Skip to main content

Advertisement

Log in

Geographical distribution of quinoa crop wild relatives in the Peruvian Andes: a participatory mapping initiative

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The Peruvian Andes are among the world’s most important centers of origin for genetic diversity of crops and plants. Quinoa (Chenopodium quinoa Willd.) was domesticated in the Bolivian and Peruvian Andean region around Lake Titicaca. In situ conservation systems for quinoa germplasm and its wild relatives can still be found in the traditional systems of Peruvian farming communities. Quinoa crop wild relatives (CWRs), like the majority of CWRs of other agricultural species, are being affected by the considerable changes in the natural landscapes of the Andes. This article analyzes the presence and distribution of seven quinoa CWRs at the agroecosystem level and considers the social and environmental Andean contexts in which they are found. A qualitative research method based on participatory mapping in six local communities of the Puno region in Peru was applied to establish the presence and distribution of the species. We present the results that were confirmed with local actors on participatory GIS maps. Based on our analyses, we conclude that conservation programs should consider both permanent native meadows and cultivated land with their fallow cycles and plot borders. The diversity of the presence of quinoa CWRs is one result of the coexistence of these two land uses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

adapted from Tapia (1994)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Altieri, M. A., & Merrick, L. (1987). In situ conservation of crop genetic resources through maintenance of traditional farming systems. Economic Botany, 41, 86–96. https://doi.org/10.1007/BF02859354.

    Article  Google Scholar 

  • Bazile, D. (2013). Desarrollo territorial. La quinua, un catalizador de innovaciones. Perspective 4.

  • Bazile, D. (2015). Le quinoa, les enjeux d’une conquête. Editions Quae.

  • Bazile, D., Carrié, C., Vidal, A., & Negrete Sepulveda, J. (2011). Modélisation des dynamiques spatiales liées à la culture du quinoa dans le Nord chilien (p. 14). M@ppemonde.

  • Bazile, D., Dembélé, S., Soumaré, M., & Dembélé, D. (2008). Utilisation de la diversité variétale du sorgho pour valoriser la diversité des sols au Mali. Cahiers Agricultures. https://doi.org/10.1684/agr.2008.0172.

    Article  Google Scholar 

  • Bazile, D., Martinez, E. A., & Fuentes, F. F. (2014). Diversity of quinoa in a biogeographical Island: a review of constraints and potential from arid to temperate regions of Chile. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 42, 289–298. https://doi.org/10.15835/nbha.42.2.9733.

    Article  Google Scholar 

  • Bazile, D., Martinez, E. A., Hocdé, H., & Chia, E. (2012). Primer encuentro nacional de productores de quínoa de Chile: Una experiencia participativa del proyecto internacional IMAS a través de una prospectiva por escenarios usando una metodología de “juego de roles”. Tierra Adentro Chile, pp. 48–54.

  • Bellon, M. R. (2004). Conceptualizing interventions to support on-farm genetic resource conservation. World Development, 32, 159–172. https://doi.org/10.1016/j.worlddev.2003.04.007.

    Article  Google Scholar 

  • Bhargava, A., Shukla, S., & Ohri, D. (2006). Chenopodium quinoa—An Indian perspective. Industrial Crops and Products, 23, 73–87. https://doi.org/10.1016/j.indcrop.2005.04.002.

    Article  CAS  Google Scholar 

  • Bonifacio, A. (2003). Chenopodium Sp.: Genetic resources, ethnobotany, and geographic distribution. Food Reviews International, 19, 1–7. https://doi.org/10.1081/FRI-120018863.

    Article  Google Scholar 

  • Brown, K. (2003). Three challenges for a real people-centred conservation. Global Ecology and Biogeography, 12, 89–92. https://doi.org/10.1046/j.1466-822X.2003.00327.x.

    Article  Google Scholar 

  • Brush, S. B. (Ed.). (2000). Genes in the field: on-farm conservation of crop diversity. Boca Raton: Lewis Publishers.

    Google Scholar 

  • Brush, S. B., Kesseli, R., Ortega, R., Cisneros, P., Zimmerer, K., & Quiros, C. (1995). Potato diversity in the Andean center of crop domestication. Conservation Biology, 9, 1189–1198.

    Article  Google Scholar 

  • Canahua, A. (2012). Los tipos de quinuas en el Altiplano de Puno (Proyecto Sipam). Puno: FAO.

    Google Scholar 

  • CBD. (1992). Convention on biological diversity: Text and annexes. Montreal, Canada: Secretariat of the Convention on Biological Diversity.

    Google Scholar 

  • Chapin, M., Lamb, Z., & Threlkeld, B. (2005). Mapping indigenous lands. Annual Review of Anthropology, 34, 619–638. https://doi.org/10.1146/annurev.anthro.34.081804.120429.

    Article  Google Scholar 

  • Chapin, M., & Threlkeld, B. (2001). Indigenous landscapes: A study in ethnocartography. Arlington: Center for the Support of Native Lands.

    Google Scholar 

  • CONAM. (2001). Perú: Estrategia nacional sobre diversidad biológica (1st ed.). Lima: CONAM.

    Google Scholar 

  • Curti, R. N., Sajama, J., & Ortega-Baes, P. (2017). Setting conservation priorities for Argentina’s pseudocereal crop wild relatives. Biological Conservation, 209, 349–355. https://doi.org/10.1016/j.biocon.2017.03.008.

    Article  Google Scholar 

  • Davidson-Hunt, I., & Berkes, F. (2012). Journeying and remembering: Anishinaabe landscape ethnoecology from Northwestern Ontario. In L. M. Johnson & E. Hunn (Eds.), Landscape ethnoecology, concepts of physical and biotic space. New York: Berghahn Book.

    Google Scholar 

  • de Grenade, R., & Nabhan, G. P. (2013). Baja California peninsula oases: An agro-biodiversity of isolation and integration. Applied Geography, 41, 24–35. https://doi.org/10.1016/j.apgeog.2013.03.008.

    Article  Google Scholar 

  • del Castillo, C., Winkel, T., Mahy, G., & Bizoux, J. P. (2007). Genetic structure of quinoa (Chenopodium quinoa Willd.) from the Bolivian altiplano as revealed by RAPD markers. Genetic Resources and Crop Evolution, 54, 897–905. https://doi.org/10.1007/s10722-006-9151-z.

    Article  CAS  Google Scholar 

  • FAO. (2002). The international treaty on plant genetic resources for food and agriculture. Rome: FAO.

    Google Scholar 

  • Friis-Hansen, E., Sthapit, B. R., & Institute, I. P. G. R. (Eds.). (2000). Participatory approaches to the conservation and use of plant genetic resources. Rome: IPGRI.

    Google Scholar 

  • Fuentes, F. F., Bazile, D., Bhargava, A., & Martinez, E. A. (2012). Implications of farmers’ seed exchanges for on-farm conservation of quinoa, as revealed by its genetic diversity in Chile. Journal of Agricultural Science, 150, 702–716. https://doi.org/10.1017/S0021859612000056.

    Article  Google Scholar 

  • Fuentes, F. F., Martinez, E. A., Hinrichsen, P. V., Jellen, E. N., & Maughan, P. J. (2009). Assessment of genetic diversity patterns in Chilean quinoa (Chenopodium quinoa Willd.) germplasm using multiplex fluorescent microsatellite markers. Conservation Genetics, 10, 369–377. https://doi.org/10.1007/s10592-008-9604-3.

    Article  CAS  Google Scholar 

  • Garcia, M., Condori, B., & del Castillo, C. (2015). Agroecological and agronomic cultural practices of quinoa in South America. In K. Murphy & J. Matanguihan (Eds.), Quinoa: Improvement and sustainable production (pp. 25–46). Hoboken: Wiley. https://doi.org/10.1002/9781118628041.ch3.

    Chapter  Google Scholar 

  • Geerts, S., Raes, D., Garcia, M., Vacher, J., Mamani, R., Mendoza, J., et al. (2008). Introducing deficit irrigation to stabilize yields of quinoa (Chenopodium quinoa Willd.). European Journal of Agronomy, 28, 427–436. https://doi.org/10.1016/j.eja.2007.11.008.

    Article  Google Scholar 

  • Gomez-Pando, L. (2015). Quinoa breeding. In K. Murphy & J. Matanguihan (Eds.), Quinoa: Improvement and sustainable production (pp. 87–107). Hoboken: Wiley.

    Chapter  Google Scholar 

  • Gonzales, T. (2000). The cultures of the seed in the Peruvian Andes. In S. B. Brush (Ed.), Genes in the field: On-farm conservation of crop diversity (pp. 193–216). Boca Raton: Lewis Publishers.

    Google Scholar 

  • Gonzales, T. A. (2015). An indigenous autonomous community-based model for knowledge production in the Peruvian Andes. Latin American and Caribbean Ethnic Studies, 10, 107–133. https://doi.org/10.1080/17442222.2015.1034433.

    Article  Google Scholar 

  • Gordon, O. (2014). The Andean cosmovision : A path for exploring profound aspects of ourselves, nature, and the cosmos, Smashwords edn.

  • Graddy, T. G. (2013). Regarding biocultural heritage: In situ political ecology of agricultural biodiversity in the Peruvian Andes. Agriculture and Human Values, 30, 587–604. https://doi.org/10.1007/s10460-013-9428-8.

    Article  Google Scholar 

  • Harlan, J. R. (1971). Agricultural origins: Centers and noncenters. Science, 174, 468–474. https://doi.org/10.1126/science.174.4008.468.

    Article  CAS  Google Scholar 

  • Hawthorne, T. L., Elmore, V., Strong, A., Bennett-Martin, P., Finnie, J., Parkman, J., et al. (2015). Mapping non-native invasive species and accessibility in an urban forest: A case study of participatory mapping and citizen science in Atlanta, Georgia. Applied Geograph, 56, 187–198. https://doi.org/10.1016/j.apgeog.2014.10.005.

    Article  Google Scholar 

  • Heal, G., Walker, B., Levin, S., Arrow, K., Dasgupta, P., Daily, G., et al. (2004). Genetic diversity and interdependent crop choices in agriculture. Resource and Energy Economics, 26, 175–184. https://doi.org/10.1016/j.reseneeco.2003.11.006.

    Article  Google Scholar 

  • Hunter, D., & Heywood, V. H. (Eds.). (2010). Crop wild relatives: A manual of in situ conservation, 1st ed. Issues in agricultural biodiversity. London: Earthscan.

    Google Scholar 

  • Ingram, G. B. (1990). Management of biosphere reserves for the conservation and utilization of genetic resources: The social choices. Impact of Science on Society, 40, 133–141.

    Google Scholar 

  • Jacobsen, S. E. (2011). The situation for quinoa and its production in Southern Bolivia: From economic success to environmental disaster. Journal of Agronomy and Crop Science, 197, 390–399. https://doi.org/10.1111/j.1439-037X.2011.00475.x.

    Article  Google Scholar 

  • Jacobsen, S. E., & Mujica, A. (2002). Genetic resources and breeding of the Andean grain crop quinoa (Chenopodium quinoa Willd.). Plant Genetic Resources Newsletter, 130, 54–61.

    Google Scholar 

  • Jarvis, D. I., Padoch, C., Cooper, H. D., & Walter, A. (2011). Manejo de la biodiversidad en los ecosistemas agrícolas. Roma: Publicado por Bioversity Internacional.

    Google Scholar 

  • Jarvis, S., Fielder, H., Hopkins, J., Maxted, N., & Smart, S. (2015). Distribution of crop wild relatives of conservation priority in the UK landscape. Biological Conservation, 191, 444–451. https://doi.org/10.1016/j.biocon.2015.07.039.

    Article  Google Scholar 

  • Jellen, E. N., Maughan, P. J., Fuentes, F. F., & Kolano, B. (2015). Botany, phylogeny and evolution. In D. Bazile (Ed.), State of the art report on quinoa around the world in 2013 (pp. 12–25). Montpellier: FAO (Santiago de Chile) y CIRAD.

    Google Scholar 

  • King, A. (2000). A brief review of participatory tools and techniques for the conservation and use of plant genetic resources. In E. Friis-Hansen & B. Sthapit (Eds.), Participatory approaches to conservation and use of plant genetic resources (pp. 27–43). Rome: IPGRI.

    Google Scholar 

  • Kozioł, M. J. (1992). Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.). The Journal of Food Composition and Analysis, 5, 35–68. https://doi.org/10.1016/0889-1575(92)90006-6.

    Article  Google Scholar 

  • Levine, A. S., & Feinholz, C. L. (2015). Participatory GIS to inform coral reef ecosystem management: Mapping human coastal and ocean uses in Hawaii. Applied Geography, 59, 60–69. https://doi.org/10.1016/j.apgeog.2014.12.004.

    Article  Google Scholar 

  • Louafi, S., Bazile, D., & Noyer, J. L., (2013). Conserver et cultiver la diversité génétique agricole: Aller au-delà des clivages établis. In Cultiver La Biodiversité Pour Transformer l’agriculture (pp. 185–222).

  • Maxted, N. (2012). Agrobiodiversity conservation: Securing the diversity of crop wild relatives and landraces. Wallingford: CABI.

    Book  Google Scholar 

  • Maxted, N., Ford-Lloyd, B. V., Jury, S., Kell, S., & Scholten, M. (2006). Towards a definition of a crop wild relative. Biodiversity and Conservation, 15, 2673–2685. https://doi.org/10.1007/s10531-005-5409-6.

    Article  Google Scholar 

  • Maxted, N., Kell, S. P., & Ford-Lloyd, B. V. (2008). Crop wild relative conservation and use: Establishing the context. In N. Maxted (Ed.), Crop wild relative conservation and use (pp. 3–30). Wallingford: CABI.

    Google Scholar 

  • Mazoyer, M., & Roudart, L. (2017). Histoire des agricultures du monde. Du néolithique à la crise contemporaine, 1st ed. ed. Le Seuil.

  • Meldrum, G., Mijatović, D., Rojas, W., Flores, J., Pinto, M., Mamani, G., et al. (2018). Climate change and crop diversity: Farmers’ perceptions and adaptation on the Bolivian Altiplano. Environment, Development and Sustainability, 20, 703–730. https://doi.org/10.1007/s10668-016-9906-4.

    Article  Google Scholar 

  • Mercado, W., & Ubillus, K. (2017). Characterization of producers and quinoa supply chains in the Peruvian regions of Puno and Junin. Scientia Agropecuari, 8, 251–256. https://doi.org/10.17268/sci.agropecu.2017.03.08.

    Article  Google Scholar 

  • Morlon, P. (1992). Comprendre l’agriculture paysanne dans les Andes Centrales (Pérou-Bolivie). Paris: Editions Quae.

    Google Scholar 

  • Mujica, A. (1994). Andean grains and legumes. In H. Bermejo & J. Leon (Eds.), Neglected crops: 1492 from a different perspective. Plant production and protection series (pp. 131–148). Rome: FAO.

    Google Scholar 

  • Mujica, A. (2008). Diversidad, variabilidad y conocimientos tradicionales locales. In Memorias. Jornadas Iberoamericanas sobre etnobotanica y desarrollo local: Antigua, Guatemala. Red Iberoamericana de saberes y practicas locales sobre el entorno vegetal, Antigua, Guatemala (pp. 34–35).

  • Mujica, A. (2011). Conocimientos y prácticas tradicionales indígenas en los andes para la adaptación y disminución de los impactos del cambio climático. In Compilación de resumenes del workshop internacional pueblos indigenas, poblaciones marginadas y cambio climatico: Vulnerabilidad, adaptacion y conocimientos indigenas. Mexico, D. F.: IPMPCC.

  • Mujica, A., Izquierdo, J., & Marathee, J. (2001). Origen y descripción de la quinua. In A. Mujica, S. E. Jacobsen, & J. Marathee (Eds.), Quinua (Chenopodium quinoa Willd.): Ancestral cultivo andino, alimento del presente y futuro (pp. 9–29). Santiago de Chile.

  • Mujica, A., & Jacobsen, S. E. (2006). La quinua (Chenopodium quinoa Willd.) y sus parientes silvestres (pp. 449–457). La Paz: Botánica Económica Los Andes Cent., Universidad Mayor de San Andrés.

    Google Scholar 

  • Murphy, K. S., & Matanguihan, J. (2015). Quinoa: Improvement and sustainable production. Hoboken: Wiley.

    Book  Google Scholar 

  • Narloch, U., Drucker, A. G., & Pascual, U. (2011). Payments for agrobiodiversity conservation services for sustained on-farm utilization of plant and animal genetic resources. Ecological Economics, 70, 1837–1845. https://doi.org/10.1016/j.ecolecon.2011.05.018.

    Article  Google Scholar 

  • Narloch, U., Drucker, A. G., & Pascual, U. (2017). What role for cooperation in conservation tenders? Paying farmer groups in the High Andes. Land Use Policy, 63, 659–671. https://doi.org/10.1016/j.landusepol.2015.09.017.

    Article  Google Scholar 

  • Ortiz, R., Mujica, A., Rossel, J., Tapia, M., Apaza, V., & Canahua, A. (2002). Los parientes silvestres de la Chenopodiaceas en Puno. Presented at the Parientes silvestres de los Cultivos Nativos en el Peru. In Situ project and National Agrarian University La Molina, Universidad Nacional agraria La Molina, Lima, Peru, pp. 47–50.

  • Padulosi, S., Amaya, K., Jäger, M., Gotor, E., Rojas, W., & Valdivia, R. (2014). A holistic approach to enhance the use of neglected and underutilized species: The case of Andean grains in Bolivia and Peru. Sustainability, 6, 1283–1312. https://doi.org/10.3390/su6031283.

    Article  Google Scholar 

  • Pelenc, J., Bazile, D., & Ceruti, C. (2015). Collective capability and collective agency for sustainability: A case study. Ecological Economics, 118, 226–239. https://doi.org/10.1016/j.ecolecon.2015.07.001.

    Article  Google Scholar 

  • Peterson, A., Jacobsen, S. E., Bonifacio, A., & Murphy, K. (2015). A crossing method for Quinoa. Sustainability, 7, 3230–3243. https://doi.org/10.3390/su7033230.

    Article  Google Scholar 

  • Pulgar Vidal, J. (1987). Geografía del Perú: Las ocho regiones naturales, la regionalización transversal, la microregionalización. PEISA.

  • Riu-Bosoms, C., Vidal, T., Duane, A., Fernandez-Llamazares, A., Gueze, M., Luz, A. C., et al. (2015). Exploring indigenous landscape classification across different dimensions: A case study from the Bolivian Amazon. Landscape Research, 40, 318–337. https://doi.org/10.1080/01426397.2013.829810.

    Article  Google Scholar 

  • Rojas, W., Pinto, M., Alanoca, C., Gomez Pando, P., Leon-Lobos, L. G., Alercia, A., et al. (2015). Quinoa genetic resources and ex situ conservation. In D. Bazile (Ed.), State of the art report on quinoa around the world in 2013 (pp. 65–94). Montpellier: CIRAD.

    Google Scholar 

  • Ruiz, K., Biondi, S., Oses, R., Acuña, I. S., Antognoni, F., Martinez, E. A., et al. (2014). Quinoa biodiversity and sustainability for food security under climate change: A review. Agronomy for Sustainable Development, 34, 349–359. https://doi.org/10.1007/s13593-013-0195-0.

    Article  Google Scholar 

  • Sthapit, B., Lamers, H. A. H., Ramanatha Rao, V., & Bailey, A. (2016). Community biodiversity management as an approach for realizing on-farm management of agricultural biodiversity. In B. Sthapit, H. A. H. Lamers, V. Ramanatha Rao, & A. Bailey (Eds.), Tropical fruit tree diversity: Good practices for in situ and on-farm conservation (pp. 31–66). Abingdin: Routledge.

    Chapter  Google Scholar 

  • Swinton, S. M., & Quiroz, R. (2003). Poverty and the deterioration of natural soil capital in the Peruvian Altiplano. Environment, Development and Sustainability, 5, 477–490. https://doi.org/10.1023/A:1025785231559.

    Article  Google Scholar 

  • Tapia, M. (1994). Rotación de cultivos y su manejo en los Andes del Peru. In D. Hervé, D. Genin, & G. Riviere (Eds.), Dinamicas del descanso de la tierra en los Andes (pp. 37–54). La Paz: ORSTOM - IBTA.

    Google Scholar 

  • Tapia, M. (1997). Cultivos Andinos sub explotados y su aporte a la alimentacion. (No. Segunda Edicion). Oficina Regional de la FAO para América Latina y el Caribe, Chile.

  • Tapia, M., Canahua, A., & Ignacio, S. (2014). Las razas de Quinuas del Perú (1st ed.). Lima: ANPE Peru and CONCYTEC.

    Google Scholar 

  • Vargas Huanca, D. E., Boada, M., Araca, L., Vargas, W., & Vargas, R. (2015). Agricultural biodiversity and economy quinoa (Chenopodium quinoa) in Aymara communities of the Titicaca watershed. IDESIA, 33, 81–87.

    Article  Google Scholar 

  • Vassas Toral, A. (2017). Partir et cultiver: Essor de la quinoa, mobilités et recompositions rurales en Bolivie. IRD Éditions.

  • Vavilov, N. I. (1926). Studies on the origin of cultivated plants. Leningrand: Institute of Applied Botany.

    Google Scholar 

  • Vega-Gálvez, A., Miranda, M., Vergara, J., Uribe, E., Puente, L., & Martínez, E. A. (2010). Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: A review. Journal of the Science of Food and Agriculture, 90, 2541–2547. https://doi.org/10.1002/jsfa.4158.

    Article  CAS  Google Scholar 

  • Vieira Pak, M. (2012). Le boom de la quinoa dans l’Altiplano Sud de la Bolivie : Bouleversement du système agraire, discours et tensions socio-environnementales. Doctoral thesis AgroParisTech. ABIES Doctoral School, specialisation environmental science, France.

  • Wakie, T. T., Laituri, M., & Evangelista, P. H. (2016). Assessing the distribution and impacts of Prosopis juliflora through participatory approaches. Applied Geography, 66, 132–143. https://doi.org/10.1016/j.apgeog.2015.11.017.

    Article  Google Scholar 

  • Winkel, T., Bertero, H. D., Bommel, P., Bourliaud, J., Chevarría Lazo, M., Cortes, G., et al. (2012). The Sustainability of Quinoa production in Southern Bolivia: From Misrepresentations to Questionable solutions. Comments on Jacobsen (2011, J. Agron. Crop Sci. 197: 390–399): Sustainability of Quinoa production in Southern Bolivia. Journal of Agronomy and Crop Science, 198, 314–319. https://doi.org/10.1111/j.1439-037X.2012.00506.x.

    Article  Google Scholar 

  • Winkel, T., Bommel, P., Chevarría-Lazo, M., Cortes, G., del Castillo, C., Gasselin, P., et al. (2016). Panarchy of an indigenous agroecosystem in the globalized market: The quinoa production in the Bolivian Altiplano. Global Environmental Change, 39, 195–204. https://doi.org/10.1016/j.gloenvcha.2016.05.007.

    Article  Google Scholar 

Download references

Acknowledgments

We wish to express our gratitude to Marco Meneses Catacora and Kleny Arpazi Valero at the DRA (Regional Agrarian Agency of Puno, Ministry of Agriculture) for collaboration, information and local support. We would especially like to acknowledge all of the people who volunteered their time to share valuable knowledge about of quinoa CWRs presence and distribution. This work was funded by the CONICYT PAI/INDUSTRIA 79090016. CIRAD, the ABIES Doctoral School and the Institut des Amériques (IDA) provided institutional and financial support for this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. Fagandini Ruiz or D. Bazile.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fagandini Ruiz, F., Bazile, D., Drucker, A.G. et al. Geographical distribution of quinoa crop wild relatives in the Peruvian Andes: a participatory mapping initiative. Environ Dev Sustain 23, 6337–6358 (2021). https://doi.org/10.1007/s10668-020-00875-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-00875-y

Keywords

Navigation