Skip to main content

Advances in Chicory (Cichorium intybus L.) Breeding Strategies

  • Chapter
  • First Online:
Advances in Plant Breeding Strategies: Vegetable Crops

Abstract

Chicory (Cichorium intybus L.) is a perennial plant of the Asteraceae (Compositae) family, collected, domesticated and cultivated in Europe, India and Egypt, like endive (C. endivia L.), its closest related species. It grows as a weed in temperate climatic regions and is widely cultivated in northern Europe. Chicory is beneficial to both humans and animals due to its high protein content, carbohydrates, minerals, vitamins and phytoactive compounds. It is consumed as a vegetable, edible flowers, coffee substitute and for medicinal and cosmetic metabolites. It is also used in hepatoprotective compounds and as a flavoring in beer. Its extract is an inhibitor of salmonella. It is consumed as an animal feed, always with great care to avoid toxicity. Industrial chicory is developed mainly for its inulin content. There is recent interest in genetically engineering chicory to obtain higher yields and create new cultivars, but chicory potential still awaits development, especially in Asian countries. This chapter presents an overview of the origin, distribution, taxonomy and conservation of genetic resources, as well as crop cultivation practices and advances in modern biotechnology and molecular biology and their application for crop improvement concurrently with traditional chicory breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas ZK, Saggu S, Sakeran MI et al (2015) Phytochemical antioxidant and mineral composition of hydroalcoholic extract of chicory (Cichorium intybus L.) leaves. Saudi J Biol Sci 22(3):322–326

    Article  CAS  PubMed  Google Scholar 

  • Abdin MZ, IIah A (2007) Plant regeneration through somatic embryogenesis from stem and petiole explants of Indian chicory (Cichorium intybus L.). Indian. J Biotech 6:250–255

    CAS  Google Scholar 

  • Abid M, Palms B, Derycke R et al (1995) Transformation of chicory and expression of the bacterial uidA and nptII genes in the transgenic regenerants. J Exp Bot 46:337–346

    Article  CAS  Google Scholar 

  • Abid M, Huss B, Rambour S (2001) Transgenic chicory (Cichorium intybus L.). In: Bajaj YPS (ed) Transgenic crops II, Biotechnology in agriculture and forestry, vol 47. Springer, Berlin/Heidelberg

    Google Scholar 

  • Ackley B (2018) Center for invasive species and ecosystem health. Ohio State University, Columbus. Bugwood.org. https://www.invasive.org/browse/detail.cfm?imgnum=5436770

  • Ahmad M, Qureshi R, Arshad M et al (2009) Traditional herbal remedies used for the treatment of diabetes from district Attock (Pakistan). Pak J Bot 6:2777–2782

    Google Scholar 

  • Ahmar S, Gill RA, Jung K-H et al (2020) Conventional and molecular techniques from simple breeding to speed breeding in crop plants: recent advances and future outlook. Inter J Mol Sci 21(7):2590. https://doi.org/10.3390/ijms21072590

    Article  CAS  Google Scholar 

  • Ahmed B, Al-Howiriny TA, Siddiqui AB (2003) Antihepatotoxic activity of seeds of Cichorium intybus. J Ethnopharmacol 87(2–3):237–240

    Article  PubMed  Google Scholar 

  • Al Khateeb W, Hussein E, Qouta L et al (2012) In vitro propagation and characterization of phenolic content along with antioxidant and antimicrobial activities of Cichorium pumilum Jacq. Plant Cell Tiss Organ Cult 110:103–110. https://doi.org/10.1007/s11240-012-0134-9

    Article  CAS  Google Scholar 

  • Arya PS, Saini SS (1984) Kalpa Sel 1 chicory ideal flavouring agent for coffee. Indian Hort 18:55–56

    Google Scholar 

  • Ashmore SE (1997) Status report on the development and application of in vitro techniques for the conservation and use of plant genetic resources. International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Ateto AA (2019) Molecular genetic studies on chicory plant (Cichorium intybus L.) using tissue culture techniques. M.Sc. thesis, Faculty of Agriculture, Al-Azhar University. https://doi.org/10.13140/RG.2.2.20329.65126

  • Bado S, Kozak K, Sekander H et al (2013) Resurgence of x-rays in mutation breeding. In: Austria M-M (ed) Plant genetics and breeding technologies, plant diseases and resistance mechanisms, Proceedings, 18–20 February 2013, Vienna. International Proceedings Division, Pianoro, pp 13–16

    Google Scholar 

  • Baert JRA, Van Bockstaele EJ (1992) Cultivation and breeding of root chicory for inulin production. Ind Crops Prod l:229–234

    Article  Google Scholar 

  • Bais HP, Ravishankar GA (2001) Cichorium intybus L. cultivation, processing utility value addition and biotechnology with an emphasis on current status and future prospects. J Sci Food Agric 81(5):467–484

    Article  CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Baker AJM, Reeves RD, Hajar ASM (1994) Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulenscens J. & C. Presl (Brassicaceae). New Phytol 127:61–68

    Article  CAS  PubMed  Google Scholar 

  • Barcaccia G, Lucchin M, Lazzarin R, Parrini P (2003) Relationships among radicchio (Cichorium intybus L.) types grown in Veneto and diversity between local varieties and selected lines an assessed by molecular markers. In: Van Hintumn TJ, Lebeda A, Pink D, Schut JW (eds) Proc Eucarpia Meeting Leafy Vegetables Genetics and Breeding. Centre for Genetic Resources (CGN), Eucarpia Leafy Vegetables, Noordwijkerhout, pp 105–110

    Google Scholar 

  • Barcaccia G, Ghedina A, Lucchin M (2016) Current advances in genomics and breeding of leaf Chicory (Cichorium intybus L.). Agriculture 6(4):50. https://doi.org/10.3390/agriculture6040050

    Article  CAS  Google Scholar 

  • Barry TN (1998) The feeding value of chicory (Cichorium intybus L.) for ruminant livestock. J Agric Sci 131:251–257

    Article  Google Scholar 

  • Belesky DP, Turner KE, Fedders JM et al (2001) Mineral composition of swards containing forage chicory. Agron J 93:468–475

    Article  CAS  Google Scholar 

  • Bellamy A, Vedel F, Bannerot H (1996) Varietal identification in Cichorium intybus L. and determination of genetic purity of Fl hybrid seed samples, based on RAPD markers. Plant Breed 115:128–132

    Article  Google Scholar 

  • Benelli C, Previati A, De Carlo A, Lambardi M (2011) Shoot-tip vitrification protocol for red chicory (Cichorium intybus L.) lines. Adv Hort Sci 25(1):44–50

    Google Scholar 

  • Bernard G, Gagneul D, Dos Santos HA et al (2019) Efficient genome editing using CRISPR/Cas9 technology in chicory. Int J Mol Sci 20:1155. https://doi.org/10.3390/ijms20051155

    Article  CAS  PubMed Central  Google Scholar 

  • Bernardes ECS, Benko-Iseppon AM, Vasconcelos S et al (2013) Intra and interspecific chromosome polymorphisms in cultivated Cichorium L. species (Asteraceae). Genet Mol Biol 36(3):357–363

    Article  PubMed  PubMed Central  Google Scholar 

  • Bertier LD, Ron M, Huo H et al (2018) High resolution analysis of the efficiency, heritability and editing outcomes of CRISPR/Cas9-induced modifications of NCED4 in lettuce (Lactuca sativa). G3 8:1513–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bigot C (1987) In vitro manipulation of higher plants: some achievements, problems and perspectives. In: Boccon-Gibod J, Benbadi, A, Shont KC (eds) proceedings of IAPTC French-British Meeting, 8–9 October, cell culture techniques applied to plant production and plant breeding, Angers, pp 5–17

    Google Scholar 

  • Bischoff TA, Kelley CJ, Karchesy Y et al (2004) Antimalarial activity of lactucin and lactucopicrin: sesquiterpene lactones isolated from Cichorium intybus L. J Ethnopharmacol 95:455–457

    Article  CAS  PubMed  Google Scholar 

  • Bogdanović M, Cankar K, Dragićević M et al (2020) Silencing of germacrene A synthase genes reduces guaianolide oxalate content in Cichorium intybus L. GM Crop Food 11(1):54–66

    Article  Google Scholar 

  • Bortesi L, Fischer R (2015) The Crispr/Cas9 system for plant genome editing and beyond. Biotech Adv 33:41–52

    Article  CAS  Google Scholar 

  • Bretting PK, Duvick DN (1997) Dynamic conservation of plant genetic resources. Adv Agron 61:2–51

    Google Scholar 

  • Brown C, Lucas JA, Crute IR et al (1986) An assessment of genetic variability in somacloned lettuce plants (Lactuca sativa) and their offspring. Ann Appl Biol 109:391–407

    Article  Google Scholar 

  • Cadalen T, Mörchen M, Blassiau C et al (2010) Development of SSR markers and construction of a consensus genetic map for chicory (Cichorium intybus L.). Mol Breed 25:699–722

    Article  CAS  Google Scholar 

  • Cao HX, Wang W, Le HTT, Vu GTH (2016) The power of Crispr-Cas9-induced genome editing to speed up plant breeding. Int J Genomics 2016:1–10. https://doi.org/10.1155/2016/5078796

    Article  CAS  Google Scholar 

  • Castafio CI, Demeulemeester MAC, De Proft MP (1997) Incompatibility reactions and genotypic identity status of five commercial chicory (Cichorium intybus L.) hybrids. Sci Hort 72:1–9

    Article  Google Scholar 

  • Castan CI, De Proft MP (2000) In vitro pollination of isolated ovules of (Cichorium intybus L.). Plant Cell Rep 19:616–621

    Article  Google Scholar 

  • Cavin C, Delannoy M, Malnoe A et al (2005) Inhibition of the expression and activity of cyclooxygenase-2 by chicory extract. Biochem Biophys Res Commun 327:742–749

    Article  CAS  PubMed  Google Scholar 

  • Černý I, Javor D (2004) Variety – an important intensification factor of chicory cultivation (in Slovak Odroda – dôležitý intenzifikačný faktor pestovania čakanky obyčajnej). Naše pole 8(5):22–25

    Google Scholar 

  • Chen AY, Chen YC (2013) A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem 138:2099–2107

    Article  CAS  PubMed  Google Scholar 

  • Chikkerur J, Samanta AK, Kolte AP et al (2020) Production of short chain fructo-oligosaccharides from inulin of chicory root using fungal endoinulinase. Appl Biochem Biotechnol 191:695–715. https://doi.org/10.1007/s12010-019-03215-7

    Article  CAS  PubMed  Google Scholar 

  • Christian M, Cermak T, Doyle EL et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conner AJ, Searle H, Jacobs JME (2019) Rejuvenation of chicory and lettuce plants following phase change in tissue culture. BMC Biotechnol 9:1–7

    Google Scholar 

  • Conti F, Abbate G, Alessandrini A, Blasi C (2005) An annotated checklist of the Italian vascular flora. Ministero dell’Ambiente e della Tutela del Territorio, Direzione per la Protezione della Natura, Palombi, Rome

    Google Scholar 

  • Coppens d’Eeckenbrugge G (1990) The programic phase in (Cichoriunt intvbus L.) pollen tube growth in the style, incompatibility reaction and gametophytic competition. Euphytica 48(l):17–23

    Article  Google Scholar 

  • Council of scientific and industrial research (1992) Wealth of India: A dictionary of Indian raw materials and industrial products, 3rd edn. Vedams, Govt of India, New Delhi, pp 266–267

    Google Scholar 

  • Dakshayini K, Rao CV, Karun A et al (2016) High-frequency plant regeneration and histological analysis of callus in Cichorium intybus: an important medicinal plant. J Phytology 8:7–12

    Article  CAS  Google Scholar 

  • Das S, Vasudeva N, Sharma S (2016) Cichoriunt intvbus L.: a concise report on its ethnomedicinal, botanical, and phytopharmacological aspects. Drug Dev Ther 7:1–12

    Article  CAS  Google Scholar 

  • Dauchot N, Mingeot D, Purnelle B et al (2009) Construction of 12 EST libraries and characterization of a 12,226 EST dataset for chicory (Cichorium intybus) root, leaves and nodules in the context of carbohydrate metabolism investigation. BMC Plant Biol 9:14. https://doi.org/10.1186/1471-2229-9-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dauchot N, Raulier P, Maudoux O et al (2014) Mutations in chicory feh genes are statistically associated with enhanced resistance to post-harvest inulin depolymerization. Theor Appl Genet 127:125–135. https://doi.org/10.1007/s00122-013-2206-6

    Article  CAS  PubMed  Google Scholar 

  • De Leenheer L (1996) Production and use of inulin industrial reality with a promising future. In: Bekkum H, Van HR, Voragen AGJ (eds) Carbohydrates as organic raw materials III. NY VCH Publishers Inc, New York, pp 67–92

    Chapter  Google Scholar 

  • De Proft M, Van Stallen N, Veerle N (2003) Breeding and cultivar identification of Cichorium intybus L. var. foliosum Hegi. In: Van Hintum TJL, Lebeda A, Pink D, Schut JW (eds) Eucarpia leafy vegetables. Centre for Genetic Resources, Wageningen, pp 83–90

    Google Scholar 

  • De Roo R (1967) Het verwekken en opsporen van tetraplo’ idie bij cichorei (Cichorium intybus L.). Landbouwtijdschrift 20:1275–1280

    Google Scholar 

  • De Simone M, Morgante M, Lucchin MA (1997) First linkage map of Cichorium intybus L. using a one-way pseudo-testcross and PCR-derived markers. Mol Breed 3:415–425

    Article  Google Scholar 

  • De Vartavan C, Amoros V (1997) Codex of ancient Egyptian plant remains. Triade Exploration, London

    Google Scholar 

  • Demeulemeester MAC, Panis BJ, De Proft MP (1992) Cryopreservation of in vitro shoot tips of chicory (Cichorium intybus L.). Cryo Lett 13:165–174

    Google Scholar 

  • Deryckere D (2013) Development of asymmetric somatic hybridization technology in industrial chicory (Cichorium intybus L.). PhD thesis, Faculty of Bioscience Engineering, Ghent University, Belgium

    Google Scholar 

  • Deryckere D, Eeckhaut T, Van Huylenbroeck J, Van Bockstaele E (2012) Optimisation of somatic hybridisation in Cichorium species. In: VII International symposium on in vitro culture and horticultural breeding, 18–22 September 2011, Gent, Belgium, pp 95–102

    Google Scholar 

  • Dewaele E, Forlani G, Degrande D et al (1997) Biochemical characterization of chlorsulfuron resistance in Cichorium intybus L. var. witloof. J Plant Physiol 151:109–114

    Article  CAS  Google Scholar 

  • Dinant S, Maisonneuve B, Albouy J et al (1997) Coat protein gene-mediated protection in Lactuca sativa against lettuce mosaic potyvirus strains. Mol Breed 3:75–86

    Article  CAS  Google Scholar 

  • Doliĕski R, Olek A (2013) Micropropagation of wild chicory (Cichorium intybus L. var. silvestre Bisch.) from leaf explants. Acta Sci Pol Hort Cultus 12(6):33–44

    Google Scholar 

  • Doré C, Prigent J, Desprez B (1996) In situ gynogenetic haploid plants of chicory (Cichorium intybus L.) after intergeneric hybridization with Cicerbita alpina Walbr. Plant Cell Rep 15:758–761. https://doi.org/10.1007/BF00232223

    Article  PubMed  Google Scholar 

  • Dotlačil L, Stehno Z, Faberová I, Michalová A (2002) Research conservation and utilisation of plant genetic resources and agro-biodiversity enhancement – contribution of the research institute of crop production prague-ruzyně. Czech J Genet Plant Breed 38(1):3–15

    Google Scholar 

  • Dyer AF (1979) Investigating chromosomes. Edward Arnold Publishers Ltd, London, pp 1–15

    Google Scholar 

  • El-Hilaly J, Hmammouchi M, Lyoussi B (2003) Ethnobotanical studies and economic evaluation of medicinal plants in Taounate province (Northern Morocco). J Ethnopharmacol 86:149–158

    Article  PubMed  Google Scholar 

  • Ellstrand NC (2003) Dangerous liaisons when cultivated plants mate with their wild relatives. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Engelmann F (1991) In vitro conservation of tropical plant germplasm review. Euphytica 57:227–243

    Article  Google Scholar 

  • Engelmann F (1994) Cryopreservation for the long-term conservation of tropical crops of commercial importance. In: Proceedings of the international symposium on the application of plant in vitro technology, Universiti Pertanian Malaysia, Selangor, 16–18 November 1993, pp 64–77

    Google Scholar 

  • Engelmann F (1997) In vitro conservation methods. In: Callow JA, Ford-Lloyd BV, Newbury HJ (eds) Biotechnology and plant genetic resources: conservation and use. Biotechnology in agriculture series. CAB International, Oxford, pp 119–161

    Google Scholar 

  • Engelmann F (2000) Importance of cryopreservation for the conservation of plant genetic resources. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm. IPGRI, Rome, pp 8–20

    Google Scholar 

  • Eur Comm (2018) Statement by the Group of Chief Scientific Advisors. A scientific perspective on the regulatory status of products derived from gene editing and the implications for the GMO Directive. European Commission

    Google Scholar 

  • FAO (1996) Food and Agriculture Organization. The state of the world’s plant genetic resources for food and agriculture. FAO, Rome

    Google Scholar 

  • FAO (2010) Food and Agriculture Organization Gardens of biodiversity conservation of genetic resources and their use in traditional food production systems by small farmers of the southern Caucasus. All rights reserved. FAO. ISBN 978-92-5-106613-3

    Google Scholar 

  • FAO (2013) Food and Agriculture Organization (Cichorium intybus). http://ecocrop.fao.org/ecocrop/srv/en/cropView?id=694

  • FAO (2014) Food and agriculture organization Genebank standards for plant genetic resources for food and agriculture. Rev ed., Rome

    Google Scholar 

  • FAOSTAT (2018) Agricultural Database. Food and agriculture organization. Production quantities of chicory roots. FAO, Rome http://www.fao.org/faostat/en/#data/QC/visualize

  • Ferrazzano GF, Amato I, Ingenito A et al (2011) Plant polyphenols and their anti-cariogenic properties, a review. Molecules 16:1486–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frulleux F, Weyens G, Jacobs M (1997) Agrobacterium tumefaciens-mediated transformation of shoot-buds of chicory. Plant Cell Tiss Org 50:107–112

    Article  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF III (2013) Zen, Talen and CRISPR/Cas-based methods for genome engineering. Trends Biotech 31(7):397–405

    Article  CAS  Google Scholar 

  • Galla G, Ghedina A, Tiozzo SC, Barcaccia G (2016) Toward a first high-quality genome draft for marker-assisted breeding in leaf chicory, radicchio (Cichorium intybus L.). In: Abdurakhmonov IY (ed) Plant genomics. In Tech, Rijeka. https://doi.org/10.5772/61747

    Chapter  Google Scholar 

  • Gangopadhyay M, Dewanjee S, Chakraborty D, Bhattacharya S (2011) Role of exogenous phytohormones on growth and plumbagin accumulation in Plumbago indica hairy roots and conservation of elite root clones via synthetic seeds. Ind Crop Prod 33(2):445–450

    Article  CAS  Google Scholar 

  • Gao J, Wang G, Ma S et al (2015) CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol 87(1–2):99–110

    Article  CAS  PubMed  Google Scholar 

  • Gemeinholzer B, Bachmann K (2005) Examining morphological and molecular diagnostic character states of Cichorium intybus L. (Asteraceae) and C. spinosum L. Plant Syst Evol 253:105–123

    Article  CAS  Google Scholar 

  • Genga A, Giansante L, Bernacchia G, Allavena A (1994) Plant regeneration from Cichorium intybus L. leaf explants transformed by Agrobacterium tumefaciens. J Genet Breed 48:25–32

    Google Scholar 

  • Ghedina A, Galla G, Cadalen T et al (2015) A method for genotyping elite breeding stocks of leaf chicory (Cichorium intybus L.) by assaying mapped microsatellite marker loci. BMC Res Not 8:831. https://doi.org/10.1186/s13104-015-1819-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gobbe J, Evrard B, Coppens D et al (1986) Het verkrijgen van polyplolden van witloof bij in vitro teelt. Landbouwtijdschrift 31(6):1189–1199

    Google Scholar 

  • González-Benito ME, Clavero-Ramírez I, López-Aranda JM (2004) Review the use of cryopreservation for germplasm conservation of vegetatively propagated crops. Span J Agric Res 2(3):341–351

    Article  Google Scholar 

  • Guangdi L, Kemp P (2005) Forage chicory (Cichorium intybus L.) a review of its agronomy and animal production. Adv Agron 88:187–222

    Article  CAS  Google Scholar 

  • Guarrera PM, Forti G, Marignoli S (2005) Ethnobotanical and ethnomedicinal uses of plants in the district of acquapendente (Latium, Central Italy). J Ethnopharmacol 96:429–444

    Article  PubMed  Google Scholar 

  • Gupta N (2019) Mutation breeding in vegetable crops: a review. Inter J Chem Stud 7(3):3516–3519

    CAS  Google Scholar 

  • Habarugira I, Hendriks T, Quillet MC et al (2015) Effects of nuclear genomes on anther development in cytoplasmic male sterile chicories (Cichorium intybus L.): morphological analysis. Sci World J. ID 529521. https://doi.org/10.1155/2015/529521

  • Hamid R, Kamili AN, Mahmooduzzafar et al (2015) Analysis of physiobiochemical attributes, some key antioxidants and esculin content through HPLC in in vitro grown Cichorium intybus L. treated with ethylmethane sulfonate. Plant Growth Regul 76:233–241. https://doi.org/10.1007/s10725-014-9992-y

    Article  CAS  Google Scholar 

  • Hammer K, Gladis T (2014) Notes on infraspecific nomenclature and classifications of cultivated plants in Compositae, Cruciferae, Cucurbitaceae, Gramineae (with a remark on Triticum dicoccon Schrank) and Leguminosae. Genet Resour Crop Evol 61(8):1455–1467

    Article  Google Scholar 

  • Hanlidou E, Karousou R, Kleftoyanni V, Kokkini S (2004) The herbal market of Thessaloniki (N Greece) and its relation to the ethnobotanical tradition. J Ethnopharmacol 91:281–299

    Article  CAS  PubMed  Google Scholar 

  • Haussmann BG, Parzies HK, Prester T et al (2004) Plant genetic resources in crop improvement. Plant Genet Res 2(1):3–21

    Article  Google Scholar 

  • Jančić D, Todorović V, Basić Z, Šobajić S (2016) Chemical composition and nutritive potential of Cichorium intybus L. leaves from Montenegro. J Serb Chem Soc 81(10):1141–1149

    Article  CAS  Google Scholar 

  • Jaric S, Popovic Z, Macukanovic-Jocic M (2007) An ethnobotanical study on the usage of wild medicinal herbs from Kopaonik mountain (Central Serbia). J Ethnopharmacol 111(1):160–175

    Article  PubMed  Google Scholar 

  • Jouad H, Haloui M, Rhiouani H et al (2001) Ethnobotanical survey of medicinal plants used for the treatment of diabetes, cardiac and renal diseases in the north centre region of Morocco (Fez–Boulemane). J Ethnopharmacol 77:175–182

    Article  CAS  PubMed  Google Scholar 

  • Jung GA, Shaffer JA, Varga GA, Everhart JR (1996) Performance of Grasslands Puna chicory at different management levels. Agron J 88:104–111

    Article  Google Scholar 

  • Kalloo G, Bergh BO (1993) Genetic Improvement of vegetable crops. Pergamon Press Ltd, Oxford

    Google Scholar 

  • Kao KN, Michayluk MR (1974) A method for high-frequency intergeneric fusion of plant protoplasts. Planta 115:355–367. https://doi.org/10.1007/BF0038861.

    Article  CAS  PubMed  Google Scholar 

  • Kaur N, Gupta AK (2002) Applications of inulin and oligofructose in health and nutrition. J Biosci 27:703–714

    Article  CAS  PubMed  Google Scholar 

  • Kaushik P, Andújar I, Vilanova S et al (2015) Breeding vegetables with increased content in bioactive phenolic acids. Molecules 20:18464–18481. https://doi.org/10.3390/molecules201018464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan Z, Ansari MYK (2014) Chemical mutagenesis in chicory: a tool for crop improvement. LAP Lambert Academic Publishing, Saarbrucken. ISBN: 9783659541506

    Google Scholar 

  • Khan Z, Gupta H, Ansari MYK, Chaudhary S (2009) Methyl methanesulphonate induced chromosomal variations in a medicinal plant Cichorium intybus L. during microsporogenesis. Biol Med 1(2):66–69

    CAS  Google Scholar 

  • Khan Z, Ansari MYK, Gupta H (2012) Induction of mutations in Cichorium intybus L. by base analogue 6-aminopurine (6-AP) and their detection with random amplified polymorphic DNA (RAPD) analysis. Afr J Biotech 11(56):11901–11906

    CAS  Google Scholar 

  • Kiær LP, Philipp M, Jorgensen RB, Hauser TP (2007) Genealogy, morphology and fitness of spontaneous hybrids between wild and cultivated chicory (Cichorium intybus). Heredity 99:112–120

    Article  PubMed  Google Scholar 

  • Kiær LP, Felber F, Flavell A et al (2008) Spontaneous gene flow and population structure in wild and cultivated chicory, Cichorium intybus L. Genet Resour Crop Evol 56(3):405–419

    Article  CAS  Google Scholar 

  • Kiers AM (2000) Endive chicory and their wild relatives. A systematic and phylogenetic study of Cichorium (Asteraceae). Gorteria Suppl 5:1–78

    Google Scholar 

  • Kiers AM, Mes TH, Van Der Meijden R, Bachmann K (1999) Morphologically defined Cichorium (Asteraceae) species reflect lineages based on chloroplast and nuclear (ITS) DNA data. Syst Bot 24(4):645–659. https://doi.org/10.2307/2419648

    Article  Google Scholar 

  • Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93:1156–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kisiel W, Michalska K (2003) Root constituents of Cichorium pumilum and rearrangement of some lactucin-like guaianolides. Z Naturforsch 58:789–792

    Article  CAS  Google Scholar 

  • Koch K, Anderson R, Rydberg I, Aman P (1999) Influence of harvest date on inulin chain length distribution and sugar profile for six chicory (Cichorium intybus L.) cultivars. J Sci Food Agric 79:1503–1506

    Article  CAS  Google Scholar 

  • Kokoska LZ, Polesny V, Rada A et al (2002) Screening of some Siberian medicinal plants for antimicrobial activity. J Ethnopharmacol 82:51–53

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Jain M (2015) The CRISPR-Cas system for plant genome editing: advances and opportunities. J Exp Bot 66(1):47–57

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Sandhu K (2020) Genome editing: an emerging tool for plant breeders. Preprints 2020. https://doi.org/10.20944/preprints202003.0351.v1

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation-a novel source of variability from cell cultures for plant improvement. Theor Appl Gen 60:197–214

    Article  CAS  Google Scholar 

  • Lebeda A, Boukema IW (2001) Leafy vegetables genetic resources. In: Maggioni L, Spellman O (eds) Report of a network coordinating group on vegetables, Ad hoc meeting, 26–27 May 2000, Vila Real, Portugal, International Plant Genetic Resources Institute, Rome, Italy, pp. 48–57

    Google Scholar 

  • Lecompte A (2015) Witloof chicory bobine. United States US20150272075A1

    Google Scholar 

  • Leijten W, Koes R, Roobeek I et al (2018) Translating flowering time from Arabidopsis thaliana to Brassicaceae and Asteraceae crop species. Plan Theory 7(4):111

    CAS  Google Scholar 

  • Leporatti ML, Ivancheva S (2003) Preliminary comparative analysis of medicinal plants used in the traditional medicine of Bulgaria and Italy. J Ethnopharmacol 87:142–123

    Article  Google Scholar 

  • Lohse M, Drechsel O, Kahlau S, Bock R (2013) Organellar genome DRAW – a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucl Acids Res 41:W575–W581

    Google Scholar 

  • Loi MC, Maxia L, Maxia A (2005) Ethnobotanical comparison between the villages of Escolca and Lotzorai (Sardinia, Italy). Int J Geogr Inf Syst 11:67–84

    Google Scholar 

  • López-Solanilla E, Llama-Palacios A, Collmer A et al (2001) Relative effects on virulence of mutations in the sap, peí and hrp Loci of Erwinia chrysanthemi. Mol Plant Microb Interact 14(3):386–393. https://doi.org/10.1094/MPMI.2001.14.3.386

    Article  Google Scholar 

  • Lou Z, Wang H, Zhu S et al (2011) Antibacterial activity and mechanism of action of chlorogenic acid. J Food Sci 76:M398–M403

    Article  CAS  PubMed  Google Scholar 

  • Lowder L, Malzahn A, Qi Y (2016) Rapid evolution of manifold CRISPR systems for plant genome editing. Front Plant Sci 7:1683. https://doi.org/10.3389/fpls.2016.01683

    Article  PubMed  PubMed Central  Google Scholar 

  • Lucchin M, Varotto S, Barcaccia G, Parrini P (2008) Chicory and endive. In: Prohens-Tomás J, Nuez F (eds) Handbook of plant breeding, vegetables I: Asteraceae, Brassicaceae, Chenopodicaceae. Springer, New York, pp 1–46

    Google Scholar 

  • Lv YW, Zhang YJ, Gao WY et al (2019) Agrobacterium tumefaciens mediated transformation of chicory (Cichorium intybus L.) with mytilus galloprovincialis foot protein type five (MGFP-5). Pak J Bot 51(4):1473–1480

    Article  CAS  Google Scholar 

  • Maggioni L (2004) Conservation and use of vegetable genetic resources: a European perspective. In: XXVI International Horticultural Congress: Advances in vegetable breeding, International plant genetic resources institute, AH 637. International Society for Horticultural Science, Leuven, pp 13–30

    Google Scholar 

  • Maisonneuve B, Chupeau MC, Bellec Y, Chupeau Y (1995) Sexual and somatic hybridisation in the genus Lactuca. Euphytica 85:281–285

    Article  Google Scholar 

  • Malarz J, Stojakowska A, Kisiel W (2002) Sesquiterpene lactones in a hairy root culture of Cichorium intybus. Z Naturforsch C 57:994–997

    Article  CAS  PubMed  Google Scholar 

  • Malarz J, Stojakowska A, Kisiel W (2013) Long-term cultured hairy roots of chicory-a rich source of hydroxycinnamates and 8-deoxylactucin glucoside. Appl Biochem Biotech 171:1589–1601

    Article  CAS  Google Scholar 

  • Marley CL, Cook R, Keatinge R et al (2003) The effect of birdsfoot trefoil (Lotus corniculatus) and chicory (Cichorium intybus) on parasite intensities and performance of lambs naturally infected with helminth parasites. Vet Parasitol 112:147–155

    Article  CAS  PubMed  Google Scholar 

  • Maroufi A (2015) Efficient genetic transformation of chicory without selection marker. Biotech Agron Soc Environ 19(3):239–246

    CAS  Google Scholar 

  • Maroufi A, Karimi M, Mehdikhanlou K et al (2012) Regeneration ability and genetic transformation of root type chicory (Cichorium intybus var. sativum). Afr J Biotech 11(56):11874–11886

    CAS  Google Scholar 

  • Maroufi A, Karimi M, Mehdikhanlou K, De Loose M (2018) Inulin chain length modification using a transgenic approach opening new perspectives for chicory. 3 Biotech 8:349. https://doi.org/10.1007/s13205-018-1377-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Matijevic M, Bado S, Lagoda PJL, Forster BP (2013) Impact of induced mutations in plant breeding. In: Monduzzi M (ed) Plant genetics and breeding technologies, plant diseases and resistance mechanisms, Proc 18–20 Feb 2013, Vienna, Austria, International Proceedings Division, Pianoro, pp 45–47

    Google Scholar 

  • Matsumoto E (1991) Interspecific somatic hybridization between lettuce (Lactuca sativa) and wild species L. virosa. Plant Cell Rep 9:531–534

    Article  CAS  PubMed  Google Scholar 

  • Matvieieva NA, Shachovsky AM, Gerasymenko IM et al (2009) Agrobacterium-mediated transformation of Cichorium intybus L. with interferon-α2b gene. Biopolym Cell 25(2):120–125

    Article  Google Scholar 

  • Matvieieva NA, Vasylenko MY, Shahovsky AM et al (2011) Effective Agrobacterium mediated transformation of chicory (Cichorium intybus L.) with Mycobacterium tuberculosis antigene ESAT6. Cytol Genet 45:7–12. https://doi.org/10.3103/S0095452711010038

    Article  Google Scholar 

  • Maxted N, Ford-Lloyd B, Hawkes J (1997) Complementary conservation strategies. In: Maxted N, Ford-Lloyd B, Hawke J (eds) Plant genetic conservation: the in situ approach. Chapman and Hall, London, pp 20–55. https://doi.org/10.1007/978-94-009-1437-7

    Chapter  Google Scholar 

  • Miraldi E, Ferri S, Mostaghimi V (2001) Botanical drugs and preparations in the traditional medicine of west Azerbaijan (Iran). J Ethnopharmacol l75:77–87

    Article  Google Scholar 

  • Moloney SC, Milne G (1993) Establishment and management of Grasslands Puna chicory used as a specialist, high quality forage herb. Proc NZ Grassl Ass 55:113–118

    Google Scholar 

  • Moreno-Vázquez S, Ochoa O, Faber N et al (2004) SNP-based codominant markers for a recessive gene conferring resistance to corky root rot (Rhizomonas suberifaciens) in lettuce (Lactuca sativa). Genome 46:1059–1069

    Article  Google Scholar 

  • Mulabagal V, Wang H, Ngouajio M et al (2009) Characterization and quantification of health beneficial anthocyanins in leaf chicory (Cichorium intybus) varieties. Eur Food Res Tech 230:47–53

    Article  CAS  Google Scholar 

  • Muller E, Brown PTH, Hartke S, Lorz H (1990) DNA variation in tissue culture-derived rice plants. Theor Appl Genet 80:673–679

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium of rapid growth and bioassay with tobacco tissue culture. Plant Physiol 15:573–597

    Article  Google Scholar 

  • Muys C, Thienpont CN, Dauchot N et al (2014) Integration of AFLPs, SSRs and SNPs markers into a new genetic map of industrial chicory (Cichorium intybus L. var. sativum). Plant Breed 133(1):130–137. https://doi.org/10.1111/pbr.12113

    Article  CAS  Google Scholar 

  • Nair R, Schreinemachers P (2020) Global status and economic importance of mungbean. In: Nair RM, Schafleitner R, Lee SH (eds) The mungbean genome. Compendium of plant genomes. Springer, Cham, pp 1–8. https://doi.org/10.1007/978-3-030-20008-4

    Chapter  Google Scholar 

  • Nandagopal S, Kumari BDR (2007) Effectiveness of auxin induced in vitro root culture in chicory. J Cent Europ Agric 8(1):73–80

    Google Scholar 

  • National Research Council (1972) Genetic vulnerability of major crops. National Academy of Sciences, Washington, DC

    Google Scholar 

  • NISCAIR (1992) The wealth of India raw materials series. In: Krishnan Marg KS (ed) Council of Scientific and Industrial Research (CSIR), 3rd edn. Council of Scientific & Industrial Research, New Delhi, pp 161–169

    Google Scholar 

  • Norbak R, Nielsen K, Kond TO (2002) Anthocyanins from flowers of Cichorium intybus. Phytochemistry 60(4):357–359

    Article  Google Scholar 

  • Nwafor IC, Shale K, Achilonu MC (2017) Chemical composition and nutritive benefits of chicory (Cichorium intybus) as an ideal complementary and/or alternative livestock feed supplement. Sci World J. ID 7343928. https://doi.org/10.1155/2017/7343928

  • Page DR, Grossniklaus U (2002) The art and design of genetic screens: Arabidopsis thaliana. Nat Rev Genet 3(2):124–136

    Article  CAS  PubMed  Google Scholar 

  • Palmé A, Fitzgerald H, Weibull J et al (2019) Nordic crop wild relative conservation. A report from two collaborative projects, 2015–2019, Nordic Council of Ministers, Standard PDF/UA-1 ISO 14289-1 ISSN 0908-6692

    Google Scholar 

  • Palumbo F, Qi P, Pinto VB et al (2019) Construction of the first SNP-based linkage map using genotyping-by-sequencing and mapping of the male-sterility gene in leaf chicory. Front Plant Sci 10:27. https://doi.org/10.3389/fpls.2019.00276

    Article  Google Scholar 

  • Pamidimarri DVNS, Pandya N, Reddy MP, Radhakrishnan T (2009) Comparative study of interspecific genetic divergence and phylogenic analysis of genus Jatropha by RAPD and AFLP. Mol Biol Rep 36:901–907

    Article  CAS  Google Scholar 

  • Patella A, Scariolo F, Palumbo F, Barcaccia G (2019) Genetic structure of cultivated varieties of radicchio (Cichorium intybus L.): a comparison between F1 hybrids and synthetics. Plants (Basel) 8:213. https://doi.org/10.3390/plants8070213

    Article  CAS  Google Scholar 

  • Patella A, Palumbo F, Ravi S et al (2020) Genotyping by RAD sequencing analysis assessed the genetic distinctiveness of experimental lines and narrowed down the genomic region responsible for leaf shape in endive (Cichorium endivia L.). Genes 11:462. https://doi.org/10.3390/genes11040462

    Article  CAS  PubMed Central  Google Scholar 

  • Peña-Espinoza M, Valente AH, Thamsborg SM et al (2018) Antiparasitic activity of chicory (Cichorium intybus) and its natural bioactive compounds in livestock: a review. Parasit Vect 11(1):475

    Article  CAS  Google Scholar 

  • Perez-Pinera P, Ousterout DG, Gersbach CA (2012) Advances in targeted genome editing. Curr Opin Chem Biol 16(3–4):268–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieroni A (2000) Medicinal plants and food medicines in the folk traditions of the upper Lucca Province, Italy. J Ethnopharmacol 70:235–273

    Article  CAS  PubMed  Google Scholar 

  • Pieroni A, Quave C, Nebel S, Heinrich M (2002) Ethnopharmacy of the ethnic Albanians (Arbereshe) of northern Basilicata, Italy. Fitoterapia 73:217–241

    Article  PubMed  Google Scholar 

  • Pool-Zobel BL (2005) Inulin-type fructans and reduction in colon cancer risk: review of experimental and human data. Brit J Nutr 93:S73–S90. https://doi.org/10.1079/BJN20041349

    Article  CAS  PubMed  Google Scholar 

  • Pragasam SJ, Venkatesan V, Rasool M (2013) Immunomodulatory and antiinflammatory effect of p-coumaric acid, a common dietary polyphenol on experimental inflammation in rats. Inflamm 36:169–176

    Article  CAS  Google Scholar 

  • Prasad N, Karthikeyan A, Karthikeyan S et al (2011) Inhibitory effect of caffeic acid on cancer cell proliferation by oxidative mechanism in human HT-1080 fibrosarcoma cell line. Mol Cell Biochem 349:11–19

    Article  CAS  Google Scholar 

  • Pushparaj PN, Low HK, Manikandan J et al (2007) Anti-diabetic effects of Cichorium intybus in streptozotocin-induced diabetic rats. J Ethnopharmacol 111:430–434

    Article  CAS  PubMed  Google Scholar 

  • Rambaud C, Vasseur J (2001) Somatic Hybridization in (Cichorium intybus L.) chicory. In: Nagata T, Bajaj YPS (eds) Biotechnology in agriculture and forestry. Springer, Berlin, pp 112–122

    Google Scholar 

  • Rasmussen MK, Ekstrand B (2014) Regulation of 3β-hydroxysteroid dehydrogenase and sulphotransferase 2A1 gene expression in primary porcine hepatocytes by selected sex-steroids and plant secondary metabolites from chicory (Cichorium intybus L.) and wormwood (Artemisia sp.). Gene 536(1):53–58

    Article  CAS  PubMed  Google Scholar 

  • Raulier P, Maudoux O, Notté C et al (2016) Exploration of genetic diversity within Cichorium endivia and Cichorium intybus with focus on the gene pool of industrial chicory. Genet Resour Crop Evol 63:243–259

    Article  Google Scholar 

  • Ravindran R, Chithra ND, Deepa PE et al (2017) In vitro effects of caffeic acid, nortriptyline, precocene I and quercetin against Rhipicephalus annulatus (Acari: Ixodidae). Exp Appl Acarol 71:183–193

    Article  CAS  PubMed  Google Scholar 

  • Rees SB, Harborne JB (1985) The role of sesquiterpene lactones and phenolics in the chemical defence of the chicory plant. Phytochemistry 24:2225–2231

    Article  CAS  Google Scholar 

  • Rick CM (1953) Hybridization between chicory and endive. Proc Amer Soc Hort Sci 62:459–466

    Google Scholar 

  • Rivera Núñez D, Obón de Castro C (1996) Palaeoethnobotany of compositae in Europe, North Africa and the Near East. In: Caligari PDS, Hind DJN (eds) Compositae: biology and utilization. Proceedings International Compositae Conference, Kew [Royal Botanic Gardens], 1994, Vol, 2 pp 517–545

    Google Scholar 

  • Roustakhiz J, Majnabadi JT (2017) Cultivation of chicory (Cichorium intybus L.), an extremely useful herb. Int J Farm Alli Sci 6(1):14–23

    Google Scholar 

  • Rumball W (1986) Grasslands Puna chicory (Cichorium intybus L.). New Zeal J Exp Agric 14:105–107

    Article  Google Scholar 

  • Rumball W, Skipp RA, Keogh RG, Claydon RB (2010) Puna II forage chicory (Cichorium intybus L.). New Zeal J Agric Res 46:153–155. https://doi.org/10.1080/00288233.2003.9513529

    Article  Google Scholar 

  • Ryder EJ (1999) Lettuce, endive and chicory. Crop Prod Sci Hort 7, CABI, Wallingford, Oxfordshire, England, First edition, Oxford Univ Pr Oxford

    Google Scholar 

  • Saeed M, Abd El-Hack ME, Alagawany M et al (2017) Chicory (Cichorium intybus) herb: chemical composition, pharmacology, nutritional and healthical applications. Int J Pharm 13:351–360

    Article  CAS  Google Scholar 

  • SAM (2017) Scientific advice mechanism. New techniques in agricultural biotechnology. Directorate-General for Research and Innovation, European Commission, Brussels https://doi.org/10.2777/17902

  • Sampaio FC, Pereira M do S, Dias CS et al (2009) In vitro antimicrobial activity of Caesalpinia ferrea Martius fruits against oral pathogens. J Ethnopharmacol 124:289–294

    Article  PubMed  Google Scholar 

  • Savikin K, Zdunic G, Menkovic N et al (2013) Ethnobotanical study on traditional use of medicinal plants in south-western Serbia, Zlatibor district. J Ethnopharmacol 146:803–810

    Article  PubMed  Google Scholar 

  • Scales GH, Knight TL, Saville DJ (1995) Effect of herbage species and feeding level on internal parasites and production performance of grazing lambs. New Zeal J Agric Res 38:237–247. https://doi.org/10.1080/00288233.1995.9513124

    Article  Google Scholar 

  • Sell PD (1976) Cichorium. In: Tutin TG, Heywood VH, Burges NA et al (eds) Flora Europaea 4 Volume 4. Cambridge University Press, Cambridge, pp 304–305. https://doi.org/10.5281/zenodo.293764

    Chapter  Google Scholar 

  • Sellin C, Forlani G, Dubois J et al (1992) Glyphosate tolerance in (Cichorium intybus L. var. Magdebourg). Plant Sci 85:223–231

    Article  CAS  Google Scholar 

  • Sezik E, Yesilada E, Honda G et al (2001) Traditional medicine in Turkey X. Folk medicine in central Anatolia. J Ethnopharmacol 75:95–115

    Article  CAS  PubMed  Google Scholar 

  • Shoorideh H, Peighambari SA, Omidi M et al (2018) Spatial expression of genes in inulin biosynthesis pathway in wild and root type chicory. J Agric Sci Tech 20:1049–1058

    Google Scholar 

  • Shu QY, Forster BP, Nakagawa H (2012) Plant mutation breeding and biotechnology. CABI International, Wallingford/Cambridge

    Book  Google Scholar 

  • Sikora P, Chawade A, Larsson M et al (2011) Mutagenesis as a tool in plant genetics functional genomics and breeding. Inter J Plant Genom ID 314829. https://doi.org/10.1155/2011/314829

  • Silva RF (1996) Use of inulin as a natural texture modifier. Cereal Food World 41:769–794

    Google Scholar 

  • Singh BD, Singh AK (2015) Marker-assisted plant breeding: principles and practices. Springer, New Delhi

    Book  Google Scholar 

  • Sinkovič L, Jamnik P, Korošec M et al (2020) In-vitro and in-vivo antioxidant assays of chicory plants (Cichorium intybus L.) as influenced by organic and conventional fertilisers. BMC Plant Biol 20:36. https://doi.org/10.1186/s12870-020-2256-2

  • Sørensen BS, Kiær LP, Jørgensen RB, Hauser TP (2007) The temporal development in a hybridizing population of wild and cultivated chicory (Cichorium intybus L.). Mol Ecol 16:3292–3298. https://doi.org/10.1111/j.1365-294X.2007.03346.x

    Article  CAS  PubMed  Google Scholar 

  • Street RA, Sidana J, Prinsloo G (2013) Cichorium intybus: traditional uses phytochemistry Pharmacology and toxicology. Evid Based Complement Alternat Med. Article ID 579319. https://doi.org/10.1155/2013/579319

  • Sun LY, Touraud G, Charbonnier C, Tepfer D (1991) Modification of phenotype in Belgian endive (Cichorium intybus) through genetic transformation by Agrobacterium rhizogenes: conversion from biennial to annual flowering. Transgenic Res 1:14–22

    Article  CAS  Google Scholar 

  • Tabata M, Sezik E, Honda G et al (1994) Traditional medicine in turkey III. Folk medicine in East Anatolia Van and Bitlis provinces. Pharm Biol 32(1):3–12

    Google Scholar 

  • Taylor RL (1981) Weeds of roadsides and waste ground in New Zealand. The Caxton Press, Christchurch

    Google Scholar 

  • Tetik F, Civelek S, Cakilcioglu U (2013) Traditional uses of some medicinal plants in Malatya (Turkey). J Ethnopharmacol 146:331–346

    Article  PubMed  Google Scholar 

  • Till BJ, Reynolds SH, Weil C et al (2004) Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol 4:12. https://doi.org/10.1186/1471-2229-4-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Till BJ, Cooper J, Tai TH et al (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7:19. https://doi.org/10.1186/1471-2229-7-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Towill LE (1988) Genetic considerations for germplasm preservation of clonal materials. Hort Sci 23:91–95

    Google Scholar 

  • Van Cutsem P, Du Jardin P, Boutte Beauwens T et al (2003) Distinction between cultivated and wild chicory gene pools using AFLP markers. Theor Appl Genet 107:713–718

    Article  PubMed  CAS  Google Scholar 

  • Van den Ende W, Michiels A, De Roover J et al (2000) Cloning and functional analysis of chicory root fructan 1-exohydrolase I (1-FEH I): a vacuolar enzyme derived from a cell-wall invertase ancestor? Mass fingerprint of the 1-FEH I enzyme. Plant J 24(4):447–456

    Article  PubMed  Google Scholar 

  • Van der Veken J, Eeckhaut T, Baert J et al (2019) Cichorium intybus L. × Cicerbita alpina Walbr.: doubled haploid chicory induction and CENH3 characterization. Euphytica 215:134. https://doi.org/10.1007/s10681-019-2435-0

    Article  CAS  Google Scholar 

  • Van Hintum TJL, Boukema IW (1999) Genetic resources of leafy vegetables. In: Lebeda A, Křístková E (eds) Eucarpia leafy vegetables 99, Proceedings of the Eucarpia meeting on leafy vegetables genetics and breeding. Palacký University in Olomouc, Olomouc, pp 59–72

    Google Scholar 

  • Van Huylenbroeck J, Baert J, Eeckhaut T, Deryckere D (2012) Introduction of CMS and improvement of the genetic variation in industrial chicory (Cichorium intybus) through asymmetric protoplast fusion. Protoplastcichorei project. 1/11/08–31/10/12

    Google Scholar 

  • Van Laere A, Van den Ende W (2002) Inulin metabolism in dicots: chicory as a model system. Plant Cell Environ 25(6):803–813

    Article  Google Scholar 

  • Van Stallen N, Noten V, Demeulemeester M, De Proft MP (2001) Identification of Cichorium intybus L. and their phenetic relationship revealed by RAPDs. Acta Hort 546:521–525. https://doi.org/10.17660/ActaHortic.2001.546.72

    Article  Google Scholar 

  • Van Stallen N, Vandenbussche B, Verdoodt V, De Proft M (2003) Construction of a genetic linkage map for witloof (Chicorium intybus L. var. foliosum Hegi). Plant Breed 122:251–525

    Google Scholar 

  • Vandenbussche B, Demeulemeester M, De Proft M (1993) Cryopreservation of alginate-coated in vitro-grown shoot-tips of chicory (Cichorium intybus L.) using rapid freezing. Cryo Lett 14:259–266

    Google Scholar 

  • Vandenbussche B, Demeulemeester M, De Proft M (2002) Cryopreservation of Cichorium intybus L. var. foliosum (Chicory). In: Towll LE, Bajaj YPS (eds) Biotechnology in agriculture and forestry. Cryopreservation of plant germplasm II, vol 50. Springer, Berlin, pp 78–95

    Google Scholar 

  • VanWyk BE, Van Oudtshoorn B, Gericke N (1997) Medicinal plants of South Africa. Briza Publications, Pretoria

    Google Scholar 

  • Varotto S, Lucchin G, Parrini P (2000) Immature embryos culture in Italian red chicory. Plant Cell Tiss Org 62:75–77

    Article  Google Scholar 

  • Vavilov NI (1992) Origin and geography of cultivated plants. Trans by Love D, Cambridge, Cambridge University Press

    Google Scholar 

  • Vermeulen A, Vaucheret H, Pautot V, Chupeau Y (1992) Agrobacterium-mediated transfer of a mutant Arabidopsis acetolactate synthase gene confers resistance to chlorsulfuron in chicory (Cichorium inthybus L.). Plant Cell Rep 11:243–247

    CAS  PubMed  Google Scholar 

  • Wonfor R (2016) A European approach to facing the challenges of climate change in ruminant agriculture. IBERS, Aberystwyth University

    Google Scholar 

  • Xu Y (2019) Breeding informatics and decision support tools. Regional training course on molecular approaches for selection of desired green traits in crops, 4–15 November 2019, Jakarta, Indonesia

    Google Scholar 

  • Yang S, Sun X, Wang L et al (2019) The complete chloroplast genome sequence of chicory (Cichorium intybus L.). Mitochondrial DNA Part B 4:1533–1534. https://doi.org/10.1080/23802359.2019.1601524

    Article  Google Scholar 

  • Yoo S, Murata RM, Duarte S (2011) Antimicrobial traits of tea-and cranberry-derived polyphenols against Streptococcus mutans. Caries Res 45:327–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Závada T, Malik R, Kesseli R (2017) Population structure in chicory (Cichorium intybus): a successful U.S. weed since the American revolutionary war. Ecol Evol 7(12):4209–4219

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeven AC, De Wet JMJ (1982) Dictionary of cultivated plants and their regions of diversity. Wageningen, Pudoc

    Google Scholar 

  • Zhang Y, Bai SQ, Li C et al (2011) Genetic stability analysis about somaclonal regenerated plants of chicory. Biotech 5:14

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laila Aldahak .

Editor information

Editors and Affiliations

Appendixes

Appendixes

1.1 Appendix I: List of Major Institutes Engaged in Chicory Research

Institutes Name

Country

Website

Department of Biological Sciences, Monash University Clayton, Victoria

Australia

https://www.monash.edu/science/schools/biological-sciences

Institute for Agricultural and Fisheries Research (ILVO)

Belgium

https://www.Ilvo.Vlaanderen.Be/Language/En-US/EN/Home.Aspx

Institute of Botany, Bulgarian Academy of Sciences Sofia

Bulgaria

http://www.bio.bas.bg/botany/

Institute of Botany, Academy of Sciences Průhonice

Czech Republic

https://www.ibot.cas.cz/en/

Kunming Institute of Botany, Chinese Academy of Sciences

China

http://english.kib.cas.cn/au/bi/

Institute Charles Violette (ICV)

France

https://Institutcharlesviollette.Univ-Lille.Fr/

Crops Research Institute Kumasi

Ghana

https://www.Cropsresearch.Org/

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben

Germany

https://www.ipk-gatersleben.de/en/institute/about-us/s/

Bundes Forschungs Institut für Kulturpflanzen

Germany

https://www.Julius-Kuehn.De/

Systematic Botany, Justus-Liebig-Universität

Germany

https://www.uni-giessen.de/faculties/f08/departments/botany/systematic-botany-group

Botanic Garden and Botanical Museum Berlin, Freie Universität Berlin, Germany

Germany

https://www.fu-berlin.de/en/sites/botanischergarten/index.html

Crops Research Institute Kumasi

Ghana

https://www.Cropsresearch.Org/

Departamento de Biología Vegetal y Ecología, Universidad de Sevilla Sevilla

Spain

http://area.us.es/bioeco/

Medicinal Plants Research Unit, College of Agricultural Engineering, Baghdad University

IRAQ

https://Coagri.Uobaghdad.Edu.Iq

Wageningen University

Netherlands

https://www.Wur.Nl/En/Newsarticle/Breeding-Chicory-For-Medicine.Htm

Instituto de Biologia Experimental e Tecnológica (Ibet)

Portugal

https://Eatris.Eu/Institutes/Instituto-De-Biologia-Experimental-E-Tecnologica-Ibet/

Institute for Systematics and Ecology of Animals

Russia

http://www.eco.nsc.ru/

Korea Research Institute of Bioscience and Biotechnology Daejeon,

South Korea

https://www.kribb.re.kr/eng/main/main.jsp

Oregon State University (OSU)

USA

https://bpp.oregonstate.edu/

1.2 Appendix II: World List of Varieties and Wild Types of Chicory

Accession No.

Species

Origin

Material type

PI 651946

Cichorium intybus

North Holland, Netherlands

Cultivar

PI 651930

C. intybus

USA

Cultivar

NSL 69921

C. intybus

Pennsylvania, USA

Cultivar

PI 651954

C. intybus

Germany

Cultivar

PI 652015

C. intybus

France

Cultivar

PI 651955

C. intybus

Baden-Wurttemberg, Germany

Line

PI 652024

C. intybus

Saxony-Anhalt, Germany

Wild

PI 652048

C. intybus

Italy

Cultivar

PI652007

C. intybus

Poland

Wild

PI652019

C. intybus

Switzerland

Wild

PI652020

C. intybus

Hungary

Wild

PI652026

C. intybus

Mazandaran, Iran

Wild

PI652028

C. intybus

Russian Federation

Wild

PI652033

C. intybus

Coimbra

Wild

PI 432336

C. intybus

Cyprus

Line

  1. Source: U.S. National Plant Germplasm System (https://npgsweb.ars-grin.gov/gringlobal/search.aspx)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aldahak, L., Salem, K.F.M., Al-Salim, S.H.F., Al-Khayri, J.M. (2021). Advances in Chicory (Cichorium intybus L.) Breeding Strategies. In: Al-Khayri, J.M., Jain, S.M., Johnson, D.V. (eds) Advances in Plant Breeding Strategies: Vegetable Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-66969-0_1

Download citation

Publish with us

Policies and ethics