Skip to main content

Advertisement

Log in

Removal of heavy metals using Iris species: A potential approach for reclamation of heavy metal-polluted sites and environmental beautification

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Globally, the number of heavy metal (HM)-polluted sites has increased rapidly in recent years, posing a serious threat to agricultural productivity, human health, and environmental safety. Hence, it is necessary to remediate HM-polluted sites to increase cultivatable lands for agricultural productivity, prevent hazardous effects to human health, and promote environmental safety. Removal of HMs using plants (phytoremediation) is a promising method as it is eco-friendly. Recently, ornamental plants have been widely used in phytoremediation programs as they can simultaneously eliminate HMs and are aesthetically pleasing. Among the ornamental plants, Iris species are frequently used; however, their role in HM remediation has not been reviewed yet. Here, the importance of Iris species in the ornamental industry and their different commercial aspects are briefly described. Additionally, the mechanisms of how the plant species absorb and transport the HMs to the above-ground tissues and tolerate HM stress are highlighted. The variation in HM remediation efficiency depending on the plant species, HM type and concentration, use of certain supplements, and experimental conditions are also discussed. Iris species are able to remove other hazards as well, such as pesticides, pharmaceutical compounds, and industrial wastes, from polluted soils or waste-water. Owing to the valuable information presented in this review, we expect more applications of the species in reclaiming polluted sites and beautifying the environment. 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  • Ai TN, Naing AH, Yun BW, Lim SH, Kim CK (2018) Overexpression of RsMYB1 Enhances Anthocyanin Accumulation and Heavy Metal Stress Tolerance in Transgenic Petunia. Front Plant Sci 9:1388

    Article  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals-concepts and applications. Chemosphere 91:869–881

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Ilahi I (2019) Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem 2019:1–14

    Google Scholar 

  • Amin HIM, Hussain FHS, Najmaldin SK, Thu ZM, Ibrahim MF, Gilardoni G, Vidari G (2021) Phytochemistry and Biological Activities of Iris Species Growing in Iraqi Kurdistan and Phenolic Constituents of the Traditional Plant Iris postii. Molecules 26:264

    Article  CAS  Google Scholar 

  • Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (2017) Phytoremediation: Management of environmental contaminants, vol 5. Springer, Cham

    Book  Google Scholar 

  • Asgari LB, Khadem MN, Maghsoodi MR, Ghorbanpour M, Kariman K (2019) Phytoextraction of heavy metals from contaminated soil, water and atmosphere using ornamental plants: mechanisms and efficiency improvement strategies. Environ Sci Pollut Res 26:8468–8484

    Article  Google Scholar 

  • Austin C (2005) Irises. A Gardener’s Encyclopedia; Timber Press: Portland, OR, USA

  • Baker AJM (1981) Accumulators and excluder-strategies in the response of plants to heavy metals. J Plant Nutrition 3:643–654

    Article  CAS  Google Scholar 

  • Banuelos GS (2006) Phyto-products may be essential for sustainability and implementation of phytoremediation. Environ Pollut 144:19–23

    Article  CAS  Google Scholar 

  • Benoit-Vical F, Imbert C, Bonfils JP, Sauvaire Y (2003) Antiplasmodial and antifungal activities of iridal, a plant triterpenoid. Phytochemistry 62:747–751

    Article  CAS  Google Scholar 

  • Bensari S, Ouelbani R, Yimaz MA, Bensouici C, Gokalp E, Khelifi D (2020) Phytochemical profiles of Iris unguicularis Poir. with antioxidant, antibacterial, and anti-Alzheimer activities. Acta Nat Sci 7:74–87

    CAS  Google Scholar 

  • Berti WR, Cunningham SD (2000) Phytostabilization of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean-up the environment. Wiley, New York, pp 71–88

    Google Scholar 

  • Bragato C, Brix H, Malagoli M (2006) Accumulation of nutrients and heavy metals in Phragmites australis (Cav.) Trin. Ex. Steudel and Bolboschoenus maritimus (L.) Palla in a constructed wetland of the Venice lagoon watershed. Environ Poll 144:183–191

    Article  Google Scholar 

  • Branković S, Glišić R, Topuzović M, Marin M (2015) Uptake of seven metals by two macrophytes species: potential for phytoaccumulation and phytoremediation. Chem Ecol 31:583–593

    Article  Google Scholar 

  • Burges A, Alkorta I, Epelde L, Garbisu C (2018) From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites. Int J Phytoremediat 20:384–397

    Article  CAS  Google Scholar 

  • Caldelas C, Araus JL, Febrero A, Bort J (2012) Accumulation and toxic effects of chromium and zinc in Iris pseudacorus L. Acta Physiol Plant 34:1217–1228

    Article  CAS  Google Scholar 

  • Campos V, Souto LS, Medeiros TAM, Toledo SP, Sayeg IJ, Ramos RL, Shinzato MC (2014) Assessment of the removal capacity, tolerance, and anatomical adaptation of different plant species to benzene contamination. Water Air Soil Poll 225

  • Cay S (2016) Enhancement of cadmium uptake by Amaranthus caudatus, an ornamental plant, using tea saponin. Environ Monit Assess 188:320

    Article  Google Scholar 

  • Chen Y, Bracy RP, Owings AD, Merhaut DJ (2009) Nitrogen and phos phorous removal by ornamental and wetland plants in a green house recirculation research system. Hort Science 44:1704–1711

    Google Scholar 

  • Cheng L, Wang Y, Cai Z, Liu J, Yu B, Zhou Q (2017) Phytoremediation of petroleum hydrocarbon-contaminated saline-alkali soil by wild ornamental Iridaceae species. Int J Phytorem 19(3):300–308

    Article  CAS  Google Scholar 

  • Crisan I, Vidican R, Olar L, Stoian V, Morea A, Ștefan R (2019) Screening for changes on Iris germanica L rhizomes following inoculation with arbuscular mycorrhiza using Fourier transform infrared spectroscopy. Agronomy 9:815

    Article  CAS  Google Scholar 

  • Crişan I, Cantor M (2016) New perspectives on medicinal properties and uses of Iris sp. Hop Med Plants 24:24–36

    Google Scholar 

  • da Silva Cruz FV, Gomes MP, Bicalho EM, Della Torre F, Garcia QS (2020) Does Samarco’s spilled mud impair the growth of native trees of the Atlantic Rainforest? Ecotoxicol Environ Saf 189:110021

  • DalCorso G, Fasani E, Manara A, Visioli G, Furini A (2019) Heavy metal pollutions: state of the art and innovation in phytoremediation. Int J Mol Sci 20:3412

    Article  CAS  Google Scholar 

  • Demi̇r S, Çelikel FG (2018) A study on plant height control of Iris flowers. Agrofor 3:131–141

    Google Scholar 

  • Duruibe J, Ogwuegbu M, Egwurugwu J (2007) Heavy metal pollution and human biotoxic effects. Int J Phy Sci 2:112–118

    Google Scholar 

  • EEA (2020) Soil contamination widespread in Europe. https://www.eea.europa.eu/highlights/soil-contamination-widespread-in-europe. Accessed on 26/09/2020

  • Erken K, Gülbağ F, Erken S, Kaya E (2013) The adaptation of Turkish Iris L. species of the cultural conditions. Acta Hortic 1002:153–166

    Article  Google Scholar 

  • Fan L, Gao Y, Hasenstein KH, Wang L (2021) ‘Flower Angel’: A New Iris sanguinea Cultivar. HortScience 56:617–618

    Article  Google Scholar 

  • Fontes RLS, Cox FR (1998) Zinc toxicity in soybean grown at high iron concentration in nutrient solution. J Plant Nutrition 21:1723–1730

    Article  CAS  Google Scholar 

  • Fritioff A, Gregor M (2003) Aquatic and terrestrial plant species with potential to remove heavy metals from stromwater. Int J Phytor 5:211–224

    Article  CAS  Google Scholar 

  • Gao J, Zhang J, Ma N, Wang W, Ma C, Zhang R (2015) Cadmium removal capability and growth characteristics of Iris sibirica in subsurface vertical flow constructed wetlands. Ecol Eng 84:443–450

    Article  Google Scholar 

  • Gerhardt KE, Gerwing PD, Greenberg BM (2017) Opinion: taking phytoremediation from proven technology to accepted practice. Plant Sci 256:170–185

    Article  CAS  Google Scholar 

  • Ginn BR, Szymanowski JS, Fein JB (2008) Metal and proton binding onto the roots of Fescue rubra. Chem Geol 253:130–135

    Article  CAS  Google Scholar 

  • Goldblatt P, Manning JC (2008) The Iris family: Natural History and Classification. Timber Press, Portland

    Google Scholar 

  • Gomes MP, Marques RZ, Nascentes CC, Scotti MR (2020) Synergistic effects between arbuscular mycorrhizal fungi and rhizobium isolated from As-contaminated soils on the As-phytoremediation capacity of the tropical woody legume Anadenanthera peregrina. Int J Phytoremediation 22:1362–1371

    Article  CAS  Google Scholar 

  • Gong JM, Lee DA, Schroeder JI (2003) Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. Proc Natl Acad Sci U S A 100:10118–10123

    Article  CAS  Google Scholar 

  • Gu C, Liu L, Deng Y, Zhu X, Huang S, Lu X (2015) The heterologous expression of the Iris lactea var. chinensis type 2 metallothionein IlMT2b gene enhances copper tolerance in Arabidopsis thaliana. B Environ Contam Tox 94:247–253

    Article  CAS  Google Scholar 

  • Guo Q, Meng L, Zhang YN, Mao PC, Tian XX, Li SS, Zhang L (2017) Antioxidative systems, metal ion homeostasis and cadmium distribution in Iris lactea exposed to cadmium stress. Ecotoxicol Environ Saf 139:50–55

    Article  CAS  Google Scholar 

  • Han YL, Yuan HY, Huang SZ, Guo Z, Xia BG, Gu JG (2007) Cadmium tolerance and accumulation by two species of Iris. Ecotoxicology 16:557–563

    Article  CAS  Google Scholar 

  • Han YL, Huang SZ, Gu JG, Qiu S, Chen JM (2008) Tolerance and accumulation of lead by species of Iris L. Ecotoxicology 17:853–859

    Article  CAS  Google Scholar 

  • Han YL, Huang SZ, Yuan HY, Zhao JZ, Gu JG (2013) Organic acids on the growth, anatomical structure, biochemical parameters and heavy metal accumulation of Iris lactea var. chinensis seedling growing in Pb mine tailings. Ecotoxicology 22:1033–1042

    Article  CAS  Google Scholar 

  • Han Y, Zhang L, Yang Y, Yuan H, Zhao J, Gu J, Huang S (2016) Pb uptake and toxicity to Iris halophila tested on Pb mine tailing materials. Environ Pollut 214:510–516

    Article  CAS  Google Scholar 

  • Han Y, Chen G, Chen Y, Shen Z (2015) Cadmium toxicity and alleviating effects of exogenous salicylic acid in Iris hexagona. Bull Environ Contam Toxicol 95:796–802

    Article  CAS  Google Scholar 

  • He Z, Shentu J, Yang X, Baligar VC, Zhang T, Stoffella PJ (2015) Heavy metal contamination of soils: sources, indicators and assessment. J Environ Indic 9:17–18

    Google Scholar 

  • Hogland W, Burlakovs J, Mutafela R, Jani Y (2019) From glass dump to phytoremediation park. IOP Conf Ser Earth Environ Sci 390

  • Hou X, Teng W, Hu Y, Yang Z, Li C, Scullion J, Guo Q, Zheng R (2020) Potential phytoremediation of soil cadmium and zinc by diverse ornamental and energy grasses. BioResources 15:616–640

    Article  CAS  Google Scholar 

  • Hu S, Hu B, Chen Z, Vosatka M, Vymazal J (2020) Antioxidant response in arbuscular mycorrhizal fungi inoculated wetland plant under Cr stress. Environ Res 191:110203

    Article  CAS  Google Scholar 

  • Huang SZ, Han YL, Xie MY (2003) The studies and exploitation of Chinese ornamental Iris resources. Chin Wild Plant Res 22:4–7 (in Chinese)

    Google Scholar 

  • Hwang JI, Li Z, Andreacchio N, Ordonez Hinz F, Wilson PC (2020) Potential use of floating treatment wetlands established with Canna flaccida for removing organic contaminants from surface water. Int J Phytorem 22:1304–1312

    Article  CAS  Google Scholar 

  • Jacob JM, Karthik C, Saratale RG, Kumar SS, Prabakar D, Kadirvelu K et al (2018a) Biological approaches to tackle heavy metal pollution: a survey of literature. J Environ Manage 217:56–70

    Article  CAS  Google Scholar 

  • Jacob JM, Karthik C, Saratale RG, Kumar SS, Prabakar D, Kadirvelu K, Pugazhendhi A (2018b) Biological approaches to tackle heavy metal pollution: a survey of literature. J Environ Manage 217:56–70

    Article  CAS  Google Scholar 

  • Kandemir N, Khan G, Celik A (2019) Comparative morphological and anatomical and ecological studies on two varieties of Iris unguicularis subsp. carica (Iridaceae) in Turkey. Planta Daninha 37:1–12

    Article  Google Scholar 

  • Kandemir N, Engin A (1998) An investigation morphologic, anatomic and ecologic on Iris nectarifera Güner (Iridaceae). 14th National Biology Cong., Samsun. 283–299

  • Kassak P (2012) Screening of the presence of Irone (C14H22-0) in the rootstocks of the chosen Iris species. ARSA 3–7:1487–1499

    Google Scholar 

  • Kaushal J, Mahajan P, Kaur N (2021) A review on application of phytoremediation technique for eradication of synthetic dyes by using ornamental plants. Environ Sci Pollut Res 28:67970–67989

    Article  CAS  Google Scholar 

  • Kukula-Koch W, Sieniawska E, Widelski J, Urjin O, Głowniak P, Skalicka-Woźniak K (2015) Major secondary metabolites of Iris spp. Phytochem Rev 14:51–80

    Article  CAS  Google Scholar 

  • Lewis S, Donkin ME, Depledge MH (2001) Hsp70 expression in Enteromorpha intestinalis (Chlorophyta) exposed to environmental stressors. Aquat Toxicol 51:277–291

    Article  CAS  Google Scholar 

  • Lim TK (2016) Edible Medicinal and Non-Medicinal Plants: Modified Stems, Roots, Bulbs; Springer International Publishing: Cham, Switzerland, 11:1–392

  • Liu Q, Zheng L, He F, Zhao FJ, Shen Z, Zheng L (2015) Transcriptional and physiological analyses identify a regulatory role for hydrogen peroxide in the lignin biosynthesis of copper-stressed rice roots. Plant Soil 387:323–336

    Article  CAS  Google Scholar 

  • Liu Q, Luo L, Wang X, Shen Z, Zheng L (2017) Comprehensive analysis of rice laccase gene (OsLAC) family and ectopic expression of OsLAC10 enhances tolerance to copper stress in Arabidopsis. Int J Mol Sci 18:209

    Article  Google Scholar 

  • Liu J, Xin X, Zhou Q (2018a) Phytoremediation of contaminated soils using ornamental plants. Environ Rev 26:43–54

    Article  CAS  Google Scholar 

  • Liu R, Gao Y, Ruan L, Fan Z, Li C (2018b) Variation of flower opening and closing times in hybrids of evening flowering species Iris dichotoma Pall and daytime flowering species Iris domestica (L.) Goldblatt & Mabb. Plant Breed 137:920–927

    Article  Google Scholar 

  • Liu Q, Zhang Y, Wang Y, Wang W, Gu C, Huang S, Yuan H, Dhankher OP (2020) Quantitative proteomic analysis reveals complex regulatory and metabolic response of Iris lactea Pall. Var. chinensis to cadmium toxicity. J Hazard Mater 400:123165

    Article  CAS  Google Scholar 

  • Lu W, Li Z, Shao Z, Zheng C, Zou H, Zhang J (2020) Lead tolerance and enrichment characteristics of several ornamentals under hydroponic culture. Bull Environ Contam Toxicol 105:166–172

    Article  CAS  Google Scholar 

  • Lv T, Zhang Y, Zhang L, Carvalho PN, Arias CA, Brix H (2016) Removal of the pesticides imazalil and tebuconazole in saturated constructed wetland mesocosms. Water Res 91:126–136

    Article  CAS  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579

    Article  CAS  Google Scholar 

  • Ma H, Gao F, Zhang X, Cui B, Liu Y, Li Z (2020) Formation of iron plaque on roots of Iris pseudacorus and its consequence for cadmium immobilization is impacted by zinc concentration. Ecotoxicol Environ Saf 193:110306

    Article  CAS  Google Scholar 

  • Machado AI, Fragoso R, Dordio AV, Duarte E (2020) Performance of Iris pseudacorus and Typha domingensis for furosemide removal in a hydroponic system. Int J Phytorem 22:863–871

    Article  CAS  Google Scholar 

  • Mackuľak T, Mosný M, Škubák J, Grabic R, Birošová L (2015) Fate of psychoactive compounds in wastewater treatment plant and the possibility of their degradation using aquatic plants. Environ Toxicol Pharmacol 39:969–973

    Article  Google Scholar 

  • Marques AP, Rangel AO, Castro PM (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Env Sci Technol 39:622–654

    Article  CAS  Google Scholar 

  • Masson J, Liberto E, Brevard H, Bicchi C, Rubiolo P (2014) A metabolomic approach to quality determination and authentication of raw plant material in the fragrance field. Iris rhizomes: A case study. J Chromatogr 1368:143–154

    Article  CAS  Google Scholar 

  • Mathew B (1989) The Iris. Portland, Ore. United Kingdom: Timber Press

  • McKnight AM, Gannon TW, Yelverton F (2022) Phytoremediation potential of three terrestrial plant species for removal of atrazine, azoxystrobin, and imidacloprid. Int J Phytorem 24(2):187–195

    Article  CAS  Google Scholar 

  • Minnikova TV, Denisova TV, Mandzhieva SS, Kolesnikov SI, Minkina TM, Chaplygin VA, Burachevskaya MV, Sushkova SN, Bauer TV (2017) Assessing the effect of heavy metals from the Novocherkassk power station emissions on the biological activity of soils in the adjacent areas. J Geochem Explor 174:70–78

    Article  CAS  Google Scholar 

  • Mykhailenko O (2018) Composition of volatile oil of Iris pallida Lam from Ukraine. Turk J Pharm Sci 15(1):85–90

    CAS  Google Scholar 

  • Naing AH, Campol JR, Chung MY, Kim CK (2022) Overexpression of acdS in Petunia hybrida improved flower longevity and cadmium-stress tolerance by reducing ethylene production in floral and vegetative tissues. Cells 11:3197

    Article  CAS  Google Scholar 

  • Nazir N (2013) Immunomodulatory activity of isoflavones isolated from Iris kashmiriana: Effect on T-lymphocyte proliferation and cytokine production in Balb/c mice. Biomed Prev Nutr 3:151–157

    Article  Google Scholar 

  • Nuralykyzy B, Wang P, Deng X, An S, Huang Y (2021) Heavy Metal Contents and Assessment of Soil Contamination in Different Land-Use Types in the Qaidam Basin. Sustainability 13:12020

    Article  CAS  Google Scholar 

  • Otte ML, Haarsma MS, Broekman RA, Rozema J (1993) Relation between heavy metal concentration in salt marsh plants and soil. Environ Pollut 82:13–22

    Article  CAS  Google Scholar 

  • Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyperaccumulation metals in plants. Water Air Soil Pollut 184:105–126

    Article  CAS  Google Scholar 

  • Parzych A, Cymer M, Macheta K (2016) Leaves and roots of L. and L. as bioindicators of contamination of bottom sediments by heavy metals. Limnol Rev 16:77–83

    Article  CAS  Google Scholar 

  • Pignatti A, Ubrizsky Savoia A, Varoli Piazza S (2000) Iris: a significant element of the Mediterranean landscape. Ann Bot LVIII 161–166

  • Rocha CS, Rocha DC, Kochi LY, Carneiro DN, Dos Reis MV, Gomes MP (2022) Phytoremediation by ornamental plants: a beautiful and ecological alternative. Environ Sci Pollut Res 29:3336–3354

    Article  Google Scholar 

  • Roger B, Jeannot V, Fernandez X, Cerantola S, Chahboun J (2012) Characterisation and quantification of flavonoids in Iris germanica L. and Iris pallida Lam. resinoids from Morocco. Phytochem Anal 23:450–455

    Article  CAS  Google Scholar 

  • Roguz K, Gallagher MK, Senden E, Bar-Lev Y, Lebel M, Heliczer R, Sapir Y (2020) All the Colors of the Rainbow: Diversification of Flower Color and Intraspecific Color Variation in the Genus Iris. Front Plant Sci 11:1519

    Article  Google Scholar 

  • Royal Botanic, Gardens K (2020) World checklist of selected plant families. Peradeniya: Royal Botanic

  • Sahi SV, Bryant NL, Sharma NC, Sinch SR (2002) Characterization of a lead hyperaccumulator shrub Sesbania drummondii. Environ Sci Technol 36:4676–4680

    Article  Google Scholar 

  • Sapir Y, Shmida A (2002) Species concepts and ecogeographical divergence of Oncocyclus Irises. Isr J Plant Sci 50:S119–S127

    Article  Google Scholar 

  • Sapir Y, Shmida A, Fragman O, Comes HP (2002) Morphological variation of the Oncocyclus Irises (Iris: Iridaceae) in the southern Levant. Botan J Linn Soc 139:369–382

    Article  Google Scholar 

  • Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, Matloob A, Rehim A, Hussain S (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721

    Article  CAS  Google Scholar 

  • Sas-Nowosielska A, Kucharski R, Małkowski E, Pogrzeba M, Kuperberg JM, Kryński K (2004) Phytoextraction crop disposal—an unsolved problem. Environ Pollut 128:373–379

    Article  CAS  Google Scholar 

  • Shabnam N, Ahn Y, Maksachev A, Lee JH, Huang CP, Kim H (2019) Application of Red-Mud Based Ceramic Media for Phosphate Uptake from Water and Evaluation of Their Effects on Growth of Iris Latifolia Seedling. Sci Total Environ 688:724–731

    Article  CAS  Google Scholar 

  • Shahid M, Arshad M, Kaemmerer M, Pinelli E, Probst A, Baque D, Pradere P, Dumat C (2012) Long-term field metal extraction by Pelargonium: phytoextraction efficiency in relation to plant maturity. Int J Phytorem 14:493–505

    Article  CAS  Google Scholar 

  • Shikha S, Gauba P (2016) Phytoremediation of pharmaceutical products. Innovare J Life Sci 4:14–17

    Google Scholar 

  • Shin JS, Hong SW, Lee JG, Lee YM, Kim DW, Kim JE, Jung DJ, An SK, Hong NJ, Kim D, Jin DH (2011) An ethanol extract of Iris nertschinskia induces p53-dependent apoptosis in the MCF7 human breast cancer cell line. Int J Mol Med 27:401–405

    Google Scholar 

  • Shuping LS, Snyman RG (2010) Accumulation and distribution of metals in Bolboschoenus maritimus (Cyperaceae), from a South Africa River. Water Air Soil Poll 216:319–328

    Article  Google Scholar 

  • Singab ANB, Ayoub IM, El-Shazly M, Korinek M, Wu TY, Cheng YB, Chang FR, Wu YC (2016) Shedding the light on Iridaceae: ethnobotany, phytochemistry and biological activity. Ind Crop Prod 92:308–335

    Article  CAS  Google Scholar 

  • Song X, Zhang C, Chen W, Zhu Y, Wang Y (2020) Growth responses and physiological and biochemical changes in five ornamental plants grown in urban lead-contaminated soils. Plant-Environ Interact 1:29–47

    Article  Google Scholar 

  • Sun R, Jin C, Zhou Q (2010) Characteristics of cadmium accumulation and tolerance in Rorippa globosa (Turcz.) Thell., a species with some characteristics of cadmium hyperaccumulation. Plant Growth Regul 61(1):67–74

    Article  CAS  Google Scholar 

  • Sun Y, Zhou Q, Xu Y, Wang L, Liang X (2011) Phytoremediation for co-contaminated soils of benzo[a]pyrene (B[a]P) and heavy metals using ornamental plant Tagetes patula. J Hazard Mater 186(2–3):2075–2082

    Article  CAS  Google Scholar 

  • Sun L, Zhang M, Liu X, Mao Q, Shi C, Kochian LV, Liao H (2020) Aluminium is essential for root growth and development of tea plants (Camellia sinensis). J Integr Plant Biol 62:984–997

    Article  CAS  Google Scholar 

  • Tangahu BV, Ningsih DA, Kurniawan SB, Imron MF (2019) Study of BOD and COD Removal in Batik Wastewater using Scirpus grossus and Iris pseudacorus with Intermittent Exposure System. J Ecol Eng 20(5):130–134

    Article  Google Scholar 

  • Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb and Hg) uptake by plants through phytoremediation. Int J Chem Eng

  • Tejeda A, Zurita F (2020) Capacity of Two Ornamental Species (Iris sibirica and Zantedeschia aethiopica) to Take up, Translocate, and Accumulate Carbamazepine under Hydroponic Conditions. Water 12:1272

    Article  CAS  Google Scholar 

  • Tejeda A, Torres-Bojorges ÁX, Zurita F (2017) Carbamazepine removal in three pilot-scale hybrid wetlands planted with ornamental species. Ecol Eng 98:410–417

    Article  Google Scholar 

  • Toan NS, Phuong NT, Thuy PT, Dong PD, Gia NT, Thu TT, Khoo KS, Show PL (2022) Effects of burning rice straw residue on-field on soil organic carbon pools: Environment-friendly approach from a conventional rice paddy in central Viet Nam. Chemosphere 294:133596

    Article  CAS  Google Scholar 

  • Usman AR, Lee SS, Awad YM, Lim KJ, Yang JE, Ok YS (2012) Soil pollution assessment and identification of hyperaccumulating plants in chromated copper arsenate (CCA) contaminated sites, Korea. Chemosphere 87:872–878

    Article  CAS  Google Scholar 

  • Vitrac X, Larronde F, Krisa S, Decendit A, Deffieux G, Mérillon JM (2000) Sugar sensing and Ca2+ calmodulin requirement in Vitis vinifera cells producing anthocyanins. Phytochemistry 53:659–665

    Article  CAS  Google Scholar 

  • Wan S, Pang J, Li Y, Li Y, Zhu J, Wang J, Chang M, Wang L (2021) Hydroponic Phytoremediation of Ni Co, and Pb by Iris sibirica L. Sustainability 13:9400

    Article  CAS  Google Scholar 

  • Wang H, Cui Y, Zhao C (2010) Flavonoids of the genus Iris (Iridaceae). Mini Rev Med Chem 10:643–661

    Article  Google Scholar 

  • Wang Y, Lv N, Mao X, Yan Z, Wang J, Tan W, Li X, Liu H, Wang L, Xi B (2018) Cadmium tolerance and accumulation characteristics of wetland emergent plants under hydroponic conditions. RSC Adv 58:33383–33390

    Article  Google Scholar 

  • Warne MS, Heemsbergen D, Stevens D, McLaughlin M, Cozens G, Whatmuff M, Broos K, Barry G, Bell M, Nash D, Pritchard D (2008) Modeling the toxicity of copper and zinc salts to wheat in 14 soils. Environ Toxicol Chem: Int J 27:786–792

    Article  Google Scholar 

  • Wężowicz K, Turnau K, Anielska T, Zhebrak I, Gołuszka K, Błaszkowski J, Rozpądek P (2015) Metal toxicity differently affects the Iris pseudacorus-arbuscular mycorrhiza fungi symbiosis in terrestrial and semi-aquatic habitats. Environ Sci Pollut Res 22:19400–19407

    Article  Google Scholar 

  • Wilson CA (2011) Subgeneric classification in Iris re-examined using chloroplast sequence data. Taxon 60:27–35

    Article  Google Scholar 

  • Wollenweber E, Stevens JF, Klimo K, Knauft J, Frank N, Gerhäuser C (2003) Cancer chemopreventive in vitro activities of isoflavones isolated from Iris germanica. Planta Med 69:15–20

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Int Sch Res Not 2011

  • Xie G, Qin X, Chen Y, Wen R, Wu S, Qin M (2017) Alkaloids from the Rhizomes of Iris germanica. Chem Nat Compd 53:196–198

    Article  CAS  Google Scholar 

  • Xu B, Yu S, Ding J, Wu S, Ma J (2015) Metal-Dependent Root Iron Plaque Effects on Distribution and Translocation of Chromium and Nickel in Yellow Flag (Iris pseudacorus L.). Int J Phytoremediation 17:175–181

    Article  CAS  Google Scholar 

  • Yan A, Wang Y, Tan SN, Mohd Yusof ML, Ghosh S, Chen Z (2020) Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front Plant Sci 30(11):359

    Article  Google Scholar 

  • Yang Z, Shi Y, Gao Y, Zhang Q (2013) Interspecific cross-breeding between Iris domestica and I. dichotoma. Acta Hortic 1000:407–413

    Article  Google Scholar 

  • Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464

    Article  CAS  Google Scholar 

  • Yuan HY, Guo Z, Huang SZ (2011) Effects of Pb on growth, heavy metals accumulation and chloroplast ultrastructure of Iris lactea var. chinensis. Acta Ecol Sin (in China) 31:3350–3357

    CAS  Google Scholar 

  • Yuan HY, Zhang YX, Huang SZ, Yang YH, Gu CS (2015) Effects of exogenous glutathione and cysteine on growth, lead accumulation, and tolerance of Iris lactea var. chinensis. Environ Sci Pollut Res 22:2808–2816

    Article  CAS  Google Scholar 

  • Yuan H, Guo Z, Liu Q, Gu C, Yang Y, Zhang Y, Dhankher OP, Huang S (2018) Exogenous glutathione increased lead uptake and accumulation in Irislactea var. chinensis exposed to excess lead. Int J Phytorem 20:1136–1143

    Article  CAS  Google Scholar 

  • Zhang XB, Peng LIU, Yang YS, Chen WR (2007) Phytoremediation of urban wastewater by model wetlands with ornamental hydrophytes. J Environ Sci 19:902–909

    Article  CAS  Google Scholar 

  • Zhang X, Zha L, Jiang P, Wang X, Lu K, He S, Huang J, Zhou W (2019) Comparative study on nitrogen removal and functional genes response between surface flow constructed wetland and floating treatment wetland planted with Iris pseudacorus. Environ Sci Pollut Res 26:23696–23706

    Article  CAS  Google Scholar 

  • Zhang Y, Li C, Ji X, Yun C, Wang M, Luo X (2020) The knowledge domain and emerging trends in phytoremediation: a scientometric analysis with CiteSpace. Environ Sci Pollut Res 27:15515–15536

    Article  Google Scholar 

  • Zhao L, Guo W, Li Q, Li H, Zhao W, Cao X (2017) Capabilities of Seven Species of Aquatic Macrophytes for Phytoremediation of Pentachlorophenol Contaminated Sediment. InIOP Conference Series: Earth and Environmental Science 2017 (Vol. 51, No. 1, p. 012030). IOP Publishing

  • Zhong S, Shi J, Xu J (2010) Influence of iron plaque on accumulation of lead by yellow flag (Iris pseudacorus L.) grown in artificial Pb-contaminated soil. J Soils Sediments 10:964–970

    Article  CAS  Google Scholar 

  • Zhou YQ, Huang SZ, Yu SL, Gu JG, Zhao JZ, Han YL, Fu JJ (2010) The physiological response and sub-cellular localization of lead and cadmium in Iris pseudacorus L. Ecotoxicology 19:69–76

    Article  CAS  Google Scholar 

  • Zitka O, Krystofova O, Hynek D, Sobrova P, Kaiser J, Sochor J, Zehnalek J, Babula P, Ferrol N, Kizek R, Adam V (2013) Metal Transporters in Plants. In: Gupta D, Corpas F, Palma J (eds) Heavy Metal Stress in Plants. Springer, Berlin, Heidelberg, pp 19–41

    Chapter  Google Scholar 

Download references

Funding

This work was supported by the National Institute of Ecology, Republic of Korea (NIE-B-2023–15).

Author information

Authors and Affiliations

Authors

Contributions

AHN constructed the review. DYP collected the literature and helped in the drafting of the manuscript. AHN wrote and revised the manuscript. HCP and CKK advised and supervised the project. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chang Kil Kim.

Ethics declarations

Ethical approval

Not applicable.

Constant to participate

Not applicable.

Constant to publish

Not applicable.

Competing interests

The authors report no conflicts of interest.

Additional information

Responsible Editor: Elena Maestri

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naing, A.H., Park, D.Y., Park, H.C. et al. Removal of heavy metals using Iris species: A potential approach for reclamation of heavy metal-polluted sites and environmental beautification. Environ Sci Pollut Res 30, 78004–78016 (2023). https://doi.org/10.1007/s11356-023-27732-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-27732-5

Keywords

Navigation