Skip to main content
Log in

The role of Euwallacea nr. fornicatus (Coleoptera: Scolytinae) in the wilt syndrome of avocado trees in Israel

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

The polyphagous shot hole borer (PSHB), Euwallacea nr. fornicatus (Coleoptera; Scolytinae) has become a serious threat to the avocado industry and several shade tree species in Israel. Branch wilting and tree mortality is the outcome of PSHB galleries. Understanding the relationship between avocado trees and the PSHB is required for considering management strategies. In Israel, 52 tree species from 26 botanical families were attacked by the PSHB, but only 12 species were suitable for beetle reproduction. All examined avocado cultivars were attacked, but ‘Hass’ most severely. Large and medium diameter avocado branches were more resistant to PSHB, compared to thin branches. Effectively, gallery density increased as branch diameter decreased. Concomitantly, in large and medium diameter branches, extensive sugar exudation occurred and beetle attack rarely progressed to the formation of natal galleries, whereas minimal sugar exudation was observed in thin branches. This was more evident in those that were weakened by repeated attacks followed by successful beetle colonization. PSHB prefers and successfully colonized branches that had been previously attacked by its conspecifics, and reproduction was much higher in these branches, as opposed to initial attacks. Lesion frequencies increased from late spring (April) until late summer (September). Avocado branches at the early stages of beetle colonization may be identified by sugar exudation at the base of the thin branches. The main approach for reducing damage caused by the PSHB is sanitation, achieved by the removal of colonized branches and intact infested pruned slash.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alfaro, R., Humble, L., Gonzalez, P., Villaverde, R., & Gianni Allegro, G. (2007). The threat of the ambrosia beetle Megaplatypus mutatus (Chapuis) (=Platypus mutatus Chapuis) to world poplar resources. Forestry, 80, 471–479.

    Article  Google Scholar 

  • Alonso-Zarazaga, M., & Lyal, C. (2009). A catalogue of family and genus group names in Scolytinae and Platypodinae with nomenclatural remarks (Coleoptera: Curculionidae). Zootaxa, 2258, 1–134.

    Google Scholar 

  • Avidov, Z., & Ben Haim, N. (1950). Observations on pests of subtropical fruit trees in Israel. Ktavim, 1, 55–69.

    Google Scholar 

  • Bellahirech, A., Inacio, M., Nobrega, F., Henriques, J., Bonifacio, L., Sousa, E., & Ben Jamaa, M. (2016). Can behavioural differences in Platypus cylindrus (Coleoptera: Platypodinae) from Portugal and Tunisia be explained by genetic and morphological traits? Bulletin of Entomological Research, 106, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Brar, G., Capinera, G., Kendra, P., McLean, S., & Pena, J. (2013). Life cycle, development and culture of Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae). Florida Entomologist, 96, 1158–1167.

    Article  Google Scholar 

  • Chen, Y., Dallara, P., Nelson, L., Coleman, T., Hishinuma, S., Carrillo, D., & Seybold, S. (2016). Comparative morphometric and chemical analyses of phenotypes of two invasive ambrosia beetles (Euwallacea spp.) in the United States of America. Insect Science. doi:10.1111/1744-7917.12329.

  • Cooperband, M., Stouthamer, R., Carrillo, D., Eskalen, A., Thibault, T., Cosse, A., Castrillo, L., Vandenberg, J., & Rugman-Jones, P. (2016). Biology of two members of the Euwallacea fornicatus species complex (Coleoptera: Curculionidae: Scolytinae), recently invasive in the U.S.A., reared on an ambrosia beetle artificial diet. Agricultural and Forest Entomology. doi:10.1111/afe.12155.

  • Danthanarayana, W. (1968). The distribution and host-range of the shot-hole borer (Xyleborus fornicatus Eichh.) of tea. Tea Quarterly, 39, 61–69.

    Google Scholar 

  • Eskalen, A., Gonzalez, A., Wang, D., Twizeyimana, M, Mayorquin, J. & Lynch, S. (2012). First report of a Fusarium sp. and its vector tea shot hole borer (Euwallacea fornicatus) causing Fusarium dieback on avocado in California. Plant Disease, 96, 1070.

  • Eskalen, A., Stouthamer, R., Lynch, S., Rugman-Jones, P., Twizeyimana, M., Gonzalez, A., & Thibault, T. (2013). Host range of Fusarium dieback and its ambrosia beetle (Coleoptera: Scolytinae) vector in southern California. Plant Disease, 97, 938–951.

    Article  Google Scholar 

  • Fisher, R., Thompson, G., & Webb, W. (1953). Ambrosia beetles in forest and sawmill: Their biology, economic importance and control. Forest Abstracts, 14, 381–389.

    Google Scholar 

  • Francke-Grossman, H. (1967). Ectosymbiosis in wood – Inhabiting insects. In M. Henry (Ed.), Ectosymbiosis (pp. 141–205). New York: Academic Press Inc..

    Chapter  Google Scholar 

  • Freeman, S., Protasov, A., Sharon, M., Mohotti, K., Eliyahu, M., Okon-Levy, N., & Mendel, Z. (2012). Obligate feed requirement of Fusarium sp. nov., an avocado wilting agent, by the ambrosia beetle Euwallacea aff. fornicata. Symbiosis, 58, 245–251.

    Article  Google Scholar 

  • Freeman, S., Sharon, M., Maymon, M., Mendel, Z., Protasov, A., Aoki, T., Eskalen, A., & O’Donnell, K. (2013). Fusarium euwallaceae sp. nov. - a symbiotic fungus of Euwallacea sp., an invasive ambrosia beetle in Israel and California. Mycologia, 105, 1595–1606.

    Article  CAS  PubMed  Google Scholar 

  • Freeman, S., Sharon, M., Dori-Bachash, M., Maymon, M., Belausov, E., Maoz, Y., Margalit, O., Protasov, A., & Mendel, Z. (2016). Symbiotic association of three fungal species throughout the life cycle of the ambrosia beetle Euwallacea nr. fornicatus. Symbiosis, 68, 115–128.

    Article  Google Scholar 

  • Gadd, C. (1941). The life history of the shot-hole borer of tea. Tea Quarterly, 14, 5–22.

    Google Scholar 

  • Gadd, C. (1949). Studies of shot-hole borer of tea IV - life cycle of the beetle. Tea Quarterly, 20, 61–65.

    Google Scholar 

  • Green, E. (1903). Shot-hole borer (Xyleborus fornicatus). Circulation Agriculture Journal of Ceylon, 11(9), 139–156.

    Google Scholar 

  • Haack, R. (2006). Exotic bark- and wood-boring Coleoptera in the United States: Recent establishments and interceptions. Canadian Journal of Forest Research, 36, 269–288.

    Article  Google Scholar 

  • Homsky, S. (1995). The avocado industry in Israel - an overview. Alon HaNotea, 49, 479-488 [in Hebrew, English abstract].

  • Hulcr, J., & Dunn, R. (2011). The sudden emergence of pathogenicity in insect–fungus symbioses threatens naive forest ecosystems. Proceedings of the Royal Society B: Biological Sciences, 278, 2866–2873.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hulcr, J., & Smith, S. (2010). Xyleborini ambrosia beetles: an identification tool to the world genera. http://itp.lucidcentral.org/id/wbb/xyleborini/index.htm.

  • Hulcr, J., Mogia, M., Isua, B., & Novotny, V. (2007). Host specificity of ambrosia and bark beetles (Col., Curculionidae: Scolytinae and Platypodinae) in a New Guinea rain forest. Ecological Entomology, 32, 762–772.

    Article  Google Scholar 

  • Hulcr, J., Mann, R., & Stelinski, L. (2011). The scent of a partner: Ambrosia beetles are attracted to volatiles from their fungal symbionts. Journal of Chemical Ecology, 37, 1374–1377.

    Article  CAS  PubMed  Google Scholar 

  • Jordal, B., Normark, B., & Farrell, B. (2000). Evolutionary radiation of an inbreeding haplodiploid beetle lineage (Curculionidae; Scolytinae). Biological Journal of the Linnean Society, 71, 483–499.

    Article  Google Scholar 

  • Kasson, M., O’Donnell, K., Rooney, A., Sink, S., Ploetz, R., Ploetz, J., Konkol, J., Carrillo, D., Freeman, S., Mendel, Z., Smith, J., Black, A., Hulcr, J., Bateman, C., Black, A., Campbell, P., Geering, A., Dann, E., Eskalen, A., Mohotti, K., Short, D., Aoki, T., Fenstermacher, K., Davis, D., & Geiser, D. (2013). Phylogenetic diversity of fusaria cultivated by ambrosia beetles in the genus Euwallacea on avocado and other plant hosts. Fungal Genetics and Biology, 56, 147–157.

    Article  PubMed  Google Scholar 

  • Kendra, P., Montgomery, W., Niogret, J., & Epsky, N. (2013). An uncertain future for American Lauraceae: A lethal threat from redbay ambrosia beetle and laurel wilt disease (a review). American Journal of Plant Sciences, 4, 727–738.

    Article  Google Scholar 

  • Liu, X., Robinson, P., Madore, M., Witney, G., & Arpaia, M. (1999). ‘Hass’ avocado carbohydrate fluctuations. I. Growth and phenology. Journal of the American Society for Horticultural Science, 124, 671–675.

    CAS  Google Scholar 

  • Lynch, S. C., Twizeyimana, M., Mayorquin, J. S.,  Wang, D. H., Na, F., Kayim, M., et al. (2017). Identification, pathogenicity and abundance of Paracremonium pembeum sp. nov. and Graphium euwallaceae sp. nov. - two newly discovered mycangial associates of the polyphagous shot hole borer (Euwallacea sp.) in California. Mycologia, 108 (2), 313–329.

  • Maoz, Y., Gal, S., Argov, Y., Coll, M., & Palevsky, E. (2011). Biocontrol of persea mite, Oligonychus perseae, with an exotic spider mite predator and an indigenous pollen feeder. Biological Control, 59, 147–157.

    Article  Google Scholar 

  • Marini, L., Haack, R., Rabaglia, R., Petrucco Toffolo, E., Battisti, A., & Faccoli, M. (2011). Exploring associations between international trade and environmental factors with establishment patterns of alien Scolytinae. Biological Invasions, 13, 2275–2288.

    Article  Google Scholar 

  • McPherson, B., Mori, S., Wood, D., Storer, J., Svihra, P., Maggi Kelley, N., & Standiford, R. (2005). Sudden oak death in California, disease progression in oaks and tanoaks. Forest Ecology and Management, 213, 71–89.

    Article  Google Scholar 

  • Mendel, Z., Protasov, A., Sharon, M., Zveibil, A., Ben Yehuda, S., O'Donnell, K., Rabaglia, R., Wysoki, M., & Freeman, S. (2012a). An Asian ambrosia beetle Euwallacea fornicatus and its novel symbiotic fungus Fusarium Sp. Pose a serious threat to the Israeli avocado industry. Phytoparasitica, 40, 235–238.

    Article  Google Scholar 

  • Mendel, Z., Protasov, A., Wysoki, M., Elyihu, M., Maoz, Y., Sharon, M., Zveibil, A., Noy, M., Ben Yehuda, S. & Freeman, S. (2012b). A major treat on the avocado industry in Israel, an ambrosia beetle that vectors a fusarial pathogen. Alon HaNotea, 66, 30-35 [in Hebrew, English abstract].

  • Mendel, Z., Protasov, A., Dori-Bachash, M., Maoz, Y., Margalit, O., Palevsky, E., Maymon, M., Elazar, M., Golan, O. & Freeman, S. (2016). Background and current situation about the ambrosia beetle and its fungal symbionts in avocado plantation in Israel. Alon HaNotea, 71, 32-37 [in Hebrew, English abstract].

  • Niogret, J., Epsky, N., Schnell, E., Schnell, R., Heath, R., Meerow, A., & Kendra, P. (2013). Analysis of sesquiterpene distributions in leaves, branches and trunks of avocado (Persea americana Mill.) American Journal of Plant Sciences, 4, 922–931.

    Article  Google Scholar 

  • Noy, M. (2016). Avocado industry, current situation. Alon HaNotea, 70, 28–30 [in Hebrew, English abstract].

    Google Scholar 

  • Noy, M., & Gafni, U. (2015). Overview on the avocado industry in Israel. Mashov Haklaut, 4, 6–9 [in Hebrew, English abstract].

    Google Scholar 

  • O’Donnell, K., Sink, S., Libeskind-Hadas, R., Hulcr, J., Kasson, M., Ploetz, R., Konkol, J., Ploetz, J., Carrillo, D., Campbell, A., Duncan, R., Liyanage, P., Eskalen, A., Na, F., Geiser, D., Bateman, C., Freeman, S., Mendel, Z., Sharon, M., Aoki, T., Cossé, A., & Rooney, A. (2015). Discordant phylogenies suggest repeated host shifts in the FusariumEuwallacea ambrosia beetle mutualism. Fungal Genetics and Biology, 82, 277–290.

    Article  PubMed  Google Scholar 

  • Pennacchio, F., Roversi, P., Francardi, V., & Gatti, E. (2003). Xylosandrus crassiusculus (Motschulsky) a bark beetle new to Europe (Coleoptera; Scolytidae). Redia, 86, 77–80.

    Google Scholar 

  • Ploetz, R., Hulcr, J., Wingfield, M., & DeBeer, Z. (2013). Destructive tree diseases associated with ambrosia and bark beetles: Black swan events in tree pathology? Plant Disease, 95, 856–872.

    Article  Google Scholar 

  • Ranger, C., Reding, M., Persad, A., & Herms, D. (2010). Ability of stress-related volatiles to attract and induce attacks by Xylosandrus germanus and other ambrosia beetles. Agricultural and Forest Entomology, 12, 177–185.

    Article  Google Scholar 

  • Ranger, C., Reding, M., Schultz, P., & Oliver, J. (2013). Influence of flood-stress on ambrosia beetle host-selection and implications for their management in a changing climate. Agricultural and Forest Entomology, 15, 56–64.

    Article  Google Scholar 

  • Reed, S., Juzwik, J., English, J., & Ginzel, M. (2015). Colonization of artificially stressed black walnut trees by ambrosia beetle, bark beetle, and other weevil (Coleoptera: Curculionidae) in Indiana and Missouri. Environmental Entomology, 44(6), 1455–1464.

    Article  PubMed  Google Scholar 

  • SAS Institute Inc. (2015). JMP® 12 scripting guide (Second ed.). Cary: SAS Institute Inc..

    Google Scholar 

  • Schigel, D. (2012). Fungivory and host associations of Coleoptera: A bibliography and review of research approaches. Mycology, 3(4), 258–272.

    Google Scholar 

  • Shtienberg, D., Simanski, E., Shulhani, R., Borenstein, M., Golani, M., Okon-Levy, N., Sharon, M., & Freeman, S. (2015). Mortality of young avocado plants: Identification of the causal agent and development of means for management. Phytoparasitica, 43, 377.

    Google Scholar 

  • Sivapalan, P., & Sivanandarajah, V. (1977). Diets for rearing the ambrosia beetle of tea, Xyleborus fornicatus (Coleoptera: Scolytidae) in vitro. Entomologia Experimentalis et Applicata, 21, 1–8.

    Article  CAS  Google Scholar 

  • Speyer, E. (1917a). Shot-hole borer of tea. Tropical Agriculture, 49, 17–24.

    Google Scholar 

  • Speyer, E. (1917b). Tea diseases. The shot-hole borer investigations. Tropical Agriculture, 48, 152–155.

    Google Scholar 

  • Stouthamer, R., Rugman-Jones, P., Thu, P., Eskalen, A., Thibault, T., Hulcr, J., Wang, L., Jordal, B., Chen, C., Cooperband, M., Lin, C., Kamata, N., Lu, S., Masuya, H., Mendel, Z., Rabaglia, R., Sanguansub, S., Shih, H., Sittichaya, W., & Zong, S. (2017). Tracing the origin of a cryptic invader: Phylogeography of the Euwallacea fornicatus (Coleoptera: Curculionidae: Scolytinae) species complex. Agricultural and Forest Entomology. doi:10.1111/afe.12215.

  • Swirski, E., Wysoki, M., & Izhar, Y. (1988). Integrated Pest management in the avocado orchards of Israel. Applied Agricultural Research, 3, 1–7.

    Google Scholar 

  • Umeda, C., Eskalen, A., & Paine, T. (2016). Polyphagous shot hole borer and Fusarium dieback in California. In T. Paine & F. Lieutier (Eds.), Insects and diseases of Mediterranean Forest systems (pp. 757–767). New York: Springer.

    Chapter  Google Scholar 

  • Vannini, A., Contarini, M., Faccoli, M., Della Valle, M., Rodriguez, C., Mazzetto, T., Guarneri, D., Vettraino, A., & Speranza, S. (2017). First report of the ambrosia beetle Xylosandrus compactus and associated fungi in the Mediterranean maquis in Italy and new host-pest associations. Bulletin OEPP/EPPO Bulletin, 1–4 [in press].

  • Walgama, R. & Zalucki, M. (2007). Temperature-dependent development of Xyleborus fornicatus (Coleoptera: Scolytidae), the shot-hole borer of tea in Sri Lanka: Implications for distribution and abundance. Insect Science, 14(4), 301–308.

  • Worrall, J., Egeland, L., Eager, T., Mask, R., Johnson, E., Kemp, P., & Shepperd, W. (2008). Rapid mortality of Populus tremuloides in southwestern Colorado, USA. Forest Ecology and Management, 255, 686–696.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Hillary Voet, from the Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, for assistance with statistical analyses of the data. We express our appreciation to many avocado growers, in particular Roni Israeli from Nochsholim and Ofri Yongerman and Roni Bucksboim from Eyal, gardeners and landscape managers who shared valuable information of infested hosts on their properties and allowed us to remove plant materials for this study. We thank Randy C. Ploetz and Akif Eskalen for their important comments on an early draft. We also thank two anonymous reviewers for the valuable suggestions. This research was partially funded by grants No. 131-1679 and 131- 1834 from the Chief Scientist of the Ministry of Agriculture and the Israeli avocado growers’ association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zvi Mendel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendel, Z., Protasov, A., Maoz, Y. et al. The role of Euwallacea nr. fornicatus (Coleoptera: Scolytinae) in the wilt syndrome of avocado trees in Israel. Phytoparasitica 45, 341–359 (2017). https://doi.org/10.1007/s12600-017-0598-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-017-0598-6

Keywords

Navigation