Skip to main content
Log in

Genotype-Specific Features of Cold-Induced Sweetening Process Regulation in Potato Varieties Nikulinsky, Symfonia, and Nevsky

  • BIOINFORMATICS, BIOENGINEERING, AND BIOTECHNOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract—In this study, we performed expression analysis of genes associated with cold-induced sweetening in potato tubers: vacuolar invertase (Pain-1), sucrose synthase (SUS4), and invertase inhibitor (InvInh2). Potato varieties Nikulinsky, Symfonia, and Nevsky were used. All three varieties were found to accumulate sugars at low temperatures; the maximum accumulation of reducing sugars was observed at 4°C. It was found that the expression pattern of genes associated with cold-induced sweetening differs depending on the variety and storage duration. The increased expression of vacuolar invertase and its inhibitor is more pronounced at the beginning of storage period, whereas the increased expression of sucrose synthase is more pronounced after 3 months of storage. At early storage periods, high expression of invertase and low expression of inhibitor is observed in the Dutch variety Symfonia, and vice versa in the Russian varieties Nikulinsky and Nevsky. The involvement of the studied genes in the process of cold-induced sweetening is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Bianchi G., Scalzo R.L., Testoni A., Maestrelli A. 2014. Nondestructive analysis to monitor potato quality during cold storage. J. Food Quality. 37, 9–17.

    Article  CAS  Google Scholar 

  2. Zhang H., Hou J., Liu J., Zhang J., Song B., Xie C. 2017. The roles of starch metabolic pathways in the cold-induced sweetening process in potatoes. Starch-Stärke. 69, 1600194.

    Article  Google Scholar 

  3. McCullough M.L., Hodge R.A., Um C.Y., Gapstur S.M. 2019. Dietary acrylamide is not associated with renal cell cancer risk in the CPS-II nutrition cohort. Cancer Epidemiol. Prevention Biomarkers. 28, 616–619.

    Article  CAS  Google Scholar 

  4. Sowokinos J.R. 2001. Biochemical and molecular control of cold-induced sweetening in potatoes. Am. J. Potato Res. 78, 221–236.

    Article  CAS  Google Scholar 

  5. Amrein T.M., Schönbächler B., Rohner F., Lukac H., Schneider H., Keiser A., Escher F., Amadò R. 2004. Potential for acrylamide formation in potatoes: data from the 2003 harvest. Eur. Food Res. Technol. 219, 572−578.

    Article  CAS  Google Scholar 

  6. Chen S., Hajirezaei M.R., Zanor M.I., Hornyik C., Debastn S., Lacomme C., Fernie A.R., Sonnewald U., Boernke F. 2008. RNA interference-mediated repression of sucrose-phosphatase in transgenic potato tubers (Solanum tuberosum) strongly affects the hexose-to-sucrose ratio upon cold storage with only minor effects on total soluble carbohydrate accumulation. Plant Cell Environ. 31, 165–176.

    CAS  PubMed  Google Scholar 

  7. Xiong X., Tai G.C.C., Seabrook J.E.A., Wehling P. 2002. Effectiveness of selection for quality traits during the early stage in the potato breeding population. Plant Breed. 121, 441–444.

    Article  Google Scholar 

  8. Hamernik A.J., Hanneman R.E., Jansky S.H. 2009. Introgression of wild species germplasm with extreme resistance to cold sweetening into the cultivated potato. Crop Sci. 49, 529–542.

    Article  Google Scholar 

  9. Liu X., Zhang C., Ou Y., Lin Y., Song B., Xie C., Liu J., Li X.Q. 2011. Systematic analysis of potato acid invertase genes reveals that a cold-responsive member, Stvac-INV1, regulates cold-induced sweetening of tubers. Mol. Genet. Genom. 286, 109–118.

    Article  CAS  Google Scholar 

  10. Bhaskar P.B., Wu L., Busse J.S., Whitty B.R., Hamernik A.J., Jansky S.H., Jiang J. 2010. Suppression of the vacuolar invertase gene prevents cold-induced sweetening in potato. Plant Physiol. 154, 939–948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Clasen B.M., Stoddard T.J., Luo S., Demorest Z.L., Li J., Cedrone F., Tibebu R., Davison S., Ray E.E., Daulhac A., Coffman A. 2015. Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol. J. 14, 169–176.

    Article  PubMed  Google Scholar 

  12. Draffehn A.M., Meller S., Li L., Gebhardt C. 2010. Natural diversity of potato (Solanum tuberosum) invertases. BMC Plant Biol. 10, 1−15.

    Article  Google Scholar 

  13. Slugina M.A., Ryzhova N.N., Kochieva E.Z., Snigir E.A. 2013. Structure and polymorphism of a fragment of the Pain-1 vacuolare invertase locus in Solanum species. Mol. Biol. (Moscow). 47, 215−221. https://doi.org/10.1134/S0026893313020143

    Article  CAS  Google Scholar 

  14. Ou Y., Song B., Liu X., Xie C., Li M., Lin Y., Zhang H., Liu J. 2013. Promoter regions of potato vacuolar invertase gene in response to sugars and hormones. Plant Physiol. Biochem. 69, 9–16.

    Article  CAS  PubMed  Google Scholar 

  15. Shumbe L., Visse M., Soares E., Smit I., Dupuis B., Vanderschuren H. 2020. Differential DNA methylation in the Vinv promoter region controls cold induced sweetening in potato. bioRxiv. 062562.

  16. Brummell D.A., Chen R.K., Harris J.C., Zhang H., Hamiaux C., Kralicek A.V., McKenzie M.J. 2011. Induction of vacuolar invertase inhibitor mRNA in potato tubers contributes to cold-induced sweetening resistance and includes spliced hybrid mRNA variants. J. Exp. Bot. 62, 3519–3534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu X., Lin Y., Liu J., Song B., Ou Y., Zhang H., Li M., Xie C. 2013. StInvInh2 as an inhibitor of Stvac INV 1 regulates the cold-induced sweetening of potato tubers by specifically capping vacuolar invertase activity. Plant Biotechnol. J. 11, 640–647.

    Article  CAS  PubMed  Google Scholar 

  18. Liu X., Cheng S., Liu J., Ou Y., Song B., Zhang C., Lin Y., Li X., Xie C. 2013. The potato protease inhibitor gene, St-Inh, plays roles in the cold-induced sweetening of potato tubers by modulating invertase activity. Postharvest Biol. Tech. 86, 265–271.

    Article  CAS  Google Scholar 

  19. Baroja-Fernández E., Muñoz F.J., Montero M., Etxeberria E., Sesma M.T., Ovecka M., Bahaji A., Ezquer I., Li J., Prat S., Pozueta-Romero J. 2009. Enhancing sucrose synthase activity in transgenic potato (Solanum tuberosum L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield. Plant Cell Physiol. 50, 1651–1662.

    Article  PubMed  Google Scholar 

  20. Bagnaresi P., Moschella,A., Beretta O., Vitulli F., Ranalli P., Perata P. 2008. Heterologous microarray experiments allow the identification of the early events associated with potato tuber cold sweetening. BMC Genomics. 9, 1–23.

    Article  Google Scholar 

  21. Baldwin S.J., Dodds K.G., Auvray B., Genet R.A., Macknight R.C., Jacobs J.M.E. 2011. Association mapping of cold-induced sweetening in potato using historical phenotypic data. Ann. Appl. Biol. 158, 248–256.

    Article  CAS  Google Scholar 

  22. Liu X., Chen L., Shi W., Xu X., Li Z., Liu T., He Q., Xie C., Nie B., Song B. 2021. Comparative transcriptome reveals distinct starch-sugar interconversion patterns in potato genotypes contrasting for cold-induced sweetening capacity. Food Chem. 334, 127550.

    Article  CAS  PubMed  Google Scholar 

  23. Wiberley-Bradford A.E., Bethke P.C. 2017. Rate of cooling alters chip color, sugar contents, and gene expression profiles in stored potato tubers. Am. J. Potato Res. 94, 534–543.

    Article  CAS  Google Scholar 

  24. Slugina M.A., Shchennikova A.V., Meleshin A.A., Kochieva E.Z. 2020. Homologs of vacuolar invertase inhibitor INH2 in tuber-bearing wild potato species and Solanum tuberosum: gene polymorphism and co-expression with saccharolytic enzyme genes in response to cold stress. Sci. Horticult. 269, 109425.

    Article  CAS  Google Scholar 

  25. Doroshkov A.V., Simonov A.V., Safonova A.D., Afonnikov D.A., Likhenko I.E., Kolchanov N.A. 2016. Estimation of quantitative characteristics of hairiness of potato leaves using digital microimage analysis. Dostizh. Nauki Tekhn. APK. 30, 12–14.

    Google Scholar 

  26. Alt V.V., Gurova T.A., Elkin O.V., Klimenko D.N., Maksimov L.V., Pestunov I.A., Dubrovskaya O.A., Genaev M.A., Erst T.V., Genaev K.A., Komyshev E.G., Khlestkin V.K., Afonnikov D.A. 2020. The use of Specim IQ, a hyperspectral camera, for plant analysis. Vavilov. Zh. Genet. Sel. 24. 259‒266.

    Google Scholar 

  27. Antonova O.Yu., Shvachko N.A., Novikova L.Yu., Shuvalov O.Yu., Kostina L.I., Klimenko N.S., Shuvalova A.R., Gavrilenko T.A. 2016. Genetic diversity of potato varieties of Russian breeding and CIS countries according to polymorphism of SSR loci and R-resistance gene markers. Vavilov. Zh. Genet. Sel. 20, 596–606.

    Google Scholar 

  28. Totsky I.V., Rozanova I.V., Safonova A.D., Batov A.S., Gureeva Yu.A., Khlestkina E.K., Kochetov A.V. 2021. Genotyping of potato samples from the GenAgro ICG SB RAS collection using DNA markers of genes conferring resistance to phytopathogens. J. Genet. Breed. 25, 677–686.

    CAS  Google Scholar 

  29. Khlestkin V.K., Erst T.V., Rozanova I.V., Efimov V.M., Khlestkina E.K. 2020. Genetic loci determining potato starch yield and granule morphology revealed by genome-wide association study (GWAS). Peer. J. 8, e10286.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Khlestkin V.K., Rozanova I.V., Efimov V.M. Khlestkina E.K. 2019. Starch phosphorylation associated SNPs found by genome-wide association studies in the potato (Solanum tuberosum L.). BMC Genet. 20, 45–53.

    Article  Google Scholar 

  31. Ibragimova S., Romanova A., Saboiev I., Salina E., Kochetov A. PlantGen2021: The 6th Int. Sci. Conf. 2021. Novosibirsk, Russia. Abstracts Book. p. 95. Abstract 79.

  32. Turkina M.V., Sokolova S.V. 1971. Methods for the determination of monosaccharides and oligosaccharides. In Biokhimicheskie metody v fiziologii rastenii (Biochemical Methods in Plant Physiology). Moscow: Nauka, pp. 7–34.

  33. Lopez-Pardo R., Ruiz de Galarreta J.I., Ritter E. 2013. Selection of housekeeping genes for qRT-PCR analysis in potato tubers under cold stress. Mol. Breed. 31, 39–45.

    Article  CAS  Google Scholar 

  34. Matsuura-Endo C., Ohara-Takada A., Chuda Y., Ono H., Yada H., Yoshida M., Kobayashi A., Tsuda S., Takigawa S., Noda T. 2006. Effects of storage temperature on the contents of sugars and free amino acids in tubers from different potato cultivars and acrylamide in chips. Biosci. Biotechnol. Biochem. 70, 1173–1180.

    Article  CAS  PubMed  Google Scholar 

  35. Lin Q., Xie Y., Guan W., Duan Y., Wang Z., Sun C. 2019. Combined transcriptomic and proteomic analysis of cold stress induced sugar accumulation and heat shock proteins expression during postharvest potato tuber storage. Food Chem. 297, 124991.

    Article  CAS  PubMed  Google Scholar 

  36. Abbasi K.S., Masud T., Qayyum A., Khan S.U., Abbas S., Jenks M.A. 2016. Storage stability of potato variety Lady Rosetta under comparative temperature regimes. Sains Malaysiana. 45, 677–688.

    CAS  Google Scholar 

  37. Sonnewald U. 2001. Control of potato tuber sprouting. Trends Plant Sci. 6, 333–335.

    Article  CAS  PubMed  Google Scholar 

  38. Datir S.S., Regan S. 2022. Role of alkaline/neutral invertases in postharvest storage of potato. Postharvest. Biol. Technol. 184, 111779.

    Article  CAS  Google Scholar 

  39. Slugina M.A., Kochieva E.Z. 2018. The use of carbohydrate metabolism genes to improve the quality of potato tubers (Solanum tuberosum L.). S-kh. Biol. 53, 450–463.

    Google Scholar 

  40. Gupta S.K., Crants J. 2019. Identification and impact of stable prognostic biochemical markers for cold-induced sweetening resistance on selection efficiency in potato (Solanum tuberosum L.) breeding programs. PLoS One. 14, e0225411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McKenzie M.J., Sowokinos J.R., Shea I.M., Gupta S.K., Lindlauf R.R., Anderson J.A. 2005. Investigations on the role of acid invertase and UDP-glucose pyrophosphorylase in potato clones with varying resistance to cold-induced sweetening. Am. J. Potato Res. 82, 231–239.

    Article  CAS  Google Scholar 

  42. Lin Y., Liu T., Liu J., Liu X., Ou Y., Zhang H., Li M., Sonnewald U., Song B., Xie C. 2015. Subtle regulation of potato acid invertase activity by a protein complex of invertase, invertase inhibitor, and sucrose nonfermenting1-related protein kinase. Plant Physiol. 168, 1807–1819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shi W., Ma Q., Yin W., Liu T., Song Y., Chen Y., Song L., Sun H., Hu S., Liu T., Jiang R. 2022. StTINY3 enhances cold-induced sweetening resistance by coordinating starch resynthesis and sucrose hydrolysis in potato. J. Exp. Bot. 73. 4968–4980.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to S.V. Gerasimova and D.A. Afonnikov for their help in conducting the study and writing the article.

Funding

The analysis of the sugar content during storage was performed within the framework of the subprogram of the Complex Science and Technology Program “Development of Selection and Seed Production of Potatoes in the Russian Federation,” project no. FWNR-2019-0012. The development of primers and analysis of gene expression was carried out as part of the budgetary project no. FWNR-2022-0017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Egorova.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by M. Batrukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorova, A.A., Saboiev, I.A., Kostina, N.E. et al. Genotype-Specific Features of Cold-Induced Sweetening Process Regulation in Potato Varieties Nikulinsky, Symfonia, and Nevsky. Mol Biol 57, 193–203 (2023). https://doi.org/10.1134/S0026893323020061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893323020061

Keywords:

Navigation