Skip to main content

Advertisement

Log in

Protein extract of Bromelia karatas L. rich in cysteine proteases (ananain- and bromelain-like) has antibacterial activity against foodborne pathogens Listeria monocytogenes and Salmonella Typhimurium

  • Original Article
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Bromelia karatas L. is a plant species from the Americas. The presence of proteases in fruits of B. karatas has been reported but scarcely studied in detail. Proteolytic enzymes from Ananas comosus have displayed antifungal and antibacterial activity. Thus, novel proteases present in B. karatas may be useful as a source of compounds against microorganisms in medicine and food production. In this work, the protein extract from the fruits of B. karatas was characterized and its antibacterial activity against Salmonella Typhimurium and Listeria monocytogenes was determined for the first time. Proteins highly similar to ananain and the fruit bromelain from A. comosus were identified as the main proteases in B. karatas fruits using liquid chromatography with tandem mass spectrometry (LC–MS/MS). The soluble protein extract (SPE) at a concentration of 2.0 mg/mL displayed up to 80% of antibacterial activity against S. Typhimurium. Complete inhibition of L. monocytogenes was reached with up to 1.65 mg/mL of SPE. Plant protease extract containing ananain-like enzyme inhibited up to 90% against S. Typhimurium and up to 85% against L. monocytogenes using only 10 μg/mL of the partial-purified enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated for this manuscript are available at the following link: http://doi.org/10.5281/zenodo.3986948. Please contact the corresponding author for other data requests.

References

  • Andrade-Cetto AD, Medina-Hernández AEB (2013) Hypoglycemic effect of Bromelia plumieri (E. Morren) LB Sm., leaves in STZ-NA-induced diabetic rats. Front Pharmacol 4:36

  • Ataide JA, de Carvalho NM, de Araújo RM, Chaud MV, Grotto D, Gerenutti M, Rai M, Mazzola PG, Jozala AF (2017) Bacterial nanocellulose loaded with bromelain: assessment of antimicrobial, antioxidant and physical-chemical properties. Sci Rep 7:1–9

    Article  CAS  Google Scholar 

  • Barton Behravesh C, Jones TF, Vugia DJ, Long C, Marcus R, Smith K, Thomas S, Zansky S, Fullerton KE, Henao OL, Scallan E, FoodNet Working Group (2011) Deaths associated with bacterial pathogens transmitted commonly through food: foodborne diseases active surveillance network (FoodNet), 1996–2005. J Infec Dis 204:263–267

    Article  Google Scholar 

  • Binz PA, Barkovich R, Beavis RC, Creasy D, Horn DM, Julian RK Jr, Seymour SL, Taylor CF, Vandenbrouck Y (2008) Guidelines for reporting the use of mass spectrometry informatics in proteomics. Nat Biotechnol 26(8):862–863

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Cabral H, Leopoldino AM, Tajara EH, Greene LJ, Faça VM, Mateus RP, Ceron CR, de Souza Judice WA, Juliano L, Bonilla-Rodriguez GO (2006) Preliminary functional characterization, cloning and primary sequence of Fastuosain, a cysteine peptidase isolated from fruits of Bromelia fastuosa. Protein Pept Lett 13(1):83–89

    Article  CAS  Google Scholar 

  • Carlos Ruiz-Ruiz J, Ramón-Sierra J, Arias-Argaez C, Magaña-Ortiz D, Ortiz-Vázquez E (2017) Antibacterial activity of proteins extracted from the pulp of wild edible fruit of Bromelia pinguin L. Int J Food Properties 20:220–230

    Article  CAS  Google Scholar 

  • Carocho M, Barreiro MF, Morales P, Ferreira IC (2014) Adding molecules to food, pros and cons: a review on synthetic and natural food additives. Comprehensive Rev Food Sci Food Safety 13:377–399

    Article  Google Scholar 

  • Chaurasiya RS, Sakhare PZ, Bhaskar N, Hebbar HU (2015) Efficacy of reverse micellar extracted fruit bromelain in meat tenderization. J Food Sci Technol 52:3870–3880. https://doi.org/10.1007/s13197-014-1454-z

    Article  CAS  PubMed  Google Scholar 

  • Clinical and Laboratory Standards Institute (CLSI) (2018) Methods for antimicrobial susceptibility testing of anaerobic bacteria, 9th edn. CLSI, Wayne, p M11

  • Costa HPS, Oliveira JTA, Sousa DO, Morais JKS, Moreno FB, Monteiro-Moreira ACO, Viegas RA, Vasconcelos I (2014) JcTI-I: a novel trypsin inhibitor from Jatropha curcas seed cake with potential for bacterial infection treatment. Front Microbiol 5:5

    PubMed  PubMed Central  Google Scholar 

  • de Lourdes Garcia-Magana M, González-Borrayo J, Montalvo-González E, Rudino-Pinera E, Sayago-Ayerdi SG, Salazar-Leyva JA (2018) Isoelectric focusing, effect of reducing agents and inhibitors: partial characterization of proteases extracted from Bromelia karatas. Appl Biol Chem 61:459–467

    Article  Google Scholar 

  • dos Anjos MM, da Silva AA, de Pascoli IC, Mikcha JMG, Machinski M Jr, Peralta RM, de Abreu Filho BA (2016) Antibacterial activity of papain and bromelain on Alicyclobacillus spp. Int J Food Microbiol 216:121–126

    Article  Google Scholar 

  • Dutta S, Bhattacharyya D (2013) Enzymatic, antimicrobial and toxicity studies of the aqueous extract of Ananas comosus (pineapple) crown leaf. J Ethnopharmacol 150:451–457

    Article  CAS  Google Scholar 

  • Eshamah H, Han I, Naas H, Rieck J, Dawson P (2013) Bactericidal effects of natural tenderizing enzymes on Escherichia coli and Listeria monocytogenes. J Food Res 2(1):8

    Article  Google Scholar 

  • Hornung-Leoni CT (2011) Bromeliads: traditional plant food in Latin America since prehispanic times. Polibotánica 32:219–229

    Google Scholar 

  • Kwatra B (2019) A review on potential properties and therapeutic applications of bromelain. World J Pharm Pharm Sci 8:488–500. https://doi.org/10.20959/wjpps201911-14941

    Article  CAS  Google Scholar 

  • Lima TB, Silva ON, Migliolo L, Souza-Filho CR, Gonçalves EG, Vasconcelos IM, Oliveira JTA, Amaral CA, Franco OL (2011) A Kunitz proteinase inhibitor from corms of Xanthosoma blandum with bactericidal activity. J Nat Prod 74(5):969–975

    Article  CAS  Google Scholar 

  • López LM, Sequeiros C, Natalucci CL, Brullo A, Maras B, Barra D, Caffini NO (2000) Purification and characterization of macrodontain I, a cysteine peptidase from unripe fruits of Pseudananas macrodontes (Morr.) Harms (Bromeliaceae). Protein Exp Purif 18(2):133–140

    Article  Google Scholar 

  • Luther HE (2008) An alphabetical list of bromeliad binomials, 11th edn. Bromeliad Society International

  • Maurer HR (2001) Bromelain: biochemistry, pharmacology and medical use. Cell Mol Life Sci 58(9):1234–1245

    Article  CAS  Google Scholar 

  • Meza-Espinoza L, de los Ángeles Vivar-Vera M, de Lourdes García-Magaña M, Sáyago-Ayerdi SG, Chacón-López A, Becerrea-Verdín EM, Montalvo-González E (2018) Enzyme activity and partial characterization of proteases obtained from Bromelia karatas fruit and compared with Bromelia pinguin proteases. Food Sci Biotechnol 27:509–517

    CAS  PubMed  Google Scholar 

  • Montes C, Amador M, Cuevas D, Córdoba F (1990) Subunit structure of karatasin, the proteinase isolated from Bromelia plumieri (karatas). Agric Biol Chem 54:17–24

    Article  CAS  Google Scholar 

  • Moreno-Hernández JM, Hernández-Mancillas XD, Navarrete ELC, Mazorra-Manzano MA, Osuna-Ruiz I, Rodríguez-Tirado VA, Salazar-Leyva JA (2017) Partial characterization of the proteolytic properties of an enzymatic extract from “Aguama” Bromelia pinguin L. fruit grown in Mexico. Appl Biochem Biotechnol 182:181–196

    Article  Google Scholar 

  • Moyano D, Osorio M, Murillo E, Murillo W, Solanilla J, Méndez J, Aristizabal J (2012) Evaluación de parámetros bromatológicos, fitoquímicos y funcionalidad antioxidante de frutos de Bromelia karatas (Bromeliaceae) Vitae 19:S439–S441

  • Mynott TL, Guandalini ST, Raimondi FR, Fasano AL (1997) Bromelain prevents secretion caused by Vibrio cholerae and Escherichia coli enterotoxins in rabbit ileum in vitro. Gastroenterology 113(1):175–184

    Article  CAS  Google Scholar 

  • O’Driscoll NH, Cushnie TT, Matthews KH, Lamb AJ (2018) Colistin causes profound morphological alteration but minimal cytoplasmic membrane perforation in populations of Escherichia coli and Pseudomonas aeruginosa. Arch Microbiol 200(5):793–802

    Article  Google Scholar 

  • Pardo MF, López LM, Caffini NO, Natalucci CL (2001) Properties of a milk clotting protease isolated from fruits of Bromelia balansae Mez. Biol Chem 382(5):871–874

    Article  CAS  Google Scholar 

  • Payrol JA, Obregón WD, Natalucci CL, Caffini NO (2005) Reinvestigation of the proteolytically active components of Bromelia pinguin fruit. Fitoterapia 76:540–548

    Article  CAS  Google Scholar 

  • Praveen NC, Rajesh A, Madan M, Chaurasia VR, Hiremath NV, Sharma AM (2014) In vitro evaluation of antibacterial efficacy of pineapple extract (bromelain) on periodontal pathogens. J Int Oral Health: JIOH 6(5):96

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramírez IG, Ivón M, Chi-May (2004) Guía Ilustrada de las Bromeliaceae de la porción mexicana de la Península de Yucatán. 1st edn. Centro de Investigación Científica de Yucatán-PNUD

  • Rathnavelu V, Alitheen NB, Sohila S, Kanagesan S, Ramesh R (2016) Potential role of bromelain in clinical and therapeutic applications (Review). Biomed Reports 5:283–288. https://doi.org/10.3892/br.2016.720

    Article  CAS  Google Scholar 

  • Rowan AD, Buttle DJ, Barrett AJ (1990) The cysteine proteinases of the pineapple plant. Biochem J 266:869–875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shevchenko A, Tomas H, Havli J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1(6):2856

    Article  CAS  Google Scholar 

  • Shoham Y, Krieger Y, Tamir E, Silberstein E, Bogdanov-Berezovsky A, Haik J, Rosenberg L (2018) Bromelain-based enzymatic debridement of chronic wounds: a preliminary report. Int Wound J 15:769–775. https://doi.org/10.1111/iwj.12925

    Article  PubMed  PubMed Central  Google Scholar 

  • Shukor MY, Masdor N, Baharom NA, Jamal JA, Abdullah MPA, Shamaan NA, Syed MA (2008) An inhibitive determination method for heavy metals using bromelain, a cysteine protease. App Biochem Biotechnol 144(3):283–291

    Article  CAS  Google Scholar 

  • Srikanth S, Chen Z (2016) Plant protease inhibitors in therapeutics-focus on cancer therapy. Front Pharmacol 7:470

    Article  Google Scholar 

  • Vallés D, Furtado S, Cantera AMB (2007) Characterization of news proteolytic enzymes from ripe fruits of Bromelia antiacantha Bertol. (Bromeliaceae). Enzyme Microb Technol 40(3):409–413

    Article  Google Scholar 

  • Wiegand I, Hilpert K, Hancock REW (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3:163–175

    Article  CAS  Google Scholar 

  • Wielsch N, Thomas H, Surendranath V, Waridel P, Frank A, Pevzner P, Shevchenko A (2006) Rapid validation of protein identifications with the borderline statistical confidence via de novo sequencing and MS BLAST searches. J Proteome Res 5:2448–2456. https://doi.org/10.1021/pr060200v

    Article  CAS  PubMed  Google Scholar 

  • Yongqing T, Wilmann PG, Pan J, West ML, Brown TJ, Mynott T, Pike RN, Wijeyewickrema LC (2019) Determination of the crystal structure and substrate specificity of ananain. Biochimie 166:194–202. https://doi.org/10.1016/j.biochi.2019.07.011

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thank Dr. Elizabeth Ortiz Vazquez and Jesus Ramon-Sierra to donate bacterial strains. Also, they acknowledge the biologists Javier Tun-Pech and Juan Pablo Pinzón-Esquivel PhD for valuable help to identify Bromelia karatas fruits and plants.

Funding

This research was supported by SEP-Programa para el desarrollo profesional docente para el tipo superior (Grant ITMER-PTC-017). Funding body was employed in the design of the study and collection, experimental procedures, and writing of manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Denis Magaña-Ortiz and Laura Margarita López-Castillo designed the study, Elva Ávalos-Flores and Laura Margarita López-Castillo performed protein extraction and antibacterial tests, Natalie Wielsch, Yvonne Hupfer, and Robert Winkler performed protein analysis and identification, and Denis Magaña-Ortiz and Laura Margarita López-Castillo drafted the manuscript. All authors read, revised, and approved the final manuscript. Authors also declare that nobody who qualifies for authorship has been excluded from the list of authors.

Corresponding author

Correspondence to Denis Magaña-Ortiz.

Ethics declarations

Ethics approval and consent to participate

Not applicable. This study does not include any experimental procedure performed on humans or animals.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIFF 1027 KB)

Supplementary file2 (DOCX 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ávalos-Flores, E., López-Castillo, L.M., Wielsch, N. et al. Protein extract of Bromelia karatas L. rich in cysteine proteases (ananain- and bromelain-like) has antibacterial activity against foodborne pathogens Listeria monocytogenes and Salmonella Typhimurium. Folia Microbiol 67, 1–13 (2022). https://doi.org/10.1007/s12223-021-00906-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-021-00906-9

Navigation