Skip to main content
Log in

Detection of bloom-forming dinoflagellates Karenia mikimotoi and Prorocentrum donghaiense using qPCR assays

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The dinoflagellates Karenia mikimotoi and Prorocentrum donghaiense are both important causative species of harmful algal blooms (HABs) in the East China Sea. The ichthyotoxic K. mikimotoi, which occasionally leads to large-scale HABs in the East China Sea, is difficult to be discriminated from other morphologically similar species in the family Kareniaceae by light microscope observation. To improve the accuracy and efficiency in detection of K. mikimotoi, a real-time quantitative PCR (qPCR) assay was developed in this study. The qPCR assay has high specificity and sensitivity, which allows the detection of K. mikimotoi at the lower detection limit of one cell. The qPCR assay target K. mikimotoi, together with another qPCR assay previously developed for P. donghaiense, was applied to study a bloom of dinoflagellates in the coastal waters of Fujian province from April 25 to June 11 in 2019. Cells of K. mikimotoi were detected in about half of the samples, and the maximum abundance was lower than 30 cells L−1. Abundance of P. donghaiense cells (maximum abundance above 106 cells L−1) were determined using both qPCR assay and light microscope cell counting, and the results of the two methods were consistent with each other. The qPCR assays of the blooming dinoflagellates offer reliable and accurate approaches for the detection of HABs species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Adolf JE, Bachvaroff TR, Deeds JR, Place AR (2015) Ichthyotoxic Karlodinium veneficum (Ballantine) J Larsen in the upper Swan River Estuary (Western Australia): Ecological conditions leading to a fish kill. Harmful Algae 48:83–93

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Kandari MA, Highfield AC, Hall MJ, Hayes P, Schroeder DC (2011) Molecular tools separate harmful algal bloom species, Karenia mikimotoi, from different geographical regions into distinct sub-groups. Harmful Algae 10:636–643

    Article  Google Scholar 

  • Anderson DM, Cembella AD, Hallegraeff GM (2012) Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Annu Rev Mar Sci 4:143–176

    Article  Google Scholar 

  • Aoki K, Kameda T, Yamatogi T, Ishida N, Hirae S, Kawaguchi M, Syutou T (2017) Spatio-temporal variations in bloom of the red-tide dinoflagellate Karenia mikimotoi in Imari Bay, Japan, in 2014: factors controlling horizontal and vertical distribution. Mar Pollut Bull 124:130–138

    Article  CAS  PubMed  Google Scholar 

  • Aoki K, Kuroda H, Setou T, Okazaki M, Yamatogi T, Hirae S, Ishida N, Yoshida K, Mitoya Y (2019) Exceptional red-tide of fish-killing dinoflagellate Karenia mikimotoi promoted by typhoon-induced upwelling. Estuar Coast Shelf Sci 219:14–23

    Article  Google Scholar 

  • Barkallah M, Elleuch J, Smith KF, Chaari S, Neila IB, Fendri I, Michaud P, Abdelkafi S (2020) Development and application of a real-time PCR assay for the sensitive detection of diarrheic toxin producer Prorocentrum lima. J Microbiol Meth 178:106081

    Article  CAS  Google Scholar 

  • Barnes MK, Tilstone GH, Smyth TJ, Widdicombe CE, Gloël J, Robinson C, Kaiser J, Suggett DJ (2015) Drivers and effects of Karenia mikimotoi blooms in the western English Channel. Prog Oceanogr 137:456–469

    Article  Google Scholar 

  • Bergholtz T, Daugbjerg N, Moestrup Ø, Fernández-Tejedor M (2005) On the identity of Karlodinium veneficum and description of Karlodinium armiger sp. nov. (Dinophyceae), based on light and electron microscopy, nuclear-encoded LSU rDNA, and pigment composition. J Phycol 42:170–193

    Article  Google Scholar 

  • Bowers HA, Tengs T, Glasgow HBJR, Burkholder JM, Rublee PA, Oldach DW (2000) Development of real-time PCR assays for rapid detection of Pfiesteria piscicida and related dinoflagellates. Appl Environ Microbiol 66:4641–4648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brand LE, Campbell L, Bresnan E (2012) Karenia: the biology and ecology of a toxic genus. Harmful Algae 14:156–178

    Article  Google Scholar 

  • Cary SC, Coyne KJ, Rueckert A, Wood SA, Kelly S, Gemmill CEC, Vieglais C, Hicks BJ (2014) Development and validation of a quantitative PCR assay for the early detection and monitoring of the invasive diatom Didymosphenia geminata. Harmful Algae 36:63–70

    Article  CAS  Google Scholar 

  • Cen JY, Wang JY, Huang LF, Ding GM, Qi YZ, Cao RB, Cui L, Lu SH (2019) Who is the “murderer” of the bloom in coastal waters of Fujian, China, in 2019? J Oceanol Limnol 38:722–732

    Article  Google Scholar 

  • Chen BH, Wang K, Guo HG, Lin H (2021) Karenia mikimotoi blooms in coastal waters of China from 1998 to 2017. Estuar Coast Shelf Sci 249:107034

    Article  Google Scholar 

  • Coyne KJ, Handy SM, Demir E, Whereat EB, Hutchins DA, Portune KJ, Doblin MA, Cary SC (2005) Improved quantitative real-time PCR assays for enumeration of harmful algal species in field samples using an exogenous DNA reference standard. Limnol Oceanogr Methods 3:381–391

    Article  CAS  Google Scholar 

  • Dai XF, Lu DD, Guan WB, Xia P, Wang HX, He PX, Zhang DS (2013) The correlation between Prorocentrum donghaiense blooms and the Taiwan Warm Current in the East China Sea - evidence for the “Pelagic Seed Bank” hypothesis. PLoS ONE 8:e64188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson K, Miller P, Wilding TA, Shutler J, Bresnan E, Kennington K, Swan S (2009) A large and prolonged bloom of Karenia mikimotoi in Scottish waters in 2006. Harmful Algae 8:349–361

    Article  Google Scholar 

  • Deng H, Guan WB, Cao ZY, Bao M, Chen Q (2016) Analysis of hydrological and meteorological factors causing Karenia mikimotoi bloom in 2012 along Fujian coast. J Mar Sci 34:28–38 (in Chinese with English abstract)

  • Dhar SS, Chakraborty B, Chaudhuri P (2014) Comparison of multivariate distributions using quantile–quantile plots and related tests. Bernoulli 20:1484–1506

    Article  Google Scholar 

  • Ding GM, Zhang SF (2018) Ecological characteristics and the causes of Karenia mikimotoi bloom in the Sansha Bay in 2012. Haiyang Xuebao 40:104–112 (in Chinese with English abstract)

  • Dyhrman ST, Erdner D, Du JL, Galac M, Anderson DM (2006) Molecular quantification of toxic Alexandrium fundyense in the Gulf of Maine using real-time PCR. Harmful Algae 5:242–250

    Article  CAS  Google Scholar 

  • Eckford-Soper LK, Daugbjerg N (2015) Development of a multiplex real-time qPCR assay for simultaneous enumeration of up to four marine toxic bloom-forming microalgal species. Harmful Algae 48:37–43

    Article  CAS  PubMed  Google Scholar 

  • Elleuch J, Barkallah M, Smith KF, Ben Neila I, Fendri I, Abdelkafi S (2020) Quantitative PCR assay for the simultaneous identification and enumeration of multiple Karenia species. Environ Sci Pollut Res Int 27:36889–36899

    Article  CAS  PubMed  Google Scholar 

  • Enjoji N, Katano T, Yoshinaka Y, Furuoka F, Ando Y, Yamada M, Hamasaki T, Miyamura E, Otsubo M, Yokoyama K (2019) Development of primer sets for multiplex and qPCR assays targeting Skeletonema species and their application to field samples. J Oceanogr 75:319–334

    Article  Google Scholar 

  • Erdner DL, Percy L, Keafer B, Lewis J, Anderson DM (2010) A quantitative real-time PCR assay for the identification and enumeration of Alexandrium cysts in marine sediments. Deep Sea Res II 57:279–287

    Article  CAS  Google Scholar 

  • Galluzzi L, Penna A, Bertozzini E, Vila M, Garcés E, Magnani M (2004) Development of a real-time PCR assay for rapid detection and quantification of Alexandrium minutum (a Dinoflagellate). Appl Environ Microbiol 70:1199–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Yu RC, Chen JH, Zhang QC, Kong FZ, Zhou MJ (2015) Distribution of Alexandrium fundyense and A. pacificum (Dinophyceae) in the Yellow Sea and Bohai Sea. Mar Pollut Bull 96:210–219

    Article  CAS  PubMed  Google Scholar 

  • Gillibrand PA, Siemering B, Miller PI, Davidson K (2016) Individual-based modelling of the development and transport of a Karenia mikimotoi bloom on the North-west European continental shelf. Harmful Algae 53:118–134

    Article  CAS  PubMed  Google Scholar 

  • GlobalHAB (2017) Global harmful algal blooms, science and implementation plan. SCOR and IOC, Delaware

    Google Scholar 

  • Godhe A, Otta SK, Rehnstam-Holm AS, Karunasagar I, Karunasagar I (2001) Polymerase chain reaction in detection of Gymnodinium mikimotoi and Alexandrium minutum in field samples from southwest India. Mar Biotechnol 3:152–162

    Article  CAS  Google Scholar 

  • Gray M, Wawrik B, Paul J, Casper E (2003) Molecular detection and quantitation of the red tide dinoflagellate Karenia brevis in the marine environment. Appl Environ Microbiol 69:5726–5730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms I. Cyclotella nana Hustedt, and Detonula confervacea(Cleve) Gran. Can J Microbiol 8:229–240

    Article  CAS  PubMed  Google Scholar 

  • Guillou L, Nezan E, Cueff V, Denn EE, Cambon-Bonavita MA, Gentien P, Barbier G (2002) Genetic diversity and molecular detection of three toxic dinoflagellate genera (Alexandrium, Dinophysis, and Karenia) from French coasts. Protist 153:223–238

    Article  CAS  PubMed  Google Scholar 

  • Guiry MD, Guiry GM (2010) AlgaeBase. https://www.algaebase.org. Searched on 30 December 2021

  • Handy SM, Hutchins DA, Cary SC, Coyne KJ (2006) Simultaneous enumeration of multiple raphidophyte species by quantitative real-time PCR: capabilities and limitations. Limnol Oceanogr Methods 4:193–204

    Article  Google Scholar 

  • Hansen G, Daugbjerg N, Henriksen P (2003) Comparative study of Gymnodinium mikimotoi and Gymnodinium aureolum, comb. nov. (= Gyrodinium aureolum) based on morphology, pigment composition, and molecular data. J Phycol 36:394–410

    Article  Google Scholar 

  • Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6:986–994

    Article  CAS  PubMed  Google Scholar 

  • Heil CA, Steidinger KA (2009) Monitoring, management, and mitigation of Karenia blooms in the eastern Gulf of Mexico. Harmful Algae 8:611–617

    Article  Google Scholar 

  • Huang B, Shao JB, Wei N, Wang YM (2014) Ecological studies during occurrence of dinoflagellate blooms in East China Sea spring 2014. Ecology and Environmental Sciences 23:1457–1462 (in Chinese with English abstract)

  • Huang HL, Gao WF, Zhu P, Zhou CX, Qiao LL, Dang CY, Pang JH, Yan XJ (2020) Molecular method for rapid detection of the red tide dinoflagellate Karenia mikimotoi in the coastal region of Xiangshan Bay. China J Microbiol Methods 168:105801

    Article  CAS  PubMed  Google Scholar 

  • Huang HY, Kang LC, Yang Y, Yang L, Liu SM, Wang QL, Li X (2016) Species composition and distribution of red tide causative organisms in the coastal waters of China in 2013. Marine Sciences 40:17–27 (in Chinese with English abstract)

  • Joanes DN, Gill CA (1998) Comparing measures of sample skewness and kurtosis. J R Stat Soc Ser D 47:183–189

    Google Scholar 

  • Kavanagh S, Brennan C, O’Connor L, Moran S, Salas R, Lyons J, Silke J, Maher M (2010) Real-time PCR detection of Dinophysis species in Irish coastal waters. Mar Biotechnol 12:534–542

    Article  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Li HM, Tang HJ, Shi XY, Zhang CS, Wang XL (2014) Increased nutrient loads from the Changjiang (Yangtze) River have led to increased harmful algal blooms. Harmful Algae 39:92–101

    Article  Google Scholar 

  • Li XD, Yan T, Lin JN, Yu RC, Zhou MJ (2017) Detrimental impacts of the dinoflagellate Karenia mikimotoi in Fujian coastal waters on typical marine organisms. Harmful Algae 61:1–12

    Article  Google Scholar 

  • Liang YB (2012) Investigation and evaluation of red tide disasters in China (1933–2009). China Ocean Press, Beijing

    Google Scholar 

  • Lin JN, Song JJ, Yan T, Zhang QC, Zhou MJ (2015) Large-scale dinoflagellate bloom species Prorocentrum donghaiense and Karenia mikimotoi reduce the survival and reproduction of copepod Calanus sinicus. J Mar Biol Assoc U K 95:1071–1079

    Article  Google Scholar 

  • Lin JN, Yan T, Zhang QC, Wang YF, Liu Q, Zhou MJ (2014) In situ detrimental impacts of Prorocentrum donghaiense blooms on zooplankton in the East China Sea. Mar Pollut Bull 88:302–310

    Article  CAS  PubMed  Google Scholar 

  • Lin YR, Cen JY, Wang JY, Liang QY, Lu SH (2020) Preliminary study on interspecific relationship and hemolytic activity of four Karenia species from South China Sea. Oceanol Limnol Sinica 51:1402–1411

    Google Scholar 

  • Liu RY (2008) Checklist of marine biota of China seas. Science Press, Beijing

    Google Scholar 

  • Liu ZG, Wang JH, Cai P, Wang Y, Qin YT, Liu SH (2014) Distribution of Karenia mikimotoi and rules of its causing red tide. Territory & Natural Resources Study 1:38–41 (in Chinese with English abstract)

    Google Scholar 

  • Long H, Du Q (2005) Prmiary Research on Karenia mikimotoi bloom in Fujian Coast. J Fujian Fisheries 4:22–26 (in Chinese with English abstract)

  • Loret P, Tengs T, Villareal TA, Singler H, Richardson B, Mcguire P, Morton S, Busman M, Campbell L (2002) No difference found in ribosomal DNA sequences from physiologically diverse clones of Karenia brevis (Dinophyceae) from the Gulf of Mexico. J Plankton Res 24:735–739

    Article  CAS  Google Scholar 

  • Lu DD, Qi YZ, Gu HF, Dai XF, Wang HX, Gao YH, Shen PP, Zhang QC, Yu RC, Lu SH (2014) Causative species of harmful algal blooms in Chinese coastal waters. Algol Stud 145–146:145–168

    Article  Google Scholar 

  • Lu SH, Hodgkiss IJ (2004) Harmful algal bloom causative collected from Hong Kong waters. Hydrobiologia 512:231–238

    Article  Google Scholar 

  • Luo ZH, Wang L, Chan L, Lu SH, Gu HF (2018) Karlodinium zhouanum, a new dinoflagellate species from China, and molecular phylogeny of Karenia digitata and Karenia longicanalis (Gymnodiniales, Dinophyceae). Phycologia 57:401–412

    Article  CAS  Google Scholar 

  • Ministry of Natural Resources of the People’s Republic of China (2009–2020) Bulletin of China marine disaster. http://www.mnr.gov.cn/sj/sjfw/hy/gbgg/zghyzhgb/. Accessed 18 Jul 2021

  • Ministry of Natural Resources of the People’s Republic of China (2000–2017) Bulletin of China marine ecological and environment status. http://www.mnr.gov.cn/sj/sjfw/hy/gbgg/zghyhjzlgb/. Accessed 18 Jul 2021

  • Mitchell SO, Rodger H (2007) Pathology of wild and cultured fish affected by a Karenia mikimotoi bloom in Ireland. Bull Eur Ass Fish Pathol 27:39–42

    Google Scholar 

  • Moorthi SD, Countway PD, Stauffer BA, Caron DA (2006) Use of quantitative real-time PCR to investigate the dynamics of the red tide dinoflagellate Lingulodinium polyedrum. Microb Ecol 52:136–150

    Article  CAS  PubMed  Google Scholar 

  • Nézan E, Siano R, Boulben S, Six C, Bilien G, Chèze K, Duval A, Panse SL, Quéré J, Chomérat N (2014) Genetic diversity of the harmful family Kareniaceae (Gymnodiniales, Dinophyceae) in France, with the description of Karlodinium gentienii sp. nov.: a new potentially toxic dinoflagellate. Harmful Algae 40:75–91

    Article  Google Scholar 

  • Oda M (1935) Gymnodinium mikimotoi Miyake et Kominami n. sp. (MS.) no akashiwo to ryusando no koka. (The red tide of Gymnodinium mikimotoi Miyake et Kominami and the influence of copper sulfate on the red tide of November 1972). Doubutsugaku Zasshi 47:35–48

    Google Scholar 

  • Pearson LA, D’Agostino PM, Neilan BA (2021) Recent developments in quantitative PCR for monitoring harmful marine microalgae. Harmful Algae 108:102096

    Article  CAS  PubMed  Google Scholar 

  • Perini F, Casabianca A, Battocchi C, Accoroni S, Totti C, Penna A (2011) New approach using the real-time PCR method for estimation of the toxic marine dinoflagellate Ostreopsis cf ovata in marine environment. PLoS One 6:e17699

  • Pitcher GC, Calder D (2000) Harmful algal blooms of the southern Benguela Current: a review and appraisal of monitoring from 1989 to 1997. Afr J Mar Sci 22:255–271

    Article  Google Scholar 

  • Raine R, O’Boyle S, O’Higgins T, White M, Patching J, Cahill B, McMahon T (2001) A satellite and field portrait of a Karenia mikimotoi bloom off the south coast of Ireland, August 1998. Hydrobiologia 465:187–193

    Article  Google Scholar 

  • Shimada H, Kanamori M, Yoshida H, Imai I (2016) First record of red tide due to the harmful dinoflagellate Karenia mikimotoi in Hakodate Bay, southern Hokkaido, in autumn 2015. Nippon Suisan Gakkaishi 82:934–938

    Article  Google Scholar 

  • Shin HH, Li Z, Mertens KN, Seo MH, Gu HF, Lim WA, Yoon YH, Soh HY, Matsuoka K (2019) Prorocentrum shikokuense Hada and P. donghaiense Lu are junior synonyms of P. obtusidens Schiller, but not of P. dentatum Stein (Prorocentrales, Dinophyceae). Harmful Algae 89:101686

  • Silke J, O’Beirn F, Cronin M (2005) Karenia mikimotoi: an exceptional dinoflagellate bloom in Western Irish Waters, Summer 2005. Marine Institute, Galway, Marine Environment and Health Series 21.

  • Sournia A (1978) Phytoplankton manual. UNESCO, Paris

    Google Scholar 

  • Stern RF, Andersen RA, Jameson I, Kupper FC, Coffroth MA, Vaulot D, Le Gall F, Veron B, Brand JJ, Skelton H, Kasai F, Lilly EL, Keeling PJ (2012) Evaluating the ribosomal internal transcribed spacer (ITS) as a candidate dinoflagellate barcode marker. PLoS ONE 7:e42780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thyng KM, Hetland RD, Ogle MT, Zhang XQ, Chen F, Campbell L (2013) Origins of Karenia brevis harmful algal blooms along the Texas coast. Limnol Oceanogr Fluids Environ 3:269–278

    Article  Google Scholar 

  • Toldrà A, Andree KB, Fernández-Tejedor M, Diogène J, Campàs M (2018) Dual quantitative PCR assay for identification and enumeration of Karlodinium veneficum and Karlodinium armiger combined with a simple and rapid DNA extraction method. J Appl Phycol 30:2435–2445

    Article  Google Scholar 

  • Ulrich RM, Casper ET, Campbell L, Richardson B, Heil CA, Paul JH (2010) Detection and quantification of Karenia mikimotoi using real-time nucleic acid sequence-based amplification with internal control RNA (IC-NASBA). Harmful Algae 9:116–122

    Article  CAS  Google Scholar 

  • Utermöhl H (1958) Zur Vervollkommung der quantitativen Phytoplankton-Methodik. Mitt Int Ver Theor Angew Limnol 9:1–38

    Google Scholar 

  • Vandersea M, Tester P, Holderied K, Hondolero D, Kibler S, Powell K, Baird S, Doroff A, Dugan D, Meredith A, Tomlinson M, Litaker RW (2020) An extraordinary Karenia mikimotoi “beer tide” in Kachemak Bay Alaska. Harmful Algae 92:101706

    Article  CAS  PubMed  Google Scholar 

  • Vandersea MW, Kibler SR, Holland WC, Tester PA, Schultz TF, Faust MA, Holmes MJ, Chinain M, Litaker RW (2012) Development of semi-quantitative PCR assays for the detection and enumeration of Gambierdiscus species (Gonyaulacales, Dinophyceae). J Phycol 48:902–915

    Article  CAS  PubMed  Google Scholar 

  • Wang JY, Cen JY, Li S, Lu SH, Moestrup Ø, Chan KK, Jiang T, Lei XD (2018) A re-investigation of the bloom-forming unarmored dinoflagellate Karenia longicanalis (syn. Karenia umbella ) from Chinese coastal waters. J Oceanol Limnol 36:2202–2215

    Article  CAS  Google Scholar 

  • Wang JY, Ho KC, Qi YZ, Lu SH, Yang J (2017) Progress in taxonomy study on Kareniaceae (Dinophyta). Oceanol Limnol Sinica 48:786–797 (in Chinese with English abstract)

  • Waters LG, Wolcott TG, Kamykowski D, Sinclair G (2015) Deep-water seed populations for red tide blooms in the Gulf of Mexico. Mar Ecol Prog Ser 529:1–16

    Article  CAS  Google Scholar 

  • Winnepenninckx B, Backeljau T, Dewachter R (1993) Extraction of high-molecular-weight DNA from mollusks. Trends Genet 9:407–407

    Article  CAS  PubMed  Google Scholar 

  • Wittwer CT, Herrmann MG, Moss AA, Rasmussen RP (1997) Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques 22:130–138

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi H, Hirano T, Yoshimatsu T, Tanimoto Y, Matsumoto T, Suzuki S, Hayashi Y, Urabe A, Miyamura K, Sakamoto S, Yamaguchi M, Tomaru Y (2016) Occurrence of Karenia papilionacea (Dinophyceae) and its novel sister phylotype in Japanese coastal waters. Harmful Algae 57:59–68

    Article  PubMed  Google Scholar 

  • Yang ZB, Takayama H, Matsuoka K, Hodgkiss IJ (2000) Karenia digitata sp. nov. (Gymnodiniales, Dinophyceae), a new harmful algal bloom species from the coastal waters of west Japan and Hong Kong. Phycologia 39:463–470

    Article  Google Scholar 

  • Yu RC, Lu SH, Liang YB (2018) Harmful algal blooms in the coastal waters of China. In: Glibert PM, Berdalet E, Burford MA, Pitcher GC, Zhou MJ (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 309–316

    Chapter  Google Scholar 

  • Yu RC, Lu SH, Qi YZ, Zhou MJ (2020) Progress and perspectives of harmful algal bloom studies in China. Oceanol Limnol Sinica 51:769–788 (in Chinese with English abstract)

  • Yu RC, Zhang QC, Kong FZ, Zhou ZX, Chen ZF, Zhao Y, Geng HX, Dai L, Yan T, Zhou MJ (2017) Status, impacts and long-term changes of harmful algal blooms in the sea area adjacent to the Changjiang River estuary. Oceanol Limnol Sinica 48:1179–1186 (in Chinese with English abstract)

  • Yuan J, Mi TZ, Zhen Y, Yu ZG (2012a) Development of a rapid detection and quantification method of Karenia mikimotoi by real-time quantitative PCR. Harmful Algae 17:83–91

    Article  CAS  Google Scholar 

  • Yuan J, Mi TZ, Zhen Y, Yu ZG (2012b) Development of a real-time PCR method (Taqman) for rapid identification and quantification of Prorocentrum donghaiense. J Ocean Univ China 11:366–374

    Article  CAS  Google Scholar 

  • Zhang FY, Ma LB, Xu ZL, Zheng JB, Shi YH, Lu YN, Miao YP (2009) Sensitive and rapid detection of Karenia mikimotoi (Dinophyceae) by loop-mediated isothermal amplification. Harmful Algae 8:839–842

    Article  Google Scholar 

  • Zhang QC, Chen ZF, Zhao JY, Yu RC, Qiu LM, Kong FZ, Wang YF, Yan T, Zhou MJ (2019) Development of a sensitive qPCR method for the detection of pelagophyte Aureococcus anophagefferens. Limnol Oceanogr Methods 18:41–51

    Article  CAS  Google Scholar 

  • Zhou CX, Fu YJ, Yan XJ (2007) Hemolytic activity studies of several harmful alga strains. Asian Journal of Ecotoxicology 2:78–82

    CAS  Google Scholar 

  • Zhou MJ, Shen ZL, Yu RC (2008) Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang (Yangtze) River. Cont Shelf Res 28:1483–1489

    Article  Google Scholar 

  • Zhou MJ, Zhu MY (2006) Progress of the project “Ecology and Oceanography of Harmful Algal Blooms in China.” Advances in Earth Science 21:673–679 (in Chinese with English abstract)

Download references

Acknowledgements

We thank Professor Da-Zhi Wang in Xiamen University for providing the strain of Karenia mikimotoi isolated from the coastal water of Fujian province which was used in this study.

Funding

This study was supported by the project (No. 2017YFC1404304) of the National Key R&D Program of China, the project (grant XDA19060203) of the Strategic Priority Research Program of Chinese Academy of Sciences (CAS), the CAS-CSIRO BAU project (grant 133137KYSB20180141) of CAS, and the project (LY19D060007) of the Zhejiang Provincial Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren-Cheng Yu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2752 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, XK., Lin, ZR., Zhang, QC. et al. Detection of bloom-forming dinoflagellates Karenia mikimotoi and Prorocentrum donghaiense using qPCR assays. J Appl Phycol 34, 1483–1496 (2022). https://doi.org/10.1007/s10811-022-02698-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-022-02698-y

Keywords

Navigation