMed Central  Google Scholar 

  • Geßler A, Keitel C, Kreuzwieser J, Matyssek R, Seiler W, Rennenberg H (2007) Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees 21:1–11

    Google Scholar 

  • Godbold D, Tullus A, Kupper P, Sober J, Ostonen I, Godbold JA, Lukac M, Ahmed IA, Smith AR (2014) Elevated atmospheric CO2 and humidity delay leaf fall in Betula pendula, but not in Alnus glutinosa or Populus tremula × tremuloides. Ann For Sci 71:831–842

    Google Scholar 

  • Graves AR, Burgess PJ, Palma JHN, Keesman KJ, van der Werf W, Dupraz C, van Keulen H, Herzog F, Mayus M (2010) Implementation and calibration of the parameter-sparse Yield-SAFE model to predict production and land equivalent ratio in mixed tree and crop systems under two contrasting production situations in Europe. Ecol Model 221:1744–1756

    Google Scholar 

  • Gray SB, Strellner RS, Puthuval KK, Ng C, Shulman RE, Siebers MH, Rogers A, Leakey ADB (2013) Minirhizotron imaging reveals that nodulation of field grown soybean is enhanced by free-air CO2 enrichment only when combined with drought stress. Funct Plant Biol 40(2):137–147

    Google Scholar 

  • Green DS, Kruger EL, Stanosz GR, Isebrands JG (2001) Light-use efficiency of native and hybrid poplar genotypes at high levels of intracanopy competition. Can J For Res 31:1030–1037

    Google Scholar 

  • Guse T, Schneck V, von Wühlisch G, Liesebach M (2015) Untersuchungen der Ertragsleistung und -stabilität bei Robinien-Jungpflanzen verschiedener Herkunft auf einem Standort im Land Brandenburg. In: Liesebach M (Hrsg) FastWOOD II: Züchtung schnellwachsender Baumarten für die Produktion von nachwachsender Rohstoffe im Kurzumtrieb – Erkenntnisse aus 6 Jahren FastWOOD. Thünen Report 26, S 85–97

    Google Scholar 

  • Gutsch M, Lasch-Born P, Lüttger AB, Suckow F, Murawski A, Pilz T (2015) Uncertainty of biomass contributions from agriculture and forestry to renewable energy resources under climate change. Meteorol Z 24:213–223

    Google Scholar 

  • Hallgren SW (1989) Growth-response of Populus hybrids to flooding. Ann Sci For 46:361–372

    Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320

    PubMed  PubMed Central  Google Scholar 

  • Harley PC, Sharkey TD (1991) An improved model of C3 photosynthesis at high CO2: reversed O2 sensitivity explained by lack of glycerate reentry into the chloroplast. Photosyn Res 27:169–178

    CAS  PubMed  Google Scholar 

  • Hartmann K-U (2010) Entwicklung eines Ertragsschätzers für Kurzumtriebsbestände aus Pappel. Dissertation, Fachrichtung Forstwissenschaften, TU Dresden

    Google Scholar 

  • Hartwich J, Bölscher J, Schulte A, Schmidt M, Pflugmacher C, Murach D (2015) Das Transpirationswasserdargebot als steuernder Faktor für die Produktion von Energie aus Weiden in Kurzumtriebsplantagen – Abschätzung des Bioenergiepotenzials für Deutschland. Hydrol Wasserbewirtsch 59:217–226

    Google Scholar 

  • Heilman PE, Ekuan G, Fogle DB (1994) First-order root development from cuttings of Populus trichocarpa × P. deltoides hybrids. Tree Physiol 14:911–920

    PubMed  Google Scholar 

  • Heilman PE, Hinckley TM, Roberts DA, Ceulemans R (1996) Production physiology. In: Stettler R, Bradshaw T, Heilman P, Hinckley T (Hrsg) Biology of Populus and its implications for management and conservation. NRC Research Press, National Research Council of Canada, Ottawa, S 459–489

    Google Scholar 

  • Heskel MA, Atkin OK, Turnbull MH, Griffin KL (2013) Bringing the Kok effect to light: a review on the integration of daytime respiration and net ecosystem exchange. Ecosphere 4(8):1–14

    Google Scholar 

  • Hikosaka K, Niinemets U, Anten NPR (2016) Canopy photosynthesis: from basics to applications. Advances in photosynthesis and respiration. Springer, Dordrecht

    Google Scholar 

  • Hoeber S, Fransson P, Prieto-Ruiz I, Manzoni S, Weih M (2017) Two Salix genotypes differ in productivity and nitrogen economy when grown in monoculture and mixture. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00231

    Article  PubMed  PubMed Central  Google Scholar 

  • Högberg P (1997) Tansley Review No. 95. 15N natural abundance in soil-plant systems. New Phytol 137:179–203

    Google Scholar 

  • Hong SJ, Song SD (1990) Symbiontic nitrogen fixation activity and environmental factors of Robinia pseudoacacia L. Kor J Ecol 13:93–100

    Google Scholar 

  • Isebrands JG, Nelson ND, Dickmann DI, Michael DA (1983) Yield physiology of short-rotation intensively cultured poplars. Usda Srv Gen Tech Rep Nc 91:77–93

    Google Scholar 

  • Johnsen KH, Bongarten BC (1991) Allometry of acetylene reduction and nodule growth of Robinia pseudoacacia families subjected to varied root zone nitrate concentrations. Tree Physiol 9:507–522

    CAS  PubMed  Google Scholar 

  • Johnsen KH, Bongarten BC (1992) Relationships between nitrogen fixation and growth in Robinia pseudoacacia seedlings: a functional growth-analysis approach using 15N. Physiol Plant 85:77–84

    CAS  Google Scholar 

  • Kanzler M, Böhm C, Freese D (2015) Impact of P fertilisation on the growth performance of black locust (Robinia pseudoacacia L.) in a lignite post-mining area in Germany. Ann For Res 58:39–54

    Google Scholar 

  • Karacic A, Verwijst T, Weih M (2003) Above-ground woody biomass production of short-rotation Populus plantations on agricultrual land in Sweden. Scand J For Res 18:427–437

    Google Scholar 

  • Kitao M, Lei TT, Koike T, Tobita H, Maruyama Y (2003) Higher electron transport rate observed at low intercellular CO2 concentration in long-term drought-acclimated leaves of Japanese mountain birch (Betula ermanii). Physiol Plant 118:406–413

    CAS  Google Scholar 

  • Knoth JL, Kim S-H, Ettl G, Doty SL (2013) Biological nitrogen fixation and biomass accumulation within poplar clones as a result of inoculations with diazotrophic endophyte consortia. New Phytol 201:599–609

    PubMed  Google Scholar 

  • Koike T (1987) Photosynthesis and expansion in leaves of early, mid and late successional tree species, birch, ash and maple. Photosynthetica 21:503–508

    Google Scholar 

  • Koning LA, Veste M, Freese D, Lebzien S (2015) Effects of nitrogen and phosphate fertilization on leaf nutrient content, photosynthesis, and growth of the novel bioenergy crop Fallopia sachalinensis cv. ‘Igniscum Candy’. Journal of Applied Botany and Food Quality 88:22–28

    Google Scholar 

  • Kostiiainen K, Saranpää P, Lundquist S-O, Kubiske ME, Vapaavuori E (2014) Wood properties of Populus and Betula in long-term exposure to elevated CO2 and O3. Plant Cell Environ 37:1452–1463

    Google Scholar 

  • Kriebitzsch WU, Veste M (2012) Bedeutung trockener Sommer für die Photosynthese und Transpiration von verschiedenen Herkünften der Rotbuche (Fagus sylvatica L.). Landbauforschung 62(4):193–209

    Google Scholar 

  • Kriebitzsch WU, Beck W, Schmitt U, Veste M (2008) Bedeutung trockener Sommer für Wachstumsfaktoren von verschiedenen Herkünften der Rotbuche (Fagus sylvatica L). AFZ-der Wald 5/2008:246–248

    Google Scholar 

  • Küppers M (1984) Kohlenstoffhaushalt, Wasserhaushalt, Wachstum und Wuchsform von Holzgewächsen im Konkurrenzgefüge eines Heckenstandortes. In: Schulze E-D, Reif A, Küppers M (Hrsg) Die pflanzenökologische Bedeutung und Bewertung von Hecken. Akademie für Naturschutz und Landschaftspflege. Laufen, S 10–102 (Beiheft 3, Teil 1)

    Google Scholar 

  • Küppers M, Häder D-P (1999) Methodik der Photosyntheseforschung – Messung und Interpretation des CO2-Gasaustausches von intakten Blättern. In: Häder D-P (Hrsg) Photosynthese. Thieme, Tübingen, S 21–46

    Google Scholar 

  • Küppers M, Pfiz M (2009) Role of photosynthetic induction for daily and annual carbon gains of leaves and plant canopies. In: Laisk A, Nedbal L, Govindjee (Hrsg) Photosynthesis in silico – understanding complexity from molecules to ecosystems. Advances in photosynthesis and respiration, Bd. 29. Springer, Dordrecht, S 417–440

    Google Scholar 

  • Küppers M, Schulze E-D (1985) An empirical model of net photosynthesis and leaf conductance for the simulation of diurnal courses of CO2 and H2O exchange. Aust J Plant Physiol 12:513–526

    Google Scholar 

  • Küppers M, Schmitt D, Liner S, Böhm C, Kanzler M, Veste M (2017) Photosynthetic characteristics and simulation of annual leaf carbon balances of hybrid poplar (Populus nigra L. × P. maximowiczii Henry) and black locust (Robinia pseudoacacia L.) in a central European agroforestry system. Agrofor Syst. https://doi.org/10.1007/s10457-017-0071-z

    Article  Google Scholar 

  • Ladrera R, Marino D, Larrainzar E, González EM, Arrese-Igor C (2007) Reduced carbon availability to bacteroids and elevated ureides in nodules, but not in shoots, are involved in the nitrogen fixation response to early drought in soybean. Plant Physiol 145(2):539–546

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (2008) Plant physiological ecology. Springer, Heidelberg

    Google Scholar 

  • Lamerre J, Schwarz KU, Langhof M, von Wühlisch G, Greef JM (2015) Productivity of poplar short rotation coppice in an alley-cropping. Agrofor Syst 89:933–942

    Google Scholar 

  • Larcher W (2003) Physiological plant ecology – ecophysiology and stress physiology of functional groups. Springer, Heidelberg

    Google Scholar 

  • Larson PR, Isebrands JG (1972) The relationship between leaf production and wood weight on first-year root sprouts of two Populus clones. Can J Res 2:98–104

    Google Scholar 

  • Van der Lelie D, Taghavi S, Monchy S, Schwender J, Miller L, Ferrieri R, Rogers A, Wu X, Zhu W, Weyens N, Vangronsveld J, Newman L (2009) Poplar and its bacterial endophytes: coexistence and harmony. CRC Crit Rev Plant Sci 28(5):346–358

    Google Scholar 

  • Liang ZS, Yang J, Shao HB, Hana RL (2006) Investigation on water consumption characteristics and water use efficiency of poplar under soil water deficits on the Loess Plateau. Colloids Surfaces B: Biointerfaces 53(1):23–28

    CAS  PubMed  Google Scholar 

  • Liberloo M, Lukac M, Calfapietra C, Hossbeek MR, Gielen B, Miglietta F, Scarascia-Mugnozza GE, Ceulemans R (2009) Coppicing shifts CO2 stimulation of poplar productivity to above-ground pools: a synthesis of leaf to stand level results from the POP/EUROFACE experiment. New Phytol 182:331–346

    CAS  PubMed  Google Scholar 

  • Linderson M-L, Iritz Z, Lindroth A (2007) The effect of water availability on stand-level productivity, transpiration, water use efficiency and radiation use efficiency of field-grown willow clones. Biomass Bioenergy 31(7):460–468

    Google Scholar 

  • Lindroth A, Båth A (1999) Assessment of regional willow coppice yield in Sweden on basis of water availability. For Ecol Manage 121:57–65

    Google Scholar 

  • Lindroth A, Cienciala E (1996) Water use efficiency of short-rotation Salix viminalis at leaf, tree and stand scales. Tree Physiol 16:257–262

    PubMed  Google Scholar 

  • Lindroth A, Verwijst T, Halldin S (1994) Water-use efficiency of willow: variation with season, humidity and biomass allocation. J Hydrol (Amst) 156:1–19

    Google Scholar 

  • Liu Z, Dickmann DI (1992) Responses of two hybrid Populus clones to flooding, drought, and nitrogen availability. I. Morphology and growth. Can J Bot 70(11):2265–2270

    Google Scholar 

  • Löf M, Welander NT (2004) Influence of herbaceous competitors on early growth in direct seeded Fagus sylvatica L. and Quercus robur L. Ann Sci 61:781–788

    Google Scholar 

  • Lorenz M, Becher G, Mues V, Fischer R, Ulrich E, Dobbertin M, Stofer S (2004) Forest condition in Europe: 2004 technical report of ICP forests. Arbeitsber Inst Weltforstwirtsch 2004/2. BfH, Hamburg

    Google Scholar 

  • Lüttschwager D, Alia LA, Ewald D (2015) Auswirkungen von moderatem Trockenstress auf Photosynthesekapazität, Wassernutzungseffizienz und Biomasseproduktion von drei Pappelklonen. In: Liesebach M (Hrsg) FastWOOD II: Züchtung schnellwachsender Baumarten für die Produktion von nachwachsender Rohstoffe im Kurzumtrieb –Erkenntnisse aus 6 Jahren FastWOOD. Thünen Report 26, S 192–196

    Google Scholar 

  • MacLean AM, Finan TM, Sadowsky MJ (2007) Genomes of the symbiotic nitrogen-fixing bacteria of legumes. Plant Physiol 144:615–622

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahoney JM, Rood SB (1992) Response of a hybrid poplar to water table decline in different substrates. For Ecol Manage 54:141–156

    Google Scholar 

  • Mantovani D, Veste M, Badorreck A, Freese D (2013) Evaluation of fast growing tree transpiration under different soil moisture regimes using wicked lysimeters. Iforest – J Biogeosciences For 6:190–200

    Google Scholar 

  • Mantovani D, Veste M, Freese D (2014a) Black locust (Robinia pseudoacacia L.) ecophysiological and morphological adaptations to drought and their consequence on biomass production and water use efficiency. N Z J For 44:29

    Google Scholar 

  • Mantovani D, Veste M, Freese D (2014b) Effects of drought frequency on growth performance and transpiration of young black locust (Robinia pseudoacacia L.). Int J For Res. https://doi.org/10.1155/2014/821891

    Article  Google Scholar 

  • Mantovani D, Veste M, Böhm C, Vignudelli M, Freese D (2015a) Drought impact on the spatial and temporal variation of growth performance and plant water status of black locust (Robinia pseudoacacia L.) in agroforestry systems in Lower Lusatia (Germany). Iforest – J Biogeosciences For 8:743–747

    Google Scholar 

  • Mantovani D, Veste M, Boldt-Burisch K, Fritsch S, Koning L, Freese D (2015b) Carbon allocation, nodulation, and biological nitrogen fixation of black locust (Robinia pseudoacacia L.) under soil water limitation. Ann For Res 58(2):259–274

    Google Scholar 

  • Marino D, Frendo P, Ladrera R, Zabalza A, Puppo A, Arrese-Igor C, González EM (2007) Nitrogen fixation control under drought stress. Localized or systemic? Plant Physiol 143(4):1968–1974

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin PJ, Stephens W (2007) Willow growth in response to nutrients and moisture on a clay landfill cap soil I. Growth and biomass production. Bioresour Technol 97:437–448

    Google Scholar 

  • Matyssek R, Herppich WB (2017) Experimentelle Pflanzenökologie. Springer Reference Naturwissenschaften. Springer, Heidelberg

    Google Scholar 

  • Matyssek R, Fromm J, Rennenberg H, Roloff A (2010) Biologie der Bäume – von der Zelle zur globalen Ebene. UTB, Stuttgart-Hohenheim

    Google Scholar 

  • McIvor IR, Douglas GB, Benavides R (2009) Coarse root growth of Veronese poplar trees varies with position on an erodible slope in New Zealand. Agroforest Syst 76:251–264

    Google Scholar 

  • Mebrahtu T, Hanover J, Layne DR, Flore JA (1991) Leaf temperature effects on net photosynthesis, dark respiration, and photorespiration of seedlings of black locust families with contrasting growth rates. Can J For Res 21:1616–1621

    Google Scholar 

  • Mebrahtu T, Layne DR, Hanover J, Flore JA (1993) Net photosynthesis of black locust seedlings in response to irradiance, temperature and CO2. Photosynthetica 28:145–154

    Google Scholar 

  • Merilo E, Eensali E, Tulva I, Räi O, Calfapietra C, Kull O (2010) Photosynthetic response to elevated CO2 in poplar (POP-EUROFACE) in relation to leaf nitrogen partiting. Balt For 16:162–171

    Google Scholar 

  • Metspalu M, Löhmus K, Augustin J, Russow R, Mander Ü (2000) Negative effect of N-fertilisation on N-fixation in Alnus-Frankia symbiosis as shown by 15N. 4th European Nitrogen Fixation Conference, Sevilla, 16.–20. September 2000

    Google Scholar 

  • Minucci JM, Miniat CF, Teskey R, Wurzburger N (2017) Tolerance or avoidance: drought frequency determines the response of an N2-fixing tree. New Phytol 215:434–442

    CAS  PubMed  Google Scholar 

  • Mola-Yudego B, Aronsson P (2008) Yield models for commercial willow biomass plantations in Sweden. Biomass Bioenergy 32(9):829–837

    Google Scholar 

  • Murach D, Hartmann H, Murn Y, Schultze M, Wael A, Röhle H (2009) Standortbasierte Leistungsschätzung in Agrarholzbeständen in Brandenburg und Sachsen. In: Reeg T, Bemann A, Konold W, Murach D, Siecker H (Hrsg) Anbau und Nutzung von Bäumen auf landwirtschaftlichen Flächen. Wiley-VCH, Weinheim, S 29–40

    Google Scholar 

  • Nelson ND, Isebrands JG (1983) Late-season photosynthesis and photosynthate distribution in an intensively-cultured Populus nigra × P. laurifolia clones. Photosynthetica 17:537–549

    Google Scholar 

  • Niinemets Ü, Al Afas N, Cescatti A, Pellis A, Ceulemans R (2004) Petiole length and biomass investment in support modify light-interception efficiency in dense poplar plantations. Tree Physiol 24:141–154

    PubMed  Google Scholar 

  • Noh NJ, Son Y, Koo J, Seo KW, Kim RH, Lee YY, Yoo KS (2010) Comparison of nitrogen fixation for north-and south-facing Robinia pseudoacacia stands in Central Korea. J Plant Biol 53(1):61–69

    Google Scholar 

  • Nordh NE, Verwijst T (2004) Above-ground biomass assessments and first cutting cycle production in willow (Salix sp.) coppice – a comparison between destructive and non-destructive methods. Biomass Bioenergy 27:1–8

    Google Scholar 

  • Olesniewicz KS, Thomas RB (1999) Effects of mycorrhizal colonization on biomass production and nitrogen fixation of black locust (Robinia pseudoacacia) seedlings grown under elevated atmospheric carbon dioxide. New Phytol 142:133–140

    Google Scholar 

  • Oliveira N, del Ríoa M, Forrester DI, Rodríguez-Soalleirod R, Pérez-Cruzado C, Cañellasa I, Sixtoa H (2018) Mixed short rotation plantations of Populus alba and Robinia pseudoacacia for biomass yield. For Ecol Manage 410:48–55

    Google Scholar 

  • Oliver RJ, Blyth E, Taylor G, Finch JW (2015) Water use and yield of bioenergy poplar in future climates: modelling the interactive effects of elevated atmospheric CO2 and climate on productivity and water use. Gbc Bioenergy 7:958–973

    CAS  Google Scholar 

  • Palma JHN, Graves AR, Crous-Duran J, Upson M, Paulo JA, Oliveira TS, Silvestre Garcia de Jalón S, Burgess PJ (2016) Yield-SAFE Model Improvements. Milestone Report 29 (6.4) for EU FP7 Research Project: AGFORWARD 613520 (5 July 2016), 30 S. https://www.agforward.eu/index.php/en/yield-safe-model-improvements.html

    Google Scholar 

  • Palma JHN, Crous-Duran J, Graves AR, Garcia de Jalon S, Upson M, Oliveira TS, Paulo JA, Ferreiro-Dominguez, Moreno, Burgess PJ (2017) Integrating belowground carbon dynamics into Yield-SAFE, a parameter sparse agroforestry model. Agrofor Syst. https://doi.org/10.1007/s10457-017-0123-4

    Article  Google Scholar 

  • Petzold R, Schubert B, Feger K-H (2010) Biomasseproduktion, Nährstoffallokation und bodenökologische Veränderungen einer Pappel-Kurzumtriebsplantage in Sachsen (Deutschland). Die Bodenkult 61(3):23–35

    CAS  Google Scholar 

  • Pflugmacher C, Murach D (2013) Cultivation of Poplar on former sewage plantations – Optimierung der Bewirtschaftung und ökologische Begleitforschung (Im Auftrag der RWE. Endbericht, 82 S)

    Google Scholar 

  • Pflugmacher C, Hartmann H (2016) Wurzeluntersuchungen an Pappel im Kurzumtrieb – Grundwasseranschluss und Sortenunterschiede. Studie der Hochschule für nachhaltige Entwicklung Eberswalde im Auftrag des Thünen Institutes. Eberswalde, unveröffentlichter Bericht, 126 S

    Google Scholar 

  • Phillips CJ, Marden M, Suzanne LM (2014) Observations of root growth of young poplar and willow planting types. N Z J For Sci 44:15

    Google Scholar 

  • Pinno BD, Bélanger N (2009) Competition control in juvenile hybrid poplar plantations across a range of site productivities in central Saskatchewan, Canada. New For 37:213–225

    Google Scholar 

  • Pregitzer KS, Friend AL (1996) The structure and function of Populus root systems. In: Stettler R, Bradshaw T, Heilman P, Hinckley T (Hrsg) Biology of Populus and its implications for management and conservation. NRC Research Press, National Research Council of Canada, Ottawa, S 331–354

    Google Scholar 

  • Pregitzer KS, Dickmann DI, Hendrick R, Nguyen PV (1990) Whole-tree carbon and nitrogen partitioning in young hybrid poplars. Tree Physiol 7:79–93

    CAS  PubMed  Google Scholar 

  • Pregitzer KS, Zak DR, Curtis PS, Kubiske ME, Teeri JA, Vogel CS (1995) Athmospheric, CO2, soil nitrogen and turnover of fine roots. New Phytol 129:579–585

    Google Scholar 

  • Pretzsch H (2009) Forest dynamics, growth and yield. Springer, Heidelberg

    Google Scholar 

  • Pretzsch H, Forrester DI, Bauhus J (2017) Mixed-species forests. Springer, Heidelberg

    Google Scholar 

  • Puri S, Singh V, Bhushan B, Singh S (1994) Biomass production and distribution of roots in three stands of Populus deltoids. For Ecol Manage 65:135–147

    Google Scholar 

  • Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Ecol 14:435–443

    Google Scholar 

  • Rhodenbaugh EJ, Pallardy SG (1993) Water stress, photosynthesis and early growth pattern of cuttings of three Populus clones. Tree Physiol 13:213–226

    CAS  PubMed  Google Scholar 

  • Roberts DR, Zimmerman RW, Stringer JW, Carpenter SB (1983) The effects of combined nitrogen on growth, nodulation, and nitrogen fixation of black locust seedlings. Can J Res 13:1251–1254

    Google Scholar 

  • Rock J, Lasch P, Kollas C (2009) Auswirkungen von absehbarem Klimawandel auf Kurzumtriebsplantagen. In: Reeg T, Bemann A, Konold W, Murach D, Siecker H (Hrsg) Anbau und Nutzung von Bäumen auf landwirtschaftlichen Flächen. Wiley-VCH, Weinheim, S 19–25

    Google Scholar 

  • Roden JS, Pearcy RW (1993a) Effect of leaf flutter on the light environment of poplars. Oecologia 93:201–207

    PubMed  Google Scholar 

  • Roden JS, Pearcy RW (1993b) Photosynthetic gas exchange response of poplars to steady-state and dynamic light environments. Oecologia 93:208–214

    PubMed  Google Scholar 

  • Rogers A, McDonald K, Muehlbauer MF, Hoffman A, Koenig K, Newman L, Taghavi S, van der Lelie D (2012) Inoculation of hybrid poplar with the endophytic bacterium Enterobacter sp. 638 increases biomass but does not impact leaf level physiology. GCB Bioenergy 4:364–370

    Google Scholar 

  • Röhle H (2009) Arbeitskreis Biomasse: Verfahrensempfehlungen zur Methodik der Biomasseermittlung in Kurzumtriebsbeständen. Deutscher Verband Forstlicher Forschungsanstalten, Sektion Ertragskunde, Bd. 209, S 220–226

    Google Scholar 

  • Röhle H (2013) Standortsleistungsschätzung und Biomasseermittlung in Kurzumtriebsplantagen. Allg Forst- Jagdztg 184:237–246

    Google Scholar 

  • Röhle H, Hartmann KU, Gerold D, Steinke C, Schröder J (2006) Überlegungen zur Aufstellung von Biomassefunktionen für Kurzumtriebsbestände. Allg Forst- Jagdztg 177:178–187

    Google Scholar 

  • Röhle H, Hartmann KU, Steinke C, Murach D (2009) Leistungsvermögen und Leistungserfassung von Kurzumtriebsbeständen. In: Reeg T, Bemann A, Konold W, Murach D, Siecker H (Hrsg) Anbau und Nutzung von Bäumen auf landwirtschaftlichen Flächen. Wiley-VCH, Weinheim, S 41–55

    Google Scholar 

  • Russow R, Veste M, Littmann T (2004) Using the natural 15N-abundance to assess the major nitrogen inputs into the sand dune area of the north-western Negev Desert (Israel). Isotopes Environ Health Stud 40:57–67

    CAS  PubMed  Google Scholar 

  • Rytter L (1996a) Grey alder in forestry: a review. Nor J Agric Sci Suppl 24:61–78

    Google Scholar 

  • Rytter L (1996b) The potential of grey alder plantation forestry. In: Perttu K, Koppel A (Hrsg) Short rotation willow coppice for renewable energy and improved environment. Rapport/Report 57. Swedish University of Agricultural Sciences, S 89–94

    Google Scholar 

  • Rytter RM (2001) Biomass production and allocation, including fine-root turnover, and annual N uptake in lysimeter-grown basket willows. For Ecol Manage 140:177–192

    Google Scholar 

  • Rytter L, Arveby AS, Granhall U (1991) Dinitrogen (C2H2) fixation in relation to nitrogen fixation of grey alder (Alnus incana (L.) Mönch) plantations in a peat bog. Biol Fertil Soils 10(4):233–240

    CAS  Google Scholar 

  • Scarascia-Mugnozza G, De Angelis P, Sabatti M, Calfapietra C, Miglietta F, Raines C, Godbold D, Hoosbeek M, Taylor G, Polle A, Ceulemans R (2007) Global change and agro-forest ecosystems: adaptation and mitigation in a FACE experiment on a poplar plantation. Plant Biosyst 139:255–264

    Google Scholar 

  • Scarascia-Mugnozza GE, Hinckley TM, Stettler RF, Heilman PE, Isebrands JG (1999) Production physiology and morphology of Populus species and their hybrids grown under short rotation. III. Seasonal carbon allocation patterns from branches. Can J For Res 29:1419–1432

    Google Scholar 

  • Scherling C, Ulrich K, Ewald D, Weckwerth W (2009) A metabolic signature of the beneficial interaction of the endophyte Paenibacillus sp isolate and in vitro-grown poplar plants revealed by metabolomics. Mol Plant-microbe Interactions 22:1032–1037

    CAS  Google Scholar 

  • Schopfer P, Brennicke A (2010) Pflanzenphysiologie. Spinger Verlag, Heidelberg

    Google Scholar 

  • Seserman D, Pohle I, Veste M, Freese D (2017) Variabilität der holzigen Biomasseproduktion von Pappel und Robinie als Folge des Klimawandels in einem Alley-Cropping-System in der Lausitz. In: Landgraf D (Hrsg) Tagungsband Schnellwachsende Baumarten – Etablierung, Management und Verwertung Erfurt, 16.11.2017, S 88–89

    Google Scholar 

  • Seserman D, Pohle I, Veste M, Freese D (2018) Simulating climate change impacts on hybrid-poplar and black locust short-rotation coppies. Forests 9:419

    Google Scholar 

  • Skibbe K (2016) Entwicklung eines Ertragsschätzers für Kurzumtriebsbestände aus Weide. Dissertation, Fakultät für Umweltwissenschaften, TU Dresden

    Google Scholar 

  • Ślązak A, Böhm C, Veste M (2013) Kohlenstoffspeicherung, Nährstoff- und Wasserverfügbarkeit. In: Wagener F, Heck P, Böhme J (Hrsg) Nachwachsende Rohstoffe als Option für den Naturschutz – Naturschutz durch Landbau. Schlussbericht des Verbundvorhabens: Entwicklung extensiver Landnutzungskonzepte für die Produktion nachwachsender Rohstoffe als mögliche Ausgleichs- und Ersatzmaßnahmen (ELKE). Fachagentur für Nachwachsende Rohstoffe, Gülzow, S 130–149

    Google Scholar 

  • Smit AL, Bengough AG, Engels C, Noordwijk M van, Pellerin S, Geijn SC van de (Hrsg) (2000) Root Methods: A Handbook. Springer Verlag, Heidelberg, 565 S

    Google Scholar 

  • Sommer J, Hartmann L, Dippold MA, Lamersdorf NP (2017) Specific Nmin uptake patterns of two widely applied poplar and willow clones for short rotation coppices – Implications for management practices. Biomass Bioenergy 98:236–242

    CAS  Google Scholar 

  • Stahr K, Kandeler E, Herrmann L, Streck T (2016) Bodenkunde und Standortlehre, 3. Aufl. UTB, Stuttgart-Hohenheim

    Google Scholar 

  • Staudinger C, Mehmeti-Tershani V, Gil-Quintana E, Gonzalez EM, Hofhansl F, Bachmann G, Wienkopp S (2016) Evidence for a rhizobia-induced drought stress response strategy in Medicago truncatula. J Proteomics 136:202–213

    CAS  PubMed  Google Scholar 

  • Stephens W, Hess TM, Knox JW (2001) The effect of energy crops on hydrology. Aspects Appl Ecol 65:101–108

    Google Scholar 

  • Stokes A, Mattheck C (1996) Variation of wood strength in tree roots. J Exp Bot 47:693–699

    CAS  Google Scholar 

  • Szymanski R (2010) Ökophysiologische Untersuchungen zum CO2-Blattgasaustausch an Populus tremuloides Michx. und Picea glauca Moench in Zentralalaska. Diplomarbeit, Institut für Botanik der Universität Hohenheim, 115 S

    Google Scholar 

  • Tallis M, Casella E, Henshall PA, Aylott M, Randle TJ, Morision JIL, Taylor G (2013) Development and evaluation of ForestGrowth-SRC a process-based model for short rotation coppice yield and spatial supply reveals poplar uses water more efficiently than willow. Glob Chang Biol Bioenergy 5:53–66

    Google Scholar 

  • Tcherkez G, Gauthier P, Buckley TN et al (2017) Leaf day respiration: low CO2 flux but high significance for metabolism and carbon balance. New Phytol 216:986–1001

    CAS  PubMed  Google Scholar 

  • Thomas F (2018) Grundzüge der Pflanzenökologie. Springer, Heidelberg

    Google Scholar 

  • Tschaplinski TJ, Blake TI (1989b) Correlation between early root production, carbohydrate metabolism, and subsequent biomass production in hybrid poplar. Can J Bot 67:2168–2174

    CAS  Google Scholar 

  • Tschaplinski TJ, Blake TJ (1989a) The role of sink demand in carbon portioning and photosynthetic reinvigoration following shoot decapitation. Physiol Plant 75:166–173

    CAS  Google Scholar 

  • Ulrich A, Zaspel I (2000) Phyologenetic diversity of rhizobial strains nodulating Robinia pseudoacacia L. Microbiology 146:2997–3005

    CAS  PubMed  Google Scholar 

  • Ulrich K, Ulrich A, Ewald D (2008) Diversity of endophytic bacterial communities in poplar grown under field conditions. FEMS Microbiol Ecol 63:169–180

    CAS  PubMed  Google Scholar 

  • Ulrich K, Ewald D, Scherling C, Weckwerth W (2009) Kleine Bakterien – große Wirkung? – Endophytische Bakterien fördern das Wachstum von Bäumen. Forschungsreport Ernährung Landwirtsch Verbraucherschutz 2:40–42

    Google Scholar 

  • Uri V, Löhmus K, Kiviste A, Aosaar J (2009) The dynamics of biomass production in relation to foliar and root traits in a grey alder (Alnus incana (L.) Moench) plantation on abandoned agricultural land. Forestry 82(1):61–74

    Google Scholar 

  • Verwijst T (1991) Logarithmic transformations in biomass estimation procedures: violation of the linearity assumption in regression analysis. Biomass Bioenergy 1(3):175–180

    Google Scholar 

  • Veste M (2009) Auswirkungen des Klimawandels auf die Waldvegetation: Anpassungsfähigkeit und ihre Grenzen. In: Korn H, Schliep R, Stadler J (Hrsg) Biodiversität und Klima – Vernetzung der Akteure in Deutschland IV. BfN-Skripten 246, S 31–34

    Google Scholar 

  • Veste M, Halke C (2017) Ökophysiologische Plastizität der Photosynthese von Robinien (Robinia pseudoacacia L.) und Hybrid-Pappeln (Populus nigra L. × P. maximowiczii Henry) bei Hitzestress und Sommertrockenheit in der Niederlausitz. In: Böhm C (Hrsg) Bäume in der Land(wirt)schaft – von der Theorie in die Praxis 5. Agroforstforum, Tagungsband, Cottbus, S 144–157

    Google Scholar 

  • Veste M, Herppich WB (1995) Diurnal and seasonal fluctations in the atmospheric CO2 concentration on the net CO2 exchange of poplar trees. Photosynthetica 31:371–378

    CAS  Google Scholar 

  • Veste M, Kriebitzsch W-U (2013) Einfluss von Trockenstress auf Photosynthese, Transpiration und Wachstum junger Robinien (Robinia pseudoacacia L.). Forstarchiv 84:35–42

    Google Scholar 

  • Veste M, Schaaf W (2010) Atmospheric deposition. In: Schaaf W, Biemelt D, Hüttl RF (Hrsg) Initial development of the artificial catchment Chicken Creek – monitoring program and survey 2005–2008. Ecosystem Development 2, S 21–25

    Google Scholar 

  • Veste M, Staudinger M, Küppers M (2008) Spatial and temporal variability of soil water in drylands: plant water potential as a diagnostic tool. For Stud China 10(2):74–80

    Google Scholar 

  • Veste M, Balasus A, Kern J, Herppich WB (2012) Influence of nitrogen fertilization on photosynthesis and leaf nitrogen content of leaves of poplar and willow plants in short rotation plantations. Verhandlungen der Gesellschaft für Ökologie 42, S 138

    Google Scholar 

  • Veste M, Böhm C, Quinkenstein A, Freese D (2013) Biologische Stickstoff-Fixierung der Robinie. AFZ-der Wald 2/2013:40–42

    Google Scholar 

  • Veste M, Malaga Linares RA, Seserman DM, Schmitt D, Wachendorf M, Küppers M (2018) Annual leaf carbon fluxes, light interception, and stand structure of poplars and black locusts in an alley-cropping system, Lower Lusatia, Germany. In: Proceedings 4th European Agroforestry Conference: Agroforestry as sustainable land use, S 488–492

    Google Scholar 

  • Wachendorf M (2010) Ökophysiologische Untersuchungen zum CO2-Blattgasaustausch an Betula papyrifera und Picea mariana in Zentralalaska. Diplomarbeit, Institut für Botanik der Universität Hohenheim

    Google Scholar 

  • Waring RH (1983) Estimating forest growth and efficiency in relation to canopy leaf area. Adv Ecol Res 13:327–354

    Google Scholar 

  • Wei G, Chen W, Zhu W, Chen C, Young JPW, Bontemps C (2009) Invasive Robinia pseudoacacia in China is nodulated by Mesorhizobium and Sinorhizobium species that share similar nodulation genes with native American symbionts. FEMS Microbiol Ecol 68:320–328

    CAS  PubMed  Google Scholar 

  • Weih M (2001) Evidence for increased sensitivity to nutrient and water stress in a fast-growing hybrid willow compared with a natural willow clone. Tree Physiol 21:1141–1148

    CAS  PubMed  Google Scholar 

  • Weih M, Nordh N-E (2002) Characterising willows for biomass and phytoremediation: growth, nitrogen and water use of 14 willow clones under different irrigation and fertilisation regimes. Biomass Bioenergy 23:397–413

    Google Scholar 

  • Van der Werf W, Keesman K, Burgess PJ, Graves AR, Pilbeam D, Incoll LD, Metselaar K, Mayus M, Stappers R, van Keulen H, Palma JHN, Dupraz C (2007) Yield-SAFE: a parameter-sparse, process-based dynamic model for predicting resource capture, growth, and production in agroforestry systems. Ecol Eng 29:419–433

    Google Scholar 

  • Wurzburger N, Miniat CF (2013) Drought enhances symbiotic dinitrogen fixation and competitive ability of a temperate forest tree. Oecologia 174:1117–1126

    PubMed  Google Scholar 

  • Xu F, Guo W, Xu W, Du N, Wang Y (2009) Leaf movement and photosynthetic plasticity of black locust (Robinia pseudoacacia L.) alleviate stress under different light and water conditions. Acta Physiol Plantarum 31:553–563

    CAS  Google Scholar 

  • Yang Y, Tang M, Sulpice R, Chen H, Tian S, Ban Y (2014) Arbuscular mycorrhizal fungi alter fractal dimension characteristics of Robinia pseudoacacia L. seedlings through regulating plant growth, leaf water status, photosynthesis, and nutrient concentration under drought stress. J Plant Growth 33:612–625

    CAS  Google Scholar 

  • Zhu XQ, Wang CY, Chen H, Tang M (2014) Effects of arbuscular mycorrhizal fungi on photosynthesis, carbon content, and calorific value of black locust seedlings. Photosynthetica 52:247–252

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maik Veste .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Veste, M., Pflugmacher, C., Hartmann, H., Schlepphorst, R., Murach, D. (2018). Ökophysiologie der Agrargehölze – vom Blatt zum Bestand. In: Veste, M., Böhm, C. (eds) Agrarholz – Schnellwachsende Bäume in der Landwirtschaft. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49931-3_7

Download citation

Publish with us

Policies and ethics