Skip to main content
Log in

Theoretical Possibilities for Flat Band Superconductivity

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

One novel arena for designing superconductors with high TC is the flat band system. A basic idea is that flat bands, arising from quantum mechanical interference, give unique opportunities for enhancing TC with (i) many pair-scattering channels between the dispersive and flat bands, and (ii) an even more interesting situation when the flat band is topological and highly entangled. Here, we compare two routes, which comprise a multi-band system with a flat band coexisting with dispersive ones, and a one-band case with a portion of the band being flat. Superconductivity can be induced in both cases when the flat band or portion is “incipient” (close to, but away from, the Fermi energy). Differences are, for the multi-band case, we can exploit large entanglement associated with topological states, while for the one-band case a transition between different (d and p) wave pairings can arise. These hint at some future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sakakibara, H., et al.: Phys. Rev. Lett. 105, 057003 (2010)

    ADS  Google Scholar 

  2. Sakakibara, H., et al.: Phys. Rev. B 85, 064501 (2012)

    ADS  Google Scholar 

  3. Sakakibara, H., et al.: Phys. Rev. Lett. 86, 134520 (2012)

    Google Scholar 

  4. Sakakibara, H., et al.: Phys. Rev. Lett. 89, 224505 (2014)

    Google Scholar 

  5. Kobayashi, K., Okumura, M., Yamada, S., Machida, M., Aoki, H.: Phys. Rev. B 94, 214501 (2016)

    ADS  Google Scholar 

  6. Sayyad, S., Huang, E.W., Kitatani, M., Vaezi, M.-S., Nussinov, Z., Vaezi, A., Aoki, H.: Phys. Rev. B 101, 014501 (2020)

    ADS  Google Scholar 

  7. Kuroki, K., Higashida, T., Arita, R.: Phys. Rev. B 72, 212509 (2005)

    ADS  Google Scholar 

  8. Kobayashi, K., Okumura, M., Yamada, S., Machida, M., Aoki, H.: unpublished

  9. Noack, R.M., White, S.R., Scalapino, D.J.: Phys. Rev. Lett. 73, 882 (1994). In the Tomonaga-Luttinger theory, a pairing is called d-wave-like when the pair wave function has opposite signs between the bonding and antibonding bands, as in L. Balents and M.P.A. Fisher, Phys. Rev. B 53, 12133 (1996)

    ADS  Google Scholar 

  10. Kuroki, K., Kimura, T., Aoki, H.: Phys. Rev. B 54, R15641 (1996)

    ADS  Google Scholar 

  11. Matsumoto, K., Ogura, D., Kuroki, K.: Phys. Rev. B 97, 014516 (2018)

    ADS  Google Scholar 

  12. Misumi, T., Aoki, H.: Phys. Rev. B 96, 155137 (2017)

    ADS  Google Scholar 

  13. Kikuchi, H., et al.: Phys. Rev. Lett. 94, 227201 (2005)

    ADS  Google Scholar 

  14. Jeschke, H., et al.: Phys. Rev. Lett. 106, 217201 (2011)

    ADS  Google Scholar 

  15. Ogura, D., Aoki, H., Kuroki, K.: Phys. Rev. B 96, 184513 (2017)

    Google Scholar 

  16. Huang, E.W., Vaezi, M.-S., Nussinov, Z., Vaezi, A.: Phys. Rev. B 99, 235128 (2019)

    ADS  Google Scholar 

  17. Kitatani, M., Tsuji, N., Aoki, H.: Phys. Rev. B 92, 085104 (2015)

    ADS  Google Scholar 

  18. Hosono, H., Kuroki, K.: Phys. C 514, 399 (2015)

    ADS  Google Scholar 

  19. Monthoux, P., Lonzarich, G.G.: Phys. Rev. B 59, 14598 (1999)

    ADS  Google Scholar 

  20. Arita, R., Kuroki, K., Aoki, H.: Phys. Rev. B 60, 14585 (1999)

    ADS  Google Scholar 

  21. Kitatani, M., Schäfer, T., Aoki, H., Held, K.: Phys. Rev. B 99(R), 041115 (2019)

    ADS  Google Scholar 

  22. Khodel, V.A., Shaginyan, V.R.: JETP Lett. 51, 553 (1990)

    ADS  Google Scholar 

  23. Murakami, Y., Oka, T., Aoki, H.: Phys. Rev. B 88, 224404 (2013)

    ADS  Google Scholar 

  24. Peotta, S., Törmä, P.: Nat. Commun. 6, 8944 (2015)

    ADS  Google Scholar 

  25. Tovmasyan, M., et al.: Phys. Rev. B 94, 245149 (2016)

    ADS  Google Scholar 

  26. Tovmasyan, M., et al.: Phys. Rev. B 98, 134513 (2018)

    ADS  Google Scholar 

  27. Julku, A., et al.: Phys. Rev. B 101(R), 060505 (2020)

    ADS  Google Scholar 

  28. Volovik, G.E.: JETP Lett. 59, 830 (1994)

    ADS  Google Scholar 

  29. Yudin, D., Hirschmeier, D., Hafermann, H., Eriksson, O., Lichtenstein, A.I., Katsnelson, M.I.: Phys. Rev. Lett. 112, 070403 (2014)

    ADS  Google Scholar 

  30. Liu, C.C., et al.: Phys. Rev. Lett. 121, 217001 (2018)

    ADS  Google Scholar 

  31. Fernandes, F.M., Millis, A.J.: Phys. Rev. Lett. 111, 127001 (2013)

    ADS  Google Scholar 

  32. Ahn, F., et al.: Phys. Rev. B 89, 144513 (2014)

    ADS  Google Scholar 

  33. Cao, Y., Fatemi, V., Fang, S., Watanabe, K., Taniguchi, T., Kaxiras, E., Jarillo-Herrero, P.: Nature 556, 43 (2018)

    ADS  Google Scholar 

  34. Lu, X., et al.: Nature 574, 653 (2019)

    ADS  Google Scholar 

  35. Guinea, F., Walet, N.R.: Proc. Nat. Acad. Sci. 115, 13174 (2018)

    ADS  Google Scholar 

  36. Po, H.C., et al.: Phys. Rev. B 99, 195455 (2019)

    ADS  Google Scholar 

  37. Akashi, R.: Phys. Rev. B 101, 075126 (2020)

    ADS  Google Scholar 

  38. Kuroki, K., Aoki, H.: Phys. Rev. B 42, 2125 (1990)

    ADS  Google Scholar 

  39. Kuroki, K., Aoki, H.: Phys. Rev. Lett. 69, 3820 (1992)

    ADS  Google Scholar 

  40. Kuroki, K., Aoki, H.: Phys. Rev. B 48, 7598 (1993)

    ADS  Google Scholar 

  41. Kuroki, K., Aoki, H.: Phys. Rev. Lett. 72, 2947 (1994)

    ADS  Google Scholar 

  42. Agrestini, S., et al.: J. Phys. A 36, 9133 (2003)

    ADS  Google Scholar 

  43. Tajima, H., et al.: Phys. Rev. B 99, 180503 (2019)

    ADS  Google Scholar 

  44. Bussmann-Holder, A., et al.: Condens. Matter 2, 24 (2017)

    Google Scholar 

  45. Bianconi, A.: J. Supercond. 18, 625 (2005)

    ADS  Google Scholar 

  46. Innocenti, D., et al.: Supercond. Sci. Tech. 24, 015012 (2010)

    ADS  Google Scholar 

  47. Bianconi, A., Jarlborg, T.: EPL (Europhysics Letters) 112, 37001 (2015)

    ADS  Google Scholar 

  48. Jarlborg, T., Bianconi, A.: Sci. Rep. 6, 24816 (2016)

    ADS  Google Scholar 

  49. Mazziotti, M.V., et al.: EPL (Europhysics Letters) 118, 37003 (2017)

    ADS  Google Scholar 

  50. Kagan, M.Y., Bianconi, A.: Condens. Matter 4, 51 (2019)

    Google Scholar 

Download references

Acknowledgements

The author wishes to thank the collaborators of Refs. [5, 6] that are described in the present article.

Funding

The author received support from the ImPACT Program of the Council for Science, Technology and Innovation, Cabinet Office, Government of Japan (Grant No. 2015-PM12-05-01) from JST, JSPS KAKENHI Grant Nos. JP26247057, 17H06138, and CREST “Topology” project from JST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Aoki.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aoki, H. Theoretical Possibilities for Flat Band Superconductivity. J Supercond Nov Magn 33, 2341–2346 (2020). https://doi.org/10.1007/s10948-020-05474-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05474-6

Keywords

Navigation