Skip to main content
Log in

Phylogeny and evolution of Dyckia (Bromeliaceae) inferred from chloroplast and nuclear sequences

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The genus Dyckia (Bromeliaceae) comprises more than 150 terrestrial or epilithic species with a strongly xeromorphic habit. Most of its members belong to the azonal rock vegetation of Neotropical savannas and forests of Brazil and adjacent countries. Dyckia is relatively species-rich compared with its closest relatives Encholirium (27 species) and Deuterocohnia (17 species). Here, we present the first molecular phylogenetic analysis of Dyckia using DNA sequence data from six plastid loci (matK gene, rps16 intron, petD intron, rpl32-trnL, rps16-trnK and trnD-trnT) and a portion of the nuclear gene phyC. A total of 124 accessions were included, corresponding to 79 taxa from six genera. Phylogenetic trees were generated using parsimony, likelihood and Bayesian methods. DNA sequence variation among Dyckia species turned out to be extremely low, and phylogenies were poorly resolved. The monophyly of Dyckia is supported, whereas evidence is provided that Encholirium is paraphyletic. Based on a dated plastid DNA tree, Dyckia experienced a recent radiation starting around 2.9 million years ago. Four major clades could be identified that roughly correspond to the geographic origin of the samples. A parsimony network based on plastid DNA haplotypes shows a star-like pattern, indicating recent range expansions. Our data are compatible with a scenario where Dyckia and Encholirium diverged in northeastern Brazil, whereas one lineage of Dyckia dispersed to southern Brazil from where a rapid colonization of suitable habitats was initiated. We discuss our results in relation to species delimitation in Dyckia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antonelli A, Verola CF, Parisod C, Gustafsson ALS (2010) Climate cooling promoted the expansion and radiation of a threatened group of South American orchids (Epidendroideae: Laeliinae). Bot J Linn Soc 100:597–607

    Article  Google Scholar 

  • Baker JG (1889) Handbook of the Bromeliaceae. George Bell & Sons, London

    Google Scholar 

  • Bänfer G, Moog U, Fiala B, Mohamed M, Weising K, Blattner FR (2006) A chloroplast genealogy of myrmecophytic Macaranga species (Euphorbiaceae) in Southeast Asia reveals hybridization, vicariance and long-distance dispersals. Mol Ecol 15:4409–4424

    Article  PubMed  Google Scholar 

  • Barfuss MHJ (2012) Molecular studies in Bromeliaceae: implications of plastid and nuclear DNA markers for phylogeny, biogeography, and character evolution with emphasis on a new classification of Tillandsioideae. PhD Thesis, University of Vienna

  • Barfuss MHJ, Samuel R, Till W, Stuessy T (2005) Phylogenetic relationships in subfamily Tillandsioideae (Bromeliaceae) based on DNA sequence data from seven plastid regions. Amer J Bot 92:337–351

    Article  CAS  Google Scholar 

  • Barthlott W, Porembski S, Szarzynzki J, Mund P (1993) Phytogeography and vegetation of tropical inselbergs. In: Guillaumet J-L, Belin M, Puig H (eds) Phytogéographie tropicale. Réalités et perspectives. Colloques & Seminaires ORSTOM, Paris, pp 15–24

    Google Scholar 

  • Benzing DH (2000) Bromeliaceae: profile of an adaptive radiation. Cambridge University Press, New York

    Book  Google Scholar 

  • Bernadello LM, Galetto L, Juliani HR (1991) Floral nectar, nectary structure and pollinators in some Argentinean Bromeliaceae. Ann Bot 67:401–411

    Google Scholar 

  • Bjourson AJ, Cooper JE (1992) Band-stab PCR: a simple technique for the purification of individual PCR products. Nucleic Acids Res 20(17):4675

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Caddah MK, Campos T, Zucchi MI, Pereira de Souza A, Bittrich V, do Amaral MCE (2013) Species boundaries inferred from microsatellite markers in the Kielmeyera coriacea complex (Calophyllaceae) and evidence of asymmetric hybridization. Plant Syst Evol 299:731–741

    Article  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9(10):1657–1660

    Article  CAS  PubMed  Google Scholar 

  • Crayn DM, Terry RG, Smith JAC, Winter K (2000) Molecular systematic investigations in Pitcairnioideae (Bromeliaceae) as a basis for understanding the evolution of crassulacean acid metabolism (CAM). In: Wilson KL, Morrison DA (eds) Monocots: systematics and evolution. CSIRO, Melbourne, pp 569–579

    Google Scholar 

  • Crayn DM, Winter K, Smith JAC (2004) Multiple origins of crassulacean acid metabolism and the epiphytic habit in the neotropical family Bromeliaceae. Proc Natl Acad Sci USA 101:3703–3708

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Demesure B, Sodzi N, Petit RJ (1995) A set of universal primers for amplification of polymorphic noncoding regions of mitochondrial and chloroplast DNA in plants. Mol Ecol 4(1):129–131

    Article  CAS  PubMed  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  PubMed Central  PubMed  Google Scholar 

  • Ehlers TA, Poulsen CJ (2009) Influence of Andean uplift on climate and paleoaltimetry estimates. Earth Planet Sc Lett 281:238–248

    Article  CAS  Google Scholar 

  • Excoffier L, Foll M, Petit RJ (2009) Genetic consequences of range expansions. Annu Rev Ecol Evol Syst 40:481–501

    Article  Google Scholar 

  • Forzza RC (2005) Revisão taxonômica de Encholirium Mart. ex. Schult. & Schult. f. (Pitcairnioideae––Bromeliaceae). Bol Bot Univ São Paulo 23(1):1–49

    Google Scholar 

  • Ghosh P, Garzione CN, Eiler JM (2006) Rapid uplift of the altiplano revealed through 13C–18O bonds in paleosol carbonates. Science 311:511–515

    Article  CAS  PubMed  Google Scholar 

  • Givnish TJ, Millam KC, Berry PE, Sytsma KJ (2007) Phylogeny, adaptive radiation, and historical biogeography of Bromeliaceae inferred from ndhF sequence data. Aliso 23:3–26

    Article  Google Scholar 

  • Givnish TJ, Barfuss MHJ, Ee BV, Riina R, Schulte K, Horres R, Gonsiska PA, Jabaily RS, Crayn DM, Smith JAC, Winter K, Brown GK, Evans TM, Holst BK, Luther H, Till W, Zizka G, Berry PE, Sytsma KJ (2011) Phylogeny, adaptive radiation, and historical biogeography in Bromeliaceae: insights from an eight-locus plastid phylogeny. Am J Bot 98(5):872–895

    Article  PubMed  Google Scholar 

  • Hmeljevski KV, Reis A, Montagna T, dos Reis MS (2011) Genetic diversity, genetic drift and mixed mating system in small subpopulations of Dyckia ibiramensis, a rare endemic bromeliad from Southern Brazil. Conserv Genet 12:761–769

    Article  Google Scholar 

  • Horres R, Zizka G, Kahl G, Weising K (2000) Molecular phylogenetics of Bromeliaceae: evidence from trnL (UAA) intron sequences of the chloroplast genome. Plant Biol 2:306–315

    Article  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755

    Article  CAS  PubMed  Google Scholar 

  • Jabaily RS, Sytsma KJ (2010) Phylogenetics of Puya (Bromeliaceae): placement, major lineages, and evolution of Chilean species. Am J Bot 97(2):337–356

    Article  CAS  PubMed  Google Scholar 

  • Jakob SS, Blattner FR (2006) A chloroplast genealogy of Hordeum (Poaceae): long-term persisting haplotypes, incomplete lineage sorting, regional extinction, and the consequences for phylogenetic inference. Mol Biol Evol 23(8):1602–1612

    Article  CAS  PubMed  Google Scholar 

  • Krapp F (2013) Phylogenie und Evolution der Gattung Dyckia (Bromeliaceae). PhD thesis, University of Kassel

  • Leme EMC, Ribeiro OBC, Miranda ZJG (2012) New species of Dyckia (Bromeliaceae) from Brazil. Phytotaxa 67:9–37

    Google Scholar 

  • Lisiecki LE, Raymo ME (2005) A Pliocene–Pleistocene stack of 57 globally distributed benthic d18O records. Paleoceanography 20:PA1003 (1–17)

    Google Scholar 

  • Luther HE (2012) An alphabetical list of bromeliad binominals, 13th edn. Marie Selby Botanical Gardens, and The Bromeliad Society International

  • Martin CE (1994) Physiological ecology of the Bromeliaceae. Bot Rev 60:1–80

    Article  Google Scholar 

  • McKinnon GE, Vaillancourt RE, Jackson HD, Potts BM (2001) Chloroplast sharing in the Tasmanian eucalyptus. Evolution 55:703–711

    Article  CAS  PubMed  Google Scholar 

  • Morjan CL, Rieseberg LH (2004) How species evolve collectively: implications of gene flow and selection for the spread of advantageous alleles. Mol Ecol 13:1341–1356

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Müller J, Müller K, Quandt D (2011) PhyDE––Phylogenetic data editor. Version 0.9971. Program distributed by the author

  • Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University

  • Oxelman B, Lidén M, Berglund D (1997) Chloroplast rps16 intron phylogeny of the tribe Sileneae (Caryophyllaceae). Plant Syst Evol 206:393–410

    Article  Google Scholar 

  • Palma-Silva C, Wendt T, Pinheiro F, Barbará T, Fay MF, Cozzolino S, Lexer C (2011) Sympatric bromeliad species (Pitcairnia spp.) facilitate tests of mechanisms involved in species cohesion and reproductive isolation in Neotropical inselbergs. Mol Ecol 20:3185–3201

    Article  CAS  PubMed  Google Scholar 

  • Peters J (2009) Revision of the genus Fosterella L. B. Sm. Bromeliaceae. PhD thesis, University of Kassel

  • Rambaut A, Drummond AJ (2009) Tracer 1.5. Program distributed by the author

  • Rex M, Schulte K, Zizka G, Peters J, Vásquez R, Ibisch PL, Weising K (2009) Phylogenetic analysis of Fosterella L. B. Sm. (Pitcairnioideae, Bromeliaceae) based on four chloroplast DNA regions. Mol Phylogenet Evol 51:472–485

    Article  CAS  PubMed  Google Scholar 

  • Santos-Silva F, Saraiva DP, Monteiro RF, Pita P, Mantovani A, Forzza RC (2013) Invasion of the South American dry diagonal: what can the leaf anatomy of Pitcairnioideae (Bromeliaceae) tell us about it? Flora 208:508–521

    Article  Google Scholar 

  • Sazima I, Vogen S, Sazima M (1989) Bat pollination of Encholirium glaziovii, a terrestrial bromeliad. Plant Syst Evol 168:167–179

    Article  Google Scholar 

  • Schulte K, Horres R, Zizka G (2005) Molecular phylogeny of Bromelioideae and its implications on biogeography and the evolution of CAM in the family (Poales, Bromeliaceae). Senckenb Biol 85:113–125

    Google Scholar 

  • Schulte K, Barfuss MHJ, Zizka G (2009) Phylogeny of Bromelioideae (Bromeliaceae) inferred from nuclear and plastid DNA loci reveals the evolution of the tank habit within the subfamily. Mol Phylogenet Evol 51:327–339

    Article  CAS  PubMed  Google Scholar 

  • Schütz N (2012) Systematics, morphology and taxonomy of the genus Deuterocohnia L. B. Sm. Bromeliaceae. PhD thesis, University of Kassel

  • Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94:275–288

    Article  CAS  PubMed  Google Scholar 

  • Smith LB (1934) Geographical evidence on the lines of evolution in the Bromeliaceae. Bot Jahrbuch 66:446–468

    Google Scholar 

  • Smith LB (1967) Notes on Bromeliaceae. Phytologia 14(8):457–491

    Google Scholar 

  • Smith LB, Downs RJ (1974) Pitcairnioideae (Bromeliaceae). Fl Neotrop Monogr 14 Part 1:1–662

    Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21):2688–2690

    Article  CAS  PubMed  Google Scholar 

  • Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4.0 Beta 10. Sinauer Associations, Sunderland, Massachusetts

  • Tel-Zur N, Abbo S, Myslabodski D, Mizrahi Y (1999) Modified CTAB procedure for DNA isolation from epiphytic cacti of the genera Hylocereus and Selenicereus (Cactaceae). Plant Mol Biol Rep 17:249–254

    Article  CAS  Google Scholar 

  • Terry RG, Brown GK, Olmstead RG (1997) Examination of subfamilial phylogeny in Bromeliaceae using comparative sequencing of the plastid locus ndhF. Am J Bot 84:664–670

    Article  CAS  PubMed  Google Scholar 

  • Versieux LM, Wendt T (2006) Checklist of Bromeliaceae of Minas Gerais, Brazil, with notes on taxonomy and endemism. Selbyana 27(2):107–146

    Google Scholar 

  • Versieux LM, Wendt T (2007) Bromeliaceae diversity and conservation in Minas Gerais state. Brazil Biodivers Conserv 16:2989–3009

    Article  Google Scholar 

  • Versieux LM, Wendt T, Louzada RB, Wanderley MGL (2008) Bromeliaceae da Cadeia do Espinhaço. Megadiversidade 4:98–110

    Google Scholar 

  • Vesprini JL, Galetto L, Bernadello G (2003) The beneficial effect of ants on the reproductive success of Dyckia floribunda (Bromeliaceae), an extrafloral nectary plant. Can J Bot 81:24–27

    Article  Google Scholar 

  • Watts CD, Fisher AE, Shrum CD, Newbold WL, Hansen S, Liu C, Kelchner SA (2008) The D4 set: primers that target highly variable intron loops in plant chloroplast genomes. Mol Ecol Resour 8:1344–1347

    Article  CAS  PubMed  Google Scholar 

  • Winkler S (1980) Ursachen der Verbreitungsmuster einiger Bromeliaceae in Rio Grande do Sul (Südbrasilien). Flora 170:371–393

    Google Scholar 

  • Winkler S (1986) Differenzierungen und deren Ursachen innerhalb der Bromeliaceen. Beitr Biol Pflanzen 61:283–314

    Google Scholar 

  • Wöhrmann T, Pinangé D, Krapp F, Benko-Iseppon AM, Huettel B, Weising K (2013) Development of 15 nuclear microsatellite markers in the genus Dyckia (Pitcairnioideae; Bromeliaceae). Conservation Genet Resour 5:81–84

    Article  Google Scholar 

  • Wu C-I (2001) The genic view of the process of speciation. J Evol Biol 14:851–865

    Article  Google Scholar 

  • Wu C-I, Ting C-T (2004) Genes and speciation. Nat Rev Genet 5:114–122

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank J. Peters, N. Schütz and the Botanical Gardens of Heidelberg, Bonn, Berlin-Dahlem, Marburg and Vienna for providing plant material as well as R.B. Louzada, G. Cruz and A. M. Wanderley for help during fieldwork. F. Krapp and D. Pinangé are supported by PhD fellowship grants of the Otto-Braun-Fonds (Melsungen) and the Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE), respectively. This work was supported by DAAD (German Academic Exchange Service), by CAPES (Brazilian Coordination for the Improvement of Higher Education Personnel) in the frame of the PROBRAL and PNADB programs, an also by CNPq (Brazilian Counsel of Technological and Scientific Development).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Weising.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krapp, F., de Barros Pinangé, D.S., Benko-Iseppon, A.M. et al. Phylogeny and evolution of Dyckia (Bromeliaceae) inferred from chloroplast and nuclear sequences. Plant Syst Evol 300, 1591–1614 (2014). https://doi.org/10.1007/s00606-014-0985-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-014-0985-0

Keywords

Navigation