Skip to main content

Advertisement

Log in

Barnyard millet (Echinochloa spp.): a climate resilient multipurpose crop

  • Review Articles
  • Published:
Vegetos Aims and scope Submit manuscript

Abstract

Crop diversification can help to reduce the existing pressure on agriculture and to meet food requirements of the mushrooming population. Millets are a viable choice for sustainable agriculture and belong to underutilized crops limited to smallholder farmers. Cereals such as barnyard millet are bestowed with superior nutritional profile and can better withstand biotic and abiotic stress conditions. Although they occupy a lower position as a feed crop, braving the worst sets of odds these are to the far best suited crops to cope up with the vagaries of climatic conditions and thus can promise safe agricultural future and nutritional security of the world. This review highlights importance of millets with major focus on “Barnyard millet”. It is one of the hardiest multipurpose crop with wide adaptability to adverse climatic conditions. It is regionally abundant but globally rare, scientific knowledge is also scant about its genetic resources and thus it is facing limited use relative to the potential benefits it can offer. Its remarkable climate resilient properties make its survival easy in harsh and fragile environments as it require minimal agricultural inputs. Germplasm of barnyard millet can prove to be a reservoir of unique alleles to the breeders. Despite of its enormous potential, the crop has not gained popularity among masses. Conserving traditional biodiversity compounded with modern genomic tools can accelerate its production and fill the yield gaps thereby promoting sustainable cropping practices and growing crops best suited to the respective regions, instead of forcefully changing the cropping pattern. Efforts are needed for enhancing its cultivation and acceptance nationwide as a cereal occupying common food basket. Review highlights nutritional quality, stress tolerance and antimicrobial properties of Echinochloa spp. Besides, constraints limiting its production, breeding objectives, germplasm collections and efforts required to promote its acceptance worldwide are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Source: Chandra et al. 2016

Fig. 3

Similar content being viewed by others

References

  • Abe T, Fukami M, Ogasawara M (2011) Effect of hymexazole (3-hydroxy-5-methylisoxazole) on cadmium stress and accumulation in Japanese millet (Echinochloafrumentacea Link). J Pest Sci 36:48–52. https://doi.org/10.1584/jpestics.G10-29

    Article  CAS  Google Scholar 

  • Ajaib M, Khan KM (2013) Antimicrobial and antioxidant activities of Echinochloacolona (Linn.) link and Sporoboluscoromandelianus (Retz.) kunth. J Chem Soc Pak 35:961–966

    CAS  Google Scholar 

  • Al Sherif EA (2007) Echinochloacolona (L.) link. A promising species to cultivate salt affected soils in arid lands. Am EuroAsian J Agric Environ Sci 2(6):1–8

    Google Scholar 

  • Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419:228–232. https://doi.org/10.1038/nature01092

    Article  CAS  PubMed  Google Scholar 

  • Altop EK, Mennan H (2011) Genetic and morphologic diversity of Echinochloa crus-galli populations from different origins. Phytoparasitica 39:93–102. https://doi.org/10.1007/s12600-010-0135-3

    Article  Google Scholar 

  • Arthi N, Rajagopal B, Geethanjali S, Nirmalakumari A, Senthil N (2019) Screening of barnyard millet (Echinochloa frumentacea) germplasm for salinity tolerance. Electron J Plant Breed 10:659–666. https://doi.org/10.5958/0975-928X.2019.00083.8

    Article  Google Scholar 

  • Babu BK, Rashmi C, Sood S (2018) Cross transferability of finger millet and maize genomic SSR markers for genetic diversity and population structure analysis of barnyard millet. Indian J Genet 78:364–372. https://doi.org/10.31742/IJGPB.78.3.5

    Article  Google Scholar 

  • Beddington J (2010) Food security: contributions from science to a new and greener revolution. Philos Trans R Soc B Biol Sci 365:61–71. https://doi.org/10.1098/rstb.2009.0201

    Article  Google Scholar 

  • Bray EA (2000) Responses to abiotic stresses. In: Bob B, Buchanan, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists. Rockville, MD, USA, pp 1158–1203

  • Burke MB, Lobell DB, Guarino L (2009) Shifts in African crop climates by 2050, and the implications for crop improvement and genetic resources conservation. Glob Environ Change 19:317–325. https://doi.org/10.1016/j.gloenvcha.2009.04.003

    Article  Google Scholar 

  • Chandra D, Chandra S, Sharma AK (2016) Review of Finger millet (Eleusine coracana (L.) Gaertn): a power house of health benefiting nutrients. Food Sci Hum Wellness 5:149–155. https://doi.org/10.1016/j.fshw.2016.05.004

    Article  Google Scholar 

  • Chandrasekara A, Naczk M, Shahidi F (2012) Effect of processing on the antioxidant activity of millet grains. Food Chem 133:1–9. https://doi.org/10.1016/j.foodchem.2011.09.043

    Article  CAS  Google Scholar 

  • Channappagoudar BB, Hiremath SM, Biradar NR, Koti RV, Bharamagoudar TD (2008) Influence of morpho-physiological and biochemical traits on the productivity of barnyard millet. Karnataka J Agric Sci 20:477–480

    Google Scholar 

  • De Wet JM, J, Rao K P, Mengesha M H, Brink D E, (1983) Domestication of mawa millet (Echinochloa colona). Econ Bot 37:283–291. https://doi.org/10.1007/BF02858883

    Article  Google Scholar 

  • Devi PB, Vijayabharathi R, Sathyabama S, Malleshi NG, Priyadarisini VB (2014) Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber: a review. J Food Sci Technol 51:1021–1040. https://doi.org/10.1007/s13197-011-0584-9

    Article  CAS  PubMed  Google Scholar 

  • Dewey DR, Lu K (1959) A Correlation and path-coefficient analysis of components of crested wheatgrass seed production. Agron J 51:515–518. https://doi.org/10.2134/agronj1959.00021962005100090002x

    Article  Google Scholar 

  • Dhanalakshmi R, Subramanian A, Thirmurugan T, Elangovan M, Kalaimagal T (2019) Genetic diversity study in barnyard millet (Echinochloa Frumentacea (ROXB.) LINK) germplasm under sodic soil condition. Plant Arch 19:2487–2494

    Google Scholar 

  • Dida MM, Wanyera N, Dunn MLH, Bennetzen JL, Devos KM (2008) Population structure and diversity in finger millet (Eleusine coracana) germplasm. Trop Plant Biol 1:131–141. https://doi.org/10.1007/s12042-008-9012-3

    Article  Google Scholar 

  • Drechsler C (1923) Some graminicolons species of Helminthosporium. Int J Agric Res 24:641–739

    Google Scholar 

  • Dvořáková Z, Čepková PH, Janovská D, Viehmannová I, Svobodová E, Cusimamani EF, Milella L (2015) Comparative analysis of genetic diversity of 8 millet genera revealed by ISSR markers. Emir J Food Agric 7:617–628. https://doi.org/10.9755/ejfa.2015.04.077

    Article  Google Scholar 

  • Dwivedi SL, Upadhyaya HD, Senthilvel S, Hash CT, Fukunaga K, Diao X, Prasad M (2012) Millets: genetic and genomic resources. Plant Breed Rev 35:247–375

    Google Scholar 

  • Evenson RED, Golin (2003) Assessing the impact of the green revolution 1960 to 2000. Science 300:758–762. https://doi.org/10.1126/science.1078710

    Article  CAS  PubMed  Google Scholar 

  • Gomashe SS (2016) Barnyard millet: present status and future thrust areas. In: Patil JV (ed) Millets and sorghum: biology and genetic improvement. Wiley, Hoboken, pp 184–198

    Google Scholar 

  • Goron TL, Raizada MN (2015) Genetic diversity and genomic resources available for the small millet crops to accelerate a New Green Revolution. Front Plant Sci 6:157. https://doi.org/10.3389/fpls.2015.00157

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta P, Raghuvanshi S, Tyagi AK (2001) Assessment of the efficiency of various gene promoters via biolistics in leaf and regenerating seed callus of millets, Eleusine coracana and Echinochloa crusgalli. Plant Biotechnol 18:275–282. https://doi.org/10.5511/plantbiotechnology.18.275

    Article  CAS  Google Scholar 

  • Gupta A, Mahajan V, Singh KP, Bhatt JC (2006) Production technology of minor millets for north-eastern region. Technical bulletin 24 (1/2006). VPKAS, Almora

  • Gupta A, Mahajan V, Kumar M, Gupta HS (2009) Biodiversity in the barnyard millet (Echinochloa frumentacea Link, Poaceae) germplasm in India. Genet Resour Crop Evol 56:883–889. https://doi.org/10.1007/s10722-009-9462-y

    Article  Google Scholar 

  • Gupta A, Mahajan V, Gupta HS (2010) Genetic resources and varietal improvement of small millets for Indian Himalaya. In: Gyanodayaprakashan, biodiversity potentials of Himalaya. Nainital India, pp 305–316

  • Gupta A, Sood S, Agrawal PK, Bhatt JC (2015) B 29: an Easy Dehulling Barnyard Millet (Echinochloa frumentacea Link) genotype. Natl Acad Sci Lett 38:21–24. https://doi.org/10.1007/s40009-014-0295-7

    Article  CAS  Google Scholar 

  • Hilu KW (1994) Evidence from RAPD markers in the evolution of Echinochloa millets (Poaceae). Plant Syst Evol 189:247–257. https://doi.org/10.1007/BF00939730

    Article  CAS  Google Scholar 

  • Hoshino T, Nakamura T, Seimiya Y, Kamada T, Ishikawa G, Ogasawara A, Sagawa S, Satto M, Shimizu H, Nishi M, Watanabe M, Takeda J, Takahata Y (2010) Production of a full waxy line and analysis of waxy genes in the allohexaploid crop, Japanese barnyard millet. Plant Breed 129:349–355. https://doi.org/10.1111/j.1439-0523.2009.01668.x

    Article  CAS  Google Scholar 

  • Joshi V (2013) Assessment of genetic variability and identification of genotypes for different traits in Barnyard millet (Echinochola spp.). Int J Agric Food Sci 4:65–67

    Google Scholar 

  • Joshi RP, Jain AK, Chauhan SS, Singh G (2015) Characterization of barnyard millet (Echinochloa frumentacea (Roxb.) Link.) landraces for agro-morphological traits and disease resistance. Electron J Plant Breed 6:888–898

    Google Scholar 

  • Kim CS, Alamgir KM, Matsumoto S, Tebayashi SI, Koh HS (2008) Antifeedants of Indian barnyard millet, Echinochloa frumentacea Link, against brown planthopper, Nilaparvatalugens (Stål). Z Natur for Sch 63:755–760. https://doi.org/10.1515/znc-2008-9-1022

    Article  CAS  Google Scholar 

  • Kofuji K, Aoki A, Tsubaki K, Konishi M, Isobe T, Murata Y (2012) Antioxidant activity of β-glucan. ISRN Pharm 2012:1–5. https://doi.org/10.5402/2012/125864

    Article  CAS  Google Scholar 

  • Kothari SL, Kumar S, Vishnoi RK, Kothari SL, Watanabe KN (2005) Applications of biotechnology for improvement of millet crops: review of progress and future prospects. Plant Biotechnol 22:81–88. https://doi.org/10.5511/plantbiotechnology.22.81

    Article  CAS  Google Scholar 

  • Kozak M, Azevedo RA (2014) Sequential path analysis: what does" sequential" mean? Sci Agric 71:525–527. https://doi.org/10.1590/0103-9016-2014-0186

    Article  Google Scholar 

  • Kulkarni GS (1922) The smut of Nachani or ragi (Eleusine coracana Gaertn.). Ann Appl Biol 9:184–186. https://doi.org/10.1111/j.1744-7348.1922.tb05953.x

    Article  Google Scholar 

  • Kumar B (2013) Management of grain smut disease of barnyard millet (Echinochloa frumentacea). Indian Phytopathol 66:403–405

    Google Scholar 

  • Kumar B, Prasad D (2009) First record of banded sheath blight disease of barnyard millet caused by Rhizoctonia solani. J Mycol Plant Pathol 39:352–354

    Google Scholar 

  • Kumar J, Kumar B, Yadav VK (2007) Small millets research at G.B. Pant University. GB Pant University of Agriculture and Technology

  • Kumar PA, Pushpadass HA, Franklin MEE, Simha HV, Nath BS (2016) Effect of enzymatic hydrolysis of starch on pasting, rheological and visco elastic properties of milk-barnyard millet (Echinochloa frumentacea) blends meant for spray drying. Int J Biol Macromol 91:838–845. https://doi.org/10.1016/j.ijbiomac.2016.06.027

    Article  CAS  PubMed  Google Scholar 

  • Kumari SK, Thayumanavan B (1997) Comparative study of resistant starch from minor millets on intestinal responses, blood glucose, serum cholesterol and triglycerides in rats. J Sci Food Agric 75:296–302. https://doi.org/10.1002/(SICI)1097-0010(199711)75:3%3C296::AIDJSFA877%3E3.0.CO;2-X

    Article  CAS  Google Scholar 

  • I Leder (2004) Sorghum and millets. Cultivated plants, primarily as food sources, pp 66–84

  • Liu RH (2007) Whole grain phytochemicals and health. J Cereal Sci 46:207–219. https://doi.org/10.1016/j.jcs.2007.06.010

    Article  CAS  Google Scholar 

  • Liu X, Jones MK, Zhao Z, Liu G, O’Connell TC (2012) The earliest evidence of millet as a staple crop: new light on Neolithic foodways in North China. Am J Phys Anthropol 149:283–290. https://doi.org/10.1002/ajpa.22127

    Article  PubMed  Google Scholar 

  • Maikhuri RK, Rao KS, Semwal RL (2001) Changing scenario of Himalayan agroecosystems: loss of agrobiodiversity, an indicator of environmental change in Central Himalaya, India. Environmentalist 21:23–39. https://doi.org/10.1023/A:1010638104135

    Article  Google Scholar 

  • Mal B, Padulosi S, Bala Ravi S (2010) Minor millets in South Asia: learnings from IFAD-NUS project in India and Nepal, Biodiversity International: Maccarese, Rome, Italy; The M.S. Swaminathan Research Foundation: Chennai, India, pp 1–185

  • Manimekalai M, Dhasarathan M, Karthikeyan A, Murukarthick J, RenganathanVG TK, Senthil N (2018) Genetic diversity in the barnyard millet (Echinochola frumentacea) germplasms revealed by morphological traits and simple sequence repeat markers. Curr Plant Biol 14:71–78. https://doi.org/10.1016/j.cpb.2018.09.006

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye T, Gregory JM, Raper SC (2007) Global climate projections. Clim Change 3495:747–845

    Google Scholar 

  • Mehta H, Tyagi PC, Mohapatra KP (2005) Genetic diversity in barnyard millet (Echinochloa frumentacea Roxb.). Indian J Genet 65:293–295

    Google Scholar 

  • Michaelraj PSJ, Shanmugam A (2013) A study on millets based cultivation and consumption in India. Int J Market Financ Serv Manag Res 2:49–58

    Google Scholar 

  • Mohan M, Nair S, Bhagwat A, Krishna TG, Yano M, Bhatia CR, Sasaki T (1997) Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol Breed 3:87–103. https://doi.org/10.1023/A:1009651919792

    Article  CAS  Google Scholar 

  • Nagarajan L, Smale M (2007) Village seed systems and the biological diversity of millet crops in marginal environments of India. Euphytica 155:167–182. https://doi.org/10.1007/s10681-006-9319-9

    Article  Google Scholar 

  • Nishizawa N, Togawa T, Park KO, Sato D, Miyakoshi Y, Inagaki K, Nagasawa T (2009) Dietary Japanese millet protein ameliorates plasma levels of adiponectin, glucose, and lipids in type 2 diabetic mice. Biosci Biotechnol Biochem 73:351–360. https://doi.org/10.1271/bbb.80589

    Article  CAS  PubMed  Google Scholar 

  • Nolde SB, Vassilevski AA, Rogozhin EA, Barinov NA, Balashova TA, Samsonova OV, Grishin EV (2011) Disulfide-stabilized helical hairpin structure and activity of a novel antifungal peptide EcAMP1 from seeds of barnyard grass (Echinochloa crus-galli). J Biol Chem 286:25145–25153. https://doi.org/10.1074/jbc.M110.200378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nozawa S, Takahashi M, Nakai H, Sato YI (2006) Difference in SSR variations between Japanese barnyard millet (Echinochloa esculenta) and its wild relative E. crus-galli. Breed Sci 56:335–340. https://doi.org/10.1270/jsbbs.56.335

    Article  Google Scholar 

  • Odintsova TI, Rogozhin EA, Baranov Y, Musolyamov AK, Yalpani N, EgorovT A, Grishin EV (2008) Seed defensins of barnyard grass Echinochloa crusgalli (L.) Beauv. Biochimie 90(11–12):1667–1673

    Article  CAS  PubMed  Google Scholar 

  • Padulosi S, Mal B, Ravi SB, Gowda J, Gowda KTK, Shanthakumar G, Dutta M (2009) Food security and climate change: role of plant genetic resources of minor millets. Indian J Plant Genet Res 22:1–16

    Google Scholar 

  • Padulosi S, Mal B, King OI, Gotor E (2015) Minor millets as a central element for sustainably enhanced incomes, empowerment, and nutrition in rural India. Sustainability 7:8904–8933. https://doi.org/10.3390/su7078904

    Article  Google Scholar 

  • Pall BS, Jain AC, Singh SP (1980) Diseases of lesser millet. Diseases of lesser millet

  • Pingali P (2015) Agricultural policy and nutrition outcomes–getting beyond the preoccupation with staple grains. Food Secur 7:583–591. https://doi.org/10.1007/s12571-015-0461-x

    Article  Google Scholar 

  • Plaza-Wüthrich S, Tadele Z (2012) Millet improvement through regeneration and transformation. Biotechnol Mol Biol Rev 7:48–61. https://doi.org/10.5897/BMBR12.001

    Article  Google Scholar 

  • Poorniamma R, Prabhu S, Kannan J (2021) Methylobacterium: a foliar bioinoculant for barnyard millet. Biotica Res Today 3(3):197–199

    Google Scholar 

  • Prabha D, Negi YK, Khanna VK (2010) Morphological and isozyme diversity in the accessions of two cultivated species of barnyard millet. Nat Sci 8:71–76

    Google Scholar 

  • Prabha D, Negi YK, Khanna VK (2012) Assessment of genetic diversity of barnyard millet accessions using molecular markers. Indian J Plant Genet Resour 25:174–179

    Google Scholar 

  • Radhajeyalakshmi R, Yamunarani K, Seetharaman K, Velazhahan R (2003) Existence of thaumatin-like proteins (TLPs) in seeds of cereals. Acta Phytopathol Entomol Hung 38:251–257. https://doi.org/10.1556/APhyt.38.2003.3-4.5

    Article  Google Scholar 

  • Rawat L, Bisht TS, Prasad S, Samuel T, Patro SK (2018) Management of important endemic diseases of barnyard millet (Echinochloa frumentacea L.) by the use of bio-control agents in mid hills of Uttarakhand India. Int J Curr Microbiol Appl Sci 7:64–70. https://doi.org/10.20546/ijcmas.2018.702.009

    Article  CAS  Google Scholar 

  • Reddy IBL, Reddy DS, Narasu ML, Sivaramakrishnan S (2011) Characterization of disease resistance gene homologues isolated from finger millet (Eleusinecoracana L. Gaertn). Mol Breed 27:315–328. https://doi.org/10.1007/s11032-010-9433-1

    Article  Google Scholar 

  • Rengalakshmi R (2005) Folk biological classification of minor millet species in Kolli Hills, India. J Ethnobiol 25:59–70. https://doi.org/10.2993/0278-0771(2005)25[59:FBCOMM]2.0.CO;2

    Article  Google Scholar 

  • Saleh AS, Zhang Q, Chen J, Shen Q (2013) Millet grains: nutritional quality, processing, and potential health benefits. Compr Rev Food Sci Food Saf 12:281–295. https://doi.org/10.1111/1541-4337.12012

    Article  CAS  Google Scholar 

  • Sampath TV, Razvi SM, Singh D, Bondale KV (1989) Small millets in Indian agriculture. In: Seetharam A, Riley KW, Harinarayana G (eds) Small millets in global agriculture, Oxford & IBH Publishing Co. Pvt. Ltd., India. pp 33–44

  • Sateesh P V (2010) Millets: future of food and farming. Hyderabad: Millet Network of India Deccan Development Society FIAN, pp 2–9

  • Sharma S, Saxena DC, Riar CS (2016) Isolation of functional components β-glucan and γ-amino butyric acid from raw and germinated barnyard millet (Echinochloa frumentaceae) and their characterization. Plant Food Hum Nutr 71:231–238. https://doi.org/10.1007/s11130-016-0545-6

    Article  CAS  Google Scholar 

  • Singh M, Upadhyaya HD (2016) Genetic and genomic resources for grain cereals improvement

  • Siwela M, Taylor JR, de Milliano WA, Duodu KG (2010) Influence of phenolics in finger millet on grain and malt fungal load, and malt quality. Food Chem 121:443–449. https://doi.org/10.1016/j.foodchem.2009.12.062

    Article  CAS  Google Scholar 

  • Sood S, Khulbe RK, Saini N, Gupta A, Agrawal PK (2014) Interspecific hybrid between Echinochloa esculenta (Japanese barnyard millet) and E. frumentacea (Indian barnyard millet)—a new avenue for genetic enhancement of barnyard millet. Electron J Plant Breed 5:248–253

    Google Scholar 

  • Sood S, Khulbe RK, Kumar A, Agrawal PK, Upadhyaya HD (2015) Barnyard millet global core collection evaluation in the submontane Himalayan region of India using multivariate analysis. Crop J 3:517–525. https://doi.org/10.1016/j.cj.2015.07.005

    Article  Google Scholar 

  • Sood S, Khulbe RK, Kant L (2016) Optimal yield related attributes for high grain yield using ontogeny based sequential path analysis in barnyard millet (Echinochloa spp.). J Agric Sci Technol 18:1933–1944

    Google Scholar 

  • Sood S, Joshi DC, Pattanayak A (2020) Breeding advancements in barnyard millet. In: Gosal S, Wani S (eds) Accelerated plant breeding, volume 1. Springer, Cham, pp 391–409. https://doi.org/10.1007/978-3-030-41866-3_15

  • Srigopalram S, Ilavenil S, Park HS, Kim DH, Choi KC (2018) Effect of combined Lactobacillus plantarum inoculants on improving fermentation quality and aerobic stability of Japanese barnyard millet silage. Int J Agric Biol 20:1211–1217. https://doi.org/10.17957/IJAB/15.0580

    Article  CAS  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822. https://doi.org/10.1126/science.1183700

    Article  CAS  PubMed  Google Scholar 

  • Toledo Á, Burlingame B (2006) Biodiversity and nutrition: a common path toward global food security and sustainable development. J Food Compos Anal 19:477–483. https://doi.org/10.1016/j.jfca.2006.05.001

    Article  Google Scholar 

  • Trivedi AK, Arya L, Verma SK, Tyagi RK, Hemantaranjan A (2017) Evaluation of barnyard millet diversity in central Himalayan region for environmental stress tolerance. J Agric Sci 155:1497–1507. https://doi.org/10.1017/S0021859617000545

    Article  CAS  Google Scholar 

  • Tsehaye Y, Berg T, Tsegaye B, Tanto T (2006) Farmers’ management of finger millet (Eleusine coracana L) diversity in Tigray, Ethiopia and implications for on-farm conservation. Biodivers Conserv 15:4289–4308. https://doi.org/10.1007/s10531-005-3581-3

    Article  Google Scholar 

  • Ugare R, Chimmad B, Naik R, Bharati P, Itagi S (2014) Glycemic index and significance of barnyard millet (Echinochloa frumentacae) in type II diabetics. J Food Sci Technol 51:392–395. https://doi.org/10.1007/s13197-011-0516-8

    Article  CAS  PubMed  Google Scholar 

  • Underwood MP (2000) Genetic enhancement of sorghum and millet residues fed to ruminants: farmers' perceptions of fodder quality in livelihood systems: summary report: PRA case studies in Andhra Pradesh, Gujarat, Maharashtra, Karnataka and Rajasthan States. ILRI (aka ILCA and ILRAD)

  • Upadhyaya HD, Gowda CLL, Reddy VG, Singh S (2008) Diversity in small millets germplasm in genebank at ICRISAT. In: 5th international symposium on new crops and uses: their role in a rapidly changing world. Publ. Cent. For Underutil. Crops. University of Southampton, Southampton, UK, pp 173–185

  • Upadhyaya HD, Dwivedi SL, Singh SK, Singh S, Vetriventhan M, Sharma S (2014) Forming core collections in barnyard, kodo, and little millets using morphoagronomic descriptors. Crop Sci 54:2673–2682. https://doi.org/10.2135/cropsci2014.03.0221

    Article  Google Scholar 

  • Veena B, Chimmad BV, Naik RK, Shantakumar G (2005) Physico-chemical and nutritional studies in barnyard millet. Karnataka J Agric Sci 18:101–105

    Google Scholar 

  • Viswanath S, Seetharam A (1989) Diseases of small millets and their management in India. In: Seetharam A, Riley KW, Harinarayana G (eds) Small millets in global agriculture. Oxford & IBH Publishing Co Pvt. Ltd., New Delhi, pp 237–253

    Google Scholar 

  • Viswanath V, Urooj A, Malleshi NG (2009) Evaluation of antioxidant and antimicrobial properties of finger millet polyphenols (Eleusine coracana). Food Chem 114:340–346. https://doi.org/10.1016/j.foodchem.2008.09.053

    Article  CAS  Google Scholar 

  • Wallace JG, Upadhyaya HD, Vetriventhan M, Buckler ES, Tom Hash C, Ramu P (2015) The genetic makeup of a global barnyard millet germplasm collection. Plant Genome 8:1–7. https://doi.org/10.3835/plantgenome2014.10.0067

    Article  CAS  Google Scholar 

  • Wanous MK (1990) Origin, taxonomy and ploidy of the millets and minor cereals. Plant Var Seeds 3:99–112

    Google Scholar 

  • Watanabe M (1999) Antioxidative phenolic compounds from Japanese barnyard millet (Echinochloa utilis) grains. J Agric Food Chem 47:4500–4505. https://doi.org/10.1021/jf990498s

    Article  CAS  PubMed  Google Scholar 

  • West PC, Gerber JS, Engstrom PM, Mueller ND, Brauman KA, Carlson KM, Siebert S (2014) Leverage points for improving global food security and the environment. Science 345:325–328. https://doi.org/10.1126/science.1246067

    Article  CAS  PubMed  Google Scholar 

  • Yabuno T (1987) Japanese barnyard millet (Echinochloa utilis, Poaceae) in Japan. Econ Bot 41:484–493. https://doi.org/10.1007/BF02908141

    Article  Google Scholar 

  • Yadav VK, Kumar B, Yadav R, Malik N, Kumar J (2010) All India coordinated small millet improvement project. Ranichauri

  • Yadav R, Yadav VK (2013) Comparative performance of Indian and Japanese barnyard millet cultivars under varied fertility conditions for dual use in Indian Central Himalaya. Range Manag Agrofor 34:175–178

    Google Scholar 

Download references

Acknowledgements

Authors are thankful to department of microbiology and Director Experiment Station, GBPUAT Pantnagar for providing all the facilities and resources.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damini Maithani.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maithani, D., Sharma, A., Gangola, S. et al. Barnyard millet (Echinochloa spp.): a climate resilient multipurpose crop. Vegetos 36, 294–308 (2023). https://doi.org/10.1007/s42535-022-00420-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42535-022-00420-4

Keywords

Navigation