Skip to main content

DM–Nucleon Interaction

  • Chapter
  • First Online:
The Theory of Direct Dark Matter Detection

Part of the book series: Lecture Notes in Physics ((LNP,volume 996))

  • 684 Accesses

Abstract

Now that we know how to compute hadronic matrix elements of (some) quark and gluon operators, we remain with turning the Dark Matter–nucleon scattering amplitude \(\mathscr {M}_N\) into a Dark Matter–nucleus cross section. To do so, we start by performing a non-relativistic expansion in powers of the Dark Matter–nucleon relative speed v, which allows to identify contributions from different types of non-relativistic interactions: some involving the nucleon spin, some involving the Dark Matter spin, some involving q, etc. In this chapter we first introduce the non-relativistic expansion for spin-0 and spin-1∕2 Dark Matter, then we show how to expand \(\mathscr {M}_N\) and express the result in terms of 16 Galilean-invariant building blocks. We will then see in Chap. 5 how different non-relativistic interactions involve different nuclear properties and correspond to different nuclear responses and form factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Gondolo, S. Kang, S. Scopel, G. Tomar, Effective theory of nuclear scattering for a WIMP of arbitrary spin. Phys. Rev. D 104(6), 063017 (2021). 10.1103/PhysRevD.104.063017. arXiv:2008.05120 [hep-ph]

  2. P. Gondolo, I. Jeong, S. Kang, S. Scopel, G. Tomar, Phenomenology of nuclear scattering for a WIMP of arbitrary spin. Phys. Rev. D 104(6), 063018 (2021). 10.1103/PhysRevD.104.063018. arXiv:2102.09778 [hep-ph]

  3. R.J. Hill, M.P. Solon, Universal behavior in the scattering of heavy, weakly interacting dark matter on nuclear targets. Phys. Lett. B 707, 539–545 (2012). 10.1016/j.physletb.2012.01.013. arXiv:1111.0016 [hep-ph]

  4. R.J. Hill, M.P. Solon, Standard model anatomy of WIMP dark matter direct detection I: Weak-scale matching. Phys. Rev. D 91, 043504 (2015). 10.1103/PhysRevD.91.043504. arXiv:1401.3339 [hep-ph]

  5. R.J. Hill, M.P. Solon, WIMP-nucleon scattering with heavy WIMP effective theory. Phys. Rev. Lett. 112, 211602 (2014). 10.1103/PhysRevLett.112.211602. arXiv:1309.4092 [hep-ph]

  6. A. Berlin, D.S. Robertson, M.P. Solon, K.M. Zurek, Bino variations: Effective field theory methods for dark matter direct detection. Phys. Rev. D 93(9), 095008 (2016). 10.1103/PhysRevD.93.095008. arXiv:1511.05964 [hep-ph]

  7. F. Bishara, J. Brod, B. Grinstein, J. Zupan, Chiral effective theory of dark matter direct detection. JCAP 02, 009 (2017). 10.1088/1475-7516/2017/02/009. arXiv:1611.00368 [hep-ph]

  8. C.Y. Chen, R.J. Hill, M.P. Solon, A.M. Wijangco, Power corrections to the universal heavy WIMP-nucleon cross section. Phys. Lett. B 781, 473–479 (2018). 10.1016/j.physletb.2018.04.021. arXiv:1801.08551 [hep-ph]

  9. M. Cirelli, E. Del Nobile, P. Panci, Tools for model-independent bounds in direct dark matter searches. JCAP 10, 019 (2013). 10.1088/1475-7516/2013/10/019. arXiv:1307.5955 [hep-ph]. http://www.marcocirelli.net/NRopsDD.html

  10. Y. Bai, P.J. Fox, Resonant dark matter. JHEP 11, 052 (2009). 10.1088/1126-6708/2009/11/052. arXiv:0909.2900 [hep-ph]

  11. G. Barello, S. Chang, C.A. Newby, A model independent approach to inelastic dark matter scattering. Phys. Rev. D 90(9), 094027 (2014). 10.1103/PhysRevD.90.094027. arXiv:1409.0536 [hep-ph]

  12. E. Del Nobile, Complete Lorentz-to-Galileo dictionary for direct dark matter detection. Phys. Rev. D 98(12), 123003 (2018). 10.1103/PhysRevD.98.123003. arXiv:1806.01291 [hep-ph]

  13. A.L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers, Y. Xu, The effective field theory of dark matter direct detection. JCAP 02, 004 (2013). 10.1088/1475-7516/2013/02/004. arXiv:1203.3542 [hep-ph]

  14. N. Anand, A.L. Fitzpatrick, W.C. Haxton, Weakly interacting massive particle-nucleus elastic scattering response. Phys. Rev. C 89(6), 065501 (2014). 10.1103/PhysRevC.89.065501. arXiv:1308.6288 [hep-ph]. https://www.ocf.berkeley.edu/ ∼nanand/software/dmformfactor/

  15. B.A. Dobrescu, I. Mocioiu, Spin-dependent macroscopic forces from new particle exchange. JHEP 11, 005 (2006). 10.1088/1126-6708/2006/11/005. arXiv:hep-ph/0605342 [hep-ph]

  16. J. Fan, M. Reece, L.T. Wang, Non-relativistic effective theory of dark matter direct detection. JCAP 11, 042 (2010). 10.1088/1475-7516/2010/11/042. arXiv:1008.1591 [hep-ph]

  17. M. Hoferichter, P. Klos, A. Schwenk, Chiral power counting of one- and two-body currents in direct detection of dark matter. Phys. Lett. B 746, 410–416 (2015). 10.1016/j.physletb.2015.05.041. arXiv:1503.04811 [hep-ph]

  18. M. Hoferichter, P. Klos, J. Menéndez, A. Schwenk, Analysis strategies for general spin-independent WIMP-nucleus scattering. Phys. Rev. D 94(6), 063505 (2016). 10.1103/PhysRevD.94.063505. arXiv:1605.08043 [hep-ph]

  19. J. Bagnasco, M. Dine, S.D. Thomas, Detecting technibaryon dark matter. Phys. Lett. B 320, 99–104 (1994). 10.1016/0370-2693(94)90830-3. arXiv:hep-ph/9310290 [hep-ph]

  20. M. Pospelov, T. ter Veldhuis, Direct and indirect limits on the electromagnetic form-factors of WIMPs. Phys. Lett. B 480, 181–186 (2000). 10.1016/S0370-2693(00)00358-0. arXiv:hep-ph/0003010 [hep-ph]

  21. K. Sigurdson, M. Doran, A. Kurylov, R.R. Caldwell, M. Kamionkowski, Dark-matter electric and magnetic dipole moments. Phys. Rev. D 70, 083501 (2004). 10.1103/PhysRevD.70.083501 [erratum: Phys. Rev. D 73, 089903 (2006) 10.1103/PhysRevD.73.089903]. arXiv:astro-ph/0406355 [astro-ph]

  22. V. Barger, W.Y. Keung, D. Marfatia, Electromagnetic properties of dark matter: Dipole moments and charge form factor. Phys. Lett. B 696, 74–78 (2011). 10.1016/j.physletb.2010.12.008. arXiv:1007.4345 [hep-ph]

  23. S. Chang, N. Weiner, I. Yavin, Magnetic inelastic dark matter. Phys. Rev. D 82, 125011 (2010). 10.1103/PhysRevD.82.125011. arXiv:1007.4200 [hep-ph]

  24. E. Del Nobile, C. Kouvaris, F. Sannino, Interfering composite asymmetric dark matter for DAMA and CoGeNT. Phys. Rev. D 84, 027301 (2011). 10.1103/PhysRevD.84.027301. arXiv:1105.5431 [hep-ph]

  25. N. Fornengo, P. Panci, M. Regis, Long-range forces in direct dark matter searches. Phys. Rev. D 84, 115002 (2011). 10.1103/PhysRevD.84.115002. arXiv:1108.4661 [hep-ph]

  26. E. Del Nobile, C. Kouvaris, P. Panci, F. Sannino, J. Virkajarvi, Light magnetic dark matter in direct detection searches. JCAP 08, 010 (2012). 10.1088/1475-7516/2012/08/010. arXiv:1203.6652 [hep-ph]

  27. C.M. Ho, R.J. Scherrer, Anapole dark matter. Phys. Lett. B 722, 341–346 (2013). 10.1016/j.physletb.2013.04.039. arXiv:1211.0503 [hep-ph]

  28. A.L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers, Y. Xu, Model Independent Direct Detection Analyses. arXiv:1211.2818 [hep-ph]

  29. A. Ibarra, S. Wild, Dirac dark matter with a charged mediator: a comprehensive one-loop analysis of the direct detection phenomenology. JCAP 05, 047 (2015). 10.1088/1475-7516/2015/05/047. arXiv:1503.03382 [hep-ph]

  30. E. Del Nobile, M. Nardecchia, P. Panci, Millicharge or decay: A critical take on minimal dark matter. JCAP 04, 048 (2016). 10.1088/1475-7516/2016/04/048. arXiv:1512.05353 [hep-ph]

  31. B. Holdom, Two U(1)’s and epsilon charge shifts. Phys. Lett. B 166, 196–198 (1986). 10.1016/0370-2693(86)91377-8

  32. D. Feldman, Z. Liu, P. Nath, The Stueckelberg Z-prime extension with kinetic mixing and milli-charged dark matter from the hidden sector. Phys. Rev. D 75, 115001 (2007). 10.1103/PhysRevD.75.115001. arXiv:hep-ph/0702123 [hep-ph]

  33. P.A. Zyla et al. [Particle Data Group], Review of particle physics. PTEP 2020(8), 083C01 (2020). 10.1093/ptep/ptaa104. Available at https://pdg.lbl.gov/

  34. T. De Forest, Jr., J.D. Walecka, Electron scattering and nuclear structure. Adv. Phys. 15, 1–109 (1966). 10.1080/00018736600101254

  35. W. Bertozzi, J. Friar, J. Heisenberg, J.W. Negele, Contributions of neutrons to elastic electron scattering from nuclei. Phys. Lett. B 41, 408–414 (1972). 10.1016/0370-2693(72)90662-4

  36. T.W. Donnelly, J.D. Walecka, Electron scattering and nuclear structure. Ann. Rev. Nucl. Part. Sci. 25, 329–405 (1975). 10.1146/annurev.ns.25.120175.001553

  37. T.W. Donnelly, I. Sick, Elastic magnetic electron scattering from nuclei. Rev. Mod. Phys. 56, 461–566 (1984). 10.1103/RevModPhys.56.461

  38. N. Weiner, I. Yavin, How dark are majorana WIMPs? Signals from MiDM and rayleigh dark matter. Phys. Rev. D 86, 075021 (2012). 10.1103/PhysRevD.86.075021. arXiv:1206.2910 [hep-ph]

  39. M.T. Frandsen, U. Haisch, F. Kahlhoefer, P. Mertsch, K. Schmidt-Hoberg, Loop-induced dark matter direct detection signals from gamma-ray lines. JCAP 10, 033 (2012). 10.1088/1475-7516/2012/10/033. arXiv:1207.3971 [hep-ph]

  40. G. Ovanesyan, L. Vecchi, Direct detection of dark matter polarizability. JHEP 07, 128 (2015). 10.1007/JHEP07(2015)128. arXiv:1410.0601 [hep-ph]

  41. A. Crivellin, U. Haisch, Dark matter direct detection constraints from gauge bosons loops. Phys. Rev. D 90, 115011 (2014). 10.1103/PhysRevD.90.115011. arXiv:1408.5046 [hep-ph]

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Del Nobile, E. (2022). DM–Nucleon Interaction. In: The Theory of Direct Dark Matter Detection. Lecture Notes in Physics, vol 996. Springer, Cham. https://doi.org/10.1007/978-3-030-95228-0_4

Download citation

Publish with us

Policies and ethics