Skip to main content

Turnip (Brassica rapa var. rapa L.) Breeding

  • Chapter
  • First Online:
Advances in Plant Breeding Strategies: Vegetable Crops

Abstract

Turnip (Brassica rapa var. rapa L.) is an important crop species belonging to the Brassicaceae family. It is an annual or biennial plant with wide variation in size, shape and color. Its classification is based on morphological characteristics, leading to a division of the cultivated forms into three main subspecies: turnip, oilseed and leafy types. Thus, it plays a vital role in agriculture, and contributes to both national economies and human health. Molecular genetics and traditional breeding programs of B. rapa are essential to crop improvement. Analyses of genetic diversity using DNA-based markers and metabolite profiling across B. rapa reveals that they originate from Europe, Central Asia and North Africa, based on evidence of 2–5 distinct groups. Studies have detected comparable genetic diversity between and within various B. rapa accessions, including root, leafy vegetable and oilseed types. The efficiency of traditional breeding programs; simple recurrent selection, mass selection and selfing with selection on improving growth, yield and root quality of the Egyptian turnip cultivar Balady have been achieved. Generally, the phenotypic correlation coefficients values for the varied possible pairs among different agronomic traits evidenced that 19 are derived from a possible 91 relationships and seem significant and are required to realize the selection aims. Simple recurrent selection exhibited higher effect on improving turnip agronomic traits such as plant and root fresh weights, leaf number, root diameter and total yield, over either mass selection or selfing with selection methods. From a quality prospective, all selected populations exhibited decreased root firmness, expressed as reduction in root fibers, which enhance root quality. Therefore, the high-efficiency of a selection-breeding program resulted in improving turnip yield and quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi BH, Khan M, Guo B et al (2011) Efficient regeneration and antioxidative enzyme activities in Brassica rapa var. turnip. Plant Cell Tissue Organ Cult 105:337–344

    Article  CAS  Google Scholar 

  • Abdelkader AFA (2013) Physiological response of Brassica rapa plants to irrigation using underground well water and non-reclaimed wastewater of Abo-rawash drainage, Egypt. Egypt J Exp Biol (Bot) 9(1):1–17

    Google Scholar 

  • Afzal M, Shabbir G, Ilyas M et al (2018) Impact of climate change on crop adaptation: current challenges and future perspectives. Pure Appl Biol 7. https://doi.org/10.19045/bspab.2018.700115

  • Aguirre-Gutiérrez J, van Treuren R, Hoekstra R, van Hintum TJL (2017) Crop wild relatives range shifts and conservation in Europe under climate change. Divers Distrib 23:739–750

    Article  Google Scholar 

  • Ahuja I, Rohloff J, Bones AM (2010) Defense mechanisms of Brassicaceae: implications for plant-insect interactions and potential for integrated pest management. A review. Agron Sustain Dev 30:311–348

    Article  Google Scholar 

  • Aissiou F, Laperche A, Falentin C et al (2018) A novel Brassica rapa L. genetic diversity found in Algeria. Euphytica 214:241. https://doi.org/10.1007/s10681-018-2318-9

    Article  Google Scholar 

  • Akmal M, Nafis T, Mirza KJ et al (2011) High frequency somatic embryogenesis in mustard crop (Brassica juncea L. cv. Pusa Jai kisan): microscopic and histological analyses. Aust J Crop Sci 5(13):1783–1789

    CAS  Google Scholar 

  • Amri E (2014) The role of selected plant families with dietary ethnomedicinal species used as anticancer. J Med Plants Stud 2(1):28–39

    Google Scholar 

  • An S, Han JI, Kim MJ et al (2010) Ethanolic extracts of Brassica campestris spp. rapa roots prevent high-fat diet-induced obesity via beta(3)-adrenergic regulation of white adipocyte lipolytic activity. J Med Food 13:406–414

    Article  CAS  PubMed  Google Scholar 

  • Appelhagen I, Thiedig K, Nordholt N et al (2014) Update on transparent testa mutants from Arabidopsis thaliana: characterisation of new alleles from an isogenic collection. Planta 240:955–970. https://doi.org/10.1007/s00425-014-2088-0

    Article  CAS  PubMed  Google Scholar 

  • Bagheri H, El-Soda M, Oorschot I et al (2012) Genetic analysis of morphological traits in a new, versatile, rapid-cycling Brassica rapa recombinant inbred line population. Front Plant Sci 3(183). https://doi.org/10.3389/fpls.2012.00183

  • Bagheri H, Pinodelcarpio D, Hahnart C et al (2013) Identification of seed related QTL in Brassica rapa. Span J Agric Res 11(4):1085

    Article  Google Scholar 

  • Basak S, Wang G, Sun X, Yang Y (2018) Variations in genome size of turnip landraces from two high-altitude environments. J Am Soc Hortic Sci 143(2):136–143

    Article  CAS  Google Scholar 

  • Basak S, Sun X, Wang G, Yang Y (2019) Genome size unaffected by variation in morphological traits, temperature, and precipitation in turnip. Appl Sci 9(253):1–14. https://doi.org/10.3390/app9020253

    Article  Google Scholar 

  • Bennett MD, Smith JB (1976) Nuclear DNA amounts in angiosperms. Philos Trans R Soc London Ser B Biol Sci 274:227–274

    CAS  Google Scholar 

  • Bennett MD, Leitch IJ, Price HJ, Johnston JS (2003) Comparisons with Caenorhabditis (100 Mb) and Drosophila (175Mb) using flow cytometry show genome size in arabidopsis to be 157 Mb and thus 25% larger than the Arabidopsis Genome Initiative of 125 Mb. Ann Bot 91:1–11

    Article  CAS  Google Scholar 

  • Beranek M, Bechyne M, Klima M (2007) Protoplast isolation and fusion between Brassica carinata and Brassica rapa L. Agric Trop Subtrop 40(1):1–6

    Google Scholar 

  • Berti M, Samarappuli D, Nudell R, Johnson B (2012) Cropping systems for biomass feedstock production in the north central region, USA. 20th European Biomass Conference and Exhibition, 18–22 June 2012, Milan, Italy

    Google Scholar 

  • Bird KA, An H, Gazave E et al (2017) Population structure and phylogenetic relationships in a diverse panel of Brassica rapa L. Front Plant Sci 8:321. https://doi.org/10.3389/fpls.2017.00321

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonnema G, Del Carpio DP, Zhao J (2011) Diversity analysis and molecular taxonomy of Brassica vegetable crops. In: Sadowski J, Kole C (eds) Genetics, genomics and breeding of crop plants. CRC Press, New York, pp 81–124

    Google Scholar 

  • Bonnema G, Lee JG, Shuhang W et al (2019) Glucosinolate variability between turnip organs during development. PLoS One 14(6):e0217862. https://doi.org/10.1371/journal.pone.0217862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradshaw JE, Gemmell DJ, Gowers S, Wilson RN (2002) Turnip (Brassica rapa L. ssp. rapifera Metzg.) population improvement and cultivar production. Plant Breed 121:301–306

    Article  Google Scholar 

  • Briggs WH, Goldman IL (2006) Genetic variation and selection response in model breeding populations of Brassica rapa following a diversity bottleneck. Genetics 172(1):457–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardi T, Earle ED (1997) Production of new CMS Brassica oleracea by transfer of ‘Anand’ cytoplasm from B. rapa through protoplast fusion. Theor Appl Genet 94:204–212

    Article  Google Scholar 

  • Cartea ME, Francisco M, Soengas P, Velasco P (2011a) Phenolic compounds in Brassica vegetables. Molecules 16:251–280

    Article  CAS  Google Scholar 

  • Cartea ME, Lema M, Francisco M, Velasco P (2011b) Basic information on vegetable Brassica crops. In: Sadowski J, Kole C (eds) Genetics, genomics and breeding of crop plants. CRC Press, New York, pp 1–33

    Google Scholar 

  • Cartea ME, de Haro A, Obregón S et al (2012) Glucosinolate variation in leaves of Brassica rapa crops. Plant Foods Hum Nutr 67:283–288

    Article  CAS  PubMed  Google Scholar 

  • Cegielska-Taras T, Szala L, Matuszczak M et al (2015) Doubled haploids as a material for biotechnological manipulation and as a modern tool for breeding oilseed rape (Brassica napus L.). J Biotech Comput Biol Bionanotech 96(1):7–18

    CAS  Google Scholar 

  • Chen K, Gao C (2013) Targeted genome modification technologies and their applications in crop improvements. Plant Cell Rep 33:575–583

    Article  PubMed  CAS  Google Scholar 

  • Chen HG, Wu JS (2008) Characterization of fertile amphidiploid between Raphanus sativus and Brassica alboglabra and the cross ability with Brassica species. Genet Resour Crop Evol 55:143–150. https://doi.org/10.1007/s10722-007-9223-8

    Article  CAS  Google Scholar 

  • Cheng F, Wu J, Wang X (2014) Genome triplication drove the diversification of Brassica plants. Hortic Res 1:14024. https://doi.org/10.1038/hortres.2014.24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng F, Sun R, Hou X et al (2016a) Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea. Nat Genet 48:1218–1224

    Article  CAS  PubMed  Google Scholar 

  • Cheng F, Wu J, Cai C et al (2016b) Genome resequencing and comparative variome analysis in a Brassica rapa and Brassica oleracea collection. Sci Data 3:160119. https://doi.org/10.1038/sdata.2016.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi SR, Teakle GR, Plaha P et al (2007) The reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theor Appl Genet 115:777–792. https://doi.org/10.1007/s00122-007-0608-z

    Article  CAS  PubMed  Google Scholar 

  • Christian M, Cermak T, Doyle EL et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu B, Chen C, Li J et al (2017) Effects of Tibetan turnip (Brassica rapa L.) on promoting hypoxia-tolerance in healthy humans. J Ethnopharmacol 195:246–254

    Article  PubMed  Google Scholar 

  • Chung I-M, Rekha K, Rajakumar G, Thiruvengadam M (2016) Production of glucosinolates, phenolic compounds and associated gene expression profiles of hairy root cultures in turnip (Brassica rapa ssp. rapa). Biotech 6:175. https://doi.org/10.1007/s13205-016-0492-9

    Article  Google Scholar 

  • Conversa G, Corrado L, Anna B et al (2020) Nutritional characterization of two rare landraces of turnip (Brassica rapa. var. rapa) tops and their on-farm conservation in Foggia Province. Sustainability 12:3842. https://doi.org/10.3390/su12093842

    Article  Google Scholar 

  • Cristea TO, Leonte C, Brezeanu C et al (2012) Effect of AgNO3 on androgenesis of Brassica oleracea L. anthers cultivated in vitro. Afr J Biotech 11(73):13788–13795

    Google Scholar 

  • Das S, Rajagopal J, Bhatia S et al (1999) Assessment of genetic variation within Brassica campestris cultivars using amplified fragment length polymorphism and random amplification of polymorphic DNA markers. J Biosci 24:433–440

    Article  CAS  Google Scholar 

  • Davis-Hollander L (2015) Turnips. http://www.grit.com/farm-and-garden/growing-turnips-zm0z12jazreg.aspx

  • De Candolle A (1886) Origin of cultivated plants. Hafner, New York, 1967, English translation of the second edition, pp 316–321. https://doi.org/10.1017/CBO9781139107365

  • Del Carpio DP, Basnet RK, De Vos RCH et al (2011) The patterns of population differentiation in a Brassica rapa core collection. Theor Appl Genet 122:1105–1118

    Article  Google Scholar 

  • Demirbas A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manag 42:1357–1378

    Article  CAS  Google Scholar 

  • Dewan DB, Rakow G, Downey RK (1998) Growth and yield of doubled haploid lines of oilseed Brassica rapa. Can J Plant Sci 78:537–544

    Article  Google Scholar 

  • Duhoon SS, Koppar MN (1998) Distribution, collection and conservation of biodiversity in cruciferous oilseeds in India. Genet Resour Crop Evol 45:317–323

    Article  Google Scholar 

  • Duke JA (1983) Brassica rapa L. Handbook of energy crops. https://hort.purdue.edu/newcrop/duke_energy/Brassica_rapa.html

  • Earle ED, Dickson MH (1995) Brassica oleracea cybrids for hybrid vegetable production. Plant Mol Cell Biol:171–176

    Google Scholar 

  • El-Esawi MA (2015) Taxonomic relationships and biochemical genetic characterization of Brassica resources: towards a recent platform for germplasm improvement and utilization. Annu Res Rev Biol 8(4):1–11

    Article  Google Scholar 

  • El-Esawi MA (2016) Somatic hybridization and microspore culture in Brassica improvement. In: Anis N, Ahmad N (eds) Plant tissue culture: propagation, conservation and crop improvement. Springer, Singapore, pp 599–609

    Chapter  Google Scholar 

  • Feng Z, Mao Y, Xu N et al (2014) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci 111(12):4632–4637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrie AMR, Mollers C (2011) Haploids and doubled haploids in Brassica spp. for genetic and genomic research. Plant Cell Tissue Organ Cult 104:375–386

    Article  Google Scholar 

  • Francisco M, Velasco P, Romero Á et al (2009) Sensory quality of turnip greens and turnip tops grown in northwestern Spain. Eur Food Res Technol 230:281–290

    Article  CAS  Google Scholar 

  • Frascaroli E, Schrag TA, Melchinger AE (2013) Genetic diversity analysis of elite European maize (Zea mays L.) inbred lines using AFLP, SSR, and SNP markers reveals ascertainment bias for a subset of SNPs. Theor Appl Genet 126:133–141

    Article  PubMed  Google Scholar 

  • Galbraith DW (2009) Simultaneous flow cytometric quantification of plant nuclear DNA contents over the full range of described Angiosperm 2C values. Cytometry 75A:692–698

    Article  CAS  Google Scholar 

  • Gallo M, Esposito G, Ferracane R et al (2013) Beneficial effects of Trichoderma genus microbes on qualitative parameters of Brassica rapa L. subsp. sylvestris L. Janch. var. esculenta Hort. Eur Food Res Technol 236:1063–1071

    Article  CAS  Google Scholar 

  • Gao C (2015) Genome editing in crops: from bench to field. Natl Sci Rev 2:13–15

    Article  CAS  Google Scholar 

  • Gao C (2018) The future of CRISPR technologies in agriculture. Nat Rev Mol Cell Biol 19:1–2

    Article  CAS  Google Scholar 

  • Gautam M, Ge X, Li Z (2014) Brassica. In: Pratap A, Kumar J (eds) Alien gene transfer in crop plants, vol 2, achievements and impacts. Springer, New York, pp 207–229

    Chapter  Google Scholar 

  • Gepts P (2006) Plant genetic resources conservation and utilization: the accomplishments and future of a societal insurance policy. Crop Sci 46(5):2278–2292

    Article  Google Scholar 

  • Gerszberg A (2018) Tissue culture and genetic transformation of cabbage (Brassica oleracea var. capitata): an overview. Planta 248:1037–1048. https://doi.org/10.1007/s00425-018-2961-3

  • Glimelius K, Fahleson J, Landgren M et al (1991) Gene transfer via somatic hybridization in plants. Trends Biotechnol 9:24–30

    Article  Google Scholar 

  • Gómez-Campo C (1999) Taxonomy. In: Gómez-Campo C (ed) Biology of brassica coenospecies. Elsevier Science, Amsterdam, pp 3–32

    Chapter  Google Scholar 

  • Gómez-Campo C, Gustafsson M (1991) Germplasm of wild n = 9 Mediterranean Brassica species. Bot Chron 10:429–434

    Google Scholar 

  • Gomez-Campo C, Prakash S (1999) Origin and domestication. In: Gomez-Campo C (ed) Biology of Brassica Coeno species. Elsevier, Hoboken, pp 33–58. https://doi.org/10.1016/S0168-7972(99)80003-6

    Chapter  Google Scholar 

  • Greilhuber J, Doležel J, Lysak MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms ‘Genome size’ and ‘C-value’ to describe nuclear DNA contents. Ann Bot 95:255–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo YD, Pulli S (1996) High-frequency embryogenesis in Brassica campestris microspore culture. Plant Cell Tissue Organ Cult 46:219–225

    Article  Google Scholar 

  • Guo Y-D, Niemela T, Tulisalo U, Pulli S (2000) Maintenance of male sterile germplasm in Brassica rapa by in vitro propagation. Agric Food Sci Finl 9:231–238

    Article  Google Scholar 

  • Guo JX, Zhou NY, Ma RC, Cao MQ (2002) Genetic diversity in Brassica rapa revealed by AFLP molecular markers. J Agric Biotechnol 10:138–143

    Google Scholar 

  • Guo YM, Chen S, Li Z, Cowling WA (2014) Center of origin and centers of diversity in an ancient crop, Brassica rapa (Turnip rape). J Hered 105:555–565. https://doi.org/10.1093/jhered/esu021

    Article  PubMed  Google Scholar 

  • Guo YM, Samans B, Chen S et al (2017) Drought-tolerant Brassica rapa shows rapid expression of gene networks for general stress responses and programmed cell death under simulated drought stress. Plant Mol Biol Rep 35:416–430. https://doi.org/10.1007/s11105-017-1032-4

    Article  Google Scholar 

  • Haliloğlu Hİ, Arslan M, Lee B-J, Dabrowski K (2012) The effects of dietary turnip (Brassica rapa) and biofuel algae on growth and chemical composition in rainbow trout (Oncorhynchus mykiss) juveniles. Turk J Fish Aquat Sci 12:323–329

    Google Scholar 

  • Hammer K, Gladis T, Laghetti G, Pignone D (2013) The wild and the grown - remarks on Brassica. Int J Agric Sci 3(6):453–480

    Google Scholar 

  • Harberd DJ (1972) A contribution to the cyto-taxonomy of Brassica (Cruciferae) and its allies. Bot J Linn Soc 65(1):1–23

    Article  Google Scholar 

  • Harberd DJ (1976) Cytotaxonomic studies of Brassica and related genera. In: Vaughan JG, MacLeod AJ, Jones BMG (eds) The biology and chemistry of the Cruciferae. Academic Press, London, pp 47–68

    Google Scholar 

  • Harfoush EA (2010) A comparative study among simple recurrent selection, mass selection and selfing with selection methods on improving yield and quality of the turnip (Brassica rapa var. rapa, L.). MSc Thesis, Fac. of Agriculture, Alexandria Univ., Alexandria, Egypt

    Google Scholar 

  • Haurwitz RE, Jinek M, Wiedenheft B et al (2010) Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 329(5997):1355–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heenan PB, Fitzjohn RG, Dawson MI (2004) Diversity of brassica (brassicaceae) species naturalised in Canterbury, New Zealand, New Zealand. J Bot 42(5):815–832. https://doi.org/10.1080/0028825X.2004.9512932

  • Heyn FW (1976) Transfer of restorer genes from Raphanus to cytoplasmic male sterile Brassica napus. Cruciferae Newsl 1:15–16

    Google Scholar 

  • Hobson N, Rahman H (2016) Genome-wide identification of SSR markers in the Brassica A genome and their utility in breeding. Can J Plant Sci 96:808–818

    Article  CAS  Google Scholar 

  • Hoen K (1968) Heritabilities and genetic correlations in turnips (Brassica campestris L. var. rapa). Euphytica 17(3):352–356

    Article  Google Scholar 

  • Hong EY, Kim GH (2008) Anticancer and antimicrobial activities of β-phenylethyl isothiocyanate in Brassica rapa L. Food Sci Technol Res 14(4):377–382

    Article  CAS  Google Scholar 

  • Hong CP, Kwon SJ, Kim JS et al (2008) Progress in understanding and sequencing the genome of Brassica rapa. Int J Plant Genomics:1–9. https://doi.org/10.1155/2008/582837

  • Ignatov AN, Artemyeva AM, Hida K (2008) Origin and expansion of cultivated Brassica rapa in Eurasia: linguistic facts. Acta Hortic 867:81–88. https://doi.org/10.17660/ActaHortic.2010.867.9

    Article  Google Scholar 

  • Inomata N (1993) Crossability and cytology of hybrid progenies in the cross between Brassica campestris and three wild relatives of B. oleracea, B. bourgeaui, B. cretica and B. montana. Euphytica 69:7–17

    Article  Google Scholar 

  • Jan SA, Ari ZKS, Rabbani MA et al (2017) Assessment of quantitative agro-morphological variations among Brassica rapa diverse populations. Pak J Bot 49(2):561–567

    Google Scholar 

  • Javed A, Ahmad A, Nouman M et al (2019) Turnip (Brassica rapus L.): a natural health tonic. Braz J Food Technol 22:e2018253. https://doi.org/10.1590/1981-6723.25318

    Article  CAS  Google Scholar 

  • Jeon SM, Kim JE, Shin SK et al (2013) Randomized double-blind placebo-controlled trial of powdered Brassica rapa ethanol extract on alteration of body composition and plasma lipid and adipocytokine profiles in overweight subjects. J Med Food 16:133–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jing L, Bo L, Feng C et al (2016) A high density linkage map facilitates QTL mapping of flowering time in Brassica rapa. Hort Plant J 2(4):217–223

    Article  Google Scholar 

  • Johnston JS, Pepper AE, Hall AE (2005) Evolution of genome size in Brassicaceae. Ann Bot 95:229–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junior EG, Silveir BLFT, Perez VH et al (2019) Biodiesel production from non-edible forage turnip oil by extruded catalyst. Ind Crop Prod 139:111503. https://doi.org/10.1016/j.indcrop.2019.111503

    Article  CAS  Google Scholar 

  • Kaneko Y, Bang SW (2014) Interspecific and intergeneric hybridization and chromosomal engineering of Brassicaceae crops. Breed Sci 64:14–22. https://doi.org/10.1270/jsbbs.64.14

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang L, Li P, Wang A et al (2017) A novel cytoplasmic male sterility in Brassica napus (inap CMS) with carpelloid stamens via protoplast fusion with Chinese Woad. Front Plant Sci 8:529. https://doi.org/10.3389/fpls.2017.00529

    Article  PubMed  PubMed Central  Google Scholar 

  • Kapusta-Duch J, Kopeć A, Piątkowska E et al (2012) The beneficial effects of Brassica vegetables on human health. Rocz Panstw Zakl Hig 63(4):389–395

    CAS  PubMed  Google Scholar 

  • Karkleliene R (1999) Morphological characters inheritance and estimation of combining ability in carrots. Biologija 3:42–44

    Google Scholar 

  • Karkleliene R, Bobinas E, Staniene G (2005) Combining ability of morphological traits and biochemical parameters in carrot (Daucus sativus) CMS lines. Biologija 3:15–18

    Google Scholar 

  • Katche E, Quezada-Martinez D, Katche EI et al (2019) Interspecific hybridization for Brassica crop improvement. Crop Breed Genet Genom 1–32 1:e190007. https://doi.org/10.20900/cbgg20190007

    Article  Google Scholar 

  • Kaviani B (2011) Conservation of plant genetic resources by cryopreservation. Aust J Crop Sci 5(6):778–800

    Google Scholar 

  • Kebede B, Cheema K, Greenshields DL (2012) Construction of genetic linkage map and mapping of QTL for seed color in Brassica rapa. Genome 55:813–823. https://doi.org/10.1139/g2012-066

    Article  PubMed  Google Scholar 

  • Khalf-Allah AM, Abdel-Razzak HS, Feleafel MN, Harfoush EA (2014) Efficiency of selection breeding programs to improve yield and root quality of turnip. Int J Veg Sci 20:354–365

    Article  Google Scholar 

  • Kim JS, Chung TY, King GJ et al (2006) A sequence-tagged linkage map of Brassica rapa. Genetics 174:29–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirti PB, Prakash S, Bhat SR, Chopra VL (2003) Protoplast fusion and Brassica improvement. Indian J Biotechnol 2:76–84

    Google Scholar 

  • Kole C, Muthamilarasan M, Henry R et al (2015) Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects. Front Plant Sci 6:563. https://doi.org/10.3389/fpls.2015.00563

    Article  PubMed  PubMed Central  Google Scholar 

  • Kubo N, Ueoka H, Satoh S (2019) Genetic relationships of Heirloom turnip (Brassica rapa) cultivars in Shiga prefecture and other regions of Japan. Hortic J 88(4):471–480. https://doi.org/10.2503/hortj.UTD-071

    Article  Google Scholar 

  • Kuginuki Y, Miyajima T, Masuda H et al (1999) Highly regenerative cultivars in microspore culture in Brassica oleracea L. var. capitata. Breed Sci 49:251–256

    Article  Google Scholar 

  • Kumar G, Singh M, Kumar R et al (2015a) Yield and quality of fodder turnip as affected by N application and weed management during lean period. Indian J Anim Nutr 32(1):57–62

    CAS  Google Scholar 

  • Kumar M, Choi J-Y, Kumari N et al (2015b) Molecular breeding in Brassica for salt tolerance: importance of microsatellite (SSR) markers for molecular breeding in Brassica. Front Plant Sci 6:688. https://doi.org/10.3389/fpls.2015.00688

    Article  PubMed  PubMed Central  Google Scholar 

  • Lala S, Amri A, Maxted N (2018) Towards the conservation of crop wild relative diversity in North Africa: checklist, prioritisation and inventory. Genet Resour Crop Evol 65:113–124

    Article  Google Scholar 

  • Lee M-H, Lim CJ, Lee I-H, Song J-H (2014) High-purity seed production of doubled haploid Chinese cabbage [Brassica rapa L. ssp. pekinensis (Lour.)] through microspore culture. Plant Breed Biotechnol 2(2):167–175

    Article  Google Scholar 

  • Leroux B, Carmoy N, Giraudet D et al (2009) Inhibition of ethylene biosynthesis enhances embryogenesis of cultured microspores of Brassica napus. Plant Biotechnol Rep 3:347–353

    Article  Google Scholar 

  • Li CW (1982) The origin, evolution, taxonomy and hybridization of Chinese cabbage. In: Talekar NS, Griggs TD (eds) Chinese cabbage. Proceedings of the 1st international AVRDC symposium, Taiwan, pp 1–10

    Google Scholar 

  • Li X, Li B, Yang Y (2018) Effects of foliar selenite on the nutrient components of turnip (Brassica rapa var. rapa Linn.). Front Chem 6:42. https://doi.org/10.3389/fchem.2018.00042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim TK (2015) Edible medicinal and non-medicinal plants: V. 9, Modified stems, roots, Bulbs 777–788. https://doi.org/10.1007/978-94-017-9511-1-28

  • Lim YP, Plaha P, Choia SR et al (2006) Toward unraveling the structure of Brassica rapa genome. Physiol Plant 126:585–591

    CAS  Google Scholar 

  • Lin K, Zhang N, Severing E (2014) Beyond genomic variation - comparison and functional annotation of three Brassica rapa genomes: a turnip, a rapid cycling and a Chinese cabbage. BMC Genomics 15:250. https://doi.org/10.1186/1471-2164-15-250

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin S, Miao Y, Su S et al (2019) Comprehensive analysis of Ogura cytoplasmic male sterility-related genes in turnip (Brassica rapa ssp. rapifera) using RNA sequencing analysis and bioinformatics. PLoS ONE 14(6):e0218029. https://doi.org/10.1371/journal.pone.0218029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linnaeus C (1753) Species Plantarum. Holmiae (Stockholm) (Reprint London, 1957)

    Google Scholar 

  • Liu B, Wang Y, Zhai W et al (2013) Development of InDel markers for Brassica rapa based on whole-genome re-sequencing. Theor Appl Genet 126:231–239

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Ding Y, Zhou Y et al (2017a) CRISPR-P 2.0: an improved CRISPR-Cas9 tool for genome editing in plants. Mol Plant 10(3):530–532

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Yin X, Yang Y et al (2017b) Molecular cloning and expression analysis of turnip (Brassica rapa var. rapa) sucrose transporter gene family. Plant Div 39:123–129

    Article  Google Scholar 

  • Liu M, Bassetti N, Petrasch S et al (2019) What makes turnips: anatomy, physiology and transcriptome during early stages of its hypocotyl-tuber development. Hortic Res 6:38. https://doi.org/10.1038/s41438-019-0119-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lou L, Lou Q, Li Z et al (2017) Production and characterization of intergeneric hybrids between turnip (Brassica rapa L. Em. Metzg. subsp. rapa) and radish (Raphanus sativus L.). Sci Hortic 220:57–65

    Article  Google Scholar 

  • Lu G, Cao J, Yu X et al (2008) Mapping QTLs for root morphological traits in Brassica rapa L. based on AFLP and RAPD markers. J Appl Genet 49(1):23–31

    Article  PubMed  Google Scholar 

  • Lu K, Wei L, Li X et al (2019) Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement. Nat Commun 10:1154. https://doi.org/10.1038/s41467-019-09134-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mabhaudhi T, Chimonyo VGP, Hlahla S et al (2019) Prospects of orphan crops in climate change. Planta 250:695–708. https://doi.org/10.1007/s00425-019-03129-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malik S, Khan I, Shuaib M, Ali K (2018) Effect of gamma radiations (60Co) on seed germination and growth of turnip plant (Brassica rapa L.). Biointerface Res Appl Chem 8(4):3395–3399

    CAS  Google Scholar 

  • Maxted N, Ford-Lloyd BV, Jury S et al (2006) Towards a definition of a crop wild relative. Biol Conserv 15:2673–2685

    Google Scholar 

  • Maxted N, Kell S, Toledo Á et al (2010) A global approach to crop wild relative conservation: securing the gene pool for food and agriculture. Kew Bull 65:561–576

    Article  Google Scholar 

  • Metzger J (1833) Systematische Beschreibung der Kultivirten Kohlarten, Heidelberg

    Google Scholar 

  • Mineykina A, Shumilina D, Bondareva L et al (2020) Effect of Beta-Lactam antibiotics on microspore embryogenesis in Brassica species. Plan Theory 9:489. https://doi.org/10.3390/plants9040489

    Article  CAS  Google Scholar 

  • Mollers C, Iqbal MCM (2009) Doubled haploids in breeding winter oilseed rape. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer, Heidelberg, pp 161–170

    Chapter  Google Scholar 

  • Momotaz A, Kato M, Kakihara F (1998) Production of intergeneric hybrids between Brassica and Sinapis species by means of embryo rescue techniques. Euphytica 103(1):123–130

    Article  Google Scholar 

  • Nagaharu U (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Japan. J Bot 7:389–452

    Google Scholar 

  • Nasim A, Iqbal FS, Shah S, Azam SM (2013) Genetic variability and correlation studies for morphophysilogical traits in Brassica napus L. Pak J Bot 45(4):1229–1234

    Google Scholar 

  • Neilsen JE, Rowe BA, Lane PA (2008) Vegetative growth and development of irrigated forage turnip (Brassica rapa var. rapa). Grass Forage Sci 63:438–446

    Article  Google Scholar 

  • Niino T, Arizaga MV (2015) Cryopreservation for preservation of potato genetic resources. Breed Sci 65:41–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • OECD (2016) Chapter 3: Safety assessment of transgenic organisms in the environment, volume 5: OECD consensus documents, harmonisation of regulatory oversight in biotechnology. OECD Publishing, Paris. https://doi.org/10.1787/9789264253018-en

    Book  Google Scholar 

  • Ofori A, Becker HC, Kopisch-Obuch FJ (2008) Effect of crop improvement on genetic diversity in oilseed Brassica rapa (turnip-rape) cultivars, detected by SSR markers. J Appl Genet 49(3):207–212

    Article  PubMed  Google Scholar 

  • Ogura H (1968) Studies on the new male-sterility in Japanese radish, with special reference to the utilization of this sterility towards the practical raising of hybrid seeds. Mem Fac Agric Kagoshima Univ 6(2):39–78

    Google Scholar 

  • Okuzaki A, Ogawa T, Koizuka C et al (2018) CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus. Plant Physiol Biochem 131:63–69

    Article  CAS  PubMed  Google Scholar 

  • Padayatty SJ, Katz A, Wang Y et al (2003) Vitamin C as an antioxidant: evaluation of its role in disease prevention. J Am Coll Nutr 22:18–35

    Article  CAS  PubMed  Google Scholar 

  • Padilla G, Cartea ME, Rodríguez VM, Ordás A (2005) Genetic diversity in a germplasm collection of Brassica rapa subsp. rapa L. from northwestern Spain. Euphytica 145:171–180

    Article  Google Scholar 

  • Padmaja LK, Agarwal P, Gupta V et al (2014) Natural mutations in two homoeologous TT8 genes control yellow seed coat trait in allotetraploid Brassica juncea (AABB). Theor Appl Genet 127(2):339–347. https://doi.org/10.1007/s00122-013-2222-6

    Article  CAS  PubMed  Google Scholar 

  • Pang W, Li X, Choi SR et al (2015) Development of a leafy Brassica rapa fixed line collection for genetic diversity and population structure analysis. Mol Breed 35:54. https://doi.org/10.1007/s11032-015-0221-9

    Article  Google Scholar 

  • Panis B, Lambardi M (2005) Status of cryopreservation technologies in plants (crops and forest trees). The Role of Biotechnology, Villa Gualino, Turin, Italy 5–7 March 2005

    Google Scholar 

  • Park S, H-J Y, Mun J-H, Lee S-C (2010) Genome-wide discovery of DNA polymorphism in Brassica rapa. Mol Genet Genomics 283:135–145

    Article  CAS  PubMed  Google Scholar 

  • Park J-I, Ahmed NU, Kim H-R, Nou I-S (2012) Advances in in vitro culture of the Brassicaceae crop plants. J Plant Biotechnol 39:13–22

    Article  Google Scholar 

  • Parkin IAP, Gulden SM, Sharpe AG et al (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parveen T, Hussain A, Rao MS (2015) Growth and accumulation of heavy metals in turnip (Brassica rapa) irrigated with different concentrations of treated municipal wastewater. Hydrol Res 46(1):60–71. https://doi.org/10.2166/nh.2014.140

    Article  CAS  Google Scholar 

  • Pathirana R (2011) Plant mutation breeding in agriculture. Perspectives in Agric Vet Sci Nutr Nat Resour 6:032. http://www.cabi.org/cabreviews

  • Paul S, Geng C-A, Yang T-H et al (2019) Phytochemical and health-beneficial progress of turnip (Brassica rapa). J Food Sci 84(1):19–30. https://doi.org/10.1111/1750-3841.14417

    Article  CAS  PubMed  Google Scholar 

  • Pellicer J, Hidalgo O, Dodsworth S, Leitch IJ (2018) Genome size diversity and its impact on the evolution of land plants. Genes 9:88. https://doi.org/10.3390/genes9020088

    Article  CAS  PubMed Central  Google Scholar 

  • Persson K, Falt A-S, Bothmer RV (2001) Genetic diversity of allozymes in turnip (Brassica rapa L. var. rapa) from the Nordic area. Hereditas 134:43–52

    Article  CAS  PubMed  Google Scholar 

  • Podsedek A (2007) Natural antioxidants and antioxidant capacity of Brassica vegetables: a review. LWT Food Sci Technol 40:1–11

    Article  CAS  Google Scholar 

  • Prakash SR, Bhat SR, Quiros CF et al (2009) Brassica and its close allies: cytogenetics and evolution. Plant Breed Rev 31:21–187

    CAS  Google Scholar 

  • Pu Y, Yang D, Yin X et al (2018) Genome-wide analysis indicates diverse physiological roles of the turnip (Brassica rapa var. rapa) oligopeptide transporters gene family. Plant Div 40:57–67

    Article  Google Scholar 

  • Qi X, An H, Ragsdale AP et al (2017) Genomic inferences of domestication events are corroborated by written records in Brassica rapa. Mol Ecol 100:1–16. https://doi.org/10.1111/mec.14131

    Article  CAS  Google Scholar 

  • Qian W, Meng J, Li M et al (2006) Introgression of genomic components from Chinese Brassica rapa contributes to widening the genetic diversity in rapeseed (B. napus L.), with emphasis on the evolution of Chinese rapeseed. Theor Appl Genet 113:49–54

    Article  CAS  PubMed  Google Scholar 

  • Qu C, Fu F, Lu K et al (2013) Differential accumulation of phenolic compounds and expression of related genes in black- and yellow-seeded Brassica napus. J Exp Bot 64:2885–2898. https://doi.org/10.1093/jxb/ert148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qureshi SN, Anwar R, Kashif M, Ghafoor A (2009) Evaluation of winter vegetables for genetic divergence and characterization of genotypes. Pak J Bot 41(3):1117–1126

    Google Scholar 

  • Rahman MH (2001) Production of yellow-seeded Brassica napus through interspecific crosses. Plant Breed 120:463–472. https://doi.org/10.1046/j.1439-0523.2001.00640.x

    Article  Google Scholar 

  • Rahman M, de Jiménez MM (2016) Behind the scenes of microspore-based haploid development in Brassica napus: a review. J Plant Sci Mol Breed 5:1. https://doi.org/10.7243/2050-2389-5-1

    Article  CAS  Google Scholar 

  • Raiola A, Errico A, Petruk G et al (2018) Bioactive compounds in Brassicaceae vegetables with a role in the prevention of chronic diseases. Molecules 23(15):1–10. https://doi.org/10.3390/molecules23010015

    Article  CAS  Google Scholar 

  • Rakow G (2004) Species origin and economic importance of Brassica. In: Pua EC, Douglas CJ (eds) Biotechnology in agriculture and forestry, vol 54. Springer-Verlag Berlin, New York, pp 3–11

    Google Scholar 

  • Rao NK (2004) Plant genetic resources: advancing conservation and use through biotechnology. Afr J Biotechnol 3(2):136–145

    Google Scholar 

  • Ravanfar SA, Orbovicb V, Moradpour M (2017) Improvement of tissue culture, genetic transformation, and applications of biotechnology to Brassica. Biotech Gene Eng Rev 33:1–25. https://doi.org/10.1080/02648725.2017.1309821

    Article  CAS  Google Scholar 

  • Raza A, Razzaq A, Mehmood SS (2019) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plan Theory 8:34. https://doi.org/10.3390/plants8020034

    Article  CAS  Google Scholar 

  • Reiner H, Holzner W, Ebermann R (1995) The development of turnip-type and oilseed-type Brassica rapa crops from the wild type in Europe. - an overview of botanical, historical and linguistic facts. – Rapeseed today and tomorrow, 4:1066–1069, 9th International Rapeseed Congress, Cambridge, UK 4–7 July 1995

    Google Scholar 

  • Reiner L, Gladis T, Amon H, Emmerling-Skala A (2005) The ‘Bavarian Turnip’ - a rediscovered local vegetable variety of Brassica rapa L. Em. Metzg. var. rapa Ludwig. Genet Resour Crop Evol 52:111–113

    Article  Google Scholar 

  • Ren JP, Dickson MH, Earle ED (2000) Improved resistance to bacterial soft rot by protoplast fusion between Brassica rapa and B. oleracea. Theor Appl Genet 100(5):810–819

    Article  Google Scholar 

  • Ren Y, He Q, Ma X, Zhang L (2017a) Characteristics of color development in seeds of brown- and yellow-seeded heading Chinese cabbage and molecular analysis of Brsc, the candidate gene controlling seed coat color. Front Plant Sci 8:1410. https://doi.org/10.3389/fpls.2017.01410

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren Y, Wu J, Zhao J, Hao L, Zhang L (2017b) Identification of SSR markers closely linked to the yellow seed coat color gene in heading Chinese cabbage (Brassica rapa L. ssp. pekinensis). Biol Open 6(2):278–282. https://doi.org/10.1242/bio.021592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez JA, Nespereira B, Pérez-Ilzarbe M et al (2005) Vitamins C and E prevent endothelial VEGF and VEGFR-2 overexpression induced by porcine hypercholesterolemic LDL. Cardiovasc Res 65:665–673

    Article  PubMed  CAS  Google Scholar 

  • Rose P, Huang Q, Ong CN, Whiteman M (2005) Broccoli and watercress suppress matrix metalloproteinase-9 activity and invasiveness of human MDA-MB-231 breast cancer cells. Toxicol Appl Pharmacol 209:105–113

    Article  CAS  PubMed  Google Scholar 

  • Rudolf K, Bohanec RK, Hansen M (1999) Microspore culture of white cabbage, Brassica oleracea var. capitata L.: genetic improvement of non-responsive cultivars and effect of genome doubling agents. Plant Breed 118:237–241

    Article  CAS  Google Scholar 

  • Ryu JP, Kim DC, In MJ et al (2012) Antioxidant potential of ethanol extract of Brassicarapa L. root. J Med Plant Res 6(9):1581–1584

    CAS  Google Scholar 

  • Sabharwal PS, Doležel J (1993) Interspecific hybridization in Brassica: application of flow cytometry for analysis of ploidy and genome composition in hybrid plants. Biol Plant 35:169–177

    Article  Google Scholar 

  • Sadia AA, Ona AF, Taufique T et al (2013) Influence of nitrogen on growth and yield of turnip. J Exp Biosci 4(2):39–42

    Google Scholar 

  • Saeed MK, Anjum S, Ahmad I et al (2012) Nutritional facts and free radical scavenging activity of turnip (Brassica rapa) from Pakistan. World Appl Sci J 19(3):370–375

    CAS  Google Scholar 

  • Sakhanokho HF, Faridi N-I, Babiker EM et al (2020) Determination of nuclear DNA content, ploidy, and FISH location of ribosomal DNA in Hibiscus hamabo. Sci Hortic 264:1091672

    Article  CAS  Google Scholar 

  • Sanlier N, Saban GM (2018) The benefits of Brassica vegetables on human health. J Human Health Res 1:104

    Google Scholar 

  • Schranz ME, Lysak MA, Mitchell-Olds T (2006) The abc's of comparative genomics in the brassicaceae: building blocks of crucifer genomes. Trend Plant Sci 11:535–542

    Article  CAS  Google Scholar 

  • Schulz OE (1919) IV. 105 Cruciferae-Brassiceae. Part 1. Subtribes I. Brassicinae and II. Raphaninae. In: Engler A (ed) Das Pflanzenreich, Heft 68–70. Wilhelm Engelmann, Leipzig, pp 1–290

    Google Scholar 

  • Schulz OE (1936) Cruciferae. In: Engler A, Harms H (eds) Die Natürlichen Pflanzenfamilien, 2nd edn. 17B, Leipzig, pp 227–658

    Google Scholar 

  • Shafek RE, Michael HN, Sayed AZ et al (2018) Phytochemical study, antioxidant and cytotoxic activities of Brassica rapa L. leaves extract and its silver nanoparticles. Egypt J Chem 61(2):237–247

    Google Scholar 

  • Shah SN, Iha OK, Alves FC et al (2013) Potential application of turnip oil (Raphanus sativus L.) for biodiesel production: physical-chemical properties of neat oil, biofuels and their blends with ultra-low sulphur diesel (ULSD). Bioenergy Res 6:841–850

    Article  CAS  Google Scholar 

  • Shah MA, Sarker MM, Gousuddin M (2016) Antidiabetic potential of Brassica oleracea var. Italica in Type 2 diabetic Sprague dawley (sd) rats. Int J Pharmacogn Phytochem Res 8:462–446

    Google Scholar 

  • Shankar S, Segaran G, Sundar RDV et al (2019) Brassicaceae - a classical review on its pharmacological activities. Int J Pharm Sci Rev Res 55(1):107–113

    CAS  Google Scholar 

  • Shindell D, Kuylenstierna JCI, Vignati E et al (2012) Simultaneously mitigating near-term climate change and improving human health and food security. Science 335:183–189. https://doi.org/10.1126/science.1210026

    Article  CAS  PubMed  Google Scholar 

  • Shmykova NA, Shumilina DV, Suprunova TP (2016) Doubled haploid production in Brassica L. species. Russ J Genet Appl Res 6:68–77

    Article  Google Scholar 

  • Shumilina D, Kornyukhin D, Domblides E et al (2020) Effects of genotype and culture conditions on microspore embryogenesis and plant regeneration in Brassica rapa ssp. rapa L. Plan Theory 9:278. https://doi.org/10.3390/plants9020278

    Article  CAS  Google Scholar 

  • Singh S, Verma AK (2015) A review on efforts of induced mutagenesis for qualitative and quantitative improvement of oilseed brassicas. J Pharm Phytochemistry 4(2):298–302

    Google Scholar 

  • Sinskaia EN (1928) The oleiferous plants and root crops of the family Cruciferae. Bull Appl Bot Genet Pl Breed 3:166–175

    Google Scholar 

  • Soengas P, Sotelo T, Velasco P, Cartea ME (2011) Antioxidant properties of Brassica vegetables. Funct Plant Sci Biotechnol 5(2):43–55

    Google Scholar 

  • Solaiman AH, Hasanuzzaman M, Md JU (2008) Performance of turnip (Brassica rapa sub sp. rapifera) under different manuring package at mulched and non-mulched condition. Am Eurasian J Bot 1(3):78–84

    Google Scholar 

  • Solieman TH (2001) Efficiency of simple recurrent selection and selfing with selection on improving some economical characters of cauliflower (Brassica oleracea var. botrytis). J Adv Agric Res 6(2):323–335

    Google Scholar 

  • Solieman TH, Abdel-Razzak HS, Doss MM, El-Gazzar AR (2012) Efficiency of mass selection and selfing with selection breeding methods on improving some important characters of three eggplant cultivars. Am Eurasian J Agric Environ Sci 12(3):342–351

    Google Scholar 

  • Song KM, Osborn TC, Williams PH (1988) Brassica taxonomy based on nuclear restriction fragment length polymorphism (RFLPs). 2. Preliminary analysis of sub-species within B. rapa (syn. campestris) and B. oleracea. Theor Appl Genet 76:593–600

    Article  CAS  PubMed  Google Scholar 

  • Song KM, Osborn TC, Williams PH (1990) Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). 3. Genome relationships in Brassica and related genera and the origin of B. oleracea and B. rapa (syn. campestris). Theor Appl Genet 79:497–506

    Article  CAS  PubMed  Google Scholar 

  • Stewart AV (2002) A review of Brassica species, cross-pollination and implications for pure seed production in New Zealand. Agron NZ 32:63–82

    Google Scholar 

  • Stocker T, Qin D, Plattner G et al (2013) IPCC, 2013: climate change: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change

    Google Scholar 

  • Suwabe K, Tsukazaki H, Iketani H et al (2006) Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: the genetic origin of clubroot resistance. Genetics 173:309–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi Y, Yokoi S, Takahata Y (2012) Effects of genotypes and culture conditions on microspore embryogenesis and plant regeneration in several subspecies of Brassica rapa L. Plant Biotechnol Rep 6:297–304

    Article  Google Scholar 

  • Takuno S, Kawahara T, Ohnishi O (2007) Phylogenetic relationships among cultivated types of Brassica rapa L. Em. Metzg. As revealed by AFLP analysis. Genet Resour Crop Evol 54:279–285

    Article  CAS  Google Scholar 

  • Talebi R, Haghnazari A, Tabatabaei I (2010) Assessment of genetic variation within international collection of Brassica rapa genotypes using inter simple sequence repeat DNA markers. Biharean Biol 4(2):145–151

    Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277(5329):1063–1066

    Article  CAS  PubMed  Google Scholar 

  • Tesfahun W (2018) Climate change mitigation and adaptation through biotechnology approaches: a review. Int J Agric For Life Sci 2(1):62–74

    Google Scholar 

  • Tiryakioglu H, Turk M (2012) Effects of different sowing and harvesting times on yield and quality of forage turnip (Brassica rapa L.) grown as a second crop. Tur J Field Crops 17(2):166–170

    Google Scholar 

  • Torricelli R, Pacicco L, Bodesmo M et al (2016) Assessment of Italian landrace density and species richness: useful criteria for developing in situ conservation strategies. In: Maxted N, Dulloo ME, Ford-Lloyd BV (eds) Enhancing crop Genepool use: capturing wild relative and landrace diversity for crop improvement. CAB Publishing, Wallingford, pp 326–331

    Chapter  Google Scholar 

  • Toxeopus H, Oost EH, Reuling G (1984) Current aspects of the taxonomy of cultivated Brassica species. The use of B. rapa L. versus B. campestris L. and a proposal for a new intraspecific classification of B. rapa L. Crucifer Newsl 9:55–57

    Google Scholar 

  • Tsai SQ, Joung JK (2016) Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases. Nat Rev Genet 17(5):300–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu Y-K, Han-Wei C, Kuang-Yu T et al (2020) Morphological and genetic characteristics of F1 hybrids introgressed from Brassica napus to B. rapa in Taiwan. Bot Stud 61:1–13. https://doi.org/10.1186/s40529-019-0279-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turi NA, Farhatullah RMA, Shinwari ZK (2012) Genetic diversity in the locally collected Brassica species of Pakistan based on microsatellite markers. Pak J Bot 44(3):1029–1035

    CAS  Google Scholar 

  • Van De Wouw M, Kik C, Van Hintum T et al (2010) Genetic erosion in crops: concept, research results and challenges. Plant Genet Resour Charact Util 8(1):1–15

    Article  Google Scholar 

  • Vavilov NI (1949) The origin, variation, immunity and breeding of cultivated plants. Chron Bot 13:1–364

    Google Scholar 

  • Venkateswarlu B, Shanker A (2009) Climate change and agriculture: adaptation and mitigation strategies. Indian J Agron 54:226–230

    Google Scholar 

  • Vieira IS, Vasconcelos EP, Monteiro AA (1998) Nitrate accumulation, yield and leaf quality of turnip greens in response to nitrogen fertilization. Nutr Cycl Agroecosyst 51:249–258

    Article  Google Scholar 

  • Villa TC, Maxted N, Scholten M, Ford-Lloyd B (2005) Defining and identifying crop landraces. Plant Genet Resour 3(3):373–384

    Article  Google Scholar 

  • Vogl-Lukasser B, Vogl CR, Reiner H (2007) The turnip (Brassica rapa L. subsp. rapa) in Eastern Tyrol (Lienz district; Austria). Ethnobot Res Appl 5:305–317

    Article  Google Scholar 

  • Vos P (2009) Characterization of Brassica rapa turnip formation in multiple segregating populations. Wageningen University, Laboratory of Plant Breeding, Wageningen

    Google Scholar 

  • Waara S, Glimelius K (1995) The potential of somatic hybridization in crop breeding. Euphytica 85:217–233

    Article  Google Scholar 

  • Wang X, Wang H, Wang J et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039. https://doi.org/10.1038/ng.919. PMID:21873998

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Xiao L, Guo S, An F, Du D (2016) Fine Mapping and whole-genome resequencing identify the seed coat color gene in Brassica rapa. PLoS One 11(11):e0166464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Xiao L, Dun X, Liu K, Du D (2017) Characterization of the BrTT1 gene responsible for seed coat color formation in Dahuang (Brassica rapa L. landrace). Mol Breed 37(11):137. https://doi.org/10.1007/s11032-017-0736-3

    Article  CAS  Google Scholar 

  • Warwick SI, Hall JC (2009) Phylogeny of Brassica and wild relatives. In: Gupta SK (ed) Biology and breeding of crucifers. CRC Press, Boca Raton, pp 19–36

    Google Scholar 

  • Warwick SI, James T, Falk KC (2008) AFLP-based molecular characterization of brassica rapa and diversity in Canadian spring turnip rape cultivars. Plant Genet Resour 6:11–21

    Article  CAS  Google Scholar 

  • Williams PH, Hill CB (1986) Rapid-cycling populations of Brassica. Sci J 232:1385–1389

    CAS  Google Scholar 

  • Xiao L, Zhao Z, Du D et al (2012) Genetic characterization and fine mapping of a yellow seeded gene in Dahuang (a Brassica rapa landrace). Theor Appl Genet 124(5):903–909

    Article  CAS  PubMed  Google Scholar 

  • Xiao D, Wang H, Basnet RK et al (2014) Genetic dissection of leaf development in Brassica rapa using a genetical genomics approach. Plant Physiol 164:1309–1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong X, Liu W, Jiang J et al (2019) Efficient genome editing of Brassica campestris based on the CRISPR/Cas9 system. Mol Genet Genomics 294:1251–1261

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Quiros CF (2010) Survey of glucosinolate variation in leaves of Brassica rapa crops. Genet Resour Crop Evol 57:1079–1089

    Article  CAS  Google Scholar 

  • Yildirim E, Yildirim N, Ercisli S et al (2010) Genetic relationships among turnip (Brassica rapa var. rapa) genotypes. Genet Mol Res 9(2):987–993

    Article  CAS  PubMed  Google Scholar 

  • Young-Mathews A (2012) Plant guide for field mustard (Brassica rapa var. rapa). USDA-Natural Resources Conservation Service, Corvallis Plant Materials Center, Corvallis. http://www.nrcs.usda.gov/

  • Yuan JS, Tiller KH, Al-Ahmad H et al (2008) Plants to power: bioenergy to fuel the future. Trend Plant Sci 13:421–429

    Article  CAS  Google Scholar 

  • Zeng A, Yan J, Song L et al (2015) Effects of ascorbic acid and embryogenic microspore selection on embryogenesis in white cabbage (Brassica oleracea L. var. capitata). J Hort Sci. Biotech 90(6):607–612

    CAS  Google Scholar 

  • Zhang J, Lu Y, Yuan Y et al (2009) Map-based cloning and characterization of a gene controlling hairiness and seed coat color traits in Brassica rapa. Plant Mol Biol 69:553–563. https://doi.org/10.1007/s11103-008-9437-y

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wang A, Liu Y et al (2011) Effects of the antiauxin PCIB on microspore embryogenesis and plant regeneration in Brassica rapa. Sci Hortic 130:32–37

    CAS  Google Scholar 

  • Zhang R-J, Hu S-W, Yan J-Q, Sun G-L (2013) Cytoplasmic diversity in Brassica rapa L. investigated by mitochondrial markers. Genet Resour Crop Evol 60:967–974

    Article  CAS  Google Scholar 

  • Zhang N, Zhao J, Lens F et al (2014a) Morphology, carbohydrate composition and vernalization response in a genetically diverse collection of Asian and European turnips (Brassica rapa subsp. rapa). PLoS One 9(12):e114241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang X, Lu G, Long W et al (2014b) Recent progress in drought and salt tolerance studies in Brassica crops. Breed Sci 64:60–73. https://doi.org/10.1270/jsbbs.64.60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Liu T, Li X et al (2016) Interspecific hybridization, polyploidization, and backcross of Brassica oleracea var. alboglabra with B. rapa var. purpurea morphologically recapitulate the evolution of Brassica vegetables. Sci Rep 6:18618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Cai X, Wu J (2018a) Improved Brassica rapa reference genome by single-molecule sequencing and chromosome conformation capture technologies. Hortic Res 5:50. https://doi.org/10.1038/s41438-018-0071-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Massel K, Godwin ID, Gao C (2018b) Applications and potential of genome editing in crop improvement. Genome Biol 19:210. https://doi.org/10.1186/s13059-018-1586-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang K, Nie L, Cheng Q et al (2019a) Effective editing for lysophosphatidic acid acyltransferase 2/5 in allotetraploid rapeseed (Brassica napus L.) using CRISPR-Cas9 system. Biotechnol Biofuels 12:225. https://doi.org/10.1186/s13068-019-1567-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Chuang M, Hongbo C et al (2019b) Integration of metabolome and transcriptome reveals flavonoid accumulation in the intergeneric hybrid between Brassica rapa and Raphanus sativus. Sci Rep 9:18368. https://doi.org/10.1038/s41598-019-54889-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Wang X, Deng B et al (2005) Genetic relationship between Brassica rapa as inferred from AFLP fingerprints. Theor Appl Genet 110:1301–1314

    Article  PubMed  Google Scholar 

  • Zhao H, Basu U, Kebede B et al (2019) Fine mapping of the major QTL for seed coat color in Brassica rapa var. Yellow Sarson by use of NIL populations and transcriptome sequencing for identification of the candidate genes. PLoS One 14(2):e0209982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng J-s, C-z S, Xiao D et al (2015) Karyotype variation and conservation in morphotypes of non-heading Chinese cabbage. Plant Syst Evol 301:1781–1791

    Article  Google Scholar 

  • Zou J, Hu D, Mason AS et al (2018) Genetic changes in a novel breeding population of Brassica napus synthesized from hundreds of crosses between B. rapa and B. carinata. Plant Biotechnol J 16:507–519

    Article  CAS  PubMed  Google Scholar 

Download references

Dedication

The author dedicates this chapter to Professor Abdel Aziz Khalf-Allah, who recently passed away. He stands as one of the most important plant breeders in Egypt and his knowledge and remarkable work have been a great motivation for me and other vegetable plant breeders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hesham S. Abdel-Razzak .

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 Appendix I: Research Institutes Relevant to Turnip

Institution

Specialization and research activities

Address

Contact information and website

Agriculture and Agri-Food

Segmental structure of the Brassica napus genome

Canada Saskatoon, Research Centre 107 Science Place Saskatoon, SK, S7N 0X2, Canada

E-mail: isobel.parkin@agr.gc.ca

http://www.agr.gc.ca.

All-Russian Institute of Vegetable Breeding and Seed Production

Genetic resources and disease resistance

Moscow, 143080, Russia

E-mail: vniissok@cea.ru

http://en.vniimk.ru/about/

Center for Genetic resources

Genetic resources

Wageningen University, 6708 PB, Wageningen, the Netherlands.

https://www.wur.nl/en/Research-Results/Statutory-research-tasks/Centre-for-Genetic-Resources-the-Netherlands-1

Department of Plant Genetics

Brassica plant genetics

Misión Biológica de Gallicia, Spanish Council for Scientific Research (CSIC), P.O. Box 28, E-36080 Pontevedra, Spain

E-mail: cartea@mbg.cesga.es

http://www.mbg.csic.es/en/the-mision-biologica-de-galicia/

Department of Plant Genetics

Brassica plant quality

Misión Biológica de Gallicia, Spanish Council for Scientific Research (CSIC), P.O. Box 28, E-36080 Pontevedra, Spain

E-mail: mfrancisco@mbg.cesgaes

E-mail: pvelasco@mbg.cesga.es

http://www.mbg.csic.es/en/the-mision-biologica-de-galicia/

Department of Horticulture, Chungnam National University

Classical breeding and genetic analysis of vegetable brassicas

Gung-Dong, Yuseong-Gu, Daejeon 305–764, Korea

Email: yplim@cnu.ac.kr

https://www.researchgate.net/institution/Chungnam_National_University/department/Department_of_Horticultural_Science

Diversity Fixed Foundation

Sets (DFFS)

Informative sets of genetically fixed lines representing a structured sampling of diversity within the relevant gene pool for Brassica crops

 

www.brassica.info.

https://warwick.ac.uk/fac/sci/lifesci/research/grc/plant/dffs/

European Cooperative Programme for Plant Genetic Resources (ECPGR)

Plant genetic resources

 

http://www.ecpgr.cgiar.org/

Laboratory of Plant Breeding

Plant Breeding (differentiation in Brassica rapa core)

Wageningen University, 6708 PB, Wageningen, the Netherlands

E-mail: Dunia.Pino@wur.nl

https://www.wur.nl/en/Research-

Laboratory of Plant Breeding, Wageningen University

Diversity analysis and molecular taxonomy of Brassica vegetable crops

6700AA, Wageningen, the

Netherlands. 3 Centre for Biosystems Genomics, 6700 AB Wageningen, the Netherlands

E-mail: Guusje.Bonnema@wur.nl

https://www.wur.nl/en/Research-Results/Chair-groups/Plant-Sciences/Laboratory-of-Plant-Breeding.htm

Lokman Hekim University, Faculty of Health Sciences, Department of Nutrition and Dietetics

Brassica vegetables and human health

Çankaya, Ankara, Turkey

E-mail: nevintekgul@gmail.com

https://www.lokmanhekim.edu.tr/

Misíon Biológica de Galicia, Consejo Superior de Investigaciones Científicas (CSIC)

Germplasm collection

Apartado 28, E-36080, Pontevedra, Spain

E-mail: gpadilla@mbg.cesga.es

http://www.mbg.csic.es/es/la-mision-biologica-de-galicia/

Molecular Biology and Biotechnology

Genetics, genomics and breeding of vegetable Brassica

Faculty of Biology

Adam Mickiewicz University

Poznań, Umultowska 89, 61–614 Poznan, Poland

Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland

www.ebook3000.com

E-mail: jsad@amu.edu.pl

https://amu.edu.pl/en/AMU-Faculties/faculty-of-biology

Scottish Crop Research Institute

Brassica improvement

Invergowrie, Dundee DD2 5DA, UK

E-mail: jbrads@scri.sari.ac.uk

https://scri.webarchive.hutton.ac.uk/

The Korea Brassica Bank Genome Resource (KBGRB)

Germplasm and Brassica genomic resources

Korea

http://www.brassica-resource.org

The Nordic Genetic Resource Centre (NordGen)

Germplasm collections of Brassica

Norway

https://www.nordgen.org/en/

The Spain Brassica genebank MBG-CSIC

Germplasm collections of Brassica

Spain

http://www.mbg.csic.es/es/

The UWA Institute of Agriculture (M082), The University of Western Australia

Origin and centers of diversity in an ancient Brassica crop

Crawley, WA 6009, Australia

E-mail: wallace.cowling@uwa.edu.au

http://www.ioa.uwa.edu.au/contact

Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of

Horticultural Genomics.

Genome resequencing and comparative variome analysis in Brassica vegetable crops

Beijing 10081, China

E-mail: wangxiaowu@caas.cn

https://www.ncbi.nlm.nih.gov/pubmed/27890636

Warwick Crop Centre, The University of Warwick Wellesbourne

Genetic resources and breeding

Warwick, UK

cropcentre@warwick.ac.uk

warwick.ac.uk/fac/sci/lifesci/wcc/research/allium

https://warwick.ac.uk/fac/sci/lifesci/wcc/

1.2 Appendix II: Genetic Resources of Turnip

Cultivar

Cultivation location

Important traits

Reference and contact information

A Coruña

Spain

Performance as turnip tops

Francisco et al. (2009)

E-mail: pvelasco@mbg.cesga.es

Balady

Egypt

A common Egyptian local cultivar

Khalf-Allah et al. (2014)

E-mail: heshamsaleh@hotmail.com

Barkant

Australia

Forage turnip

Neilsen et al. (2008)

E-mail: jneilsen@utas.edu.au

Golden Ball

USA

A round turnip with yellow skin belowground and a greenish tint where exposed

Davis-Hollander (2015)

http://www.grit.com/farm-and-garden/growing-turnips-zm0z12jazreg.aspx

Green Globe

New Zealand

Recommended for forage use

Young-Mathews (2012)

http://www.nrcs.usda.gov/

Green Globe

Pennsylvania

Sirius turnip (Sweden)

Upper Midwest

York Globe

New Zealand

Massif

Scotland

A new national listed and granted Plant Breeders rights in 1996

Bradshaw et al. (2002)

E-mail: jbrads@scri.sari.ac.uk

MBG-BRS0183 and MBG-BRS0256

Spain

Two landraces were the most promising for turnips production

Padilla et al. (2005)

E-mail:gpadilla@mbg.cesga.es

MBG-BRS0082 and MBG-BRS0184

 

Two landraces represented the best characteristics for turnip greens

MBG-BRS0143, MBG-BRS0173 and MBG-BRS0401

 

The most appropriate three landraces for turnip tops production

Shogoin

Japan

A white-skinned and white-fleshed

Duke (1983)

https://hort.purdue.edu/newcrop/duke_energy/Brassica_rapa.html

Sultani

Egypt

One of the major cultivated crops and highly consumed as both fodder and food crop in Egypt

Abdelkader (2013)

E-mail: amal.abdelkader@sci.asu.edu.eg

Purple Top Milan

Italy

A flat type and the strap-leaved varieties

Tyfon

China

A high yielding variety that is a cross between forage turnip (B. rapa var. rapa) and Chinese cabbage (B. pekinensis)

http://plants.usda.gov/

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdel-Razzak, H.S. (2021). Turnip (Brassica rapa var. rapa L.) Breeding. In: Al-Khayri, J.M., Jain, S.M., Johnson, D.V. (eds) Advances in Plant Breeding Strategies: Vegetable Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-66965-2_9

Download citation

Publish with us

Policies and ethics