Skip to main content

Zonal Vegetation of the Subtropical (Warm–Temperate) Zone with Winter Rain

  • Chapter
  • First Online:
Global Vegetation

Abstract

In this chapter, sclerophyllous forests and shrublands are discussed; in contrast to the subtropics with year-round rain, they are located on the western sides of the continents, where precipitation occurs mainly in winter. Hot and dry summers promote trees with a low transpiration rate, particularly in areas with nutrient-poor soils. The five winter rainfall areas (Mediterranean region, California, central Chile, southern Africa, southwestern Australia) differ distinctly with regard to their floristic species pool. They are all species-rich and contain many specialists that are able to cope with aridity during the thermally favorable summer. Fire is a factor that shapes the vegetation in California, South Africa and Australia. The Mediterranean region has a cultural history stretching back thousands of years, which makes it highly difficult to reconstruct the natural vegetation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerly, D. D. (2009). Evolution, origin and age of lineages in the Californian and Mediterranean floras. Journal of Biogeography, 36, 1221–1233.

    Google Scholar 

  • Allen-Diaz, B., Standiford, R., & Jackson, R. D. (2007). Oak woodlands and forests. In M. G. Barbour, T. Keeler-Wolf, & A. A. Schoenherr (Eds.), Terrestrial vegetation of California (pp. 313–338). Berkeley: University of California Press.

    Google Scholar 

  • Arianoutsou, M., & Groves, R. H. (Eds.). (1994). Plant-animal interactions in Mediterranean-type ecosystems (182 pp). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Armesto, J. J., Arroyo, M. T. K., & Hinojosa, L. F. (2007). The mediterranean environment of Central Chile. In T. T. Veblen, K. R. Young, & A. R. Orme (Eds.), The physical geography of South America (pp. 184–199). New York: Oxford University Press.

    Google Scholar 

  • Aronson, J. (1992). Evolutionary biology of Acacia caven (Leguminosae, Mimosoideae). Intraspecific variation in fruits and seeds. Annals of the Missouri Botanical Garden, 79, 958–968.

    Google Scholar 

  • Arroyo, M. T. K., Cavieres, L., Marticorena, C., & Muñoz-Schick, M. (1995a). Convergence in the mediterranean floras in Central Chile and California: Insights from comparative biogeography. In M. T. K. Arroyo, P. H. Zedler, & M. D. Fox (Eds.), Ecology and biogeography of Mediterranean ecosystems in Chile, California, and Australia (Ecological studies 108, pp. 43–88). New York: Springer.

    Google Scholar 

  • Arroyo, M. T. K., Zedler, P. H., & Fox, M. D. (Eds.). (1995b). Ecology and biogeography of Mediterranean ecosystems in Chile, California, and Australia (Ecological studies 108, 455 pp). New York: Springer.

    Google Scholar 

  • Axelrod, D. I. (1973). History of the mediterranean ecosystem in California. In F. Di Castri & H. A. Mooney (Eds.), Mediterranean type ecosystems. Origin and structure (Ecological studies 7, pp. 225–277). Berlin: Springer.

    Google Scholar 

  • Axelrod, D. I. (1975). Evolution and biogeography of Madrean-Thetyan sclerophyll vegetation. Annals of the Missouri Botanical Garden, 62, 280–334.

    Google Scholar 

  • Barbour, M. G., & Minnich, R. A. (2000). Californian upland forests and woodlands. In M. G. Barbour & W. D. Billings (Eds.), North American terrestrial vegetation (2nd ed., pp. 161–202). Cambridge: Cambridge University Press.

    Google Scholar 

  • Barbour, M. G., Keeler-Wolf, T., & Schoenherr, A. A. (Eds.). (2007). Terrestrial vegetation of California (712 pp). Berkeley: University of California Press.

    Google Scholar 

  • Bari, M. A., & Smettem, K. R. J. (2006). A daily salt balance model for stream salinity generation processes following partial clearing from forest to pasture. Hydrology and Earth System Science, 10, 519–534.

    Google Scholar 

  • Barthlott, W., Hostert, A., Kier, G., Küper, W., Kreft, H., Mutke, J., Rafiqpoor, M. D., & Sommer, J. H. (2007). Geographic patterns of vascular plant diversity at continental to global scales. Erdkunde, 61, 305–315.

    Google Scholar 

  • Beadle, N. C. W. (1981). The vegetation of Australia (690 pp). Stuttgart: G. Fischer.

    Google Scholar 

  • Beard, J. S. (1981). Vegetation survey of Western Australia – Swan. Perth: University of Western Australia Press.

    Google Scholar 

  • Beard, J. S. (1990). Plant life of Western Australia (319 pp). Kenthurst: Kangaroo Press.

    Google Scholar 

  • Bell, D. T., Plummer, J. A., & Taylor, S. K. (1993). Seed germination ecology in Southwestern Western Australia. The Botanical Review, 59, 24–73.

    Google Scholar 

  • Bergmeier, E. (2004). Weidedruck-Auswirkungen auf die Struktur und Phytodiversität mediterraner Ökosysteme. Berichte der Reinhold-Tüxen-Gesellschaft, 16, 109–119.

    Google Scholar 

  • Blondel, J., & Aronson, J. (1995). Biodiversity and ecosystem function in the Mediterranean Basin: Human and non-human determinants. In G. W. Davis & D. M. Richardson (Eds.), Mediterranean-type ecosystems. The function of biodiversity (Ecological studies 109, pp. 43–119). Berlin: Springer.

    Google Scholar 

  • Blondel, J., & Aronson, J. (1999). Biology and wildlife of the Mediterranean region (328 pp). Oxford: Oxford University Press.

    Google Scholar 

  • Bohn, U., Neuhäusl, R., Gollub, G., Hettwer, C., Neuhäuslová, Z., Raus, T., Schlüter, H., & Weber, H. (2003). Map of the natural vegetation of Europe. Scale 1:2.500.000. Münster: Landwirtschaftsverlag.

    Google Scholar 

  • Braun-Blanquet, J. (1964). Pflanzensoziologie (3rd ed., 865 pp). Wien: Springer.

    Google Scholar 

  • Brundrett, M. C. (2002). Coevolution of root and mycorrhizas of land plants. Tansley review no. 134. New Phytologist, 154, 275–304.

    Google Scholar 

  • Campbell, B. M., & Werger, M. J. A. (1988). Plant form in the mountains of the Cape, South Africa. Journal of Ecology, 76, 637–653.

    Google Scholar 

  • Canadell, J., & Zedler, P. H. (1995). Underground structures of woody plants in mediterranean ecosystems of Australia, California, and Chile. In M. T. K. Arroyo, P. H. Zedler, & M. D. Fox (Eds.), Ecology and biogeography of Mediterranean ecosystems in Chile, California, and Australia (Ecological studies 108, pp. 177–210). New York: Springer.

    Google Scholar 

  • Chandler, G. T., Crisp, M. D., Cayzer, L. W., & Bayer, R. J. (2002). Monograph of Gastrolobium (Fabaceae: Mirbelieae). Australian Systematic Botany, 15, 619–739.

    Google Scholar 

  • Charrouf, Z., & Guillaume, D. (2009). Sustainable development in northern Africa: The argan forest case. Sustainability, 2009, 1012–1022.

    Google Scholar 

  • Clarke, C. J., George, R. J., Bell, R. W., & Hatton, T. J. (2002). Dryland salinity in South-Western Australia: Its origin, remedies, and future research directions. Australian Journal of Soil Research, 40, 93–113.

    Google Scholar 

  • Cowling, R. M. (Ed.). (1992). The ecology of fynbos. Nutrients, fire and diversity (411 pp). Cape Town: Oxford University Press.

    Google Scholar 

  • Cowling, R. M., & Lamont, B. B. (1985). Variation inserotiny of three Banksia species along a climatic gradient. Australian Journal of Ecology, 10, 345–350.

    Google Scholar 

  • Cowling, R. M., Pierce, S. M., Stock, W. D., & Cocks, M. (1994). Why are there so many myrmecochorous species in the Cape fynbos? In M. Arianoutsou & R. H. Groves (Eds.), Plant-animal interactions in Mediterranean-type ecosystems (pp. 159–168). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Cowling, R. M., Rundel, P. W., Lamont, B. B., Arroyo, M. K., & Arianoutsou, M. (1996). Plant diversity in mediterranean-climate regions. Trends in Ecology and Evolution, 11, 362–366.

    CAS  PubMed  Google Scholar 

  • Cowling, R. M., Richardson, D. M., & Mustart, P. J. (1997). Fynbos. In R. M. Cowling, D. M. Richardson, & S. M. Pierce (Eds.), Vegetation of Southern Africa (pp. 99–130). Cambridge: Cambridge University Press.

    Google Scholar 

  • Cowling, R. M., Ojeda, F., Lamont, B. B., Rundel, P. W., & Lechmere-Oertel, R. (2005). Rainfall reliability, a neglected factor in explaining convergence and divergence of plant traits in fire-prone mediterranean-climate ecosystems. Global Ecology and Biogeography, 14, 509–519.

    Google Scholar 

  • Cramer, M. D., Verboom, G. A., & Hawkins, H. J. (2009). The importance of nutritional regulation of plant water flux. Oecologia, 161, 15–24.

    PubMed  Google Scholar 

  • Dallman, P. R. (1998). Plant life in the world’s Mediterranean climates (257 pp). Berkeley: University of California Press.

    Google Scholar 

  • Davis, G. W., & Richardson, D. M. (Eds.). (1995). Mediterranean-type ecosystems. The function of biodiversity (Ecological studies 109, 366 pp). Berlin: Springer.

    Google Scholar 

  • De Lillis, M. (1991). An ecomorphological study of the evergreen leaf. Braun-Blanquetia, 7, 127 pp.

    Google Scholar 

  • Dell, B., Havel, J. J., & Malajczuk, N. (Eds.). (1989). The Jarrah forest. A complex Mediterranean ecosystem (408 pp). Dordrecht: Kluver Academic Publishers.

    Google Scholar 

  • Di Castri, F. (1973). Soil animals in latitudinal and topographical gradients of Mediterranean ecosystems. In F. Di Castri & H. A. Mooney (Eds.), Mediterranean type ecosystems. Origin and structure (Ecological studies 7, pp. 171–190). Berlin: Springer.

    Google Scholar 

  • Di Castri, F. (1981). Mediterranean-type shrublands of the world. In F. Di Castri, D. W. Goodall, & R. L. Specht (Eds.), Mediterranean-type shrublands (Ecosystems of the World 11, pp. 1–52). Amsterdam: Elsevier.

    Google Scholar 

  • Di Castri, F., & Mooney, H. A. (Eds.). (1973). Mediterranean type ecosystems. Origin and structure (Ecological studies 7, 405 pp). Berlin: Springer.

    Google Scholar 

  • Duhme, F., & Hinckley, T. M. (1992). Daily and seasonal variation in water relations of macchia shrubs and trees in France (Montpellier) and Turkey (Antalya). Vegetatio, 99–100, 185–198.

    Google Scholar 

  • Farrington, P., & Salama, R. B. (1996). Controlling dry-land salinity by planting trees in the best hydrological setting. Land Degradation and Development, 7, 183–204.

    Google Scholar 

  • Fischer, J., Brosi, B., Daily, G. C., Ehrlich, P. R., Goldman, R., Goldstein, J., Lindenmayer, D. B., Manning, A. D., Mooney, H. A., Pejchar, L., Ranganathan, J., & Tallis, H. (2008). Should agricultural policies encourage land sparing or wildlife-friendly farming? Frontiers in Ecology and the Environment, 6, 380–385.

    Google Scholar 

  • Fox, B. J., & Fox, M. D. (1986). Resilience of animal and plant communities to human disturbance. In B. Dell, A. J. M. Hopkins, & B. B. Lamont (Eds.), Resilience in Mediterranean-type ecosystems (pp. 39–64). Dordrecht: Dr. W. Junk.

    Google Scholar 

  • Frizell, B. S. (2009). Arkadien: Mythos und Wirklichkeit (188 pp). Köln: Böhlau/Wien.

    Google Scholar 

  • Goldblatt, P., & Manning, J. C. (2002). Plant diversity of the Cape Region of Southern Africa. Annals of the Missouri Botanical Garden, 89, 281–302.

    Google Scholar 

  • Gonzáles-Rodríguez, A. M., Morales, D., & Jiménez, M. S. (2002). Leaf gas exchange characteristics of a Canarian laurel forest tree species (Persea indica (L.) K. Spreng.) under natural conditions. Journal of Plant Physiology, 159, 695–704.

    Google Scholar 

  • Gonzáles-Sampériz, P., Leroy, S. A. G., Carrión, J. S., Fernández, S., Garcá-Antón, M., Gil-Garcá, M. J., Uzquiano, P., Valero-Garcés, B., & Figueiral, I. (2010). Steppes, savannahs, forests and phytodiversity reservoirs during the Pleistocene in the Iberian Peninsula. Review of Palaeobotany and Palynology, 162, 427–457.

    Google Scholar 

  • Gratani, L., & Bombelli, A. (2001). Differences in leaf traits among mediterranean broad-leaved evergreen shrubs. Annales Botanici Fennici, 38, 15–24.

    Google Scholar 

  • Green, P. S. (2002). A revision of Olea L. (Oleaceae). Kew Bulletin, 57, 91–140.

    Google Scholar 

  • Grove, A. T., & Rackham, O. (2001). The nature of Mediterranean Europe. An ecological history (384 pp). New Haven/London: Yale University Press.

    Google Scholar 

  • Hardham, A. R. (2005). Pathogen profile: Phytophthora cinnamomi. Molecular Plant Pathology, 6, 589–604.

    CAS  PubMed  Google Scholar 

  • Herrera, C. M. (1992). Historical effects and sorting processes as explanations for contemporary ecological patterns: Character syndromes in mediterranean woody plants. American Naturalist, 140, 421–446.

    Google Scholar 

  • Hobbs, R. J. (1998). Impacts of land use on biodiversity in southwestern Australia. In P. W. Rundel, G. Montenegro, & F. M. Jaksic (Eds.), Landscape disturbance and biodiversity in Mediterranean-type ecosystems (Ecological studies 136, pp. 81–106). Berlin: Springer.

    Google Scholar 

  • Hobbs, R. J., Groves, R. H., Hopper, S. D., Lambeck, R. J., Lamont, B. B., Lavorel, S., Main, A. R., Majer, J. D., & Saunders, D. A. (1995). Function of biodiversity in the mediterranean-type ecosystems of southwestern Australia. In G. W. Davis & D. M. Richardson (Eds.), Mediterranean-type ecosystems. The function of biodiversity (Ecological studies 109, pp. 233–284). Berlin: Springer.

    Google Scholar 

  • Hopper, S. D. (1979). Biogeographical aspects of speciation in the southwest Australian flora. Annual Review of Ecology and Systematics, 10, 399–422.

    Google Scholar 

  • Hopper, S. D. (1992). Patterns of plant diversity at the population and species level in south-west Australian Mediterranean ecosystems. In R. J. Hobbs (Ed.), Biodiversity of Mediterranean ecosystems in Australia (pp. 27–46). Surray Beatty: Perth.

    Google Scholar 

  • Huston, M. A. (1994). Biological diversity. The coexistence of species on changing landscapes (681 pp). Cambridge: Cambridge University Press.

    Google Scholar 

  • Joffre, R., Rambal, S., & Ratte, J. P. (1999). The dehesa system of southern Spain and Portugal as a natural ecosystem mimic. Agroforestry Systems, 45, 57–79.

    Google Scholar 

  • Kadereit, J. W., Körner, C., Kost, B., & Sonnewald, U. (2014). Strasburger – Lehrbuch der Pflanzenwissenschaften (37th ed., 919 pp). Heidelberg/Berlin: Springer Spektrum.

    Google Scholar 

  • Kalergis, A. M., López, C. B., Becker, M. I., Diaz, M. I., Sein, J., Garbarino, J. A., & DeJoannes, A. D. (1997). Modulation of fatty acid oxidation alters contact hypersensitivity to Urushiols: Role of aliphatic chain β-oxidation in processing and activation of Urushiols. Journal of Investigative Dermatology, 108, 57–61.

    CAS  PubMed  Google Scholar 

  • Keeley, J. E. (1995). Seed-germination patterns in fire-prone mediterranean-climate regions. In M. T. K. Arroyo, P. H. Zedler, & M. D. Fox (Eds.), Ecology and biogeography of Mediterranean ecosystems in Chile, California, and Australia (Ecological studies 108, pp. 239–273). New York: Springer.

    Google Scholar 

  • Keeley, J. E. (2000). Chaparral. In M. G. Barbour & W. D. Billings (Eds.), North American terrestrial vegetation (2nd ed., pp. 203–253). Cambridge: Cambridge University Press.

    Google Scholar 

  • Keeley, J. E., & Davis, F. W. (2007). Chaparral. In M. G. Barbour, T. Keeler-Wolf, & A. A. Schoenherr (Eds.), Terrestrial vegetation of California (pp. 339–366). Berkeley: University of California Press.

    Google Scholar 

  • Keeley, J. E., & Swift, C. C. (1995). Biodiversity and ecosystem functioning in mediterranean-climate California. In G. W. Davis & D. M. Richardson (Eds.), Mediterranean-type ecosystems. The function of biodiversity (Ecological studies 109, pp. 121–183). Berlin: Springer.

    Google Scholar 

  • Klötzli, F., Dietl, W., Marti, K., Schubiger-Bosshard, C., & Walther, G.-R. (2010). Vegetation Europas. Das Offenland im vegetationskundlich-ökologischen Überblick unter besonderer Berücksichtigung der Schweiz (1190 pp). Hep: Bern.

    Google Scholar 

  • Knapp, R. (1965). Die Vegetation von Nord- und Mittelamerika und der Hawaii-Inseln (373 pp). Stuttgart: G. Fischer.

    Google Scholar 

  • Kruger, F. J., Mitchell, D. T., & Jarvis, J. U. M. (Eds.). (1983). Mediterranean-type ecosystems. The role of nutrients (Ecological studies 43, 552 pp). Berlin: Springer.

    Google Scholar 

  • Kummerow, J. (1981). Structure of roots and root systems. In F. di Castri, D. W. Goodall, & R. L. Specht (Eds.), Mediterranean-type shrublands (Ecosystems of the World 11, pp. 269–288). Amsterdam: Elsevier.

    Google Scholar 

  • Lambers, H., Shane, M. W., Cramer, M. D., Pearse, S. J., & Veneklaas, E. J. (2006). Root structure and functioning for efficient acquisition of phosphorus: Matching morphological and physiological traits. Annals of Botany, 98, 693–713.

    PubMed  PubMed Central  Google Scholar 

  • Lamont, B. B., Hopkins, A. J. M., & Hnatjuk, R. J. (1984). The flora – composition, diversity, andorigins. In J. S. Pate & J. S. Beard (Eds.), Kwongan. Plant life of the sandplain (pp. 27–50). Nedlands: University of Western Australia Press.

    Google Scholar 

  • Lang, G. (1994). Quartäre Vegetationsgeschichte Europas. Methoden und Ergebnisse (462 pp). Jena: G. Fischer.

    Google Scholar 

  • Larcher, W. (2003). Physiological plant ecology (4th ed., 513 pp). Berlin/Heidelberg/New York: Springer.

    Google Scholar 

  • Le Houérou, H. N. (1981). Impact of man and his animals on Mediterranean vegetation. In F. di Castri, D. W. Goodall, & R. L. Specht (Eds.), Mediterranean-type shrublands (Ecosystems of the World 11, pp. 479–521). Amsterdam: Elsevier.

    Google Scholar 

  • Le Houérou, H. N. (1990). Global change: Vegetation, ecosystems and land use in the southern Mediterranean Basin by the mid twenty-first century. Israel Journal of Botany, 39, 481–508.

    Google Scholar 

  • Lieberei, R., & Reisdorff, C. (2007). Nutzpflanzenkunde (7th ed., 476 pp). Stuttgart/New York: Georg Thieme.

    Google Scholar 

  • Lieth, H., Berlekamp, J., Fuest, S., & Riediger, S. (1999). Climate diagram world atlas (CD-ROM). Leiden: Backhuys.

    Google Scholar 

  • Linder, H. P. (2005). Evolution of diversity: The Cape flora. Trends in Plant Science, 10, 536–541.

    CAS  PubMed  Google Scholar 

  • Linder, H. P., & Hardy, C. R. (2004). Evolution of the species-rich Cape flora. Philosophical Transactions of the Royal Society London B, 359, 1623–1632.

    CAS  Google Scholar 

  • Lo Gullo, M. A., & Salleo, S. (1988). Different strategies of drought resistance in three Mediterranean sclerophyllous trees growing in the same environmental conditions. New Phytologist, 108, 267–276.

    Google Scholar 

  • Mabberley, D. J. (2017). Mabberley’s plant book (4th ed., 1102 pp). Cambridge: Cambridge University Press.

    Google Scholar 

  • Mazzoleni, S., di Pasquale, G., Mulligan, M., di Martino, P., & Rego, F. (Eds.). (2004). Recent dynamics of the Mediterranean vegetation and landscape (306 pp). Chichester: Wiley.

    Google Scholar 

  • Médail, F. (2009). Mediterranean. In S. E. Jørgensen (Ed.), Ecosystem ecology (pp. 319–330). Amsterdam: Elsevier.

    Google Scholar 

  • Minnich, R. A. (2007). Southern California conifer forests. In M. G. Barbour, T. Keeler-Wolf, & A. A. Schoenherr (Eds.), Terrestrial vegetation of California (pp. 502–538). Berkeley: University of California Press.

    Google Scholar 

  • Montenegro, G., Ginocchio, R., Segura, A., Keely, J. E., & Gómez, M. (2004). Fire regimes and vegetation responses in two mediterranean-climate regions. Revista Chilena de Historia Natural, 77, 455–464.

    Google Scholar 

  • Moreno, J. M., & Oechel, W. C. (Eds.). (1995). Global change and Mediterranean-type ecosystems (Ecological studies 117, 527 pp). New York: Springer.

    Google Scholar 

  • Mucina, L. (1997). Conspectus of classes of European vegetation. Folia Geobotanica, 32, 117–172.

    Google Scholar 

  • Neff, C., & Frankenberg, P. (1995). Zur Vegetationsdynamik im mediterranen Südfrankreich. Erdkunde, 49, 232–244.

    Google Scholar 

  • Neumann, G., & Römheld, V. (2007). The release of root exudates as affected by the plant physiological status. In R. Pinto, Z. Varanini, & Z. Nannipieri (Eds.), The rhizosphere; biochemistry and organic substances at the soil–plant Interface (2nd ed., pp. 23–72). Boca Raton: CRC Press.

    Google Scholar 

  • Nicolle, D. (2006). A classification and census of regenerative strategies in the eucalypts (Angophora, Corymbia and Eucalyptus – Myrtaceae) with special reference to the obligate seeders. Australian Journal of Botany, 54, 391–407.

    Google Scholar 

  • Oberdorfer, E. (1960). Pflanzensoziologische Studien in Chile – ein Vergleich mit Europa. Flora et Vegetatio Mundi, 2, 208 S.

    Google Scholar 

  • Ovalle, C., Avendaño, J., Aronson, J., & Del Pozo, A. (1996). Land occupation patterns and vegetation structure in the anthropogenic savannas (espinales) of Central Chile. Forest Ecology and Management, 86, 129–139.

    Google Scholar 

  • Ovalle, C., Dep Pozo, A., Casado, M. A., Acosta, B., & de Miguel, J. M. (2006). Consequences of landscape heterogeneity on grassland diversity and productivity in the Espinal agroforestry system of central Chile. Landscape Ecology, 21, 585–594.

    Google Scholar 

  • Ozenda, P. (1975). Sur les étages de végétation dans les montagnes du Bassin Méditerranéen. Documents de Cartographie Ecologique, 16, 1–32.

    Google Scholar 

  • Pausas, J. G., Keeley, J. E., & Verdú, M. (2006). Inferring differential evolutionary processes of plant persistence traits in Northern Hemisphere mediterranean fire-prone ecosystems. Journal of Ecology, 94, 31–39.

    Google Scholar 

  • Pausas, J. G., Lovet, J., Rodrigo, A., & Vallejo, R. (2008). Are wildfires a disaster in the mediterranean basin? A review. International Journal of Wildland Fire, 17, 713–723.

    Google Scholar 

  • Quézel, P. (1985). Definition of the mediterranean region and origin of its flora. In C. Gomez-Campo (Ed.), Plant conservation in the Mediterranean area (pp. 9–24). Dordrecht: Dr. W. Junk.

    Google Scholar 

  • Quézel, P. (2004). Large-scale post-glacial distribution of vegetation structures in the mediterranean region. In S. Mazzoleni, G. di Pasquale, M. Mulligan, P. di Martino, & F. Rego (Eds.), Recent dynamics of the Mediterranean vegetation and landscape (pp. 3–12). Chichester: Wiley.

    Google Scholar 

  • Quézel, P., & Médail, F. (2003). Ecologie et biogéographie des forêts du bassin méditerranéen (573 pp). Paris: Elsevier.

    Google Scholar 

  • Raus, T., & Bergmeier, E. (2003). Formation J: Mediterranean sclerophyllous forests and scrub. In U. Bohn, R. Neuhäusl, G. Gollub, C. Hettwer, Z. Neuhäuslová, T. Raus, H. Schlüter, & H. Weber (Eds.), Map of the natural vegetation of Europe. Scale 1:2.500.000 (pp. 347–358). Münster: Landwirtschaftsverlag.

    Google Scholar 

  • Raven, P. H. (1973). The evolution of Mediterranean floras. In F. Di Castri & H. A. Mooney (Eds.), Mediterranean type ecosystems. Origin and structure (Ecological studies 7, pp. 213–224). Berlin: Springer.

    Google Scholar 

  • Rebelo, A. G., Boucher, C., Helme, N., Mucina, L., & Rutherford, M. C. (2006). Fynbos Biome. In L. Mucina & M. C. Rutherford (Eds.), The vegetation of South Africa, Lesotho, and Swaziland (Strelitzia 19, pp. 52–219). Pretoria: South African National Biodiversity Institute.

    Google Scholar 

  • Reille, M. (1992). New pollen-analytical researches in Corsica: The problem of Quercus ilex L. and Erica arborea L.; The origin of Pinus halepensis Miller forests. New Phytologist, 122, 359–378.

    Google Scholar 

  • Reille, M., Andrieu, V., & de Beaulieu, J.-L. (1996). Les grands traits de l’histoire de la végétation des montagnes méditerranéennes occidentales. Ecologie, 27, 153–169.

    Google Scholar 

  • Richardson, D. M., Macdonald, I. A. W., Hoffmann, J. H., & Henderson, L. (1997). Alien plant invasions. In R. M. Cowling, D. M. Richardson, & S. M. Pierce (Eds.), Vegetation of southern Africa (pp. 535–570). Cambridge: Cambridge University Press.

    Google Scholar 

  • Rivas-Martínez, S., Fernando-Gonzales, F., Loidi, J., & Lousa, M. (2001). Syntaxonomical checklist of vascular plant communities of Spain and Portugal to association level. Itinera Geobotanica, 14, 1–341.

    Google Scholar 

  • Rodá, F., Retana, J., Gracia, C. A., & Bellot, J. (Eds.). (1999). Ecology of Mediterranean Evergreen oak forests (Ecological studies 137, 373 pp). Berlin: Springer.

    Google Scholar 

  • Rundel, P. W. (1998). Landscape disturbance in mediterranean-type ecosystems: An overview. In P. W. Rundel, G. Montenegro, & F. M. Jaksic (Eds.), Landscape disturbance and biodiversity in Mediterranean-type ecosystems (Ecological studies 136, pp. 3–22). Berlin: Springer.

    Google Scholar 

  • Rundel, P. W., Montenegro, G., & Jaksic, F. M. (Eds.). (1998). Landscape disturbance and biodiversity in Mediterranean-type ecosystems (Ecological studies 136, 447 pp). Berlin: Springer.

    Google Scholar 

  • San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., & Mauri, A. (Eds.). (2016). European atlas of forest tree species. Luxembourg: Publication Office of the European Union.

    Google Scholar 

  • Sax, D. F. (2002). Native and naturalized plant diversity are positively correlated in scrub communities of California and Chile. Diversity and Distribution, 8, 193–210.

    Google Scholar 

  • Schmithüsen, J. (1956). Die räumliche Ordnung der chilenischen Vegetation. Bonner Geographische Abhandlungen, 17, 1–89.

    Google Scholar 

  • Schultz, J. (2000). Handbuch der Ökozonen (577 pp). Stuttgart: E. Ulmer.

    Google Scholar 

  • Terral, J.-F., Alonso, N., Buxó, I., Capdevila, R., Chatti, N., Fabre, L., Fiorentino, G., Marinval, P., Pérez Jordá, G., Pradat, B., Rovira, N., & Alibert, P. (2004). Historical biogeography of olive domestication (Olea europaea L.) as revealed by geometrical morphometry applied to biological and archaeological material. Journal of Biogeography, 31, 63–77.

    Google Scholar 

  • Thompson, J. D. (2005). Plant evolution in the Mediterranean (293 pp). Oxford: Oxford University Press.

    Google Scholar 

  • Trabaud, L. (1981). Man and fire: Impacts on mediterranean vegetation. In F. di Castri, D. W. Goodall, & R. L. Specht (Eds.), Mediterranean-type shrublands (Ecosystems of the World 11, pp. 523–537). Amsterdam: Elsevier.

    Google Scholar 

  • Verdú, M., Dávila, P., García-Fayos, P., Flores-Hernández, N., & Valiente-Banuet, A. (2003). “Convergent” traits of Mediterranean woody plants belong to pre-mediterranean lineages. Biological Journal of the Linnaean Society, 78, 415–427.

    Google Scholar 

  • Walter, H. (1968). Die Vegetation der Erde in öko-physiologischer Betrachtung. II: Die gemäßigten und arktischen Zonen (1001 pp). Stuttgart: G. Fischer.

    Google Scholar 

  • Walter, H., & Straka, H. (1970). Arealkunde. Floristisch-historische Geobotanik (478 pp). Stuttgart: E. Ulmer.

    Google Scholar 

  • Walter, H., Breckle, S.-W., Hager, J., Loris, K., & Miehe, G. (1991). Ökologie der Erde. Vol. 4. Gemäßigte und arktische Zonen außerhalb Euro-Nordasiens (586 pp). Stuttgart: G. Fischer.

    Google Scholar 

  • Wheatbelt Development Commission. (2011). Wheatbelt: a region in profile. www.wheatbelt.wa.gov.au

  • Yates, M. J., Verboom, G. A., Rebelo, A. G., & Cramer, M. D. (2010). Ecophysiological significance of leaf size variation in Proteaceae from the Cape Floristic Region. Functional Ecology, 24, 485–492.

    Google Scholar 

  • Zech, W., Schad, P., & Hintermaier-Erhard, G. (2014). Böden der Welt: Ein Bildatlas (2nd ed., 152 pp). Berlin/Heidelberg: Springer Spektrum.

    Google Scholar 

  • Zohary, D., & Spiegel-Roy, P. (1975). Beginnings of fruit growing in the old world. Science, 187, 319–327.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pfadenhauer, J.S., Klötzli, F.A. (2020). Zonal Vegetation of the Subtropical (Warm–Temperate) Zone with Winter Rain. In: Global Vegetation. Springer, Cham. https://doi.org/10.1007/978-3-030-49860-3_8

Download citation

Publish with us

Policies and ethics