Skip to main content

The Last Three Millions of Unequal Spring Thaws

  • Chapter
  • First Online:
Nature through Time

Abstract

Evidence from various climate proxies provides us with increasingly reliable proof that only in the past 10 millennia were natural systems more or less as we see them at the present (without considering human impact). Prior to 10,000 years ago, natural systems repeatedly changed under the influence of an unstable climate. This is particularly true over the last one million years. During these times, terrestrial environments were populated by a diversity of large animals that did not survive either the last dramatic climate change or the increasing power of humans. The volume of continental ice covering the land and its impact on the planet’s physiography∗ and vegetation have varied consistently. We can try to imagine extreme conditions: the very cold springtimes of the full glacials∗, and the warm springtimes of the rapid deglaciation phases, with enormous volumes of water feeding terrifying rivers. Most of this story is frozen in the ice cover of Greenland and Antarctica, the deep layers of which have been reached by human coring activities only over the past half century. Shorter cores have been drilled in high-altitude ice caps (e.g., in the Andes) that provide insight into other parts of the planet. The interpretation of the signals locked into the ice cores led to the reconstruction of climatic curves covering approximately the past 800 millennia. In addition, long sediment cores have been recovered from thousands of lakes across the globe and yielded data useful to estimate climatic trends based on pollen* records. In the past one to three million years, the continents and oceans were in roughly their present-day locations. Environmental factors, including tectonics (mountain uplift or closure of ocean gateways), interacted with the overall long-term oscillation in atmospheric carbon-dioxide concentration, which, in turn, influenced vegetation cover and ecosystem composition. Well-established glacial-interglacial∗ cycles impacted biotic dispersal∗ events at mid-to-high latitudes and determined the geographical restriction and expansion of tropical and subtropical (warm-temperate) biomes around the globe. This book chapter constitutes an imaginary field trip, presenting the reader with exemplary records of environments, plants, large mammals, and hominins impacted by cooling and warming phases, glaciations, changes in rainfall patterns, and sea level culminating in the world of today.

Electronic supplementary material

A slide presentation and an explanation of each slide’s content is freely available to everyone upon request via email to one of the editors: edoardo.martinetto@unito.it, ragastal@colby.edu, tschopp.e@gmail.com

*The asterisk designates terms explained in the Glossary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The U-codes are referred to the slides provided as Electronic supplementary material.

References

  • Andreev AA, Schirrmeister L, Tarasov PE, Ganopolski A, Brovkin V, Siegert C, Wetterich S, Hubberten H-W (2011) Vegetation and climate history in the Laptev Sea region (Arctic Siberia) during Late Quaternary inferred from pollen records. Quat Sci Rev 30:2182–2199

    Google Scholar 

  • Anzidei AP, Bulgarelli GM, Catalano P, Cerilli E, Gallotti R, Lemorini C, Milli S, Palombo MR, Pantano W, Santucci E (2012) Ongoing research at the late Middle Pleistocene site of La Polledrara di Cecanibbio (central Italy), with emphasis on human-elephant relationships. Quat Int 255:171–187

    Google Scholar 

  • Ashastina K, Kuzmina S, Rudaya N, Troeva E, Schoch WH, Römermann C, Reinecke J, Otte V, Savvinov G, Wesche K, Kienast F (2018) Woodlands and steppes: Pleistocene vegetation in Yakutia’s most continental part recorded in the Batagay permafrost sequence. Quat Sci Rev 196:38–61

    Google Scholar 

  • Astakhov V, Shkatova V, Zastrozhnov A, Chuyko M (2016) Glaciomorphological map of the Russian federation. Quat Int 420:4–14

    Google Scholar 

  • Baker PA, Fritz SC (2015) Nature and causes of Quaternary climate variation of tropical South America. Quat Sci Rev 124:31–47

    Google Scholar 

  • Baker PA, Rigsby CA, Seltzer GO, Fritz SC, Lowenstein TK, Bacher NP, Veliz C (2001) Tropical climate changes at millennial and orbital timescales in the Bolivian Altiplano. Nature 409:698–701

    Google Scholar 

  • Barnosky AD, Lindsey EL (2010) Timing of Quaternary megafaunal extinction in South America in relation to human arrival and climate change. Quat Int 217(1–2):10–29

    Google Scholar 

  • Berger WH, Jansen E (1994) Mid-Pleistocene climate shift: the Nansen connection. In: Johannessen OM et al (eds) The polar oceans and their role in shaping the global environment, AGU geophysical monograph, vol 85, pp 295–311

    Google Scholar 

  • Bertini A (2001) Pliocene climatic cycles and altitudinal forest development from 2.7 Ma in the Northern Apennines (Italy): evidence from the pollen record of the Stirone section (~5.1 to ~2.2 Ma). Géobios 34(3):253–265

    Google Scholar 

  • Bertini A (2010) Pliocene to Pleistocene palynoflora and vegetation in Italy: state of the art. Quat Int 225:5–24

    Google Scholar 

  • Bertini A (2013) Climate and vegetation in the Upper Valdarno basin (central Italy) as a response to northern hemisphere insolation forcing and regional tectonics in the late Pliocene-early Pleistocene. Ital J Geosci (Boll Soc Geol Ital) 132(1):137–148

    Google Scholar 

  • Bertini A, Magi M, Mazza P, Fauquette S (2010) Impact of short-term climatic events on latest Pliocene land settings and communities in Central Italy (Upper Valdarno basin). Quat Int 225:92–105

    Google Scholar 

  • Bertini A, Magri D, Martinetto E, Sadori L, Vassio E (2014) The Pleistocene flora of central Italy. In: Kustatscher E, Roghi G, Bertini A, Miola A (eds) Palaeobotany of Italy, 2nd edn. Naturmuseum Sudtirol, Bolzano, p 3080338

    Google Scholar 

  • Bertini A, Roiron P (1997) Evolution de la végétation et du climat pendant le Pliocène moyen, en Italie centrale: apport de la palynologie et de la macroflore à l’étude du bassin du Valdarno supérieur (coupe de Santa Barbara). Comptes rendus de l’Académie des sciences. Série 2. Sci Terre Planets 324(9):763–771

    Google Scholar 

  • Bertini A, Toti F, Marino M, Ciaranfi N (2015) Vegetation and climate across the Early–Middle Pleistocene transition at Montalbano Jonico, southern Italy. Quat Int 383:74–88

    Google Scholar 

  • Bhandari S, Momohara A, Paudayal KN (2009) Late Pleistocene plant macro-fossils from the Gokarna Formation of the Kathmandu Valley, Central Nepal. Bull Dep Geol 12:75–88

    Google Scholar 

  • Bhandari S, Momohara A, Uhl D, Paudayal KN (2016) Paleoclimatic significance of the late Quaternary plant macrofossils from the Gokarna Formation, Kathmandu Valley, Nepal. Rev Palaeobot Palynol 228:98–112

    Google Scholar 

  • Bhandari S, Paudayal KN (2007) Palynostratigraphy and palaeoclimatic interpretation of the Plio-Pleistocene Lukundol Formation from the Kathmandu Valley, Nepal. J Nepal Geol Soc 35:1–10

    Google Scholar 

  • Bhandari S, Paudayal KN, Momohara A (2010) Late Pleistocene plant macrofossils from the Thimi Formation (Madhyapur Thimi section) of the Kathmandu Valley, Central Nepal. J Nepal Geol Soc 40:31–48

    Google Scholar 

  • Bhandari S, Paudayal KN, Momohara A (2011a) Late Quaternary plant macrofossils assemblages from the Besigaon section of the Gokarna Formation, Kathmandu Valley, Central Nepal. J Nepal Geol Soc 42:1–12

    Google Scholar 

  • Bhandari S, Paudayal KN, Momohara A (2011b) Climate change on the basis of plant macrofossil assemblages from the late Quaternary sediments from the Mulpani section of the Gokarna Formation, Kathmandu Valley, Nepal. J Stratigr Assoc Nepal 7:47–58

    Google Scholar 

  • Birks HH (2008) The Late-Quaternary history of arctic and alpine plants. Plant Ecol Divers 1:135–146

    Google Scholar 

  • Birks HH, Birks HJB (2000) Future uses of pollen analysis must include plant macrofossils. J Biogeogr 27:31–35

    Google Scholar 

  • Blain HA, Agustí J, Lordkipanidze D, Rook L, Delfino M (2014) Paleoclimatic and paleoenvironmental context of the early Pleistocene hominins from Dmanisi (Georgia, Lesser Caucasus) inferred from the herpetofaunal assemblage. Quat Sci Rev 105:136–150

    Google Scholar 

  • Blumenschine RJ, Stanistreet IG, Masao FT (2012) Olduvai Gorge and the Olduvai landscape paleoanthropology project. J Hum Evol 63:247–250

    Google Scholar 

  • Boeskorov GG, Lazarev PA, Sher AV, Davydov SP, Bakulina NT, Shchelchkova MV, Binladen J, Willerslev E, Buigues B, Tikhonov AN (2011) Woolly rhino discovery in the lower Kolyma River. Quat Sci Rev 30:2262–2272

    Google Scholar 

  • Boeskorov GG, Potapova OR, Protopopov AV, Plotnikov VV, Agenbroad LD, Kirikov KS, Pavlov IS, Shchelchkova MV, Belolyubskii IN, Tomshin MD, Kowalczyk R, Davydov SP, Kolesov SD, Tikhonov AN, van der Plicht J (2016) The Yukagir Bison: the exterior morphology of a complete frozen mummy of the extinct steppe bison, Bison priscus from the early Holocene of northern Yakutia, Russia. Quat Int 406:94–110

    Google Scholar 

  • Boeskorov GG, Potapova OR, Protopopov AV, Plotnikov VV, Maschenko EN, Shchelchkova MV, Petrova EA, Kowalczyk R, van der Plicht J, Tikhonov AN (2018) A study of a frozen mummy of a wild horse from the Holocene of Yakutia, East Siberia, Russia. Mamm Res 63:307–314

    Google Scholar 

  • Bogotá-A RG, Groot MHM, Hooghiemstra H, Lourens LJ, van der Linden M, Berrio JC (2011) Rapid climate change from north Andean Lake Fúquene pollen records driven by obliquity: implications for a basin-wide biostratigraphic zonation for the last 284 ka. Quat Sci Rev 30:3321–3337

    Google Scholar 

  • Buizert C, Adrian B, Ahn J, Albert M, Alley RB, Baggenstos D, Bauska TK, Bay RC, Bencivengo BB, Bentley CR, Brook EJ, Chellman NJ, Clow GD, Cole-Dai J, Conway H, Cravens E, Cuffey KM, Dunbar NW, Edwards JS, Fegyveresi JM, Ferris DG, Fitzpatrick JJ, Fudge TJ, Gibson CJ, Gkinis V, Goetz JJ, Gregory S, Hargreaves GM, Iverson N, Johnson JA, Jones TR, Kalk ML, Kippenhan MJ, Koffman BG, Kreutz K, Kuhl TW, Lebar DA, Lee JE, Marcott SA, Markle BR, Maselli OJ, McConnell JR, McGwire KC, Mitchell LE, Mortensen NB, Neff PD, Nishiizumi K, Nunn RM, Orsi AJ, Pasteris DR, Pedro JB, Pettit EC, Buford Price P, Priscu JC, Rhodes RH, Rosen JL, Schauer AJ, Schoenemann SW, Sendelbach PJ, Severinghaus JP, Shturmakov AJ, Sigl M, Slawny KR, Souney JM, Sowers TA, Spencer MK, Steig EJ, Taylor KC, Twickler MS, Vaughn BH, Voigt DE, Waddington ED, Welten KC, Wendricks AW, White JWC, Winstrup M, Wong GJ, Woodruff TE (2015) Precise interpolar phasing of abrupt climate change during the last ice age. Nature 520:661

    Google Scholar 

  • Burbridge RE, Mayle FE, Killenn T (2004) Fifty-thousand-year vegetation and climate history of Noel Kempff Mercado National Park, Bolivian Amazon. Quat Res 61:215–230

    Google Scholar 

  • Bush BM, De Oliveira PE, Colinvaux PA, Miller MC, Moreno JE (2004) Amazonian paleoecological histories: one hill, three watersheds. Palaeogeogr Palaeoclimatol Palaeoecol 214:359–393

    Google Scholar 

  • Castorina F, Masi U, Milli S, Anzidei AP, Bulgarelli GM (2015) Geochemical and Sr-Nd isotopic characterization of Middle Pleistocene sediments from the paleontological site of La Polledrara di Cecanibbio (Sabatini Volcanic District, central Italy). Quat Int 357:253–263

    Google Scholar 

  • Cheng H, Sinha A, Cruz FW, Wang X, Edwards RL, d’Horta FM, Ribas CC, Vuille M, Stott LD, Auler AS (2013) Climate change patterns in Amazonia and biodiversity. Nat Commun 4:1411

    Google Scholar 

  • Cohen MLC, Rossetti DF, Pessenda LCR, Friaes YS, Oliveira PR (2014) Late Pleistocene glacial forest of Humaitá - Western Amazonia. Palaeogeogr Palaeoclimatol Palaeoecol 415:37–47

    Google Scholar 

  • Colinveaux PA, DeOlivera PE, Moreno JE, Miller MC, Bush MB (1996) A long pollen record from lowland Amazonia: forest cooling in glacial times. Science 274:85–88

    Google Scholar 

  • Cwynar LC, Ritchie JC (1980) Arctic steppe-tundra: a Yukon perspective. Science 208:1375–1377

    Google Scholar 

  • D’Apolito C, Absy ML, Latrubesse E (2013) The hill of six lakes revisited: new data and re-evaluation of a key Pleistocene Amazon site. Quat Sci Rev 76:140–155

    Google Scholar 

  • Dansgaard W, Johnsen SJ, Clausen HB, Dahl-Jensen D, Gundestrup NS, Hammer CU, Hvidberg CS, Steffensen JP, Sveinbjörnsdottir AE, Jouzel J, Bond G (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364:218–220

    Google Scholar 

  • Deng T, Wang X, Fortelius M, Li Q, Wang Y, Tseng ZJ, Takeuchi GT, Saylor JE, Säilä LK, Xie G (2011) Out of Tibet: Pliocene woolly rhino suggests high-plateau origin of ice age megaherbivores. Science 333(6047):1285–1288

    Google Scholar 

  • Denham T, Mountain M-J (2016) Resolving some chronological problems at Nombe rock shelter in the highlands of Papua New Guinea. Archaeol Ocean 51(Suppl. 1):73–83

    Google Scholar 

  • Denk T (2006) Rhododendron ponticum L. var. sebinense (Sordelli) Sordelli in the Late Pleistocene flora of Hötting, Northern Calcareous Alps: witness of a climate warmer than today? Veroffenlichungen des Tiroler Landesmuseums Ferdinandeum 86:43–66

    Google Scholar 

  • DeSantis LR, Haupt RJ (2014) Cougars’ key to survival through the Late Pleistocene extinction: insights from dental microwear texture analysis. Biol Lett 10(4):20140203

    Google Scholar 

  • Ehlers J, Gibbard PL, Hughes PD (eds) (2011) Quaternary glaciations - extent and chronology. A closer look. Developments in quaternary science, vol 15. Elsevier, Amsterdam, pp 2–1108

    Google Scholar 

  • Eiserhardt WL, Borchsenius F, Plum CM, Ordonez A, Svenning JC (2015) Climate-driven extinctions shape the phylogenetic structure of temperate tree floras. Ecol Lett 18(3):263–272

    Google Scholar 

  • EPICA Community Members (2004) Eight glacial cycles from an Antarctic ice core. Nature 429:623–628

    Google Scholar 

  • Esu D, Gianolla D (2009) The malacological record from the Middle Pleistocene Pianico-Sellere Basin (Bergamo, northern Italy). Quat Int 204:3–10

    Google Scholar 

  • Ferring R, Oms O, Agusti J, Berna F, Nioradze M, Shelia T, Tappe M, Vekua A, Zhvania D, Lordkipanidze D (2011) Earliest human occupations at Dmanisi (Georgian Caucasus) dated to 1.85-1.78 Ma. Proc Natl Acad Sci U S A 108:10432–10436

    Google Scholar 

  • Field J, Dodson J (1999) Late Pleistocene megafauna and human occupation at Cuddie Springs, southeastern Australia. Proc Prehist Soc 65:275–301

    Google Scholar 

  • Field J, Dodson J, Prosser I (2002) A Late Pleistocene vegetation history from the Australian semi-arid zone. Quat Sci Rev 21(8–9):1005–1019

    Google Scholar 

  • Fillios M, Field J, Charles B (2010) Investigating human and megafauna co-occurrence in Australian prehistory: mode and causality in fossil accumulations at Cuddie Springs. Quat Int 211:123–143

    Google Scholar 

  • Fisher DC, Tikhonov AN, Kosintsev PA, Rountrey AN, Buigues B, van der Plicht J (2012) Anatomy, death, and preservation of a woolly mammoth (Mammuthus primigenius) calf, Yamal Peninsula, northwest Siberia. Quat Int 255:94–105

    Google Scholar 

  • Fox-Dobbs K, Stidham TA, Bowen GJ, Emslie SD, Koch PL (2006) Dietary controls on extinction versus survival among avian megafauna in the late Pleistocene. Geology 34(8):685–688

    Google Scholar 

  • Fujii R, Sakai H (2001) Palynological study of the drilled sediments from the Kathmandu Basin and its palaeoclimate and sedimentological significance. J Nepal Geol Soc 25(Sp. Issue):53–61

    Google Scholar 

  • Fujii R, Sakai H (2002) Paleoclimatic changes during the last 2.5 myr recorded in the Kathmandu Basin, Central Nepal Himalayas. J Asian Earth Sci 20:255–266

    Google Scholar 

  • Fullagar R, Field J (1997) Pleistocene seed grinding implements from the Australian arid zone. Antiquity 71:300–307

    Google Scholar 

  • Fullagar R, Field J, Kealhofer L (2008) Grinding stones and seeds of change: starch and phytoliths as evidence of plant food processing. In: Rowan YM, Ebeling JR (eds) New approaches to old stones: recent studies of ground stone artifacts. Equinox Publishing P/L, London, pp 159–172

    Google Scholar 

  • Gabrielyan I, Kovar-Eder J (2011) The genus Acer from Lower/Middle Pleistocene diatomites of the Sisian Formation, Syunik region, South Armenia. Rev Palaeobot Palynol 165:111–134

    Google Scholar 

  • Gabunia L, Vekua A, Lordkipanidze D, Swisher CC, Reid Ferring R, Justus A, Nioradze M et al (2000) Earliest Pleistocene hominid cranial remains from Dmanisi, Republic of Georgia: taxonomy, geological setting, and age. Science 288(5468):1019–1025

    Google Scholar 

  • Gerhart LM, Harris JM, Nippert JB, Sandquist DR, Ward JK (2012) Glacial trees from the La Brea tar pits show physiological constraints of low CO2. New Phytol 194(1):63–69

    Google Scholar 

  • Gianotti F, Forno MG, Ivy-Ochs S, Kubik PW (2008) New chronological and stratigraphical data on the Ivrea Amphitheatre (Piedmont, NW Italy). Quat Int 190:123–135

    Google Scholar 

  • Gianotti F, Forno MG, Ivy-Ochs S, Monegato G, Pini R, Ravazzi C (2015) Stratigraphy of the Ivrea Morainic amphitheatre (NW Italy). An updated synthesis. Alp Mediterr Quat 28(1):29–58

    Google Scholar 

  • Gianotti F, Pini R (2011) Stratigraphical subdivision of the Middle Pleistocene glacigenic sequence of the Ivrea amphitheatre (Piedmont, NW Italy). Abstracts XVIII INQUA Congress Bern 2011, 21-27 July. Quat Int 279–280:165

    Google Scholar 

  • Goddu SR, Appel E, Gautam P, Oches EA, Wehland F (2007) The lacustrine section at Lukundol, Kathmandu basin, Nepal: dating and magnetic fabric aspects. J Asian Earth Sci 30:73–81

    Google Scholar 

  • Govoni L, Paganoni A, Sala B (2006) The mammal fauna of the Piànico-Sèllere Basin. In: Donegana M, Ravazzi C (eds) INQUA-SEQS conference quaternary stratigraphy and evolution of the alpine region in the European and global framework. Field trip guide. INQUA-SEQS, Milano, pp 63–71

    Google Scholar 

  • Granger DE, Muzikar PF (2001) Dating sediment burial with in situ produced cosmogenic nuclides: theory, techniques, and limitations. Earth Planet Sci Lett 188:269–281

    Google Scholar 

  • Guthrie RD (1990) Frozen fauna of the mammoth steppe - the story of blue babe. University of Chicago Press, Chicago, 323 pp

    Google Scholar 

  • Hanselman JA, Bush MB, GoslingWD CA, Knox C, Baker PA, Fritz SC (2011) A 370,000-year record of vegetation and fire history around Lake Titicaca (Bolivia/Peru). Palaeogeogr Palaeoclimatol Palaeoecol 305:201–214

    Google Scholar 

  • Hay R (1976) Geology of the Olduvai Gorge: a study of sedimentation in a semiarid basin. University of California Press, Berkeley-Los Angeles-London, 203 pp

    Google Scholar 

  • Head MJ, Gibbard PL (2015) Formal subdivision of the quaternary system/period: past, present, and future. Quat Int 383:4–35

    Google Scholar 

  • Hermanowski B, Lima da Costa M, Carvalho AT, Behling H (2012) Palaeoenvironmental dynamics and underlying climatic changes in southeast Amazonia (Serra Sul dos Carajas, Brazil) during the late Pleistocene and Holocene. Palaeogeogr Palaeoclimatol Palaeoecol 365–366:227–246

    Google Scholar 

  • Hesse PP, Magee JW, van der Kaars S (2004) Late Quaternary climates of the Australian arid zone: A review. Quat Int 118–119:87–102

    Google Scholar 

  • Holden AR, Erwin DM, Schick KN, Gross J (2015) Late Pleistocene galls from the La Brea Tar Pits and their implications for cynipine wasp and native plant distribution in southern California. Quat Res 84(3):358–367

    Google Scholar 

  • Holden AR, Southon JR, Will K, Kirby ME, Aalbu RL, Markey MJ (2017) A 50,000 year insect record from Rancho La Brea, Southern California: insights into past climate and fossil deposition. Quat Sci Rev 168:123–136

    Google Scholar 

  • Hooghiemstra H, Ran ETH (1994) Late and middle Pleistocene climatic change and forest development in Colombia: pollen record Funza-2 (2–158 m core interval). Palaeogeogr Palaeoclimatol Palaeoecol 109:211–246

    Google Scholar 

  • Hughes ALC, Gyllencreutz R, Lohne ØS, Mangerud J, Svendsen JI (2016) The last Eurasian ice sheets – a chronological database and time-slice reconstruction, DATED-1. Boreas 45:1–45

    Google Scholar 

  • Husband RA (1924) Variability in Bubo virginianus from Rancho La Brea. Condor 26(6):220–225

    Google Scholar 

  • Huzita K (1954) Stratigraphic significance of the plant remains contained in the late Cenozoic formations in central Kinki, Japan. J Inst Polytech Osaka City Univ Ser G 2:75–88

    Google Scholar 

  • Igarashi Y, Yoshida M, Tabata H (1988) History of vegetation and climate in the Kathmandu Valley. Proc Ind Nat Sci Acad 54A(4):550–563

    Google Scholar 

  • Itihara M (1960) Some problems of the quaternary sedimentaries in the Osaka and Akasi areas, Japan. J Inst Polytech Osaka City Univ Ser G 5:13–30

    Google Scholar 

  • Jakobsson M, Nilsson J, Anderson L, Backman J, Björk G, Cronin TM, Kirchner N, Koshurnikov A, Mayer L, Noormets R, O’Regan M, Stranne C, Ananiev R, Barrientos Macho N, Cherniykh D, Coxall H, Eriksson B, Flodén T, Gemery L, Gustafsson Ö, Jerram K, Johansson C, Khortov A, Mohammad R, Semiletov I (2016) Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciation. Nat Commun 7:10365

    Google Scholar 

  • Joannin S, Cornée JJ, Münch P, Fornari M, Vasiliev I, Krijgsman W, Nahapetyan S, Gabrielyan I, Ollivier V, Roiron P, Chataigner C (2010) Early Pleistocene climate cycles in continental deposits of the Lesser Caucasus of Armenia inferred from palynology, magnetostratigraphy, and 40Ar/39Ar dating. Earth Planet Sci Lett 291(1–4):149–158

    Google Scholar 

  • Johnson C (2006) Australia’s mammal extinctions: A 50 000 year history. Cambridge University Press, Cambridge

    Google Scholar 

  • Jouzel J, Lorius C, Petit JR, Genthon C, Barkov NI, Kotlyakov VM, Petrov VM (1987) Vostok ice core: a continuous isotope temperature record over the last climatic cycle (160,000 years). Nature 329:403–408

    Google Scholar 

  • Kazaoka O (1988) Stratigraphy and sedimentary facies of the Uonuma Group in the Higashikubiki Hills, Niigata Prefecture, Central Japan. Earth Sci (Chikyu Kagaku) 42:61–83. (in Japanese with English Abstract)

    Google Scholar 

  • Kennett JP, West A (2008) Biostratigraphic evidence supports Paleoindian population disruption at c.12.9 ka. Proc Natl Acad Sci USA 105:E110

    Google Scholar 

  • Kienast F (2013) Plant macrofossil records – Arctic Eurasia. In: Elias SA, Mock C (eds) Encyclopedia of quaternary science, vol 3, 2nd edn. Elsevier, Amsterdam, pp 733–745

    Google Scholar 

  • Kienast F, Rudaya N, Maschenko EN, Potapova O, & Protopopov AV (2018) The habitat of the Megin Mammoth: vegetation, environments and climate in Central Yakutia during the late Weichselian. In: 5th European Conference on Permafrost (EUCOP), 23 June to 1 July 2018, Chamonix-Mont Blanc, France

    Google Scholar 

  • Kienast F, Schirrmeister L, Siegert C, Tarasov P (2005) Palaeobotanical evidence for warm summers in the East Siberian Arctic during the last cold stage. Quat Res 63:283–300

    Google Scholar 

  • Kienast F, Tarasov P, Schirrmeister L, Grosse G, Andreev AA (2008) Continental climate in the East Siberian Arctic during the last interglacial: implications from palaeobotanical records. Glob Planet Chang 60:535–562

    Google Scholar 

  • Kienast F, Wetterich S, Kuzmina S, Schirrmeister L, Andreev AA, Tarasov P, Nazarova L, Kossler A, Frolova L, Kunitsky VV (2011) Paleontological records indicate the occurrence of open woodlands in a dry inland climate at the present-day Arctic coast in western Beringia during the Last Interglacial. Quat Sci Rev 30:2134–2159

    Google Scholar 

  • Kirscher U, Gabrielyan I, Scharrer S, Bruch AA, Kuiper K, Bachtadse V (2014) High resolution magnetostratigraphy and radiometric dating of early Pleistocene lake sediments from Southern Armenia. Quat Int 328–329:31–44

    Google Scholar 

  • Kirscher U, Oms O, Bruch AA, Shatilova I, Chochishvili G, Bachtadse V (2017) The Calabrian in the Western Transcaucasian basin (Georgia): Paleomagnetic constraints from the Gurian regional stage. Quat Sci Rev 160:96–107

    Google Scholar 

  • Knüsel S, Ginot P, Schotterer U, Schwikowski M, Gäggeler HW, Francou B, Taupin JD (2003) Dating of two nearby ice cores from the Illimani, Bolivia. J Geophys Res Atmos 108:D6

    Google Scholar 

  • Koch PL, Barnosky AD (2006) Late Quaternary extinctions: state of the debate. Annu Rev Ecol Evol Syst 37:215–250

    Google Scholar 

  • Köppen W (1918) Klassification der Klimate nach Temperatur, Niederschlag and Jahreslauf. Petermanns Geogr Mitt 64:193–203

    Google Scholar 

  • Lambeck K, Chappell J (2002) Sea level change through the last glacial cycle. Science 292:679–686

    Google Scholar 

  • Lambeck K, Rouby H, Purcell A, Sun Y, Sambridge M (2014) Sea level and global ice volumes from the last glacial maximum to the holocene. Proc Natl Acad Sci 111:15296–15303

    Google Scholar 

  • Leakey LSB (1959) A new fossil skull from Olduvai. Nature 184:491–493

    Google Scholar 

  • Leakey LSB, Tobias PV, Napier JR (1964) A new species of the genus Homo from Olduvai Gorge. Nature 202:7–9

    Google Scholar 

  • Lisiecki LE, Raymo ME (2005) A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20:1003–1020

    Google Scholar 

  • Lordkipanidze D, Jashashvili T, Vekua A, Ponce de León MS, Zollikofer CPE, Rightmire GP, Pontzer H et al (2007) Postcranial evidence from early Homo from Dmanisi, Georgia. Nature 449(7160):305

    Google Scholar 

  • Lordkipanidze D, Ponce de León MS, Margvelashvili A, Rak Y, Rightmire GP, Vekua A, Zollikofer CPE (2013) A complete skull from Dmanisi, Georgia, and the evolutionary biology of early Homo. Science 342(6156):326–331

    Google Scholar 

  • Lyell C (1833) Principles of geology, vol 3. John Murray, London

    Google Scholar 

  • Magri D, Di Rita F, Aranbarri J, Fletcher W, González-Sampériz P (2017) Quaternary disappearance of tree taxa from Southern Europe: timing and trends. Quat Sci Rev 163:23–55

    Google Scholar 

  • Malla SB, Shrestha AB, Rajbhandary SB, Shrestha TB, Adhikari PM, Adhikari SR (1976) Flora of Langtang and cross section vegetation survey (central zone). Bull Dept Med Plants 6:269

    Google Scholar 

  • Mangili C, Brauer A, Plessen B, Moscariello A (2007) Centennial-scale oscillations in oxygen and carbon isotopes of endogenic calcite from a 15,500 varve year record of the piànico interglacial. Quat Sci Rev 26:1725–1735

    Google Scholar 

  • Martinetto E (2009) Palaeoenvironmental significance of plant macrofossils from the Piànico Formation, Middle Pleistocene of Lombardy, North Italy. Quat Int 204:20–30

    Google Scholar 

  • Martinetto E (2015) Monographing the Pliocene and early Pleistocene carpofloras of Italy: methodological challenges and current progress. Palaeontogr Abt B 293:57–99

    Google Scholar 

  • Martinetto E, Bertini A, Basilici G, Baldanza A, Bizzarri R, Cherin M, Gentili S, Pontini MR (2014) The plant record of the Dunarobba and Pietrafitta sites in the Plio-Pleistocene palaeoenvironmental context of central Italy. Alp Mediterr Quat 27(1):29–72

    Google Scholar 

  • Martinetto E, Momohara A, Bizzarri R, Baldanza A, Delfino M, Esu D, Sardella R (2017) Late persistence and deterministic extinction of “humid thermophilous plant taxa of East Asian affinity” (HUTEA) in southern Europe. Palaeogeogr Palaeoclimatol Palaeoecol 467:211–231

    Google Scholar 

  • Meachen JA, O’Keefe FR, Sadleir RW (2014) Evolution in the sabre-tooth cat, Smilodon fatalis, in response to Pleistocene climate change. J Evol Biol 27:714–723

    Google Scholar 

  • de Menocal P (2004) African climate change and faunal evolution during the Pliocene-Pleistocene. Earth Planet Sci Lett 220:3–24

    Google Scholar 

  • Messager E, Lordkipanidze D, Kvavadze E, Ferring CR, Voinchet P (2010) Palaeoenvironmental reconstruction of Dmanisi site (Georgia) based on palaeobotanical data. Quat Int 223–224:20–27

    Google Scholar 

  • Miki S (1938) On the change of flora of Japan since the upper Pliocene and the floral composition at the present. Jpn J Bot 9:213–251

    Google Scholar 

  • Miki S (1948) Floral remains in Kinki and adjacent districts since the Pliocene with description of 8 new species. Mineral Geol (Kobutsu to Chishitsu) 2:105–144. (in Japanese with English abstract)

    Google Scholar 

  • Miller G, Fogel M, Magee J, Gagan M, Clarke S, Johnson B (2005) Ecosystem collapse in Pleistocene Australia and a human role in megafaunal extinction. Science 309:287–290

    Google Scholar 

  • Miyoshi N, Fujiki T, Morita Y (1999) Palynology of a 250-m core from Lake Biwa: a 430,000-year record of glacial-interglacial vegetation change in Japan. Rev Palaeobot Palynol 104:267–283

    Google Scholar 

  • Möller P, Alexanderson H, Funder S, Hjort C (2015) The Taimyr Peninsula and the Severnaya Zemlya archipelago, Arctic Russia: a synthesis of glacial history and palaeo-environmental change during the Last Glacial cycle (MIS 5e–2). Quat Sci Rev 107:149–181

    Google Scholar 

  • Momohara A (2016) Stages of major floral change in Japan based on macrofossil evidence and their connection to climate and geomorphological changes since the Pliocene. Quat Int 397:92–105

    Google Scholar 

  • Momohara A (2017) Plio-Pleistocene geomorphological development of the Japanese Islands and floral and vegetation changes. Quat Res (Tokyo) 56:251–264. (in Japanese with English abstract)

    Google Scholar 

  • Momohara A (2018) Influence of mountain formation on floral diversification in Japan, based on macrofossil evidence. In: Hoorn C, Perrigo A, Antonelli A (eds) Mountains, climates and biodiversity. Wiley, Hoboken, pp 459–473

    Google Scholar 

  • Momohara A, Ueki T, Saito T (2017) Vegetation and climate histories between MIS 63 and 53 in the early Pleistocene in central Japan based on plant macrofossil evidences. Quat Int 455:149–165

    Google Scholar 

  • Momohara A, Yoshida A, Kudo Y, Nishiuchi R, Okitsu S (2016) Paleovegetation and climatic conditions in a refugium of temperate plants in central Japan in the Last Glacial Maximum. Quat Int 425:38–48

    Google Scholar 

  • Morley RJ (2000) Origin and evolution of tropical rain forests. Wiley, London, 362 pp

    Google Scholar 

  • Mountain M-J (1991) Highland New Guinea hunter-gatherers: the evidence of Nombe Rockshelter, Simbu with emphasis on the Pleistocene. Unpublished PhD thesis, ANU

    Google Scholar 

  • Muttoni G, Carcano C, Garzanti E, Ghielmi M, Piccin A, Pini R, Rogledi S, Sciunnach D (2003) Onset of major Pleistocene glaciations in the Alps. Geology 31(11):989–992

    Google Scholar 

  • Muttoni G, Ravazzi C, Breda M, Pini R, Laj C, Kissel C, Mazaud A, Garzanti E (2007) Magnetostratigraphy of the Leffe lacustrine succession (Southern Alps, Italy): evidence for an intensification of glacial activity in the Alps at Marine Isotope Stage 22 (0.87 Ma). Quat Res 67:161–173

    Google Scholar 

  • Nakagawa T, Yasuda Y, Tabata H (1996) Pollen morphology of Himalayan Pinus and Quercus and its importance in palynological studies in Himalayan area. Rev Palaeobot Palynol 91:317–329

    Google Scholar 

  • O’Keefe FR, Binder WJ, Frost SR, Sadlier RW, Van Valkenburgh B (2014) Cranial morphometrics of the dire wolf, Canis dirus, at Rancho La Brea: temporal variability and its links to nutrient stress and climate. Palaeontol Electron 17(1):24

    Google Scholar 

  • Ollivier V, Gabrielyan I, Gasparyan B, Chataigner C, Joannin S, Cornée JJ, Guillou H, Scaillet S, Munch P, Krijgsman W (2010) Quaternary volcano-lacustrine patterns and palaeobotanical data in southern Armenia. Quat Int 223/224:312–326

    Google Scholar 

  • Ooi N (2001) Last Glacial plant macrofossils discovered in the Kathmandu valley, Nepal. Jpn J Hist Bot 10:1

    Google Scholar 

  • Palombo MR, Filippi ML, Iacumin P, Longinelli A, Barbieri M, Maras A (2005) Coupling tooth microwear and stable isotope analyses for palaeodiet reconstruction: the case study of Late Middle Pleistocene Elephas (Palaeoloxodon) antiquus teeth from Central Italy (Rome area). Quat Int 126–128:153–170

    Google Scholar 

  • Paudayal KN (2005) Late Pleistocene pollen assemblages from the Thimi Formation, Kathmandu Valley, Nepal. Island Arc 14(4):328–337

    Google Scholar 

  • Paudayal KN (2006) Late Pleistocene pollen assemblages from the Gokarna Formation, Kathmandu Valley. J Nepal Geol Soc 33:33–38

    Google Scholar 

  • Paudayal KN (2011) High resolution palynostratigraphy and climate from the late Quaternary Besigaon section belonging to Gokarna Formation in the Kathmandu Valley. J Stratigr Assoc Nepal 7:33–38

    Google Scholar 

  • Paudayal KN, Ferguson DK (2004) Pleistocene palynology of Nepal. Quat Int 117:69–79

    Google Scholar 

  • Penck A, Brückner E, du Pasquier L (1894) Le Système glaciaire des Alpes. Guide Congr Géol Int Zurich Bull Soc Sc Nat Neuchatel 22:86

    Google Scholar 

  • Pereira A, Nomade S, Faulguères C, Bahain JJ, Tombret O, Garcia T, Voichet P, Bulgarelli GM, Anzidei AP (2017) 40Ar/39Ar and ESR/U-series data for the La Polledrara di Cecanibbio archaeological site (Lazio, Italy). J Archaeol Sci Rep 15:20–29

    Google Scholar 

  • Pini R, Ravazzi C, Donegana M (2009) Pollen stratigraphy, vegetation and climate history of the last 215 ka in the Azzano Decimo core (plain of Friuli, north-eastern Italy). Quat Sci Rev 28:1268–1290

    Google Scholar 

  • Prentice ML, Hope GS, Maryunani K, Peterson JA (2005) An evaluation of snowline data across New Guinea during the last major glaciation and area-based glacier snowlines in the Mt. Jaya region of Papua Indonesia during the Last Glacial Maximum. Quat Int 138:93–117

    Google Scholar 

  • Pross J, Koutsodendris A, Christanis K, Fischer T, Fletcher WJ, Hardiman M, Kalaitzidis S, Knipping M, Kotthoff U, Milner AM, Müller UC, Schmiedl G, Siavalas G, Tzedakis PC, Wulf S (2015) The 1.35-Ma-long terrestrial climate archive of Tenaghi Philippon, northeastern Greece: evolution, exploration and perspectives for future research. Newsl Stratigr 48:253–276

    Google Scholar 

  • Ravazzi C (1995) Paleobotany of the biogenic unit of the Leffe Formation (early Pleistocene, N-Italy): brief report on the status of the art. Il Quat Ital J Quat Sci 8(2):435–442

    Google Scholar 

  • Ravazzi C (2013) Un lago di 800 mila anni fa a Sovere. Guida alla scoperta di un calendario di 50 mila anni: piante, animali e ceneri vulcaniche nel bacino di Pianico-Sèllere. CNR-IDPA, Milano, 96 pp

    Google Scholar 

  • Ravazzi C, Badino F, Pinti D, Scardia G (2014) The stratigraphic setting of the Pianico-Sèllere Basin (Early/Middle Pleistocene, Italian Alps). An updated framework. 2 mid-conference field trip “the quaternary of the Italian Alps – vegetation, palaeoenvironment and climate”. In: 9th European palaeobotany palynology conference. CLEUP, Padova, pp 4–12

    Google Scholar 

  • Ravazzi C, Rossignol Strick M (1995) Vegetation change in a climatic cycle of early Pleistocene age in the Leffe basin (Northern Italy). Palaeogeogr Palaeoclimatol Palaeoecol 117:105–122

    Google Scholar 

  • Ravazzi C, Van Der Burgh J (1994) Coniferous woods in the early Pleistocene brown coals of the Leffe Basin (Lombardy, Italy). Riv Ital Paleontol Stratigr 100(4):597–620

    Google Scholar 

  • Reinecke J, Troeva E, Wesche K (2017) Extrazonal steppes and other temperate grasslands of northern Siberia-Phytosociological classification and ecological characterization. Phytocoenologia 47:167–196

    Google Scholar 

  • Rightmire GP, Ponce de León MS, Lordkipanidze D, Margvelashvili A, Zollikofer CPE (2017) Skull 5 from Dmanisi: Descriptive anatomy, comparative studies, and evolutionary significance. J Hum Evol 104:50–79

    Google Scholar 

  • Rook L, Croitor R, Delfino M, Ferretti MP, Gallai G, Pavia M (2013) The Upper Valdarno Plio-Pleistocene vertebrate record: an historical overview, with notes on palaeobiology and stratigraphic significance of some important taxa. Ital J Geosci (Boll Soc Geol Ital) 132:104–125

    Google Scholar 

  • Rossi S (2004) Analisi pollinica della sequenza lacustre di Piànico-Sèllere (Italia). Tesi di Dottorato in Cotutela in Scienze Naturalistiche e Ambientali, Univ. St. Milano e Univ. d’Aix-Marseille III

    Google Scholar 

  • Sadori L, Koutsodendris A, Panagiotopoulos K, Masi A, Bertini A, Combourieu-Nebout N, Francke A, Kouli K, Joannin S, Mercuri AM, Peyron O, Torri P, Wagner B, Zanchetta G, Sinopoli G, Donders TH (2016) Pollen-based paleoenvironmental and paleoclimatic change at Lake Ohrid (south-eastern Europe) during the past 500 ka. Biogeosciences 13:1423–1437

    Google Scholar 

  • Sakai H, Fujii R, Kuwahara Y, Uprety BN, Shrestha SD (2001) Core drilling of the basin fill sediments in the Kathmandu Valley for paleoclimatic study: preliminary results. J Nepal Geol Soc 25(Sp. Issue):9–18

    Google Scholar 

  • Sakai H, Yahagi W, Fujii R, Hayashi T, Upreti BN (2006) Pleistocene uplift of the Himalayan frontal ranges recorded in the Kathmandu and Siwalik basins. Palaeogeogr Palaeoclimatol Palaeoecol 241:16–27

    Google Scholar 

  • Sanders D, Spötl C (2014) The Hötting breccia – a Pleistocene key site near Innsbruck. In: Kerschner H, Krainwer K, Spötl C (eds) From the foreland to the Central Alps. DEUQUA Excursions, Tyrol, pp 82–94

    Google Scholar 

  • Sandom C, Faurby S, Sandel B, Svenning JC (2014) Global late Quaternary megafauna extinctions linked to humans, not climate change. Proc R Soc B Biol Sci 281(1787):20133254

    Google Scholar 

  • Santucci E, Marano F, Cerilli E, Fiore I, Lemorini C, Palombo MR, Anzidei AP, Bulgarelli GM (2016) Palaeoloxodon exploitation in the late Middle Pleistocene site of Polledrara di Cecanibbio (Rome, Italy). Quat Int 406:169–182

    Google Scholar 

  • Satoguchi Y, Nagahashi Y (2012) Tephrostratigraphy of the Pliocene to Middle Pleistocene series in Honshu and Kyushu Islands, Japan. Island Arc 21:149–169

    Google Scholar 

  • Scharrer S (2013) Frühpleistozäne Vegetatiosentwicklung im Südlichen Kaukasus -Pollenanalytische Untersuchungen an Seesedimenten im Vorotan-Becken (Armenien). PhD thesis submitted to Frankfurt University. http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/30108

  • Schirrmeister L, Froese D, Tumskoy V, Grosse G, Wetterich S (2013) Yedoma: late Pleistocene ice-rich syngenetic permafrost of Beringia. In: Elias SA (ed) The encyclopedia of quaternary science, vol 3. Elsevier, Amsterdam, pp 542–552

    Google Scholar 

  • Scotese CR (2014) The PALEOMAP project PaleoAtlas for ArcGIS, version 2, volume 1, Cenozoic plate tectonic, paleogeographic, and paleoclimatic reconstructions, maps 1–15. PALEOMAP Project, Evanston

    Google Scholar 

  • Shackleton NJ, Backman J, Zimmerman H, Kent DV, Hall MA, Roberts DG, Schnitker D, Baldauf JG, Desprairies A, Homrighausen R, Huddlestun P, Keene JB, Kaltenback AJ, Krumsiek KAO, Morton AC, Murray JW, Westbergsmith J (1984) Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature 307:620–623

    Google Scholar 

  • Shatilova I, Rukhadze L, Mchedlishvili N, Makharadze N (2002) The main stages of the development of vegetation and climate of Western Georgia during the Gurian (Eopleistocene) time by the pollen records. Bull Georgian Acad Sci 166(3):624–627

    Google Scholar 

  • Sher AV, Kuzmina SA, Kuznetsova TV, Sulerzhitsky LD (2005) New insights into the Weichselian environment and climate of the East Siberian Arctic, derived from fossil insects, plants, and mammals. Quat Sci Rev 24:533–569

    Google Scholar 

  • Sigl M, Fudge TJ, Winstrup M, Cole-Dai J, Ferris D, McConnell JR, Taylor KC, Welten KC, Woodruff TE, Adolphi F, Bisaux M, Brook EJ, Buizert C, Caffee MW, Dunbar NW, Edwards R, Geng L, Iverson M, Koffman B, Layman L, Maselli OJ, McGwire K, Muscheler R, Nishiizumi K, Pasteris DR, Rhodes RH, Sowers TA (2016) The WAIS divide deep ice core WD2014 chronology – part 2: annual-layer counting (0–31 ka BP). Clim Past 12:769–786

    Google Scholar 

  • Stadel C (1991) Altitudinal belts in the tropical Andes: their ecology and human utilization. Yearb Conf Lat Am Geogr 17/18:1–370

    Google Scholar 

  • Steffensen JP, Andersen KK, Bigler M, Clausen HB, Dahl-Jensen D, Fischer H, Goto-Azuma K, Hansson M, Johnsen SJ, Jouzel J, Masson-Delmotte V, Popp T, Rasmussen SO, Röthlisberger R, Ruth U, Stauffer B, Siggaard Andersen M-L, Sveinbjörnsdóttir AE, Svensson A, White JW (2008) High resolution Greenland ice core data show abrupt climate change happens in few years. Science 321(5889):680–684

    Google Scholar 

  • Suc JP, Combourieu Nebout N, Seret G, Popescu SA, Klotz S, Gautier F, Clauzon G, Westgate J, Insinga D, Sandhu AS (2010) The Crotone series: a synthesis and new data. Quat Int 219:121–133

    Google Scholar 

  • Sutton A, Mountain M-J, Aplin K, Denham T (2010) Archaeozoological records for the highlands of New Guinea: A review of current evidence. Aust Archaeol 69:41–58

    Google Scholar 

  • Svensson A, Andersen KK, Bigler M, Clausen HB, Dahl-Jensen D, Davies SM, Johnsen SJ, Muscheler R, Parrenin F, Rasmussen SO, Röthlisberger R, Seierstad I, Steffensen JP, Vinther BM (2008) A 60 000 year Greenland stratigraphic ice core chronology. Clim Past 4:47–57

    Google Scholar 

  • Thomas ER, Wolff EW, Mulvaney R, Johnsen SJ, Steffensen JP, Arrowsmith C (2009) Anatomy of a Dansgaard-Oeschger warming transition: high-resolution analysis of the North Greenland ice core project ice core. J Geophys Res-Atmos 114:D08102

    Google Scholar 

  • Thomas ER, Wolff EW, Mulvaney R, Steffensen JP, Johnsen SJ, Arrowsmith C, White JWC, Vaughn B, Popp T (2007) The 8.2 ka event from Greenland ice cores. Quat Sci Rev 26:70–81

    Google Scholar 

  • Thompson LG, Mosley-Thompson E, Davis ME, Lin PN, Henderson KA, Cole-Dai J, Bolzan JF, Liu K (1995) Late Glacial stage and Holocene tropical ice core records from Huascaran, Peru. Science 269:46–50

    Google Scholar 

  • Tsukada M (1985) Map of vegetation during the last glacial maximum. Quat Res 23:369–381

    Google Scholar 

  • Turner A, Antón M (2007) Evolving Eden. An illustrated guide to the evolution of the African large-mammal Fauna. Columbia University Press, New York

    Google Scholar 

  • Urabe A, Tateishi M, Kazaoka O (1995) Depositional cycle of marine beds and relative sea-level changes of the Plio-Pleistocene Uonuma Group, Niigata, central Japan. Mem Geol Soc Jpn 45:140–153. (in Japanese with English Abstract)

    Google Scholar 

  • Van der Hammen T, Hooghiemstra H (2000) Neogene and quaternary history of vegetation, climate, and plant diversity in Amazonia. Quat Sci Rev 19:725–742

    Google Scholar 

  • Vekua A (1995) Die Wirbeltierfauna des Villafranchium von Dmanisi und ihre biostratigraphische Bedeutung. Jahrb Römisch-Ger Zentralmus Mainz 42(1):77–180

    Google Scholar 

  • Ward JK, Harris JM, Cerling TE, Wiedenhoeft A, Lott MJ, Dearing MD, Coltrain JB, Ehleringer JR (2005) Carbon starvation in glacial trees recovered from the La Brea tar pits, southern California. Proc Natl Acad Sci 102(3):690–694

    Google Scholar 

  • West RG (1980) The preglacial Pleistocene of Norfolk and Suffolk coasts. Cambridge University Press, New York

    Google Scholar 

  • Williams M, Cook E, van der Kaars S, Barrows T, Shulmeister J, Kershaw P (2009) Glacial and deglacial climatic patterns in Australia and surrounding regions from 35 000 to 10 000 years ago reconstructed from terrestrial and near-shore proxy data. Quat Sci Rev 28(23–24):2398–2419

    Google Scholar 

  • Wroe S, Field J, Archer M, Grayson DK, Price GJ, Louys J, Faith JT, Webb GE, Davidson I, Mooney SD (2013) Climate change frames debate over the extinction of megafauna in Sahul (Pleistocene Australia-New Guinea). Proc Natl Acad Sci 110(22):8777–8781

    Google Scholar 

  • Yoshida M, Gautam P (1988) Magnetostratigraphy of Plio-Pleistocene lacustrine deposits in the Kathmandu Valley, central Nepal. Proc Ind Nat Sci Acad 54A(30):410–417

    Google Scholar 

  • Yoshida M, Igarashi Y (1984) Neogene to quaternary lacustrine sediments in the Kathmandu Valley. Nepal J Nepal Geol Soc 4:73–100

    Google Scholar 

  • Yoshikawa S, Mitamura M (1999) Quaternary stratigraphy of the Osaka Plain, central Japan and its correlation with oxygen isotope record from deep sea cores. J Geol Soc Jpn 105:332–340. (in Japanese with English abstract)

    Google Scholar 

  • Zanina OG, Gubin SV, Kuzmina SA, Maximovich SV, Lopatina DA (2011) Late-Pleistocene (MIS 3-2) palaeoenvironments as recorded by sediments, palaeosols, and ground-squirrel nests at Duvanny Yar, Kolyma lowland, northeast Siberia. Quat Sci Rev 30:2107–2123

    Google Scholar 

  • Zhu Z, Dennell R, Huang W, Wu Y, Qiu S, Yang S, Rao Z, Hou Y, Xie J, Han J, Ouyang T (2018) Hominin occupation of the Chinese Loess Plateau since about 2.1 million years ago. Nature 559:7715

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to E Hakobyan for the help in the preparation of text and images, to R Sardella for useful information about vertebrate fossil assemblages of Europe, to C Scotese for the permission to use his paleogeographic map, and to TK Akabane, K Ashastina, JF Barcelona, C Benigni, M Costea, H Hooghiemstra, JTF Guimaeres, DL Nickrent, P Mazza, K Nixon, and PB Pelser for the photographs provided. Special thanks to Soprintendenza Speciale Archeologia Belle Arti e Paesaggio (SSABAP) of Rome for allowing us to use images of the Polledrara di Cecanibbio site without charges.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edoardo Martinetto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martinetto, E. et al. (2020). The Last Three Millions of Unequal Spring Thaws. In: Martinetto, E., Tschopp, E., Gastaldo, R.A. (eds) Nature through Time. Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-35058-1_1

Download citation

Publish with us

Policies and ethics