Skip to main content

Abstract

Hazelnut is an economically important tree nut whose production is mostly destined to the confectionery industry with a demand that currently exceeds supply. Its cultivation remains substantially based on named selections from local, wild vegetation. Public breeding programs were not initiated until the 1960s and only two, both in the USA, are in operation today that are relatively large. Oregon State University has produced new cultivars with Gasaway resistance to the fungus Anisogramma anomala, causal agent of eastern filbert blight (EFB), a major disease in North America; these cultivars are being widely planted. In China, cold-hardy hybrid cultivars from Corylus heterophylla and C. avellana were recently released and are planted in northeastern China. In the past 25 years, molecular markers have facilitated a much better understanding of genetic diversity in the genus Corylus, aided the construction of linkage maps and allowed for marker-assisted selection for disease resistance. The genome of C. avellana was sequenced and assembled, and DNA markers identified from the transcriptome, providing the basis for the isolation of important genes, including those related to nut quality and adaptive and phenological traits. Many new genotypes expressing eastern filbert blight (EFB) resistance have been identified in the germplasm, and subsequent linked DNA markers developed, allowing new approaches to breeding for durable resistance. Micropropagation is routinely used in the USA, Chile and Italy for multiplication, but work with other in vitro techniques is less advanced. Genetic engineering has not been developed in hazelnut due to regeneration difficulties from somatic tissues but recent advances have established a protocol for organogenesis. More research is being carried out to assemble a high-quality hazelnut genome and achieve somatic embryogenesis. The results from this research will provide knowledge and tools enabling the isolation of genes and molecular markers, and the application of genome editing techniques to hazelnut.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aiello AS, Dillard S (2007) Corylus fargesii: a new and promising introduction from China. Comb Proc Int Plant Propagators Soc 57:391–395

    Google Scholar 

  • Akin M, Eyduran E, Reed BM (2017) Use of RSM and CHAID data mining algorithm for predicting mineral nutrition of hazelnut. Plant Cell Tissue Organ Cult 128:303–316

    Article  CAS  Google Scholar 

  • Aygun A, San B, Erdogan V (2009) Induction of somatic embryogenesis from immature cotyledons in ‘Tombul’ hazelnut. J Agric Sci 15(2):113–118

    Google Scholar 

  • Balik HI, Balik SK, Erdogan V et al (2018) Clonal selection in ‘Tombul’ hazelnut: preliminary results. Acta Hortic 1226:53–58

    Article  Google Scholar 

  • Bassil NV, Botta R, Mehlenbacher SA (2005a) Microsatellite markers in hazelnut: Isolation, characterization and cross-species amplification. J Am Soc Hortic Sci 130:543–549

    Article  CAS  Google Scholar 

  • Bassil NV, Botta R, Mehlenbacher SA (2005b) Additional microsatellite markers of the European hazelnut. Acta Hortic 686:105–110

    Article  CAS  Google Scholar 

  • Bassil NV, Postman J, Hummer K et al (2009) SSR fingerprinting panel verifies identities of clones in backup hazelnut collection of USDA genebank. Acta Hortic 845:95–102

    Article  CAS  Google Scholar 

  • Bassil NV, Boccacci P, Botta R et al (2013) Nuclear and chloroplast microsatellite markers to assess genetic diversity and evolution in hazelnut species, hybrids and cultivars. Genet Resour Crop Evol 60:543–568

    Article  CAS  Google Scholar 

  • Beltramo C, Valentini N, Portis E et al (2016) Genetic mapping and QTL analysis in European hazelnut (Corylus avellana L.). Mol Breed 36:27. https://doi.org/10.1007/s11032-016-0450-6

    Article  CAS  Google Scholar 

  • Berros B, Hasbún R, Radojevic L et al (2005) Protocol for hazelnut somatic embryogenesis. In: Jain SM, Gupta PK (eds) Protocol for somatic embryogenesis in woody plants, Forestry sciences. Springer, Dordrecht, pp 413–426

    Chapter  Google Scholar 

  • Bhattarai G, Mehlenbacher SA (2017) Development and mapping of new tri-nucleotide repeat simple sequence repeat markers from the hazelnut genome sequence. PLoS One 12(5):e0178061. https://doi.org/10.1371/journal.pone.0178061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattarai G, Mehlenbacher SA (2018) Discovery, characterization and linkage mapping of simple sequence repeat markers in hazelnut. J Am Soc Hortic Sci 143:347–362. https://doi.org/10.21273/JASHS04461-18

    Article  CAS  Google Scholar 

  • Bhattarai G, Mehlenbacher SA, Smith DC (2017) Eastern filbert blight disease resistance from Corylus americana ‘Rush’ and selection ‘Yoder #5’ maps to linkage group 7. Tree Genet Genomes 13. https://doi.org/10.1007/s11295-017-1129-9

  • Bioversity International, FAO, CIHEAM (2008) Descriptors for hazelnut (Corylus avellana L.). http://www.bioversityinternational.org

  • Boccacci P, Botta R (2009) Investigating the origin of hazelnut (Corylus avellana L.) cultivars using chloroplast microsatellites. Genet Resour Crop Evol 56:851–859

    Article  CAS  Google Scholar 

  • Boccacci P, Botta R (2010) Microsatellite variability and genetic structure in hazelnut (Corylus avellana L.) cultivars from different growing regions. Sci Hortic 124:128–133

    Article  CAS  Google Scholar 

  • Boccacci P, Akkak A, Bassil NV et al (2005) Characterization and evaluation of microsatellite loci in European hazelnut (Corylus avellana L.) and their transferability to other Corylus species. Mol Ecol Res 5:934–937

    CAS  Google Scholar 

  • Boccacci P, Akkak A, Botta R (2006) DNA typing and genetic relationships among European hazelnut (Corylus avellana L.) cultivars using microsatellite markers. Genome 49:598–611

    Article  CAS  PubMed  Google Scholar 

  • Boccacci P, Botta R, Rovira M (2008) Genetic diversity of hazelnut (Corylus avellana L.) germplasm in northeastern Spain. Hortic Sci 43:667–672

    Google Scholar 

  • Boccacci P, Aramini M, Valentini N et al (2013) Molecular and morphological diversity of on-farm hazelnut (Corylus avellana L.) landraces from southern Europe and their role in the origin and diffusion of cultivated germplasm. Tree Genet Genomes 9:1465–1480

    Article  Google Scholar 

  • Boccacci P, Beltramo C, Sandoval Prando MA et al (2015) In silico mining, characterization and cross-species transferability of EST-SSR markers for European hazelnut (Corylus avellana L.). Mol Breed 35:21. https://doi.org/10.1007/s11032-015-0195-7

    Article  CAS  Google Scholar 

  • Bosco L, Moraglio ST, Tavella L (2018) Halyomorpha halys, a serious threat for hazelnut in newly invaded areas. J Pest Sci 91:661–670

    Article  Google Scholar 

  • Botta R, Valentini N (2018) Il nocciolo. Edagricole, Edizioni Agricole New Business Media srl, Milano

    Google Scholar 

  • Botu I, Turcu E, Preda S et al (2005) 25 years of achievements and perspectives in hazelnut breeding in Romania. Acta Hortic 686:91–94

    Article  Google Scholar 

  • Botu I, Turcu E, Botu M et al (2009) Research on the genetic variability of characteristics in hybrid populations of hazelnut. Acta Hortic 845:151–158

    Article  Google Scholar 

  • Braun LC, Demchik MC, Fischbach JA et al (2018) Yield, quality and genetic diversity of hybrid hazelnut selections in the Upper Midwest of the USA. Agrofor Syst. https://doi.org/10.1007/s10457-018-0209-7

    Article  Google Scholar 

  • Brown JA, Beatty GE, Montgomery WI, Provan JJ (2016) Broad-scale genetic homogeneity in natural populations of common hazel (Corylus avellana) in Ireland. Tree Genet Genomes 12:122. https://doi.org/10.1007/s11295-016-1079-7

    Article  Google Scholar 

  • Cakır B, Genc C (1971) Findikta tozlama ve tozlayici secim calismalari. Gida Tarim ve Hayvancilik Bakanligi. Tar Aras Derg 1:125–131

    Google Scholar 

  • Campa A, Trabanco N, Perez-Vega E et al (2011) Genetic relationship between cultivated and wild hazelnuts (Corylus avellana L.) collected in northern Spain. Plant Breed 130:360–366

    Article  CAS  Google Scholar 

  • Capik JM, Molnar TJ (2012) Assessment of host (Corylus sp.) resistance to eastern filbert blight in New Jersey. J Am Soc Hortic Sci 137:157–172

    Article  Google Scholar 

  • Cerović S, Ninić-Todorović J, Gološin B et al (2009) Grafting methods in nursery production of hazelnut grafted on Corylus colurna L. Acta Hortic 845:279–282

    Article  Google Scholar 

  • Chen H, Mehlenbacher SA, Smith DC (2005) AFLP markers linked to eastern filbert blight resistance from OSU 408.040 hazelnut. J Am Soc Hortic Sci 130:412–417

    Article  CAS  Google Scholar 

  • Chen H, Mehlenbacher SA, Smith DC (2007) Hazelnut accessions provide new sources of resistance to eastern filbert blight. HortScience 42:466–469

    Article  Google Scholar 

  • Chen Y, Zhang J, Liu Q et al (2014) Transcriptome sequencing and identification of cold tolerance genes in hardy Corylus species (C. heterophylla Fisch) floral buds. PLoS One 9(9):e108604. https://doi.org/10.1371/journal.pone.0108604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Liu J, Zhang H et al (2015) Transcriptome analysis and gene expression profiling of abortive and developing ovules during fruit development in hazelnut. PLoS One 10(4):e0122072. https://doi.org/10.1371/journal.pone.0122072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colburn BC, Mehlenbacher SA, Sathuvalli VR (2017) Development and mapping of microsatellite markers from transcriptome sequence of European hazelnut (Corylus avellana L.) and use for germplasm characterization. Mol Breed 37:16. https://doi.org/10.1007/s11032-016-0616-2

    Article  CAS  Google Scholar 

  • Contessa C, Valentini N, Botta R (2011) Decreasing the concentration of IBA or combination with ethylene inhibitors improve bud retention in semi-hardwood cuttings of hazelnut cultivar ‘Tonda Gentile delle Langhe. Sci Hortic 131(22):103–106

    Article  CAS  Google Scholar 

  • Coyne CJ, Mehlenbacher SA, Smith DC (1998) Sources of resistance to eastern filbert blight. J Am Soc Hortic Sci 124:253–257

    Article  Google Scholar 

  • Cristofori V, Rouphael Y, Rugini E (2010) Collection time, cutting age, IBA and putrescine effects on root formation in Corylus avellana L. cuttings. Sci Hortic 124:189–194

    Article  CAS  Google Scholar 

  • Demchik M, McCown B, Fischbach J et al (2011) A new hazelnut development program in the Lake States. In: Proceedings, 12th North American Agroforestry Conference, Athens, GA, June 4–9, 2011, pp 110–113

    Google Scholar 

  • Demchik M, Kern A, Braun L et al (2018) Genetic diversity of American hazelnut in the upper Midwest. Agrofor Syst 92:1507. https://doi.org/10.1007/s10457-017-0097-2

    Article  Google Scholar 

  • eFloras (2009) Flora of China, Corylus. MO Bot Gard, St. Louis, MO & Harvard University Herbaria, Cambridge, MA, USA. http://www.efloras.org. Accessed 13 June 2009

  • Erdogan V (1999) Genetic relationships among Corylus species. Ph.D. dissertation. Oregon State University

    Google Scholar 

  • Erdogan V, Mehlenbacher SA (2000a) Phylogenetic relationships of Corylus species (Betulaceae) based on nuclear ribosomal DNA ITS region and chloroplast matK gene sequences. Syst Bot 25(4):727–737

    Article  Google Scholar 

  • Erdogan V, Mehlenbacher SA (2000b) Interspecific hybridization in hazelnut (Corylus). J Am Soc Hortic Sci 125(4):489–497

    Article  Google Scholar 

  • Erdogan V, Mehlenbacher SA (2001) Incompatibility in wild Corylus species. Acta Hortic 556:163–169

    Article  Google Scholar 

  • Erdogan V, Mehlenbacher SA (2002) Phylogenetic analysis of hazelnut species (Corylus, Corylaceae) based on morphology and phenology. Herb J Syst Bot 9(1):83–100

    Google Scholar 

  • Erdogan V, Ozdemir B (2018) Nut and kernel characteristics of some hazelnut cultivars in an area outside the commercial production region in Turkey. Acta Hortic 1226:205–211

    Article  Google Scholar 

  • Erfatpour M, Hamidogli Y, Fatahi R et al (2011) Assessment of genetic diversity among some Iranian hazelnut genotypes using SSR markers. Aust J Crop Sci 5:1286–1291

    CAS  Google Scholar 

  • Fairbairn A, Kulakoğlu F, Atici L (2014) Archaeobotanical evidence for trade in hazelnut (Corylus sp.) at Middle Bronze Age Kültepe (c. 1950–1830 B.C.), Kayseri Province, Turkey. Veg His Archaeobot 23(2):167–174

    Article  Google Scholar 

  • FAO (2019). http://www.fao.org/faostat/en/#data/QC Accessed January 2019

  • Farré A, Lacasa Benito I, Cistué L et al (2011) Linkage map construction involving a reciprocal translocation. Theor Appl Genet 122:1029–1037

    Article  PubMed  Google Scholar 

  • Farris CW (1978) The trazels. Ann Rep Northern Nut Grow Assoc 69:32–34

    Google Scholar 

  • Farris CW (2000) The hazel tree. Northern Nut Grow Association, East Lansing

    Google Scholar 

  • Ferrari M, Scarascia Mugnozza GT, Gori M et al (2005) DNA fingerprinting of Corylus avellana L. accessions revealed by AFLP molecular markers. Acta Hortic 686:125–134

    Article  CAS  Google Scholar 

  • Frary A, Öztürk SC, Balık HI et al (2019a) Association mapping of agro-morphological traits in European hazelnut (Corylus avellana). Euphytica 215(2):21. https://doi.org/10.1007/s10681-019-2352-2

    Article  Google Scholar 

  • Frary A, Ӧztürk SC, Balık HI et al (2019b) Analysis of European hazelnut (Corylus avellana) reveals loci for cultivar improvement and the effects of domestication and selection on nut and kernel traits. Mol Genet Genomics. https://doi.org/10.1007/s00438-018-1527-1

    Article  CAS  PubMed  Google Scholar 

  • Germain E (1989) Fiche variétale ‘Fercoril-Corabel’. ArboFruit: 418

    Google Scholar 

  • Ghirardello D, Contessa C, Valentini N et al (2013) Effect of storage conditions on chemical and physical characteristics of hazelnut (Corylus avellana). Postharv Biol Technol 81:37–43

    Article  CAS  Google Scholar 

  • Gniech Karasawa MM, Chiancone B, Gianguzzi V et al (2016) Gametic embryogenesis through isolated microspore culture in Corylus avellana L. Plant Cell Tissue Organ Cult 124(3):635–647

    Article  Google Scholar 

  • Gökirmak T, Mehlenbacher SA, Bassil NV (2009) Characterization of European hazelnut (Corylus avellana) cultivars using SSR markers. Genet Resour Crop Evol 56:147–172

    Article  CAS  Google Scholar 

  • Guo YY, Xing SY, Ma YM et al (2009) Analysis of karyotype on fifteen hazelnut germplasms. Acta Hortic Sinica 36(1):27–32

    Google Scholar 

  • Gürcan K, Mehlenbacher SA (2010a) Development of microsatellite marker loci for European hazelnut (Corylus avellana L.) from ISSR fragments. Mol Breed 26:551–559

    Article  Google Scholar 

  • Gürcan K, Mehlenbacher SA (2010b) Transferability of microsatellite markers in the Betulaceae. J Am Soc Hortic Sci 135:159–173

    Article  Google Scholar 

  • Gürcan K, Mehlenbacher SA, Botta R et al (2010a) Development, characterization, segregation, and mapping of microsatellite markers for European hazelnut (Corylus avellana L.) from enriched genomic libraries and usefulness in genetic diversity studies. Tree Genet Genomes 6:513–531

    Article  Google Scholar 

  • Gürcan K, Mehlenbacher SA, Erdogan V (2010b) Genetic diversity in hazelnut cultivars from Black Sea countries assessed using SSR markers. Plant Breed 129:422–434

    Google Scholar 

  • Hedstrom C, Shearer WP, Miller JC et al (2014) The effects of kernel feeding by Halyomorpha halys (Hemiptera: Pentatomidae) on commercial hazelnuts. J Econ Entomol 107(5):1858–1865

    Article  CAS  PubMed  Google Scholar 

  • Holstein N, el Tamer SE, Weigend M (2018) The nutty world of hazel names – a critical taxonomic checklist of the genus Corylus (Betulaceae). Eur J Taxon 409:1–45. https://doi.org/10.5852/ejt.2018.409

    Article  Google Scholar 

  • Islam A (2003) Clonal selection in ‘Uzunmusa’ hazelnut. Plant Breed 122(4):368–371

    Article  Google Scholar 

  • Islam A, Ozgüven AI (2001) Clonal selection in the Turkish hazelnut cultivars grown in Ordu province. Acta Hortic 556:203–208

    Article  Google Scholar 

  • Kafkas S, Doğan Y, Sabır A et al (2009) Genetic characterization of hazelnut (Corylus avellana L.) cultivars from Turkey using molecular markers. Hortic Sci 44:1557–1561

    Google Scholar 

  • Kasapligil B (1972) A bibliography on Corylus (Betulaceae) with annotations. Northern Nut Grow Assoc Ann Rep 63:107–162

    Google Scholar 

  • Lagerstedt HB (1975) Filberts. In: Janick J, Moore JN (eds) Advances in fruit breeding. Purdue University Press, West Lafayette, pp 456–488

    Google Scholar 

  • Lagerstedt HB (1976) Development of rootstock for filberts. Ann Rep Northern Nut Grow Assoc 65:161–165

    Google Scholar 

  • Lagerstedt HB (1990) Filbert rootstock and cultivar introductions in Oregon. Ann Rep Northern Nut Grow Assoc 81:60–63

    Google Scholar 

  • Latawa J, Shukla MR, Saxena PK (2016) An efficient temporary Immersion system for micropropagation of hybrid hazelnut. Botany 94(1):1–8

    Article  CAS  Google Scholar 

  • Lehmensiek A, Eckermann PJ, Verbyla AP et al (2005) Curation of wheat maps to improve map accuracy and QTL detection. Aust J Agric Res 56:1347–1354

    Article  Google Scholar 

  • Lunde CF, Mehlenbacher SA, Smith DC (2000) Survey of hazelnut cultivars for response to eastern filbert blight inoculation. HortScience 35:729–731

    Article  Google Scholar 

  • Martins S, Simoes F, Mendoça D et al (2013) Chloroplast SSR genetic diversity indicates a refuge for Corylus avellana in northern Portugal. Genet Resour Crop Evol 60:1289–1295

    Article  CAS  Google Scholar 

  • Martins S, Simões F, Matos J et al (2014) Genetic relationship among wild, landraces and cultivars of hazelnut (Corylus avellana) from Portugal revealed through ISSR and AFLP markers. Plant Syst Evol 300:1035–1046

    Article  Google Scholar 

  • Martins S, Simoes F, Mendoça D et al (2015) Western European wild and landraces hazelnuts evaluated by SSR markers. Plant Mol Biol Rep 33:1712–1720

    Article  Google Scholar 

  • Me G, Radicati L, Botta R et al (1988) Obtaining non suckering plants of hazelnut cv ‘Tonda Gentile delle Langhe’ by gamma radiation. Acta Hortic 224:413–419

    Article  Google Scholar 

  • Mehlenbacher SA (1991a) Hazelnuts (Corylus). Genetic resources of temperate fruit and nut crops. Acta Hortic 290:791–836

    Article  Google Scholar 

  • Mehlenbacher SA (1991b) Chilling requirements of hazelnut cultivars. Sci Hortic 47:271–282

    Article  Google Scholar 

  • Mehlenbacher SA (1997) Revised dominance hierarchy for S-alleles in Corylus avellana L. Theor Appl Genet 94:360–366

    Article  Google Scholar 

  • Mehlenbacher SA (2014) Geographic distribution of incompatibility alleles in cultivars and selections of European hazelnut. J Am Soc Hortic Sci 139:191–212

    Article  Google Scholar 

  • Mehlenbacher SA (2018) Advances in genetic improvement of hazelnut. Acta Hortic 1226:1–12

    Article  Google Scholar 

  • Mehlenbacher SA, Smith DC (1991) Partial self-compatibility in ‘Tombul’ and ‘Montebello’ hazelnut. Euphytica 56:231–236

    Article  Google Scholar 

  • Mehlenbacher SA, Smith DC (2004) Hazelnut pollenizers ‘Gamma’, ‘Delta’, ‘Epsilon’ and ‘Zeta. HortScience 39:1498–1499

    Article  Google Scholar 

  • Mehlenbacher SA, Smith DC (2009) ‘Red Dragon’ Ornamental Hazelnut. HortScience 44(3):843–844

    Article  Google Scholar 

  • Mehlenbacher SA, Thompson MM (1988) Dominance relationships among S-alleles in Corylus avellana L. Theor Appl Genet 76:669–672

    Article  CAS  PubMed  Google Scholar 

  • Mehlenbacher SA, Azarenko AN, Smith DC et al (2000) ‘Lewis’ hazelnut. HortScience 35:314–315

    Article  Google Scholar 

  • Mehlenbacher SA, Azarenko AN, Smith DC et al (2001) ‘Clark’ hazelnut. HortScience 36:995–996

    Article  Google Scholar 

  • Mehlenbacher SA, Brown RN, Davis JW et al (2004) RAPD markers linked to eastern filbert blight resistance in Corylus avellana. Theor Appl Genet 108:651–656

    Article  CAS  PubMed  Google Scholar 

  • Mehlenbacher SA, Brown RN, Nouhra ER et al (2006) A genetic linkage map for hazelnut (Corylus avellana L.) based on RAPD and SSR markers. Genome 49:122–133

    Article  CAS  PubMed  Google Scholar 

  • Mehlenbacher SA, Smith DC, McCluskey R (2008) ‘Sacajawea’ hazelnut. HortScience 43(1):255–257

    Article  Google Scholar 

  • Mehlenbacher SA, Smith DC, McCluskey R (2009) ‘Yamhill’ hazelnut. HortScience 44:845–847

    Article  Google Scholar 

  • Mehlenbacher SA, Smith DC, McCluskey R (2011a) ‘Jefferson’ hazelnut. HortScience 46:662–664

    Article  Google Scholar 

  • Mehlenbacher SA, Smith DC, McCluskey R, Thompson MM (2011b) ‘Tonda Pacifica’ hazelnut. HortScience 46:505–508

    Article  Google Scholar 

  • Mehlenbacher SA, Smith DC, McCluskey R (2012) ‘Eta’ and ‘Theta’ hazelnut pollenizers. HortScience 47(8):1180–1181

    Article  Google Scholar 

  • Mehlenbacher SA, Smith DC, McCluskey R (2013) ‘Dorris’ hazelnut. HortScience 48(6):796–799

    Article  Google Scholar 

  • Mehlenbacher SA, Smith DC, McCluskey R (2014) ‘Wepster’ hazelnut. HortScience 49(3):346–349

    Article  Google Scholar 

  • Mehlenbacher SA, Smith DC, McCluskey R (2016) ‘McDonald’ hazelnut. HortScience 51(6):757–760

    Article  Google Scholar 

  • Mehlenbacher SA, Smith DC, McCluskey R (2018a) ‘York’ and ‘Felix’ hazelnut pollenizers. HortScience 53(6):904–910

    Article  Google Scholar 

  • Mehlenbacher SA, Smith DC, McCluskey R (2018b) Burgundy Lace’ Ornamental Hazelnut. HortScience 53(3):387–390

    Article  Google Scholar 

  • Molnar TJ (2011) Corylus. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Springer, Berlin/Heidelberg, pp 15–48

    Chapter  Google Scholar 

  • Molnar TJ, Capik JM (2012a) Advances in hazelnut research in North America. Acta Hortic 940:57–65

    Article  Google Scholar 

  • Molnar TJ, Capik JM (2012b) Eastern filbert blight susceptibility of American × European hazelnut progenies. HortScience 47:1412–1418

    Article  Google Scholar 

  • Molnar TJ, Goffreda JC, Funk CR (2005) Developing hazelnuts for the eastern United States. Acta Hortic 68:609–617

    Article  Google Scholar 

  • Molnar TJ, Lombardoni JJ, Muehlbauer MF et al (2018a) Progress breeding for resistance to eastern filbert blight in the eastern United States. Acta Hortic 1226:79–85

    Article  Google Scholar 

  • Molnar TJ, Honing JA, Mayberry A et al (2018b) Corylus americana: a valuable genetic resource for developing hazelnuts adapted to the eastern United States. Acta Hortic 1226:115–121

    Article  Google Scholar 

  • Muehlbauer MF, Honig JA, Capik JM et al (2014) Characterization of eastern filbert blight–resistant hazelnut germplasm using microsatellite markers. J Am Soc Hortic Sci 139:399–432

    Article  CAS  Google Scholar 

  • Ninic-Todorovic J, Ognjanov V, Keserovic Z et al (2012) Turkish hazel (Corylus colurna L.) offspring variability as a foundation for grafting rootstock production. Bulgarian J Agric Sci 18(6):883–888

    Google Scholar 

  • Ӧztürk SC, Ӧztürk SE, Celik I et al (2017) Molecular genetic diversity and association mapping of nut and kernel traits in Slovenian hazelnut (Corylus avellana) germplasm. Tree Genet Genomes 13(16). https://doi.org/10.1007/s11295-016-1098-4

  • Palmé AE, Vendramin GG (2002) Chloroplast DNA variation, postglacial recolonization and hybridization in hazel, Corylus avellana. Mol Ecol 11:1769–1779

    Article  PubMed  Google Scholar 

  • Petriccione M, Ciarmiello LF, Boccacci P et al (2010) Evaluation of ‘Tonda di Giffoni’ hazelnut (Corylus avellana L.) clones. Sci Hortic 124:153–158

    Article  CAS  Google Scholar 

  • Pomper KW, Azarenko AN, Bassil N et al (1998) Identification of random amplified polymorphic DNA (RAPD) markers for self-incompatibility alleles in Corylus avellana L. Theor Appl Genet 97:479–487

    Article  CAS  Google Scholar 

  • Reed BM, Normah MN, Yu XL (1994) Stratification is necessary for successful cryopreservation of axes from stored hazelnut seed. Cryo-lett 15(6):377–384

    CAS  Google Scholar 

  • Rovira M (1997) Genetic variability among hazelnut (C. avellana L.) cultivars. Acta Hortic 445:45–50

    Article  Google Scholar 

  • Rovira M, Romero A, Clavé J (1997) Clonal selection of ‘Gironell’ and ‘Negret’ hazelnut cultivars. Acta Hortic 445:145–150

    Article  Google Scholar 

  • Rowley E (2016) Genetic resource development for European hazelnut (Corylus avellana L.). PhD dissertation, Oregon State University

    Google Scholar 

  • Rowley ER, Fox SE, Bryant DW et al (2012) Assembly and characterization of the European hazelnut ‘Jefferson’ transcriptome. Crop Sci 52:2679–2686

    Article  CAS  Google Scholar 

  • Rowley ER, Vanburen R, Bryant ER et al (2018) A draft genome sequencing and high-density genetic map of European hazelnut (Corylus avellana L.). https://doi.org/10.1101/469015

    Book  Google Scholar 

  • Rutter PA (1987) Badgersett research farm – plantings, projects, and goals. Ann Rep Northern Nut Grow Assoc 78:173–186

    Google Scholar 

  • Salehi M, Moieni A, Safaie N (2017) A novel medium for enhancing callus growth of hazel (Corylus avellana L.). Sci Rep 7:15598. https://doi.org/10.1038/s41598-017-15703-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salesses G (1973) Etude cytologique du genre Corylus. Mise en évidence d’une translocation hétérozygote chez quelques variétés de noisetier cultivé (C. avellana) a fertilité pollinique réduite. Ann Amélior Plantes 23(l):59–66

    Google Scholar 

  • Salesses G, Bonnet A (1988) Etude cytogénétique d’hybrides entre variétés de noisetier (Corylus avellana) porteuses d’une translocation à l’état hétérozygote. Cytologia 53:407–413

    Article  Google Scholar 

  • Sathuvalli VR, Mehlenbacher SA (2012) Characterization of American hazelnut (Corylus americana) accessions and Corylus americana x Corylus avellana hybrids using microsatellite markers. Genet Resour Crop Evol 59:1055–1075

    Article  CAS  Google Scholar 

  • Sathuvalli V, Mehlenbacher S, Smith D (2017) High-resolution genetic and physical mapping of the eastern filbert blight resistance region in ‘Jefferson’ hazelnut (Corylus avellana L.). Plant Genome 10(2). https://doi.org/10.3835/plantgenome2016.12.0123

    Article  CAS  Google Scholar 

  • Silvestri C, Cristofori V, Ceccarelli M et al (2016) Adventitious shoot organogenesis from leaf and petiole explants of European hazelnut. Plant Cell Tissue Organ Cult 126(1):59–65

    Article  CAS  Google Scholar 

  • Slate GL (1969) Filberts – including varieties grown in the east. In: Jaynes RA (ed) Handbook of North American nut trees. Northern Nut Grow Association, Knoxville, pp 287–293

    Google Scholar 

  • Thompson MM, Romisondo P, Germain E et al (1978) An evaluation system for filberts (Corylus avellana L). HortScience 13(6):514–517

    Google Scholar 

  • Thompson MM, Lagerstedt HB, Mehlenbacher SA (1996) Hazelnuts. In: Janick J, Moore N (eds) Fruit breeding, Nuts, vol III. Wiley, New York, pp 125–184

    Google Scholar 

  • Tombesi S, Botta R, Valentini N et al (2017) Piattaforma varietale e orientamenti produttivi per i nuovi impianti. Frutticol 81(1/2):23–29

    Google Scholar 

  • Torello Marinoni D, Valentini N, Portis E et al (2018) High density SNP mapping and QTL analysis for time of leaf budburst in Corylus avellana L. PLoS One 13(4):e0195408. https://doi.org/10.1371/journal.pone.0195408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trotter A (1921) Contributo alla storia colturale del nocciuolo nella Campania. Atti Congresso di arboricoltura meridionale. Napoli, 16–20 settembre

    Google Scholar 

  • UPOV [International Union for the Protection of New Varieties of Plants] (1979) Hazelnut (Corylus avellana L. & Corylus maxima Mill.): Guidelines for the conduct of tests for distinctness, uniformity and stability. Hazelnut/Noisetier/Haselnuss, 79-03-28. Doc. No. TG/71/3. UPOV, Geneva. Switzerland. http://www.upov.int/en/publications/tgrom/tg071/tg_71_3.pdf

  • Valentini N, Me G (1999) Nuove selezioni di nocciolo per usi industriali. Frutticolt 61(11):36–38

    Google Scholar 

  • Valentini N, Me G, Vallania R, Zeppa G (2001a) New hazelnuts selections for direct consumption. Acta Hortic 556:103–108

    Article  Google Scholar 

  • Valentini N, Marinoni D, Me G, Botta R (2001b) Evaluations of ‘Tonda Gentile delle Langhe’ clones. Acta Hortic 556:209–215

    Article  Google Scholar 

  • Valentini N, Ghirardello D, Me G (2004) Heritability of morphological and vegetative traits in Corylus spp. Acta Hortic 663:317–320

    Article  Google Scholar 

  • Valentini N, Calizzano F, Boccacci P, Botta R (2014) Investigation on clonal variants within the hazelnut (Corylus avellana L.) cultivar ‘Tonda Gentile delle Langhe’. Sci Hortic 165:303–310

    Article  Google Scholar 

  • Vicol AC, Botu M, Preda SA, Lazar AM (2013) ‘Valverd’ and ‘Roverd’ – new hazelnut cultivars for intensive culture and family gardens. In: 48th Croatian & 8th International Symposium on Agriculture, Dubrovnik, Croatia, pp 338–342

    Google Scholar 

  • Wang GX, Ma QH, Zhao TT, Liang LS (2018) Resources and production of hazelnut in China. Acta Hort 1226:59–64

    Google Scholar 

  • Weschcke C (1953) Growing nuts in the north. Webb, St. Paul

    Google Scholar 

  • Weschcke C (1963) Forty-three years of active work in nut growing. Ann Rep Northern Nut Grows Assoc 54:63–65

    Google Scholar 

  • Whitcher IN, Wen J (2001) Phylogeny and Biogeography of Corylus (Betulaceae): inferences from ITS Sequences. Syst Bot 26(2):283–298

    Google Scholar 

  • Xie M, Zheng J, Radicati MG (2005) Interspecific hybridization of hazelnut and performance of 5 varieties in China. Acta Hortic 686:65–70

    Article  Google Scholar 

  • Yao Q, Mehlenbacher SA (2000) Heritability, variance components and correlation of morphological and phenological traits in hazelnut. Plant Breed 119:369–381

    Article  Google Scholar 

  • Zong JW, Zhao TT, Ma QH et al (2015) Assessment of genetic diversity and population genetic structure of Corylus mandshurica in China using SSR markers. PLoS One 10(9):e0137528. https://doi.org/10.1371/journal.pone.0137528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Botta .

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 Appendix 1: Major Hazelnut Germplasm Collections

Site

Institution

No. of accessions

Species

Corvallis, OR, USA

United States Dept. of Agriculture – Agricultural Research Service

607

C. avellana cultivars (187), C. avellana selections (164), C. americana (42), C. californica (40), C. chinensis (15), C. colurna (17), C. cornuta (14), C. fargesii (6), C. ferox (1), C. heterophylla (25), C. jacquemontii (4), C. sieboldiana (34), C. yunnanensis (2), interspecific hybrids (62)

Corvallis, OR, USA

Oregon State University

418

C. avellana cultivars (80), C. avellana selections (166 from nuts collected in 7 countries), C. americana (45), C. californica (1), C. chinensis (29), C. colurna (38), C. cornuta (28), C. fargesii (1), C. ferox (1), C. heterophylla (22), C. jacquemontii (7), C. sieboldiana (1)

Giresun, Turkey

Hazelnut Research Institute

390

C. avellana

Beijing

China Research Institute of Forestry, Chinese Academy of Forestry

378

C. heterophylla × C. avellana (43), C. heterophylla (220), C. avellana (35), C. mandshurica (18), C. kweichowensis (62)

Constantí, Tarragona, Spain

IRTA

253 (139 Spanish, 114 foreign)

C. avellana, C. colurna, C. heterophylla, C. ferox var. tibetica

Chieri (TO), Italy

University of Torino

86

C. avellana

Le Cese, Caprarola (VT), Italy

ARSIAL, Tuscia University

58

C. avellana

1.2 Appendix 2: Main Hazelnut Cultivars and Their Important Traits and Cultivation Locations

Cultivar

Country of Origin

Cultivation area(s)

Description of important traits

Allahverdi

Turkey

Not widespread yet

For kernel market. Released recently as a selection, small nut (1.8 g) with round shape, high percent kernel (49%) and pellicle removal (90%), early maturity (early August), late leafing, productive, yield variation is low between years

Barcelona (Fertile de Coutard, Castanyera)

Spain

USA (Oregon, Willamette Valley), Chile

For in-shell market. Large nut (3.8 g) with round shape (RI = 0.91), 43% kernel, half of pellicle removed by blanching. Vigorous tree, moderately productive, late maturity (early October in Oregon). Resistant to bud mites. Some tolerance to EFB; infected trees remain productive for several years. Incompatibility alleles S1 S2. The cv. Barcelona grown in Chile is similar but probably not genetically identical to the original

Çakıldak

Turkey

Ordu

For kernel market. Small nut (2.0 g) with round shape (RI = 1.1), high percent kernel (50–54%) and pellicle removal (85–87%), planted mostly at higher elevations, maturity mid-late August, late leafing, prone to alternate bearing, low flavor

Camponica

Italy, South

Italy, South

For in-shell market. Large nut (3.4–3.7 g) with round shape (RI = 0.92), 46–48% kernel, 70–80% of pellicle removed by blanching. Early mid-season maturity (August in Italy). Quantitative resistance to EFB. Incompatibility alleles S1 S2

Clark

USA, Oregon

USA, Oregon

For kernel market. Small to medium nut (2.4 g) with round shape, 51% kernel, good pellicle removal by blanching. Small tree (TCA 60% of cv. Barcelona), very high yield efficiency. Moderate susceptibility to big bud mite, less susceptible to eastern filbert blight than Barcelona. Female receptivity late. Incompatibility alleles S3 S8

Corabel® Fercoril

France, Southwest

France, Southwest

For in-shell market. Very large nut (3.7–4.5 g) with round shape, 44–47% kernel, easy pellicle removal, low fiber. Very vigorous tree, productive, late nut maturity (late-September to early October in France). Very late female receptivity. Incompatibility alleles S1 S3

Dorris

USA, Oregon

USA, Oregon

For kernel and in-shell markets. Medium to large nut (3.3 g) with round shape, 43% kernel, good pellicle removal by blanching, excellent aroma. Small tree (TCA 59% of cv. Barcelona) with high yield efficiency. High resistance to big bud mite, high resistance to EFB from Gasaway. Incompatibility alleles S1 S12

Ennis

USA, Oregon

USA (Oregon, Willamette Valley); France, Southwest

For in-shell market. Very large nut (3.8–4.7 g), slightly long shape. Pellicle not removed by blanching. Moderately vigorous tree, productive, late nut maturity (early October in Oregon). Susceptible to big bud mite, highly susceptible to EFB. Very late female receptivity. Incompatibility alleles S1 S11

Foşa

Turkey

Trabzon, Akcakoca

For kernel and in-shell market. Small nut (1.7 g) with round shape (1.1), high percent kernel (50%) and pellicle removal (85%), early maturity (mid-August), good flavor, kernel cavity size of 2.2 mm

Giresun Melezi

Turkey

Not widespread yet

For kernel market. Recently released cultivar, small to medium nut (2.4 g) with round shape, high percent kernel (52%) and pellicle removal (90%), early maturity (mid-August), late leafing

Hall’s Giant (Merveille de Bollwiller)

Germany/France (Alsace)

France, Southwest

Used as pollinizer. Large nut (3.5–4.2 g) with conical shape, 36–41% kernel, easy pellicle removal, low fiber, suitable for in-shell market. Vigorous tree, not productive. Late nut maturity (late September–early October in France). Quantitative resistance to EFB. Incompatibility alleles S5 S15

Jefferson

USA, Oregon

USA, Oregon

For in-shell market. Large nut (3.7 g) with round shape, 45% kernel, 70% of pellicle removed by blanching. Moderately vigorous tree (TCA 70% of cv. Barcelona) with upright growth. Nut maturity 3 days after Barcelona. Highly resistant to big bud mite, high resistance to EFB from Gasaway. Very late female receptivity. Incompatibility alleles S1 S3

Lewis

USA, Oregon

USA, Oregon

For kernel market. Medium nut (2.9 g), 48% kernel, good pellicle removal by blanching, good aroma, midseason nut maturity. Medium tree (TCA 78% of cv. Barcelona) with high yield efficiency. Moderate resistance to big bud mite, quantitative resistance to EFB. Occasional problem with kernel mold in cool, wet environments. Incompatibility alleles S3 S8

McDonald

USA, Oregon

USA, Oregon

For kernel market. Medium to small nut (2.5 g), 52% kernel, very good pellicle removal by blanching, excellent aroma. Nut maturity 2 weeks before Barcelona. Medium tree (TCA 70% of Barcelona) with high yield efficiency. Resistance to big bud mite, high resistance to EFB from Gasaway. Incompatibility alleles S2 S15

Mortarella

Italy, South

Italy, South

For kernel market. Medium to small nut (2.0–2.5 g) with long shape (RI = 0.80), 46–48% kernel, 70–80% of pellicle removed by blanching, excellent flavor (used for chopped kernels and industrial paste). Low vigor tree with high yield (2.5–2.8 t/ha). Early nut maturity (August in Italy). Often infected with apple mosaic virus. Incompatibility alleles S2 S17

Negret

Spain, Catalunya

Spain, Catalunya

For kernel market. Small nut (2.0 g) with ovoid shape (RI = 0.75), 48–50% kernel, very easy pellicle removal (90%), good flavor. Moderate tree vigor, high yield, mid-season to late nut maturity. Susceptible to EFB. Often infected with apple mosaic virus. Incompatibility alleles S10 S22

Nocchione

Italy

Italy, Center and South

For pollinizer and kernel market. Medium to large nut (3.0–3.2 g) with round shape (RI = 0.92), 38–40% kernel, 80% of pellicle removed by blanching. Early to mid-season nut maturity. Moderate tree vigor and spreading growth habit, high yield. It is grown under many names as the main cultivar in Sicily and as the main pollinizer of cv. Tonda Romana in Latium. Incompatibility alleles S1 S2

Okay28

Turkey

Not widespread yet

For kernel market. Recently released cultivar, medium nut (2.85 g) with round shape, high percent kernel (54%) and pellicle removal (92%), early maturity (mid-August), late leafing

Palaz

Turkey

Ordu

For kernel market. Small nut (2.1 g) with round shape (RI = 0.9), high percent kernel (51%) and pellicle removal (92–94%), early maturity (early August), prone to alternate bearing, good flavor, large kernel cavity (3.25 mm)

Pauetet

Spain, Catalunia

Spain (Catalunya), France (Southwest)

For kernel market. Small nut (2.0 g) with ovoid shape (RI = 0.75), 48–50% kernel, 60–70% of pellicle removed by blanching, good flavor. Tree more vigorous and tolerant of high soil pH than cv. Negret. High yield, mid-season to late nut maturity (September). Incompatibility alleles S18 S22

Sacajawea

USA, Oregon

USA, Oregon

For kernel market. Medium nut (2.8 g), 52% kernel, very good pellicle removal by blanching, excellent aroma. Nut maturity 10 days before cv. Barcelona. Medium to vigorous tree (TCA 86% of Barcelona) with moderately high yield efficiency. High resistance to big bud mite, high quantitative resistance to EFB. Incompatibility alleles S1 S22

San Giovanni

Italy, South

Italy, South

For chopped kernel and industrial paste market. Medium nut (2.5–2.8 g) with long shape (RI = 0.80), 47–48% kernel, 70–80% of pellicle removed by blanching, good flavor. High yield (2.5–3.0 mt/ha) and early nut maturity (August in Italy). Incompatibility alleles S2 S8

Segorbe (Comun Aleva)

Spain, Catalunya

France, Southwest

For kernel market and pollinizer. Medium to large nut (2.6–3.2 g) with round shape (RI = 0.86), 40–45% kernel, half of pellicle removed by blanching. Vigorous tree, late nut maturity (September–October). Tolerant of adverse conditions. Incompatibility alleles S9 S23

Tombul

Turkey

Giresun

Best Turkish cultivar for kernel market. Small nut (1.8 g) with round shape (RI = 1.1), high percent kernel (54%), high pellicle removal (94%), early maturity (Early August), excellent flavor, small kernel cavity (1.5 mm), medium productivity (1.5 mt/ha)

Tonda di Giffoni

Italy, South

Italy (Center and South), Spain, Chile and others

For kernel market. Medium nut (2.5–2.8 g) with round shape (RI = 0.90), 46–48% kernel, 80–90% of pellicle removed by blanching, excellent flavor. Mid-season to late nut maturity (September in Italy). Good quantitative resistance to EFB. High yield (2.5 mt/ha) and high adaptation to different environments. Problems with kernel mold in cool, wet environments. Incompatibility alleles S2 S23

Tonda Francescana®

Italy, Central

Not widespread yet

For kernel market. Small to medium nut (2.4 g) with round shape (RI = 0.94), 45–48% kernel, good pellicle removal by blanching, good flavor. Very early nut maturity (August in Italy), low susceptible to big bud mite. High productivity (3.0 mt/ha). Incompatibility alleles S2 S20

Tonda Gentile delle Langhe

Italy, Northwest

Italy, Northwest

For kernel market. Small to medium nut (2.2–2.4 g) with triangular-round shape (RI = 0.90), 46–48% kernel, 80–90% of pellicle removed by blanching, excellent flavor. Very early nut maturity (August in Italy). Susceptible to big bud mite, highly susceptible to EFB. Moderate productivity (1.8–2.0 mt/ha) in northwestern Italy but low in most other locations. Incompatibility alleles S2 S7

Tonda Pacifica

USA, Oregon

Chile, to be commercialized

For kernel market. Small nut (2.2 g), 47% kernel, excellent pellicle removal by blanching, excellent aroma. Nut maturity 8 days before Barcelona. Moderately vigorous tree (TCA 77% of Barcelona), moderately high yield efficiency. Moderate resistance to big bud mite, highly susceptible to EFB. Incompatibility alleles S1 S2

Tonda Romana

Italy, Central

Italy, Central

For kernel market. Medium nut (2.5–2.7 g) with round shape (RI = 0.95), 45–47% kernel, 50% of pellicle removed by blanching, very good aroma. Nut maturity mid-season to late (September in Italy). Resistant to big bud mite, highly susceptible to EFB. High yield (2.0–2.5 mt/ha). Incompatibility alleles S10 S20

Wepster

USA, Oregon

USA, Oregon

For kernel market. Small nut (2.3 g), 46% kernel, very good pellicle removal by blanching, very good aroma. Nut maturity 10 days before cv. Barcelona. Vigorous tree (TCA 90% of Barcelona), high yield efficiency. High resistance to big bud mite, high resistance to EFB from Gasaway. Incompatibility alleles S1 S2

Yamhill

USA, Oregon

USA (Oregon), Chile

For kernel market. Small nut (2.3 g), 49% kernel, 50% of pellicle removed by blanching, little fiber on pellicle. Nut maturity 10 days before cv. Barcelona. Low vigor tree (TCA 60% of Barcelona) with spreading growth habit, very high yield efficiency. High resistance to big bud mite, high resistance to EFB from Gasaway. Incompatibility alleles S8 S26

  1. TCA trunk cross-sectional area (30 cm above soil line), RI roundness index

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Botta, R., Molnar, T.J., Erdogan, V., Valentini, N., Torello Marinoni, D., Mehlenbacher, S.A. (2019). Hazelnut (Corylus spp.) Breeding. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Nut and Beverage Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-23112-5_6

Download citation

Publish with us

Policies and ethics