Skip to main content

Quince (Cydonia oblonga Mill.) Breeding

  • Chapter
  • First Online:
Advances in Plant Breeding Strategies: Fruits

Abstract

Quince , Cydonia oblonga Mill. is one of the most important pome fruit species in the Rosaceae family. The genus Cydonia is monospecific and includes only a single species. Quince is grown for both fruit production and rootstock , and pear scion cultivars . It is cultivated for fruit production all over the world but most of the production is around its origin . Its fruits are used both for fresh consumption and for industry such as jam, jelly, marmalade, canning etc. Quince rootstocks such as Quince A and Quince C provide dwarfing to pear scion cultivars . The cultivar breeding by intraspecific crossing is very limited, and mostly all the cultivars in the production are selections from either nature or backyards. There are a few quince germplasm resources in the world characterized phenotypically and by different molecular marker systems. There are also studies aiming to produce quince x apple and pear x quince intergeneric crosses for rootstock . Quince is highly sensitive to fire blight ( Erwinia amylovora Burril) which is the most important problem in fruit and rootstock production . Although genomic resources are very limited for Cydonia, apple and pear genomic resources in genebanks can be used for genetic and molecular studies in quince . It is necessary to have a large germplasm collection from diverse countries and with segregating populations for economically-important characters to start genetic studies in quince . This will allow use of molecular tools in the future breeding programs in quince .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdollahi H (2013) One decade challenges for selection and breeding of superior pear (Pyrus communis) and quince (Cydonia oblonga) cultivars in Iran. In: Proceeding of the 8th Iranian horticultural science congress, Hamadan, Iran, pp 20–27

    Google Scholar 

  • Adler M (2001) Quince (Cydonia oblonga Mill.) and its growing and economic descriptions. In: Proceedings 9th international conference of horticulture, 3–6 Sept 2001, Lednice, Czech Republic, pp 3–7

    Google Scholar 

  • Alesiani D, Canini A, D’Abrosca B, DellaGreca M (2010) Antioxidant and antiproliferative activities of phytochemicals from quince (Cydonia vulgaris) peels. Food Chem 118:199–207

    Article  CAS  Google Scholar 

  • Alvarenga AA, Abrahao E, Pio R et al (2008) Comparison among marmalades produced from different fruit quince species (Cydonia oblonga Miller and Chaenomeles sinensis Koehne) and cultivars. Cienc Agrotecnol 32:302–307

    Article  Google Scholar 

  • Amiri ME (2008) The status of genetic resources of deciduous, tropical, and subtropical fruit species in Iran. Acta Hortic 769:159–167

    Article  Google Scholar 

  • Anirudh T, Kanwar JS (2008) Micropropagation of wild pear Pyrus pyrifolia (Burm F.) Nakai. 11. Induction of rooting. Hortic Agrobot Cluj 36(2):104–111

    Google Scholar 

  • Antonelli M (1995) The regenerative ability of quince BA29 in vitro. Hortic Sci 9:3–6

    Google Scholar 

  • Aygun A, Dumanoglu H (2007) Shoot organogenesis from leaf discs in some quince (Cydonia oblonga Mill.) genotypes. Tarım Bilimleri Dergisi. J Agric Sci 13:54–61

    Google Scholar 

  • Azad MK, Nasiri J, Abdollahi H (2013) Genetic diversity of selected Iranian quinces using SSRs from apples and pears Biochem. Genetics 51(5–6):426–442

    Google Scholar 

  • Baker BS, Bhatia SK (1993) Factors effecting adventitious shoot regeneration from leaf explants of quince (Cydonia oblonga). Plant Cell Tissue Org Cult 35:273–277

    Article  CAS  Google Scholar 

  • Bao L, Chen K, Zhang D, Cao Y (2007) Genetic diversity and similarity of pear (Pyrus L.) cultivars native to East Asia revealed by SSR (simple sequence repeat) markers. Genet Res Crop 54:959–971

    Article  CAS  Google Scholar 

  • Bassil NV, Postman JD, Hummer KE, Mota J (2011) Quince (Cydonia oblonga) genetic relationship determined using microsatellite markers. Acta Hortic 909:75–84

    Article  Google Scholar 

  • Bassil NV, Davis TM, Zhang H et al (2015) Development and preliminary evaluation of a 90 K Axiom SNP array for the allo-octoploid cultivated strawberry Fragaria × ananassa. BMC Genomics 16:155

    Article  PubMed  PubMed Central  Google Scholar 

  • Basu YA, Mir MA, Bhatt KM, Mir BA (2017) In vitro propagation of Cydonia oblonga cv. SKAU-016. Int J Curr Microbiol App Sci 6(9):1865–1873

    Google Scholar 

  • Bayazit S, Imrak B, Küden A, Kemal GM (2011) RAPD analysis of genetic relatedness among selected quince (Cydonia oblonga Mill.) accessions from different parts of Turkey. Hortic Sci 38:134–141

    Article  CAS  Google Scholar 

  • Bell RL, Leitao JM (2011) Cydonia. In: Cole C (ed) Wild crop relatives genomic and breeding resources: temperate fruits. Berlin, pp 1–16

    Google Scholar 

  • Bellini E, Giordani E (2000) Conservation of under-utilized fruit tree species in Europe. Acta Hortic 522:165–173

    Article  Google Scholar 

  • Bobev S, Angelov L, Govedarov G, Postman J (2009) Field susceptibility of quince hybrids to fire blight in Bulgaria. Phytopath 99:13

    Google Scholar 

  • Bucsek MJ, Nyeki J, Szabo Z, Kadar A (1996) Quantitation of mineral elements of different fruit pollen grains. Mikrochim Acta 13:333–338

    CAS  Google Scholar 

  • Campbell CS, Donoghue MJ, Baldwin BG, Wojciechowski MF (1995) Phylogenetic relationships in Maloideae (Rosaceae): evidence from sequences of the internal transcribed spaces of nuclear ribosomal DNA and its congruence with morphology. Am J Bot 82:903–918

    Article  CAS  Google Scholar 

  • Carvalho M, Silva BM, Silva R et al (2010) First report on Cydonia oblonga Miller anticancer potential: differential antiproliferative effect against human kidney and colon cancer cells. J Agric Food Chem 58:3366–3370

    Article  CAS  PubMed  Google Scholar 

  • Celik M (1982) Bazı Armut Çeşitleri İçin En Uygun S.Ö. Ayva Anacı Seçimi ve Aşı Uyuşmazlığının Biyokimyasal Analiz Yöntemleri İle Belirlenmesi. Dissertation, University of Ankara

    Google Scholar 

  • Celik M (1988) Ankara Koşullarında Williams, Ankara, Akça ve Şeker Armut Çeşitleri İçin En Uygun S.Ö. Ayva Anaçlarının seçimi Üzerinde Bir Araştırma. University of Ankara

    Google Scholar 

  • Chartier-Hollis JM (1993) The induction and maintenance of caulogenesis from undifferentiated callus of quince (Cydonıa oblonga). Acta Hortic 336:321–326

    Article  Google Scholar 

  • Chen H, Song Y, Li LT et al (2015) Construction of a high-density simple sequence repeat consensus genetic map for pear (Pyrus spp.). Plant Mol Biol Rep 33(2):316–325

    Article  CAS  Google Scholar 

  • Çil A (2014) Kayseri İlinde Ayva (Cydonia oblanga Mill.) Seleksiyonu. Dissertation, University of Erciyes

    Google Scholar 

  • Costa RM, Magalhăes AS, Pereira JA et al (2009) Evaluation of free radical-scavenging and antihemolytic activities of quince (Cydonia oblonga) leaf: a comparative study with green tea (Camellia sinensis). Food Chem Toxicol 47:860–865

    Article  CAS  PubMed  Google Scholar 

  • D’onofrio C, Morini S, Vitagliano C (1999) Isolation of protoplants from in vitro growing quince BA29 leaves. In Vitro Cell Dev Biol Plant 35:421–423

    Article  Google Scholar 

  • D’onofrio C, Morini S (2002a) Increasing NaCl and CaCl2 concentrations in the growth medium of quince leaves: I. Effects on somatic embryo and root regeneration. In Vitro Cell Dev Biol Plant 38:366–372

    Article  CAS  Google Scholar 

  • D’onofrio C, Morini S (2002b) Increasing NaCl and CaCl2 concentrations in the growth medium of quince leaves: II. Effects on shoot regeneration. In Vitro Cell Dev Biol Plant 38:373–377

    Article  CAS  Google Scholar 

  • D’onofrio C, Morini S (2005) Development of adventitious shoots from in vitro grown Cydonia oblonga leaves as influenced by different cytokinins and treatment duration. Biol Plant 49:17–21

    Article  Google Scholar 

  • Di Pierro EA, Gianfranceschi L, Di Guardo M et al (2016) A high-density, multi-parental SNP genetic map on apple validates a new mapping approach for outcrossing species. Nature Hortic Res 3:16057

    Article  CAS  Google Scholar 

  • Dickson EE, Arumuganathan K, Kresovich S, Doyle JJ (1992) Nuclear DNA content variation within the Rosaceae. Am J Bot 79:1081–1086

    Article  Google Scholar 

  • Dolcet-Sanjuan R, Mok DW, Mok MC (1991) Plantlet regeneration from cultured leaves of Cydonia oblonga L. (quince). Plant Cell Rep 10:240–242

    Article  CAS  PubMed  Google Scholar 

  • Dumanoglu H, Gunes NT, Aygun A et al (2009) Analysis of clonal variations in cultivated quince (Cydonia oblonga ‘Kalecik’) based on fruit characteristics and SSR markers. New Zeal J Crop Hortic Sci 37(2):113–120

    Article  CAS  Google Scholar 

  • Dumaoglu H, Tuncel N, Çelik M, Ayfer M (1993) Farklı S.Ö. ayva klon anaçları üzerine aşılı Ankara armudu meyvelerinde soğukta muhafaza sırasındaki kalite değişimleri. Gıda 18(1):45–49

    Google Scholar 

  • Encyclopedia of Life (2013) Cydonia oblonga Mill. Quince. http://www.eol.org/pages/637321?category. Accessed 20 Sept 2017

  • Ercan N, Özvardar S, Gönülşen N et al (1992) Ege bölgesine uygun ayva çeşitlerinin saptanması. Türkiye I. Ulusal Bahçe Bitkileri Kongres 1:527–529

    Google Scholar 

  • Erig AC, Schuch MW (2005) In vitro regeneration of adventitious shoots and roots of quince (Cydonia oblonga Mill.) cvs. MC and Adams, used as rootstocks for pear tree. R Bras Agrociencia Pelotas 11:419–424

    Google Scholar 

  • European Commission (2007) Minor fruit tree species: conservation, evaluation, exploitation and collection of minor fruit species. In: European Commission. Genetic resources in agriculture: a summary of the projects co-financed under council regulation (EC) No 1467/94, pp 56–59

    Google Scholar 

  • European Cooperative for Plant Genetic Resources (2009) The ECPGR minor fruit trees database. http://www.ecpgr.cgiar.org/databases/Crops/MinorFruitTree.htm. Accessed 23 June 2009

  • Faostat (2017) http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor

  • Fattouch S, Caboni P, Coroneo V et al (2007) Antimicrobial activity of Tunusian quince (Cydonia oblonga Miller) pulp and peel polyphenolic extracts. J Agric Food Chem 55:963–966

    Article  CAS  PubMed  Google Scholar 

  • Fiorentino A, D’Abrosca B, Pacifico S et al (2007) Isolation, structure elucidation, and antioxidant evaluation of cydonioside A, an unusual terpenoid from the fruits of Cydonia vulgaris. Chem Biodivers 4(5):973–979

    Article  CAS  PubMed  Google Scholar 

  • Fiorentino A, D’Abrosca B, Pacifico S et al (2008) Isolation and structure elucidation of antioxidant polyphenols from quince (Cydonia vulgaris) peels. J Agric Food Chem 56:2660–2667

    Article  CAS  PubMed  Google Scholar 

  • Fisichella M, Morini S (2003) Somatic embryo and root regeneration from quince leaves cultured in ventilated vessels or under different oxygen and carbon dioxide levels. In Vitro Cell Dev Biol Plant 39:402–408

    Article  Google Scholar 

  • Forni E, Penci M, Polesello A (1994) A preliminary characterization of some pectins from quince fruit (Cydonia oblonga Mill.) and prickly pear (Opuntia ficus indica) peel. Carbohydr Polym 23:231–234

    Article  CAS  Google Scholar 

  • Francescatto P, Pazzin D, Neto AG et al (2010) Evaluation of graft compatibility between quince rootstocks and pear scions. Acta Hortic 872:253–259

    Article  Google Scholar 

  • Galli Z, Halasz G, Kiss E et al (2005) Molecular identification of commercial apple cultivars with microsatellite markers. Hortic Sci 40:1974–1977

    CAS  Google Scholar 

  • Ganopoulos I, Merkouropoulos G, Pantazis S et al (2011) Assessing molecular and morpho-agronomical diversity and identification of ISSR markers associated with fruit traits in quince (Cydonia oblonga). Genet Mol Res 10(4):2729–2746

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Alonso M, Pascual-Teresa S, Santos-Buelga C, Rivas-Gonzalo JC (2004) Evaluation of antioxidant properties of fruits. Food Chem 84:13–18

    Article  CAS  Google Scholar 

  • Gharaghani A, Solhjoo S, Oraguzie N (2016) A review of genetic resources of pome fruits in Iran. Genet Res Crop Evol 63:151–172

    Article  Google Scholar 

  • Gianfranceschi L, Seglias N, Tarchini R, Komjanc M (1998) Simple sequence repeats for the genetic analysis of apple. Theor Appl Genet 96:1069–1076

    Article  CAS  Google Scholar 

  • Giorgota A, Preda S, Isac M, Tulvinschi M (2009) Development of a micropropagation protocol for the Romanian quince (Cydonia oblonga) cultivar ‘Aurii’ and rootstocks ‘BN70’ and ‘A type’. Acta Hortic 839:105–110

    Article  CAS  Google Scholar 

  • Golubev VN, Kolechik AA, Rigavs UA (1990) Carbohydrate complex of the fruit of Chaenomeles maulei. Khim Prir Soedin 4:460–463

    Google Scholar 

  • Grimaldi F, Meneguzzi A, Weber GC et al (2016) Protocol for micropropagation of quince BA29 in semi solid media. Rev Ciên Agroveterinárias 15(3):266–270

    Article  Google Scholar 

  • Gulen H, Arora R, Kuden A et al (2002) Peroxidase isozyme profiles in compatible and incompatible pear-quince graft combinations. J Am Soc Hortic Sci 127(2):152–157

    CAS  Google Scholar 

  • Gulen H, Celik M, Polat M, Eris A (2005) Cambial isoperox-idases related to graft compatibility in pear-quince graft combinations. Turk J Agric For 29:83–89

    Google Scholar 

  • Gungor MK (1989) Ic Anadolu ayvalarinda seleksiyon calismalari. Dissertation, University of Ankara

    Google Scholar 

  • Hamauzu Y, Hisako Y, Takaroni I et al (2005) Phenolic profile, antioxidant property, and anti-influenza viral activity of Chinese quince (Pseudocydonia sinensis Schneid.), quince (Cydonia oblonga Mill.), and apple (Malus domestica Mill.) fruits. J Agric Food Chem 53:928–934

    Article  CAS  PubMed  Google Scholar 

  • Hamauzu Y, Inno T, Kume C et al (2006) Antioxidant and antiulcerative properties of phenolics from Chinese quince, quince, and apple fruits. J Agric Food Chem 54:765–772

    Article  CAS  PubMed  Google Scholar 

  • Hegedűs A, Papp N, Stefanovits-Bányai É (2013) A review of nutritional value and putative health-effects of quince (Cydonia oblonga Mill.) fruit. Int J Hortic Sci 3–4

    Google Scholar 

  • Hričovsky I, Řezniček V, Sus J (2003) Jabloně a hrušně, kdouloně, mišpule. Priroda, Bratislava pp 53–54

    Google Scholar 

  • Hudina M, Stampar F, Mojca VM, Smole J (1999) Characterization of isozyme variability of pears (Pyrus communis L.) and quince (Cydonia oblonga Mill.) in various tissues. Acta Hortic 484:391–395

    Google Scholar 

  • Ianni G, Mariotti P (2005) Conservation and exploitation of woody plant genetic resources at the CNR/IVALSA Institute of Florence. In: The role of biotechnology. http://www.fao.org/biotech/docs/ianni.pdf. Accessed 6 June 2009

  • Iketani H (1993) Chloroplast DNA diversity in Pyrus and related genera In: Gamma Field Symposium, Japan, vol 32, pp 63–69

    Google Scholar 

  • Kaneko Y, Nagaho I, Bang SW, Matsuzawa Y (2000) Classification of flowering quince cultivars (genus Chaenomeles) using random amplified polymorphic DNA markers. Breed Sci 50:139–142

    Article  CAS  Google Scholar 

  • Kimura T, Shi YZ, Shoda M, Kotobuki K (2002) Identification of asian pear varieties by SSR analysis. Breed Sci 52:115–121

    Article  CAS  Google Scholar 

  • Kopec K, Balík J (2008) Kvalitologie zahradnických produktů. MZLU, Brno, pp 135–136

    Google Scholar 

  • Kuden AB, Kuden A (2008) Germplasm collection and breeding studies of low chilling cultivars. Acta Hortic 772:503–506

    Article  Google Scholar 

  • Kyzlink V (1990) Principles of food preservation, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  • Liebhard R, Ganfranceschi L, Koller B, Ryder CD (2002) Development and characterization of 14 new microsatellites in apple (Malus domestica Borkh.). Mol Breed 10:217–241

    Google Scholar 

  • Lutz A, Winterhalter P (1992) Isolation of additional carotenoid metabolites from quince fruit (Cydonia oblonga Mill.). J Agric Food Chem 40:1116–1120

    Article  CAS  Google Scholar 

  • Maarri KA, Arnaud Y, Miginiac E (1986) In vitro micropropagation of quince (Cydonia oblonga Mill.) Sci Hortic 28(4):315–321

    Google Scholar 

  • Marino G, Berardi G (2004) Different sealing materials for petri dishes strongly affect shoot regeneration and development from leaf explants of quince ‘BA 29’. In Vitro Cell Dev Biol Plant 40:384–388

    Article  Google Scholar 

  • Marino G, Franchin C, Marcolini G, Biondi S (2008) Adventitious shoot formation in cultured leaf explants quince and pear is accompanied by different patterns of ethylene and polyamine production, responses to aminoethoxywinylglycine. J Hortic Sci Biotechnol 83:260–266

    Article  CAS  Google Scholar 

  • McCabe C (1996) Enjoying the forbidden fruit. Saveur 14:105–110

    Google Scholar 

  • Mingozzi M, Morini S (2009) In vitro cultivation donor quince shoots affects subsequent morphogenesis in leaf explants. Biol Planta 53:141–144

    Article  Google Scholar 

  • Mir SA, Masoodi FA, Gani A et al (2015) Evaluation of antioxidant properties of methanolic extracts from different fractions of quince (Cydonia oblonga Miller). Adv Biomed Pharma 2(1):1–6

    Article  CAS  Google Scholar 

  • Miranda C, Urrestarazu J, Santesteban LG, Royo JB (2010) Genetic diversity and structure in a collection of ancient Spanish pear cultivars assessed by microsatellite marker. J Am Soc Hortic Sci 135:428–437

    Google Scholar 

  • Mnaica-Berto R, Pegoraro C, Mistura CC et al (2013) Genetic similarity between quince cultivars evaluated by AFLP markers. Pesquisa Agropec Brasil 48(5):568–571

    Article  Google Scholar 

  • Moradi S, Saba MK, Mozafari AA, Abdollahi H (2017) Physical and biochemical changes of some Iranian quince (Cydonia oblonga Mill) genotypes during cold storage. J Agric Sci Tech 19:377–388

    Google Scholar 

  • Motalebipour EZ, Kafkas S, Özongun Ş, Atay AN (2015) Construction of dense genetic linkage maps of apple cultivars Kaşel-41 and Williams Pride by simple sequence repeat markers. Turk J Agric For 39:1–9

    Article  Google Scholar 

  • Mushtaq M, Wani SM (2013) Polyphenols and human health—a review. Int J Pharm Bio Sci 4:338–360

    CAS  Google Scholar 

  • Naf R, Velluz A, Decorzant R, Naf F (1991) Structure and synthesis of 2 novel ionone-type compounds identified in quince brandy (Cydonia oblonga Mill.). Tetrahedron Lett 32:753–756

    Article  Google Scholar 

  • Nagy-Dèri H (2011) Morphological investigations on anthers and pollen grains of some quince cultivars. Acta Biol Szeged 55:231–235

    Google Scholar 

  • Naik S, Hampson C, Gasic K et al (2006) Development and linkage mapping of ESTs and RGAs for functional gene homologues in apple. Genome 49:959–968

    Article  CAS  PubMed  Google Scholar 

  • National Center for Biotechnology Information (2017) GenBank: http://www.ncbi.nlm.nih.gov/. Accessed 24 Sept 2017

  • Oliveira AP, Pereira JA, Andrade PB et al (2007) Phenolic profile of Cydonia oblonga Miller leaf. J Agric Food Chem 55(19):7926–7930

    Article  CAS  PubMed  Google Scholar 

  • Orhan E, Nardemir G, Agar G, Ercisli S (2014) Genetic variation among quince (Cydonia oblonga Mill.) genotypes sampled from the Coruh valley in Turkey. Genet Mol Res 13(1):445–449

    Article  CAS  PubMed  Google Scholar 

  • Papikhin PV, Muratova SA, Dorokhova NV (2007) On improvement of effectiveness of remote hybridization in pome fruit crops. Sadovostvo I Vinogradarstvo 6:2–3

    Google Scholar 

  • Pierantoni L, Cho KH, Shin IS et al (2004) Characterisation and transferability of apple SSRs to two European pear F1 populations. Theor Appl Genet 109:1519–1524

    Article  CAS  PubMed  Google Scholar 

  • Pinar H, Kaymak S, Ozongun S et al (2016) Morphological and molecular characterization of major quince cultivars from Turkey. Not Bot Hortic Agrobot 44(1):72–76

    Article  CAS  Google Scholar 

  • Postman JD (2008) The USDA Quince and Pear Genebank in Oregon, a world source of fire blight resistance. Acta Hortic 793:357–362

    Article  Google Scholar 

  • Postman J (2009) Cydonia oblonga: The unappreciated quince. Arnoldia 67(1):2–9

    Google Scholar 

  • Roach FA (1985) Quinces. Cultivated fruit of Britain: their origin and history. Blackwell, London, pp 220–225

    Google Scholar 

  • Rodriguez-Guisado I, Hernandez F, Melgarejo P et al (2009) Chemical, morphological and organoleptical characterisation of five Spanish quince tree clones (Cydonia oblonga Miller). Sci Hortic 122:491–496

    Article  CAS  Google Scholar 

  • Rogers WS (1955) Pomology. In: Annual report of the East malling research station 01 Oct 1954–30 Sept 1954, pp 20–27

    Google Scholar 

  • Rop O, Balik J, Reznicek V et al (2011) Chemical characteristics of fruits of some selected quince (Cydonia oblonga Mill.) cultivars. Czech J Food Sci 29:65–73

    Article  CAS  Google Scholar 

  • Rudenko IS (1983) New intergeneric apple x quince forms (xCydolus). Sadovodstvo, Russia

    Google Scholar 

  • Rudenko IS (1984) Producing a new fruit crop, quince x apple (xCydolus). Geneticheskie osnovy selektsii sel’skokho-zyaistvennykh rastenii I zhivotnykh, Russia

    Google Scholar 

  • Rudenko IS (1985) Hybrid between pear and quince (Pyronia). Sadovodstvo Vinogradarstvo I Vinodelie Moldavii 10:55–57

    Google Scholar 

  • Rudenko IS (1987) Aspects of morphology and pollen viability in F2 quince x apple hybrids with different genomes in relation to disturbances in microsporogenesis. Gametnaya i zygotnaya selektsiya Respublikanskaya konferentsiya, 23 Iyunya, 1986. Stiinca. Kishinev, Moldavian SSR, pp 102–106

    Google Scholar 

  • Rudenko IS, Rudenko II (1994) Genotypic variation in apple ×  quince progenies. In: Progress in temperate fruit breeding developments in plant breeding, vol 1, pp 229–233

    Google Scholar 

  • Sahin M, Misirli A (2016) Ülkemizde ve Dünyada Ayva Islahı Çalışmaları. Nevşehir Bilim ve Teknoloji Dergisi TARGİD. J Agric Sci 286–294

    Google Scholar 

  • Sanchez EE, Mendez RA, Daly LS et al (1988) Characterization of quince (Cydonia) cultivars using polyacrylamide gel electrophoresis. J Environ Hortic 6:53–59

    Google Scholar 

  • Schlotterer C, Tautz D (1992) Slippage syntesis of simple sequence DNA. Nucl Acids Res 20:211–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimura I, Ito Y, Seiki K (1983) Intergeneric hybrid between Pyrus serotina and Cydonia oblonga. J Jpn Soc Hortic Sci 52:243–249

    Article  Google Scholar 

  • Silva BM, Andrade PB, Mendes GC et al (2002) Study of the organic acid composition of quince (Cydonia oblonga Miller) fruit and jam. J Agric Food Chem 50:2313–2317

    Article  CAS  PubMed  Google Scholar 

  • Silva BM, Andrade PB, Valentao P et al (2004) Quince (Cydonia oblonga Miller) fruit (pulp, peel, and seed) and jam: antioxidant activity. J Agric Food Chem 52:4705–4712

    Article  CAS  PubMed  Google Scholar 

  • Silva BM, Andrade PB, Ferreres F et al (2005) Composition of quince (Cydonia oblonga Miller) seeds: phenolics, organic acids and free amino acids. Nat Prod Res 19(3):275–281

    Article  CAS  PubMed  Google Scholar 

  • Silva BM, Valentão P, Seabra RM, Andrade PB (2008) Quince (Cydonia oblonga Miller): an interesting dietary source of bioactive compounds. In: Papadopoulos KN (ed) Food chemistry research developments. Nova Sci Publ New York, pp 243–266

    Google Scholar 

  • Stancevic A, Nikolic M (1992) Quince breeding in Yugoslavia. Acta Hortic 317:107–110

    Article  Google Scholar 

  • Staniene G, Stanys V (2004) Plants regeneration from leaves of Cydonia oblonga cultivars. Acta Univarsitatis Latviensis Biol 676:231–233

    Google Scholar 

  • Sun J, Chu YF, Wu X, Liu RH (2002) Antioxidant and antiproliferative activities of common fruits. J Agric Food Chem 50:7449–7454

    Article  CAS  PubMed  Google Scholar 

  • Sykes JT (1972) A description of some quince cultivars from western Turkey. Econ Bot 26:21–31

    Article  Google Scholar 

  • Tetera V (2006) Ovoce Bilych Karpat, 1st edn. CSOP Press, Veseli nad Moravou

    Google Scholar 

  • Tian L, Gao Y, Cao Y, Liu F (2012) Identification of Chinese white pear cultivars using SSR markers. Genet Res Crop Evol 59:317–326

    Article  Google Scholar 

  • Topcu H, Kafkas S, Doğan A et al (2015) Genetic relatedness among quince (Cydonia oblonga Miller) accessions from Turkey using amplified fragment length polymorphisms. J Appl Bot Food Qual 88:197–201

    CAS  Google Scholar 

  • University of Reading (2009) National fruit collection. http://www.nationalfruitcollection.org.uk/. Accessed 23 June 2009

  • USDA, ARS (2009) Quince genetic resources. http://www.ars.usda.gov/Main/docs.htm?docid=11309. Accessed 5 June 2009

  • Valesco R, Zharkikh A, Affourtit J et al (2010) The genome of the domesticated apple (Malus X domestica Borkh.). Nat Genet 42:833–839

    Article  CAS  Google Scholar 

  • Vitkovskii VL, Denisov VP (1991) N. I. Vavilov and expeditions to study fruit crops and grape in Central Asia. Sbornik Nauchnykh Trudov po Prikladnoi Botanike, Genetike I Selektsii, SSR140:97–111

    Google Scholar 

  • Wang X, Jia W, Zhao A, Wang X (2006) Anti-influenza agents from plants and traditional Chinese medicine. Phytother Res 20:335–341

    Article  CAS  PubMed  Google Scholar 

  • Wojdylo A, Oszmianski J, Teleszko M, Sokol-Letowska A (2013) Composition and quantification of major polyphenolic compounds, antioxidant activity and colour properties of quince and mixed quince jams. Int J Food Sci Nutr 64:749–756

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Wang Z, Shi Z et al (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23:396–408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xuan H, Spann D, Neumüller M (2013) Identifying quince (Cydonia oblonga) cultivars by means of apple and pear microsatellites. Acta Hortic 976: 305–310

    Google Scholar 

  • Yamamoto T, Kimura T, Sawamura Y et al (2002) Simple sequence repeats for genetic analysis of pear. Euphytica 124:129–137

    Article  CAS  Google Scholar 

  • Yamamoto T, Kimura T, Soejima J et al (2004) Identification of quince varieties using SSR markers developed from pear and apple. Breed Sci 54(3):239–244

    Article  CAS  Google Scholar 

  • Yamamoto T, Kimura T, Terakami S et al (2007) Integrated reference genetic linkage maps of pear based on SSR and AFLP markers. Breed Sci 57:321–329

    Article  CAS  Google Scholar 

  • Yezhov VN, Smykov AV, Smykov VK et al (2005) Genetic resources of temperate and subtropical fruit and nut species at the Nikita botanical gardens. Hort Sci 40:5–9

    Google Scholar 

  • Yüksel C, Mutaf F, Demirtaş I et al (2013) Characterization of Anatolian traditional quince cultivars, based on microsatellite markers. Genet Mol Res 12(4):5880–5888

    Google Scholar 

  • Zalunskaite I, Kavaliauskaite D, Vinskiene J et al (2007) Shoot regeneration from leaf explants of Cydonia oblonga cultivars in vitro. Lithuanian Inst Hortic Lithuanian Univ Agric 26:251–258

    Google Scholar 

  • Zhang Q, Li J, Zhao Y et al (2012) Evaluation of genetic diversity in Chinese wild apple species along with apple cultivars using SSR markers. Plant Mol Biol Rep 30:539–546

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank to Dr. Adnan Dogan and Mehmet Emin Akçay from Atatürk Horticultural Central Research Institute in Yalova provinces of Turkey for providing several photos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salih Kafkas .

Editor information

Editors and Affiliations

Appendices

Appendix 1

Research institutes and germplasm resources and contact person.

Germplasm location

Country

Number of accessions

Contact address

National Clonal Germplasm Repository (NCGR) Corvallis, Oregon

United States

100

jpostman@ars-grin.gov.

Nikita Botanical Gardens

Ukraine

219

p.lapshin@mail.ru

Department of National Agriculture Research Foundation Naoussa

Greece

49

palexios(at)agro.auth.gr

Atatürk Horticultural Research Institute Yalova

Turkey

40

Skafkas@cu.edu.tr

Çukurova University Pozantı Agriculture and Research Center

Turkey

13

bimrak@cu.edu.tr

Aegean Agricultural Research İnstitute

Turkey

31

mugesahin67@hotmail.com

Horticultural Research İnstitute of Eğridir-İsparta

Turkey

17

ergul@agri.ankara.edu.tr

Faculty of Agriculture and Natural Resources, Azad University

Iran

40

Khorramdel.mahsa@gmail.com

Kompetenzzentrum obstbau-Bodensee (KOB) Research station

Germany

22

haibo@kob-bavendorf.de

Institute of Botany, Armenian National Academy of Sciences Department of Plant Taxonomy , Yerevan

Armenia

18

vancat@freenet.am

The Schroeder Institute Breeding and Germplasm Collections

Uzbekistan

4

zaurov@aesop. rutgers.edu

Agricultural University, Department of Phytopathology, Poldiv

Bulgaria

10

svetoslavbobev@abv.bg

East Malling Research Station

United Kingdom

22

www.emr.ac.uk/

N.I. Vavilov Research Institute of Plant Industry, St. Petersberg

Russian Federation

16

n.dzyubenko@vir.nw.ru

Plant Systematics, Institute of Botany Georgian Academy of Sciences

Georgia

10

mosulish@usa.net

INRA

France

4

http://institut.inra.fr

Turkmenian Experiment Station Kara-Kala

Turkmenistan

16

n.dzyubenko@vir.nw.ru

Appendix 2

A list of cultivars , their important traits and cultivation location.

Name

Origin

Type

Fabraea

Mildew

Rust

Aiva from Gebeseud

Turkmenistan

Wild

1.0

(3)

1.7

(3)

3.7

(3)

Aiva from Kara-Kala no. 9

Turkmenistan

Fruit

3.8

(5)

4.3

(3)

1.4

(5)

Akhtubinskaya O.P. sdlg 2

Russia

Seedling

2.8

(5)

5.7

(3)

1.4

(5)

Akhtubinskaya O.P. sdlg 3

Russia

Seedling

3.6

(5)

1.7

(3)

3.0

(5)

Akhtubinskaya O.P. sdlg 4

Russia

Seedling

3.4

(5)

1.0

(3)

3.0

(5)

Aromatnaya

Russia

Seedling

1.8

(5)

3.0

(3)

1.4

(5)

Bereczki (=Vrajna)

Serbia

Seedling

5.0

(5)

3.0

(3)

1.8

(5)

C. oblonga sdlg 1—Alema

Armenia

Wild

6.4

(5)

3.7

(3)

1.8

(5)

C. oblonga sdlg 2—Alema

Armenia

Wild

6.8

(5)

1.7

(3)

3.0

(5)

C. oblonga sdlg 3—Alema

Armenia

Wild

7.4

(5)

4.3

(3)

2.6

(5)

C. oblonga sdlg—Arakseni

Armenia

Wild

6.2

(5)

4.3

(3)

3.0

(5)

C. oblonga sdlg—Arakseni

Armenia

Wild

7.6

(5)

4.3

(3)

2.6

(5)

C. oblonga sdlg—Arakseni

Armenia

Wild

6.0

(5)

4.3

(3)

3.0

(5)

C. oblonga sdlg—Babaneuri

Georgia

Wild

4.2

(5)

4.3

(3)

3.0

(5)

C. oblonga sdlg—Babaneuri

Georgia

Wild

4.2

(5)

2.3

(3)

2.6

(5)

C. oblonga sdlg—Babaneuri

Georgia

Wild

6.0

(5)

3.0

(3)

2.6

(5)

C. oblonga sdlg—Dusheti

Georgia

Wild

4.6

(5)

3.0

(3)

3.0

(5)

C. oblonga sdlg—Dusheti

Georgia

Wild

3.4

(5)

4.3

(3)

3.0

(5)

C. oblonga sdlg—Dusheti

Georgia

Wild

4.4

(5)

5.7

(3)

3.0

(5)

C. oblonga sdlg—Megri

Armenia

Wild

5.8

(5)

2.3

(3)

2.4

(5)

C. oblonga sdlg—Megri

Armenia

Wild

2.6

(5)

3.0

(3)

2.6

(5)

C. oblonga sdlg—Megri

Armenia

Wild

2.6

(5)

3.7

(3)

4.2

(5)

C. oblonga sdlg—Seghani

Armenia

Wild

5.8

(5)

3.7

(3)

3.0

(5)

C. oblonga sdlg—Seghani

Armenia

Wild

7.4

(5)

3.7

(3)

3.8

(5)

C. oblonga sdlg—Seghani

Armenia

Wild

7.2

(5)

4.3

(3)

3.4

(5)

Champion

United States

Fruit

3.0

(3)

1.7

(3)

1.7

(3)

Coburg

United States

Fruit

3.0

(3)

2.3

(3)

2.3

(3)

Chaenomels Cathayensis

United States

Ornamental

4.2

(5)

4.3

(3)

1.0

(5)

Cooke’s Jumbo

California

Fruit

4.2

(5)

1.7

(3)

1.8

(5)

Ekmek

Turkey

Fruit

2.8

(5)

1.0

(3)

1.0

(5)

Fontenay

France

Rootstock

4.3

(3)

3.0

(3)

1.7

(3)

Gourton of Esfahan

Iran

Fruit

4.0

(2)

3.0

(2)

1.0

(2)

Hand Quince sdlg 1

Armenia

Seedling

4.0

(2)

2.0

(2)

2.0

(2)

Hand Quince sdlg 2

Armenia

Seedling

5.0

(2)

1.0

(2)

1.0

(2)

Hasardagskaya

Turkmenistan

Fruit

7.0

(5)

5.0

(3)

3.0

(5)

Havran

Turkey

Fruit

4.2

(5)

1.0

(3)

1.4

(5)

Isfahan

Iran

Fruit

1.8

(5)

3.0

(3)

2.2

(5)

Karakalinskaya no. 6

Turkmenistan

Fruit

2.2

(5)

1.0

(3)

4.2

(5)

Karakelskaya no. 5

Turkmenistan

Fruit

1.7

(3)

2.3

(3)

2.3

(3)

Karp’s Sweet—Majes

Peru

Fruit

6.0

(5)

5.0

(3)

1.0

(5)

Valley, Araquipa

 

Fruit

      

Kashenko no. 8

Ukraine

Fruit

3.0

(5)

1.7

(3)

1.0

(5)

Kaunching

United States

Fruit

2.3

(3)

3.7

(3)

3.0

(3)

Khrimskaya Aromatnaya

Ukraine

Fruit

1.6

(5)

2.3

(3)

2.0

(4)

Kichikara Dede 88-1

Turkmenistan

Fruit

1.0

(3)

1.0

(3)

1.7

(3)

Kichikara Dede 88-2

Turkmenistan

Fruit

6.2

(5)

5.7

(3)

1.4

(5)

Krimskaya

Ukraine

Fruit

2.2

(5)

3.0

(3)

3.0

(5)

Krukovskaya O.P. sdlg2 2

Russia

Seedling

4.6

(5)

3.7

(3)

3.0

(5)

Krukovskaya O.P. sdlg3 3

Russia

Seedling

2.2

(5)

1.7

(3)

2.6

(5)

Krukovskaya O.P. sdlg4 4

Russia

Seedling

3.6

(5)

3.0

(3)

3.4

(5)

Kuganskaya

Ukraine

Fruit

2.3

(3)

2.3

(3)

1.7

(3)

Le Borgeot

France

Fruit

4.2

(5)

1.0

(3)

4.2

(5)

Limon

Turkey

Fruit

1.4

(5)

1.0

(3)

1.0

(5)

Maslenka Rannaya O.P.1

Russia

Seedling

3.0

(5)

1.0

(3)

1.8

(5)

Maslenka Rannaya O.P.2

Russia

Seedling

2.4

(5)

3.7

(3)

1.4

(5)

Maslenka Rannaya O.P.3

Russia

Seedling

3.4

(5)

3.0

(3)

3.0

(5)

Meech’s Prolific

United States

Fruit

4.2

(5)

1.7

(3)

2.8

(5)

Miradzhi 88-2

Turkmenistan

Fruit

1.4

(5)

3.7

(3)

1.4

(5)

Myakoplodnaya

Ukraine

Fruit

3.0

(2)

3.0

(2)

2.0

(2)

Pigwa S-1

Poland

Rootstock

7.2

(5)

3.0

(3)

1.8

(5)

Pigwa S-1

Poland

Rootstock

6.0

(5)

5.0

(3)

1.4

(5)

Pigwa S-2

Poland

Rootstock

2.6

(5)

3.0

(3)

1.0

(5)

Pigwa S-3

Poland

Rootstock

5.8

(5)

2.3

(3)

1.6

(5)

Pigwa S-3

Poland

Rootstock

2.3

(3)

3.0

(3)

1.0

(3)

Pillnitz 1

Germany

Rootstock

4.6

(5)

3.0

(3)

2.2

(5)

Pillnitz 2

Germany

Rootstock

5.0

(5)

3.0

(3)

1.4

(5)

Pillnitz 3

Germany

Rootstock

5.0

(5)

3.0

(3)

1.4

(5)

Pillnitz 5

Germany

Rootstock

5.4

(5)

2.3

(3)

1.8

(5)

Pineapple

California

Fruit

3.2

(5)

2.3

(3)

1.4

(5)

Portugiesische

Portugal

Fruit

4.2

(5)

2.3

(3)

  

BA-29-C

France

Rootstock

4.2

(5)

4.3

(3)

1.0

(5)

Provence (BA-29)

France

Ornamental

4.0

(5)

2.3

(3)

1.4

(5)

Pseudocydonia

Chinese

Ornamental

4.0

(5)

2.3

(3)

1.4

(5)

Quince —Angers, France

France

Rootstock

6.4

(5)

2.3

(3)

1.4

(5)

Quince —OSU Medford

France

Rootstock

5.2

(5)

4.3

(3)

1.8

(5)

Quince A

Quince A

United Kingdom

Rootstock

5.0

3.6

(5)

(5)

3.0

4.3

(3)

(3)

1.8

1.0

(5)

(5)

Quince C7/1

United Kingdom

Rootstock

5.0

(5)

3.7

(3)

1.8

(5)

Quince E

United Kingdom

Rootstock

4.4

(5)

4.3

(3)

1.8

(5)

Quince S (=Pigwa S-1)

United Kingdom

Rootstock

7.0

(5)

3.0

(3)

1.4

(5)

Quince W

United Kingdom

Rootstock

4.4

(5)

2.3

(3)

1.6

(5)

Rannyaya from Tange

United Kingdom

Turkmenistan

Fruit

2.3

(3)

1.7

(3)

1.7

(3)

Rich

Oregon

 

2.3

(3)

1.0

(3)

1.7

(3)

Seker Gevrek

Turkey

Fruit

2.8

(5)

1.0

(3)

1.4

(5)

Shams

Iran

Fruit

2.2

(5)

3.7

(3)

1.8

(5)

Shevlan

Turkmenistan

Fruit

5.0

(5)

4.3

(3)

1.6

(5)

Skorospelka O.P. sdlg 1

Russia

Seedling

3.4

(5)

3.7

(3)

4.2

(5)

Skorospelka O.P. sdlg 2

Russia

Seedling

5.0

(5)

3.7

(3)

1.4

(5)

Skorospelka O.P. sdlg 3

Russia

Seedling

6.2

(5)

2.3

(3)

2.2

(5)

Tashkent AR-232 sdlg 2

Uzbekistan

Fruit

3.8

(5)

6.3

(3)

1.8

(5)

Tashkent AR-232 sdlg 3

Uzbekistan

Fruit

2.6

(5)

6.3

(3)

2.6

(5)

Tashkent AR-232 sdlg 4

Uzbekistan

Fruit

3.8

(5)

5.7

(3)

2.6

(5)

TE-2-73

Turkmenistan

Fruit

2.3

(3)

1.0

(3)

1.7

(3)

Tekes

Turkey

Fruit

4.6

(5)

1.0

(3)

1.8

(5)

Tencara Pink

United States

Fruit

2.2

(5)

5.7

(3)

1.4

(5)

Teplovskaya O.P. sdlg

Russia

Seedling

5.0

(5)

3.7

(3)

1.4

(5)

Teplovskaya O.P. sdlg

Russia

Seedling

3.0

(2)

2.0

(2)

3.0

(2)

Trentholm

Oregon

Seedling

4.6

(5)

3.0

(3)

1.6

(5)

V-46.O.P

Bulgaria

Fruit

2.2

(5)

5.7

(3)

1.4

(5)

W-4

France

Rootstock

5.0

(5)

4.3

(3)

1.4

(5)

WF-17

France

Rootstock

4.4

(5)

2.3

(3)

1.2

(5)

Yuz-Begi 83-4

Turkmenistan

Fruit

3.0

(5)

1.0

(3)

2.6

(5)

Yuz-Begi 89-1

Turkmenistan

Fruit

6.2

(5)

3.7

(3)

1.2

(5)

Zeakli 89-1

Turkmenistan

Fruit

1.7

(3)

3.0

(3)

2.3

(3)

  1. Source Adopted from Postman (2008)
  2. Mean disease rating for number of years in parentheses

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kafkas, S., Imrak, B., Kafkas, N.E., Sarıer, A., Kuden, A. (2018). Quince (Cydonia oblonga Mill.) Breeding. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Fruits. Springer, Cham. https://doi.org/10.1007/978-3-319-91944-7_7

Download citation

Publish with us

Policies and ethics