Skip to main content

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

The diverse world of exopolysaccharides (EPS) is contributed by bacteria, archaea, fungi, micro, and macroalgae. EPS are biosynthesized via Wzx/Wzy-dependent pathway, ABC transporter-dependent pathway, or synthase-dependent pathway, that connect to sugar and amino acid metabolism pathways. Relatively conserved gene clusters and regulons govern the EPS biosynthesis. Branching and functional group decorations introduce structural and functional diversities. Exceptional EPS synthesized by the extremophiles indicate the modifications in these operons. Since EPS production is a strategy for protection in hostile environments, several transcriptional and translational regulatory networks control its synthesis. Even though whole-genome analysis of some EPS-producing bacteria has annotated the essential genes and regulators of EPS biosynthesis, there is a lot to uncover concerning cyanobacteria and eukaryotic producers. These steps will work toward the manufacture of tailored EPS variants with the potential to be used as valuable renewable and high-performance products for industrial applications.

Genes are like the story and DNA is the language that the story is written in.

Sam Kean.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alkhateeb RS, Vorhölter FJ, Rückert C et al (2016) Genome wide transcription start sites analysis of Xanthomonas campestris pv. campestris B100 with insights into the gum gene cluster directing the biosynthesis of the exopolysaccharide xanthan. J Biotechnol 225:18–28. https://doi.org/10.1016/j.jbiotec.2016.03.020

    Article  CAS  PubMed  Google Scholar 

  2. Almiron-Roig E, Mulholland F, Gasson MJ et al (2000) The complete cps gene cluster from Streptococcus thermophilus NCFB 2393 involved in the biosynthesis of a new exopolysaccharide. Microbiology 146:2793–2802. https://doi.org/10.1099/00221287-146-11-2793

  3. Ayyash M, Abu-Jdayil B, Itsaranuwat P et al (2020) Characterization, bioactivities, and rheological properties of exopolysaccharide produced by novel probiotic Lactobacillus plantarum C70 isolated from camel milk. Int J Biol Macromol 144:938–946. https://doi.org/10.1016/j.ijbiomac.2019.09.171

    Article  CAS  PubMed  Google Scholar 

  4. Bamford NC, Le Mauff F, Van Loon JC et al (2020) Structural and biochemical characterization of the exopolysaccharide deacetylase Agd3 required for Aspergillus fumigatus biofilm formation. Nat commun 11(1):1–13. https://doi.org/10.1038/s41467-020-16144-5

    Article  CAS  Google Scholar 

  5. Barnett MJ, Long SR (2018) Novel genes and regulators that influence production of cell surface exopolysaccharides in Sinorhizobium meliloti. J Bacteriol 200:e00501–e00517. https://doi.org/10.1128/JB.00501-17

    Article  PubMed  PubMed Central  Google Scholar 

  6. Barnett MJ, Long SR (2015) The Sinorhizobium meliloti SyrM regulon: effects on global gene expression are mediated by syrA and nodD3. J Bacteriol 197:1792–1806. https://doi.org/10.1128/jb.02626-14

  7. Bassis CM, Visick KL (2010) The cyclic-di-GMP phosphodiesterase BinA negatively regulates cellulose-containing biofilms in Vibrio fischeri. J Bacteriol 192(5):1269–1278. https://doi.org/10.1128/jb.01048-09

  8. Becker A, Kuster H, Niehaus K et al (1995) Extension of the Rhizobium meliloti succinoglycan biosynthesis gene cluster: identification of the exsA gene encoding an ABC transporter protein, and the exsB gene which probably codes for a regulator of succinoglycan biosynthesis. Mol Gen Genet 249:487–497. https://doi.org/10.1007/bf00290574

    Article  CAS  PubMed  Google Scholar 

  9. Becker A (2015) Challenges and perspectives in combinatorial assembly of novel exopolysaccharide biosynthesis pathways. Front Microbiol 6:687. https://doi.org/10.3389/fmicb.2015.00687

  10. Bhunia B, Prasad Uday US, Oinam G et al (2018) Characterization, genetic regulation and production of cyanobacterial exopolysaccharides and its applicability for heavy metal removal. Carbohydr Polym 179:228–243. https://doi.org/10.1016/j.carbpol.2017.09.091

    Article  CAS  PubMed  Google Scholar 

  11. Bianco MI, Jacobs M, Salinas SR et al (2014) Biophysical characterization of the outer membrane polysaccharide export protein and the polysaccharide co-polymerase protein from Xanthomonas campestris. Protein Expr Purif 101:42–53. https://doi.org/10.1016/j.pep.2014.06.002

    Article  CAS  PubMed  Google Scholar 

  12. Black WP, Wang L, Jing X et al (2017) The type IV pilus assembly ATPase PilB functions as a signalling protein to regulate exopolysaccharide production in Myxococcus xanthus. Sci Rep 7(1):1–13. https://doi.org/10.1038/s41598-017-07594-x

  13. Brandt JU, Jakob F, Behr J et al (2016) Dissection of exopolysaccharide biosynthesis in Kozakia baliensis. Microb Cell Fact 15(1):170. https://doi.org/10.1186/s12934-016-0572-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Breton C, Šnajdrová L, Jeanneau C et al (2006) Structures and mechanisms of glycosyltransferases. Glycobiology 16:29R–37R. https://doi.org/10.1093/glycob/cwj016

    Article  CAS  PubMed  Google Scholar 

  15. Bugert P, Geider K (1995) Molecular analysis of the ams operon required for exopolysaccharide synthesis of Erwinia amylovora. Mol Microbiol 15:917–933. https://doi.org/10.1111/j.1365-2958.1995.tb02361.x

    Article  CAS  PubMed  Google Scholar 

  16. Bundalovic-Torma C, Whitfield GB, Marmont LS et al (2020) A systematic pipeline for classifying bacterial operons reveals the evolutionary landscape of biofilm machineries. PLoS Comput Biol 16: https://doi.org/10.1371/journal.pcbi.1007721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Byrd MS, Sadovskaya I, Vinogradov E et al (2009) Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production. Mol Microbiol 73(4):622–638. https://doi.org/10.1111/j.1365-2958.2009.06795.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cantarel BL, Coutinho PM, Rancurel C et al (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:233–238. https://doi.org/10.1093/nar/gkn663

    Article  CAS  Google Scholar 

  19. Caro-Astorga J, Álvarez-Mena A, Hierrezuelo J et al (2020) Two genomic regions encoding exopolysaccharide production systems have complementary functions in B. cereus multicellularity and host interaction. Sci rep 10(1):1–15. https://doi.org/10.1038/s41598-020-57970-3

  20. Chen X, Wang QQ, Liu NN et al (2017) A glycosyltransferase gene responsible for pullulan biosynthesis in Aureobasidium melanogenum P16. Int J Biol Macromol 95:539–549. https://doi.org/10.1016/j.ijbiomac.2016.11.081

    Article  CAS  PubMed  Google Scholar 

  21. Chiang P, Sampaleanu LM, Ayers M et al (2008) Functional role of conserved residues in the characteristic secretion NTPase motifs of the Pseudomonas aeruginosa type IV pilus motor proteins PilB, PilT and PilU. Microbiology 154(1):114–126. https://doi.org/10.1099/mic.0.2007/011320-0

  22. Chong BF, Blank LM, Mclaughlin R et al (2005) Microbial hyaluronic acid production. Appl Microbiol Biotechnol 66:341–351. https://doi.org/10.1007/s00253-004-1774-4

    Article  CAS  PubMed  Google Scholar 

  23. Coleman RJ, Patel YN, Harding NE (2008) Identification and organization of genes for diutan polysaccharide synthesis from Sphingomonas sp. ATCC 53159. J Ind Microbiol Biotechnol 35:263–274. https://doi.org/10.1007/s10295-008-0303-3

    Article  CAS  PubMed  Google Scholar 

  24. Dabour N, LaPointe G (2005) Identification and molecular characterization of the chromosomal exopolysaccharide biosynthesis gene cluster from Lactococcus lactis subsp. cremoris SMQ-461. Appl Environ Microbiol 71:7414–7425. https://doi.org/10.1128/AEM.71.11.7414-7425.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Damron FH, Owings JP, Okkotsu Y et al (2012) Analysis of the Pseudomonas aeruginosa regulon controlled by the sensor kinase KinB and sigma factor RpoN. Journal of bacteriology 194(6):1317–1330. https://doi.org/10.1128/jb.06105-11

  26. Delattre C, Pierre G, Laroche C et al (2016) Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnol Adv 34(7):1159–1179. https://doi.org/10.1016/j.biotechadv.2016.08.001

    Article  CAS  PubMed  Google Scholar 

  27. Deo D, Davray D, Kulkarni R (2019) A diverse repertoire of exopolysaccharide biosynthesis gene clusters in Lactobacillus revealed by comparative analysis in 106 sequenced genomes. Microorganisms 7(10):444. https://doi.org/10.3390/microorganisms7100444

    Article  CAS  PubMed Central  Google Scholar 

  28. Diaz M, Castro M, Copaja S et al (2018) Biofilm formation by the acidophile bacterium Acidithiobacillus thiooxidans involves c-di-GMP pathway and Pel exopolysaccharide. Genes 9(2):113. https://doi.org/10.3390/genes9020113

    Article  CAS  PubMed Central  Google Scholar 

  29. Donot F, Fontana A, Baccou JC et al (2012) Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym 87(2):951–962. https://doi.org/10.1016/j.carbpol.2011.08.083

    Article  CAS  Google Scholar 

  30. Fazli M, O’Connell A, Nilsson M et al (2011) The CRP/FNR family protein Bcam1349 is ac-di-GMP effector that regulates biofilm formation in the respiratory pathogen Burkholderia cenocepacia. Mol Microbiol 82(2):327–341. https://doi.org/10.1111/j.1365-2958.2011.07814.x

    Article  CAS  PubMed  Google Scholar 

  31. Franken J, Brandt BA, Tai SL et al (2013) Biosynthesis of levan, a bacterial extracellular polysaccharide, in the yeast Saccharomyces cerevisiae. PLoS ONE 8(10): https://doi.org/10.1371/journal.pone.0077499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fukao M, Zendo T, Inoue T et al (2019) Plasmid-encoded glycosyltransferase operon is responsible for exopolysaccharide production, cell aggregation, and bile resistance in a probiotic strain, Lactobacillus brevis KB290. J Biosci Bioeng 128(4):391–397. https://doi.org/10.1016/j.jbiosc.2019.04.008

    Article  CAS  PubMed  Google Scholar 

  33. Galperin MY, Nikolskaya AN, Koonin EV (2001) Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett 203(1):11–21. https://doi.org/10.1111/j.1574-6968.2001.tb10814.x

    Article  CAS  PubMed  Google Scholar 

  34. Garg RP, Huang J, Yindeeyoungyeon W et al (2000) Multicomponent transcriptional regulation at the complex promoter of the exopolysaccharide I biosynthetic operon of Ralstonia solanacearum 182(23):6659–6666. https://doi.org/10.1128/jb.182.23.6659-6666.2000

  35. Guo XP, Sun YC (2017) New insights into the non-orthodox two component Rcs phosphorelay system. Front Microbiol 8:2014. https://doi.org/10.3389/fmicb.2017.02014

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hamidi M, Kennedy JF, Khodaiyan F et al (2019) Production optimization, characterization and gene expression of pullulan from a new strain of Aureobasidium pullulans. Int J Biol Macromol 138:725–735. https://doi.org/10.1016/j.ijbiomac.2019.07.123

    Article  CAS  PubMed  Google Scholar 

  37. Han HM, Kim IJ, Yun EJ et al (2020) Overproduction of exopolysaccharide colanic acid by Escherichia coli by strain engineering and media optimization. Appl Biochem Biotechnol 1–17. https://doi.org/10.1007/s12010-020-03409-4

  38. Hay ID, Ur Rehman Z, Moradali MF et al (2013) Microbial alginate production, modification and its applications. Microb Biotechnol 6:637–650. https://doi.org/10.1111/1751-7915.12076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hay ID, Wang Y, Moradali MF et al (2014) Genetics and regulation of bacterial alginate production. Environ Microbiol 16:2997–3011. https://doi.org/10.1111/1462-2920.12389

    Article  CAS  PubMed  Google Scholar 

  40. Hay ID, Rehman ZU, Rehm BH (2010) Membrane topology of outer membrane protein AlgE, which is required for alginate production in Pseudomonas aeruginosa. Appl Environ Microbiol 76(6):1806–12. https://doi.org/10.1128/AEM.02945-09

  41. Hubbard C, McNamara JT, Azumaya C et al (2012) The hyaluronan synthase catalyzes the synthesis and membrane translocation of hyaluronan. J Mol Biol 418(1–2):21–31. https://doi.org/10.1016/j.jmb.2012.01.053

    Article  CAS  PubMed  Google Scholar 

  42. Islam ST, Lam JS (2014) Synthesis of bacterial polysaccharides via the Wzx/Wzy-dependent pathway. Can J Microbiol 60(11):697–716. https://doi.org/10.1139/cjm-2014-0595

    Article  CAS  PubMed  Google Scholar 

  43. Jacobs M, Salinas SR, Bianco MI et al (2012) Expression, purification and crystallization of the outer membrane lipoprotein GumB from Xanthomonas campestris. Acta Crystallogr Sect F Struct Biol Cryst Commun 68:1255–1258. https://doi.org/10.1107/s1744309112036597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Janecek S, Svensson B, Macgregor EA (2011) Structural and evolutionary aspects of two families of non-catalytic domains present in starch and glycogen binding proteins from microbes, plants and animals. Enzyme Microb Technol 49:429–440. https://doi.org/10.1016/j.enzmictec.2011.07.002

    Article  CAS  PubMed  Google Scholar 

  45. Jin LH, Lee JH (2014) Effect of uracil addition on proteomic profiles and 1,3-β-glucan production in Agrobacterium sp. Biotechnol Appl Biochem 61:280–288

    CAS  PubMed  Google Scholar 

  46. Jones KM, Kobayashi H, Davies BW et al (2007) How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nat Rev Microbiol 5:619–633. https://doi.org/10.1016/j.enzmictec.2011.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kamat S, Kumari M, Sajna KV et al (2020) Endophytic fungus, Chaetomium globosum, associated with marine green alga, a new source of Chrysin. Sci Rep 10(1):1–17. https://doi.org/10.1038/s41598-020-72497-3

    Article  CAS  Google Scholar 

  48. Kamat S, Kumari M, Taritla S et al (2020) Endophytic fungi of marine alga from Konkan coast, India—a rich source of bioactive material. Front Mar Sci 7:31. https://doi.org/10.3389/fmars.2020.00031

    Article  Google Scholar 

  49. Kawano S, Tajima K, Uemori Y et al (2002) Cloning of cellulose synthesis related genes from Acetobacter xylinum ATCC23769 and ATCC53582: comparison of cellulose synthetic ability between strains. DNA Res 9(5):149–156. https://doi.org/10.1093/dnares/9.5.149

    Article  CAS  PubMed  Google Scholar 

  50. Keidan M, Broshy H, Van Moppes D et al (2006) Assimilation of sulphur into the cell-wall polysaccharide of the red microalga Porphyridium sp. (Rhodophyta). Phycologia 45(5):505–511. https://doi.org/10.2216/05-57.1

  51. Kharadi RR, Castiblanco LF, Waters CM et al (2019) Phosphodiesterase genes regulate amylovoran production, biofilm formation, and virulence in Erwinia amylovora. Appl Environ Microbiol 1;85(1). https://doi.org/10.1128/aem.02233-18

  52. Kim SY, Kim JG, Lee BM et al (2009) Mutational analysis of the gum gene cluster required for xanthan biosynthesis in Xanthomonas oryzae pv oryzae. Biotechnology letters 31(2):265. https://doi.org/10.1007/s10529-008-9858-3

  53. Kleerebezem M, van Kranenburg R, Tuinier R et al (1999) Exopolysaccharides produced by Lactococcus lactis: from genetic engineering to improved rheological properties? In: Konings WN, Kuipers OP, In ’t Veld JHJH (eds) Lactic acid bacteria: genetics, metabolism and applications. Springer, Dordrecht, pp 357–365. https://doi.org/10.1007/978-94-017-2027-4_21

  54. Kubiak K, Kurzawa M, Jedrzejczak-Krzepkowska M et al (2014) Complete genome sequence of Gluconacetobacter xylinus E25 strain—valuable and effective producer of bacterial nanocellulose. J Biotechnol 176:18–19. https://doi.org/10.1016/j.jbiotec.2014.02.006

    Article  CAS  PubMed  Google Scholar 

  55. Kumar M, Kumar M, Pandey A et al (2019) Genomic analysis of carbon dioxide sequestering bacterium for exopolysaccharides production. Sci Rep 9(1):1–2. https://doi.org/10.1038/s41598-019-41052-0

    Article  CAS  Google Scholar 

  56. Lapouge K, Schubert M, Allain FHT et al (2008) Gac/Rsm signal transduction pathway of γ-proteobacteria, from RNA recognition to regulation of social behaviour. Mol Microbiol 67(2):241–253. https://doi.org/10.1111/j.1365-2958.2007.06042.x

    Article  CAS  PubMed  Google Scholar 

  57. Lee KY, Buldum G, Mantalaris A et al (2014) More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromol Biosci 14:10–32. https://doi.org/10.1002/mabi.201300298

    Article  CAS  PubMed  Google Scholar 

  58. Liang ZX (2015) The expanding roles of c-di-GMP in the biosynthesis of exopolysaccharides and secondary metabolites. Nat Product Rep 32(5):663–683. https://doi.org/10.1039/c4np00086b

  59. Licciardello G, Caruso A, Bella P et al (2018) The LuxR regulators PcoR and RfiA co-regulate antimicrobial peptide and alginate production in Pseudomonas corrugata. Front Microbiol 9:521. https://doi.org/10.3389/fmicb.2018.00521

    Article  PubMed  PubMed Central  Google Scholar 

  60. Liu W, Xie Y, Ma J et al (2015) IBS: an illustrator for the presentation and visualization of biological sequences. Bioinformatics 31(20):3359–3361. https://doi.org/10.1093/bioinformatics/btv362

  61. Liu X, Zhao M, Xu Z et al (2020) Construction of a Robust Sphingomonas sp. Strain for Welan gum production via the expression of global transcriptional regulator IrrE. Front Bioeng Biotechnol 8:674. https://doi.org/10.3389/fbioe.2020.00674

  62. Low KE, Howell PL (2018) Gram-negative synthase-dependent exopolysaccharide biosynthetic machines. Curr Opin Struct Biol 53:32–44. https://doi.org/10.1016/j.sbi.2018.05.001

    Article  CAS  PubMed  Google Scholar 

  63. López-Pliego L, García-Ramírez L, Cruz-Gómez EA et al (2018) Transcriptional study of the RsmZ-sRNAs and their relationship to the biosynthesis of alginate and alkylresorcinols in Azotobacter vinelandii. Mol Biotechnol 60:670–680. https://doi.org/10.1007/s12033-018-0102-7

    Article  CAS  PubMed  Google Scholar 

  64. Ma S, Wozniak DJ, Ohman DE (1997) Identification of the histidine protein kinase KinB in Pseudomonas aeruginosa and its phosphorylation of the alginate regulator AlgB. J Biol Chem 272(29):17952–17960. https://doi.org/10.1074/jbc.272.29.17952

  65. Madhuri KV, Prabhakar KV (2014). Microbial exopolysaccharides: biosynthesis and potential applications. Orient J Chem 30(3):1401–1410. https://doi.org/10.13005/ojc/300362

  66. Mayer MJ, D’Amato A, Colquhoun IJ et al (2020) Identification of genes required for glucan exopolysaccharide production in Lactobacillus johnsonii suggests a novel biosynthesis mechanism. Appl Environ Microbiol 86:e02808–e02819. https://doi.org/10.1128/AEM.02808-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Meng J, Bai J, Chen J (2020) Transcriptomic analysis reveals the role of RcsB in suppressing bacterial chemotaxis, flagellar assembly and infection in Yersinia enterocolitica. Curr Genet 3:1–8. https://doi.org/10.1007/s00294-020-01083-x

    Article  CAS  Google Scholar 

  68. Meredith TC, Mamat U, Kaczynski Z et al (2007) Modification of lipopolysaccharide with colanic acid (M-antigen) repeats in Escherichia coli. J Biol Chem 282:7790–7798. https://doi.org/10.1074/jbc.m611034200

  69. Mhatre E, Snyder DJ, Sileo E et al (2008) One gene, multiple ecological strategies: a biofilm regulator is a capacitor for sustainable diversity. PNAS 17(35):21647–21657. https://doi.org/10.1073/pnas.2008540117

  70. Morgan JL, McNamara JT, Zimmer J (2014) Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP. Nature Struct Mol Biol 21(5):489–496. https://doi.org/10.1038/nsmb.2803

  71. Morris J, González JE (2009) The novel genes emmABC are associated with exopolysaccharide production, motility, stress adaptation, and symbiosis in Sinorhizobium meliloti. J Bacteriol 191(19):5890–5900. https://doi.org/10.1128/jb.00760-09

  72. Nachtigall C, Surber G, Herbi F et al (2020) Production and molecular structure of heteropolysaccharides from two lactic acid bacteria. Carbohyd Polym 236: https://doi.org/10.1016/j.carbpol.2020.116019

    Article  CAS  Google Scholar 

  73. Niemeyer D, Becker A (2001) The molecular weight distribution of Succinoglycan produced by Sinorhizobium meliloti is influenced by specific tyrosine phosphorylation and ATPase activity of the cytoplasmic domain of the ExoP protein. J Bacteriol 183:5163–5170. https://doi.org/10.1128/jb.183.17.5163-5170.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Okkotsu Y, Pritchett CL, Schurr MJ (2012) Regulation of exopolysaccharide biosynthesis in Pseudomonas aeruginosa. Regulation of bacterial virulence ASM Press, pp 171–189. https://doi.org/10.1128/9781555818524.ch9

    Google Scholar 

  75. Okonkwo CC, Ujor V, Cornish K, Ezeji TC (2020) Inactivation of the levansucrase gene in Paenibacillus polymyxa DSM 365 diminishes exopolysaccharide biosynthesis during 2,3- butanediol fermentation. Appl Environ Microbiol 86:e00196-20. https://doi.org/10.1128/AEM.00196-20

    Google Scholar 

  76. Padmanabhan A, Tong Y, Wu Q et al (2020) Proteomic analysis reveals potential factors associated with enhanced EPS production in Streptococcus thermophilus ASCC 1275. Sci Rep 10:807. https://doi.org/10.1038/s41598-020-57665-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pan X, Sun C, Tang M et al (2020) LysR-type transcriptional regulator MetR controls prodigiosin production, methionine biosynthesis, cell motility, H2O2 tolerance, heat tolerance, and exopolysaccharide synthesis in Serratia marcescens. Appl Environ Microbiol 86:e02241-19. https://doi.org/10.1128/AEM.02241-19

    Google Scholar 

  78. Pando JM, Karlinsey JE, Lara JC et al (2017) The Rcs-regulated colanic acid capsule maintains membrane potential in Salmonella enterica serovar Typhimurium. MBio 8:e00808–e008017. https://doi.org/10.1128/mbio.00808-17

  79. Patel KB, Toh E, Fernandez XB et al (2012) Functional characterization of UDP-glucose:undecaprenyl-phosphate glucose-1-phosphate transferases of Escherichia coli and caulobacter crescentus. J Bacteriol 194:2646–2657. https://doi.org/10.1128/jb.06052-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Perez-Burgos M, Garcia-Romero I, Jung J et al (2020) Characterization of the exopolysaccharide biosynthesis pathway in Myxococcus xanthus. J Bacteriol 202:e00335-20. https://doi.org/10.1128/jb.00335-20

  81. Periasamy A, Shadiac N, Amalraj A et al (2013) Cell-free protein synthesis of membrane (1,3)- β-d-glucan (curdlan) synthase: co-translational insertion in liposomes and reconstitution in nanodiscs. Biochim Biophys Acta 1828:743–757. https://doi.org/10.1016/j.bbamem.2012.10.003

    Article  CAS  PubMed  Google Scholar 

  82. Pollock TJ (2005). Sphingan group of exopolysaccharides (EPS). Biopolym Online 5. https://doi.org/10.1002/3527600035.bpol5010

  83. Prajapati VD, Jani GK (2013) Khanda SM (2013) Pullulan: an exopolysaccharide and its various applications. Carbohyd Polym 95(1):540–549. https://doi.org/10.1016/j.carbpol.2013.02.082 (Jun 5)

    Article  CAS  Google Scholar 

  84. Pérez-Mendoza D, Felipe A, Ferreiro MD et al (2019) AmrZ and FleQ Co-regulate cellulose production in Pseudomonas syringae pv. tomato DC3000. Front microbiol 10:746. https://doi.org/10.3389/fmicb.2019.00746

  85. Quiroz-Rocha E, Bonilla-Badía F, García-Aguilar V et al (2017) Two-component system CbrA/CbrB controls alginate production in Azotobacter vinelandii. Microbiology 163(7):1105–1115. https://doi.org/10.1099/mic.0.000457

    Article  CAS  PubMed  Google Scholar 

  86. Rana S, Upadhyay LS (2020). Microbial exopolysaccharides: synthesis pathways, types and their commercial applications. Int J Biol Macromol 157:577–583. https://doi.org/10.1016/j.ijbiomac.2020.04.084

  87. Rasulov BA, Dai J, Pattaeva MA et al (2020) Gene expression abundance dictated exopolysaccharide modification in Rhizobium radiobacter SZ4S7S14 as the cell’s response to salt stress. Int J Biol Macromol 164:4339–4347. https://doi.org/10.1016/j.ijbiomac.2020.09.038

    Article  CAS  PubMed  Google Scholar 

  88. Rehm BHA (ed) (2009) Alginate production: precursor biosynthesis, polymerization and secretion in Alginates: biology and applications. In: Microbiology monographs, vol 13. Springer, Berlin, pp 55–71

    Google Scholar 

  89. Rehm B (2010) Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 8(8):578–592. https://www.nature.com/articles/nrmicro2354.ris

  90. Rehman ZU, Rehm BH (2013) Dual roles of Pseudomonas aeruginosa AlgE in secretion of the virulence factor alginate and formation of the secretion complex. Appl Environ Microbiol 79:2002–2011. https://doi.org/10.1128/aem.03960-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ren G, Wang Z, Li Y et al (2016) Effects of lipopolysaccharide core sugar deficiency on colanic acid biosynthesis in Escherichia coli. J Bacteriol 198(11):1576–1584. https://doi.org/10.1128/jb.00094-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Robyt JF, Yoon SH, Mukerjea R (2008) Dextransucrase and the mechanism for dextran biosynthesis. Carbohydr Res 343:3039–3048. https://doi.org/10.1016/j.carres.2008.09.012

    Article  CAS  PubMed  Google Scholar 

  93. Ross P, Weinhouse H, Aloni Y et al (1987) Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325(6101):279–281. https://doi.org/10.1038/325279a0

    Article  CAS  PubMed  Google Scholar 

  94. Ruffing AM, Chen RR (2012) Transcriptome profiling of a curdlan-producing Agrobacterium reveals conserved regulatory mechanisms of exopolysaccharide biosynthesis. Microb Cell Fact 11(1):17. https://doi.org/10.1186/1475-2859-11-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rutering M, Cress BF, Schilling M et al (2017) Tailor-made exopolysaccharides-CRISPR-Cas9 mediated genome editing in Paenibacillus polymyxa. Synth Biol 2:ysx007. https://doi.org/10.1093/synbio/ysx007

  96. Saadat YR, Khosroushahi AY, Gargari BP (2019) A comprehensive review of anticancer, immunomodulatory and health beneficial effects of the lactic acid bacteria exopolysaccharides. Carbohydr Polym 217:79–89. https://doi.org/10.1016/j.carbpol.2019.04.025

  97. Sajna KV, Kamat S, Jayabaskaran C (2020) Antiproliferative role of secondary metabolites from Aspergillus unguis AG 1.1 (G) isolated from marine macroalgae enteromorpha sp. by inducing intracellular ROS production and mitochondrial membrane potential loss leading to apoptosis. Front Mar Sci 7:543523:1–16. https://doi.org/10.3389/fmars.2020.543523

  98. Schatschneider S, Persicke M, Watt SA et al (2013) Establishment, in silico analysis, and experimental verification of a large-scale metabolic network of the xanthan producing Xanthomonas campestris pv. campestris strain B100. J Biotechnol 167:123–134. https://doi.org/10.1016/j.jbiotec.2013.01.023

    Article  CAS  PubMed  Google Scholar 

  99. Schilling C, Badri A, Sieber V et al (2020) Metabolic engineering for production of functional polysaccharides. Curr Opin Biotechnol 66:44–51. https://doi.org/10.1016/j.copbio.2020.06.010

    Article  CAS  PubMed  Google Scholar 

  100. Schmid J, Fariña J, Rehm B et al (2016) Microbial exopolysaccharides: from genes to applications. Front Microbiol 7:308. https://doi.org/10.3389/fmicb.2016.00308

    Article  PubMed  PubMed Central  Google Scholar 

  101. Schmid J, Sieber V, Rehm B (2015) Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol 6:496. https://doi.org/10.3389/fmicb.2015.00496

    Article  PubMed  PubMed Central  Google Scholar 

  102. Schmid J (2018) Recent insights in microbial exopolysaccharide biosynthesis and engineering strategies. Curr Opin Biotechnol 53:130–136. https://doi.org/10.1016/j.copbio.2018.01.005

  103. Schulte F, Leβmeier L, Voss J et al (2019) Regulatory associations between the metabolism of sulfur-containing amino acids and xanthan biosynthesis in Xanthomonas campestris pv. campestris B100. FEMS Microbiol Lett 366(2):fnz005. https://doi.org/10.1093/femsle/fnz005

  104. Song X, Xiong Z, Kong L, Wang G et al (2018) Relationship between putative eps genes and production of exopolysaccharide in Lactobacillus casei LC2W. Front Microbiol 9:1882. https://doi.org/10.3389/fmicb.2018.01882

    Article  PubMed  PubMed Central  Google Scholar 

  105. Sreenivasan S, Kandasamy R (2017) Levan: a biocompatible homopolysaccharide excipient for stabilization of peptide drugs. Int J Pept Res Ther 23:305–311. https://doi.org/10.1007/s10989-016-9562-4

    Article  CAS  Google Scholar 

  106. Srikanth R, Reddy CHSSS, Siddartha G et al (2015) Review on production, characterization and applications of microbial levan. Carbohydr Polym 120:102–114. https://doi.org/10.1016/j.carbpol.2014.12.00

    Article  CAS  PubMed  Google Scholar 

  107. Steiner S, Lori C, Boehm A et al (2013) Allosteric activation of exopolysaccharide synthesis through cyclic di‐GMP‐stimulated protein–protein interaction. EMBO J 32(3):354–368. https://doi.org/10.1038/emboj.2012.315

  108. Stevenson G, Lan R, Reeves PR (2000) The colanic acid gene cluster of Salmonella enterica has a complex history. FEMS Microbiol Lett 191(1):11–16. https://doi.org/10.1111/j.1574-6968.2000.tb09312.x

    Article  CAS  PubMed  Google Scholar 

  109. Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358(9276):135–138. https://doi.org/10.1016/S0140-6736(01)05321-1

    Article  CAS  PubMed  Google Scholar 

  110. Stingele F, Vincent SJ, Faber EJ et al (1999) Introduction of the exopolysaccharide gene cluster from Streptococcus thermophilus Sfi6 into Lactococcus lactis MG1363: production and characterization of an altered polysaccharide. Mol Microbiol 32(6):1287–1295. https://doi.org/10.1046/j.1365-2958.1999.01441.x

    Article  CAS  PubMed  Google Scholar 

  111. Su HZ, Wu L, Qi YH, Liu GF et al (2016) Characterization of the GntR family regulator HpaR1 of the crucifer black rot pathogen Xanthomonas campestris pathovar campestris. Sci Rep 6(1):1–13. https://doi.org/10.1038/srep19862

    Article  CAS  Google Scholar 

  112. Sung GH, Poinar GO, Spatafora JW (2008) The oldest fossil evidence of animal parasitism by fungi supports a Cretaceous diversification of fungal-arthropod symbioses. Mol Phylogenet Evol 49(2):495–502. https://doi.org/10.1016/j.ympev.2008.08.028

    Article  PubMed  Google Scholar 

  113. Sá-Correia I, Fialho AM, Videira P et al (2002) Gellan gum biosynthesis in Sphingomonas paucimobilis ATCC 31461: genes, enzymes and exopolysaccharide production engineering. J Indust Microbiol Biotechnol 29(4):170–176. https://doi.org/10.1038/sj.jim.7000266

  114. Temel DB, Dutta K, Alphonse S et al (2013) Regulatory interactions between a bacterial tyrosine kinase and its cognate phosphatase. J Biol Chem 288:15212–15228. https://doi.org/10.1074/jbc.m113.457804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ulrich LE, Koonin EV, Zhulin IB (2005) One-component systems dominate signal transduction in prokaryotes. Trends Microbiol 13(2):52–56. https://doi.org/10.1016/j.tim.2004.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Van Kranenburg R, Boels IC, Kleerebezem M et al (1999) Genetics and engineering of microbial exopolysaccharides for food: approaches for the production of existing and novel polysaccharides. Curr Opin Biotechnol 10(5):498–504. https://doi.org/10.1016/s0958-1669(99)00017-8

  117. Vorholter FJ, Schneiker S, Goesmann A et al (2008) The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. J Biotechnol 134:33–45. https://doi.org/10.1016/j.jbiotec.2007.12.013

    Article  CAS  PubMed  Google Scholar 

  118. Wang J, Salem DR, Sani RK (2019) Extremophilic exopolysaccharides: a review and new perspectives on engineering strategies and applications. Carbohydr Polym 205:8–26. https://doi.org/10.1016/j.carbpol.2018.10.011

    Article  CAS  PubMed  Google Scholar 

  119. Wang X, Tao F, Gai Z et al (2012) Genome sequence of the welan gum-producing strain Sphingomonas sp. ATCC 31555. J Bacteriol 194:5989–5990. https://doi.org/10.1128/jb.01486-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wehland M, Bernhard F (2000) The RcsAB box characterization of a new operator essential for the regulation of exopolysaccharide biosynthesis in enteric bacteria. J Biol Chem 275(10):7013–7020. https://doi.org/10.1074/jbc.275.10.7013

  121. Whitfield GB, Marmont LS, Bundalovic-Torma C et al (2020) Discovery and characterization of a Gram-positive Pel polysaccharide biosynthetic gene cluster. PLoS Pathog 16(4): https://doi.org/10.1371/journal.ppat.1008281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Whitfield GB, Marmont LS, Ostaszewski A et al (2020a) Pel polysaccharide biosynthesis requires an inner membrane complex comprised of PelD, PelE, PelF, and PelG. J Bacteriol 202:e00684-19. https://doi.org/10.1128/JB.00684-19

  123. Williams A, Gedeon KS, Vaidyanathan D et al (2020) Metabolic engineering of Bacillus megaterium for heparosan biosynthesis using Pasteurella multocida heparosan synthase, PmHS2. Microb Cell Fact 18(1):132. https://doi.org/10.1016/j.copbio.2020.06.010 (2019 Dec 1)

    Article  CAS  Google Scholar 

  124. Willis LM, Whitfield C (2013) Structure, biosynthesis, and function of bacterial capsular polysaccharides synthesized by ABC transporter-dependent pathways. Carbohydr Res 378:35–44. https://doi.org/10.1016/j.carres.2013.05.007

    Article  CAS  PubMed  Google Scholar 

  125. Wong HC, Fear AL, Calhoon RD et al (1990) Genetic organization of the cellulose synthase operon in Acetobacter xylinum. Proc Natl Acad Sci USA 87:8130–8134. https://doi.org/10.1073/pnas.87.20.8130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wu M, Huang H, Li G et al (2017) The evolutionary life cycle of the polysaccharide biosynthetic gene cluster based on the Sphingomonadaceae. Sci Rep 7:46484. https://doi.org/10.1038/srep46484

    Article  PubMed  PubMed Central  Google Scholar 

  127. Wu D, Li A, Ma F et al (2016) Genetic control and regulatory mechanisms of succinoglycan and curdlan biosynthesis in genus Agrobacterium. Appl Microbiol Biotechnol 100(14):6183–6192. https://doi.org/10.1007/s00253-016-7650-1

    Article  CAS  PubMed  Google Scholar 

  128. Wu X, Xu R, Ren Q et al (2012) Factors affecting extracellular and intracellular polysaccharide production in submerged cultivation of Tricholoma mongolicum. African J Microbiol Res 6:909–916. https://doi.org/10.5897/AJMR11.632

    Article  CAS  Google Scholar 

  129. Xiong ZQ, Kong LH, Lai PF et al (2020) Genomic and phenotypic analyses of exopolysaccharide biosynthesis in Streptococcus thermophilus S-3. J Dairy Sci 102(6):4925–4934. https://doi.org/10.3168/jds.2018-15572

    Article  CAS  Google Scholar 

  130. Yang S, Yang X, Zhang H (2020) Extracellular polysaccharide biosynthesis in Cordyceps. Crit Rev Microbiol 25:1–22. https://doi.org/10.1080/1040841X.2020.1794788

    Article  Google Scholar 

  131. Yang HD, Wu ZC, He DJ, et al (2017) Enzyme-assisted extraction and Pb2+ biosorption of polysaccharide from Cordyceps militaris. J Polym Environ 25(4):1033–1043. https://doi.org/10.1007/s10924-016-0882-4

  132. Ye L, Zheng X, Zheng H (2014) Effect of sypQ gene on poly-N-acetylglucosamine biosynthesis in Vibrio parahaemolyticus and its role in infection process. Glycobiology 24(4):351–358. https://doi.org/10.1093/glycob/cwu001

    Article  CAS  PubMed  Google Scholar 

  133. Yoshimura H, Kotake T, Aohara T et al (2012) The role of extracellular polysaccharides produced by the terrestrial cyanobacterium Nostoc sp. strain HK-01 in NaCl tolerance. J Appl Phycol 24(2):237–243. https://doi.org/10.1007/s10811-011-9672-5

  134. Yoshimura H, Okamoto S, Tsumuraya Y et al (2007) Group 3 sigma factor gene, sigJ, a key regulator of desiccation tolerance, regulates the synthesis of extra- cellular polysaccharide in cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 14(1):13–24. https://doi.org/10.1093/dnares/dsm003

  135. Yuan L, Li X, Du L et al (2020) RcsAB and Fur coregulate the iron-acquisition system via entC in Klebsiella pneumoniae NTUH-K2044 in response to iron availability. Front Cell Infect Microbiol 10:282. https://doi.org/10.3389/fcimb.2020.00282

  136. Zhang Z, Chen Y, Wang R et al (2015) The fate of marine bacterial exopolysaccharide in natural marine microbial communities. PLoS ONE 10(11): https://doi.org/10.1371/journal.pone.0142690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhang W, Gao H, Huang Y et al (2020) Glutamine synthetase gene glnA plays a vital role in curdlan biosynthesis of Agrobacterium sp. CGMCC 11546. Int J Biol Macromol 165:222–230. https://doi.org/10.1016/j.ijbiomac.2020.09.152

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

SK thanks UGC for providing her Senior Research Fellowship. SK is also thankful to Prof. C. Jayabaskaran, Department of Biochemistry, Indian Institute of Science, for his constant encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siya Kamat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kamat, S. (2021). Molecular Basis and Genetic Regulation of EPS. In: Nadda, A.K., K. V., S., Sharma, S. (eds) Microbial Exopolysaccharides as Novel and Significant Biomaterials. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-75289-7_3

Download citation

Publish with us

Policies and ethics