Skip to main content
Log in

A rapid and efficient transformation protocol for the grass Brachypodium distachyon

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

A fast and efficient microprojectile bombardment-mediated transformation protocol is reported for the grass species Brachypodium distachyon, a proposed alternative model plant to Oryza sativa for functional genomics in grasses. Embryogenic calli derived from immature embryos were transformed by a construct containing the uidA (coding for β-glucuronidase) and bar (coding for phosphinothricin acetyl transferase) genes, and bialaphos, a non-selective herbicide, was used as the selection agent throughout all phases of the tissue culture. Average transformation efficiencies of 5.3% were achieved, and for single bombardments transformation efficiencies of up to 14% were observed. The time frame from the bombardment of embryogenic callus to the harvesting of transgenic T1 seeds was 29 weeks and 25 weeks for the diploid and two tetraploid accessions used, respectively. Since the seed-to-seed life cycle is 19 weeks for the diploid and 15 weeks for the tetraploid accessions, our B. distachyon transformation system allows testing of both the T0 and the T1 generation as well as production of T2 seeds within 1 year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BAP:

Benzylaminopurine

2,4-D:

2,4-Dichlorophenoxyacetic acid

GUS:

β-Glucuronidase

References

  • Altpeter F, Xu J, Ahmed S (2000) Generation of large numbers of independently transformed fertile perennial ryegrass (Lolium perenne L.) plants of forage- and turf-type cultivars. Mol Breed 6:519–528

    Article  CAS  Google Scholar 

  • Bablak P, Draper J, Davey MR, Lynch PT (1995) Plant regeneration and micropropagation of Brachypodium distachyon. Plant Cell Tissue Organ Cult 42:97–107

    Google Scholar 

  • Bettany AJE, Dalton SJ, Timms E, Manderyck B, Dhanoa MS, Morris P (2003) Agrobacterium tumefaciens-mediated transformation of Festuca arundinacea (Schreb.) and Lolium multiflorum (Lam.). Plant Cell Rep 21:437–444

    CAS  PubMed  Google Scholar 

  • Bevan M, Barnes WM, Chilton M (1983) Structure and transcription of the nopaline synthase gene region of T-DNA. Nucleic Acids Res 11:369–385

    CAS  PubMed  Google Scholar 

  • Busch W, Martin R, Herrmann RG (1994) Sensitivity enhancement of fluorescence in situ hybridization on plant chromosomes. Chromos Res 2:15–20

    CAS  Google Scholar 

  • Cho M-J, Ha CD, Lemaux PG (2000) Production of transgenic tall fescue and red fescue plants by particle bombardment of mature seed-derived highly regenerative tissues. Plant Cell Rep 19:1084–1089

    Article  CAS  Google Scholar 

  • Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18:675–689

    CAS  PubMed  Google Scholar 

  • Dalton SJ, Bettany AJE, Timms E, Morris P (1995) The effect of selection pressure on transformation frequency and copy number in transgenic plants of tall fescue (Festuca arundinacea Schreb.). Plant Sci 108:63–70

    Article  CAS  Google Scholar 

  • Dalton SJ, Bettany AJE, Timms E, Morris P (1999) Co-transformed, diploid Lolium perenne (perennial ryegrass), Lolium multiflorum (Italian ryegrass) and Lolium temulentum (darnel) plants produced by microprojectile bombardment. Plant Cell Rep 18:721–726

    Article  CAS  Google Scholar 

  • Denchev PD, Songstad DD, McDaniel JK, Conger BV (1997) Transgenic orchardgrass (Dactylis glomerata) plants by direct embryogenesis from microprojectile bombarded leaf cells. Plant Cell Rep 16:813–819

    Article  CAS  Google Scholar 

  • Draper J, Mur LAJ, Jenkins G, Ghosh-Biswas GC, Bablak P, Hasterok R, Routledge APM (2001) Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol 127:1539–1555

    Article  CAS  PubMed  Google Scholar 

  • Fu X, Duc LT, Fontana S, Bong BB, Tinjuangjun P, Sudhakar D, Twyman RM, Christou P, Kohli A (2000) Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration pattern. Transgenic Res 9:11–19

    Article  CAS  PubMed  Google Scholar 

  • Hasterok R, Draper J, Jenkins G (2004) Laying the cytotaxonomic foundations of a new model grass, Brachypodium distachyon (L.) Beauv. Chromos Res 12:397–403

    Article  CAS  Google Scholar 

  • Horn ME, Shillito RD, Conger BV, Harms CT (1988) Transgenic plants of orchardgrass (Dactylis glomerata L.) from protoplasts. Plant Cell Rep 7:469–472

    Article  CAS  Google Scholar 

  • Izawa T, Shimamoto K (1996) Becoming a model plant: the importance of rice to plant science. Trends Plant Sci 1:95–99

    Article  Google Scholar 

  • Jefferson RA, Burgess SM, Hirsh D (1986) β-Glucuronidase from Escherichia coli as a gene-fusion marker. Proc Natl Acad Sci USA 83:8447–8451

    CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  Google Scholar 

  • Kohli A, Leech M, Vain P, Laurie DA, Christou P (1998) Transgene organization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot spots. Proc Natl Acad Sci USA 95:7203–7208

    Article  CAS  PubMed  Google Scholar 

  • Laibach F (1943) Arabidopsis thaliana (L.) Heynh. als object für genetische und entwicklungsphysiologische untersuchungen. Bot Arch 44:439–455

    Google Scholar 

  • Leitch AR, Schwarzacher T, Jackson D, Leitch IJ (1994) The material. In situ hybridization: a practical guide. Bios Scientific, Oxford, pp 21–24

    Google Scholar 

  • Matzke MA, Matzke AJM, Eggleston WB (1996) Paramutation and transgene silencing: a common response to invasive DNA? Trends Plant Sci 1:382–388

    Article  Google Scholar 

  • McElroy D, Blowers AD, Jenes B, Wu R (1991) Construction of expression vectors based on the rice actin 1 (Act1) 5′ region for use in monocot transformation. Mol Gen Genet 231:150–160

    CAS  PubMed  Google Scholar 

  • Pan WH, Houben A, Schlegel R (1993) Highly effective cell synchronization in plant roots by hydroxyurea and amiprophos-methyl or colchicine. Genome 36:387–390

    CAS  Google Scholar 

  • Pawlowski WP, Somers DA (1998) Transgenic DNA integrated into the oat genome is frequently interspersed by host DNA. Proc Natl Acad Sci USA 95:12106–12110

    Article  CAS  PubMed  Google Scholar 

  • Rédei GP (1970) Arabidopsis thaliana (L.) Heynh. A review of the biology and genetics. Bibliogr Genet 20:1–151

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 9.31–9.62

    Google Scholar 

  • Sawant SV, Singh PK, Tuli R (2000) Pretreatment of microprojectiles to improve the delivery of DNA in plant transformation. Biotechniques 29:246–248

    CAS  PubMed  Google Scholar 

  • Shimamoto K, Kyozuka J (2002) Rice as a model for comparative genomics of plants. Annu Rev Plant Biol 53:399–419

    Article  CAS  PubMed  Google Scholar 

  • Somerville C, Koornneef M (2002) A fortunate choice: the history of Arabidopsis as model plant. Nat Rev 3:883–889

    Article  CAS  Google Scholar 

  • Spangenberg G, Wang ZY, Nagel J, Potrykus I (1994) Protoplast culture and generation of transgenic plants in red fescue (Festuca rubra L.). Plant Sci 97:83–94

    Article  CAS  Google Scholar 

  • Spangenberg G, Wang ZY, Wu XL, Nagel J, Iglesias VA, Potrykus I (1995a) Transgenic tall fescue (Festuca arundinacea) and red fescue (F. rubra) plants from microprojectile bombardment of embryogenic suspension cells. J Plant Physiol 145:693–701

    CAS  Google Scholar 

  • Spangenberg G, Wang ZY, Wu X, Nagel J, Potrykus I (1995b) Transgenic perennial ryegrass (Lolium perenne) plants from microprojectile bombardment of embryogenic suspension cells. Plant Sci 108:209–217

    Article  CAS  Google Scholar 

  • Thompson CJ, Movva NR, Tizard R, Crameri R, Davies JE, Lauwereys M, Botterman J (1987) Characterisation of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J 6:2519–2523

    CAS  Google Scholar 

  • Tingay S, McElroy D, Kalla R, Fieg S, Wang M, Thornton S, Brettell R (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J 11:1369–1376

    Article  CAS  Google Scholar 

  • Toyama K, Bae CH, Kang JG, Lim YP, Adachi T, Riu KZ, Song PS, Lee HY (2003) Production of herbicide-tolerant zoysiagrass by Agrobacterium-mediated transformation. Mol Cells 16:19–27

    CAS  PubMed  Google Scholar 

  • Tyagi AK, Mohanty A (2000) Rice transformation for crop improvement and functional genomics. Plant Sci 158:1–18

    Article  CAS  PubMed  Google Scholar 

  • Vain P, McMullen MD, Finer JJ (1993) Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep 12:84–88

    Article  Google Scholar 

  • Wang GR, Binding H, Posselt UK (1997) Fertile transgenic plants from direct gene transfer to protoplasts of Lolium perenne L. and Lolium multiflorum Lam. J Plant Physiol 151:83–90

    CAS  Google Scholar 

  • Wang Z, Takamizo T, Iglesias VA, Osusky M, Nagel J, Potrykus I, Spangenberg G (1992) Transgenic plants of tall fescue (Festuca arundinacea Schreb.) obtained by direct gene transfer to protoplasts. Biotechnology 10:691–696

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Peng Z, Cai Y, Wu R (1987) Cloning and analysis of histone 3 gene and rubisco small subunit gene of rice. Sci Sin Ser B 30:706–719

    CAS  Google Scholar 

  • Ye X, Wang ZY, Wu X, Potrykus I, Spangenberg G (1997) Transgenic Italian ryegrass (Lolium multiflorum) plants from microprojectile bombardment of embryogenic suspension cells. Plant Cell Rep 16:379–384

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Julia Kinane (Risø National Laboratory, Denmark) and Niels Roulund (DLF-Trifolium A/S, Denmark) for help on the statistical analyses. A special thanks to the group of Dr. John Draper for their kind assistance during the 4-month stay of Pernille Christiansen at the Institute of Biological Science, University of Wales, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pernille Christiansen.

Additional information

Communicated by J.M. Widholm

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christiansen, P., Andersen, C.H., Didion, T. et al. A rapid and efficient transformation protocol for the grass Brachypodium distachyon. Plant Cell Rep 23, 751–758 (2005). https://doi.org/10.1007/s00299-004-0889-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-004-0889-5

Keywords

Navigation