Skip to main content
Log in

Viability, storage and ultrastructure analysis of Aechmea bicolor (Bromeliaceae) pollen grains, an endemic species to the Atlantic forest

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Bromeliaceae is a large family, and many species are valued ornamentally for their bright colorful flowers. Pollen grain conservation is important for plant breeding and genetic resource conservation increasing the possibilities of crosses between allogamous species, and further hybrid production. The present study aimed to evaluate pollen conservation methodologies for Aechmea bicolor L.B.Sm. using different viability and germination tests and to characterize conservation effects in pollen morphology and ultrastructure. Pollen grains were collected from flowers at anthesis and both (flowers and pollen) were morphologically characterized. Preliminary studies were done to define the best germination medium and dehydration condition. Pollen samples were then subjected to storage under three conditions: freezer (−5 °C), ultra-freezer (−80 °C), or liquid nitrogen (−196 °C), with or without dehydration, at different intervals. In vitro germination and pollen tube length were assessed at 1, 24 h, 8, 30, 180 and 365 days. Pollen grain morphology and ultrastructure were assessed at 24 h, 30 and 365 days. The experimental design was completely randomized in a 2 × 3 + 1 factorial design (2 dehydration conditions, 3 storage conditions, and 1 control). The plot was subdivided by storage time with plots defined by the factorial design, and subplots by storage time and their interaction with plot treatments. The best results were obtained with dehydration and storage in liquid nitrogen (−196 °C) with regard to in vitro germination, pollen tube length, in vivo fertilization and other variables studied, including morphological and ultrastructural integrity. Fruits produced developed normally and produced viable seeds, with germination rates above 92 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ND:

Non-dehydrated

D:

Pre-dehydrated

FR:

−5 °C Freezer

UF:

−80 °C Ultra-freezer

LN:

−196 °C Liquid nitrogen

References

  • Akihama T, Omura M, Kosaki I (1979) Long-term of fruit tree pollen and its application in breeding. Trop Agric Res 13:238–241

    Google Scholar 

  • Alba V, Bisignano V, Alba E, Stradis A, Polignano GB (2011) Effects of cryopreservation on germinability of olive (Olea europaea L.) pollen. Genet Resour Crop Evol 58:977–982. doi:10.1007/s10722-011-9736-z

    Article  Google Scholar 

  • Alexander MP (1980) A versatile stain for pollen, fungi, yeast and bacteria. Stain Technol 55:13–18

    CAS  PubMed  Google Scholar 

  • Bajaj YPS (1995) Cryopreservation of plant cell, tissue and organ culture for the conservation of germplasm and biodiversity. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry 32. Cryopreservation of plant germplasm I, vol 32. Springer-Verlag, New York, pp 3–18

    Chapter  Google Scholar 

  • Baker HG, Baker I (1979) Starch in angiosperm pollen grains and its evolutionary significance. Am J Bot 66:591–600

    Article  Google Scholar 

  • Batos BZ, Nikolić BM (2013) Variability of in vitro germination of Picea omorika pollen. Dendrobiology 69:13–19

    Article  Google Scholar 

  • Benson EE (2008) Cryopreservation theory. In: Reed BM (ed) Plant Cryopreservation, A practical guide. Springer, New York, pp 15–32

    Chapter  Google Scholar 

  • Benzing DH (2000) Bromeliaceae: profile an adaptive radiation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bettiol Neto JM, Nero MD, Kavati R, Pinto-Maglio CAF (2009) Viability and conservation of pollen from tree commercial annonas. Bragantia 68:825–837. doi:10.1590/S0006-87052009000400002

    Article  Google Scholar 

  • Brewbaker JL, Kwack BH (1963) The essential role of calcium ion in pollen germination and pollen tube growth. Am J Bot 50:859–865

    Article  CAS  Google Scholar 

  • Connor KF, Towill LE (1993) Pollen-handling protocol and hydration/dehydration characteristics of pollen for application to long-term storage. Euphytica 68:77–84. doi:10.1007/BF00024157

    Article  Google Scholar 

  • Damasceno Junior PC, Pereira TNS, Pereira MG, Silva FF (2008) Conservation of papaya (Carica papaya L.) pollen grain. Rev Ceres 55:433–438

    Google Scholar 

  • Einhardt PM, Correa ER, Raseira MC (2006) Comparação entre métodos para testar a viabilidade de pólen de pessegueiro. Rev Bras Frutic 28:5–7. doi:10.1590/S0100-29452006000100003

    Article  Google Scholar 

  • Engelmann F, Arnao MTG, Wu Y, Escobar R (2008) Development of encapsulation dehydration. In: Reed BM (ed) Plant Cryopreservation. A practical guide. Springer, New York, pp 59–76

    Chapter  Google Scholar 

  • Franzon RC, Raseira MCB (2006) Germinação in vitro e armazenamento do pólen de Eugenia involucrata DC (Myrtaceae). Rev Bras Frutic 28:18–20. doi:10.1590/S0100-29452006000100007

    Article  Google Scholar 

  • Galletta GJ (1983) Pollen and seed management. In: Moore JN, Janinick J (eds) Methods in fruit breeding. Purdue University Press, West Lafayette, pp 23–47

    Google Scholar 

  • Ganeshan S (1986a) Cryogenic preservation of papaya pollen. Sci Hortic 28:65–70. doi:10.1016/0304-4238(86)90125-1

    Article  Google Scholar 

  • Ganeshan S (1986b) Viability and fertilizing capacity of onion pollen (Allium cepa L.) stored in liquid nitrogen (−196 & #xB0;C). Trop Agric 63:46–48

    Google Scholar 

  • Ganeshan S, Rajasekharan PE, Shashikumar S, Decruze W (2008) Cryopreservation of Pollen. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, New York, pp 281–332

    Google Scholar 

  • Grout BWW, Roberts AV (1995) Storage of free pollen, pollen embryos and the zygotic embryos of seed by cryopreservation and freeze drying. In: Grout BWW (ed) Genetic preservation of plant cells in vitro. Springer-Verlag, Berlin, pp 63–74

    Chapter  Google Scholar 

  • Hesse M, Halbritter H, Weber M, Buchner R, Frosch-Radivo A, Ulrich S (2009) Pollen terminology an illustrated handbook. Springer Wien, New York

    Google Scholar 

  • Honda K, Watanabe H, Tsutsui K (2002) Cryopreservation of Delphinium pollen at −30 & #xB0;C. Euphytica 126:315–320. doi:10.1023/A:1019931304742

    Article  CAS  Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27:137A

    Google Scholar 

  • Kearns CA, Inouye DW (1993) Techniques for pollination biologist. University of Colorado, Niwot

    Google Scholar 

  • Lora MAJ, Oteyza P, Fuentetaja P, Hormaza JI (2006) Low temperature storage and in vitro germination of cherimoya (Annona cherimola Mill) pollen. Sci Hortic 1:91–94. doi:10.1016/j.scienta.2005.12.003

    Article  Google Scholar 

  • Martinelli G, Vieira CM, Gonzalez M, Leitman P, Piratininga A, Costa AF, Forzza RF (2008) Bromeliaceae da Mata Atlântica brasileira: lista de espécies, distribuição e conservação. Rodriguesia 59:209–258

    Google Scholar 

  • Murashige T, Skoog FA (1962) A revised medium for a rapid growth and bioassays with tobacco tissues cultures. Plant Physiol 15:473–479

    Article  CAS  Google Scholar 

  • Parfitt D, Ganeshan S (1989) Comparison of procedures for estimating viability of Prunus pollen. HortScience 24:354–356

    Google Scholar 

  • Parton E, Deroose R, De Proft MP (1998) Cryostorage of Aechmea fasciata pollen. Cryo-Letters 19:355–360

    CAS  Google Scholar 

  • Parton E, Vervaeke I, Delen R, Vandenbussche B, Deroose R, De Proft MP (2002) Viability and storage of bromeliad pollen. Euphytica 125:155–161. doi:10.1023/A:1015884019619

    Article  CAS  Google Scholar 

  • Pixton SW (1966) Moisture content-its significance and measurement in stored products. J Stored Prod Res 3:35–47. doi:10.1016/0022-474X(67)90085-9

    Article  Google Scholar 

  • Rasband WS, Image J (1997–2012) US National Institutes of Health, Bethesda, Maryland, USA. http://imagej.nih.gov/ij/

  • Raynal A, Raynal J (1971) Une technique de préparation des grains de pollen fragiles. Adansonia 1:77–79

    Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sacks EJ, St Clair DA (1996) Cryogenic storage of tomato pollen: effect on fecundity. HortScience 31:447–448

    Google Scholar 

  • SAS Institute (2004) Inc. Sas/Stat user´s guide: statistics, Version 9.1.3 ed. SAS Institute, Cary, NC, USA

  • Scorza R, Sherman WB (1995) Peaches. In: Janik J, Morre JN (eds) Fruit breeding. John & Sons, New York, pp 325–440

    Google Scholar 

  • Soares TL, Silva SO, Costa MAPC, Santos-Serejo JA, Souza AS, Lino LSM, Souza EH, Jesus ON (2008) In vitro germination and viability of pollen grains of banana diploids. Crop Breed Appl Biotechnol 8:111–118

    Article  CAS  Google Scholar 

  • Souza EH, Rosa SS, Souza FVD, Melo VC (2009a) Indução floral em Neoregelia carolinae (Beer) L. B. Sm e Aechmea fasciata (Lindley) Baker (Bromeliaceae). Magistra 21:305–310

    Google Scholar 

  • Souza FVD, Cabral JRS, Souza EH, Ferreira FR, Santos OSN, Silva MJ (2009b) Evaluation of F1 hybrids between Ananas comosus var. ananassoides and Ananas comosus var. erectifolius. Acta Hortic 822:79–84

    Google Scholar 

  • Souza FVD, Souza AS, Santos-Serejo JA, Souza EH, Junghas TG, Silva MJ (2009c) Micropropagação do abacaxizeiro e outras bromeliáceas. In: Junghas TG, Souza AS (eds) Aspectos práticos da micropropagação de plantas, 1st edn. Embrapa Mandioca e Fruticultura Tropical, Cruz das Almas, pp 177–205

  • Stanley RG, Linskens HF (1974) Pollen: biology biochemistry and management. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Tai PYP, Miller JD (2002) In vivo viability assay of sugarcane pollen stored at ultra low temperature following preservation treatments. Sugar Cane Int., pp 5–9

  • Taylor LP, Hepler PK (1997) Pollen germination and tube growth. Annu Rev Plant Physiol Plant Mol Biol 48:461–491

    Article  CAS  PubMed  Google Scholar 

  • Towill LE (1985) Low temperature and freeze-vacuum-drying preservation of pollen. In: Kartha KK (ed) Cryopreservation of plant cells and organs. CRC Press, Boca Raton, pp 171–198

    Google Scholar 

  • Vendrame WA, Carvalho VS, Dias JMM, Maguire I (2008) Pollination of Dendrobium hybrids using cryopreserved pollen. HortScience 43:264–267

    Google Scholar 

  • Withers LA (1991) Biotechnology and plant genetic resources conservation. In: Paroda RS, Arora RK (eds) Plant genetic resources-conservation and management, concepts and approaches. New Delhi, India

    Google Scholar 

  • Xu J, Liu Q, Jia M, Liu Y, Li B, Shi Y (2014) Generation of reactive oxygen species during cryopreservation may improve Lilium × siberia pollen viability. In Vitro Cell Dev Biol Plant 50:369–375

    Article  CAS  Google Scholar 

  • Yates IE, Sparks D (1989) Hydration and temperature influence in vitro germination of pecan pollen. J Am Soc Hortic Sci 114:599–605

    Google Scholar 

  • Zhang F, Ge Y, Wang W, Yu X, Shen X, Liu J, Liu X, Tian D, Shen F, Yu Y (2012) Molecular characterization of cultivated bromeliad accessions with Inter-Simple Sequence Repeat (ISSR) markers. Int J Mol Sci 13:6040–6052. doi:10.3390/ijms13056040

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of Fundação de Amparo a Pesquisa do Estado de São Paulo—FAPESP (2009/18255-0) and Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (305.785/2008-7 and 476.131/2008-1), for financial support, and Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Agricultura, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, for the use of the microscopic facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Everton Hilo de Souza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, E.H., Souza, F.V.D., Rossi, M.L. et al. Viability, storage and ultrastructure analysis of Aechmea bicolor (Bromeliaceae) pollen grains, an endemic species to the Atlantic forest. Euphytica 204, 13–28 (2015). https://doi.org/10.1007/s10681-014-1273-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-014-1273-3

Keywords

Navigation