Skip to main content

Recent Advances in Potato (Solanum tuberosum L.) Breeding

  • Chapter
  • First Online:
Advances in Plant Breeding Strategies: Vegetable Crops

Abstract

Potato (Solanum tuberosum L.) is an annual dicotyledonous tuber crop originating from the Americas and now distributed all over the world. A member of the Solanaceae family, potato is the fourth most produced food crop and the first non-cereal crop in the world. Potato is a staple food with its high potentiality in fighting malnutrition in the world since potato tubers are known sources of vitamins, proteins, carbohydrates and minerals. Moreover, it generates higher yield compared to the other crops; hence, it is one of the most notable crops to eliminate hunger and poverty. Therefore, sustainable potato production is important for food security and social welfare in future climate-change scenarios. However, it is very sensitive to environmental conditions and climate change due to its shallow root system. Therefore, future potato breeding programs should focus on enhancement of abiotic and biotic stress tolerance by utilizing the natural germplasm conserved in different gene banks. Moreover, potato breeding should benefit from the effectiveness and ease of molecular techniques such as marker-assisted selection, genome-wide association studies, functional genomics and transgenics. Development of new potato varieties can also be achieved via genetic engineering and genome editing. Disease-free potato seed production requires integration of tissue culture methods in plant breeding. As a staple food for millions, the potato has an extraordinarily rich past, and a bright future. The demand for potato will increase in future, which will be the driving force behind the potato research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah NA, Prakash CS, McHughen AG (2015) Genome editing for crop improvement: challenges and opportunities. GM Crops Food 6(4):183–205

    Article  PubMed  Google Scholar 

  • Acquaah G (2007) Principles of plant genetics and breeding. Blackwell publishing, Malden

    Google Scholar 

  • Afonnikov DA, Totsky IV, Stasevski Z (2018) Informational resources on potato germplasm collections. Vavilov Journal of Genetics and Breeding 22(1):115–121

    Article  Google Scholar 

  • Aguilar-Camacho M, Mora-Herrera ME, López-Delgado HA (2016) Potato virus X (PVX) elimination as short and long term effects of hydrogen peroxide and salicylic acid is differentially mediated by oxidative stress in synergism with thermotherapy. Am Potato Res 93(4):360–367

    Article  CAS  Google Scholar 

  • Ahloowalia BS (1990) In vitro radiation induced mutagenesis in potato. In: Sangwan R, Sangwan BS (eds) The impact of biotechnology in agriculture. Kluwer Academic, Dordrecht, pp 39–46

    Chapter  Google Scholar 

  • Ahmad I, Day JP, Macdonald MV et al (1991) Haploid culture and UV mutagenesis in rapid-cycling Brassica napus for the generation of resistance to chlorsulfuron and alternaria brassicicola. Ann Bot 67:521–525

    Article  Google Scholar 

  • Ahmadvand R, Wolf I, Gorji AM et al (2013) Development of molecular tools for distinguishing between the highly similar Rx1 and Rx2 PVX extreme resistance genes in tetraploid potato. Potato Res 56:277–291

    Article  CAS  Google Scholar 

  • Akkale C, Yildirim Z, Yildirim MB et al (2010) Assessing genetic diversity of some potato (Solanum tuberosum L.) genotypes grown in Turkey using the AFLP marker technique. Turk J Field Crops 15(1):73–78

    Google Scholar 

  • Aksoy E, Demirel U, Öztürk ZN et al (2015) Recent advances in potato genomics, transcriptomics, and transgenics under drought and heat stresses: a review. Turk J Botany 39(6):920–940

    Article  CAS  Google Scholar 

  • Ali MA, Nasiruddin KM, Haque MS et al (2013) Virus elimination in potato through meristem culture followed by thermotherapy. SAARC J Agric 11(1):71–80

    Article  Google Scholar 

  • Almekinders CJM, Struik PC (1996) Shoot development and flowering in potato (Solanum tuberosum L). Potato Res 39:581–607

    Article  Google Scholar 

  • Almekinders CJM, Chilver AS, Renia HM (1996) Current status of the TPS technology in the world. Potato Res 39(2):289–303

    Article  Google Scholar 

  • Al-Safadi B, Ayyoubi Z, Jawdat D (2000) The effect of gamma irradiation on potato microtuber production In vitro. Plant Cell Tiss Org Cult 61:183–187

    Article  Google Scholar 

  • Ames M, Spooner DM (2008) DNA from herbarium specimens settles a controversy about origins of the European potato. Am J Bot 95(2):252–257

    Article  CAS  PubMed  Google Scholar 

  • Aminetzach YT, Macpherson JM, Petrov DA (2005) Pesticide resistance via transposition-mediated adaptive gene truncation in Drosophila. Science 309:764–767

    Article  CAS  PubMed  Google Scholar 

  • An G, Watson BD, Chiang CC (1986) Transformation of tobacco, tomato, potato, and Arabidopsis thaliana using a binary Ti vector system. Plant Phys 81(1):301–305

    Article  CAS  Google Scholar 

  • Andersson M, Turesson H, Nicolia A et al (2017) Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Rep 36(1):117–128

    Article  CAS  PubMed  Google Scholar 

  • Andersson M, Turesson H, Olsson N et al (2018) Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Phys Plant 164(4):378–384

    Article  CAS  Google Scholar 

  • Anoumaa M, Yao NK, Kouam EB (2017) Genetic diversity and core collection for potato (Solanum tuberosum L.) cultivars from Cameroon as revealed by SSR markers. Am J Potato Res 94(4):449–463

    Article  CAS  Google Scholar 

  • Argumedo A (2008) The Potato Park, Peru: conserving agrobiodiversity in an Andean indigenous biocultural heritage area. In: Amend T, Brown J, Kothari A et al (eds) Protected landscapes and agrobiodiversity values. IUCN & GTZ. Kasparek Verlag, Heidelberg, pp 45–58

    Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9(3):208–218

    Article  CAS  Google Scholar 

  • Asakavičiūte R, Clement C, Ražukas A (2007) The genetic aspect in anther culture of Lithuanian potato (Solanum tuberosum L.) cultivars. Biologija 18:19–22

    Google Scholar 

  • Asano K, Kobayashi A, Tsuda S et al (2012) DNA marker-assisted evaluation of potato genotypes for potential resistance to potato cyst nematode pathotypes not yet invading into Japan. Breed Sci 62(2):142–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arslanoglu F, Aytac S, Oner K (2011) Morphological characterization of the local potato (Solanum tuberosum L.) genotypes collected from the eastern Black Sea region of Turkey. Afr J Biotechnol 10(6):922–932

    Google Scholar 

  • Asseyeva T, Blagovidova M (1935) Artificial mutations in the potato. Bull Appl Bot Genet Plant Breed 15:81–85

    Google Scholar 

  • Bachem C, Van der Hoeven R, Lucker J et al (2000) Functional genomic analysis of potato tuber life-cycle. Potato Res 43:297–312

    Article  CAS  Google Scholar 

  • Baciu A, Danci O, Petruș-Vancea A et al (2009) Results regarding potato (Solanum tuberosum L.) cultivars reaction to in vitro culture conditions. J Hortic Sci Biotechnol 13:174–178

    Google Scholar 

  • Bakhsh A, Khabbazi SD, Baloch FS et al (2015) Insect-resistant transgenic crops: retrospect and challenges. Turk J Agric For 39(4):531–548

    Article  CAS  Google Scholar 

  • Ballvora A, Flath K, Lubeck J et al (2011) Multiple alleles for resistance and susceptibility modulate the defense response in the interaction of tetraploid potato (Solanum tuberosum) with Synchytrium endobioticum pathotypes 1, 2, 6 and 18. Theor Appl Genet 123:1281–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baltes NJ, Gil-Humanes J, Voytas DF (2017) Genome engineering and agriculture: opportunities and challenges. In: Weeks DP, Yang B (eds) Gene editing in plants progress in molecular biology and translational science. Cambridge University Press, Cambridge, pp 1–26

    Google Scholar 

  • Bamberg JB, Alfonso H (2007) Potato Res. https://doi.org/10.1007/s115400089035

  • Bamberg JB, Del Rio A (2005) Conservation of genetic resources. In: Razdan MK, Mattoo AK (eds) Genetic improvement of solanaceous crops, vol. 1. Potato. Science Publishers, Enfield

    Google Scholar 

  • Behnke M (1979) Selection of potato callus for resistance to culture filtrates of Phytophthora infestans and regeneration of resistant plants. Theor Appl Genet 55:69–71

    Article  CAS  PubMed  Google Scholar 

  • Bejarano L, Mignolet E, Devaux A et al (2000) Glycoalkaloids in potato tubers: the effect of variety and drought stress on the alpha-solanine and alpha-chaconine contents of potatoes. J Sci Food Agric 80:2096–2100

    Article  CAS  Google Scholar 

  • Bendahmane A, Kanyuka K, Baulcombe DC (1997) High-resolution genetical and physical mapping of the Rx gene for extreme resistance to potato virus X in tetraploid potato. Theor Appl Genet 95(1–2):153–162

    Article  CAS  Google Scholar 

  • Benson EE, Johnston J, Muthusamy J et al (2008) Physical and engineering perspectives of in vitro plant cryopreservation. In: Gupta SD, Ibaraki Y (eds) Plant tissue culture engineering. Springer, Dordrecht, pp 441–476

    Google Scholar 

  • Berdugo-Cely J, Valbuena RI, Sánchez-Betancourt E et al (2017) Genetic diversity and association mapping in the Colombian central collection of Solanum tuberosum L. Andigenum group using SNPs markers. PLoS One 12(3):e0173039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bethke PC, Nassar AM, Kubow S et al (2014) History and origin of Russet Burbank (Netted Gem) a sport of Burbank. Am J Potato Res 91(6):594–609

    Article  Google Scholar 

  • Bhaskar PB, Wu L, Busse JS et al (2010) Suppression of the vacuolar invertase gene prevents cold-induced sweetening in potato. Plant Phys 154(2):939–948

    Article  CAS  Google Scholar 

  • Bonierbale MW, Plaisted RL, Tanksley SD (1988) RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120:1095–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonierbale MW, Amoros WR, Salas E et al (2020) Potato breeding. In: Campos H, Ortiz O (eds) The potato crop. Springer, Cham, Switzerland, pp 163–218

    Chapter  Google Scholar 

  • Bordallo PN, Silva DH, Maria JCD et al (2004) Somaclonal variation on in vitro callus culture potato cultivars. Hortic Bras 22:300–304

    Article  Google Scholar 

  • Bormann CA, Rickert AM, Ruiz RAC et al (2004) Tagging quantitative trait loci for maturity-corrected late blight resistance in tetraploid potato with PCR-based candidate gene markers. Mol Plant Microbe Interact 17:1126–1138

    Article  CAS  PubMed  Google Scholar 

  • Bouarte-Medina T, Fogelman E, Chani E et al (2002) Identification of molecular markers associated with leptine in reciprocal backcross families of diploid potato. Theor Appl Genet 105:1010–1018

    Article  CAS  Google Scholar 

  • Bradeen JM, Haynes KG, Kole C (2011) Introduction to potato. In: Bradeen JM, Kole C (eds) Genetics, genomics and breeding of potato. CRC Press, Boca Raton, pp 1–9

    Google Scholar 

  • Bradshaw JE, Mackay GR (1994) Breeding strategies for clonally propagated potatoes. In: Bradshaw JE, Mackay GR (eds) Potato genetics. CAB International, Wallingford, pp 467–497

    Chapter  Google Scholar 

  • Bradshaw JE, Ramsay G (2005) Utilisation of the Commonwealth Potato Collection in potato breeding. Euphytica 146:9–19

    Article  Google Scholar 

  • Bradshaw JE, Todd D, Wilson RN (2000) Use of tuber progeny tests for genetical studies as part of a potato (Solanum tuberosum subs. tuberosum) breeding programme. Theor Appl Genet 100:772–781

    Article  Google Scholar 

  • Braun A, Schullehner K, Wenzel G (2004) Molecular analysis of genetic variation in potato (Solanium tuberosum L.). II. International cultivar spectrum. Potato Res 47(1–2):93–99

    Article  Google Scholar 

  • Brush SB (2000) The issues of in situ conservation of crop genetic resources. In: Brush SB (ed) Genes in the field: on-farm conservation of crop diversity. Lewis Publishers, IDRC, IPGRI, pp 3–26

    Google Scholar 

  • Brush SB (2003) The lighthouse and the potato: internalizing the value of crop genetic diversity. In: Boyce JK, Shelley B (eds) Natural assets: democratizing environmental ownership, Island Press, pp 187–205

    Google Scholar 

  • Brush S, Kesseli R, Ortega R et al (1995) Potato diversity in the Andean center of crop domestication. Conserv Biol 9(5):1189–1198

    Article  PubMed  Google Scholar 

  • Breithaupt DE, Bamedi A (2002) Carotenoids and carotenoid esters in potatoes (Solanum tuberosum L.): new insights into an ancient vegetable. J Agric Food Chem 50(24):7175–7181

    Article  CAS  PubMed  Google Scholar 

  • Brock RD (1979) Mutation plant breeding for seed protein improvement. In: Seed protein improvement in cereals and grain legumes. Proceedings of the Symposium IAEA/FAO/GSF, Neuherberg, BRD, 1978. IAEA, Vienna, pp 43–45

    Google Scholar 

  • Broertjes C, Van Harten AM (1978) Applications of mutation breeding methods in the improvement of vegetatively propagated crops. Elsevier Science, Amsterdam

    Google Scholar 

  • Brown J, Dale MFB (1998) Identifying superior parents in a potato breeding program using cross prediction techniques. Euphytica 104:143–149

    Article  Google Scholar 

  • Brown J, Caligari PDS, Dale MFB et al (1988) The use of cross prediction methods in a practical potato breeding programme. Theor Appl Gen 76:33–38

    Article  CAS  Google Scholar 

  • Burgos G, Salas E, Amoros W et al (2009) Total and individual carotenoid profiles in Solanum phureja of cultivated potatoes: I. Concentrations and relationships as determined by spectrophotometry and HPLC. J Food Compos Anal 22:503–508

    Article  CAS  Google Scholar 

  • Burlingame B, Mouillé B, Charrondiere R (2009) Nutrients, bioactive non-nutrients and anti-nutrients in potatoes. J Food Compos Anal 22(6):494–502

    Article  CAS  Google Scholar 

  • Burton WG (1978) The physics and physiology of storage. In: Harris PM (ed) The potato crop. The scientific basis for improvement. Wiley, London, pp 545–606

    Chapter  Google Scholar 

  • Butler NM, Atkins PA, Voytas DF et al (2015) Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) using the CRISPR/Cas system. PloS one 10(12):e0144591

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caligari PDS (1992) Breeding new varieties. In: Harris P (ed) The potato crop, 2nd edn. Chapman and Hall, London, pp 334–372

    Chapter  Google Scholar 

  • Çalışkan ME, Onaran H, Arıoğlu H (2010) Overview of the Turkish potato sector: challenges, achievements and expectations. Potato Res 53(4):255–266

    Article  Google Scholar 

  • Çalışkan S, Bülbül MK, Çalışkan ME (2011) Effect of different gibberellic acid rates and immersion durations on germination of dormant true potato seeds. In: Paper presented at Turkey 9th National Field Crops Congress, Bursa, Turkey, 12–15 September 2011, pp 878–881

    Google Scholar 

  • Calleberg E (1996) Anther culture of potato. Ph.D. thesis. Swedish University of Agricultural Sciences, Uppsala, Sweden

    Google Scholar 

  • Camire ME, Kubow S, Donnelly DJ (2009) Potatoes and human health. Crit Rev Food Sci 49(10):823–840

    Article  CAS  Google Scholar 

  • Carrière EA (1865) Production et fixation des varietes dans les vegetaux. Paris

    Google Scholar 

  • Caruana BM, Pembleton LW, Constable F et al (2019) Validation of genotyping by sequencing using transcriptomics for diversity and application of genomic selection in tetraploid potato. Front Plant Sci 10:670–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cassells AC, Long RD (1982) The elimination of potato viruses X, Y, S and M in meristem and explant cultures of potato in the presence of Virazole. Potato Res 25(2):165–173

    Article  Google Scholar 

  • Cassells AD, Deadman ML, Brown CA et al (1991) Field resistance to late blight (Phytophthora infestans (Mont.) De Barry) in potato (Solanum tuberosum, L.) somaclones associated with instability and pleiotropic effects. Euphytica 56:75–80

    Article  Google Scholar 

  • Chakraborty S, Chakraborty N, Agrawal L et al (2010) Next-generation protein-rich potato expressing the seed protein gene AmA1 is a result of proteome rebalancing in transgenic tuber. Proc Natl Acad Sci USA 107:17533–17538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charlesworth D, Willis JH (2009) The genetics of inbreeding depression. Nat Rev Genet 10(11):783

    Article  CAS  PubMed  Google Scholar 

  • Chase SS (1963) Analytic breeding in Solanum tuberosum L. A scheme utilizing parthenotes and other diploid stocks. Can J Genet Cytol 5:359–363

    Article  Google Scholar 

  • Chawla R, Shakya R, Rommens CM (2012) Tuber-specific silencing of asparagine synthetase-1 reduces the acrylamide-forming potential of potatoes grown in the field without affecting tuber shape and yield. Plant Biotech J 10(8):913–924

    Article  CAS  Google Scholar 

  • Chindi A, Giorgis GW, Solomon A et al (2014) Rapid multiplication techniques (RlVITs): a tool for the production of quality seed potato (Solanum tuberosum L.) in Ethiopia. Asian J Crop Sci 6(3):176–185

    Article  Google Scholar 

  • CIP (2002) True potato seed. Centro Internacional de la Papa (CIP). http://www.cipotato.org. Accessed 24 Aug 2019

  • Conner AJ, Williams MK, Gardner RC et al (1992) Agrobacterium-mediated transformation of New Zealand potato cultivars. N Z J Crop Hortic 19(1):1–8

    Article  Google Scholar 

  • Conner AJ, Jacobs JME, Genet RA (1997) Transgenic potatoes versus “traditional” potatoes: what’s the difference. In: McLean GD (ed) Commercialisation of transgenic crops: risk, benefit and trade considerations. Department of Primary Industries and Energy, Bureau of Resource Sciences, Canberra, pp 23–36

    Google Scholar 

  • Cordeiro NL, Gilvan PR, Lilia W et al (2003) Stock indexing and potato virus Y elimination from potato plants cultivated in vitro. Sci Agric 60(3):525–530

    Article  Google Scholar 

  • Côté MJ, Leduc L, Evaluation RA (2013) Of simple sequence repeat (SSR) markers established in Europe as a method for the identification of potato varieties grown in Canada. Am J Potato Res 90(4):340–350

    Article  CAS  Google Scholar 

  • Cramer PJS (1907) Kritische Übersicht der bekannten Fälle von Knospenvariation. Nabu Press, De Erven Lossjes, Haarlem (In German)

    Google Scholar 

  • Cuesta X (2010) Recursos genéticos de la papa y fitomejoramiento. In: Agronegocios (ed) En I Expo Congreso Nacional de la papa, I Expo Congreso Nacional de la papa. Ibarra, Ecuador, pp 11

    Google Scholar 

  • Cuesta X, Monteros C, Jiménez J et al (2005) Biodiversidad de las papas nativas ecuatorianas en: Las papas nativas en el Ecuador, estudios cualitativos sobreoferta y demanda. Primera edición. Quito, Ecuador

    Google Scholar 

  • D’hoop BB, Paulo MJ, Mank R et al (2008) Association mapping of quality traits in potato (Solanum tuberosum L.). Euphytica 161:47–60

    Article  Google Scholar 

  • D’hoop BB, Keizer PLC, Paulo MJ et al (2014) Identification of agronomically important QTL in tetraploid potato cultivars using a marker-trait association analysis. Theor Appl Genet 127:731–748

    Article  PubMed  Google Scholar 

  • D’Ippólito S, Martín ML, Salcedo MF et al (2010) Transcriptome profiling of Fusarium solani f. sp. eumartii-infected potato tubers provides evidence of an inducible defense response. Phys Mol Plant 75(1–2):3–12

    Article  CAS  Google Scholar 

  • Dale MFB, Griffiths DW, Bain H et al (1993) Glycoalkaloid increase in Solanum tuberosum on exposure to light. Ann Appl Biol 123:411–418

    Article  CAS  Google Scholar 

  • Danci O, Nedelea G, Danci M (2007) Studies regarding the elaboration of an optimum micropropagation protocol for a potato cultivar recalcitrant to in vitro culture. J Agric Sci 39(2):577–580

    Google Scholar 

  • Dangol SD, Barakate A, Stephens J et al (2019) Genome editing of potato using CRISPR technologies: current development and future prospective. Plant Cell Tissue Organ Cult. https://doi.org/10.1007/s11240-019-01662-y

  • Darwin C (1868) The variation of animals and plants under domestication, vol 1. Murray, London

    Google Scholar 

  • Das A, Gosal SS, Sidhu JS et al (2000) Induction mutations for heat tolerance in potato by using in vitro culture and radiation. Euphytica 114:201–209

    Article  Google Scholar 

  • De Galarreta JR, Carrasco A, Salazar A et al (1998) Wild Solanum species as resistance sources against different pathogens of potato. Potato Res 41(1):57–68

    Article  Google Scholar 

  • De Galarreta JIR, Ezpeleta B, Pascualena J et al (2006) Combining ability and correlations for yield components in early generations of potato breeding. Plant Breed 125:183–186

    Article  Google Scholar 

  • Demeke T, Kawchuk LM, Lynch DR (1993) Identification of potato cultivars and clonal variants by random amplified polymorphic DNA analysis. Am Potato J. 70(8):561–570

    Article  CAS  Google Scholar 

  • Demirel U, Tindas I, Yavuz C et al (2018) Assessing genetic diversity of potato genotypes using inter-PBS retrotransposon marker system. Plant Genet Resour. 16(2):137

    Article  CAS  Google Scholar 

  • Devaux A, Kromann P, Ortiz O (2014) Potatoes for sustainable global food security. Potato Res 57:185–199

    Article  Google Scholar 

  • Dodds JH, Huamán Z, Lizarraga R (1991) Potato germplasm conservation. In: Dodds JH (ed) In vitro methods for conservation of plant genetic resources. Springer, Netherlands, pp 93–109

    Google Scholar 

  • Dorst JC (1924) Knopmutatie bij den aardappel en hare betekenis voor den landbouw. Genet (The Hague) 6:1–123

    Google Scholar 

  • Duan G, Zhan F, Du Z et al (2018) Europe was a hub for the global spread of potato virus S in the 19th century. Virology 525:200–204

    Article  CAS  PubMed  Google Scholar 

  • Dulloo ME, Hunter D, Borelli T (2010) Ex situ and in situ conservation of agricultural biodiversity: major advances and research needs. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 38(2):123–135

    Google Scholar 

  • Duvick DN (2005) The contribution of breeding to yield advances in maize (Zea mays L.). Adv Agron 86:83–145

    Article  Google Scholar 

  • Duvick J, Fu A, Muppirala U (2007) PlantGDB: a resource for comparative plant genomics. Nucleic Acids Res 36(suppl 1):959–965

    Article  CAS  Google Scholar 

  • Endelman JB, Carley CAS, Bethk PC et al (2018) Genetic variance partitioning and genome-wide prediction with allele dosage information in autotetraploid potato. Genetics 209:77–87

    Article  PubMed  PubMed Central  Google Scholar 

  • Engels J (2003) A guide to effective management of germplasm collections. Bioversity International, Wageningen, the Netherlands

    Google Scholar 

  • Elzebroek T, Wind K (2008) Starch crops. In: Elzebroek A, Wind K (eds) Guide to cultivated plants. CAB International, Oxford, UK, pp 316–397

    Chapter  Google Scholar 

  • Evers D, Lefèvre I, Legay S (2010) Identification of drought-responsive compounds in potato through a combined transcriptomic and targeted metabolite approach. J Exp Bot 61:2327–2343

    Article  CAS  PubMed  Google Scholar 

  • FAO (2008) Potatoes, nutrition and diet. Prepared by Prokop S, Albert J. http://www.fao.org/potato-2008/en/potato/factsheets.html Accessed 1 Aug 2019.

  • FAOSTAT (2019) Food Agriculture Organization. http://www.fao.org. Accessed 20 Aug 2019

  • Favoretto P, Veasey EA, Melo PC (2011) Molecular characterization of potato cultivars using SSR markers. Hortic Bras 29(4):542–547

    Article  Google Scholar 

  • Felcher KJ, Coombs JJ, Massa AN et al (2012) Integration of two diploid potato linkage maps with the potato genome sequence. PloS one 7(4):1–11

    Article  CAS  Google Scholar 

  • Flinn B, Rothwell C, Griffiths R et al (2005) Potato expressed sequence tag generation and analysis using standard and unique cDNA libraries. Plant Mol Biol 59:407–433

    Article  PubMed  Google Scholar 

  • Flis B, Hennig J, Strzelczyk-Zyta D et al (2005) The Ry-fsto gene from Solanum stoloniferum for extreme resistant to potato virus Y maps to potato chromosome XII and is diagnosed by PCR marker GP122718 in PVY resistant potato cultivars. Mol Breed 15:95–101

    Article  CAS  Google Scholar 

  • Fogelman E, Oren-Shamir M, Hirschberg J et al (2019) Nutritional value of potato (Solanum tuberosum) in hot climates: anthocyanins, carotenoids, and steroidal glycoalkaloids. Planta 249(4):1143–1155

    Article  CAS  PubMed  Google Scholar 

  • Frankel OH (1970) Genetic conservation in perspective. In: Harlan JR, Schreiner S, Brock RD et al (eds) Genetic resources in plants-their exploration and conservation. Blackwell Scientific Publications, Oxford and Edinburgh, pp 469–499

    Google Scholar 

  • Friedman M (2015) Chemistry and anticarcinogenic mechanisms of glycoalkaloids produced by eggplants, potatoes, and tomatoes. J Agric Food Chem 63(13):3323–3337

    Article  CAS  PubMed  Google Scholar 

  • Friedman M, McDonald GM (1997) Potato glycoalkaloids: chemistry, analysis, safety, and plant physiology. Crit Rev Plant Sci 16:55–132

    Article  CAS  Google Scholar 

  • Fruwirth C (1929) Übet eine durch spontane Variabilität entstandene Kartoffelform und über spontane Variabilität der Kartoffel überhaupt. Z PflZücht 14:35–79

    Google Scholar 

  • Fu YB, Peterson GW, Richards KW et al (2009) Genetic diversity of Canadian and exotic potato germplasm revealed by simple sequence repeat markers. Am J Potato Res 86(1):38–48

    Article  CAS  Google Scholar 

  • Gangadhar BH, Yu JW, Sajeesh K et al (2014) A systematic exploration of high-temperature stress-responsive genes in potato using large-scale yeast functional screening. Mol Genet Genomics 289(2):185–201

    Article  CAS  PubMed  Google Scholar 

  • GCDT (2016) Annual report. Global Crop Diversity Trust, Bonn, Germany

    Google Scholar 

  • Gebhardt C, Ritter E, Debener T et al (1989) RFLP-analysis and linkage mapping in Solanum tuberosum. Theor Appl Genet 78:65–75

    Article  CAS  PubMed  Google Scholar 

  • Gebhardt C, Ballvora A, Walkemeier B et al (2004) Assessing genetic potential in germ plasm collections of crop plants by marker-trait association: a case study for potatoes with quantitative variation of resistance to late blight and maturity type. Mol Breed 13:93–102

    Article  CAS  Google Scholar 

  • Gebhardt C, Bellin D, Henselewski H et al (2006) Marker-assisted combination of major genes for pathogen resistance in potato. Theor Appl Genet 112:1458–1464

    Article  CAS  PubMed  Google Scholar 

  • Ghislain M, Zhang D, Fajardo D et al (1999) Marker-assisted sampling of the cultivated Andean potato Solanum phureja collection using RAPD markers. Genet Res Crop Evol 46(6):547–555

    Article  Google Scholar 

  • Ghislain M, Spooner DM, Rodríguez F (2004) Selection of highly informative and user-friendly microsatellites (SSRs) for genotyping of cultivated potato. Theor Appl Genet 108(5):881–890

    Article  CAS  PubMed  Google Scholar 

  • Ghislain M, Andrade D, Rodríguez F (2006) Genetic analysis of the cultivated potato Solanum tuberosum L. Phureja Group using RAPDs and nuclear SSRs. Theor Appl Genet 113:1515–1527

    Article  CAS  PubMed  Google Scholar 

  • Ghislain M, Núñez J, del Rosario Herrera M et al (2009) Robust and highly informative microsatellite-based genetic identity kit for potato. Mol Breed 23:377–388

    Article  CAS  Google Scholar 

  • Golmirzaie A, Toledo J (1997) In vitro conservation of potato and sweetpotato germplasm. CIP Program Report 98:351–356

    Google Scholar 

  • Gopal J (1998) Identification of superior parents and crosses in potato breeding programmes. Theor Appl Genet 96:287–293

    Article  Google Scholar 

  • Gopal J (2006) Considerations for successful breeding. In: Gopal J, Khurana SMP (eds) Handbook of potato production, improvement, and postharvest management. Food Products Press, New York, pp 77–108

    Chapter  Google Scholar 

  • Gopal J (2015) Challenges and way-forward in selection of superior parents, crosses and clones in potato breeding. Potato Res 58:165–188

    Article  Google Scholar 

  • Gopal J, Chauhan NS (2010) Slow growth in vitro conservation of potato germplasm at low temperature. Potato Res 53(3):141–149

    Article  Google Scholar 

  • Gottschalk K, Ezhekiel R (2006) Storage. In: Gopal J, Khurana SM (eds) Handbook of potato production, improvement, and postharvest management. Food Products Press, New York/London/Oxford, pp 489–522

    Google Scholar 

  • Graves C (2001) The potato treasure of the Andes. From Agriculture to Culture, IPC, Lima, Peru

    Google Scholar 

  • Grout BW, Henshaw GG (1978) Freeze preservation of potato shoot-tip cultures. Ann Bot 42(181):1227–1229

    Article  Google Scholar 

  • Gyetvai G, Sønderkær M, Göbel U et al (2012) The transcriptome of compatible and incompatible interactions of potato (Solanum tuberosum) with Phytophthora infestans revealed by DeepSAGE analysis. PLoS One 7(2):1–15

    Article  CAS  Google Scholar 

  • Hackett CA, McLean K, Bryan GJ (2013) Linkage analysis and QTL mapping using SNP dosage data in a tetraploid potato mapping population. PLoS ONE 8(5):1–21

    Article  Google Scholar 

  • Hairong W (2015) Rediscovering the value of the potato. Beijing Rev:1–2

    Google Scholar 

  • Halterman D, Guenthner J, Collinge S et al (2016) Biotech potatoes in the 21st century: 20 years since the first biotech potato. Am J Potato Res 93:1–20

    Article  CAS  Google Scholar 

  • Hämäläinen JH, Watanabe KN, Valkonen JPT et al (1997) Mapping and marker-assisted selection for a gene for extreme resistance to potato virus Y. Theor Appl Genet 94:192–197

    Article  Google Scholar 

  • Hamilton JP, Hansey CN, Whitty BR et al (2011) Single nucleotide polymorphism discovery in elite North American potato germplasm. BMC Genomics 12(1):302–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han KH, Hashimoto N, Shimada KI et al (2006a) Hepatoprotective effects of purple potato extract against D-galactosamine-induced liver injury in rats. Biosci Biotechnol Biochem 70(6):1432–1437

    Article  CAS  PubMed  Google Scholar 

  • Han KH, Sekikawa M, Shimada KI et al (2006b) Anthocyanin-rich purple potato flake extract has antioxidant capacity and improves antioxidant potential in rats. Br J Nutr 96(6):1125–1134

    Article  CAS  PubMed  Google Scholar 

  • Hancock RD, Morris WL, Ducreux LJ et al (2014) Physiological, biochemical and molecular responses of the potato (Solanum tuberosum L.) plant to moderately elevated temperature. Plant Cell Environ 37:439–450

    Article  CAS  PubMed  Google Scholar 

  • Hanneman R Jr (1989) The potato germplasm resource. Am Potato J 66:655–667

    Article  Google Scholar 

  • Hardigan MA, Bamberg J, Buell CR et al (2015) Taxonomy and genetic differentiation among wild and cultivated germplasm of Solanum sect. Petota. Plant Genome 8:1–16

    Article  CAS  Google Scholar 

  • Hardigan MA, Laimbeer FPE, Newton L et al (2017) Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato. PNAS 114:E9999–E10008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hastings PJ, Lupski JR, Rosenberg SM et al (2009) Mechanisms of change in gene copy number. Nat Rev Gene 10:551–564

    Article  CAS  Google Scholar 

  • Haussmann BI, Parzies HK, Presterl T et al (2004) Plant genetic resources in crop improvement. Plant Genet Resour 2(1):3–21

    Article  Google Scholar 

  • Hawkes JG (1990) The potato: evolution, biodiversity and genetic resources. Smithsonian Institution Press, Washington, D.C., USA

    Google Scholar 

  • Hawkes JG (1992) Biosystematics of the potato. In: Campos H, Ortiz O (eds) The potato crop. Springer, Cham, Switzerland, pp 13–64

    Chapter  Google Scholar 

  • Hawkes JG (1994) Origins of cultivated potatoes and species relationships. In: Bradshaw JE, Mackay GR (eds) Potato genetics. CAB International, Oxford, UK, pp 3–42

    Google Scholar 

  • Hawkes JG, Jackson MT (1992) Taxonomic and evolutionary implications of the endosperm balance number hypothesis in potatoes. Theor Appl Genet 84(1):180–185

    Article  CAS  PubMed  Google Scholar 

  • Heldak J, Bezo M, Stefunova V et al (2007) Selection of DNA markers for detection of extreme resistance to potato virus Y in tetraploid potato (Solanum tuberosum L.) F1 progenies. Czech J Genet Plant Breed 43(4):125–134

    Article  CAS  Google Scholar 

  • Hermsen JGT (1969) Induction of haploids and aneuhaploids in colchicine-induced tetraploid Solanum chacoense Bitt. Euphytica 18:183–189

    Article  Google Scholar 

  • Hijmans RJ (2002) Diversity and ecology of the potato: the use of spatial analysis in crop science. Ph.D. Thesis, Wageningen University

    Google Scholar 

  • Hijmans RJ (2003) The effect of climate change on global potato production. Am J Potato Res 80(4):271–279

    Article  Google Scholar 

  • Hijmans RJ, Spooner DM (2001) Geographic distribution of wild potato species. Am J Bot 88(11):2101–2112

    Article  CAS  PubMed  Google Scholar 

  • Hijmans RJ, Gavrilenko T, Stephenson S et al (2007) Geographical and environmental range expansion through polyploidy in wild potatoes (Solanum section Petota). Glob Ecol Biogeogr 16(4):485–495

    Article  Google Scholar 

  • Hirsch CD, Hamilton JP, Childs KL et al (2014) Spud DB: a resource for mining sequences, genotypes, and phenotypes to accelerate potato breeding. Plant Genome 7(1):1–12

    Article  CAS  Google Scholar 

  • Hirsch CN, Hirsch CD, Felcher K (2013) Retrospective view of north American potato (Solanum tuberosum L.) breeding in the 20th and 21st centuries. G3: Genes, Genomes, Genetics 3(6):1003–1013

    Article  Google Scholar 

  • Hoogkamp TJ, Van Den Ende RG, Jacobsen E et al (2000) Development of amylose-free (amf) monoploid potatoes as new basic material for mutation breeding in vitro. Potato Res 43(2):179–189

    Article  Google Scholar 

  • Hougas RW, Peloquin SJ (1958) The potential of potato haploids in breeding and genetic research. Am Potato J 35:701–707

    Article  Google Scholar 

  • Huamán Z, Spooner DM (2002) Reclassification of landrace populations of cultivated potatoes (Solanum sect. Petota). Am J Bot 89(6):947–965

    Google Scholar 

  • Huamán Z, Williams JT, Salhuana W (1977) Descriptors for the cultivated potato and for the maintenance and distribution of germplasm collections. FAO, Rome, Italy

    Google Scholar 

  • Huamán Z, Hoekstra R, Bamberg JB (2000) The inter-genebank potato database and the dimensions of available wild potato germplasm. Am J Potato Res 77(6):353–362

    Article  Google Scholar 

  • Humera A, Iqbal J (2012) Genetic analysis of somaclonal variants and induced mutants of potato (Solanum tuberosum L.) cv. Diamant using RAPD markers. Pak J Bot 44:215–220

    Google Scholar 

  • Hussain T, Aksoy E, Çalışkan ME et al (2019) Transgenic potato lines expressing hairpin RNAi construct of molting-associated EcR gene exhibit enhanced resistance against Colorado potato beetle (Leptinotarsa decemlineata Say). Transgenic Res 28(1):151–164

    Article  CAS  PubMed  Google Scholar 

  • Hwang SY, Tseng YT, Lo HF (2002) Application of simple sequence repeats in determining the genetic relationships of cultivars used in sweet potato polycross breeding in Taiwan. Sci Hortic 93(3–4):215–224

    Article  CAS  Google Scholar 

  • International Atomic Energy Agency (IAEA) (2019) Mutant variety database. IAEA Register. https://mvd.iaea.org. Accessed 26 Aug 2019

  • Irikura Y (1989) Anther culture of potato. Bio Horti 2:22–23

    Google Scholar 

  • ISAAA (2015) Potato (Solanum tuberosum L.) GM events. http://www.isaaa.org/gmapprovaldatabase/crop/default.asp?CropID=16&Crop=Potato. Accessed 20 Aug 2019

  • Ispizua VN, Guma IR, Feingold S, Clausen AM (2007) Genetic diversity of potato landraces from northwestern Argentina assessed with simple sequence repeats (SSRs). Genet Resour Crop Evol 54(8):1833–1848

    Article  Google Scholar 

  • Jacobs JM, van Eck HJ, Arens P et al (1995) A genetic map of potato (Solanum tuberosum) integrating molecular markers, including transposons, and classical markers. Theor Appl Genet 9:289–300

    Article  Google Scholar 

  • Jacobson M (1923) Die Wirkung der Röntgenstrahlen auf das Wachstum der Pflanzen. Beilage zum Rigaschen Rundschau 54:5

    Google Scholar 

  • Jain SK (1975) Genetic reserves. In: Frankel OH, Hawkes JK (eds) Crop genetic resources for today and tomorrow. Cambridge University Press, Cambridge, UK, pp 379–396

    Google Scholar 

  • Jansky SH (2000) Breeding for disease resistance in potato. Plant Breed Rev 19:69–155

    Google Scholar 

  • Jansky SH, Peloquin SJ (2006) Advantages of wild diploid Solanum species over cultivated diploid relatives in potato breeding programs. Genet Res Crop Evol 53(4):669–674

    Article  Google Scholar 

  • Jansky SH, Simon R, Spooner DM (2009) A test of taxonomic predictivity: resistance to the Colorado potato beetle in wild relatives of cultivated potato. J Econ Entomol 102(1):422–431

    Article  CAS  PubMed  Google Scholar 

  • Jansky SH, Charkowski AO, Douches DS et al (2016) Reinventing potato as a diploid inbred line-based crop. Crop Sci 56(4):1412–1422

    Article  CAS  Google Scholar 

  • Johnson EL (1928) Tuberization of potatoes increased by X-rays. Science 68:231–231

    Article  CAS  PubMed  Google Scholar 

  • Johnson EX (1937) Tuberization of the Colorado wild potato as affected by X-radiation. Plant Phys Lancaster 12:547–551

    Article  CAS  Google Scholar 

  • Johnston SA, Hanneman RE (1982) Manipulations of endosperm balance number overcome crossing barriers between diploid Solanum species. Science 217(4558):446–448

    Article  CAS  PubMed  Google Scholar 

  • Johnston SA, Den Nijs TP, Peloquin SJ et al (1980) The significance of genic balance to endosperm development in interspecific crosses. Theor Appl Genet 57(1):5–9

    Article  CAS  PubMed  Google Scholar 

  • Juzepczuk SW, Bukasov SM (1929) A contribution to the question of the origin of the potato. Trudy Vsesoyuznogo S”zeda po Genetike i Selektsii Semenovodstvu i Plemennomu Zhivotnovodstvu, 3: 593–611. Leningrad

    Google Scholar 

  • Kaczmarczyk A, Rokka VM, Keller EJ (2011) Potato shoot tip cryopreservation. A review Potato Res 54(1):45–79

    Article  Google Scholar 

  • Kasai K, Morikawa Y, Sorri VA et al (2000) Development of SCAR markers to the PVY resistance gene Ry adg based on a common feature of plant disease resistance genes. Genome 43:1–8

    Article  CAS  PubMed  Google Scholar 

  • Kawchuk LM, Lynch DR, Thomas J et al (1996) Characterization of Solanum tuberosum simple sequence repeats and application to potato cultivar identification. Am Potato J 73(8):325–335

    Article  CAS  Google Scholar 

  • Khurana SP (2004) Potato viruses and their management. In: Diseases of fruits and vegetables: volume II. Springer, Dordrecht, pp 389–440

    Chapter  Google Scholar 

  • Kikkert JR, Vidal JR, Reisch BI (2005) Stable transformation of plant cells by particle bombardment / biolistics. In: Pena L (ed) Transgenic plants: methods and protocols. Humana Press, New York, pp 61–78

    Google Scholar 

  • Kikuchi A, Huynh HD, Endo T et al (2015) Review of recent transgenic studies on abiotic stress tolerance and future molecular breeding in potato. Breed Sci 65(1):85–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilman S (2001) NewLeaf; Monsanto’s genetically modified potatoes find slim market, despite repelling bugs. Wall Street J, March 22

    Google Scholar 

  • Kim DH, Rossi JJ (2007) Strategies for silencing human disease using RNA interference. Nature Rev Gene 8(3):173–184

    Article  CAS  Google Scholar 

  • Kiple KF, Ornelas K (2000) The Cambridge world history of food. Cambridge University Press, Cambridce, UK

    Book  Google Scholar 

  • Kloosterman B, Vorst O, Hall RD et al (2005) Tuber on a chip: differential gene expression during potato tuber development. Plant Biotechnol J 3:505–519

    Article  CAS  PubMed  Google Scholar 

  • Kloosterman B, De Koeyer D, Griffiths R et al (2008) The potato transcriptome: a new look at transcriptional changes during tuber development using the POCI array. Comp Funct Genomics 8:329–340

    Article  CAS  Google Scholar 

  • Kondrak M, Marincs F, Kalapos B et al (2011) Transcriptome analysis of potato leaves expressing the trehalose-6-phosphate synthase 1 gene of yeast. PloS One 6:1–10

    Article  CAS  Google Scholar 

  • Korpan YI, Nazarenko EA, Skryshevskaya IV et al (2004) Potato glycoalkaloids: true safety or false sense of security? Trends Biotechnol 22(3):147–151

    Article  CAS  PubMed  Google Scholar 

  • Kowalski B, Cassells AC (1999) Mutation breeding for yield and Phytophthora infestans (Mont.) de Bary foliar resistance in potato (Solanum tuberosum L. cv. Golden wonder) using computerized image analysis in selection. Potato Res 42(1):121–130

    Article  Google Scholar 

  • Kushnarenko S, Romadanova N, Aralbayeva M et al (2017) Combined ribavirin treatment and cryotherapy for efficient potato virus M and potato virus S eradication in potato (Solanum tuberosum L.) in vitro shoots. In Vitro Cell Dev Plant 53:425–432

    Article  CAS  Google Scholar 

  • Lafta AM, Lorenzen JH (2000) Influence of high temperature and reduced irradiance on glycoalkaloid levels in potato leaves. J Am Soc Hortic Sci 125(5):563–566

    Article  CAS  Google Scholar 

  • Lakhotia N, Joshi G, Bhardwaj AR et al (2014) Identification and characterization of miRNAome in root, stem, leaf and tuber developmental stages of potato (Solanum tuberosum L.) by high-throughput sequencing. BMC Plant Biol 14:1–6

    Article  CAS  Google Scholar 

  • Lindhout P, Meijer D, Schotte T et al (2011) Towards F 1 hybrid seed potato breeding. Potato Res 54(4):301–312

    Article  Google Scholar 

  • Loiselle F, Tai GCC, Christie BR et al (1989) Relationship between inbreeding coefficient and clonal selection in a potato cultivar development program. Am Potato J 66:747–753

    Article  Google Scholar 

  • Love SL, Thompson AL, Baker TP et al (1992) Comparison of Russet Burbank clones from various geographical regions of the United States and Canada. Am Potato J 69:299–307

    Article  Google Scholar 

  • Love SL, Thompson-Johns A, Bake T (1993) Mutation breeding for resistance to blackspot bruise and low temperature sweetening in potato cultivar Lehme Russet. Euphytica 70:69–74

    Article  Google Scholar 

  • Love SL, Baker TP, Thompson-Johns A et al (1996) Induced mutations for reduced tuber glycoalkaloid content in potatoes. Plant Breed 115(2):119–122

    Article  CAS  Google Scholar 

  • Lucca M, Hopp E, Romero-Zaliz R (2011) Comparative transcription profiles of Solanum wild species under drought conditions: preliminary results. In: Intelligent systems design and applications (ISDA), Paper presented at the 11th international conference on IEEE, pp 1218–1223

    Google Scholar 

  • Lucht J (2015) Public acceptance of plant biotechnology and GM crops. Viruses 7(8):4254–4281

    Article  PubMed  PubMed Central  Google Scholar 

  • Lynch DR, Kawchuk LM, Schaupmeyer CA et al (1995) Amisk: a clonal variant of Ranger Russet. Am Potato J 72:185–189

    Article  Google Scholar 

  • Machida-Hirano R (2015) Diversity of potato genetic resources. Breed Sci 65(1):26–40

    Article  PubMed  PubMed Central  Google Scholar 

  • Maggio A, Carillo P, Bulmetti GS et al (2008) Potato yield and metabolic profiling under conventional and organic farming. Eur J Agron 28(3):343–350

    Article  CAS  Google Scholar 

  • Mamta B, Rajam MV (2017) RNAi technology: a new platform for crop pest control. Physiol Mol Biol Pla 23(3):487–501

    Article  CAS  Google Scholar 

  • Marczewski W, Flis B, Syller J et al (2001) A major QTL for resistance to potato leafroll virus (PLRV) is located in a resistance hotspot on potato chromosome XI and is tightly linked to N-gene-like markers. Mol Plant Microbe Interact 12:1420–1425

    Article  Google Scholar 

  • Marczewski W, Flis B, Syller J et al (2004) Two allelic or tightly linked genetic factors at the PLRV.4 locus on potato chromosome XI control resistance to potato leafroll virus accumulation. Theor Appl Genet 109:1604–1609

    Article  CAS  PubMed  Google Scholar 

  • Marfil CF, Hidalgo V, Masuelli RW (2015) In situ conservation of wild potato germplasm in Argentina: example and possibilities. Glob Ecol Conserv 3:461–476

    Article  Google Scholar 

  • Massa AN, Childs KL, Lin H et al (2011) The transcriptome of the reference potato genome Solanum tuberosum Group Phureja clone DM1-3 516R44. Plos One 6:1–8

    Article  CAS  Google Scholar 

  • Massa AN, Childs KL, Buell CR (2013) Abiotic and biotic stress responses in group Phureja DM1-3 516 R44 as measured through whole transcriptome sequencing. Plant Genome 6(3):1–10

    Article  CAS  Google Scholar 

  • Matern U, Strobel G, Shepard J (1978) Reaction to phytotoxins in a potato population from mesophyll protoplasts. Proc Natl Acad Sci USA 75:4935–4939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGregor CE, Lambert CA, Greyling MM et al (2000) A comparative assessment of DNA fingerprinting techniques (RAPD, ISSR, AFLP and SSR) in tetraploid potato (Solanum tuberosum L.) germplasm. Euphytica 113(2):135–144

    Article  CAS  Google Scholar 

  • McGuire S (2015) The state of food insecurity in the world 2015: meeting the 2015 international hunger targets: taking stock of uneven progress. FAO, Rome

    Google Scholar 

  • Meksem K, Leister D, Peleman J et al (1995) A high-resolution map of the vicinity of the R1 locus on chromosome V of potato based on RFLP and AFLP markers. Mol Gen Genet 249(1):74–81

    Article  CAS  PubMed  Google Scholar 

  • Meyer S, Nagel A, Gebhardt C (2005) PoMaMo – a comprehensive database for potato genome data. Nucleic Acids Res 33(suppl 1):666–670

    Google Scholar 

  • Milbourne D, Meyer RC, Collins AJ et al (1998) Isolation, characterisation and mapping of simple sequence repeat loci in potato. Mol Gen Genet 259:233–245

    Article  CAS  PubMed  Google Scholar 

  • Millam S (2001) Strategies towards the application of microspore culture in potato. In: Bohanec B (ed) Biotechnological approaches for utilisation of gametic cells. COST 824. Office for Publications of the European Communities, Luxembourg, pp 111–114

    Google Scholar 

  • Miller JC, Scheuring DC, Miller JP et al (1999) Selection, evaluation and identification of improved Russet Narkotah strains. Am J Potato Res 76:161–167

    Article  Google Scholar 

  • Moisan-Thiery M, Marhadour S, Kerlan MC et al (2005) Potato cultivar identification using simple sequence repeats markers (SSR). Potato Res 48(3–4):191–200

    Article  Google Scholar 

  • Moses W, Rogers K, Mildred O (2017) Effect of thermotherapy duration, virus type and cultivar interactions on elimination of potato viruses X and S in infected seed stocks. Afr J Plant Sci 11(3):61–70

    Article  Google Scholar 

  • Muñoz M, Díaz O, Reinún W et al (2019) Slow growth in vitro culture for conservation of Chilotanum potato germplasm. Chil J Agric Res 79(1):26–35

    Article  Google Scholar 

  • Naess SK, Bradeen JM, Wielgus SM et al (2000) Resistance to late blight in Solanum bulbocastanum is mapped to chromosome 8. Theor Appl Genet 101(5–6):697–704

    Article  CAS  Google Scholar 

  • Naik PS, Buckseth T (2018) Recent advances in virus elimination and tissue culture for quality potato seed production. In: Biotechnologies of crop improvement, vol 1. Springer, Cham, pp 131–158

    Chapter  Google Scholar 

  • Naik PS, Sarkar D, Gaur PC (2001) Potato. In: Parthasarathy VA et al (eds) Biotechnology of horticultural crops. Naya Prakash Publishers, Kolkata, pp 1–50

    Google Scholar 

  • Nakayasu M, Akiyama R, Lee HJ et al (2018) Generation of α-solanine-free hairy roots of potato by CRISPR/Cas9 mediated genome editing of the St16DOX gene. Plant Phys Biochem 131:70–77

    Article  CAS  Google Scholar 

  • Namugga P, Sibiya J, Melis R et al (2018) Combining ability analysis of earliness and yield of potato (Solanum tuberosum L.) genotypes in Uganda. Euphytica 214(7):1–9

    Article  CAS  Google Scholar 

  • Navarre DA, Goyer A, Shakya R (2009) Nutritional value of potatoes: vitamin, phytonutrient, and mineral content. In: Singh J, Kaur L (eds) Advances in potato chemistry and technology. Academic, London, UK, pp 395–424

    Chapter  Google Scholar 

  • Niino T, Arizaga MV (2015) Cryopreservation for preservation of potato genetic resources. Breed Sci 65(1):41–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niino T, Watanabe K, Nohara N et al (2014) Cryopreservation of mat rush lateral buds by air dehydration using aluminum cryo-plate. Plant Biotechnol 31(3):281–287

    Article  CAS  Google Scholar 

  • Norero N, Malleville J, Huarte M et al (2002) Cost efficient potato (Solanum tuberosum L.) cultivar identification by microsatellite amplification. Potato Res 45(2):131–138

    Article  CAS  Google Scholar 

  • Novakova A, Šimáčková K, Barta J et al (2009) Potato variety identification by molecular markers based on retrotransposon analyses. Czech J Genet Plant Breed 45(1):1–10

    Article  CAS  Google Scholar 

  • Novy R (2014) Traditional breeding and cultivar development. In: Navarre R, Pavek P (eds) The potato: botany, production and uses. CAB International, Wallingford, pp 272–289

    Chapter  Google Scholar 

  • Novy RG, Helgeson JP (1994a) Resistance to potato virus Y in somatic hybrids between Solanum etuberosum and S. tuberosum x S. berthaultii hybrid. Theor Appl Genet 89(6):783–786

    Article  CAS  PubMed  Google Scholar 

  • Novy RG, Helgeson JP (1994b) Somatic hybrids between Solanum etuberosum and diploid, tuber bearing Solanum clones. Theor Appl Genet 89(6):775–782

    Article  CAS  PubMed  Google Scholar 

  • Novy RG, Nasruddin A, Ragsdale DW et al (2002) Genetic resistances to potato leafroll virus, potato virus Y, and green peach aphid in progeny of Solanum etuberosum. Am J Potato Res 79(1):9–18

    Article  Google Scholar 

  • Nunn N, Qian N (2011) The potato’s contribution to population and urbanization: evidence from a historical experiment. Q J Econ 126(2):593–650

    Google Scholar 

  • Oberhagemann P, Chatot-Balandras C, Schäfer-Pregl R et al (1999) A genetic analysis of quantitative resistance to late blight in potato: towards marker-assisted selection. Mol Breed 5:399–416

    Article  CAS  Google Scholar 

  • Ochoa CM (1999) Las papas de sudamerica: Peru. International Potato Center, Lima, Peru

    Google Scholar 

  • Olmstead RG, Palmer JD (1997) Implications for the phylogeny, classification, and biogeography of Solanum from cpDNA restriction site variation. Syst Bot 22(1):19–29

    Article  Google Scholar 

  • Ortega F, Carrasco A (2005) Germplasm enhancement with wild tuber-bearing species: introgression of PVY resistance and high dry matter content from Solanum berthaultii, S. gourlayi, S. tarijense and S. vernei. Potato Res 48:97–104

    Article  Google Scholar 

  • Ortega F, Lopez-Vizcon C (2012) Application of molecular marker-assisted selection (MAS) for disease resistance in a practical potato breeding programme. Potato Res 55:1–13

    Article  CAS  Google Scholar 

  • Ottoman RJ, Hane DC, Brown CR et al (2009) Validation and implementation of marker-assisted selection (MAS) for PVY resistance (Ryadg gene) in a tetraploid potato breeding program. Am J Potato Res 86:304–314

    Article  Google Scholar 

  • Ou Y, Liu X, Xie C (2014) Genome-wide Identification of microRNAs and their targets in cold-stored potato tubers by deep sequencing and degradome analysis. Plant Mol Biol Rep 33(3):584–597

    Article  CAS  Google Scholar 

  • Panattoni A, Luvisi A, Triolo E (2013) Elimination of viruses in plants: twenty years of progress. Span J Agric Res 1:173–188

    Article  Google Scholar 

  • Panta A, Panis B, Ynouye C et al (2014) Development of a PVS2 droplet vitrification method for potato cryopreservation. CryoLetters 35(3):255–266

    CAS  PubMed  Google Scholar 

  • Panta A, Panis B, Ynouye C et al (2015) Improved cryopreservation method for the long-term conservation of the world potato germplasm collection. Plant Cell Tiss Org 120(1):117–125

    Article  CAS  Google Scholar 

  • Parisi C, Tillie P, Rodríguez-Cerezo E (2016) The global pipeline of GM crops out to 2020. Nat Biotechnol 34(1):31–36

    Article  CAS  PubMed  Google Scholar 

  • Park S, Kang TS, Kim CK et al (2005) Genetic manipulation for enhancing calcium content in potato tuber. J Agric Food Chem 53(14):5598–5603

    Article  CAS  PubMed  Google Scholar 

  • PBI Solanum Project Solanaceae (2014). http://www.solanaceaesource.org. Accessed 25 Aug 2019

  • Pearsall DM (2008) Plant domestication and the shift to agriculture in the Andes. In: Silverman H, Isbell HW (eds) The handbook of south American archaeology. Springer, New York, USA, pp 105–120

    Chapter  Google Scholar 

  • Peloquin SJ, Yerk GL, Werner JE et al (1989) Potato breeding with haploids and 2n gametes. Genome 31(2):1000–1004

    Article  Google Scholar 

  • Peralta IE, Spooner DM (2001) Granule-bound starch synthase (GBSSI) gene phylogeny of wild tomatoes (Solanum L. section Lycopersicon [mill.] Wettst. Subsection Lycopersicon). Am J Bot 88(10):1888–1902

    Article  CAS  PubMed  Google Scholar 

  • Percival G, Dixon G, Sword A (1994) Glycoalkaloid concentration of potato tubers following continuous illumination. J Sci Food Agric 66:139–144

    Article  CAS  Google Scholar 

  • Pereira ADS, Daniels J (2003) O cultivo da batata na região sul do Brasil. Embrapa Informação Tecnológica, Embrapa Clima Temperado, Pelotas

    Google Scholar 

  • Pieterse L (2009) World Catalogue of Potato varieties 2009/10: more than 4.500 varieties CIP’s wild potato collection. Agrimedia

    Google Scholar 

  • Pieterse L, Judd J (2014) World catalogue of potato varieties, 6th edn. Agrimedia GmbH, Bergen/Dumme

    Google Scholar 

  • Potato Genome Sequencing Consortium (PGSC) (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195

    Article  CAS  Google Scholar 

  • Prevost A, Wilkinson MJ (1999) A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet 98(1):107–112

    Article  CAS  Google Scholar 

  • Puchta H (2017) Applying CRISPR/Cas for genome engineering in plants: the best is yet to come. Curr Opin Plant Biol 36:1–8

    Article  CAS  PubMed  Google Scholar 

  • Radchuk VV, Ryschka U, Schumann G et al (2002) Genetic transformation of cauliflower (Brassica oleracea var. botrytis) by direct DNA uptake into mesophyll protoplasts. Phys Plant 114(3):429–438

    Article  CAS  Google Scholar 

  • Rai RISHI, Diengdoh LC, Srivastava AK et al (2012) Efficiency of different nodal segments for potato micro-propagation. Environ Ecol 30(3):594–597

    Google Scholar 

  • Rajagopal R, Sivakumar S, Agrawal N et al (2002) Silencing of midgut aminopeptidase N of Spodoptera litura by double-stranded RNA establishes its role as Bacillus thuringiensis toxin receptor. J Biol Chem 277(49):46849–46851

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishnan A, Ritland C, Blas Sevillano R et al (2015) Review of potato molecular markers to enhance trait selection. Am J Potato Res 92:455–472

    Article  CAS  Google Scholar 

  • Ray DK, Mueller ND, West PC et al (2013) Yield trends are insufficient to double global crop production by 2050. PLoS One 8:1–8

    Article  Google Scholar 

  • Raymundo R, Asseng S, Prassad R et al (2017) Performance of the SUBSTOR-potato model across contrasting growing conditions. Field Crops Res 202:57–76

    Article  Google Scholar 

  • Raymundo R, Asseng S, Robertson R (2018) Climate change impact on global potato production. Eur J Agron 100:87–98

    Article  Google Scholar 

  • Reader J (2008) Propitious esculent: the potato in world history. Random House, London, UK

    Google Scholar 

  • Regan S, Gustafson V, Rothwell C et al (2006) Finding the perfect potato: using functional genomics to improve disease resistance and tuber quality traits. Can J Plant Pathol 28:247–255

    Article  Google Scholar 

  • Renault D, Wallender WW (2000) Nutritional water productivity and diets. Agric Water Manag 45(3):275–296

    Article  Google Scholar 

  • Rensink W, Hart A, Liu J et al (2005a) Analyzing the potato abiotic stress transcriptome using expressed sequence tags. Genome 48:598–605

    Article  PubMed  Google Scholar 

  • Rensink WA, Iobst S, Hart A et al (2005b) Gene expression profiling of potato responses to cold, heat, and salt stress. Funct Integr Genomics 5:201–207

    Article  CAS  PubMed  Google Scholar 

  • Ricroch AE, Henard-Damave MC (2016) Next biotech plants: new traits, crops, developers and technologies for addressing global challenges. Crit Rev Biotechnol 36:675–690

    Article  CAS  PubMed  Google Scholar 

  • Rios D, Ghislain M, Rodríguez F et al (2007) What is the origin of the European potato? Evidence from Canary Island landraces. Crop Sci 47(3):1271–1280

    Article  CAS  Google Scholar 

  • Ritter E, Debener T, Barone A et al (1991) RFLP mapping on potato chromosomes of 2 genes-controlling extreme resistance to potato virus X (Pvx). Mol Gen Genet 227(1):81–85

    Article  CAS  PubMed  Google Scholar 

  • Rocha EA (2008) Molecular characterization of potato cultivars (Solanum tuberosum L.) using RAPD and SSR markers. Ph.D. thesis. Universidade Federal de Lavras, MG, Brazil

    Google Scholar 

  • Rokka VM (2003) Anther culture through direct embryogenesis in a genetically diverse range of potato (Solanum) species and their interspecific and intergeneric hybrids. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. A manual. Kluwer, Dordrecht, pp 235–240

    Chapter  Google Scholar 

  • Rokka VM, Pietilä L, Pehu E (1996) Enhanced production of dihaploid lines via anther culture of tetraploid potato (Solanum tuberosum L. ssp. tuberosum) clones. Am Potato J 73:1–12

    Article  Google Scholar 

  • Rokka VM, Ishimaru CA, Lapitan NLV et al (1998) Production of androgenic dihaploid lines of the disomic tetraploid potato species Solanum acaule ssp. acaule. Plant Cell Rep 18:89–93

    Article  CAS  Google Scholar 

  • Ronoh R, Linde M, Winkelmann T et al (2019) Morphological characterization, genetic diversity and population structure of African nightshades (section Solanum L.). genet. Resour. Crop Evol 66(1):105–120

    Article  CAS  Google Scholar 

  • Salaman RN (1949) The history and social influence of the potato. Cambridge Univ, Press, Cambridge, UK

    Google Scholar 

  • Sarkar D, Naik PS (1998) Cryopreservation of shoot tips of tetraploid potato (Solanum tuberosum L.) clones by vitrification. Ann Bot 82(4):455–461

    Article  Google Scholar 

  • Sarkar D, Pandey SK (2011) Potato. In: Singh HP, Parthasarathy VA, Nirmal Babu K (eds) Advance horticulture biotechnology (Vol. 2): regeneration systems, vegetables ornamentals and tuber crops. Westville Publishing, New Delhi, pp 319–354

    Google Scholar 

  • Sattarzadeh A, Achenbach U, Lubeck J et al (2006) Single nucleotide polymorphism (SNP) genotyping as basis for developing a PCR-based marker highly diagnostic for potato varieties with high resistance to Globodera pallida pathotype Pa2/3. Mol Breed 18:301–312

    Article  CAS  Google Scholar 

  • Schafleitner R, Gaudin A, Rosales ROG (2007) Proline accumulation and real time PCR expression analysis of genes encoding enzymes of proline metabolism in relation to drought tolerance in Andean potato. Acta Phys Plant 29:19–26

    Article  CAS  Google Scholar 

  • Schönhals EM, Ortega F, Barandalla L et al (2016) Identification and reproducibility of diagnostic DNA markers for tuber starch and yield optimization in a novel association mapping population of potato (Solanum tuberosum L.). Theor Appl Genet 129:767–785

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schönhals EM, Ding J, Ritter E et al (2017) Physical mapping of QTL for tuber yield, starch content and starch yield in tetraploid potato (Solanum tuberosum L.) by means of genome wide genotyping by sequencing and the 8.3 K SolCAP SNP array. BMC Genomics 18:642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schwarzfischer A, Song Y, Scholz H et al (2002) Haploidiezüchtung, Protoplastenfusion and Entwicklung von genetischen Markern zur gezielteren Sortenentwicklung bei Kartoffeln. Vorträge für Pflanzenzüchtung 54:123–130

    Google Scholar 

  • Sebastini L, Pugliesi C, Pasurini M (1994) Somaclonal variation for resistance to Verticillium dahliae in potato (Solanum tuberosum L.) plants regenerated from callus. Euphytica 80:5–11

    Article  Google Scholar 

  • Seguí-Simarro JM (2016) Androgenesis in solanaceae. In: Germana MA, Lambardi M (eds) In vitro embryogenesis in higher plants. Humana Press, New York, pp 209–244

    Chapter  Google Scholar 

  • Seo JH, Naing AH, Jeon SM et al (2008) Anti-freezing-protein type III strongly influences the expression of relevant genes in cryopreserved potato shoot tips. Plant Mol Biol 97(4):347–355

    Google Scholar 

  • Shahzad A, Sharma S, Parveen S et al (2017) Historical perspective and basic principles of plant tissue culture. In: Abdin M, Kiran U, Kamaluddin AA (eds) Plant biotechnology: principles and applications. Springer, Singapore, pp 1–36

    Google Scholar 

  • Shamel AD, Pomeroy CS (1936) Bud mutations in horticultural crops. J Hered 27(12):487–494

    Article  Google Scholar 

  • Sharma SK, MacKenzie K, McLean K et al (2018) Linkage disequilibrium and evaluation of genome-wide association mapping models in tetraploid potato. G3-Genes Genome Genet 8(10):3185–3202

    CAS  Google Scholar 

  • Simko I, Costanzo S, Haynes KG (2004a) Linkage disequilibrium mapping of a Verticillium dahliae resistance quantitative trait locus in tetraploid potato (Solanum tuberosum) through a candidate gene approach. Theor Appl Genet 108:217–224

    Article  CAS  PubMed  Google Scholar 

  • Simko I, Haynes KG, Ewing EE et al (2004b) Mapping genes for resistance to Verticillium alboatrum in tetraploid and diploid potato populations using haplotype association tests and genetic linkage analysis. Mol Genet Genom 271:522–531

    Article  CAS  Google Scholar 

  • Slater AT, Cogan NOI, Forster JW (2013) Cost analysis of the application of marker-assisted selection in potato breeding. Mol Breed 32:299–310

    Article  Google Scholar 

  • Slater AT, Wilson GM, Cogan NOI et al (2014) Improving the analysis of low heritability complex traits for enhanced genetic gain in potato. Theor Appl Genet 127:809–820

    Article  CAS  PubMed  Google Scholar 

  • Slater AT, Cogan NOI, Forster JW et al (2016) Improving genetic gain with genomic selection in auto-tetraploid potato. Plant Genome 9(3):1–15

    Article  CAS  Google Scholar 

  • Sleper DA, Poehlman JM (2006) Breeding field crops, 5th edn. Blackwell Publishing, Iowa

    Google Scholar 

  • Śliwka J, Jakuczun H, Kamiński P et al (2010) Marker-assisted selection of diploid and tetraploid potatoes carrying Rpi-phu1, a major gene for resistance to Phytophthora infestans. J Appl Genet 51:133–140

    Article  PubMed  Google Scholar 

  • Smith DB, Roddick JG, Jones JL (1996) Potato glycoalkaloids: some unanswered questions. Trends Food Sci Technol 7:126–131

    Article  CAS  Google Scholar 

  • Song YS, Hepting L, Schweizer G et al (2005) Mapping of extreme resistance to PVY (Rysto) on chromosome XII using anther-culture-derived primary dihaploid potato lines. Theor Appl Genet 111:879–887

    Article  CAS  PubMed  Google Scholar 

  • Sonnino A, Penuela R, Crina P et al (1991) In vitro induction of genetic variability and selection of disease resistant plants in the potato. In: Hawkes JG, Lester RN, Nee M, Estrada N (eds) Solanaceae. III. Taxonomy, chemistry, evolution. Royal Botanic Gardens Kew, Richmond, pp 421–427

    Google Scholar 

  • Soto-Cerda BJ, Cloutier S (2012) Association mapping in plant genomes. In: Caliskan M (ed) Genetic diversity in plants. InTech, pp 29–54. Available from http://www.intechopen.com/books/genetic-diversity-in-plants/association-mapping-in-plant-genomes

  • Spooner DM (2009) DNA barcoding will frequently fail in complicated groups: an example in wild potatoes. Am J Bot 96(6):1177–1189

    Article  CAS  PubMed  Google Scholar 

  • Spooner DM, Bamberg JB (1994) Potato genetic resources: sources of resistance and systematics. Am Potato J. 71(5):325–337

    Article  Google Scholar 

  • Spooner DM, Hijmans RJ (2001) Potato systematics and germplasm collecting, 1989–2000. Am J Potato Res 78(4):237–268

    Article  Google Scholar 

  • Spooner DM, Clausen AM (1993) Wild potato (Solanum sect. Petota) germplasm collecting expedition to Argentina in 1990, and status of Argentinian potato germplasm resources. Potato Res 36(1):3–12

    Article  Google Scholar 

  • Spooner DM, McLean K, Ramsay G et al (2005) A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. Proc Natl Acad Sci U S A 102(41):14694–14699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spooner DM, Núñez J, Trujillo G et al (2007) Extensive simple sequence repeat genotyping of potato landraces supports a major reevaluation of their gene pool structure and classification. Proc Natl Acad Sci U S A 104(49):19398–19403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sprague HB, Lenz M (1929) The effect of X-rays on potato tubers for ‘seed’. Science 69:606

    Article  CAS  PubMed  Google Scholar 

  • Stare T, Stare K, Weckwerth W et al (2017) Comparison between proteome and transcriptome response in potato (Solanum tuberosum L.) leaves following potato virus Y (PVY) infection. Proteomes 5(3):14–26

    Article  PubMed Central  CAS  Google Scholar 

  • Steward FC, Caplin SM (1951) A tissue culture from potato tuber: the synergistic action of 2, 4-D and of coconut milk. Science 113(2940):518–520

    Article  CAS  PubMed  Google Scholar 

  • Steward FC, Moreno U, Roca WM (1981) Growth, form and composition of potato plants as affected by environment. Ann Bot 48(Supplement 2):1–45

    Article  Google Scholar 

  • Sulli M, Mandolino G, Sturaro M et al (2017) Molecular and biochemical characterization of a potato collection with contrasting tuber carotenoid content. PLoS One 12:1–22

    Article  CAS  Google Scholar 

  • Supit I, Van Diepen CA, Wit D (2012) Assessing climate change effects on European crop yields using the crop growth monitoring system and a weather generator. Agric Forest Meteorol 164:96–111

    Article  Google Scholar 

  • Sverrisdóttir E, Byrne S, Sundmark HER et al (2017) Genomic prediction of starch content and chipping quality in tetraploid potato using genotyping-by-sequencing. Theor Appl Genet 130:2091–2108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tai GCC (2005) Haploids in the improvement of solanaceous species. In: Palmer CE, Keller WA, Kasha KJ (eds) Haploids in crop improvement II, Biotechnology in agriculture and forestry, vol 56. Springer, Berlin, pp 173–190

    Chapter  Google Scholar 

  • Tai GCC, Xiong XY (2003) Haploid production of potatoes by anther culture. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Springer, Dordrecht, pp 229–234

    Chapter  Google Scholar 

  • Taylor RJ, Secor GA, Ruby CL et al (1993) Tuber yield, soft rot resistance, bruising resistance and processing quality in a population of potato (cv. Crystal) somaclones. Am Potato J 70:117–130

    Article  Google Scholar 

  • Tek AL, Stevenson WR, Helgeson JP et al (2004) Transfer of tuber soft rot and early blight resistances from Solanum brevidens into cultivated potato. Theor Appl Genet 109(2):249–254

    Article  CAS  PubMed  Google Scholar 

  • Tekalign T, Hammes PS (2005) Growth and productivity of potato as influenced by cultivar and reproductive growth: II. Growth analysis, tuber yield and quality. Sci Hortic 105(1):29–44

    Article  Google Scholar 

  • Teten Snider K, Veilleux RE (1994) Factors affecting variability in anther culture and in conversion of androgenic embryos of Solanum phureja. Plant Cell Tiss Org Cult 36:345–354

    Article  Google Scholar 

  • The State of The World’s Plant Genetıc Resources for Food And Agriculture (1997) Food And Agriculture Organization of The United Nations, Rome. http://www.fao.org/3/w7324e/w7324e.pdf

    Google Scholar 

  • Thiele G, Theisen K, Bonierbale M et al (2010) Targeting the poor and hungry with potato science. Potato J 37(3/4):75–86

    Google Scholar 

  • Thybo AK, Christiansen J, Kaack K (2006) Effect of cultivars, wound healing and storage on sensory quality and chemical components in pre-peeled potatoes. LWT-Food Sci Technol 39(2):166–176

    Article  CAS  Google Scholar 

  • Tiwari JK, Gopal J, Singh BP (2012) Marker-assisted selection for virus resistance in potato: options and challenges. Potato J 39:101–117

    Google Scholar 

  • Tiwari JK, Siddappa S, Singh BP (2013) Molecular markers for late blight resistance breeding of potato: an update. Plant Breed 132:237–245

    Article  CAS  Google Scholar 

  • USDA-ERS (2015) Vegetables & pulses. http://www.ers.usda.gov/topics/crops/vegetables-pulses/potatoes.aspx. Accessed 17 Aug 2019

  • Valkonen JPT, Keskitalo M, Vasara T et al (1996) Potato glycoalkaloids: a burden or a blessing? Crit Rev Plant Sci 15:1–20

    Article  CAS  Google Scholar 

  • Valkonen JPT, Wiegmann K, Hämäläinen JH et al (2008) Evidence for utility of the same PCR-based markers for selection of extreme resistance to potato virus Y controlled by rysto of Solanum stoloniferum derived from different sources. Ann Appl Biol 152:121–130

    Article  CAS  Google Scholar 

  • van Eck HJ, van der Voort JR, Draaistra J et al (1995) The inheritance and chromosomal localization of AFLP markers in a non-inbred potato offspring. Mol Breed 1:397–410

    Article  Google Scholar 

  • van den Berg R, Groendijk-Wilders N (2014) Taxonomy. In: Navarre R, Pavek MJ, the potato: botany. CAB International Publishing, Surrey, USA, Production and Uses, pp 12–28

    Google Scholar 

  • van Berloo R, Hutten RC, Van Eck HJ et al (2007) An online potato pedigree database resource. Potato Res 50(1):45–57

    Article  Google Scholar 

  • van Treuren R, Magda A, Hoekstra R et al (2004) Genetic and economic aspects of marker-assisted reduction of redundancy from a wild potato germplasm collection. Genet Resour Crop Evol 51(3):277–290

    Article  Google Scholar 

  • Vavilov NI (1926) Studies on the origin of cultivated plants. Bulletin of Applied Botany, Genetics and Plant Breeding 16(2):1–245

    Google Scholar 

  • Veitia N, Angel-Dita M, Garcia L et al (2001) The use of tissue culture and in vitro mutagenesis for the improvement of resistance to Alternaria solani in Irish Potato (Solanum tuberosum L.) var. Desiree. Biotechnol Veg 1:43–48

    Google Scholar 

  • Vinterhalter D, Dragicevic I, Vinterhalter B (2008) Potato in vitro culture techniques and biotechnology. Potato I Fruit Veg Cer Sci Biotechnol 2:16–45

    Google Scholar 

  • Vos PG, Uitdewilligen JG, Voorrips RE (2015) Development and analysis of a 20 K SNP array for potato (Solanum tuberosum): an insight into the breeding history. Theor Appl Genet 128:2387–2401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Cuellar WJ, Rajamäki ML (2008) Combined thermotherapy and cryotherapy for efficient virus eradication: relation of virus distribution, subcellular changes, cell survival and viral RNA degradation in shoot tips. Mol Plant Pathol 9(2):237–250

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Zhang S, Wang W et al (2015) Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Rep 34:1473–1476

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Rashid MAR, Li X et al (2019) Collection and evaluation of genetic diversity and population structure of potato landraces and varieties in China. Front Plant Sci 10:139–140

    Article  PubMed  PubMed Central  Google Scholar 

  • Watkinson JI, Hendricks L, Sioson AA (2006) Accessions of Solanum tuberosum ssp. andigena show differences in photosynthetic recovery after drought stress as reflected in gene expression profiles. Plant Sci 171:745–758

    Article  CAS  Google Scholar 

  • Weatherhead MA, Henshaw GG (1979) The induction of embryoids in free pollen culture of potatoes. Zeitschrift für Pflanzenphys 94:441–447

    Article  CAS  Google Scholar 

  • Weaver CM, Proulx WR, Heaney R (1999) Choices for achieving adequate dietary calcium with a vegetarian diet. Am J Clin Nutr 70(3):543–548

    Article  Google Scholar 

  • Weeks DP, Spalding MH, Yang B (2016) Use of designer nucleases for targeted gene and genome editing in plants. Plant Biotechnol J 14(2):483–495

    Article  CAS  PubMed  Google Scholar 

  • Wolt JD, Wang K, Yang B (2016) The regulatory status of genome-edited crops. Plant Biotechnol J 14(2):510–518

    Article  CAS  PubMed  Google Scholar 

  • Xie F, Frazier TP, Zhang B (2011) Identification, characterization and expression analysis of MicroRNAs and their targets in the potato (Solanum tuberosum). Gene 473:8–22

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Nie B, Liu J et al (2014) A re-examination of the effectiveness of ribavirin on eradication of viruses in potato plantlets in vitro using ELISA and quantitative RT-PCR. Am J Potato Res 91(3):304–311

    Article  CAS  Google Scholar 

  • Yang XS, Su WJ, Wang LJ et al (2015) Molecular diversity and genetic structure of 380 sweet potato accessions as revealed by SSR markers. J Integr Agric 14:633–641

    Article  CAS  Google Scholar 

  • Yaycili O, Alikamanoglu S (2012) Induction of salt-tolerant potato (Solanum tuberosum L.) mutants with gamma irradiation and characterization of genetic variations via RAPD-PCR analysis. Turk J Biol 36:405–412

    CAS  Google Scholar 

  • Yildirim Z (2002) A study on somaclonal variations in potatoes. Ege Universitesi Ziraat Fakultesi Dergisi 39:33–40

    Google Scholar 

  • Yildirim Z, Tugay E, Yildirim MB (2003) Somaclonal variation in potatoes (Solanum tuberosum L.). Turk J Field Crops 8:33–38

    Google Scholar 

  • Yuan BZ, Nishiyama S, Kang Y (2003) Effects of different irrigation regimes on the growth and yield of drip-irrigated potato. Agric Water Manag 31 63(3):153–167

    Article  Google Scholar 

  • Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4(1):1–45

    Article  CAS  Google Scholar 

  • Zhang W, Luo Y, Gong X et al (2009) Computational identification of 48 potato microRNAs and their targets. Comput Biol Chem 33:84–93

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Yang J, Wang Z et al (2014) Identification of novel and conserved microRNAs related to drought stress in potato by deep sequencing. Plos One 9:1–9

    Google Scholar 

  • Zhang R, Marshall D, Bryan GJ et al (2013) Identification and characterization of miRNA transcriptome in potato by high-throughput sequencing. PLoS One 8(2):e57233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhihui C, Juan L, Guoyu Z (2006) In vitro selection of salt-tolerant mutant from potato stem explants. Acta Hortic Sinica 33(3):635

    Google Scholar 

  • Zimmerer KS (1991) The regional biogeography of native potato cultivars in highland Peru. J Biogeogr 1:165–178

    Article  Google Scholar 

  • Zimmerer KS (1992) The loss and maintenance of native crops in mountain agriculture. GeoJournal 27(1):61–72

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emre Aksoy .

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 Appendix I: Research Institutes Relevant to Potato

Institution name

Specialization and research activities

Address

Contact information and website

International Potato Center (CIP), Peru

Potato genebank; potato seed bank; variety development; disease-free potato seed production; potato research/activities

Avenida La Molina 1895, La Molina Apartado 1558, Lima 12, Peru

http://www.cipotato.org/

Wageningen Plant Research, Netherlands

Potato genebank; potato seed bank; variety development; disease-free potato seed production; potato research/activities

Droevendaalsesteeg 4, 6708 PB Wageningen, the Netherlands

https://www.wur.nl/en/Research-Results/Research-Institutes/plant-research.htm

Max Rubner-Institute, Germany

Potato genebank; potato seed bank; variety development; disease-free potato seed production; potato research/activities

Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany

https://www.mri.bund.de/en/home/

Small Grains and Potato Germplasm Research Unit, USDA, ARS, USA

Potato genebank; potato seed bank; variety development; disease-free potato seed production; potato research/activities

USDA, ARS, Pacific West Area 1691 S. 2700 W. Aberdeen, ID 83210, USA

Email: Mike.Bonman@usda.gov

Sugarbeet and Potato Research Unit, USDA, ARS, USA

Potato market quality and nutirition improvement

1616 Albrecht Blvd. North Fargo, ND 58102-2765

Email: Melvin.Bolton@usda.gov

FERA Science, UK

Specialized in the sciences underpinning agriculture for sustainable crop production and commodity protection

30 Berners Street, London, W1T 3LR, UK

https://www.fera.co.uk/

NIAB CUF, UK

Potato agronomy

The Agronomy Centre 219b Huntingdon Road Cambridge CB3 0DL,UK

https://www.niab.com/pages/id/433/niab_cuf_and_cupgra

Nordic Association of Agricultural Scientists, Sweden

Coordination between Nordic growers and breeders

NJF General Secretariat c/o RISE Research Institutes of Sweden AB, Ultunallén 4, P.O. Box 7033, SE-750 07, Uppsala, Sweden

http://www.njf.nu/

Potato Research Institute, Turkey

Variety development; disease-free potato seed production; potato research/activities

Efendibey, Faik Şahit Bulv./yörük Sok., 51200 Niğde Merkez/Niğde, Turkey

https://arastirma.tarimorman.gov.tr/patates

Charlottetown Research and Development Centre, Canada

New technology for production of tablestock and processing potatoes as well as production of high quality seed potatoes

440 University Avenue

Charlottetown, Prince Edward Island

C1A 4N6

E-mail: aafc.charlottetownrdc-crdcharlottetown.aac@canada.ca

Potato Research Centre, Canada

Variety development; development of technologies for the production, handling and management of potatoes

850 Lincoln Road

PO Box 20280

Fredericton, New Brunswick

E3B 4Z7, Canada

E-mail: aafc.frederictonrdc-crdfredericton.aac@canada.ca

Central Potato Research Institute (CPRI), India

Variety development; disease-free potato seed production; national repository of scientific information of potato

Shimla Himachal, Pradesh 171001, India

http://cpri.ernet.in/

Potato Research Institute, Czechia

Variety development; disease-free potato seed production; diagnosis of potato virus and bacteria diseases

Dobrovského 2366, 580 01 Havlíčkův Brod

www.vubhb.cz

Potato Research Institute, Heilongjiang Academy of Agricultural Sciences, China

Variety development

368 Xuefu Rd, Nangang, Harbin, Heilongjiang, China

http://www.haas.cn/

Potato Research Institute, Finland

Field tests, farm tests and status surveys

Bottom Road 104

FI-61400 Ylistaro

Finland

https://petla.fi/en/

Plant Breeding and Acclimatization Institute (IHAR), Poland

Variety development; disease-free potato seed production

Radzików

05-870 Błonie, Poland

http://www.ihar.edu.pl

National Potato Research Centre (KARI), Kenya

Variety development; adaptation studies

Tigoni, P.O. Box 338, Limuru, Kenya

https://www.kari.org/

Sutton Bridge Crop Storage Research, UK

Postharvest research

HDB Potatoes Agriculture & Horticulture Development Board,

Stoneleigh Park, Kenilworth, Warwickshire, CV8 2TL, UK

https://potatoes.ahdb.org.uk/storage

1.2 Appendix II: Genetic Resources of Potato

Germplasm resource

Link

Description

European Cultivated Potato Database

www.europotato.org

A collaboration between participants in 8 European Union countries and 5 East European countries

Potato Association of America

http://potatoassociation.org/

Contains the North American Potato Variety Inventory

The Seed Potato Classification Scheme (SPCS)

https://www.sasa.gov.uk/seed-ware-potatoes

Science and Advice for Scottish Agriculture (SASA) developed the variety inventory

AHDB Potato Variety Database

http://varieties.ahdb.org.uk/

It provides data on GB-certified potato varieties that have undergone independent resistance testing for key pests and diseases

Solanaceae Source Database

http://solanaceaesource.org/

It provides a worldwide taxonomic monograph of the nightshade family, Solanaceae

Potato Genomics Resource

http://solanaceae.plantbiology.msu.edu

It houses potato genome browsers

Potato Genetic Resources Portal

https://www.pgrportal.nl/en/Potato-genetic-resources-Portal.htm

It aims to deliver the relevant information regarding the plant genetic resources of potato

Andean root and tuber crops at Genesys

https://www.genesys-pgr.org/c/artc

It is a database which allows users to explore the world’s crop diversity conserved in genebanks through a single website

The Gross Luesewitz Potato Collections of the IPK Genebank (GLKS)

https://www.ipk-gatersleben.de/en/genebank/satellite-collections-north/gross-luesewitz-potato-collections/

The Gross Luesewitz Potato Collections contain more than 6200 samples, consisting of a cultivar collection with 2750 samples

United States Potato Genebank

https://www.ars-grin.gov/nr6/

One of the largest in vitro potato collection in the world

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aksoy, E. et al. (2021). Recent Advances in Potato (Solanum tuberosum L.) Breeding. In: Al-Khayri, J.M., Jain, S.M., Johnson, D.V. (eds) Advances in Plant Breeding Strategies: Vegetable Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-66965-2_10

Download citation

Publish with us

Policies and ethics