Skip to main content

Interactions with Other Organisms

  • Chapter
  • First Online:
Plants on Plants – The Biology of Vascular Epiphytes

Part of the book series: Fascinating Life Sciences ((FLS))

Abstract

Due to the structural dependence of vascular epiphytes on a living host, the relationship of epiphyte and host is at the core of epiphyte biology. The usual assumption of a commensalistic association, however, only superficially grasps the complexity of the interaction between epiphytes and host. There are numerous studies that document anything from positive, neutral, to negative effects of epiphytes on their host. An understudied area in epiphyte ecology is the interaction with other structurally dependent plants, i.e., nonvascular epiphytes, hemiepiphytes, lianas, or mistletoes. I review the available information and conclude that, in particular, the assumed facilitation of the establishment of vascular epiphytes by epiphytic bryophytes needs more attention. An aspect that is highlighted in any popular text on rainforests is the association of epiphytes with a rich fauna, the typical example being tank bromeliads and enigmatic poison arrow frogs. I put less emphasis on these well-known cases. Rather, I describe the main types of interactions in considerable detail, mutualistic ones like pollination and dispersal or antagonistic ones like herbivory. Because of their importance as model systems for major ecological and evolutionary questions, phytotelmata, ant gardens, and ant house are discussed in separate subchapters. A final section is devoted to interactions of epiphytes with fungi. A major conclusion of the presented evidence is a key role of vascular epiphytes for faunal diversity in tree crowns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerman JD (1989) Limitations to sexual reproduction in Encyclia krugii (Orchidaceae). Syst Bot 14:101–109

    Article  Google Scholar 

  • Ackerman JD, Montalvo AM (1990) Short- and long-term limitations to fruit production in a tropical orchid. Ecology 71:263–272

    Article  Google Scholar 

  • Ackerman JD, Roubik DW (2012) Can extinction risk help explain plant-pollinator specificity among euglossine bee pollinated plants? Oikos 121:1821–1827. doi:10.1111/j.1600-0706.2011.20193.x

    Article  Google Scholar 

  • Aguilar-Rodríguez S, Terrazas T, Aguirre-León E, Huidobro-Salas ME (2007) Modifications in the bark of Prosopis laevigata due to the establishment of Tillandsia recurvata. Bol Soc Bot México 81:27–35

    Google Scholar 

  • Aguilar-Rodríguez PA, MacSwiney GMC, Krömer T, García-Franco JG (2014) Pollen consumption by free-living mice. Acta Theriol 59:361–365

    Article  Google Scholar 

  • Angelini C, Silliman BR (2014) Secondary foundation species as drivers of trophic and functional diversity: evidence from a tree epiphyte system. Ecology 95:185–196. doi:10.1890/13-0496.1

    Article  PubMed  Google Scholar 

  • Armbruster P, Hutchinson RA, Cotgreave P (2002) Factors influencing community structure in a South American tank bromeliad fauna. Oikos 96:225–234

    Article  Google Scholar 

  • Balke M, Gómez-Zurita J, Ribera I, Viloria A, Zillikens A, Steiner J, García M, Hendrich L, Vogler AP (2008) Ancient associations of aquatic beetles and tank bromeliads in the Neotropical forest canopy. Proc Natl Acad Sci U S A 105:6356–6361. doi:10.1073/pnas.0710368105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benzing DH (1981) Why is Orchidaceae so large, its seeds so small, and its seedlings mycotrophic? Selbyana 5:241–242

    Google Scholar 

  • Benzing DH (1990) Vascular epiphytes. General biology and related biota. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Benzing DH (2012) Air plants. Cornell University, Ithaca, NY

    Google Scholar 

  • Benzing DH, Clements MA (1991) Dispersal of the orchid Dendrobium insigne by the ant Iridomyrmex cordatus in Papua New Guinea. Biotropica 23:604–607

    Article  Google Scholar 

  • Benzing DH, Seemann J (1978) Nutritional piracy and host decline: a new perspective on the epiphyte-host relationship. Selbyana 2:133–148

    Google Scholar 

  • Bertness MD, Callaway R (1994) Positive interactions in communities. Trends Ecol Evol 9:191–193. doi:10.1016/0169-5347(94)90088-4

    Article  CAS  PubMed  Google Scholar 

  • Borgella R Jr et al (2001) Species richness and pollen loads of hummingbirds using forest fragments in southern Costa Rica. Biotropica 33:90–109

    Article  Google Scholar 

  • Brouard O, Le Jeune A-H, Leroy C, Cereghino R, Roux O, Pelozuelo L, Dejean A, Corbara B, Carrias J-F (2011) Are algae relevant to the detritus-based food web in tank-bromeliads? PLoS One 6, e20129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brundrett M (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil 320:37–77

    Article  CAS  Google Scholar 

  • Canela MBF, Sazima M (2003) Aechmea pectinata: a hummingbird-dependent bromeliad with inconspicuous flowers from the rainforest in south-eastern Brazil. Ann Bot 92:731–737. doi:10.1093/aob.mcg192

    Article  PubMed  PubMed Central  Google Scholar 

  • Cascante-Marín A, Wolf JHD, Oostermeijer JGB, Den Nijs JCM (2008) Establishment of epiphytic bromeliads in successional tropical premontane forests in Costa Rica. Biotropica 40:441–448. doi:10.1111/j.1744-7429.2008.00403.x

    Article  Google Scholar 

  • Cascante-Marín A, Wolf JHD, Oostermeijer JGB (2009) Wasp florivory decreases reproductive success in an epiphytic bromeliad. Plant Ecol 203:149–153. doi:10.1007/s11258-008-9522-y

    Article  Google Scholar 

  • Cestari C (2009) Epiphyte plants use by birds in Brazil. Oecologia Brasiliensis 13:689–712

    Google Scholar 

  • Cestari C, Pizo MA (2008) Utilization of epiphytes by birds in a Brazilian Atlantic Forest. Ornitología Neotrop 19:97–107

    Google Scholar 

  • Chouteau M, Gibernau M, Barbare D (2008) Relationships between floral characters, pollination mechanisms, life forms, and habitats in Araceae. Bot J Linn Soc 156:29–42

    Article  Google Scholar 

  • Clarkson B, Albertoni FF, Fikacek M (2014) Taxonomy and biology of the bromeliad-inhabiting genus Lachnodacnum (Coleoptera: Hydrophilidae: Sphaeridiinae). Acta Entomologica Musei Nationalis Pragae 54:157–194

    Google Scholar 

  • Coley PD, Barone JA (1996) Herbivory and plant defenses in tropical forests. Annu Rev Ecol Syst 27:305–335

    Article  Google Scholar 

  • Coley PD, Bryant JP, Chapin FS III (1985) Resource availability and plant antiherbivore defense. Science 230:895–899

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Angón A, Greenberg R (2005) Are epiphytes important for birds in coffee plantations? An experimental assessment. J Appl Ecol 42:150–159

    Article  Google Scholar 

  • Davidson DW (1988) Ecological studies of neotropical ant gardens. Ecology 69:1138–1152

    Article  Google Scholar 

  • Dawson JW (1988) Forest vines to snow tussocks: the story of New Zealand plants. Victoria University Press, Wellington

    Google Scholar 

  • Dearnaley JDW (2007) Further advances in orchid mycorrhizal research. Mycorrhiza 17:475–486

    Article  PubMed  Google Scholar 

  • Dejean A, Olmsted IC, Snelling RR (1995) Tree-epiphyte-ant relationships in the low inundated forest of Sian Ka'an Biospere reserve, Quintana Roo, Mexico. Biotropica 27:57–70

    Article  Google Scholar 

  • Díaz IA, Sieving KE, Peña-Foxon M, Armesto JJ (2012) A field experiment links forest structure and biodiversity: epiphytes enhance canopy invertebrates in Chilean forests. Ecosphere 3:art5. doi:10.1890/es11-00168.1

    Google Scholar 

  • Dunthorn M, Stoeck T, Wolf K, Breiner H-W, Foissner W (2012) Diversity and endemism of ciliates inhabiting Neotropical phytotelmata. Syst Biodivers 10:195–205. doi:10.1080/14772000.2012.685195

    Article  Google Scholar 

  • Ellwood MDF, Foster WA (2004) Doubling the estimate of invertebrate biomass in a rainforest canopy. Nature 429:549–551

    Article  CAS  PubMed  Google Scholar 

  • Ferrari SF, Hilario RR (2012) Use of water sources by buffy-headed marmosets (Callithrix flaviceps) at two sites in the Brazilian Atlantic Forest. Primates 53:65–70. doi:10.1007/s10329-011-0277-z

    Article  PubMed  Google Scholar 

  • Fisher BL (1992) Facultative ant association benefits a neotropical orchid. J Trop Ecol 8:109–114

    Article  Google Scholar 

  • Fleming TH, Geiselman C, Kress WJ (2009) The evolution of bat pollination: a phylogenetic perspective. Ann Bot 104:1017–1043. doi:10.1093/aob/mcp197

    Article  PubMed  PubMed Central  Google Scholar 

  • Flores-Palacios A, Ortiz-Pulido R (2005) Epiphyte orchid establishment on termite carton trails. Biotropica 37:457–461

    Article  Google Scholar 

  • Flores-Palacios A, Barbosa-Duchateau CL, Valencia-Díaz S, Capistrán-Barradas A, García-Franco JG (2014) Direct and indirect effects of Tillandsia recurvata on Prosopis laevigata in the Chihuahua desert scrubland of San Luis Potosi, Mexico. J Arid Environ 104:88–95. doi:10.1016/j.jaridenv.2014.02.010

    Article  Google Scholar 

  • Foissner W (2010) Life cycle, morphology, ontogenesis, and phylogeny of Bromeliothrix metopoides nov gen., nov spec., a peculiar ciliate (Protista, Colpodea) from tank Bromeliads (Bromeliaceae). Acta Protozool 49:159–193

    PubMed  PubMed Central  Google Scholar 

  • Fontoura T, Cazetta E, do Nascimento W, Catenacci L (2010) Diurnal frugivores on the Bromeliaceae Aechmea depressa L.B. Sm. from Northeastern Brazil: the prominent role taken by a small forest primate. Biota Neotrop 10:351–354

    Google Scholar 

  • Fragaszy DM, Visalberghi E, Fedigan LM (2015) The complete capuchin: The biology of the genus Cebus. Cambridge University Press, Cambridge

    Google Scholar 

  • Frank JH (1999) Bromeliad-eating weevils. Selbyana 20:40–58

    Google Scholar 

  • Galindo-González J, Guevara S, Sosa VJ (2000) Bat- and bird-generated seed rains at isolated trees in pastures in a tropical rainforest. Conserv Biol 14:1693–1703

    Article  Google Scholar 

  • García-Estrada C, Damon A, Sanchez-Hernandez C, Soto-Pinto L, Ibarra-Nunez G (2012) Diets of frugivorous bats in montane rain forest and coffee plantations in southeastern Chiapas, Mexico. Biotropica 44:394–401. doi:10.1111/j.1744-7429.2011.00816.x

    Article  Google Scholar 

  • Gay HJ (1991) Ant-houses in the fern genus Lecanopteris Reinw. (Polypodiaceae): the rhizome morphology and architecture of L. sarcopus Teijsm. & Binnend. and L. darnaedii Hennipman. Bot J Linn Soc 106:199–208

    Article  Google Scholar 

  • Giongo A, Beneduzi A, Gano K, Vargas LK, Utz L, Pereira Passaglia LM (2013) Characterization of plant growth-promoting bacteria inhabiting Vriesea gigantea Gaud. and Tillandsia aeranthos (Loiseleur) L.B. Smith (Bromeliaceae). Biota Neotrop 13:80–85

    Article  Google Scholar 

  • Goh CJ, Sim AA, Lim G (1992) Mycorrhizal associations in some tropical orchids. Lindleyana 7:13–17

    Google Scholar 

  • Goldstein IR (2004) Andean bear use of the epiphytic bromeliad Tillandsia fendleri at Quebrada el Molino, Venezuela. Ursus 15:54–56

    Article  Google Scholar 

  • Goncalves AZ, Mercier H, Mazzafera P, Romero GQ (2011) Spider-fed bromeliads: seasonal and interspecific variation in plant performance. Ann Bot 107:1047–1055. doi:10.1093/aob/mcr047

    Article  PubMed  PubMed Central  Google Scholar 

  • Goncalves-Souza T, Brescovit AD, Rossa-Feres DD, Romero GQ (2010) Bromeliads as biodiversity amplifiers and habitat segregation of spider communities in a Neotropical rainforest. J Arachnol 38:270–279

    Article  Google Scholar 

  • Gravendeel B, Smithson A, Slik FJW, Schuiteman A (2004) Epiphytism and pollinator specialization: drivers for orchid diversity? Philos Trans R Soc Lond B Biol Sci 359:1523–1535

    Article  PubMed  PubMed Central  Google Scholar 

  • Guaraldo AC, Boeni B de O, Pizzo MA (2013) Specialized seed dispersal in epiphytic cacti and convergence with mistletoes. Biotropica 45:465–473. doi:10.1111/btp.12041

    Article  Google Scholar 

  • Hayes FE, Shameerudeen CL, Sanasie B, Hayes BD, Ramjohn CL, Lucas FB (2009) Ecology and behaviour of the critically endangered Trinidad piping-guan Aburria pipile. Endang Species Res 6:223–229. doi:10.3354/esr00153

    Article  Google Scholar 

  • Hénaut Y, Corbara B, Pélozuelo L, Azémar F, Céréghino R, Herault B, Dejean A (2014) A tank Bromeliad favors spider presence in a neotropical inundated forest. PLoS One 9(12), e114592. doi:10.1371/journal.pone.0114592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herbert DA (1958) Natural air layering in humus-collecting epiphytes. Queensland Naturalist 16:22–23

    Google Scholar 

  • Hertel D, Köhler L (2010) Are tree roots in the canopy ecologically important? A critical reassessment from a case study in a tropical montane rainforest. Plant Ecol Divers 3:141–150. doi:10.1080/17550874.2010.511293

    Article  Google Scholar 

  • Hietz P, Wanek W, Wania R, Nadkarni NM (2002) Nitrogen-15 natural abundance in a montane cloud forest canopy as an indicator of nitrogen cycling and epiphyte nutrition. Oecologia 131:350–355

    Article  Google Scholar 

  • Hölldobler B, Wilson EO (1994) Journey to the ants. Belknap, Cambridge

    Google Scholar 

  • Huxley CR (1978) The ant-plants Myrmecodia and Hydnophytum (Rubiaceae), and the relationships between their morphology, ant occupants, physiology and ecology. New Phytol 80:231–268

    Article  Google Scholar 

  • Jabiol J, Corbara B, Dejean A, Cereghino R (2009) Structure of aquatic insect communities in tank-bromeliads in an East-Amazonian rainforest in French Guiana. For Ecol Manage 257:351–360. doi:10.1016/j.foreco.2008.09.010

    Article  Google Scholar 

  • Jian P-Y, Hu FS, Wang CP, Chiang J-m, Lin T-C (2013) Ecological facilitation between two epiphytes through drought mitigation in a subtropical rainforest. PLoS One 8(5), e64599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kartzinel TR, Trapnell DW, Shefferson RP (2013) Critical importance of large native trees for conservation of a rare Neotropical epiphyte. J Ecol 101:1429–1438. doi:10.1111/1365-2745.12145

    Article  Google Scholar 

  • Keeler KH (2014) World list of plants with extrafloral nectaries (2014). http://bioscilabs.unl.edu/Emeriti/keeler/extrafloral/Cover.htm. Accessed 22 Dec 2014

  • Kessler M, Krömer T (2000) Patterns and ecological correlates of pollination modes among bromeliad communities of Andean forests in Bolivia. Plant Biol 2:659–669

    Article  Google Scholar 

  • Kessler M, Jonas R, Strasberg D, Lehnert M (2010) Mycorrhizal colonizations of ferns and lycophytes on the island of La Réunion in relation to nutrient availability. Basic Appl Ecol 11:329–336

    Article  Google Scholar 

  • Kitching RL (2000) Food webs and container habitats : the natural history and ecology of phytotelmata. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Knight TM, Steets JA, Vamosi JC, Mazer SJ, Burd M, Campbell DR, Dudash MR, Johnston MO, Mitchell RJ, Ashman T-L (2005) Pollen limitation of plant reproduction: pattern and process. Annu Rev Ecol Evol Syst 36:467–497

    Article  Google Scholar 

  • Krömer T, Kessler M, Lohaus G, Schmidt-Lebuhn AN (2008) Nectar sugar composition and concentration in relation to pollination syndromes in Bromeliaceae. Plant Biol 10:502–511. doi:10.1111/j.1438-8677.2008.00058.x

    Article  PubMed  CAS  Google Scholar 

  • Laman TG (1995) Ficus stupenda germination and seedling establishment in a Bornean rain forest canopy. Ecology 76:2617–2626

    Article  Google Scholar 

  • Lesica P, Antibus RK (1990) The occurrence of mycrorrhizae in vascular epiphytes of two Costa Rican rain forests. Biotropica 22:250–258

    Article  Google Scholar 

  • Lugo MA, Reinhart KO, Menoyo E, Crespo EM, Urcelay C (2015) Plant functional traits and phylogenetic relatedness explain variation in associations with root fungal endophytes in an extreme arid environment. Mycorrhiza 25:85–95. doi:10.1007/s00572-014-0592-5

    Article  PubMed  Google Scholar 

  • Lüttge U (2008) Physiological ecology of tropical plants, 2nd edn. Springer, Berlin

    Google Scholar 

  • Magrach A, Rodriguez-Pérez J, Campbell M, Laurance WF (2014) Edge effects shape the spatial distribution of lianas and epiphytic ferns in Australian tropical rain forest fragments. Appl Veg Sci 17:754–764. doi:10.1111/avsc.12104

    Article  Google Scholar 

  • Maier FE (1982) Effects of physical defenses on vine and epiphyte growth in palms. Trop Ecol 23:212–217

    Google Scholar 

  • Marler TE, Lawrence JH (2013) Phytophagous insects reduce cycad resistance to tropical cyclone winds and impair storm recovery. Hortscience 48:1224–1226

    Google Scholar 

  • Martin PH, Sherman RE, Fahey TJ (2004) Forty years of tropical forest recovery from agriculture: Structure and floristics of secondary and old-growth riparian forests in the Dominican Republic. Biotropica 36:297–317

    Google Scholar 

  • Martinson GO, Werner FA, Scherber C, Conrad R, Corre MD, Flessa H, Wolf K, Klose M, Gradstein SR, Veldkamp E (2010) Methane emissions from tank bromeliads in neotropical forests. Nat Geosci 3:766–769. doi:10.1038/ngeo980

    Article  CAS  Google Scholar 

  • Martos F, Munoz F, Pailler T, Kottke I, Gonneau C, Selosse M-A (2012) The role of epiphytism in architecture and evolutionary constraint within mycorrhizal networks of tropical orchids. Mol Ecol 21:5098–5109. doi:10.1111/j.1365-294X.2012.05692.x

    Article  PubMed  Google Scholar 

  • McCracken SF, Forstner MRJ (2014) Herpetofaunal community of a high canopy tank bromeliad (Aechmea zebrina) in the Yasuní Biosphere Reserve of Amazonian Ecuador, with comments on the use of “arboreal” in the herpetological literature. Amphibian Reptile Conserv 8:65–75

    Google Scholar 

  • Mehltreter K, Huelber K, Hietz P (2006) Herbivory on epiphytic ferns of a Mexican cloud forest. Fern Gaz 17:303–309

    Google Scholar 

  • Moffett MW (2000) What’s “up”? A critical look at the basic terms of canopy biology. Biotropica 32:569–596

    Article  Google Scholar 

  • Montaña C, Dirzo R, Flores A (1997) Structural parasitism of an epiphytic bromeliad upon Cercidium praecox in an intertropical semiarid ecosystem. Biotropica 29:517–521

    Article  Google Scholar 

  • Muthukumar T, Sathiyaraj G, Priyadharsini P, Uma E, Sathiyadash K (2014) Arbuscular mycorrhizal and dark septate endophyte fungal associations in ferns and lycophytes of Palni Hills, Western Ghats, southern India. Brazil J Bot 37:561–581. doi:10.1007/s40415-014-0085-y

    Article  Google Scholar 

  • Nadkarni NM (1981) Canopy roots: convergent evolution in rainforest nutrient cycles. Science 214:1023–1024

    Article  CAS  PubMed  Google Scholar 

  • Nadkarni NM, Matelson TJ (1989) Bird use of epiphyte resources in neotropical trees. Condor 91:891–907

    Article  Google Scholar 

  • Nadkarni NM, Solano R (2002) Potential effects of climate change on canopy communities in a tropical cloud forest: an experimental approach. Oecologia 131:580–586

    Article  Google Scholar 

  • Neiland MRM, Wilcock CC (1998) Fruit set, nectar reward, and rarity in the Orchidaceae. Am J Bot 85:1657–1671

    Article  CAS  PubMed  Google Scholar 

  • Orivel J, Leroy C (2011) The diversity and ecology of ant gardens (Hymenoptera: Formicidae; Spermatophyta: Angiospermae). Myrmecol News 14:73–85

    Google Scholar 

  • Orlovich DA, Draffin SJ, Daly R, Stephenson SL (2013) Piracy in the high trees: ectomycorrhizal fungi from an aerial "canopy soil" microhabitat. Mycologia 105:52–60. doi:10.3852/11-307

    Article  PubMed  Google Scholar 

  • Osorio-Gil EM, Forero-Montaña J, Otero JT (2008) Variation in mycorrhizal infection of the epiphytic orchid Ionopsis utriculariodes (Orchidaceae) on different substrata. Carib J Sci 44:130–132

    Article  Google Scholar 

  • Page CN, Brownsey PJ (1986) Tree-fern skirts: a defence against climbers and large epiphytes. J Ecol 74:787–796

    Article  Google Scholar 

  • Perry DR (1978) Factors influencing arboreal epiphytic phytosociology in Central America. Biotropica 10:235–237

    Article  Google Scholar 

  • Petermann JS, Farjalla VF, Jocque M, Kratina P, MacDonald AAM, Marino NAC, de Omena PM, Piccoli GCO, Richardson BA, Richardson MJ, Romero GQ, Videla M, Srivastava DS (2015) Dominant predators mediate the impact of habitat size on trophic structure in bromeliad invertebrate communities. Ecology 96:428–439. doi:10.1890/14-0304.1

    Article  PubMed  Google Scholar 

  • Picado C (1913) Les broméliacees épiphytes. Bull Sci Fr Belg 47:215–360

    Google Scholar 

  • Putz FE, Holbrook NM (1986) Notes on the natural history of hemiepiphytes. Selbyana 9:61–69

    Google Scholar 

  • Rains KC, Nadkarni NM, Bledsoe CS (2003) Epiphytic and terrestrial mycorrhizas in a lower montane Costa Rican cloud forest. Mycorrhiza 13:257–264

    Article  PubMed  Google Scholar 

  • Rasmussen HN, Dixon KW, Jersakova J, Tesitelova T (2015) Germination and seedling establishment in orchids: a complex of requirements. Ann Bot 116:391–402. doi:10.1093/aob/mcv087

    Article  PubMed  PubMed Central  Google Scholar 

  • Rico-Gray V (1989) The importance of floral and circum-floral nectar to ants inhabiting dry tropical lowlands. Biol J Linn Soc 38:173–181

    Article  Google Scholar 

  • Rivera-Milán FF (1996) Nest density and success of columbids in Puerto Rico. Condor 98:100–113

    Article  Google Scholar 

  • Rocca MA, Sazima M (2013) Quantity versus quality: identifying the most effective pollinators of the hummingbird-pollinated Vriesea rodigasiana (Bromeliaceae). Plant Syst Evol 299:97–105. doi:10.1007/s00606-012-0706-5

    Article  Google Scholar 

  • Ruano-Fajardo G, Rovito SM, Ladle RJ (2014) Bromeliad Selection by Two Salamander Species in a Harsh Environment. PLoS One 9(6), e98474. doi:10.1371/journal.pone.0098474

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruinen J (1953) Epiphytosis. A second view on epiphytism. Ann Bogor 1:101–157

    Google Scholar 

  • Sand-Jensen K, Hammer K (2012) Moss cushions facilitate water and nutrient supply for plant species on bare limestone pavements. Oecologia 170:305–312. doi:10.1007/s00442-012-2314-z

    Article  PubMed  Google Scholar 

  • Scheffers BR, Evans TA, Williams SE, Edwards DP (2014) Microhabitats in the tropics buffer temperature in a globally coherent manner. Biol Lett 10. doi:10.1098/rsbl.2014.0819

    Google Scholar 

  • Scheffknecht S, Winkler M, Hulber K, Rosas MM, Hietz P (2010) Seedling establishment of epiphytic orchids in forests and coffee plantations in Central Veracruz, Mexico. J Trop Ecol 26:93–102. doi:10.1017/s0266467409990332

    Article  Google Scholar 

  • Schimper AFW (1888) Die epiphytische Vegetation Amerikas, vol 2. Botanische Mitteilungen aus den Tropen, Gustav Fischer, Jena

    Google Scholar 

  • Schlumpberger BO, Clery RA, Barthlott W (2006) A unique cactus with scented and possibly bat-dispersed fruits: Rhipsalis juengeri. Plant Biol 8:265–270

    Article  CAS  PubMed  Google Scholar 

  • Schmidt S, Tracey DP (2006) Adaptations of strangler figs to life in the rainforest canopy. Funct Plant Biol 33:465–475

    Article  Google Scholar 

  • Schmidt G, Zotz G (2000) Herbivory in the epiphyte, Vriesea sanguinolenta Cogn. & Marchal (Bromeliaceae). J Trop Ecol 16:829–839

    Article  Google Scholar 

  • Schmit-Neuerburg V, Blüthgen N (2007) Ant-garden epiphytes are protected against drought in a Venezuelan lowland rain forest. Ecotropica 13:93–100

    Google Scholar 

  • Sillett SC (1995) Branch epiphyte assemblages in the forest interior and on the clearcut edge of a 700-year-old Douglas fir canopy in western Oregon. Bryologist 98:301–312

    Article  Google Scholar 

  • Sillett TS, James A, Sillett KB (1997) Bromeliad foraging specialization and diet selection of Pseudocolaptes lawrencii (Furnariidae). Ornithol Monogr 48:733–742

    Article  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Snow DW (1981) Tropical frugivorous birds and their food plants: A world survey. Biotropica 13:1–14. doi:10.2307/2387865

    Google Scholar 

  • Soria NF, Torres C, Galetto L (2014) Experimental evidence of an increased leaf production in Prosopis after removal of epiphytes (Tillandsia). Flora 209:580–586

    Article  Google Scholar 

  • Srivastava DS, Kolasa J, Bengtsson J, González A, Lawler SP, Miller TE, Munguia P, Romanuk T, Schneider DC, Trzcinski MK (2004) Are natural microcosms useful model systems for ecology? Trends Ecol Evol 19:379–384. doi:10.1016/j.tree.2004.04.010

    Article  PubMed  Google Scholar 

  • Stevens G (1987) Lianas as structural parasite: the Bursera simaruba example. Ecology 68:77–81

    Article  Google Scholar 

  • Strong DR (1977) Epiphyte load, tree falls, and perennial forest disruption: a mechanism for maintaining higher tree species richness in the tropics without animals. J Biogeogr 4:215–218

    Article  Google Scholar 

  • Stuntz S (2001) The influence of epiphytes on arthropods in the tropical forest canopy. PhD thesis. Bayerische Julius-Maximilians-Universität, Würzburg

    Google Scholar 

  • Stuntz S, Simon U, Zotz G (2002a) Rainforest airconditioning: the moderating influence of epiphytes on the microclimate in tropical tree crowns. Int J Biometeorol 46:53–59

    Article  PubMed  Google Scholar 

  • Stuntz S, Ziegler C, Simon U, Zotz G (2002b) Diversity and structure of the arthropod fauna within three canopy epiphyte species in Central Panama. J Trop Ecol 18:161–176

    Article  Google Scholar 

  • Stuntz S, Linder C, Linsenmair KE, Simon U, Zotz G (2003) Do non-myrmecophilic epiphytes influence the community structure of arboreal ants? Basic Appl Ecol 4:363–373

    Article  Google Scholar 

  • Sugden AM, Robins RJ (1979) Aspects of the ecology of vascular epiphytes in two Colombian cloud forests. I The distribution of the vascular flora. Biotropica 11:173–188

    Article  Google Scholar 

  • Tanaka HO, Inui Y, Itioka T (2009) Anti-herbivore effects of an ant species, Crematogaster difformis, inhabiting myrmecophytic epiphytes in the canopy of a tropical lowland rainforest in Borneo. Ecol Res 24:1393–1397. doi:10.1007/s11284-009-0622-5

    Article  Google Scholar 

  • Taylor P (1994) The Genus Utricularia - a taxonomic monograph. Royal Botanic Gardens, Kew, London

    Google Scholar 

  • Thomsen MS, Wernberg T, Altieri A, Tuya F, Gulbransen D, McGlathery KJ, Holmer M, Silliman BR (2010) Habitat cascades: The conceptual context and global relevance of facilitation cascades via habitat formation and modification. Integr Comparat Biol 50:158–175. doi:10.1093/icb/icq042

    Article  Google Scholar 

  • Thorne BL, Haverty MI, Benzing DH (1996) Associations between termites and bromeliads in two dry tropical habitats. Biotropica 28:781–785

    Article  Google Scholar 

  • Titus JH, Holbrook NM, Putz FE (1990) Seed germination and seedling distribution of Ficus pertusa and F. tuerckheimii are strangler figs autotoxic? Biotropica 22:425–428

    Article  Google Scholar 

  • Tremblay RL, Zimmerman JK, Lebrón L, Bayman P, Sastre I, Axelrod F, Alers-García J (1998) Host specificity and low reproductive success in the rare endemic Puerto Rican orchid Lepanthes caritensis. Biol Conserv 85:297–304

    Article  Google Scholar 

  • Tremblay RL, Ackerman JD, Zimmerman JK, Calvo RN (2005) Variation in sexual reproduction in orchids and its evolutionary consequences: A spasmodic journey to diversification. Biol J Linn Soc 84:1–54

    Article  Google Scholar 

  • Treseder KK, Davidson DW, Ehleringer JR (1995) Absorption of ant-provided carbon dioxide and nitrogen by a tropical epiphyte. Nature 375:137–139

    Article  CAS  Google Scholar 

  • Ule E (1901) Ameisengärten im Amazonasgebiet. Bot Jahrg Syst 30:45–52

    Google Scholar 

  • Valencia-Diaz S, Flores-Palacios A, Rodriguez-Lopez V, Jimenez-Aparicio AR (2012) Effects of Tillandsia recurvata extracts on the seed germination of Tillandsia spp. Allelopathy J 29:125–135

    Google Scholar 

  • Van Leerdam A, Zagt RJ, Veneklaas EJ (1990) The distribution of epiphyte growth-forms in the canopy of a Colombian cloud-forest. Vegetatio 87:59–71

    Article  Google Scholar 

  • Wagner K, Mendieta Leiva G, Zotz G (2015) Host specificity in vascular epiphytes: a review of methodology, empirical evidence and potential mechanisms. AoB Plants 7:plu092. doi: 10.1093/aobpla/plu092

  • Wells KD (2007) The ecology and behavior of amphibians. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Winkler M, Hülber K, Hietz P (2005a) Effect of canopy position on germination and seedling survival of epiphytic bromeliads in a Mexican humid montane forest. Ann Bot 95:1039–1047

    Article  PubMed  PubMed Central  Google Scholar 

  • Winkler M, Hülber K, Mehltreter K, García-Franco JG, Hietz P (2005b) Herbivory of epiphytic bromeliads, orchids and ferns, in a Mexican montane forest. J Trop Ecol 21:147–154

    Article  Google Scholar 

  • Wright SJ (2002) Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130:1–14

    Article  Google Scholar 

  • Wyse SV, Burns BR (2011) Do host bark traits influence trunk epiphyte communities? N Z J Ecol 35:296–301

    Google Scholar 

  • Yanoviak SP (2001) Predation, resource availability, and community structure in Neotropical water-filled tree holes. Oecologia 126:125–133

    Article  Google Scholar 

  • Yanoviak SP, Berghoff SM, Linsenmair KE, Zotz G (2011) Effects of an epiphytic orchid on arboreal ant community structure in Panama. Biotropica 43:731–737. doi:10.1111/j.1744-7429.2011.00764.x

    Article  Google Scholar 

  • Yu DW (1994) The structural role of epiphytes in ant gardens. Biotropica 26:222–226

    Article  Google Scholar 

  • Zotz G (2002) Gefässepiphyten in temperaten Wäldern. Bauhinia 16:13–22

    Google Scholar 

  • Zotz G (2013) The systematic distribution of vascular epiphytes—a critical update. Bot J Linn Soc 171:453–481

    Article  Google Scholar 

  • Zotz G, Schleicher T (2003) Growth and survival of the foliose lichen Parmotrema endosulphureum in the lowland tropics of Panama. Ecotropica 9:39–44

    Google Scholar 

  • Zotz G, Schultz S (2008) The vascular epiphytes of a lowland forest in Panama - species composition and spatial structure. Plant Ecol 195:131–141. doi:10.1007/s11258-007-9310-0

    Article  Google Scholar 

  • Zotz G, Vollrath B (2003) The epiphyte vegetation of the palm, Socratea exorrhiza - correlations with tree size, tree age, and bryophyte cover. J Trop Ecol 19:81–90. doi:10.1017/S0266467403003092

    Article  Google Scholar 

  • Zotz G, Hietz P, Schmidt G (2001) Small plants, large plants - the importance of plant size for the physiological ecology of vascular epiphytes. J Exp Bot 52:2051–2056

    Article  CAS  PubMed  Google Scholar 

  • Zotz G, Laube S, Schmidt G (2005) Long-term population dynamics of the epiphytic bromeliad, Werauhia sanguinolenta. Ecography 28:806–814

    Article  Google Scholar 

  • Zotz G, Mendieta Leiva G, Wagner K (2014) Vascular epiphytes at the treeline—composition of species assemblages and population biology. Flora 209:385–390

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zotz, G. (2016). Interactions with Other Organisms. In: Plants on Plants – The Biology of Vascular Epiphytes. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-39237-0_8

Download citation

Publish with us

Policies and ethics